Science.gov

Sample records for dependent myocardial angiotensin

  1. Potential role of renin-angiotensin system blockade for preventing myocardial ischemia/reperfusion injury and remodeling after myocardial infarction.

    PubMed

    Dai, Wangde; Kloner, Robert A

    2011-03-01

    Experimental and clinical studies have demonstrated that myocardial ischemia induces activation of various components of the renin-angiotensin system (RAS), including angiotensinogen, renin, angiotensin-converting enzyme (ACE), angiotensins, and angiotensin receptors, in the acute phase of myocardial infarction and the postinfarction remodeling process. Pharmacological inhibition of the RAS by administration of renin inhibitors, ACE inhibitors, and angiotensin receptor blockers has shown beneficial effects on the pathological processes of myocardial infarction in both experimental animal studies and clinical trials. However, the potential mechanisms responsible for the cardioprotection of RAS inhibition remain unclear. In this review, we discuss roles of RAS blocking in the prevention of myocardial ischemia/reperfusion injury and postinfarction remodeling.

  2. Angiotensin II stimulates sodium-dependent proton extrusion in perfused ferret heart.

    PubMed

    Grace, A A; Metcalfe, J C; Weissberg, P L; Bethell, H W; Vandenberg, J I

    1996-06-01

    The Na+/H+ antiport and Na(+)-HCO3- coinflux carrier contribute to recovery from intracellular acidosis in cardiac tissue. The effects of angiotensin II (10(-12)-10(-6) M) on H+ fluxes after intracellular acid loading and during reperfusion after myocardial ischemia have been investigated in the isovolumic, Langendorff-perfused ferret heart. Intracellular pH (pHi) was estimated using 31P nuclear magnetic resonance (NMR) spectroscopy from the chemical shift of intracellular deoxyglucose-6-phosphate or inorganic phosphate. Angiotensin II produced concentration-dependent stimulation (maximum at 10(-6) M: 67%) of 5-(N-ethyl-N-isopropyl)amiloride (EIPA)-sensitive Na(+)-dependent of H+ efflux consistent with stimulation of the Na+/H+ antiport. Half-maximal stimulation of H+ efflux occurred at approximately 10(-9) M, which is close to the dissociation constant of the cardiac angiotensin AT1 receptor. Stimulation via this receptor was confirmed with the nonpeptide AT1 receptor blocker, GR-117289. Angiotensin II had less pronounced effects on HCO3(-)-dependent pHi recovery after acid loading with no effect on pHi recovery after intracellular alkalosis. During reperfusion, angiotensin II significantly increased H+ extrusion but impaired contractile recovery. The results support the hypothesis that angiotensin II facilitates H+ extrusion in the heart. This may help maintain physiological homeostasis, but the hypothesized obligated Na+ influx could exacerbate cellular dysfunction during reperfusion. PMID:8764151

  3. Angiotensin degradation products mediate endothelium-dependent dilation of rabbit brain arterioles.

    PubMed

    Haberl, R L; Decker, P J; Einhäupl, K M

    1991-06-01

    This study demonstrates that the hexapeptide angiotensin II-(3-8) and L-arginine, generated through enzymatic degradation of angiotensin, mediate endothelium-dependent dilation in rabbit brain arterioles. Topical application of angiotensin II (10(-5) M) on the brain surface of anesthetized rabbits caused 21.6 +/- 4.5% (mean +/- SEM) cerebral arteriolar dilation. The cyclooxygenase inhibitor indomethacin did not change this dilation. The natural degradation product of angiotensin II in the brain, angiotensin III, also induced vasodilation at concentrations of 10(-7) to 10(-5) M. The dilation to angiotensin II and angiotensin III was eliminated in the presence of 10(-5) M methylene blue, a known inhibitor of endothelium-dependent vasodilation. Amastatin, an aminopeptidase inhibitor and blocker of enzymatic angiotensin degradation, also inhibited the response to angiotensin II and angiotensin III. The angiotensin fragment angiotensin II-(3-8), which lacks the amino-terminal L-arginine residue of angiotensin III, did not elicit an arteriolar response. When angiotensin II-(3-8) was topically applied subsequent to L-arginine, a 21.2 +/- 2.9% vasodilation was observed. L-Arginine itself induced only moderate vasodilation with a maximum of 4.0 +/- 0.9% at 10(-5) M L-arginine. The dilating response to angiotensin II-(3-8) after L-arginine was inhibited by methylene blue. It was not affected by amastatin. It is concluded that degradation products of angiotensin, rather than angiotensin II itself, induce endothelium-dependent dilation in rabbit brain arterioles without involvement of cyclooxygenase products.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Soluble Angiotensin Converting Enzyme 2 in Human Heart Failure: Relation with Myocardial Function and Clinical Outcomes

    PubMed Central

    Epelman, Slava; Shrestha, Kevin; Troughton, Richard W.; Francis, Gary S.; Sen, Subha; Klein, Allan L.; Tang, W .H. Wilson

    2011-01-01

    Objective Angiotensin converting enzyme 2 (ACE2) is an endogenous counter-regulator of the renin-angiotensin system. The relationship between soluble ACE2 (sACE2), myocardial function, and clinical outcomes in patients with chronic systolic heart failure is not well established. Methods We measured sACE2 activity in 113 patients with chronic systolic heart failure (left ventricular ejection fraction [LVEF] ≤ 35%, NYHA class II-IV). Comprehensive echocardiography was performed at the time of blood sampling. We prospectively examined adverse clinical events (death, cardiac transplant, and heart failure hospitalizations) over 34 ± 17 months. Results Patients who had higher sACE2 plasma activity were more likely to have a lower LVEF (Spearman’s r= −0.36, p <0.001), greater RV systolic dysfunction (r=0.33, p<0.001), higher estimated pulmonary artery systolic pressure (r=0.35, p=0.002), larger LV end diastolic diameter (r=0.23, p=0.02), and higher plasma NT-proBNP levels (r=0.35, p<0.001). sACE2 was less associated with diastolic dysfunction (r=0.19, p=0.05), and was similar between patients with ischemic and non-ischemic cardiomyopathies. There was no relationship between sACE2 activity and markers of systemic inflammation. After adjusting for NT-proBNP and LVEF, sACE2 activity remained an independent predictor of adverse clinical events (HR=1.7 [95% CI: 1.1 – 2.6], p=0.018). Conclusions Elevated plasma sACE2 activity was associated with greater severity of myocardial dysfunction and was an independent predictor of adverse clinical events. PMID:19700132

  5. Angiotensin II and norepinephrine activate specific calcineurin-dependent NFAT transcription factor isoforms in cardiomyocytes.

    PubMed

    Lunde, Ida G; Kvaløy, Heidi; Austbø, Bjørg; Christensen, Geir; Carlson, Cathrine R

    2011-11-01

    Norepinephrine (NE) and angiotensin II (ANG II) are primary effectors of the sympathetic adrenergic and the renin-angiotensin-aldosterone systems, mediating hypertrophic, apoptotic, and fibrotic events in the myocardium. As NE and ANG II have been shown to affect intracellular calcium in cardiomyocytes, we hypothesized that they activate the calcium-sensitive, prohypertrophic calcineurin-nuclear factor of activated T-cell (NFATc) signaling pathway. More specifically, we have investigated isoform-specific activation of NFAT in NE- and ANG II-stimulated cardiomyocytes, as it is likely that each of the four calcineurin-dependent isoforms, c1-c4, play specific roles. We have stimulated neonatal ventriculocytes from C57/B6 and NFAT-luciferase reporter mice with ANG II or NE and quantified NFAT activity by luciferase activity and phospho-immunoblotting. ANG II and NE increased calcineurin-dependent NFAT activity 2.4- and 1.9-fold, measured as luciferase activity after 24 h of stimulation, and induced protein synthesis, measured by radioactive leucine incorporation after 24 and 72 h. To optimize measurements of NFAT isoforms, we examined the specificity of NFAT antibodies on peptide arrays and by immunoblotting with designed blocking peptides. Western analyses showed that both effectors activate NFATc1 and c4, while NFATc2 activity was regulated by NE only, as measured by phospho-NFAT levels. Neither ANG II nor NE activated NFATc3. As today's main therapies for heart failure aim at antagonizing the adrenergic and renin-angiotensin-aldosterone systems, understanding their intracellular actions is of importance, and our data, through validating a method for measuring myocardial NFATs, indicate that ANG II and NE activate specific NFATc isoforms in cardiomyocytes.

  6. Angiotensin II type 1 receptor blockers as a first choice in patients with acute myocardial infarction

    PubMed Central

    Lee, Jang Hoon; Bae, Myung Hwan; Yang, Dong Heon; Park, Hun Sik; Cho, Yongkeun; Lee, Won Kee; Jeong, Myung Ho; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Chae, Shung Chull

    2016-01-01

    Background/Aims: Angiotensin II type 1 receptor blockers (ARBs) have not been adequately evaluated in patients without left ventricular (LV) dysfunction or heart failure after acute myocardial infarction (AMI). Methods: Between November 2005 and January 2008, 6,781 patients who were not receiving angiotensin-converting enzyme inhibitors (ACEIs) or ARBs were selected from the Korean AMI Registry. The primary endpoints were 12-month major adverse cardiac events (MACEs) including death and recurrent AMI. Results: Seventy percent of the patients were Killip class 1 and had a LV ejection fraction ≥ 40%. The prescription rate of ARBs was 12.2%. For each patient, a propensity score, indicating the likelihood of using ARBs during hospitalization or at discharge, was calculated using a non-parsimonious multivariable logistic regression model, and was used to match the patients 1:4, yielding 715 ARB users versus 2,860 ACEI users. The effect of ARBs on in-hospital mortality and 12-month MACE occurrence was assessed using matched logistic and Cox regression models. Compared with ACEIs, ARBs significantly reduced in-hospital mortality(1.3% vs. 3.3%; hazard ratio [HR], 0.379; 95% confidence interval [CI], 0.190 to0.756; p = 0.006) and 12-month MACE occurrence (4.6% vs. 6.9%; HR, 0.661; 95% CI, 0.457 to 0.956; p = 0.028). However, the benefit of ARBs on 12-month mortality compared with ACEIs was marginal (4.3% vs. 6.2%; HR, 0.684; 95% CI, 0.467 to 1.002; p = 0.051). Conclusions: Our results suggest that ARBs are not inferior to, and may actually be better than ACEIs in Korean patients with AMI. PMID:26701233

  7. Paracrine systems in the cardioprotective effect of angiotensin-converting enzyme inhibitors on myocardial ischemia/reperfusion injury in rats.

    PubMed

    Liu, Y H; Yang, X P; Sharov, V G; Sigmon, D H; Sabbath, H N; Carretero, O A

    1996-01-01

    After transient episodes of ischemia, benefits of thrombolytic or angioplastic therapy may be limited by reperfusion injury. Angiotensin-converting enzyme inhibitors protect the heart against ischemia/reperfusion injury, an effect mediated by kinins. We examined whether the protective effect of the angiotensin-converting enzyme inhibitor ramiprilat on myocardial ischemia/reperfusion is due to kinin stimulation of prostaglandin and/or nitric oxide release. The left anterior descending coronary artery of Lewis inbred rats was occluded for 30 minutes, followed by 120 minutes of reperfusion. Immediately before reperfusion rats were treated with vehicle, ramiprilat, or the angiotensin II type 1 receptor antagonist losartan. We tested whether pretreatment with the kinin receptor antagonist Hoe 140, the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester, or the cyclooxygenase inhibitor indomethacin blocked the effect of ramiprilat on infarct size and reperfusion arrhythmias. In controls, infarct size as a percentage of the area at risk was 79 +/- 3%; ramiprilat reduced this to 49 +/- 4% (P < .001), but losartan had little effect (74 +/- 6%, P = NS). Pretreatment with Hoe 140, NG-nitro-L-arginine methyl ester, or indomethacin abolished the beneficial effect of ramiprilat. Compared with the 30-minute ischemia/120-minute reperfusion group, nonreperfused hearts with 30 minutes of ischemia had significantly smaller infarct size as a percentage of the area at risk, whereas in the 150-minute ischemia group it was significantly larger. This suggests that reperfusion caused a significant part of the myocardial injury, but it also suggests that compared with prolonged ischemia, reperfusion salvaged some of the myocardium. Ventricular arrhythmias mirrored the changes in infarct size. Thus, angiotensin-converting enzyme inhibitors protect the myocardium against ischemia/reperfusion injury and arrhythmias; these beneficial effects are mediated primarily by a kinin

  8. Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes.

    PubMed

    Williams, Sarah M; Golden-Mason, Lucy; Ferguson, Bradley S; Schuetze, Katherine B; Cavasin, Maria A; Demos-Davies, Kim; Yeager, Michael E; Stenmark, Kurt R; McKinsey, Timothy A

    2014-02-01

    Fibrosis, which is defined as excessive accumulation of fibrous connective tissue, contributes to the pathogenesis of numerous diseases involving diverse organ systems. Cardiac fibrosis predisposes individuals to myocardial ischemia, arrhythmias and sudden death, and is commonly associated with diastolic dysfunction. Histone deacetylase (HDAC) inhibitors block cardiac fibrosis in pre-clinical models of heart failure. However, which HDAC isoforms govern cardiac fibrosis, and the mechanisms by which they do so, remains unclear. Here, we show that selective inhibition of class I HDACs potently suppresses angiotensin II (Ang II)-mediated cardiac fibrosis by targeting two key effector cell populations, cardiac fibroblasts and bone marrow-derived fibrocytes. Class I HDAC inhibition blocks cardiac fibroblast cell cycle progression through derepression of the genes encoding the cyclin-dependent kinase (CDK) inhibitors, p15 and p57. In contrast, class I HDAC inhibitors block agonist-dependent differentiation of fibrocytes through a mechanism involving repression of ERK1/2 signaling. These findings define novel roles for class I HDACs in the control of pathological cardiac fibrosis. Furthermore, since fibrocytes have been implicated in the pathogenesis of a variety of human diseases, including heart, lung and kidney failure, our results suggest broad utility for isoform-selective HDAC inhibitors as anti-fibrotic agents that function, in part, by targeting these circulating mesenchymal cells.

  9. Fibulin-2 is essential for angiotensin II-induced myocardial fibrosis mediated by transforming growth factor (TGF)-β.

    PubMed

    Khan, Shaukat A; Dong, Hailong; Joyce, Jennifer; Sasaki, Takako; Chu, Mon-Li; Tsuda, Takeshi

    2016-07-01

    Fibrosis is an ominous pathological process in failing myocardium, but its pathogenesis is poorly understood. We recently reported that loss of an extracellular matrix (ECM) protein, fibulin-2, protected against ventricular dysfunction after myocardial infarction (MI) in association with absence of activation of transforming growth factor (TGF)-β signaling and suppressed upregulation of ECM protein expression during myocardial remodeling. Here we investigated the role of fibulin-2 in the development of myocardial hypertrophy and fibrosis induced by continuous pressor-dosage of angiotensin II (Ang II) infusion. Both wild type (WT) and fibulin-2 null (Fbln2KO) mice developed comparable hypertension and myocardial hypertrophy by Ang II infusion. However, myocardial fibrosis with significant upregulation of collagen type I and III mRNA was only seen in WT but not in Fbln2KO mice.Transforming growth factor (TGF)-β1 mRNA and its downstream signal, Smad2, were significantly upregulated in WT by Ang II, whereas there were no Ang II-induced changes in Flbn2KO, suggesting fibulin-2 is necessary for Ang II-induced TGF-β signaling that induces myocardial fibrosis. To test whether fibulin-2 is sufficient for Ang II-induced TGF-β upregulation, isolated Flbn2KO cardiac fibroblasts were treated with Ang II after transfecting with fibulin-2 expression vector or pretreating with recombinant fibulin-2 protein. Ang II-induced TGF-β signaling in Fbln2KO cells was partially rescued by exogenous fibulin-2, suggesting that fibulin-2 is required and probably sufficient for Ang II-induced TGF-β activation. Smad2 phosphorylation was induced just by adding recombinant fibulin-2 to KO cells, suggesting that extracellular interaction between fibulin-2 and latent TGF-β triggered initial TGF-β activation. Our study indicates that Ang II cannot induce TGF-β activation without fibulin-2 and that fibulin-2 has an essential role in Ang II-induced TGF-β signaling and subsequent myocardial

  10. Brain renin-angiotensin system and sympathetic hyperactivity in rats after myocardial infarction.

    PubMed

    Zhang, W; Huang, B S; Leenen, F H

    1999-05-01

    Blockade of brain "ouabain" prevents the sympathetic hyperactivity and impairment of baroreflex function in rats with congestive heart failure (CHF). Because brain "ouabain" may act by activating the brain renin-angiotensin system (RAS), the aim of the present study was to assess whether chronic treatment with the AT1-receptor blocker losartan given centrally normalizes the sympathetic hyperactivity and impairment of baroreflex function in Wistar rats with CHF postmyocardial infarction (MI). After left coronary artery ligation (2 or 6 wk), rats received either intracerebroventricular losartan (1 mg. kg-1. day-1, CHF-Los) or vehicle (CHF-Veh) by osmotic minipumps. To assess possible peripheral effects of intracerebroventricular losartan, one set of CHF rats received the same rate of losartan subcutaneously. Sham-operated rats served as control. After 2 wk of treatment, mean arterial pressure (MAP), heart rate (HR), and renal sympathetic nerve activity (RSNA) at rest and in response to air-jet stress and intracerebroventricular injection of the alpha2-adrenoceptor-agonist guanabenz were measured in conscious animals. Arterial baroreflex function was evaluated by ramp changes in MAP. Compared with sham groups, CHF-Veh groups showed impaired arterial baroreflex control of HR and RSNA, increased sympathoexcitatory and pressor responses to air-jet stress, and increased sympathoinhibitory and hypotensive responses to guanabenz. The latter is consistent with decreased activity in sympathoinhibitory pathways. Chronic intracerebroventricular infusion of losartan largely normalized these abnormalities. In CHF rats, the same rate of infusion of losartan subcutaneously was ineffective. In sham-operated rats, losartan intracerebroventricularly or subcutaneously did not affect sympathetic activity. We conclude that the chronic increase in sympathoexcitation, decrease in sympathoinhibition, and desensitized baroreflex function in CHF all appear to depend on the brain RAS, since

  11. Lack of weight gain after angiotensin AT1 receptor blockade in diet-induced obesity is partly mediated by an angiotensin-(1–7)/ Mas-dependent pathway

    PubMed Central

    Schuchard, Johanna; Winkler, Martina; Stölting, Ines; Schuster, Franziska; Vogt, Florian M; Barkhausen, Jörg; Thorns, Christoph; Santos, Robson A; Bader, Michael; Raasch, Walter

    2015-01-01

    Background and Purpose Angiotensin AT1 receptor antagonists induce weight loss; however, the mechanism underlying this phenomenon is unknown. The Mas receptor agonist angiotensin-(1-7) is a metabolite of angiotensin I and of angiotensin II. As an agonist of Mas receptors, angiotensin-(1-7) has beneficial cardiovascular and metabolic effects. Experimental Approach We investigated the anti-obesity effects of transgenically overexpressed angiotensin-(1-7) in rats. We secondly examined whether weight loss due to telmisartan (8 mg·kg−1·d−1) in diet-induced obese Sprague Dawley (SD) rats can be blocked when the animals were co-treated with the Mas receptor antagonist A779 (24 or 72 μg·kg−1·d−1). Key Results In contrast to wild-type controls, transgenic rats overexpressing angiotensin-(1-7) had 1.) diminished body weight when they were regularly fed with chow; 2.) were protected from developing obesity although they were fed with cafeteria diet (CD); 3.) showed a reduced energy intake that was mainly related to a lower CD intake; 5.) remained responsive to leptin despite chronic CD feeding; 6.) had a higher, strain-dependent energy expenditure, and 7.) were protected from developing insulin resistance despite CD feeding. Telmisartan-induced weight loss in SD rats was partially antagonized after a high, but not a low dose of A779. Conclusions and Implications Angiotensin-(1-7) regulated food intake and body weight and contributed to the weight loss after AT1 receptor blockade. Angiotensin-(1-7)-like agonists may be drug candidates for treating obesity. PMID:25906670

  12. Cardiac-Autonomic Imbalance and Baroreflex Dysfunction in the Renovascular Angiotensin-Dependent Hypertensive Mouse

    PubMed Central

    Campagnaro, Bianca P.; Gava, Agata L.; Meyrelles, Silvana S.; Vasquez, Elisardo C.

    2012-01-01

    Mouse models provide powerful tools for studying the mechanisms underlying the dysfunction of the autonomic reflex control of cardiovascular function and those involved in cardiovascular diseases. The established murine model of two-kidney, one-clip (2K1C) angiotensin II-dependent hypertension represents a useful tool for studying the neural control of cardiovascular function. In this paper, we discuss the main contributions from our laboratory and others regarding cardiac-autonomic imbalance and baroreflex dysfunction. We show recent data from the angiotensin-dependent hypertensive mouse demonstrating DNA damage and oxidative stress using the comet assay and flow cytometry, respectively. Finally, we highlight the relationships between angiotensin and peripheral and central nervous system areas of cardiovascular control and oxidative stress in the 2K1C hypertensive mouse. PMID:23193440

  13. Sildenafil Protects against Myocardial Ischemia-Reperfusion Injury Following Cardiac Arrest in a Porcine Model: Possible Role of the Renin-Angiotensin System.

    PubMed

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2015-11-12

    Sildenafil, a phosphodiesterase-5 inhibitor sold as Viagra, is a cardioprotector against myocardial ischemia/reperfusion (I/R) injury. Our study explored whether sildenafil protects against I/R-induced damage in a porcine cardiac arrest and resuscitation (CAR) model via modulating the renin-angiotensin system. Male pigs were randomly divided to three groups: Sham group, Saline group, and sildenafil (0.5 mg/kg) group. Thirty min after drug infusion, ventricular fibrillation (8 min) and cardiopulmonary resuscitation (up to 30 min) was conducted in these animals. We found that sildenafil ameliorated the reduced cardiac function and improved the 24-h survival rate in this model. Sildenafil partly attenuated the increases of plasma angiotensin II (Ang II) and Ang (1-7) levels after CAR. Sildenafil also decreased apoptosis and Ang II expression in myocardium. The increases of expression of angiotensin-converting-enzyme (ACE), ACE2, Ang II type 1 receptor (AT1R), and the Ang (1-7) receptor Mas in myocardial tissue were enhanced after CAR. Sildenafil suppressed AT1R up-regulation, but had no effect on ACE, ACE2, and Mas expression. Sildenafil further boosted the upregulation of endothelial nitric oxide synthase (eNOS), cyclic guanosine monophosphate (cGMP) and inducible nitric oxide synthase(iNOS). Collectively, our results suggest that cardioprotection of sildenafil in CAR model is accompanied by an inhibition of Ang II-AT1R axis activation.

  14. Disruption of cardiovascular circadian rhythms in mice post myocardial infarction: relationship with central angiotensin II receptor expression

    PubMed Central

    Mousa, Tarek M.; Schiller, Alicia M.; Zucker, Irving H.

    2014-01-01

    Abstract Angiotensin II (Ang II) is well known to participate in the abnormal autonomic cardiovascular control that occurs during the development of chronic heart failure (CHF). Disrupted cardiovascular circadian rhythm in CHF is also well accepted; however, the mechanisms underlying and the role of central Ang II type 1 receptors (AT1R) and oxidative stress in mediating such changes are not clear. In a post myocardial infarction (MI) CHF mouse model we investigated the circadian rhythm for mean arterial pressure (MAP), heart rate (HR), and baroreflex sensitivity (BRS) following MI. The cardiovascular parameters represent the middle 6‐h averages during daytime (6:00–18:00) and nighttime (18:00–6:00). HR increased with the severity of CHF reaching its maximum by 12 weeks post‐MI; loss of circadian HR and BRS rhythms were observed as early as 4 weeks post‐MI in conjunction with a significant blunting of the BRS and an upregulation in the AT1R and gp91phox proteins in the brainstem. Loss of MAP circadian rhythm was observed 8 weeks post‐MI. Circadian AT1R expression was demonstrated in sham animals but was lost 8 weeks following MI. Losartan reduced AT1R expression in daytime (1.18 ± 0.1 vs. 0.85 ± 0.1; P < 0.05) with a trend toward a reduction in the AT1R mRNA expression in the nighttime (1.2 ± 0.1 vs. 1.0 ± 0.1; P > 0.05) but failed to restore circadian variability. The disruption of circadian rhythm for HR, MAP and BRS along with the upregulation of AT1 and gp91phox suggests a possible role for central oxidative stress as a mediator of circadian cardiovascular parameters in the post‐MI state. PMID:25413327

  15. Angiotensin receptors alter myocardial infarction-induced remodeling of the guinea pig cardiac plexus.

    PubMed

    Hardwick, Jean C; Ryan, Shannon E; Powers, Emily N; Southerland, E Marie; Ardell, Jeffrey L

    2015-07-15

    Neurohumoral remodeling is fundamental to the evolution of heart disease. This study examined the effects of chronic treatment with an ACE inhibitor (captopril, 3 mg·kg(-1)·day(-1)), AT1 receptor antagonist (losartan, 3 mg·kg(-1)·day(-1)), or AT2 receptor agonist (CGP42112A, 0.14 mg·kg(-1)·day(-1)) on remodeling of the guinea pig intrinsic cardiac plexus following chronic myocardial infarction (MI). MI was surgically induced and animals recovered for 6 or 7 wk, with or without drug treatment. Intracellular voltage recordings from whole mounts of the cardiac plexus were used to monitor changes in neuronal responses to norepinephrine (NE), muscarinic agonists (bethanechol), or ANG II. MI produced an increase in neuronal excitability with NE and a loss of sensitivity to ANG II. MI animals treated with captopril exhibited increased neuronal excitability with NE application, while MI animals treated with CGP42112A did not. Losartan treatment of MI animals did not alter excitability with NE compared with untreated MIs, but these animals did show an enhanced synaptic efficacy. This effect on synaptic function was likely due to presynaptic AT1 receptors, since ANG II was able to reduce output to nerve fiber stimulation in control animals, and this effect was prevented by inclusion of losartan in the bath solution. Analysis of AT receptor expression by Western blot showed a decrease in both AT1 and AT2 receptors with MI that was reversed by all three drug treatments. These data indicate that neuronal remodeling of the guinea pig cardiac plexus following MI is mediated, in part, by activation of both AT1 and AT2 receptors.

  16. FGF21 attenuates pathological myocardial remodeling following myocardial infarction through the adiponectin-dependent mechanism.

    PubMed

    Joki, Yusuke; Ohashi, Koji; Yuasa, Daisuke; Shibata, Rei; Ito, Masanori; Matsuo, Kazuhiro; Kambara, Takahiro; Uemura, Yusuke; Hayakawa, Satoko; Hiramatsu-Ito, Mizuho; Kanemura, Noriyoshi; Ogawa, Hayato; Daida, Hiroyuki; Murohara, Toyoaki; Ouchi, Noriyuki

    2015-03-27

    Ischemic heart disease is one of the leading causes of death. Fibroblast growth factor 21 (FGF21) is a circulating factor with an anti-diabetic property. Skeletal muscle is an important source of FGF21 production. Here, we investigated whether skeletal muscle-derived FGF21 modulates cardiac remodeling in a murine model of myocardial infarction. Myocardial infarction was produced in C57BL/6J wild-type (WT) mice by the permanent ligation of the left anterior descending coronary artery (LAD). Adenoviral vectors expressing FGF21 (Ad-FGF21) or control β-galactosidase were intramuscularly injected into mice at 3 days before permanent LAD ligation. Intramuscular injection of Ad-FGF21 increased plasma FGF21 levels in WT mice compared with control. Treatment of WT mice with Ad-FGF21 led to improvement of left ventricular systolic dysfunction and dilatation at 2 weeks after LAD ligation. Ad-FGF21 administration to WT mice also led to enhancement of capillary density in the infarct border zone, and reduction of myocyte apoptosis in the remote zone, which were accompanied by decreased expression of pro-inflammatory cytokines. Furthermore, treatment of WT mice with Ad-FGF21 increased plasma levels of adiponectin, which is a cardioprotective adipokine. The beneficial effects of Ad-FGF21 on cardiac dysfunction and inflammatory response after myocardial infarction were diminished in adiponectin-knockout mice. These data suggest that muscle-derived FGF21 ameliorates adverse cardiac remodeling after myocardial infarction, at least in part, through an adiponectin-dependent mechanism.

  17. Phospholipase C/protein kinase C pathway mediates angiotensin II-dependent apoptosis in neonatal rat cardiac fibroblasts expressing AT1 receptor.

    PubMed

    Vivar, Raul; Soto, Cristian; Copaja, Miguel; Mateluna, Francisca; Aranguiz, Pablo; Muñoz, Juan Pablo; Chiong, Mario; Garcia, Lorena; Letelier, Alan; Thomas, Walter G; Lavandero, Sergio; Díaz-Araya, Guillermo

    2008-08-01

    Cardiac fibroblasts are the major non-myocyte cell constituent in the myocardium, and they are involved in heart remodeling. Angiotensin II type 1 receptor (AT1R) mediates the established actions of angiotensin II (Ang II), and changes in its expression have been reported in cardiac fibroblasts after myocardial infarction. However, the AT1R-dependent signaling pathways involved in cardiac fibroblast death remain unknown. Using adenovirus, we ectopically expressed AT1R in cultured neonatal rat cardiac fibroblasts and investigated the role of the phospholipase (PLC)/protein kinase C (PKC) pathway on Ang II-dependent death. Ang II induced cardiac fibroblast death characterized by an early loss of mitochondrial membrane potential, increased Bax/Bcl-2 ratio, caspase-3 activation, and DNA fragmentation. All these effects were prevented by the AT1R antagonist losartan, PLC inhibitor U73122, and PKC inhibitor Gö6976. We conclude that Ang II stimulates the intrinsic apoptotic pathway in cultured cardiac fibroblasts by the AT1R/PLC/PKC signaling pathway. PMID:18670360

  18. p38 MAPK Inhibition Improves Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice

    PubMed Central

    Dai, Hai-long; Hu, Wei-yuan; Jiang, Li-hong; Li, Le; Gaung, Xue-feng; Xiao, Zhi-cheng

    2016-01-01

    The pathogenesis of hypertension-related cognitive impairment has not been sufficiently clarified, new molecular targets are needed. p38 MAPK pathway plays an important role in hypertensive target organ damage. Activated p38 MAPK was seen in AD brain tissue. In this study, we found that long-term potentiation (LTP) of hippocampal CA1 was decreased, the density of the dendritic spines on the CA1 pyramidal cells was reduced, the p-p38 protein expression in hippocampus was elevated, and cognitive function was impaired in angiotensin II-dependent hypertensive C57BL/6 mice. In vivo, using a p38 heterozygous knockdown mice (p38KI/+) model, we showed that knockdown of p38 MAPK in hippocampus leads to the improvement of cognitive function and hippocampal synaptic plasticity in angiotensin II-dependent p38KI/+ hypertensive mice. In vitro, LTP was improved in hippocampal slices from C57BL/6 hypertensive mice by treatment with p38MAPK inhibitor SKF86002. Our data demonstrated that p38 MAPK may be a potential therapeutic target for hypertension-related cognitive dysfunction. PMID:27283322

  19. Polydatin prevents angiotensin II-induced cardiac hypertrophy and myocardial superoxide generation

    PubMed Central

    Tan, Yingying; Zhang, Nan; Yao, Fanrong

    2015-01-01

    Our studies and others recently demonstrate that polydatin, a resveratrol glucoside, has antioxidative and cardioprotective effects. This study aims to investigate the direct effects of polydatin on Ang II-induced cardiac hypertrophy to explore the potential role of polydatin in cardioprotection. Our results showed that in primary cultured cardiomyocytes, polydatin blocked Ang II-induced cardiac hypertrophy in a dose-dependent manner, which were associated with reduction in the cell surface area and [3H]leucine incorporation, as well as attenuation of the mRNA expressions of atrial natriuretic factor and β-myosin heavy chain. Furthermore, polydatin prevented rat cardiac hypertrophy induced by Ang II infusion, as assessed by heart weight-to-body weight ratio, cross-sectional area of cardiomyocyte, and gene expression of hypertrophic markers. Further investigation demonstrated that polydatin attenuated the Ang II-induced increase in the reactive oxygen species levels and NADPH oxidase activity in vivo and in vitro. Polydatin also blocked the Ang II-stimulated increases of Nox4 and Nox2 expression in cultured cardiomyocytes and the hearts of Ang II-infused rats. Our results indicate that polydatin has the potential to protect against Ang II-mediated cardiac hypertrophy through suppression of NADPH oxidase activity and superoxide production. These observations may shed new light on the understanding of the cardioprotective effect of polydatin. PMID:25488910

  20. Angiotensin II Signaling in Human Preadipose Cells: Participation of ERK1,2-Dependent Modulation of Akt

    PubMed Central

    Dünner, Natalia; Quezada, Carolina; Berndt, F. Andrés; Cánovas, José; Rojas, Cecilia V.

    2013-01-01

    The renin-angiotensin system expressed in adipose tissue has been implicated in the modulation of adipocyte formation, glucose metabolism, triglyceride accumulation, lipolysis, and the onset of the adverse metabolic consequences of obesity. As we investigated angiotensin II signal transduction mechanisms in human preadipose cells, an interplay of extracellular-signal-regulated kinases 1 and 2 (ERK1,2) and Akt/PKB became evident. Angiotensin II caused attenuation of phosphorylated Akt (p-Akt), at serine 473; the p-Akt/Akt ratio decreased to 0.5±0.2-fold the control value without angiotensin II (p<0.001). Here we report that the reduction of phosphorylated Akt associates with ERK1,2 activities. In the absence of angiotensin II, inhibition of ERK1,2 activation with U0126 or PD98059 resulted in a 2.1±0.5 (p<0.001) and 1.4±0.2-fold (p<0.05) increase in the p-Akt/Akt ratio, respectively. In addition, partial knockdown of ERK1 protein expression by the short hairpin RNA technique also raised phosphorylated Akt in these cells (the p-Akt/Akt ratio was 1.5±0.1-fold the corresponding control; p<0.05). Furthermore, inhibition of ERK1,2 activation with U0126 prevented the reduction of p-Akt/Akt by angiotensin II. An analogous effect was found on the phosphorylation status of Akt downstream effectors, the forkhead box (Fox) proteins O1 and O4. Altogether, these results indicate that angiotensin II signaling in human preadipose cells involves an ERK1,2-dependent attenuation of Akt activity, whose impact on the biological functions under its regulation is not fully understood. PMID:24098385

  1. Attenuation of myocardial fibrosis with curcumin is mediated by modulating expression of angiotensin II AT1/AT2 receptors and ACE2 in rats.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Garner, Ron E; McKallip, Robert J; Zhao, Zhi-Qing

    2015-01-01

    Curcumin is known to improve cardiac function by balancing degradation and synthesis of collagens after myocardial infarction. This study tested the hypothesis that inhibition of myocardial fibrosis by curcumin is associated with modulating expression of angiotensin II (Ang II) receptors and angiotensin-converting enzyme 2 (ACE2). Male Sprague Dawley rats were subjected to Ang II infusion (500 ng/kg/min) using osmotic minipumps for 2 and 4 weeks, respectively, and curcumin (150 mg/kg/day) was fed by gastric gavage during Ang II infusion. Compared to the animals with Ang II infusion, curcumin significantly decreased the mean arterial blood pressure during the course of the observation. The protein level of the Ang II type 1 (AT1) receptor was reduced, and the Ang II type 2 (AT2) receptor was up-regulated, evidenced by an increased ratio of the AT2 receptor over the AT1 receptor in the curcumin group (1.2±0.02%) vs in the Ang II group (0.7±0.03%, P<0.05). These changes were coincident with less locally expressed AT1 receptor and enhanced AT2 receptor in the intracardiac vessels and intermyocardium. Along with these modulations, curcumin significantly decreased the populations of macrophages and alpha smooth muscle actin-expressing myofibroblasts, which were accompanied by reduced expression of transforming growth factor beta 1 and phosphorylated-Smad2/3. Collagen I synthesis was inhibited, and tissue fibrosis was attenuated, as demonstrated by less extensive collagen-rich fibrosis. Furthermore, curcumin increased protein level of ACE2 and enhanced its expression in the intermyocardium relative to the Ang II group. These results suggest that curcumin could be considered as an add-on therapeutic agent in the treatment of fibrosis-derived heart failure patient who is intolerant of ACE inhibitor therapy.

  2. Myocardial pathology induced by aldosterone is dependent on non-canonical activities of G protein-coupled receptor kinases

    PubMed Central

    Cannavo, Alessandro; Liccardo, Daniela; Eguchi, Akito; Elliott, Katherine J.; Traynham, Christopher J.; Ibetti, Jessica; Eguchi, Satoru; Leosco, Dario; Ferrara, Nicola; Rengo, Giuseppe; Koch, Walter J.

    2016-01-01

    Hyper-aldosteronism is associated with myocardial dysfunction including induction of cardiac fibrosis and maladaptive hypertrophy. Mechanisms of these cardiotoxicities are not fully understood. Here we show that mineralocorticoid receptor (MR) activation by aldosterone leads to pathological myocardial signalling mediated by mitochondrial G protein-coupled receptor kinase 2 (GRK2) pro-death activity and GRK5 pro-hypertrophic action. Moreover, these MR-dependent GRK2 and GRK5 non-canonical activities appear to involve cross-talk with the angiotensin II type-1 receptor (AT1R). Most importantly, we show that ventricular dysfunction caused by chronic hyper-aldosteronism in vivo is completely prevented in cardiac Grk2 knockout mice (KO) and to a lesser extent in Grk5 KO mice. However, aldosterone-induced cardiac hypertrophy is totally prevented in Grk5 KO mice. We also show human data consistent with MR activation status in heart failure influencing GRK2 levels. Therefore, our study uncovers GRKs as targets for ameliorating pathological cardiac effects associated with high-aldosterone levels. PMID:26932512

  3. Angiotensin receptor blockade and angiotensin-converting-enzyme inhibition limit adverse remodeling of infarct zone collagens and global diastolic dysfunction during healing after reperfused ST-elevation myocardial infarction.

    PubMed

    Jugdutt, Bodh I; Idikio, Halliday; Uwiera, Richard R E

    2007-09-01

    To determine whether therapy with the angiotensin II type 1 receptor blocker (ARB) candesartan and the comparator angiotensin-converting-enzyme inhibitor (ACEI) enalapril during healing after reperfused ST-elevation myocardial infarction (RSTEMI) limit adverse remodeling of infarct zone (IZ) collagens and left ventricular (LV) diastolic dysfunction, we randomized 24 dogs surviving anterior RSTEMI (90-min coronary occlusion) to placebo, candesartan, and enalapril therapy between day 2 and 42. Six other dogs were sham. We measured regional IZ and non-infarct zone (NIZ) collagens (hydroxyproline; types I/III; cross-linking), transforming growth factor-beta (TGF-beta) and topography at 6 weeks, and hemodynamics, LV diastolic and systolic function, and remodeling over 6 weeks. Compared to sham, placebo-RSTEMI differentially altered regional collagens, with more pronounced increase in TGF-beta, hydroxyproline, and type I, insoluble, and cross-linked collagens in the IZ than NIZ, and increased IZ soluble and type III collagens at 6 weeks, and induced persistent LV filling pressure elevation, diastolic and systolic dysfunction, and LV remodeling over 6 weeks. Compared to placebo-RSTEMI, candesartan and enalapril limited adverse regional collagen remodeling, with normalization of type III, soluble and insoluble collagens and decrease in pyridinoline cross-linking in the IZ at 6 weeks, and attenuation of LV filling pressure, diastolic dysfunction, and remodeling over 6 weeks. The results suggest that candesartan and enalapril during healing after RSTEMI prevent rather than worsen adverse remodeling of IZ collagens and LV diastolic dysfunction, supporting the clinical use of ARBs and ACEIs during subacute RSTEMI.

  4. Effect of Beta Blockers and Renin–Angiotensin System Inhibitors on Survival in Patients With Acute Myocardial Infarction Undergoing Percutaneous Coronary Intervention

    PubMed Central

    Lee, Pil Hyung; Park, Gyung-Min; Kim, Young-Hak; Yun, Sung-Cheol; Chang, Mineok; Roh, Jae-Hyung; Yoon, Sung-Han; Ahn, Jung-Min; Park, Duk-Woo; Kang, Soo-Jin; Lee, Seung-Whan; Lee, Cheol Whan; Park, Seong-Wook; Park, Seung-Jung

    2016-01-01

    Abstract Because it remains uncertain whether β-blockers (BBs) and/or renin–angiotensin system inhibitors benefit a broad population of acute myocardial infarction (AMI) patients, we sought to evaluate the effectiveness of these drugs in improving survival for post-AMI patients who underwent a percutaneous coronary intervention (PCI). From the nationwide data of the South Korea National Health Insurance, 33,390 patients with a diagnosis of AMI who underwent a PCI between 2009 and 2013 and survived at least 30 days were included in this study. We evaluated the risk of all-cause death for patients treated with both BB and angiotensin-converting enzyme inhibitor (ACEI)/angiotensin II receptor antagonist (ARB) (n = 16,280), only BB (n = 3683), and only ACEI/ARB (n = 9849), with the drug-untreated patients (n = 3578) as the reference. Over a median follow-up of 2.4 years, although treated patients displayed a trend toward improved survival, there were no significant differences in the adjusted risk of all-cause death when patients were treated with both drugs (hazard ratio [HR] 0.86, 95% confidence interval [CI] 0.70–1.06, P = 0.154), BB (HR 0.88, 95% CI 0.68–1.14, P = 0.325), or ACEI/ARB (HR 0.84, 95% CI 0.68–1.04, P = 0.111). No additional benefit was found for the combination therapy compared with either isolated BB (HR 0.98, 95% CI 0.80–1.21, P = 0.856) or ACEI/ARB (HR 1.03, 95% CI 0.89–1.19, P = 0.727) therapy. Treatment with BB and/or ACEI/ARB has limited effect on survival in unselected nonfatal AMI patients who undergo PCI. PMID:26962802

  5. Dual ACE-inhibition and angiotensin II AT1 receptor antagonism with curcumin attenuate maladaptive cardiac repair and improve ventricular systolic function after myocardial infarctionin rat heart.

    PubMed

    Pang, Xue-Fen; Zhang, Li-Hui; Bai, Feng; Wang, Ning-Ping; Ijaz Shah, Ahmed; Garner, Ron; Zhao, Zhi-Qing

    2015-01-01

    Curcumin has been shown to improve cardiac function by reducing degradation of extracellular matrix and inhibiting synthesis of collagen after ischemia. This study tested the hypothesis that attenuation of maladaptive cardiac repair with curcumin is associated with a dual ACE-inhibition and angiotensin II AT1 receptor antagonism after myocardial infarction. Sprague-Dawley rats were subjected to 45min ischemia followed by 7 and 42 days of reperfusion, respectively. Curcumin was fed orally at a dose of 150mg/kg/day only during reperfusion. Relative to the control animals, dietary treatment with curcumin significantly reduced levels of ACE and AT1 receptor protein as determined by Western blot assay, coincident with less locally-expressed ACE and AT1 receptor in myocardium and coronary vessels as identified by immunohistochemistry. Along with this inhibition, curcumin significantly increased protein level of AT2 receptor and its expression compared with the control. As evidenced by less collagen deposition in fibrotic myocardium, curcumin also reduced the extent of collagen-rich scar and increased mass of viable myocardium detected by Masson׳s trichrome staining. Echocardiography showed that the wall thickness of the infarcted anterior septum in the curcumin group was significantly greater than that in the control group. Cardiac contractile function was improved in the curcumin treated animals as measured by fraction shortening and ejection fraction. In cultured cardiac muscle cells, curcumin inhibited oxidant-induced AT1 receptor expression and promoted cell survival. These results suggest that curcumin attenuates maladaptive cardiac repair and enhances cardiac function, primarily mediated by a dual ACE-inhibition and AT1 receptor antagonism after myocardial infarction.

  6. Tumor necrosis factor-α produced in the kidney contributes to angiotensin II-dependent hypertension.

    PubMed

    Zhang, Jiandong; Patel, Mehul B; Griffiths, Robert; Mao, Alice; Song, Young-soo; Karlovich, Norah S; Sparks, Matthew A; Jin, Huixia; Wu, Min; Lin, Eugene E; Crowley, Steven D

    2014-12-01

    Immune system activation contributes to the pathogenesis of hypertension and the resulting progression of chronic kidney disease. In this regard, we recently identified a role for proinflammatory Th1 T-lymphocyte responses in hypertensive kidney injury. Because Th1 cells generate interferon-γ and tumor necrosis factor-α (TNF-α), we hypothesized that interferon-γ and TNF-α propagate renal damage during hypertension induced by activation of the renin-angiotensin system. Therefore, after confirming that mice genetically deficient of Th1 immunity were protected from kidney glomerular injury despite a preserved hypertensive response, we subjected mice lacking interferon-γ or TNF-α to our model of hypertensive chronic kidney disease. Interferon deficiency had no impact on blood pressure elevation or urinary albumin excretion during chronic angiotensin II infusion. By contrast, TNF-deficient (knockout) mice had blunted hypertensive responses and reduced end-organ damage in our model. As angiotensin II-infused TNF knockout mice had exaggerated endothelial nitric oxide synthase expression in the kidney and enhanced nitric oxide bioavailability, we examined the actions of TNF-α generated from renal parenchymal cells in hypertension by transplanting wild-type or TNF knockout kidneys into wild-type recipients before the induction of hypertension. Transplant recipients lacking TNF solely in the kidney had blunted hypertensive responses to angiotensin II and augmented renal endothelial nitric oxide synthase expression, confirming a role for kidney-derived TNF-α to promote angiotensin II-induced blood pressure elevation by limiting renal nitric oxide generation.

  7. Statins and Renin Angiotensin System Inhibitors Dose-Dependently Protect Hypertensive Patients against Dialysis Risk

    PubMed Central

    Wu, Szu-Yuan

    2016-01-01

    Background Taiwan has the highest renal disease incidence and prevalence in the world. We evaluated the association of statin and renin–angiotensin system inhibitor (RASI) use with dialysis risk in hypertensive patients. Methods Of 248,797 patients who received a hypertension diagnosis in Taiwan during 2001–2012, our cohort contained 110,829 hypertensive patients: 44,764 who used RASIs alone; 7,606 who used statins alone; 27,836 who used both RASIs and statins; and 33,716 who used neither RASIs or statins. We adjusted for the following factors to reduce selection bias by using propensity scores (PSs): age; sex; comorbidities; urbanization level; monthly income; and use of nonstatin lipid-lowering drugs, metformin, aspirin, antihypertensives, diuretics, and beta and calcium channel blockers. The statin and RASI use index dates were considered the hypertension confirmation dates. To examine the dose–response relationship, we categorized only statin or RASI use into four groups in each cohort: <28 (nonusers), 28–90, 91–365, and >365 cumulative defined daily doses (cDDDs). Results In the main model, PS-adjusted hazard ratios (aHRs; 95% confidence intervals [CIs]) for dialysis risk were 0.57 (0.50–0.65), 0.72 (0.53–0.98), and 0.47 (0.41–0.54) in the only RASI, only statin, and RASI + statin users, respectively. RASIs dose-dependently reduced dialysis risk in most subgroups and in the main model. RASI use significantly reduced dialysis risk in most subgroups, regardless of comorbidities or other drug use (P < 0.001). Statins at >365 cDDDs protected hypertensive patients against dialysis risk in the main model (aHR = 0.62, 95% CI: 0.54–0.71), regardless of whether a high cDDD of RASIs, metformin, or aspirin was used. Conclusion Statins and RASIs independently have a significant dose-dependent protective effect against dialysis risk in hypertensive patients. The combination of statins and RASIs can additively protect hypertensive patients against dialysis

  8. Dependence of AT1 angiotensin receptor function on adjacent asparagine residues in the seventh transmembrane helix.

    PubMed

    Hunyady, L; Ji, H; Jagadeesh, G; Zhang, M; Gáborik, Z; Mihalik, B; Catt, K J

    1998-08-01

    For several G protein-coupled receptors, amino acids in the seventh transmembrane helix have been implicated in ligand binding and receptor activation. The function of this region in the AT1 angiotensin receptor was further investigated by mutation of two conserved polar residues (Asn294 and Asn295) and the adjacent Phe293 residue. Analysis of the properties of the mutant receptors expressed in COS-7 cells revealed that alanine replacement of Phe293 had no major effect on AT1 receptor function. Substitution of the adjacent Asn294 residue with alanine (N294A) reduced receptor binding affinities for angiotensin II, two nonpeptide agonists (L-162,313 and L-163,491), and the AT1-selective nonpeptide antagonist losartan but not that for the peptide antagonist [Sar1, Ile8]angiotensin II. The N294A receptor also showed impaired G protein coupling and severely attenuated inositol phosphate generation. In contrast, alanine replacement of Asn295 decreased receptor binding affinities for all angiotensin II ligands but did not impair signal transduction. Additional substitutions of Asn295 with a variety of amino acids did not identify specific structural elements for ligand binding. These findings indicate that Asn295 is required for the integrity of the intramembrane binding pocket of the AT1a receptor but is not essential for signal generation. They also demonstrate the importance of transmembrane helices in the formation of the binding site for nonpeptide AT1 receptor agonists. We conclude that the Asn294 residue of the AT1 receptor is an essential determinant of receptor activation and that the adjacent Asn295 residue is required for normal ligand binding.

  9. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.

    PubMed

    Clauss, François; Charloux, Anne; Piquard, François; Doutreleau, Stéphane; Talha, Samy; Zoll, Joffrey; Lugnier, Claire; Geny, Bernard

    2015-08-01

    We investigated whether myocardial infarction (MI) enhances renal phosphodiesterases (PDE) activities, investigating particularly the relative contribution of PDE1-5 isozymes in total PDE activity involved in both cGMP and cAMP pathways, and whether angiotensin-converting enzyme inhibition (ACEi) decreases such renal PDE hyperactivities. We also investigated whether ACEi might thereby improve atrial natriuretic peptide (ANP) efficiency. We studied renal cortical PDE1-5 isozyme activities in sham (SH)-operated, MI rats and in MI rats treated with perindopril (ACEi) 1 month after coronary artery ligation. Circulating atrial natriuretic peptide (ANP), its second intracellular messenger cyclic guanosine monophosphate (cGMP) and cGMP/ANP ratio were also determined. Cortical cGMP-PDE2 (80.3 vs. 65.1 pmol/min/mg) and cGMP-PDE1 (50.7 vs. 30.1 pmol/min/mg), and cAMP-PDE2 (161 vs. 104.1 pmol/min/mg) and cAMP-PDE4 (307.5 vs. 197.2 pmol/min/mg) activities were higher in MI than in SH rats. Despite increased ANP plasma level, ANP efficiency tended to be decreased in MI compared to SH rats. Perindopril restored PDE activities and tended to improve ANP efficiency in MI rats. One month after coronary ligation, perindopril treatment of MI rats prevents the increase in renal cortical PDE activities. This may contribute to increase renal ANP efficiency in MI rats.

  10. Angiotensin-converting enzyme inhibition prevents myocardial infarction-induced increase in renal cortical cGMP and cAMP phosphodiesterase activities.

    PubMed

    Clauss, François; Charloux, Anne; Piquard, François; Doutreleau, Stéphane; Talha, Samy; Zoll, Joffrey; Lugnier, Claire; Geny, Bernard

    2015-08-01

    We investigated whether myocardial infarction (MI) enhances renal phosphodiesterases (PDE) activities, investigating particularly the relative contribution of PDE1-5 isozymes in total PDE activity involved in both cGMP and cAMP pathways, and whether angiotensin-converting enzyme inhibition (ACEi) decreases such renal PDE hyperactivities. We also investigated whether ACEi might thereby improve atrial natriuretic peptide (ANP) efficiency. We studied renal cortical PDE1-5 isozyme activities in sham (SH)-operated, MI rats and in MI rats treated with perindopril (ACEi) 1 month after coronary artery ligation. Circulating atrial natriuretic peptide (ANP), its second intracellular messenger cyclic guanosine monophosphate (cGMP) and cGMP/ANP ratio were also determined. Cortical cGMP-PDE2 (80.3 vs. 65.1 pmol/min/mg) and cGMP-PDE1 (50.7 vs. 30.1 pmol/min/mg), and cAMP-PDE2 (161 vs. 104.1 pmol/min/mg) and cAMP-PDE4 (307.5 vs. 197.2 pmol/min/mg) activities were higher in MI than in SH rats. Despite increased ANP plasma level, ANP efficiency tended to be decreased in MI compared to SH rats. Perindopril restored PDE activities and tended to improve ANP efficiency in MI rats. One month after coronary ligation, perindopril treatment of MI rats prevents the increase in renal cortical PDE activities. This may contribute to increase renal ANP efficiency in MI rats. PMID:25939307

  11. Attenuation of increased secretory leukocyte protease inhibitor, matricellular proteins and angiotensin II and left ventricular remodeling by candesartan and omapatrilat during healing after reperfused myocardial infarction.

    PubMed

    Palaniyappan, Ariv; Uwiera, Richard R E; Idikio, Halliday; Menon, Vijay; Jugdutt, Catherine; Jugdutt, Bodh I

    2013-04-01

    While secretory-leukocyte-protease-inhibitor (SLPI) may promote skin wound healing, its role in infarct healing after reperfused myocardial infarction (RMI) remains unclear. Short-term intravenous angiotensin II (AngII) receptor blocker therapy with candesartan (CN) attenuates increased SLPI and markers of early matrix/left ventricular (LV) in acute RMI. To determine whether reducing effects of AngII with CN or the vasopeptidase inhibitor omapatrilat (OMA) during the healing phase after RMI attenuates SLPI and other mediators of healing and matrix/LV remodeling, we measured these in Sprague-Dawley rats randomized to oral placebo, CN (30 mg/kg/day) or OMA (10 mg/kg/day) therapy during healing between days 2 and 23 after RMI and sham. On day-25, RMI-placebo showed significant LV remodeling, systolic/diastolic dysfunction and impaired passive compliance, and ischemic zone increases in SLPI, secreted-protein-acidic-and-rich-in-cysteine (SPARC) and osteopontin (OPN) mRNA and protein. In addition, metalloproteinase (MMP)-9 and -2, a-disintegrin-and-metalloproteinase (ADAM)-10 and -17, inducible-nitric-oxide-synthase (iNOS), pro-inflammatory cytokines interleukin (IL)-6, and tumor necrosis factor-α, transforming growth factor (TGF)-β(1) and its signaling molecule p-Smad-2, myeloperoxidase (MPO), AngII, MPO-positive granulocytes, MAC387-positive macrophages and monocytes, scar collagens, cardiomyocyte and fibroblast apoptosis, and microvascular no-reflow also increased whereas anti-inflammatory cytokine IL-10 decreased. Both CN and OMA attenuated all the changes except IL-10, which normalized. Thus, CN or OMA treatment during healing after RMI results in attenuation of SLPI as well as tissue AngII and mediators of inflammation and matrix/LV remodeling including SPARC, OPN, and ADAMs. Whether increasing SLPI on top of background AngII inhibition or therapy such as CN or OMA might produce added remodeling benefit needs study.

  12. Troglitazone stimulates {beta}-arrestin-dependent cardiomyocyte contractility via the angiotensin II type 1{sub A} receptor

    SciTech Connect

    Tilley, Douglas G.; Nguyen, Anny D.; Rockman, Howard A.

    2010-06-11

    Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonists are commonly used to treat cardiovascular diseases, and are reported to have several effects on cardiovascular function that may be due to PPAR{gamma}-independent signaling events. Select angiotensin receptor blockers (ARBs) interact with and modulate PPAR{gamma} activity, thus we hypothesized that a PPAR{gamma} agonist may exert physiologic effects via the angiotensin II type 1{sub A} receptor (AT1{sub A}R). In AT1{sub A}R-overexpressing HEK 293 cells, both angiotensin II (Ang II) and the PPAR{gamma} agonist troglitazone (Trog) enhanced AT1{sub A}R internalization and recruitment of endogenous {beta}-arrestin1/2 ({beta}arr1/2) to the AT1{sub A}R. A fluorescence assay to measure diacylglycerol (DAG) accumulation showed that although Ang II induced AT1{sub A}R-G{sub q} protein-mediated DAG accumulation, Trog had no impact on DAG generation. Trog-mediated recruitment of {beta}arr1/2 was selective to AT1{sub A}R as the response was prevented by an ARB- and Trog-mediated {beta}arr1/2 recruitment to {beta}1-adrenergic receptor ({beta}1AR) was not observed. In isolated mouse cardiomyocytes, Trog increased both % and rate of cell shortening to a similar extent as Ang II, effects which were blocked with an ARB. Additionally, these effects were found to be {beta}arr2-dependent, as cardiomyocytes isolated from {beta}arr2-KO mice showed blunted contractile responses to Trog. These findings show for the first time that the PPAR{gamma} agonist Trog acts at the AT1{sub A}R to simultaneously block G{sub q} protein activation and induce the recruitment of {beta}arr1/2, which leads to an increase in cardiomyocyte contractility.

  13. Glutathionylation Mediates Angiotensin II–Induced eNOS Uncoupling, Amplifying NADPH Oxidase‐Dependent Endothelial Dysfunction

    PubMed Central

    Galougahi, Keyvan Karimi; Liu, Chia‐Chi; Gentile, Carmine; Kok, Cindy; Nunez, Andrea; Garcia, Alvaro; Fry, Natasha A. S.; Davies, Michael J.; Hawkins, Clare L.; Rasmussen, Helge H.; Figtree, Gemma A.

    2014-01-01

    Background Glutathionylation of endothelial nitric oxide synthase (eNOS) “uncouples” the enzyme, switching its function from nitric oxide (NO) to O2•− generation. We examined whether this reversible redox modification plays a role in angiotensin II (Ang II)‐induced endothelial dysfunction. Methods and Results Ang II increased eNOS glutathionylation in cultured human umbilical vein endothelial cells (HUVECs), rabbit aorta, and human arteries in vitro. This was associated with decreased NO bioavailability and eNOS activity as well as increased O2•− generation. Ang II‐induced decrease in eNOS activity was mediated by glutathionylation, as shown by restoration of function by glutaredoxin‐1. Moreover, Ang II‐induced increase in O2•− and decrease in NO were abolished in HUVECs transiently transfected, with mutant eNOS rendered resistant to glutathionylation. Ang II effects were nicotinamide adenine dinucleotide phosphate (NADPH) oxidase dependent because preincubation with gp 91ds‐tat, an inhibitor of NADPH oxidase, abolished the increase in eNOS glutathionylation and loss of eNOS activity. Functional significance of glutathionylation in intact vessels was supported by Ang II‐induced impairment of endothelium‐dependent vasorelaxation that was abolished by the disulfide reducing agent, dithiothreitol. Furthermore, attenuation of Ang II signaling in vivo by administration of an angiotensin converting enzyme (ACE) inhibitor reduced eNOS glutathionylation, increased NO, diminished O2•−, improved endothelium‐dependent vasorelaxation and reduced blood pressure. Conclusions Uncoupling of eNOS by glutathionylation is a key mediator of Ang II‐induced endothelial dysfunction, and its reversal is a mechanism for cardiovascular protection by ACE inhibition. We suggest that Ang II‐induced O2•− generation in endothelial cells, although dependent on NADPH oxidase, is amplified by glutathionylation‐dependent eNOS uncoupling. PMID:24755153

  14. Angiotensin II Type 1 Receptor-Dependent GLP-1 and PYY Secretion in Mice and Humans

    PubMed Central

    Pais, Ramona; Rievaj, Juraj; Larraufie, Pierre

    2016-01-01

    Angiotensin II (Ang II) is the key hormone mediator of the renin angiotensin system, which regulates blood pressure and fluid and electrolyte balance in the body. Here we report that in the colonic epithelium, the Ang II type 1 receptor is highly and exclusively expressed in enteroendocrine L cells, which produce the gut hormones glucagon-like peptide-1 and peptide YY (PYY). Ang II stimulated glucagon-like peptide-1 and PYY release from primary cultures of mouse and human colon, which was antagonized by the specific Ang II type 1 receptor blocker candesartan. Ang II raised intracellular calcium levels in L cells in primary cultures, recorded by live-cell imaging of L cells specifically expressing the fluorescent calcium sensor GCaMP3. In Ussing chamber recordings, Ang II reduced short circuit currents in mouse distal colon preparations, which was antagonized by candesartan or a specific neuropeptide Y1 receptor inhibitor but insensitive to amiloride. We conclude that Ang II stimulates PYY secretion, in turn inhibiting epithelial anion fluxes, thereby reducing net fluid secretion into the colonic lumen. Our findings highlight an important role of colonic L cells in whole-body fluid homeostasis by controlling water loss through the intestine. PMID:27447725

  15. Stimulation-dependent myocardial calcium uptake into slowly exchangeable compartments

    SciTech Connect

    Fintel, M.; Langer, G.A.

    1986-03-01

    Myocardial calcium uptake into slowly exchangeable sites was increased in response to beating following a period of prolonged quiescence (> 1 hr). Net calcium uptake was measured in rabbit interventricular septa using the /sup 45/Ca washout technique. The maximal increment of slowly exchangeable calcium induced by beating was 20 +/- 2% of calcium uptake during quiescence. The increment in calcium uptake induced by 282 beats in 10 minutes did not differ from the increment induced by 60 beats but was significantly greater than the increment induced by 35 and 15 beats. The total number of beats rather than the frequency of stimulation appeared to be the most critical factor which determined the increment in calcium uptake. Based on the increment of 0.12 +/- 0.02 mmoles/kg dry weight obtained when 15 beats occurred in 10 minutes, the minimum amount of calcium which entered slowly exchangeable sites per beat was calculated to be 1 ..mu..mol/kg wet weight. The increment in slowly exchangeable calcium induced by beating was not affected by ryanodine but was inhibited by the metabolic inhibitor CCCP. In conclusion, a net increment in slowly exchangeable calcium occurs when beating is resumed following a period of prolonged quiescence. This suggests that calcium influx exceeds efflux transiently, under these conditions, and that slowly exchangeable sites represent an important mechanism by which a fraction of incoming calcium is buffered.

  16. Dose-dependent effects of atorvastatin on myocardial infarction

    PubMed Central

    Barbarash, Olga; Gruzdeva, Olga; Uchasova, Evgenya; Belik, Ekaterina; Dyleva, Yulia; Karetnikova, Victoria

    2015-01-01

    Background Dyslipidemia is a key factor determining the development of both myocardial infarction (MI) and its subsequent complications. Dyslipidemia is associated with endothelial dysfunction, activation of inflammation, thrombogenesis, and formation of insulin resistance. Statin therapy is thought to be effective for primary and secondary prevention of complications associated with atherosclerosis. Methods This study examined 210 patients with Segment elevated MI (ST elevated MI) who were treated with atorvastatin from the first 24 hours after MI. Group 1 (n=110) were given atorvastatin 20 mg/day. Group 2 (n=100) were given atorvastatin 40 mg/day. At days 1 and 12 after MI onset, insulin resistance levels determined by the homeostasis model assessment of insulin resistance index, lipid profiles, and serum glucose, insulin, adipokine, and ghrelin levels were measured. Results Free fatty acid levels showed a sharp increase during the acute phase of MI. Treatment with atorvastatin 20 mg/day, and especially with 40 mg/day, resulted in a decrease in free fatty acid levels. The positive effect of low-dose atorvastatin (20 mg/day) is normalization of the adipokine status. Administration of atorvastatin 20 mg/day was accompanied with a statistically significant reduction in glucose levels (by 14%) and C-peptide levels (by 38%), and a decrease in the homeostasis model assessment of insulin resistance index on day 12. Conclusion Determination of atorvastatin dose and its use during the in-hospital period and subsequent periods should take into account changes in biochemical markers of insulin resistance and adipokine status in patients with MI. PMID:26170622

  17. Sex-specific T-cell regulation of angiotensin II-dependent hypertension.

    PubMed

    Ji, Hong; Zheng, Wei; Li, Xiangjun; Liu, Jun; Wu, Xie; Zhang, Monan Angela; Umans, Jason G; Hay, Meredith; Speth, Robert C; Dunn, Shannon E; Sandberg, Kathryn

    2014-09-01

    Studies suggest T cells modulate arterial pressure. Because robust sex differences exist in the immune system and in hypertension, we investigated sex differences in T-cell modulation of angiotensin II-induced increases in mean arterial pressure in male (M) and female (F) wild-type and recombination-activating-gene-1-deficient (Rag1(-/-)) mice. Sex differences in peak mean arterial pressure in wild-type were lost in Rag1(-/-) mice (mm Hg: wild-type-F, 136±4.9 versus wild-type-M, 153±1.7; P<0.02; Rag1(-/-)-F, 135±2.1 versus Rag1(-/-)-M, 141±3.8). Peak mean arterial pressure was 13 mm Hg higher after adoptive transfer of male (CD3(M)→Rag1(-/-)-M) versus female (CD3(F)→Rag1(-/-)-M) T cells. CD3(M)→Rag1(-/-)-M mice exhibited higher splenic frequencies of proinflammatory interleukin-17A (2.4-fold) and tumor necrosis factor-α (2.2-fold)-producing T cells and lower plasma levels (13-fold) and renal mRNA expression (2.4-fold) of interleukin-10, whereas CD3(F)→Rag1(-/-)-M mice displayed a higher activation state in general and T-helper-1-biased renal inflammation. Greater T-cell infiltration into perivascular adipose tissue and kidney associated with increased pressor responses to angiotensin II if the T cell donor was male but not female and these sex differences in T-cell subset expansion and tissue infiltration were maintained for 7 to 8 weeks within the male host. Thus, the adaptive immune response and role of pro- and anti-inflammatory cytokine signaling in hypertension are distinct between the sexes and need to be understood to improve therapeutics for hypertension-associated disease in both men and women.

  18. Tannic Acid Down-Regulates the Angiotensin Type 1 Receptor Through a MAPK-Dependent Mechanism

    PubMed Central

    Yesudas, Rekha; Gumaste, Upendra; Snyder, Russell

    2012-01-01

    In the present study, we investigated the effects of tannic acid (TA), a hydrolysable polyphenol, on angiotensin type 1 receptor (AT1R) expression in continuously passaged rat liver epithelial cells. Under normal conditions, exposure of cells to TA resulted in the down-regulation of AT1R-specific binding in concentrations ranging from 12.5–100 μg/ml (7.34–58.78 μm) over a time period of 2–24 h with no change in receptor affinity to angiotensin II (AngII). The inhibitory effect of TA on AT1R was specific and reversible. In TA-treated cells, we observed a significant reduction in AngII-mediated intracellular calcium signaling, a finding consistent with receptor down-regulation. Under similar conditions, TA down-regulated AT1R mRNA expression without changing the rate of mRNA degradation, suggesting that TA's effect is mediated through transcriptional inhibition. Cells expressing recombinant AT1R without the native promoter show no change in receptor expression, whereas a pCAT reporter construct possessing the rat AT1R promoter was significantly reduced in activity. Furthermore, TA induced the phosphorylation of MAPK p42/p44. Pretreatment of the cells with a MAPK kinase (MEK)-specific inhibitor PD98059 prevented TA-induced MAPK phosphorylation and down-regulation of the AT1R. Moreover, there was no reduction in AngII-mediated intracellular calcium release upon MEK inhibition, suggesting that TA's observed inhibitory effect is mediated through MEK/MAPK signaling. Our findings demonstrate, for the first time, that TA inhibits AT1R gene expression and cellular response, suggesting the observed protective effects of dietary polyphenols on cardiovascular conditions may be, in part, through inhibition of AT1R expression. PMID:22322600

  19. Podocyte injury in diabetic nephropathy: implications of angiotensin II – dependent activation of TRPC channels

    PubMed Central

    Ilatovskaya, Daria V.; Levchenko, Vladislav; Lowing, Andrea; Shuyskiy, Leonid S.; Palygin, Oleg; Staruschenko, Alexander

    2015-01-01

    Injury to podocytes is considered a major contributor to diabetic kidney disease: their loss causes proteinuria and progressive glomerulosclerosis. Podocyte depletion may result from improper calcium handling due to abnormal activation of the calcium permeant TRPC (Transient Receptor Potential Canonical) channels. Angiotensin II (Ang II) levels are found to be elevated in diabetes; furthermore, it was reported that Ang II causes activation of TRPC6 in podocytes. We hypothesized here that Ang II-mediated calcium influx is aggravated in the podocytes under the conditions of type 1 diabetic nephropathy (DN). Diabetes was induced in the Dahl Salt-Sensitive rats by an injection of streptozotocin (STZ-SS). Eleven weeks post treatment was sufficient for the animals to develop hyperglycemia, excessive urination, weight loss, microalbuminuria, nephrinuria and display renal histological lesions typical for patients with DN. Patch-clamp electrophysiology performed on podocytes of the freshly isolated glomeruli showed enhanced basal TRPC channel activity in the STZ-SS rats, and increased response to Ang II; total calcium influx triggered by Ang II application was also augmented in podocytes of these rats. Our studies have a strong potential for advancing the understanding of TRPC-mediated effects on podocytopenia in DN initiation. PMID:26656101

  20. Obligatory Role for B Cells in the Development of Angiotensin II-Dependent Hypertension.

    PubMed

    Chan, Christopher T; Sobey, Christopher G; Lieu, Maggie; Ferens, Dorota; Kett, Michelle M; Diep, Henry; Kim, Hyun Ah; Krishnan, Shalini M; Lewis, Caitlin V; Salimova, Ekaterina; Tipping, Peter; Vinh, Antony; Samuel, Chrishan S; Peter, Karlheinz; Guzik, Tomasz J; Kyaw, Tin S; Toh, Ban-Hock; Bobik, Alexander; Drummond, Grant R

    2015-11-01

    Clinical hypertension is associated with raised serum IgG antibodies. However, whether antibodies are causative agents in hypertension remains unknown. We investigated whether hypertension in mice is associated with B-cell activation and IgG production and moreover whether B-cell/IgG deficiency affords protection against hypertension and vascular remodeling. Angiotensin II (Ang II) infusion (0.7 mg/kg per day; 28 days) was associated with (1) a 25% increase in the proportion of splenic B cells expressing the activation marker CD86, (2) an 80% increase in splenic plasma cell numbers, (3) a 500% increase in circulating IgG, and (4) marked IgG accumulation in the aortic adventitia. In B-cell-activating factor receptor-deficient (BAFF-R(-/-)) mice, which lack mature B cells, there was no evidence of Ang II-induced increases in serum IgG. Furthermore, the hypertensive response to Ang II was attenuated in BAFF-R(-/-) (Δ30±4 mm Hg) relative to wild-type (Δ41±5 mm Hg) mice, and this response was rescued by B-cell transfer. BAFF-R(-/-) mice displayed reduced IgG accumulation in the aorta, which was associated with 80% fewer aortic macrophages and a 70% reduction in transforming growth factor-β expression. BAFF-R(-/-) mice were also protected from Ang II-induced collagen deposition and aortic stiffening (assessed by pulse wave velocity analysis). Finally, like BAFF-R deficiency, pharmacological depletion of B cells with an anti-CD20 antibody attenuated Ang II-induced hypertension by ≈35%. Hence, these studies demonstrate that B cells/IgGs are crucial for the development of Ang II-induced hypertension and vessel remodeling in mice. Thus, B-cell-targeted therapies-currently used for autoimmune diseases-may hold promise as future treatments for hypertension.

  1. Expression of Heme Oxygenase-1 in Thick Ascending Loop of Henle Attenuates Angiotensin II-Dependent Hypertension

    PubMed Central

    Drummond, Heather A.; Gousette, Monette U.; Storm, Megan V.; Abraham, Nader G.; Csongradi, Eva

    2012-01-01

    Kidney-specific induction of heme oxygenase-1 (HO-1) attenuates the development of angiotensin II (Ang II) -dependent hypertension, but the relative contribution of vascular versus tubular induction of HO-1 is unknown. To determine the specific contribution of thick ascending loop of Henle (TALH) -derived HO-1, we generated a transgenic mouse in which the uromodulin promoter controlled expression of human HO-1. Quantitative RT-PCR and confocal microscopy confirmed successful localization of the HO-1 transgene to TALH tubule segments. Medullary HO activity, but not cortical HO activity, was significantly higher in transgenic mice than control mice. Enhanced TALH HO-1 attenuated the hypertension induced by Ang II delivered by an osmotic minipump for 10 days (139±3 versus 153±2 mmHg in the transgenic and control mice, respectively; P<0.05). The lower blood pressure in transgenic mice associated with a 60% decrease in medullary NKCC2 transporter expression determined by Western blot. Transgenic mice also exhibited a 36% decrease in ouabain-sensitive sodium reabsorption and a significantly attenuated response to furosemide in isolated TALH segments,. In summary, these results show that increased levels of HO-1 in the TALH can lower blood pressure by a mechanism that may include alterations in NKCC2-dependent sodium reabsorption. PMID:22323644

  2. Myocardial perfusion as assessed by thallium-201 scintigraphy during the discontinuation of mechanical ventilation in ventilator-dependent patients

    SciTech Connect

    Hurford, W.E.; Lynch, K.E.; Strauss, H.W.; Lowenstein, E.; Zapol, W.M. )

    1991-06-01

    Patients who cannot be separated from mechanical ventilation (MV) after an episode of acute respiratory failure often have coexisting coronary artery disease. The authors hypothesized that increased left ventricular (LV) wall stress during periods of spontaneous ventilation (SV) could alter myocardial perfusion in these patients. Using thallium-201 (201TI) myocardial scintigraphy, the authors studied the occurrence of myocardial perfusion abnormalities during periods of SV in 15 MV-dependent patients (nine women, six men; aged 71 {plus minus} 7 yr, mean {plus minus} SD). Fourteen of these patients were studied once with 201TI myocardial scintigraphy during intermittent mechanical ventilation (IMV) and again on another day, after at least 10 min of SV through a T-piece. One patient was studied during SV only. Thirteen of 14 of the patients (93%) studied during MV had abnormal patterns of initial myocardial 201TI uptake, but only 1 patient demonstrated redistribution of 201TI on delayed images. The remainder of the abnormalities observed during MV were fixed defects. SV produced significant alterations of myocardial 201TI distribution or transient LV dilation, or both, in 7 of the 15 patients (47%). Four patients demonstrated new regional decreases of LV myocardial thallium concentration with redistribution of the isotope on delayed images. The patient studied only during SV also had myocardial 201TI defects with redistribution. Five patients (3 also having areas of 201TI redistribution) had transient LV dilation during SV.

  3. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner. PMID:26953626

  4. Effect of angiotensin II-induced arterial hypertension on the voltage-dependent contractions of mouse arteries.

    PubMed

    Fransen, Paul; Van Hove, Cor E; Leloup, Arthur J A; Schrijvers, Dorien M; De Meyer, Guido R Y; De Keulenaer, Gilles W

    2016-02-01

    Arterial hypertension (AHT) affects the voltage dependency of L-type Ca(2+) channels in cardiomyocytes. We analyzed the effect of angiotensin II (AngII)-induced AHT on L-type Ca(2+) channel-mediated isometric contractions in conduit arteries. AHT was induced in C57Bl6 mice with AngII-filled osmotic mini-pumps (4 weeks). Normotensive mice treated with saline-filled osmotic mini-pumps were used for comparison. Voltage-dependent contractions mediated by L-type Ca(2+) channels were studied in vaso-reactive studies in vitro in isolated aortic and femoral arteries by using extracellular K(+) concentration-response (KDR) experiments. In aortic segments, AngII-induced AHT significantly sensitized isometric contractions induced by elevated extracellular K(+) and depolarization. This sensitization was partly prevented by normalizing blood pressure with hydralazine, suggesting that it was caused by AHT rather than by direct AngII effects on aortic smooth muscle cells. The EC50 for extracellular K(+) obtained in vitro correlated significantly with the rise in arterial blood pressure induced by AngII in vivo. The AHT-induced sensitization persisted when aortic segments were exposed to levcromakalim or to inhibitors of basal nitric oxide release. Consistent with these observations, AngII-treatment also sensitized the vaso-relaxing effects of the L-type Ca(2+) channel blocker diltiazem during K(+)-induced contractions. Unlike aorta, AngII-treatment desensitized the isometric contractions to depolarization in femoral arteries pointing to vascular bed specific responses of arteries to hypertension. AHT affects the voltage-dependent L-type Ca(2+) channel-mediated contraction of conduit arteries. This effect may contribute to the decreased vascular compliance in AHT and explain the efficacy of Ca(2+) channel blockers to reduce vascular stiffness and central blood pressure in AHT.

  5. Dietary peptides from the non-digestible fraction of Phaseolus vulgaris L. decrease angiotensin II-dependent proliferation in HCT116 human colorectal cancer cells through the blockade of the renin-angiotensin system.

    PubMed

    Luna-Vital, Diego A; Liang, Katie; González de Mejía, Elvira; Loarca-Piña, Guadalupe

    2016-05-18

    This study aimed to determine the ability of peptides present in the non-digestible fraction (NDF) of common beans to decrease angiotensin II (AngII) through the blockade of RAS and its effect on the proliferation of HCT116 human colorectal cancer cells. Pure synthesized peptides GLTSK and GEGSGA and the peptide fractions (PF) of cultivars Azufrado Higuera and Bayo Madero were used. The cells were pretreated with pure peptides, PF or AGT at their IC50 or IC25 values, in comparison with the simultaneous treatment of peptides and AGT. For western blot and microscopy analysis, 100 μM and 0.5 mg mL(-1) were used for pure peptides and PF treatments, respectively. According to the ELISA tests, GLTSK and GEGSGA decreased (p < 0.05) the conversion rate of AGT to angiotensin I (AngI) by 38 and 28%, respectively. All the peptides tested reduced (p < 0.05) the conversion rate of AngI to AngII from 38 to 50%. When the cells were pretreated with both pure peptides and PF before exposure to AGT, the effectiveness inhibiting cell proliferation was higher than the simultaneous treatment suggesting their preventive effects. GLTSK and GEGSGA interacted with the catalytic site of renin, the angiotensin-I converting enzyme, and the AngII receptor, mainly through hydrogen bonds, polar, hydrophobic and cation-π interactions according to molecular docking. Through confocal microscopy, it was determined that GLTSK and GEGSGA caused the decrease (p < 0.05) of AngII-dependent STAT3 nuclear activation in HCT116 cells by 66 and 23%, respectively. The results suggest that peptides present in the common bean NDF could potentially ameliorate the effects of RAS overexpression in colorectal cancer. PMID:27156533

  6. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling.

    PubMed

    Hauck, Ludger; Grothe, Daniela; Billia, Filio

    2016-09-01

    The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart. PMID:27486069

  7. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling.

    PubMed

    Hauck, Ludger; Grothe, Daniela; Billia, Filio

    2016-09-01

    The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.

  8. Low-Salt Diet and Circadian Dysfunction Synergize to Induce Angiotensin II-Dependent Hypertension in Mice.

    PubMed

    Pati, Paramita; Fulton, David J R; Bagi, Zsolt; Chen, Feng; Wang, Yusi; Kitchens, Julia; Cassis, Lisa A; Stepp, David W; Rudic, R Daniel

    2016-03-01

    Blood pressure exhibits a robust circadian rhythm in health. In hypertension, sleep apnea, and even shift work, this balanced rhythm is perturbed via elevations in night-time blood pressure, inflicting silent damage to the vasculature and body organs. Herein, we examined the influence of circadian dysfunction during experimental hypertension in mice. Using radiotelemetry to measure ambulatory blood pressure and activity, the effects of angiotensin II administration were studied in wild-type (WT) and period isoform knockout (KO) mice (Per2-KO, Per2, 3-KO, and Per1, 2, 3-KO/Per triple KO [TKO] mice). On a normal diet, administration of angiotensin II caused nondipping blood pressure and exacerbated vascular hypertrophy in the Period isoform KO mice relative to WT mice. To study the endogenous effects of angiotensin II stimulation, we then administered a low-salt diet to the mice, which does stimulate endogenous angiotensin II in addition to lowering blood pressure. A low-salt diet decreased blood pressure in wild-type mice. In contrast, Period isoform KO mice lost their circadian rhythm in blood pressure on a low-salt diet, because of an increase in resting blood pressure, which was restorable to rhythmicity by the angiotensin receptor blocker losartan. Chronic administration of low salt caused vascular hypertrophy in Period isoform KO mice, which also exhibited increased renin levels and altered angiotensin 1 receptor expression. These data suggest that circadian clock genes may act to inhibit or control renin/angiotensin signaling. Moreover, circadian disorders such as sleep apnea and shift work may alter the homeostatic responses to sodium restriction to potentially influence nocturnal hypertension.

  9. Angiotensin II increases fibronectin and collagen I through the β-catenin-dependent signaling in mouse collecting duct cells

    PubMed Central

    Cuevas, Catherina A.; Gonzalez, Alexis A.; Inestrosa, Nibaldo C.; Vio, Carlos P.

    2014-01-01

    The contribution of angiotensin II (ANG II) to renal and tubular fibrosis has been widely reported. Recent studies have shown that collecting duct cells can undergo mesenchymal transition suggesting that collecting duct cells are involved in interstitial fibrosis. The Wnt/β-catenin signaling pathway plays an essential role in development, organogenesis, and tissue homeostasis; however, the dysregulation of this pathway has been linked to fibrosis. In this study, we investigated whether AT1 receptor activation induces the expression of fibronectin and collagen I via the β-catenin pathway in mouse collecting duct cell line M-1. ANG II (10−7 M) treatment in M-1 cells increased mRNA, protein levels of fibronectin and collagen I, the β-catenin target genes (cyclin D1 and c-myc), and the myofibroblast phenotype. These effects were prevented by candesartan, an AT1 receptor blocker. Inhibition of the β-catenin degradation with pyrvinium pamoate (pyr; 10−9 M) prevented the ANG II-induced expression of fibronectin, collagen I, and β-catenin target genes. ANG II treatment promoted the accumulation of β-catenin protein in a time-dependent manner. Because phosphorylation of glycogen synthase kinase-3β (GSK-3β) inhibits β-catenin degradation, we further evaluated the effects of ANG II and ANG II plus pyr on p-ser9-GSK-3β levels. ANG II-dependent upregulation of β-catenin protein levels was correlated with GSK-3β phosphorylation. These effects were prevented by pyr. Our data indicate that in M-1 collecting duct cells, the β-catenin pathway mediates the stimulation of fibronectin and collagen I in response to AT1 receptor activation. PMID:25411386

  10. Voluntary Exercise Stabilizes Established Angiotensin II-Dependent Atherosclerosis in Mice through Systemic Anti-Inflammatory Effects

    PubMed Central

    Pellegrin, Maxime; Aubert, Jean-François; Bouzourène, Karima; Amstutz, Catherine; Mazzolai, Lucia

    2015-01-01

    We have previously demonstrated that exercise training prevents the development of Angiotensin (Ang) II-induced atherosclerosis and vulnerable plaques in Apolipoprotein E-deficient (ApoE-/-) mice. In this report, we investigated whether exercise attenuates progression and promotes stability in pre-established vulnerable lesions. To this end, ApoE-/- mice with already established Ang II-mediated advanced and vulnerable lesions (2-kidney, 1-clip [2K1C] renovascular hypertension model), were subjected to sedentary (SED) or voluntary wheel running training (EXE) regimens for 4 weeks. Mean blood pressure and plasma renin activity did not significantly differ between the two groups, while total plasma cholesterol significantly decreased in 2K1C EXE mice. Aortic plaque size was significantly reduced by 63% in 2K1C EXE compared to SED mice. Plaque stability score was significantly higher in 2K1C EXE mice than in SED ones. Aortic ICAM-1 mRNA expression was significantly down-regulated following EXE. Moreover, EXE significantly down-regulated splenic pro-inflammatory cytokines IL-18, and IL-1β mRNA expression while increasing that of anti-inflammatory cytokine IL-4. Reduction in plasma IL-18 levels was also observed in response to EXE. There was no significant difference in aortic and splenic Th1/Th2 and M1/M2 polarization markers mRNA expression between the two groups. Our results indicate that voluntary EXE is effective in slowing progression and promoting stabilization of pre-existing Ang II-dependent vulnerable lesions by ameliorating systemic inflammatory state. Our findings support a therapeutic role for voluntary EXE in patients with established atherosclerosis. PMID:26600018

  11. Actin cytoskeleton-dependent Rab GTPase-regulated angiotensin type I receptor lysosomal degradation studied by fluorescence lifetime imaging microscopy

    NASA Astrophysics Data System (ADS)

    Li, Hewang; Yu, Peiying; Sun, Yuansheng; Felder, Robin A.; Periasamy, Ammasi; Jose, Pedro A.

    2010-09-01

    The dynamic regulation of the cellular trafficking of human angiotensin (Ang) type 1 receptor (AT1R) is not well understood. Therefore, we investigated the cellular trafficking of AT1R-enhanced green fluorescent protein (EGFP) (AT1R-EGFP) heterologously expressed in HEK293 cells by determining the change in donor lifetime (AT1R-EGFP) in the presence or absence of acceptor(s) using fluorescence lifetime imaging-fluorescence resonance energy transfer (FRET) microscopy. The average lifetime of AT1R-EGFP in our donor-alone samples was ~2.33 ns. The basal state lifetime was shortened slightly in the presence of Rab5 (2.01+/-0.10 ns) or Rab7 (2.11+/-0.11 ns) labeled with Alexa 555, as the acceptor fluorophore. A 5-min Ang II treatment markedly shortened the lifetime of AT1R-EGFP in the presence of Rab5-Alexa 555 (1.78+/-0.31 ns) but was affected minimally in the presence of Rab7-Alexa 555 (2.09+/-0.37 ns). A 30-min Ang II treatment further decreased the AT1R-EGFP lifetime in the presence of both Rab5- and Rab7-Alexa 555. Latrunculin A but not nocodazole pretreatment blocked the ability of Ang II to shorten the AT1R-EGFP lifetime. The occurrence of FRET between AT1R-EGFP (donor) and LAMP1-Alexa 555 (acceptor) with Ang II stimulation was impaired by photobleaching the acceptor. These studies demonstrate that Ang II-induced AT1R lysosomal degradation through its association with LAMP1 is regulated by Rab5/7 via mechanisms that are dependent on intact actin cytoskeletons.

  12. Adaptation of myocardial blood flow to increased metabolic demand is not dependent on endothelial vasodilators in the rat heart.

    PubMed Central

    Tiefenbacher, C. P.; Tillmanns, H.; Niroomand, F.; Zimmermann, R.; Kübler, W.

    1997-01-01

    OBJECTIVE: To investigate the role of endothelial vasodilating factors in adaptation of myocardial blood flow to increased metabolic demands. DESIGN: Alterations in the effects of endothelium dependent (acetylcholine) and independent (sodium nitroprusside) vasodilators and the beta 1 receptor agonist dobutamine were studied after inhibition of endothelium derived relaxing factor (EDRF) with L-NG-nitro-arginine methyl ester (L-NAME), prostanoid synthesis with indomethacin, and ATP sensitive potassium channels with glibenclamide. EXPERIMENTAL ANIMALS: Female Wistar rats, in situ perfused heart. MAIN OUTCOME MEASURES: Myocardial blood flow (H2 clearance); systolic fractional thickening (pulsed Doppler); mean arterial blood pressure. RESULTS: L-NAME reduced myocardial blood flow by 58 (12)% (mean (SD), P < 0.001) and systolic thickening fraction (FT) by 36 (9)% (P < 0.05). These effects were significantly reversed by administration of L-arginine but not D-arginine. Pretreatment with L-NAME inhibited the increase in myocardial blood flow caused by acetylcholine (control: +42 (9)%; L-NAME: -29 (7)%, P < 0.001) but did not affect the increase in myocardial blood flow caused by sodium nitroprusside (control: +44 (5)%; L-NAME: +34 (10)%, NS). Pretreatment with L-NAME did not change the effect of dobutamine on myocardial blood flow (+61 (3)%) and FT (+32 (8)%) compared with baseline values (P < 0.001). Neither pretreatment with indomethacin nor with glibenclamide reduced the dobutamine induced increase in myocardial blood flow. CONCLUSIONS: Inhibition of EDRF, prostanoid synthesis, and ATP sensitive potassium channels did not reduce the vasodilator reserve during increased metabolic demands induced by beta 1 adrenergic stimulation. Therefore, adaptation of myocardial blood flow to increased metabolic demands is independent of endothelial relaxing factors in the rat heart. PMID:9068398

  13. Circulating angiotensin II deteriorates left ventricular function with sympathoexcitation via brain angiotensin II receptor

    PubMed Central

    Shinohara, Keisuke; Kishi, Takuya; Hirooka, Yoshitaka; Sunagawa, Kenji

    2015-01-01

    Sympathoexcitation contributes to the progression of heart failure. Activation of brain angiotensin II type 1 receptors (AT1R) causes central sympathoexcitation. Thus, we assessed the hypothesis that the increase in circulating angiotensin II comparable to that reported in heart failure model affects cardiac function through the central sympathoexcitation via activating AT1R in the brain. In Sprague-Dawley rats, the subcutaneous infusion of angiotensin II for 14 days increased the circulating angiotensin II level comparable to that reported in heart failure model rats after myocardial infarction. In comparison with the control, angiotensin II infusion increased 24 hours urinary norepinephrine excretion, and systolic blood pressure. Angiotensin II infusion hypertrophied left ventricular (LV) without changing chamber dimensions while increased end-diastolic pressure. The LV pressure–volume relationship indicated that angiotensin II did not impact on the end-systolic elastance, whereas significantly increased end-diastolic elastance. Chronic intracerebroventricular infusion of AT1R blocker, losartan, attenuated these angiotensin II-induced changes. In conclusion, circulating angiotensin II in heart failure is capable of inducing sympathoexcitation via in part AT1R in the brain, subsequently leading to LV diastolic dysfunction. PMID:26290529

  14. High sodium augments angiotensin II-induced vascular smooth muscle cell proliferation through the ERK 1/2-dependent pathway.

    PubMed

    Liu, Gang; Hitomi, Hirofumi; Rahman, Asadur; Nakano, Daisuke; Mori, Hirohito; Masaki, Tsutomu; Ma, Hong; Iwamoto, Takahiro; Kobori, Hiroyuki; Nishiyama, Akira

    2014-01-01

    Angiotensin II (Ang II)-induced vascular injury is exacerbated by high-salt diets. This study examined the effects of high-sodium level on Ang II-induced cell proliferation in rat vascular smooth muscle cells (VSMCs). The cells were cultured in a standard medium containing 137.5 mmol l(-1) of sodium. The high-sodium medium (140 mmol l(-1)) contained additional sodium chloride. Extracellular signal-regulated kinase (ERK) 1/2 phosphorylation was determined by western blot analysis. Cell proliferation was evaluated by [(3)H]-thymidine incorporation. Ang II (100 nmol l(-1)) significantly increased ERK 1/2 phosphorylation and cell proliferation in the both medium containing standard sodium and high sodium. High-sodium level augmented Ang II-induced ERK 1/2 phosphorylation and cell proliferation compared with standard sodium. Pre-treatment with candesartan (1 μmol l(-1), Ang II type 1 receptor blocker) or PD98095 (10 μmol l(-1), ERK kinase iinhibitor) abolished the proliferative effect induced by high sodium/Ang II. Pre-treatment with 5-N,N-hexamethylene amiloride (30 μmol l(-1), Na(+)/H(+) exchanger type 1 (NHE-1) inhibitor), but not SN-6 (10 μmol l(-1), Na(+)/Ca(2+) exchanger inhibitor) or ouabain (1 mmol l(-1), Na(+)/K(+)-ATPase inhibitor) attenuated ERK 1/2 phosphorylation or cell proliferation. Osmotic pressure or chloride had no effect on Ang II-induced proliferative changes. High-sodium level did not affect Ang II receptor expression. Ang II increased intracellular pH via NHE-1 activation, and high-sodium level augmented the pH increase induced by Ang II. These data suggest that high-sodium level directly augments Ang II-induced VSMC proliferation through NHE-1- and ERK 1/2-dependent pathways and may offer new insights into the mechanisms of vascular remodeling by high-sodium/Ang II.

  15. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response. PMID:26458179

  16. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response.

  17. Naked Polyamidoamine Polymers Intrinsically Inhibit Angiotensin II-Mediated EGFR and ErbB2 Transactivation in a Dendrimer Generation- and Surface Chemistry-Dependent Manner.

    PubMed

    Akhtar, Saghir; El-Hashim, Ahmed Z; Chandrasekhar, Bindu; Attur, Sreeja; Benter, Ibrahim F

    2016-05-01

    The effects of naked polyamidoamine (PAMAM) dendrimers on renin-angiotensin system (RAS) signaling via Angiotensin (Ang) II-mediated transactivation of the epidermal growth factor receptor (EGFR) and the closely related family member ErbB2 (HER2) were investigated. In primary aortic vascular smooth muscle cells, a cationic fifth-generation (G5) PAMAM dendrimer dose- and time-dependently inhibited Ang II/AT1 receptor-mediated transactivation of EGFR and ErbB2 as well as their downstream signaling via extracellular-regulated kinase 1/2 (ERK1/2). Inhibition even occurred at noncytotoxic concentrations at short (1 h) exposure times and was dependent on dendrimer generation (G7 > G6 > G5 > G4) and surface group chemistry (amino > carboxyl > hydroxyl). Mechanistically, the cationic G5 PAMAM dendrimer inhibited Ang II-mediated transactivation of EGFR and ErbB2 via inhibition of the nonreceptor tyrosine kinase Src. This novel, early onset, intrinsic biological action of PAMAM dendrimers as inhibitors of the Ang II/AT1/Src/EGFR-ErbB2/ERK1/2 signaling pathway could have important toxicological and pharmacological implications.

  18. [A comprehensive analysis of incidence of myocardial infarction in Vladikavkaz depending on solar and geomagnetic activity].

    PubMed

    Botoeva, N K; Khetarugova, l G; Rapoport, S I

    2013-01-01

    The data on myocardial infarction morbidity in Vladikavkaz for 2007-2010 were analysed with reference to solar and geomagnetic activity. Time series of morbidity in men and women were constructed and their seasonal constituent was distinguished. It was found that the number of myocardial infarctions increases on day with enhanced geomagnetic activity especially among subjects aged 50-69 years. Regression analysis of the relationship between the number of sunspots and myocardial infarctions yielded the equation of piecewise linear regression showing that 42% of the cases were due to the changes in the number of sunspots. Medium strength negative correlation was found between the number of myocardial infarctions and the recurrence index of Bz-component of the interplanetary magnetic field. It suggests an important role of chaotic dynamics of external factors in the development of myocardial infarction. PMID:25696947

  19. Valsartan after myocardial infarction.

    PubMed

    Güleç, Sadi

    2014-12-01

    One of the important problems of the patients undergoing acute myocardial infarction (MI) is early development of heart failure. It has been revealed in various studies that renin-angiotensin-aldosterone system (RAAS) has a significant role in this process. The studies conducted with angiotensin converting enzyme (ACE) inhibitors have resulted in decreased mortality rate. Another RAAS blocker which was discovered about ten years later than other ACE inhibitors in historical process is angiotensin receptor blockers (ARB) inhibiting the efficiency of angiotensin 2 by binding to angiotensin 1 receptor. Valsartan is one of the molecules of this group, which has higher number of large-scale randomized clinical studies. In this review, following presentation of a general overview on heart failure after acute MI, the efficiency of ARBs in this patient group will be discussed. This discussion will mostly emphasize the construction, outcomes and clinical importance of VALIANT (VALsartan In Acute myocardial iNfarcTion), which is the study on valsartan after acute MI heart failure. PMID:25604205

  20. New bioactive angiotensins formation pathways and functional involvements.

    PubMed

    Haulică, I; Petrescu, G; Slătineanu, Simona Mihaela; Bild, W; Mihaila, C N; Ioniţă, T

    2004-01-01

    After a brief review of the actual knowledge concerning the circulating and tissue Renin-Angiotensin System (RAS) as a unitary hormonal system, the cognitive acquisitions regarding the formation and action mechanisms of the new biologically active angiotensins will be presented. The review of the enzymatic pathways for their synthesis and inactivation, as metabolism products of angiotensin II (1-8), will be followed by the presentation of the main physio-pharmacological actions of angiotensin III (2-8), angiotensin IV (3-8) and angiotensin (1-7). The functional involvements of the cerebral angiotensin IV in what concerns its possible participation in the normal neurochemical processes of memory and in the neurodegenerative processes of Alzheimer disease will be exposed, together with the vasodilating effects of angiotensin (1-7) as counteracting factor for the constricting effects of angiotensin II. The data concerning the bioactive fragments of angiotensin II will be accompanied by those regarding its implication in the cardiovascular modeling and the induction of oxidative stress, inflammation, atherogenesis, etc. In their turn, personal researches bring new experimental evidences in favor of interactions between angiotensin (1-7) and angiotensin II within the rat thoracic aorta. Biphasic, dose-dependent effects were observed for angiotensin (1-7), induced both through nitric oxide, kinins and prostaglandin release for counteracting the vasoconstricting effects of angiotensin II and the modulation of its own vasodilator action. PMID:15529593

  1. Akt-dependent Girdin phosphorylation regulates repair processes after acute myocardial infarction.

    PubMed

    Hayano, Shinji; Takefuji, Mikito; Maeda, Kengo; Noda, Tomonori; Ichimiya, Hitoshi; Kobayashi, Koichi; Enomoto, Atsushi; Asai, Naoya; Takahashi, Masahide; Murohara, Toyoaki

    2015-11-01

    Myocardial infarction is a leading cause of death, and cardiac rupture following myocardial infarction leads to extremely poor prognostic feature. A large body of evidence suggests that Akt is involved in several cardiac diseases. We previously reported that Akt-mediated Girdin phosphorylation is essential for angiogenesis and neointima formation. The role of Girdin expression and phosphorylation in myocardial infarction, however, is not understood. Therefore, we employed Girdin-deficient mice and Girdin S1416A knock-in (Girdin(SA/SA)) mice, replacing the Akt phosphorylation site with alanine, to address this question. We found that Girdin was expressed and phosphorylated in cardiac fibroblasts in vitro and that its phosphorylation was crucial for the proliferation and migration of cardiac fibroblasts. In vivo, Girdin was localized in non-cardiomyocyte interstitial cells and phosphorylated in α-smooth muscle actin-positive cells, which are likely to be cardiac myofibroblasts. In an acute myocardial infarction model, Girdin(SA/SA) suppressed the accumulation and proliferation of cardiac myofibroblasts in the infarcted area. Furthermore, lower collagen deposition in Girdin(SA/SA) mice impaired cardiac repair and resulted in increased mortality attributed to cardiac rupture. These findings suggest an important role of Girdin phosphorylation at serine 1416 in cardiac repair after acute myocardial infarction and provide insights into the complex mechanism of cardiac rupture through the Akt/Girdin-mediated regulation of cardiac myofibroblasts.

  2. Myocardial iron overload assessment by T2* magnetic resonance imaging in adult transfusion dependent patients with acquired anemias.

    PubMed

    Di Tucci, Anna Angela; Matta, Gildo; Deplano, Simona; Gabbas, Attilio; Depau, Cristina; Derudas, Daniele; Caocci, Giovanni; Agus, Annalisa; Angelucci, Emanuele

    2008-09-01

    Only limited data are available regarding myocardial iron overload in adult patients with transfusion dependent acquired anemias. To address this topic using MRI T2* we studied 27 consecutive chronic transfusion dependent patients with acquired anemias: (22 myelodysplastic syndrome, 5 primary myelofibrosis). Cardiac MRI T2* values obtained ranged from 5.6 to 58.7 (median value 39.8) milliseconds. Of the 24 analyzable patients, cardiac T2* correlated with transfusion burden (p=0.0002). No patient who had received less than 290 mL/kg of packed red blood cells (101 units=20 grams of iron) had a pathological cardiac T2* value (< 20 ms). All patients who had received at least 24 PRBC units showed MRI T2* detectable hepatic iron (liver T2* value myocardial iron deposition. Serum ferritin was not significantly correlated with cardiac T2* (p=0.24). Gradient echo T2* magnetic resonance imaging provides a rapid and reproducible method for detecting myocardial iron overload which developed after a heavy transfusion burden equal to or greater than 290 mL/kg of packed red blood cell units. PMID:18603557

  3. Measuring Age-Dependent Myocardial Stiffness across the Cardiac Cycle using MR Elastography: A Reproducibility Study

    PubMed Central

    Wassenaar, Peter A; Eleswarpu, Chethanya N; Schroeder, Samuel A; Mo, Xiaokui; Raterman, Brian D; White, Richard D; Kolipaka, Arunark

    2015-01-01

    Purpose To assess reproducibility in measuring left ventricular (LV) myocardial stiffness in volunteers throughout the cardiac cycle using magnetic resonance elastography (MRE) and to determine its correlation with age. Methods Cardiac MRE (CMRE) was performed on 29 normal volunteers, with ages ranging from 21 to 73 years. For assessing reproducibility of CMRE-derived stiffness measurements, scans were repeated per volunteer. Wave images were acquired throughout the LV myocardium, and were analyzed to obtain mean stiffness during the cardiac cycle. CMRE-derived stiffness values were correlated to age. Results Concordance correlation coefficient revealed good inter-scan agreement with rc of 0.77, with p-value<0.0001. Significantly higher myocardial stiffness was observed during end-systole (ES) compared to end-diastole (ED) across all subjects. Additionally, increased deviation between ES and ED stiffness was observed with increased age. Conclusion CMRE-derived stiffness is reproducible, with myocardial stiffness changing cyclically across the cardiac cycle. Stiffness is significantly higher during ES compared to ED. With age, ES myocardial stiffness increases more than ED, giving rise to an increased deviation between the two. PMID:26010456

  4. Time dependent alterations of serum matrix metalloproteinase-1 and metalloproteinase-1 tissue inhibitor after successful reperfusion of acute myocardial infarction.

    PubMed Central

    Hirohata, S.; Kusachi, S.; Murakami, M.; Murakami, T.; Sano, I.; Watanabe, T.; Komatsubara, I.; Kondo, J.; Tsuji, T.

    1997-01-01

    OBJECTIVE: To test the hypothesis that changes in serum matrix metalloproteinase-1 (MMP-1) and tissue inhibitors of metalloproteinase-1 (TIMP-1) after acute myocardial infarction reflect extracellular matrix remodelling and the infarct healing process. PATIENTS: 13 consecutive patients with their first acute myocardial infarction who underwent successful reperfusion. METHODS: Blood was sampled on the day of admission, and on days 2, 3, 4, 5, 7, 14, and 28. Serum MMP-1 and TIMP-1 were measured by one step sandwich enzyme immunoassay. Left ventricular volume indices were determined by left ventriculography performed four weeks after the infarct. RESULTS: Serum concentrations of both MMP-1 and TIMP-1 changed over time. The average serum MMP-1 was more than 1 SD below the mean control values during the initial four days, increased thereafter, reaching a peak concentration around day 14, and then returned to the middle control range. Negative correlations with left ventricular end systolic volume index and positive correlations with left ventricular ejection fraction were obtained for serum MMP-1 on day 5, when it began to rise, and for the magnitude of rise in MMP-1 on day 5 compared to admission. Serum TIMP-1 at admission was more than 1 SD below the mean control value, and increased gradually thereafter, reaching a peak on around day 14. Negative correlations with left ventricular end systolic volume index and positive correlations with left ventricular ejection fraction were obtained for serum TIMP-1 on days 5 and 7, and for the magnitude of rise in TIMP-1 on days 5 and 7 compared to admission. CONCLUSIONS: Both MMP-1 and TIMP-1 showed significant time dependent alteration after acute myocardial infarction. Thus MMP-1 and TIMP-1 may provide useful information in evaluating the healing process as it affects left ventricular remodelling after acute myocardial infarction. PMID:9391291

  5. Intracellular angiotensin II activates rat myometrium.

    PubMed

    Deliu, Elena; Tica, Andrei A; Motoc, Dana; Brailoiu, G Cristina; Brailoiu, Eugen

    2011-09-01

    Angiotensin II is a modulator of myometrial activity; both AT(1) and AT(2) receptors are expressed in myometrium. Since in other tissues angiotensin II has been reported to activate intracellular receptors, we assessed the effects of intracellular administration of angiotensin II via microinjection on myometrium, using calcium imaging. Intracellular injection of angiotensin II increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) in myometrial cells in a dose-dependent manner. The effect was abolished by the AT(1) receptor antagonist losartan but not by the AT(2) receptor antagonist PD-123319. Disruption of the endo-lysosomal system, but not that of Golgi apparatus, prevented the angiotensin II-induced increase in [Ca(2+)](i). Blockade of AT(1) receptor internalization had no effect, whereas blockade of microautophagy abolished the increase in [Ca(2+)](i) produced by intracellular injection of angiotensin II; this indicates that microautophagy is a critical step in transporting the peptide into the endo-lysosomes lumenum. The response to angiotensin II was slightly reduced in Ca(2+)-free saline, indicating a major involvement of Ca(2+) release from internal stores. Blockade of inositol 1,4,5-trisphosphate (IP(3)) receptors with heparin and xestospongin C or inhibition of phospholipase C (PLC) with U-73122 abolished the response to angiotensin II, supporting the involvement of PLC-IP(3) pathway. Angiotensin II-induced increase in [Ca(2+)](i) was slightly reduced by antagonism of ryanodine receptors. Taken together, our results indicate for the first time that in myometrial cells, intracellular angiotensin II activates AT(1)-like receptors on lysosomes and activates PLC-IP(3)-dependent Ca(2+) release from endoplasmic reticulum; the response is further augmented by a Ca(2+)-induced Ca(2+) release mechanism via ryanodine receptors activation.

  6. Propofol reduced myocardial contraction of vertebrates partly by mediating the cyclic AMP-dependent protein kinase phosphorylation pathway.

    PubMed

    Sun, Xiaotong; Zhang, Xinyu; Bo, Qiyu; Meng, Tao; Lei, Zhen; Li, Jingxin; Hou, Yonghao; Yu, Xiaoqian; Yu, Jingui

    2016-07-15

    Propofol inhibits myocardial contraction in a dose dependent manner. The present study is designed to examine the effect of propofol on PKA mediated myocardial contraction in the absence of adrenoreceptor agonist. The contraction of isolated rat heart was measured in the presence or absence of PKA inhibitor H89 or propofol, using a pressure transducer. The levels of cAMP and PKA kinase activity were detected by ELISA. The mRNA and total protein or phosphorylation level of PKA and downstream proteins were tested in the presence or absence of PKA inhibitor H89 or propofol, using RT-PCR, QPCR and western blotting. The phosphorylation level of PKA was examined thoroughly using immunofluorescence and PKA activity non-radioactive detection kit. Propofol induced a dose-dependent negative contractile response on the rat heart. The inhibitory effect of high concentration propofol (50μM) with 45% decease of control could be partly reversed by the PKA inhibitor H89 (10μM) and the depressant effect of propofol decreased from 45% to 10%. PKA kinase activity was inhibited by propofol in a dose-dependent manner. Propofol also induced a decrease in phosphorylation of PKA, which was also inhibited by H89, but did not alter the production of cAMP and the mRNA levels of PKA. The downstream proteins of PKA, PLN and RyR2 were phosphorylated to a lesser extent with propofol or H89 than control. These results demonstrated that propofol induced a negative myocardial contractile response partly by mediating the PKA phosphorylation pathway. PMID:27495954

  7. Angiotensin-(1-7): a bioactive fragment of the renin-angiotensin system.

    PubMed

    Ferrario, C M; Iyer, S N

    1998-11-30

    Accumulating evidence suggests that angiotensin-(1-7) [Ang-(1-7)] is an important component of the renin-angiotensin system. As the most pleiotropic metabolite of angiotensin I (Ang I) it manifest actions which are most often the opposite of those described for angiotensin II (Ang II). Ang-(1-7) is produced from Ang I bypassing the prerequisite formation of Ang II. The generation of Ang-(1-7) is under the control of at least three enzymes, which include neprilysin, thimet oligopeptidase, and prolyl oligopeptidase depending on the tissue compartment. Both neprilysin and thimet oligopeptidase are also involved in the metabolism of bradykinin and the atrial natriuretic peptide. Moreover, recent studies suggest that in addition to Ang I and bradykinin, Ang-(1-7) is an endogenous substrate for angiotensin converting enzyme. This suggests that there is a complex relationship between the enzymatic pathways forming angiotensin II and other various vasodepressor peptides from either the renin-angiotensin system or other peptide systems. The antihypertensive actions of angiotensin-(1-7) are mediated by an angiotensin receptor that is distinct from the pharmacologically characterized AT1 or AT2 receptor subtypes. Ang-(1-7) mediates it antihypertensive effects by stimulating synthesis and release of vasodilator prostaglandins, and nitric oxide and potentiating the hypotensive effects of bradykinin.

  8. Angiotensin-converting enzyme gene insertion/deletion, not bradykinin B2 receptor -58T/C gene polymorphism, associated with angiotensin-converting enzyme inhibitor-related cough in Chinese female patients with non-insulin-dependent diabetes mellitus.

    PubMed

    Lee, Y J; Tsai, J C

    2001-11-01

    To investigate the genetic susceptibility associated with cough related to angiotensin-converting enzyme inhibitor (ACEI) therapy in patients with type 2 diabetes, 189 non-insulin-dependent diabetes mellitus (NIDDM) patients with proteinuria or hypertension treated with perindopril were studied. Cough was considered to be present if the patients had been bothered by a cough during treatment and if they had had related symptoms for at least 2 weeks without an identifiable cause. Polymerase chain reaction (PCR) coupled with single-strand conformation polymorphism (SSCP) was used to detect polymorphisms of ACE and bradykinin B2-receptor genes. After 8 weeks of treatment, 49.2% (93 of 189) of our NIDDM patients were found to be suffering from ACEI-related cough. ACEI-related cough was mainly associated with female patients, with 71.7% (76 of 106) of female and only 20.5% (17 of 83) of male patients experiencing cough after ACEI treatment. There was a significant association of ACE II genotype with ACEI-related cough. The genotype frequencies were 58.2% for II, 47.8% for ID, and 16.7% for DD in patients with ACEI-associated cough and 41.8% for II, 52.2% for ID, and 83.3% for DD in subjects without ACEI-associated cough (chi(2) = 10.268; df = 2, P =.006). As female patients made up the majority of the subjects suffering from ACEI-related cough, we further analyzed the association of ACE I/D genotype with ACEI-related cough separately by sex. Male patients with ACEI-related cough were not associated with ACE I/D genotype distribution, while female patients were strongly associated with ACE I/D genotype polymorphism (chi(2) = 16.12; df = 2; P <.001). There was no association between the bradykinin B2 receptor gene -58T/C polymorphism with ACEI-related cough. In conclusion, our results indicate that Chinese diabetic female subjects are susceptible to ACEI-related cough, and this susceptibility may be genetically predetermined. PMID:11699055

  9. HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism.

    PubMed

    Kong, Qiuyue; Dai, Leyang; Wang, Yana; Zhang, Xiaojin; Li, Chuanfu; Jiang, Surong; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2016-01-01

    Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expression in ventricular tissues, and endothelial overexpression of HSPA12B in transgenic mice (Tg) limited infarct size, attenuated cardiac dysfunction and improved cardiomyocyte survival compared with their wild type littermates. These improvements were accompanied with the diminished myocardial no-reflow phenomenon, decreased microvascular leakage, and better maintained endothelial tight junctions. The I/R-evoked neutrophil infiltration was also suppressed in Tg hearts compared with its wild type (WT) littermates. Moreover, Tg hearts exhibited the enhanced activation of PI3K/Akt//mTOR signaling following I/R challenge. However, pharmacological inhibition of PI3K abolished the HSPA12B-induced cardioprotection against myocardial I/R injury. The data demonstrate for the first time that the endothelial HSPA12B protected hearts against myocardial I/R injury. This cardioprotective action of HSPA12B was mediated, at least in part, by improving endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Our study suggests that targeting endothelial HSPA12B could be an alternative approach for the management of patients with myocardial I/R injury. PMID:27644317

  10. HSPA12B Attenuated Acute Myocardial Ischemia/reperfusion Injury via Maintaining Endothelial Integrity in a PI3K/Akt/mTOR-dependent Mechanism

    PubMed Central

    Kong, Qiuyue; Dai, Leyang; Wang, Yana; Zhang, Xiaojin; Li, Chuanfu; Jiang, Surong; Li, Yuehua; Ding, Zhengnian; Liu, Li

    2016-01-01

    Endothelial damage is a critical mediator of myocardial ischemia/reperfusion (I/R) injury. HSPA12B is an endothelial-cell-specifically expressed heat shock protein. However, the roles of HSPA12B in acute myocardial I/R injury is unknown. Here we reported that myocardial I/R upregulated HSPA12B expression in ventricular tissues, and endothelial overexpression of HSPA12B in transgenic mice (Tg) limited infarct size, attenuated cardiac dysfunction and improved cardiomyocyte survival compared with their wild type littermates. These improvements were accompanied with the diminished myocardial no-reflow phenomenon, decreased microvascular leakage, and better maintained endothelial tight junctions. The I/R-evoked neutrophil infiltration was also suppressed in Tg hearts compared with its wild type (WT) littermates. Moreover, Tg hearts exhibited the enhanced activation of PI3K/Akt//mTOR signaling following I/R challenge. However, pharmacological inhibition of PI3K abolished the HSPA12B-induced cardioprotection against myocardial I/R injury. The data demonstrate for the first time that the endothelial HSPA12B protected hearts against myocardial I/R injury. This cardioprotective action of HSPA12B was mediated, at least in part, by improving endothelial integrity in a PI3K/Akt/mTOR-dependent mechanism. Our study suggests that targeting endothelial HSPA12B could be an alternative approach for the management of patients with myocardial I/R injury. PMID:27644317

  11. Cardioprotective actions of Notch1 against myocardial infarction via LKB1-dependent AMPK signaling pathway.

    PubMed

    Yang, Hui; Sun, Wanqing; Quan, Nanhu; Wang, Lin; Chu, Dongyang; Cates, Courtney; Liu, Quan; Zheng, Yang; Li, Ji

    2016-05-15

    AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.

  12. The renin-angiotensin systems: evolving pharmacological perspectives for cerebroprotection.

    PubMed

    Magy, Laurent; Vincent, François; Faure, Sebastien; Messerli, Franz H; Wang, Jiguang G; Achard, Jean-Michel; Fournier, Albert

    2005-01-01

    During the last 20 years, the renin-angiotensin system (RAS) has become an increasingly important focus of basic and clinical cardiovascular research. One main conceptual step forward was made with the discovery of a tissue RAS and the understanding of its critical pathophysiological role in atherogenesis and plaque destabilisation. Major effort to find new strategies for blocking the RAS has produced new classes of drugs which were expected to be clinically important in the management of hypertension and heart failure. As landmark clinical studies have demonstrated that inhibition of the RAS significantly reduces morbidity and mortality from coronary heart disease, myocardial infarction and heart failure, the concept has rapidly emerged that blocking the RAS was the strategy of choice for preventing cardiovascular diseases. More recently, basic research has however continuously extended our understanding of the complexity of the systemic and tissue RASs, that can no longer be viewed as one-way streets in which one single effector, angiotensin II acts solely through its major (AT1) receptor. Meanwhile, clinical trials have challenged the concept that blocking the RAS is the most effective preventive strategy for all patients and all target organs. Consistent with the recent understanding that the RAS encompasses a number of distinct effectors acting through different receptors to promote opposite effects, a growing body of basic and clinical evidence suggests that blunting the RAS is a double-edge sword, with beneficial effects counterbalanced by deleterious ones, resulting in a net effect that critically depends on the experimental conditions, or the clinical characteristics of the study population. Of particular clinical relevance, a number of clinical trials point to the somewhat provocative conclusion that beyond their blood pressure lowering effect antihypertensive drugs that decrease angiotensin II formation are less stroke protective than the ones that

  13. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation.

    PubMed Central

    Schunkert, H; Dzau, V J; Tang, S S; Hirsch, A T; Apstein, C S; Lorell, B H

    1990-01-01

    We compared the activity and physiologic effects of cardiac angiotensin converting enzyme (ACE) using isovolumic hearts from male Wistar rats with left ventricular hypertrophy due to chronic experimental aortic stenosis and from control rats. In response to the infusion of 3.5 X 10(-8) M angiotensin I in the isolated buffer perfused beating hearts, the intracardiac fractional conversion to angiotensin II was higher in the hypertrophied hearts compared with the controls (17.3 +/- 4.1% vs 6.8 +/- 1.3%, P less than 0.01). ACE activity was also significantly increased in the free wall, septum, and apex of the hypertrophied left ventricle, whereas ACE activity from the nonhypertrophied right ventricle of the aortic stenosis rats was not different from that of the control rats. Northern blot analyses of poly(A)+ purified RNA demonstrated the expression of ACE mRNA, which was increased fourfold in left ventricular tissue obtained from the hearts with left ventricular hypertrophy compared with the controls. In both groups, the intracardiac conversion of angiotensin I to angiotensin II caused a comparable dose-dependent increase in coronary resistance. In the control hearts, angiotensin II activation had no significant effect on systolic or diastolic function; however, it was associated with a dose-dependent depression of left ventricular diastolic relaxation in the hypertrophied hearts. These novel observations suggest that cardiac ACE is induced in hearts with left ventricular hypertrophy, and that the resultant intracardiac activation of angiotensin II may have differential effects on myocardial relaxation in hypertrophied hearts relative to controls. Images PMID:2174912

  14. A novel, view-independent method for strain mapping in myocardial elastography: eliminating angle and centroid dependence

    NASA Astrophysics Data System (ADS)

    Zervantonakis, I. K.; Fung-Kee-Fung, S. D.; Lee, W.-N.; Konofagou, E. E.

    2007-07-01

    Robust indices of regional and global cardiac function are a key factor in detection and treatment of heart disease as well as understanding of the fundamental mechanisms of a healthy heart. Myocardial elastography provides a noninvasive method for imaging and measuring displacement and strain of the myocardium for the early detection of cardiovascular disease. However, two-dimensional in-plane axial and lateral strains measured depend on the sonographic view used. This becomes especially critical in a clinical setting and may induce large variations in the measured strains, potentially leading to false diagnoses. A novel method in myocardial elastography is proposed for eliminating this view dependence by deriving the polar, principal and classified principal strains. The performance of the proposed methodology is assessed by employing 3D finite-element left-ventricular models of a control and an ischemic canine heart. Although polar strains are angle-independent, they are sensitive to the selected reference coordinate system, which requires the definition of a centroid of the left ventricle (LV). In contrast, principal strains derived through eigenvalue decomposition exhibit the inherent characteristic of coordinate system independence, offering view (i.e., angle and centroid)-independent strain measurements. Classified principal strains are obtained by assigning the principal components in the physical ventricular coordinate system. An extensive strain analysis illustrates the improvement in interpretation and visualization of the full-field myocardial deformation by using the classified principal strains, clearly depicting the ischemic and non-ischemic regions. Strain maps, independent of sonographic views and imaging planes, that can be used to accurately detect regional contractile dysfunction are demonstrated.

  15. Angiotensin II and renal tubular ion transport.

    PubMed

    Valles, Patricia; Wysocki, Jan; Batlle, Daniel

    2005-08-29

    Angiotensin II, a potent vasoconstrictor, also participates in the regulation of renal sodium and water excretion, not only via a myriad of effects on renal hemodynamics, glomerular filtration rate, and regulation of aldosterone secretion, but also via direct effects on renal tubule transport. In addition, angiotensin II stimulates H+ secretion and HCO3- reabsorption in both proximal and distal tubules and regulates H+-ATPase activity in intercalated cells of the collecting tubule. Different results regarding the effect of angiotensin II on bicarbonate reabsorption and proton secretion have been reported at the functional level, depending on the angiotensin II concentration and tubule segment studied. It is likely that interstitial angiotensin II is more important in regulating hemodynamic and transport functions than circulating angiotensin II. In proximal tubules, stimulation of bicarbonate reabsorption, Na+/H+-exchange, and Na+/HCO3- cotransport has been found using low concentrations (<10(-9) M), while inhibition of bicarbonate reabsorption has been documented using concentrations higher than 10(-8) M. Evidence for the regulation of H+-ATPase activity in vivo and in vitro by trafficking/exocytosis has been provided. An additional level of H+-ATPase regulation via protein synthesis may be important as well. Recently, we have shown that both aldosterone and angiotensin II provide such a mechanism of regulation in vivo at the level of the medullary collecting tubule. Interestingly, in this part of the nephron, the effects of aldosterone and angiotensin II are not sodium dependent, whereas in the cortical collecting duct, both aldosterone and angiotensin II, by contrast, affect H+ secretion by sodium-dependent mechanisms.

  16. Diacylglycerol kinase theta is translocated and phosphoinositide 3-kinase-dependently activated by noradrenaline but not angiotensin II in intact small arteries.

    PubMed Central

    Walker, A J; Draeger, A; Houssa, B; van Blitterswijk , W J; Ohanian, V; Ohanian, J

    2001-01-01

    Diacylglycerol (DG) kinase (DGK) phosphorylates the lipid second messenger DG to phosphatidic acid. We reported previously that noradrenaline (NA), but not angiotensin II (AII), increases membrane-associated DGK activity in rat small arteries [Ohanian and Heagerty (1994) Biochem. J. 300, 51-56]. Here, we have identified this DGK activity as DGKtheta, present in both smooth muscle and endothelial cells of these small vessels. Subcellular fractionation of artery homogenates revealed that DGKtheta was present in nuclear, plasma membrane (and/or Golgi) and cytosolic fractions. Upon NA stimulation, DGKtheta translocated towards the membrane and cytosol (155 and 153% increases relative to the control, respectively) at 30 s, followed by a return to near-basal levels at 5 min; AII was without effect. Translocation to the membrane was to both Triton-soluble and -insoluble fractions. NA, but not AII, transiently increased DGKtheta activity in immunoprecipitates (126% at 60 s). Membrane translocation and DGKtheta activation were regulated differently: NA-induced DGKtheta activation, but not translocation, was dependent on transient activation of phosphoinositide 3-kinase (PI 3-K). In addition, DGK activity co-immunoprecipitated with protein kinase B, a downstream effector of PI 3-K, and was increased greatly by NA stimulation. The rapid and agonist-specific activation of DGKtheta suggests that this pathway may have a physiological role in vascular smooth-muscle responses. PMID:11115406

  17. The Procognitive and Synaptogenic Effects of Angiotensin IV–Derived Peptides Are Dependent on Activation of the Hepatocyte Growth Factor/c-Met System

    PubMed Central

    Benoist, Caroline C.; Kawas, Leen H.; Zhu, Mingyan; Tyson, Katherine A.; Stillmaker, Lori; Appleyard, Suzanne M.; Wright, John W.

    2014-01-01

    A subset of angiotensin IV (AngIV)–related molecules are known to possess procognitive/antidementia properties and have been considered as templates for potential therapeutics. However, this potential has not been realized because of two factors: 1) a lack of blood-brain barrier–penetrant analogs, and 2) the absence of a validated mechanism of action. The pharmacokinetic barrier has recently been overcome with the synthesis of the orally active, blood-brain barrier–permeable analog N-hexanoic-tyrosine-isoleucine-(6) aminohexanoic amide (dihexa). Therefore, the goal of this study was to elucidate the mechanism that underlies dihexa’s procognitive activity. Here, we demonstrate that dihexa binds with high affinity to hepatocyte growth factor (HGF) and both dihexa and its parent compound Norleucine 1-AngIV (Nle1-AngIV) induce c-Met phosphorylation in the presence of subthreshold concentrations of HGF and augment HGF-dependent cell scattering. Further, dihexa and Nle1-AngIV induce hippocampal spinogenesis and synaptogenesis similar to HGF itself. These actions were inhibited by an HGF antagonist and a short hairpin RNA directed at c-Met. Most importantly, the procognitive/antidementia capacity of orally delivered dihexa was blocked by an HGF antagonist delivered intracerebroventricularly as measured using the Morris water maze task of spatial learning. PMID:25187433

  18. Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism.

    PubMed

    Morales, María Gabriela; Olguín, Hugo; Di Capua, Gabriella; Brandan, Enrique; Simon, Felipe; Cabello-Verrugio, Claudio

    2015-09-01

    Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome. PMID:25989282

  19. Angiotensin II-Induced Apoptosis of Human Umbilical Vein Endothelial Cells was Inhibited by Blueberry Anthocyanin Through Bax- and Caspase 3-Dependent Pathways.

    PubMed

    Du, Jian; Leng, Jiyan; Zhang, Li; Bai, Guangxin; Yang, Di; Lin, Huan; Qin, Junjie

    2016-01-01

    BACKGROUND This study aimed to investigate the inhibitory effect of blueberry anthocyanin (BBA) on Angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs), and its regulation mechanisms involving Bax and Caspase 3. MATERIAL AND METHODS HUVECs were first treated by different concentrations of Ang II (10-9, 10-8, 10-7, 10-6, 10-5, and 10-4 mol/L) and BBA (80, 40, 20, 10, 5, and 2.5 μg/ml). After 24 h and 48 h of treatment, MTT was performed to detect the viability of HUVECs. Then, HUVECs were randomly divided into the Ang II group (10-6 mol/L Ang II) and Ang II + BBA group (10-6 mol/L Ang II and 20 μg/ml BBA), and the apoptosis rate was detected by flow cytometry. Western blot analysis was performed to detect the expression of Bax and Caspase 3 in these 2 groups. During the whole process, HUVECs without any treatments served as the control group. RESULTS The cell viability of HUVECs was significantly reduced by Ang II in a time- and concentration-dependent manner (P<0.05), while BBA significantly elevated the cell viability of HUVECs until a peak of 20.0 μg/ml. The apoptosis rate of HUVECs was significantly increased by Ang II (P<0.01) and reduced by the BBA intervention (P<0.05). Ang II significantly elevated the expression of Bax and Caspase 3 in HUVECs, but their expression was significantly inhibited by BBA. CONCLUSIONS BBA increased cell viability and reduced apoptosis rate of HUVECs induced by Ang II through Bax- and Caspase 3-dependent pathways. PMID:27616275

  20. Endotoxin-induced skeletal muscle wasting is prevented by angiotensin-(1-7) through a p38 MAPK-dependent mechanism.

    PubMed

    Morales, María Gabriela; Olguín, Hugo; Di Capua, Gabriella; Brandan, Enrique; Simon, Felipe; Cabello-Verrugio, Claudio

    2015-09-01

    Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.

  1. G protein coupling and second messenger generation are indispensable for metalloprotease-dependent, heparin-binding epidermal growth factor shedding through angiotensin II type-1 receptor.

    PubMed

    Mifune, Mizuo; Ohtsu, Haruhiko; Suzuki, Hiroyuki; Nakashima, Hidekatsu; Brailoiu, Eugen; Dun, Nae J; Frank, Gerald D; Inagami, Tadashi; Higashiyama, Shigeki; Thomas, Walter G; Eckhart, Andrea D; Dempsey, Peter J; Eguchi, Satoru

    2005-07-15

    A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.

  2. Angiotensin II-Induced Apoptosis of Human Umbilical Vein Endothelial Cells was Inhibited by Blueberry Anthocyanin Through Bax- and Caspase 3-Dependent Pathways

    PubMed Central

    Du, Jian; Leng, Jiyan; Zhang, Li; Bai, Guangxin; Yang, Di; Lin, Huan; Qin, Junjie

    2016-01-01

    Background This study aimed to investigate the inhibitory effect of blueberry anthocyanin (BBA) on Angiotensin II (Ang II)-induced apoptosis of human umbilical vein endothelial cells (HUVECs), and its regulation mechanisms involving Bax and Caspase 3. Material/Methods HUVECs were first treated by different concentrations of Ang II (10−9, 10−8, 10−7, 10−6, 10−5, and 10−4 mol/L) and BBA (80, 40, 20, 10, 5, and 2.5 μg/ml). After 24 h and 48 h of treatment, MTT was performed to detect the viability of HUVECs. Then, HUVECs were randomly divided into the Ang II group (10−6 mol/L Ang II) and Ang II + BBA group (10−6 mol/L Ang II and 20 μg/ml BBA), and the apoptosis rate was detected by flow cytometry. Western blot analysis was performed to detect the expression of Bax and Caspase 3 in these 2 groups. During the whole process, HUVECs without any treatments served as the control group. Results The cell viability of HUVECs was significantly reduced by Ang II in a time- and concentration-dependent manner (P<0.05), while BBA significantly elevated the cell viability of HUVECs until a peak of 20.0 μg/ml. The apoptosis rate of HUVECs was significantly increased by Ang II (P<0.01) and reduced by the BBA intervention (P<0.05). Ang II significantly elevated the expression of Bax and Caspase 3 in HUVECs, but their expression was significantly inhibited by BBA. Conclusions BBA increased cell viability and reduced apoptosis rate of HUVECs induced by Ang II through Bax- and Caspase 3-dependent pathways. PMID:27616275

  3. A small difference in the molecular structure of angiotensin II receptor blockers induces AT1 receptor-dependent and -independent beneficial effects

    PubMed Central

    Fujino, Masahiro; Miura, Shin-ichiro; Kiya, Yoshihiro; Tominaga, Yukio; Matsuo, Yoshino; Karnik, Sadashiva S; Saku, Keijiro

    2013-01-01

    Angiotensin II (Ang II) type 1 (AT1) receptor blockers (ARBs) induce multiple pharmacological beneficial effects, but not all ARBs have the same effects and the molecular mechanisms underlying their actions are not certain. In this study, irbesartan and losartan were examined because of their different molecular structures (irbesartan has a cyclopentyl group whereas losartan has a chloride group). We analyzed the binding affinity and production of inositol phosphate (IP), monocyte chemoattractant protein-1 (MCP-1) and adiponectin. Compared with losartan, irbesartan showed a significantly higher binding affinity and slower dissociation rate from the AT1 receptor and a significantly higher degree of inverse agonism and insurmountability toward IP production. These effects of irbesartan were not seen with the AT1-Y113A mutant receptor. On the basis of the molecular modeling of the ARBs–AT1 receptor complex and a mutagenesis study, the phenyl group at Tyr113 in the AT1 receptor and the cyclopentyl group of irbesartan may form a hydrophobic interaction that is stronger than the losartan–AT1 receptor interaction. Interestingly, irbesartan inhibited MCP-1 production more strongly than losartan. This effect was mediated by the inhibition of nuclear factor-kappa B activation that was independent of the AT1 receptor in the human coronary endothelial cells. In addition, irbesartan, but not losartan, induced significant adiponectin production that was mediated by peroxisome proliferator-activated receptor-γ activation in 3T3-L1 adipocytes, and this effect was not mediated by the AT1 receptor. In conclusion, irbesartan induced greater beneficial effects than losartan due to small differences between their molecular structures, and these differential effects were both dependent on and independent of the AT1 receptor. PMID:20668453

  4. Exendin-4 alleviates angiotensin II-induced senescence in vascular smooth muscle cells by inhibiting Rac1 activation via a cAMP/PKA-dependent pathway.

    PubMed

    Zhao, Liang; Li, Ai Q; Zhou, Teng F; Zhang, Meng Q; Qin, Xiao M

    2014-12-15

    Vascular aging has been implicated in the progression of diabetes and age-related cardiovascular disorders. Glucagon-like peptide-1 (GLP-1) is an incretin hormone capable of cytoprotective actions in addition to its glucose-lowering effect. The present study was undertaken to examine whether Exendin-4, a specific ligand for the GLP-1 receptor, could prevent angiotensin (ANG) II-induced premature senescence in vascular smooth muscle cells (VSMCs) and to determine the underlying mechanism involved. Senescence-associated β-galactosidase (SA β-gal) assay showed that ANG II induced premature senescence of VSMCs. Pretreatment with Exendin-4 significantly attenuated ANG II-induced generation of H2O2 and the subsequent VSMC senescence. These effects were, however, reversed in the presence of exendin fragment 9-39, a GLP-1 receptor antagonist, or PKI14-22. Moreover, a marked increase in the levels of p53 and p21 induced by ANG II was blunted by the treatment with Exendin-4. Nevertheless, Exendin-4 failed to decrease ANG II-induced expression of NAD(P)H oxidase 1 (Nox1), NAD(P)H oxidase 4 (Nox4), p22(phox), or p47(phox) in VSMCs. Mechanistically, Exendin-4 blocked ANG II-induced Rac1 activation through the cAMP/PKA signaling cascade. Specifically, NSC23766, a Rac1 inhibitor, abrogated the suppressive effects of Exendin-4 on ANG II-induced premature senescence and H2O2 generation, respectively. Thus Exendin-4 confers resistance to ANG II-induced superoxide anion generation from NAD(P)H oxidase and the resultant VSMC senescence by inhibiting Rac1 activation via a cAMP/PKA-dependent pathway. These findings demonstrate that GLP-1 as well as its analogs (GLP-1-related reagents) may hold therapeutic potential in the treatment of diabetes with cardiovascular disease.

  5. Angiotensin II receptor signalling.

    PubMed

    Daniels, Derek; Yee, Daniel K; Fluharty, Steven J

    2007-05-01

    Angiotensin II plays a key role in the regulation of body fluid homeostasis. To correct body fluid deficits that occur during hypovolaemia, an animal needs to ingest both water and electrolytes. Thus, it is not surprising that angiotensin II, which is synthesized in response to hypovolaemia, acts centrally to increase both water and NaCl intake. Here, we review findings relating to the properties of angiotensin II receptors that give rise to changes in behaviour. Data are described to suggest that divergent signal transduction pathways are responsible for separable behavioural responses to angiotensin II, and a hypothesis is proposed to explain how this divergence may map onto neural circuits in the brain.

  6. Histamine 3 receptor activation reduces the expression of neuronal angiotensin II type 1 receptors in the heart.

    PubMed

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki; Levi, Roberto

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H₃) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na⁺/H⁺ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT₁) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H₃ receptors and AT₁ receptors. The purpose of this investigation was therefore to elucidate the H₃/AT₁ receptor interaction in myocardial ischemia/reperfusion. We found that H₃ receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT₁ receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT₁ receptor expression. Moreover, norepinephrine release and AT₁ receptor expression were increased by the nitric oxide (NO) synthase inhibitor N(G)-methyl-L-arginine and the protein kinase C activator phorbol myristate acetate. H₃ receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H₃ receptor cDNA caused a decrease in protein kinase C activity and AT₁ receptor protein abundance. Collectively, our findings suggest that neuronal H₃ receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT₁ receptor expression. Thus, H₃ receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT₁ receptor expression. Cardioprotection ultimately results from the combined

  7. Histamine 3 Receptor Activation Reduces the Expression of Neuronal Angiotensin II Type 1 Receptors in the Heart

    PubMed Central

    Hashikawa-Hobara, Narumi; Chan, Noel Yan-Ki

    2012-01-01

    In severe myocardial ischemia, histamine 3 (H3) receptor activation affords cardioprotection by preventing excessive norepinephrine release and arrhythmias; pivotal to this action is the inhibition of neuronal Na+/H+ exchanger (NHE). Conversely, angiotensin II, formed locally by mast cell-derived renin, stimulates NHE via angiotensin II type 1 (AT1) receptors, facilitating norepinephrine release and arrhythmias. Thus, ischemic dysfunction may depend on a balance between the NHE-modulating effects of H3 receptors and AT1 receptors. The purpose of this investigation was therefore to elucidate the H3/AT1 receptor interaction in myocardial ischemia/reperfusion. We found that H3 receptor blockade with clobenpropit increased norepinephrine overflow and arrhythmias in Langendorff-perfused guinea pig hearts subjected to ischemia/reperfusion. This coincided with increased neuronal AT1 receptor expression. NHE inhibition with cariporide prevented both increases in norepinephrine release and AT1 receptor expression. Moreover, norepinephrine release and AT1 receptor expression were increased by the nitric oxide (NO) synthase inhibitor NG-methyl-l-arginine and the protein kinase C activator phorbol myristate acetate. H3 receptor activation in differentiated sympathetic neuron-like PC12 cells permanently transfected with H3 receptor cDNA caused a decrease in protein kinase C activity and AT1 receptor protein abundance. Collectively, our findings suggest that neuronal H3 receptor activation inhibits NHE by diminishing protein kinase C activity. Reduced NHE activity sequentially causes intracellular acidification, increased NO synthesis, and diminished AT1 receptor expression. Thus, H3 receptor-mediated NHE inhibition in ischemia/reperfusion not only opposes the angiotensin II-induced stimulation of NHE in cardiac sympathetic neurons, but also down-regulates AT1 receptor expression. Cardioprotection ultimately results from the combined attenuation of angiotensin II and

  8. Angiotensin II induces Fat1 expression/activation and vascular smooth muscle cell migration via Nox1-dependent reactive oxygen species generation

    PubMed Central

    Bruder-Nascimento, T; Chinnasamy, P; Riascos-Bernal, DF; Cau, SB; Callera, GE; Touyz, RM; Tostes, RC; Sibinga, NES

    2013-01-01

    Fat1 is an atypical cadherin that controls vascular smooth muscle cell (VSMC) proliferation and migration. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 1 (Nox1) is an important source of reactive oxygen species (ROS) in VSMCs. Angiotensin II (Ang II) induces the expression and/or activation of both Fat1 and Nox1 proteins. This study tested the hypothesis that Ang II-induced Fat1 activation and VSMC migration are mediated by Nox1-dependent ROS generation and redox signaling. Studies were performed in cultured VSMCs from Sprague-Dawley rats. Cells were treated with Ang II (1 μmol/L) for short (5 to 30 min) or long term stimulations (3 to 12 h) in the absence or presence of the antioxidant apocynin (10 μmol/L), extracellular-signal-regulated kinases 1/2 (Erk1/2) inhibitor PD98059 (1 μmol/L), or Ang II type 1 receptor (AT1R) valsartan (1 μmol/L). siRNA was used to knockdown Nox1 or Fat1. Cell migration was determined by Boyden chamber assay. Ang II increased Fat1 mRNA and protein levels and promoted Fat1 translocation to the cell membrane, responses that were inhibited by AT1R antagonist and antioxidant treatment. Downregulation of Nox1 inhibited the effects of Ang II on Fat1 protein expression. Nox1 protein induction, ROS generation, and p44/p42 MAPK phosphorylation in response to Ang II were prevented by valsartan and apocynin, and Nox1 siRNA inhibited Ang II-induced ROS generation. Knockdown of Fat1 did not affect Ang II-mediated increases in Nox1 expression or ROS. Inhibition of p44/p42 MAPK phosphorylation by PD98059 abrogated the Ang II-induced increase in Fat1 expression and membrane translocation. Knockdown of Fat1 inhibited Ang II-induced VSMC migration, which was also prevented by valsartan, apocynin, PD98059, and Nox1 siRNA. Our findings indicate that Ang II regulates Fat1 expression and activity and induces Fat1-dependent VSMC migration via activation of AT1R, ERK1/2, and Nox1-derived ROS, suggesting a role for Fat1 downstream of Ang II

  9. Angiotensin II formation in the intact human heart. Predominance of the angiotensin-converting enzyme pathway.

    PubMed Central

    Zisman, L S; Abraham, W T; Meixell, G E; Vamvakias, B N; Quaife, R A; Lowes, B D; Roden, R L; Peacock, S J; Groves, B M; Raynolds, M V

    1995-01-01

    It has been proposed that the contribution of myocardial tissue angiotensin converting enzyme (ACE) to angiotensin II (Ang II) formation in the human heart is low compared with non-ACE pathways. However, little is known about the actual in vivo contribution of these pathways to Ang II formation in the human heart. To examine angiotensin II formation in the intact human heart, we administered intracoronary 123I-labeled angiotensin I (Ang I) with and without intracoronary enalaprilat to orthotopic heart transplant recipients. The fractional conversion of Ang I to Ang II, calculated after separation of angiotensin peptides by HPLC, was 0.415 +/- 0.104 (n = 5, mean +/- SD). Enalaprilat reduced fractional conversion by 89%, to a value of 0.044 +/- 0.053 (n = 4, P = 0.002). In a separate study of explanted hearts, a newly developed in vitro Ang II-forming assay was used to examine cardiac tissue ACE activity independent of circulating components. ACE activity in solubilized left ventricular membrane preparations from failing hearts was 49.6 +/- 5.3 fmol 125I-Ang II formed per minute per milligram of protein (n = 8, +/- SE), and 35.9 +/- 4.8 fmol/min/mg from nonfailing human hearts (n = 7, P = 0.08). In the presence of 1 microM enalaprilat, ACE activity was reduced by 85%, to 7.3 +/- 1.4 fmol/min/mg in the failing group and to 4.6 +/- 1.3 fmol/min/mg in the nonfailing group (P < 0.001). We conclude that the predominant pathway for angiotensin II formation in the human heart is through ACE. Images PMID:7657820

  10. Quantitative reconstruction for myocardial perfusion SPECT: an efficient approach by depth-dependent deconvolution and matrix rotation.

    PubMed

    Ye, J; Liang, Z; Harrington, D P

    1994-08-01

    An efficient reconstruction method for myocardial perfusion single-photon emission computed tomography (SPECT) has been developed which compensates simultaneously for attenuation, scatter, and resolution variation. The scattered photons in the primary-energy-window measurements are approximately removed by subtracting the weighted scatter-energy-window samples. The resolution variation is corrected by deconvolving the subtracted data with the detector-response kernel in frequency space using the depth-dependent frequency relation. The attenuated photons are compensated by recursively tracing the attenuation factors through the object-specific attenuation map. An experimental chest phantom with defects inside myocardium was used to test the method. The attenuation map of the phantom was reconstructed from transmission scans using a flat external source and a high-resolution parallel-hole collimator of a single-detector system. The detector-response kernel was approximated from measurements of a point source in air at several depths from the collimator surface. The emission data were acquired by the same detector setting. A computer simulation using similar protocols as in the experiment was performed. Both the simulation and experiment showed significant improvement in quantification with the proposed method, as compared to the conventional filtered-backprojection technique. The quantitative gain by the additional deconvolution was demonstrated. The computation time was less than 20 min on a HP/730 desktop computer for reconstruction of a 1282 x 64 array from 128 projections of 128 x 64 samples. PMID:15551566

  11. Limitations of angiotensin inhibition.

    PubMed

    Nobakht, Niloofar; Kamgar, Mohammad; Rastogi, Anjay; Schrier, Robert W

    2011-06-01

    Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin-receptor blockers (ARBs) have beneficial effects in patients with cardiovascular disease and in those with diabetes-related and diabetes-independent chronic kidney diseases. These beneficial effects are independent of the antihypertensive properties of these drugs. However, ACE inhibitors, ARBs, and combinations of agents in these two classes are limited in the extent to which they inhibit the activity of the renin-angiotensin-aldosterone system (RAAS). Angiotensin breakthrough and aldosterone breakthrough may be important mechanisms involved in limiting the effects of ACE inhibitors and ARBs. Whether direct renin inhibitors will overcome some of the limitations of ACE-inhibitor and ARB therapy by blocking the deleterious effects of the RAAS remains to be proven. This important area is, however, in need of further investigation.

  12. Incidence and prognostic significance of atrial fibrillation in acute myocardial infarction: the GISSI-3 data

    PubMed Central

    Pizzetti, F; Turazza, F; Franzosi, M; Barlera, S; Ledda, A; Maggioni, A; Santoro, L; Tognoni, G

    2001-01-01

    BACKGROUND—Atrial fibrillation is the most common supraventricular arrhythmia in patients with acute myocardial infarction. Recent advances in pharmacological treatment of myocardial infarction may have changed the impact of this arrhythmia.
OBJECTIVE—To assess the incidence and prognosis of atrial fibrillation complicating myocardial infarction in a large population of patients receiving optimal treatment, including angiotensin converting enzyme (ACE) inhibitors.
METHODS—Data were derived from the GISSI-3 trial, which included 17 944 patients within the first 24 hours after acute myocardial infarction. Atrial fibrillation was recorded during the hospital stay, and follow up visits were planned at six weeks and six months. Survival of the patients at four years was assessed through census offices.
RESULTS—The incidence of in-hospital atrial fibrillation or flutter was 7.8%. Atrial fibrillation was associated with indicators of a worse prognosis (age > 70 years, female sex, higher Killip class, previous myocardial infarction, treated hypertension, high systolic blood pressure at entry, insulin dependent diabetes, signs or symptoms of heart failure) and with some adverse clinical events (reinfarction, sustained ventricular tachycardia, ventricular fibrillation). After adjustment for other prognostic factors, atrial fibrillation remained an independent predictor of increased in-hospital mortality: 12.6% v 5%, adjusted relative risk (RR) 1.98, 95% confidence interval (CI) 1.67 to 2.34. Data on long term mortality (four years after acute myocardial infarction) confirmed the persistent negative influence of atrial fibrillation (RR 1.78, 95% CI 1.60 to 1.99).
CONCLUSIONS—Atrial fibrillation is an indicator of worse prognosis after acute myocardial infarction, both in the short term and in the long term, even in an unselected population.


Keywords: atrial fibrillation; acute myocardial infarction; prognosis PMID:11602545

  13. De-novo Collateral Formation Following Acute Myocardial Infarction: Dependence on CCR2+ Bone Marrow Cells

    PubMed Central

    Zhang, Hua; Faber, James E

    2015-01-01

    Wide variation exists in the extent (number and diameter) of native pre-existing collaterals in tissues of different strains of mice, with supportive indirect evidence recently appearing for humans. This variation is a major determinant of the wide variation in severity of tissue injury in occlusive vascular disease. Whether such genetic-dependent variation also exists in the heart is unknown because no model exists for study of mouse coronary collaterals. Also owing to methodological limitations, it is not known if ischemia can induce new coronary collaterals to form (“neo-collaterals”) versus remodeling of pre-existing ones. The present study sought to develop a model to study coronary collaterals in mice, determine whether neo-collateral formation occurs, and investigate the responsible mechanisms. Four strains with known rank-ordered differences in collateral extent in brain and skeletal muscle were studied: C57BLKS>C57BL/6>A/J>BALB/c. Unexpectedly, these and 5 additional strains lacked native coronary collaterals. However after ligation, neo-collaterals formed rapidly within 1-to-2 days, reaching their maximum extent in ≤ 7 days. Rank-order for neo-collateral formation differed from the above: C57BL/6>BALB/c>C57BLKS>A/J. Collateral network conductance, infarct volume−1, and contractile function followed this same rank-order. Neo-collateral formation and collateral conductance were reduced and infarct volume increased in MCP1−/− and CCR2−/− mice. Bone-marrow transplant rescued collateral formation in CCR2−/− mice. Involvement of fractalkine→CX3CR1 signaling and endothelial cell proliferation were also identified. This study introduces a model for investigating the coronary collateral circulation in mice, demonstrates that neocollaterals form rapidly after coronary occlusion, and finds that MCP→CCR2-mediated recruitment of myeloid cells is required for this process. PMID:26254180

  14. High-Dose Estradiol-Replacement Therapy Enhances the Renal Vascular Response to Angiotensin II via an AT2-Receptor Dependent Mechanism

    PubMed Central

    Safari, Tahereh; Nematbakhsh, Mehdi; Evans, Roger G.; Denton, Kate M.

    2015-01-01

    Physiological levels of estrogen appear to enhance angiotensin type 2 receptor- (AT2R-) mediated vasodilatation. However, the effects of supraphysiological levels of estrogen, analogous to those achieved with high-dose estrogen replacement therapy in postmenopausal women, remain unknown. Therefore, we pretreated ovariectomized rats with a relatively high dose of estrogen (0.5 mg/kg/week) for two weeks. Subsequently, renal hemodynamic responses to intravenous angiotensin II (Ang II, 30–300 ng/kg/min) were tested under anesthesia, while renal perfusion pressure was held constant. The role of AT2R was examined by pretreating groups of rats with PD123319 or its vehicle. Renal blood flow (RBF) decreased in a dose-related manner in response to Ang II. Responses to Ang II were enhanced by pretreatment with estradiol. For example, at 300 ng kg−1 min−1, Ang II reduced RBF by 45.7 ± 1.9% in estradiol-treated rats but only by 27.3 ± 5.1% in vehicle-treated rats. Pretreatment with PD123319 blunted the response of RBF to Ang II in estradiol-treated rats, so that reductions in RBF were similar to those in rats not treated with estradiol. We conclude that supraphysiological levels of estrogen promote AT2R-mediated renal vasoconstriction. This mechanism could potentially contribute to the increased risk of cardiovascular disease associated with hormone replacement therapy using high-dose estrogen. PMID:26681937

  15. Phenylalaninylargininylarginine: a novel tripeptide exerting Zn(2+)-dependent, insulin-mimetic inhibitory action on myocardial proteolysis.

    PubMed Central

    Zhang, L; Lockwood, T D

    1993-01-01

    A novel tripeptide, Phe-Arg-Arg, was found to exert a potent, insulin-mimetic inhibitory action on lysosomal proteolysis in the Langendorff-perfused rat heart. This tripeptide was synthesized based upon its partial structural analogy to the biguanide anti-hyperglycaemic agent, phenformin (phenylethylbiguanide), which has previously been found to exert a Zn(2+)-dependent inhibitory action on lysosomal proteolysis. Hearts were biosynthetically labelled with [3H]leucine in vitro. The percentage change in subsequent release of [3H]leucine (2 mM non-radioactive leucine) was determined in non-recirculating perfusate. The background Zn2+ content of the perfusate was determined to be 20 nM. Major endogenous Zn2+ buffers were present in molar excess of Zn2+: 0.1 mM citrate, 0.2% BSA, and complete physiological amino acids. Infusion of maximally effective levels of chloroquine (30 microM) or insulin (5 nM) caused a 38% inhibition of total proteolysis, which corresponds to the lysosomal subcomponent. In the presence of background levels of perfusate Zn2+ the infusion of Phe-Arg-Arg (10 microM), insulin (5 nM), or phenformin (2 microM) maximally caused a 39% inhibition of [3H]leucine release. Combined infusion of maximally effective levels of insulin and Phe-Arg-Arg, or maximal levels of chloroquine and Phe-Arg-Arg did not cause additive inhibition of [3H]leucine release greater than the 39% inhibition caused by either agent alone, regardless of the order of infusion. Addition of physiological concentrations of Zn2+ (1 microM) to the background perfusate Zn2+ accelerated the insulin-mimetic action of submaximally effective levels of Phe-Arg-Arg, and increased its potency. Prior chelation of background Zn2+ by a 3 h perfusion with CaNa2 EDTA (2 microM) reversibly delayed the time course of Phe-Arg-Arg action and decreased its potency at submaximal concentrations. PMID:8352749

  16. Angiotensin II disrupts inhibitory avoidance memory retrieval.

    PubMed

    Bonini, Juliana S; Bevilaqua, Lia R; Zinn, Carolina G; Kerr, Daniel S; Medina, Jorge H; Izquierdo, Iván; Cammarota, Martín

    2006-08-01

    The brain renin-angiotensin system (RAS) is involved in learning and memory, but the actual role of angiotensin II (A(II)) and its metabolites in this process has been difficult to comprehend. This has been so mainly due to procedural issues, especially the use of multi-trial learning paradigms and the utilization of pre-training intracerebroventricular infusion of RAS-acting compounds. Here, we specifically analyzed the action of A(II) in aversive memory retrieval using a hippocampal-dependent, one-trial, step-down inhibitory avoidance task (IA) in combination with stereotaxically localized intrahippocampal infusion of drugs. Rats bilaterally implanted with infusion cannulae aimed to the CA1 region of the dorsal hippocampus were trained in IA and tested for memory retention 24 h later. We found that when given into CA1 15 min before IA memory retention test, A(II), but not angiotensin IV or angiotensin(1-7) induced a dose-dependent and reversible amnesia without altering locomotor activity, exploratory behavior or anxiety state. The effect of A(II) was blocked in a dose-dependent manner by the A(II)-type 2 receptor (AT(2)) antagonist PD123319 but not by the A(II)-type 1 receptor (AT(1)) antagonist losartan. By themselves, neither PD123319 nor losartan had any effect on memory expression. Our data indicate that intra-CA1 A(II) hinders retrieval of avoidance memory through a process that involves activation of AT(2) receptors.

  17. Role of the Collecting Duct Renin Angiotensin System in Regulation of Blood Pressure and Renal Function.

    PubMed

    Ramkumar, Nirupama; Kohan, Donald E

    2016-04-01

    Recent evidence suggests that the renal tubular renin angiotensin system regulates urinary Na(+) and water excretion and blood pressure. Three key components of the tubular renin angiotensin system, namely renin, prorenin receptor, and angiotensin-II type 1 receptor, are localized to the collecting duct. This system may modulate collecting duct Na(+) and water reabsorption via angiotensin-II-dependent and angiotensin-II-independent pathways. Further, the system may be of greatest relevance in hypertensive states and particularly those characterized by high circulating angiotensin-II. In this review, we summarize the current knowledge on the synthesis, regulation, and function of collecting duct-derived renin angiotensin system components and examine recent developments with regard to regulation of blood pressure and renal fluid and Na(+) excretion.

  18. Heterogeneity of myocardial iron distribution in response to chelation therapy in patients with transfusion-dependent anemias.

    PubMed

    Hanneman, Kate; Raju, Vikram M; Moshonov, Hadas; Ward, Richard; Wintersperger, Bernd J; Crean, Andrew M; Ross, Heather; Nguyen, Elsie T

    2013-10-01

    The purpose of this study is to examine the effect of different iron chelation regimens on the distribution of myocardial iron in patients with transfusion-dependent anemias. Institutional review board approval was obtained. Patients treated with iron chelation therapy who had undergone baseline and 1-year follow-up cardiac T2* MR studies in a four-year period were identified retrospectively. One hundred and eight patients (44 % male, mean age 31.6 ± 9.7 years) were included. The interventricular septum on three short-axis slices (basal, mid and apical) was divided into anterior and inferior regions of interest for T2* analysis. Cardiac iron concentration (CIC) was calculated from T2* values. Statistical analysis included analysis of variance and paired t-test, using Bonferroni adjustment in all pairwise comparisons. At baseline, T2* measurements varied significantly across all six regions (p < 0.001): lowest in the mid anteroseptum (mean 22.3 ± 10.1 ms) and highest in the apical inferoseptum (mean 26.2 ± 12.8 ms). At follow-up, T2* and CIC values improved significantly in all segments [mean change of 3.78 ms (95 % CI (2.93, 4.62), p < 0.001) and 0.23 mg/g (95 % CI (0.16, 0.29), p < 0.001), respectively]. Change in T2* values varied significantly between segments (p < 0.001) with greatest improvement in the apical inferoseptum [4.26 ms, 95 % CI (2.42, 6.11)] and least improvement in the basal anteroseptum [2.95 ms, 95 % CI (1.37, 4.54)]. The largest improvement in T2* values was noted in patients treated with deferiprone [4.96 ms, 95 % CI (2.34, 7.58)]. There was a statistically significant difference in improvement in CIC values between chelation regimens (p = 0.016). This is the first study to report heterogeneity in response to iron chelating drugs with variable segmental changes in T2* values.

  19. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  20. Debate: angiotensin-converting enzyme inhibitors versus angiotensin II receptor blockers--a gap in evidence-based medicine.

    PubMed

    Ball, Stephen G; White, William B

    2003-05-22

    In this article, 2 leading physicians debate the strength of outcome data on the efficacy of angiotensin-converting enzyme (ACE) inhibitors versus angiotensin II receptor blockers (ARBs) for reducing the incidence of cardiovascular, cerebrovascular, and renovascular events. Dr. Stephen G. Ball notes that the efficacy of ACE inhibitors for reducing the risk for myocardial infarction independent of their effects on blood pressure is controversial. In the Heart Outcomes Prevention Evaluation (HOPE) study, ramipril treatment in high-risk patients was associated with a 20% reduction in the risk for myocardial infarction; mean reduction in blood pressure was 3 mm Hg for systolic blood pressure and 1 mm Hg for diastolic blood pressure. The HOPE investigators propose that the 20% reduction was much greater than would be expected based on the observed blood pressure reduction. However, a meta-regression analysis of blood pressure reduction in >20 antihypertensive therapy outcome trials found that the reduction in myocardial infarction risk with ramipril observed in HOPE was consistent with the modest blood pressure reduction seen with that agent. Nevertheless, there are convincing data for prevention of myocardial infarction with ACE inhibitors in patients with heart failure, including those with heart failure after myocardial infarction, as well as supportive evidence from studies in patients with diabetes mellitus and concomitant hypertension. On the other hand, Dr. William B. White takes the position that ARBs are well-tolerated antihypertensive agents that specifically antagonize the angiotensin II type 1 (AT(1)) receptor and provide a more complete block of the pathologic effects of angiotensin II-which are mediated via the AT(1) receptor-than ACE inhibitors. The Evaluation of Losartan in the Elderly (ELITE) II study and the Valsartan Heart Failure Trial (ValHeFT) suggest that ARBs reduce the risk for mortality in patients with congestive heart failure. The Losartan

  1. Angiotensin converting enzyme of Thalassophryne nattereri venom.

    PubMed

    da Costa Marques, Maria Elizabeth; de Araújo Tenório, Humberto; Dos Santos, Claudio Wilian Victor; Dos Santos, Daniel Moreira; de Lima, Maria Elena; Pereira, Hugo Juarez Vieira

    2016-10-01

    Animal venoms are complex mixtures, including peptides, proteins (i.e., enzymes), and other compounds produced by animals in predation, digestion, and defense. These molecules have been investigated regarding their molecular mechanisms associated with physiological action and possible pharmacological applications. Recently, we have described the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri. It is a zinc-dependent peptidase with a wide range of effects. By removing dipeptide His-Leu from terminal C, the ACE converts angiotensinI (AngI) into angiotensin II (AngII) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis. The fractionation of T. nattereri venom in CM-Sepharose indicated a peak (CM2) with angiotensin-converting activity, converting AngI into Ang II. Electrophoresis on polyacrylamide gel (12%) revealed one band with 30kDa for CM2 similar in size to natterins, which are toxins with proteolytic activity found in T. nattereri venom. Mass spectrometry indicated that the protein sequence of the ACE purified from T. nattereri venom corresponds to natterin 1. The isolated protein has also demonstrated inhibition through captopril and EDTA and is characterized as a classic ACE. Thus, the isolated enzyme purified from T. nattereri venom is the first ACE isolated from fish venom.

  2. Angiotensin converting enzyme of Thalassophryne nattereri venom.

    PubMed

    da Costa Marques, Maria Elizabeth; de Araújo Tenório, Humberto; Dos Santos, Claudio Wilian Victor; Dos Santos, Daniel Moreira; de Lima, Maria Elena; Pereira, Hugo Juarez Vieira

    2016-10-01

    Animal venoms are complex mixtures, including peptides, proteins (i.e., enzymes), and other compounds produced by animals in predation, digestion, and defense. These molecules have been investigated regarding their molecular mechanisms associated with physiological action and possible pharmacological applications. Recently, we have described the presence of a type of angiotensin converting enzyme (ACE) activity in the venom of Thalassophryne nattereri. It is a zinc-dependent peptidase with a wide range of effects. By removing dipeptide His-Leu from terminal C, the ACE converts angiotensinI (AngI) into angiotensin II (AngII) and inactivates bradykinin, there by regulating blood pressure and electrolyte homeostasis. The fractionation of T. nattereri venom in CM-Sepharose indicated a peak (CM2) with angiotensin-converting activity, converting AngI into Ang II. Electrophoresis on polyacrylamide gel (12%) revealed one band with 30kDa for CM2 similar in size to natterins, which are toxins with proteolytic activity found in T. nattereri venom. Mass spectrometry indicated that the protein sequence of the ACE purified from T. nattereri venom corresponds to natterin 1. The isolated protein has also demonstrated inhibition through captopril and EDTA and is characterized as a classic ACE. Thus, the isolated enzyme purified from T. nattereri venom is the first ACE isolated from fish venom. PMID:27327905

  3. Comparative effects of contraction and angiotensin II on growth of adult feline cardiocytes in primary culture

    NASA Technical Reports Server (NTRS)

    Wada, H.; Zile, M. R.; Ivester, C. T.; Cooper, G. 4th; McDermott, P. J.

    1996-01-01

    The purposes of this study were 1) to determine whether angiotensin II causes growth of adult feline cardiocytes in long-term culture, 2) to compare the growth effects of angiotensin II with those resulting from electrically stimulated contraction, and 3) to determine whether the anabolic effects of contraction are exerted via the angiotensin type 1 receptor. Adult feline cardiocytes were cultured on laminin-coated trays in a serum-free medium. Cardiocytes were either electrically stimulated to contract (1 Hz, 5-ms pulse duration, alternating polarity) or were nonstimulated and quiescent. Quiescent cells were studied as controls and after treatment with angiotensin II (10(-8) M), losartan (10(-6) M; an angiotensin type 1-receptor antagonist), or angiotensin II plus losartan. Contracting cells were studied in the presence and absence of angiotensin II or losartan. In quiescent cardiocytes, angiotensin II treatment on day 7 significantly increased protein synthesis rates by 22% and protein content per cell by 17%. The effects of angiotensin II were completely blocked by losartan. Electrically stimulated contraction on days 4 and 7 in culture significantly increased protein synthesis rate by 18 and 38% and protein content per cell by 19 and 46%, respectively. Angiotensin II treatment did not further increase protein synthesis rate or protein content in contracting cardiocytes. Furthermore, losartan did not block the anabolic effects of contraction on protein synthesis rates or protein content. In conclusion, angiotensin II can exert a modest anabolic effect on adult feline cardiocytes in culture. In contracting feline cardiocytes, angiotensin II has no effect on growth. Growth caused by electrically stimulated contraction occurs more rapidly and is greater in magnitude than that caused by angiotensin II. Growth of contracting adult feline cardiocytes is not dependent on activation of the angiotensin receptor.

  4. Contractile Function During Angiotensin-II Activation

    PubMed Central

    Zhang, Min; Prosser, Benjamin L.; Bamboye, Moradeke A.; Gondim, Antonio N.S.; Santos, Celio X.; Martin, Daniel; Ghigo, Alessandra; Perino, Alessia; Brewer, Alison C.; Ward, Christopher W.; Hirsch, Emilio; Lederer, W. Jonathan; Shah, Ajay M.

    2015-01-01

    Background Renin-angiotensin system activation is a feature of many cardiovascular conditions. Activity of myocardial reduced nicotinamide adenine dinucleotide phosphate oxidase 2 (NADPH oxidase 2 or Nox2) is enhanced by angiotensin II (Ang II) and contributes to increased hypertrophy, fibrosis, and adverse remodeling. Recent studies found that Nox2-mediated reactive oxygen species production modulates physiological cardiomyocyte function. Objectives This study sought to investigate the effects of cardiomyocyte Nox2 on contractile function during increased Ang II activation. Methods We generated a cardiomyocyte-targeted Nox2-transgenic mouse model and studied the effects of in vivo and ex vivo Ang II stimulation, as well as chronic aortic banding. Results Chronic subpressor Ang II infusion induced greater cardiac hypertrophy in transgenic than wild-type mice but unexpectedly enhanced contractile function. Acute Ang II treatment also enhanced contractile function in transgenic hearts in vivo and transgenic cardiomyocytes ex vivo. Ang II–stimulated Nox2 activity increased sarcoplasmic reticulum (SR) Ca2+ uptake in transgenic mice, increased the Ca2+ transient and contractile amplitude, and accelerated cardiomyocyte contraction and relaxation. Elevated Nox2 activity increased phospholamban phosphorylation in both hearts and cardiomyocytes, related to inhibition of protein phosphatase 1 activity. In a model of aortic banding–induced chronic pressure overload, heart function was similarly depressed in transgenic and wild-type mice. Conclusions We identified a novel mechanism in which Nox2 modulates cardiomyocyte SR Ca2+ uptake and contractile function through redox-regulated changes in phospholamban phosphorylation. This mechanism can drive increased contractility in the short term in disease states characterized by enhanced renin-angiotensin system activation. PMID:26184620

  5. Effects of Angiotensin II Receptor Blockers on Metabolism of Arachidonic Acid via CYP2C8.

    PubMed

    Senda, Asuna; Mukai, Yuji; Toda, Takaki; Hayakawa, Toru; Yamashita, Miki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-01-01

    Arachidonic acid (AA) is metabolized to epoxyeicosatrienoic acids (EETs) via cytochrome enzymes such as CYP 2C9, 2C8 and 2J2. EETs play a role in cardioprotection and regulation of blood pressure. Recently, adverse reactions such as sudden heart attack and fatal myocardial infarction were reported among patients taking angiotensin II receptor blockers (ARBs). As some ARBs have affinity for these CYP enzymes, metabolic inhibition of AA by ARBs is a possible cause for the increase in cardiovascular events. In this study, we quantitatively investigated the inhibitory effects of ARBs on the formation of EETs and further metabolites, dihydroxyeicosatrienoic acids (DHETs), from AA via CYP2C8. In incubations with recombinant CYP2C8 in vitro, the inhibitory effects were compared by measuring EETs and DHETs by HPLC-MS/MS. Inhibition of AA metabolism by ARBs was detected in a concentration-dependent manner with IC50 values of losartan (42.7 µM), telmisartan (49.5 µM), irbesartan (55.6 µM), olmesartan (66.2 µM), candesartan (108 µM), and valsartan (279 µM). Losartan, telmisartan and irbesartan, which reportedly accumulate in the liver and kidneys, have stronger inhibitory effects than other ARBs. The lower concentration of EETs leads to less protective action on the cardiovascular system and a higher incidence of adverse effects such as sudden heart attack and myocardial infarction in patients taking ARBs. PMID:26632190

  6. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells. PMID:26582472

  7. Nox4 NADPH Oxidase Mediates Peroxynitrite-dependent Uncoupling of Endothelial Nitric-oxide Synthase and Fibronectin Expression in Response to Angiotensin II

    PubMed Central

    Lee, Doug-Yoon; Wauquier, Fabien; Eid, Assaad A.; Roman, Linda J.; Ghosh-Choudhury, Goutam; Khazim, Khaled; Block, Karen; Gorin, Yves

    2013-01-01

    Activation of glomerular mesangial cells (MCs) by angiotensin II (Ang II) leads to extracellular matrix accumulation. Here, we demonstrate that, in MCs, Ang II induces endothelial nitric-oxide synthase (eNOS) uncoupling with enhanced generation of reactive oxygen species (ROS) and decreased production of NO. Ang II promotes a rapid increase in 3-nitrotyrosine formation, and uric acid attenuates Ang II-induced decrease in NO bioavailability, demonstrating that peroxynitrite mediates the effects of Ang II on eNOS dysfunction. Ang II rapidly up-regulates Nox4 protein. Inhibition of Nox4 abolishes the increase in ROS and peroxynitrite generation as well as eNOS uncoupling triggered by Ang II, indicating that Nox4 is upstream of eNOS. This pathway contributes to Ang II-mediated fibronectin accumulation in MCs. Ang II also elicits an increase in mitochondrial abundance of Nox4 protein, and the oxidase contributes to ROS production in mitochondria. Overexpression of mitochondrial manganese superoxide dismutase prevents the stimulatory effects of Ang II on mitochondrial ROS production, loss of NO availability, and MC fibronectin accumulation, whereas manganese superoxide dismutase depletion increases mitochondrial ROS, NO deficiency, and fibronectin synthesis basally and in cells exposed to Ang II. This work provides the first evidence that uncoupled eNOS is responsible for Ang II-induced MC fibronectin accumulation and identifies Nox4 and mitochondrial ROS as mediators of eNOS dysfunction. These data shed light on molecular processes underlying the oxidative signaling cascade engaged by Ang II and identify potential targets for intervention to prevent renal fibrosis. PMID:23940049

  8. Angiotensin II increases nerve-evoked contractions in mouse tail artery by a T-type Ca(2+) channel-dependent mechanism.

    PubMed

    Reardon, Trent F; Callaghan, Brid P; Brock, James A

    2015-08-15

    Angiotensin II (Ang II) increases sympathetic nerve-evoked contractions of arterial vessels. Here the mechanisms underlying this effect were investigated in mouse tail artery. Isometrically mounted segments of mouse distal tail artery were used to investigate the effects of endothelium denudation, blocking Ca(2+) channels and inhibiting superoxide signalling on Ang II-induced facilitation of nerve-evoked contractions. In addition, in situ amperometry was used to assess effects of Ang II on noradrenaline release. Ang II (0.1-1nM) increased nerve-evoked contractions but did not change noradrenaline release. Losartan (Ang II type 1 receptor antagonist), but not PD 123319 (Ang II type 2 receptor antagonist), blocked the facilitatory effect of Ang II on nerve-evoked contractions. Ang II increased vascular muscle reactivity to phenylephrine and UK-14304 (α1- and α2-adrenoceptor agonists, respectively). Endothelial denudation increased nerve-evoked contractions and reduced the facilitatory effect of Ang II on these responses. Efonidipine (L- and T-type Ca(2+) channel blocker) and NNC 55-0396 (T-type Ca(2+) channel blocker) also attenuated this effect of Ang II, while nifedipine (L-type Ca(2+) channel blocker) did not. Blockers of superoxide generation/signalling did not change the facilitatory effect of Ang II on nerve-evoked contractions. The findings indicate that Ang II increases the contribution of T-type Ca(2+) channels to neural activation of the vascular muscle. In addition, Ang II appears to reduce the inhibitory influence of the endothelium on nerve-evoked contractions. PMID:25934568

  9. Phosphorylation of rat kidney Na-K pump at Ser938 is required for rapid angiotensin II-dependent stimulation of activity and trafficking in proximal tubule cells.

    PubMed

    Massey, Katherine J; Li, Quanwen; Rossi, Noreen F; Keezer, Susan M; Mattingly, Raymond R; Yingst, Douglas R

    2016-02-01

    How angiotensin (ANG) II acutely stimulates the Na-K pump in proximal tubules is only partially understood, limiting insight into how ANG II increases blood pressure. First, we tested whether ANG II increases the number of pumps in plasma membranes of native rat proximal tubules under conditions of rapid activation. We found that exposure to 100 pM ANG II for 2 min, which was previously shown to increase affinity of the Na-K pump for Na and stimulate activity threefold, increased the amount of the Na-K pump in plasma membranes of native tubules by 33%. Second, we tested whether previously observed increases in phosphorylation of the Na-K pump at Ser(938) were part of the stimulatory mechanism. These experiments were carried out in opossum kidney cells, cultured proximal tubules stably coexpressing the ANG type 1 (AT1) receptor, and either wild-type or a S938A mutant of rat kidney Na-K pump under conditions found by others to stimulate activity. We found that 10 min of incubation in 10 pM ANG II stimulated activity of wild-type pumps from 2.3 to 3.5 nmol K · mg protein(-1) · min(-1) and increased the amount of the pump in the plasma membrane by 80% but had no effect on cells expressing the S938A mutant. We conclude that acute stimulation of Na-K pump activity in native rat proximal tubules includes increased trafficking to the plasma membrane and that phosphorylation at Ser(938) is part of the mechanism by which ANG II directly stimulates activity and trafficking of the rat kidney Na-K pump in opossum kidney cells.

  10. The Attenuation of Central Angiotensin II-dependent Pressor Response and Intra-neuronal Signaling by Intracarotid Injection of Nanoformulated Copper/Zinc Superoxide Dismutase

    PubMed Central

    Rosenbaugh, Erin G.; Roat, James; Gao, Lie; Yang, Rui-Fang; Manickam, Devika S.; Yin, Jing-Xiang; Schultz, Harold D.; Bronich, Tatiana K.; Batrakova, Elena V.; Kabanov, Alexander V.; Zucker, Irving H.; Zimmerman, Matthew C.

    2010-01-01

    Adenoviral-mediated overexpression of the intracellular superoxide (O2•−) scavenging enzyme copper/zinc superoxide dismutase (CuZnSOD) in the brain attenuates central angiotensin II (AngII)-induced cardiovascular responses. However, the therapeutic potential for adenoviral vectors is weakened by toxicity and the inability of adenoviral vectors to target the brain following peripheral administration. Therefore, we developed a non-viral delivery system in which CuZnSOD protein is electrostatically bound to a synthetic poly(ethyleneimine)-poly(ethyleneglycol) (PEI-PEG) polymer to form a polyion complex (CuZnSOD nanozyme). We hypothesized that PEI-PEG polymer increases transport of functional CuZnSOD to neurons, which inhibits AngII intra-neuronal signaling. The AngII-induced increase in O2•−, as measured by dihydroethidium fluorescence and electron paramagnetic resonance spectroscopy, was significantly inhibited in CuZnSOD nanozyme-treated neurons compared to free CuZnSOD- and non-treated neurons. CuZnSOD nanozyme also attenuated the AngII-induced inhibition of K+ current in neurons. Intracarotid injection of CuZnSOD nanozyme into rabbits significantly inhibited the pressor response of intracerebroventricular-delivered AngII; however, intracarotid injection of free CuZnSOD or PEI-PEG polymer alone failed to inhibit this response. Importantly, neither the PEI-PEG polymer alone nor the CuZnSOD nanozyme induced neuronal toxicity. These findings indicate that CuZnSOD nanozyme inhibits AngII intra-neuronal signaling in vitro and in vivo. PMID:20378166

  11. Myocardial Bridging

    PubMed Central

    Yuan, Shi-Min

    2016-01-01

    Myocardial bridging is rare. Myocardial bridges are most commonly localized in the middle segment of the left anterior descending coronary artery. The anatomic features of the bridges vary significantly. Alterations of the endothelial morphology and the vasoactive agents impact on the progression of atherosclerosis of myocardial bridging. Patients may present with chest pain, myocardial infarction, arrhythmia and even sudden death. Patients who respond poorly to the medical treatment with β-blockers warrant a surgical intervention. Myotomy is a preferred surgical procedure for the symptomatic patients. Coronary stent deployment has been in limited use due to the unsatisfactory long-term results. PMID:27074276

  12. SREBP-1 Mediates Angiotensin II-Induced TGF-β1 Upregulation and Glomerular Fibrosis

    PubMed Central

    Wang, Tony N.; Chen, Xing; Li, Renzhong; Gao, Bo; Mohammed-Ali, Zahraa; Lu, Chao; Yum, Victoria; Dickhout, Jeffrey G.

    2015-01-01

    Angiotensin II is an important mediator of CKD of diverse etiology. A common pathologic feature of CKD is glomerular fibrosis, a central mediator of which is the profibrotic cytokine TGF-β. The mechanisms underlying the induction of TGF-β and matrix by angiotensin II are not completely understood. Recent studies showed that overexpression of the transcription factor SREBP-1 induces glomerular sclerosis and that angiotensin II can activate SREBP-1 in tubular cells. We thus studied whether SREBP-1 is activated by angiotensin II and mediates angiotensin II–induced profibrogenic responses in primary rat mesangial cells. Treatment of cells with angiotensin II induced the upregulation and activation of SREBP-1. Angiotensin II–induced activation of SREBP-1 required signaling through the angiotensin II type I receptor and activation of PI3K/Akt in addition to the chaperone SCAP and protease S1P. Notably, angiotensin II-induced endoplasmic reticulum stress was identified as a key mediator of Akt-SREBP-1 activation, and inhibition of endoplasmic reticulum stress or SREBP-1 prevented angiotensin II–induced SREBP-1 binding to the TGF-β promoter, TGF-β upregulation, and downstream fibronectin upregulation. Endoplasmic reticulum stress alone, however, did not induce TGF-β upregulation despite activating SREBP-1. Although not required for SREBP-1 activation by angiotensin II, EGF receptor signaling was necessary for activation of the SREBP-1 cotranscription factor Sp1, which provided a required second signal for TGF-β upregulation. In vivo, endoplasmic reticulum stress and SREBP-1-dependent effects were induced in glomeruli of angiotensin II-infused mice, and administration of the SREBP inhibitor fatostatin prevented angiotensin II–induced TGF-β upregulation and matrix accumulation. SREBP-1 and endoplasmic reticulum stress thus provide potential novel therapeutic targets for the treatment of CKD. PMID:25398788

  13. PKC-dependent extracellular signal-regulated kinase 1/2 pathway is involved in the inhibition of Ib on AngiotensinII-induced proliferation of vascular smooth muscle cells

    SciTech Connect

    Wang Yu; Yan Tianhua; Wang Qiujuan Wang Wei; Xu Jinyi; Wu Xiaoming; Ji Hui

    2008-10-10

    AngiotensinII (AngII) induces vascular smooth muscle cell (VSMC) proliferation, which plays an important role in the development and progression of hypertension. AngII-induced cellular events have been implicated, in part, in the activation of protein kinase C (PKC) and extracellular signal-regulated kinases 1/2 (ERK1/2). In the present study, we investigated the effect of Ib, a novel nonpeptide AngII receptor type 1 (AT{sub 1}) antagonist, on the activation of PKC and ERK1/2 in VSMC proliferation induced by AngII. MTT, and [{sup 3}H]thymidine incorporation assay showed that AngII-induced VSMC proliferation was inhibited significantly by Ib. The specific binding of [{sup 125}I]AngII to AT{sub 1} receptors was blocked by Ib in a concentration-dependent manner with IC{sub 50} value of 0.96 nM. PKC activity assay and Western blot analysis demonstrated that Ib significantly inhibited the activation of PKC and phosphorylation of ERK1/2 induced by AngII, respectively. Furthermore, AngII-induced ERK1/2 activation was obviously blocked by GF109203X, a PKC inhibitor. These findings suggest that the suppression of Ib on AngII-induced VSMC proliferation may be attributed to its inhibitory effect on PKC-dependent ERK1/2 pathway.

  14. Intratubular Renin-Angiotensin System in Hypertension

    PubMed Central

    Suzaki, Yuki; Prieto-Carrasquero, Minolfa C.; Kobori, Hiroyuki

    2009-01-01

    It is well recognized that the renin-angiotensin system plays an important role in the regulation of arterial pressure and sodium homeostasis. Recent years, many studies have shown that local tissue angiotensin II levels are differentially regulated and cannot be explained on the basis of circulating concentrations. All of the components needed for angiotensin II generation are present within the various compartments in the kidney including the renal interstitium and the tubular network. The cascade of the renin-angiotensin system demonstrates three major possible sites for the pharmacological interruption of the renin-angiotensin system: the interaction of renin with its substrate, angiotensinogen, the angiotensin converting enzyme, and angiotensin II type 1 receptors. This brief article will focus on the role of the intratubular renin-angiotensin system in the pathophysiology of hypertension and the responses to the renin-angiotensin system blockade by renin inhibitors, angiotensin converting enzyme inhibitors and angiotensin II type 1 receptor blockers. PMID:19789728

  15. Angiotensin II receptors in testes

    SciTech Connect

    Millan, M.A.; Aguilera, G.

    1988-05-01

    Receptors for angiotensin II (AII) were identified and characterized in testes of rats and several primate species. Autoradiographic analysis of the binding of 125I-labeled (Sar1,Ile8)AII to rat, rhesus monkey, cebus monkey, and human testicular slide-mounted frozen sections indicated specific binding to Leydig cells in the interstitium. In rat collagenase-dispersed interstitial cells fractionated by Percoll gradient, AII receptor content was parallel to that of hCG receptors, confirming that the AII receptors are in the Leydig cells. In rat dispersed Leydig cells, binding was specific for AII and its analogs and of high affinity (Kd, 4.8 nM), with a receptor concentration of 15 fmol/10(6) cells. Studies of AII receptors in rat testes during development reveals the presence of high receptor density in newborn rats which decreases toward the adult age (4934 +/- 309, 1460 +/- 228, 772 +/- 169, and 82 +/- 12 fmol/mg protein at 5, 15, 20, and 30 days of age, respectively) with no change in affinity. At all ages receptors were located in the interstitium, and the decrease in binding was parallel to the decrease in the interstitial to tubular ratio observed with age. AII receptor properties in membrane-rich fractions from prepuberal testes were similar in the rat and rhesus monkey. Binding was time and temperature dependent, reaching a plateau at 60 min at 37 C, and was increased by divalent cations, EGTA, and dithiothreitol up to 0.5 mM. In membranes from prepuberal monkey testes, AII receptors were specific for AII analogs and of high affinity (Kd, 4.2 nM) with a receptor concentration of 7599 +/- 1342 fmol/mg protein. The presence of AII receptors in Leydig cells in rat and primate testes in conjunction with reports of the presence of other components of the renin-angiotensin system in the testes suggests that the peptide has a physiological role in testicular function.

  16. Activation of Na+/H+ exchanger NHE3 by angiotensin II is mediated by inositol 1,4,5-triphosphate (IP3) receptor-binding protein released with IP3 (IRBIT) and Ca2+/calmodulin-dependent protein kinase II.

    PubMed

    He, Peijian; Klein, Janet; Yun, C Chris

    2010-09-01

    Angiotensin II (ANG II) stimulates renal tubular reabsorption of NaCl by targeting Na(+)/H(+) exchanger NHE3. We have shown previously that inositol 1,4,5-triphosphate receptor-binding protein released with inositol 1,4,5-triphosphate (IRBIT) plays a critical role in stimulation of NHE3 in response to elevated intracellular Ca(2+) concentration ([Ca(2+)](i)). In this study, we investigated the role of IRBIT in mediating NHE3 activation by ANG II. IRBIT is abundantly expressed in the proximal tubules where NHE3 is located. ANG II at physiological concentrations stimulates NHE3 transport activity in a model proximal tubule cell line. ANG II-induced activation of NHE3 was abrogated by knockdown of IRBIT, whereas overexpression of IRBIT enhanced the effect of ANG II on NHE3. ANG II transiently increased binding of IRBIT to NHE3 at 5 min but became dissociated by 45 min. In comparison, it took at least 15 min of ANG II treatment for an increase in NHE3 activity and NHE3 surface expression. The stimulation of NHE3 by ANG II was dependent on changes in [Ca(2+)](i) and Ca(2+)/calmodulin-dependent protein kinases II. Inhibition of CaMKII completely blocked the ANG II-induced binding of IRBIT to NHE3 and the increase in NHE3 surface abundance. Several serine residues of IRBIT are thought to be important for IRBIT binding. Mutations of Ser-68, Ser-71, and Ser-74 of IRBIT decreased binding of IRBIT to NHE3 and its effect on NHE3 activity. In conclusion, our current findings demonstrate that IRBIT is critically involved in mediating activation of NHE3 by ANG II via a Ca(2+)/calmodulin-dependent protein kinases II-dependent pathway.

  17. Calmodulin-dependent protein kinase II/cAMP response element-binding protein/Wnt/β-catenin signaling cascade regulates angiotensin II-induced podocyte injury and albuminuria.

    PubMed

    Jiang, Lei; Xu, Lingling; Song, Yuxian; Li, Jianzhong; Mao, Junhua; Zhao, Allan Zijian; He, Weichun; Yang, Junwei; Dai, Chunsun

    2013-08-01

    Angiotensin II (Ang II) plays a pivotal role in promoting podocyte dysfunction and albuminuria, however, the underlying mechanisms have not been fully delineated. In this study, we found that Ang II induced Wnt1 expression and β-catenin nuclear translocation in cultured mouse podocytes. Blocking Wnt signaling with Dickkopf-1 (Dkk1) or β-catenin siRNA attenuated Ang II-induced podocyte injury. Ang II could also induce the phosphorylation of calmodulin-dependent protein kinase (CaMK) II and cAMP response element-binding protein (CREB) in cultured podocytes. Blockade of this pathway with CK59 or CREB siRNA could significantly inhibit Ang II-induced Wnt/β-catenin signaling and podocyte injury. In in vivo studies, administration of Ang II promoted Wnt/β-catenin signaling, aggregated podocyte damage, and albuminuria in mice. CK59 could remarkably ameliorate Ang II-induced podocyte injury and albuminuria. Furthermore, ectopic expression of exogenous Dkk1 also attenuated Ang II-induced podocytopathy in mice. Taken together, this study demonstrates that the CaMK II/CREB/Wnt/β-catenin signaling cascade plays an important role in regulating Ang II-induced podocytopathy. Targeting this signaling pathway may offer renal protection against the development of proteinuric kidney diseases. PMID:23803607

  18. Angiotensin II receptor heterogeneity

    SciTech Connect

    Herblin, W.F.; Chiu, A.T.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L. )

    1991-04-01

    The possibility of receptor heterogeneity in the angiotensin II (AII) system has been suggested previously, based on differences in Kd values or sensitivity to thiol reagents. One of the authors earliest indications was the frequent observation of incomplete inhibition of the binding of AII to adrenal cortical membranes. Autoradiographic studies demonstrated that all of the labeling of the rat adrenal was blocked by unlabeled AII or saralasin, but not by DuP 753. The predominant receptor in the rat adrenal cortex (80%) is sensitive to dithiothreitol (DTT) and DuP 753, and is designated AII-1. The residual sites in the adrenal cortex and almost all of the sites in the rat adrenal medulla are insensitive to both DTT and DuP 753, but were blocked by EXP655. These sites have been confirmed by ligand binding studies and are designated AII-2. The rabbit adrenal cortex is unique in yielding a nonuniform distribution of AII-2 sites around the outer layer of glomerulosa cells. In the rabbit kidney, the sites on the glomeruli are AII-1, but the sites on the kidney capsule are AII-2. Angiotensin III appears to have a higher affinity for AII-2 sites since it inhibits the binding to the rabbit kidney capsule but not the glomeruli. Elucidation of the distribution and function of these diverse sites should permit the development of more selective and specific therapeutic strategies.

  19. Myocardial Bridge

    MedlinePlus

    ... artery. See also on this site: Ask a Texas Heart Institute Doctor: Search "myocardial bridge" Updated August ... comments. Terms of Use and Privacy Policy © Copyright Texas Heart Institute All rights reserved.

  20. The effects of polymorphisms in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on plasma t-PA and PAI-1 levels are dependent on environmental context.

    PubMed

    Asselbergs, Folkert W; Williams, Scott M; Hebert, Patricia R; Coffey, Christopher S; Hillege, Hans L; Snieder, Harold; Navis, Gerjan; Vaughan, Douglas E; van Gilst, Wiek H; Moore, Jason H

    2007-11-01

    Thrombosis is a key factor in the pathophysiology of cardiovascular disease. Important biochemical constituents of the fibrinolytic system, affecting thrombosis, include tissue-type plasminogen activator (t-PA) and plasminogen activator inhibitor-1 (PAI-1). Both t-PA and PAI-1 are determined by multiple genetic and environmental factors. We aimed to investigate whether the effects of polymorphism in genes from the renin-angiotensin, bradykinin, and fibrinolytic systems on t-PA or PAI-1 levels are dependent on environmental factors in a large population-based sample from the PREVEND study in Groningen, The Netherlands (n = 2,527). We found strong evidence (P dependent on the environmental context such as body size and alcohol use. The present study emphasizes the importance of including environmental factors in genetic analyses to fully comprehend the genetic architecture of a specific trait.

  1. Cardioprotective effects of adipokine apelin on myocardial infarction.

    PubMed

    Zhang, Bao-Hai; Guo, Cai-Xia; Wang, Hong-Xia; Lu, Ling-Qiao; Wang, Ya-Jie; Zhang, Li-Ke; Du, Feng-He; Zeng, Xiang-Jun

    2014-09-01

    Angiogenesis plays an important role in myocardial infarction. Apelin and its natural receptor (angiotensin II receptor-like 1, AGTRL-1 or APLNR) induce sprouting of endothelial cells in an autocrine or paracrine manner. The aim of this study is to investigate whether apelin can improve the cardiac function after myocardial infarction by increasing angiogenesis in infarcted myocardium. Left ventricular end-diastolic pressure (LVEDP), left ventricular end systolic pressure (LVESP), left ventricular developed pressure (LVDP), maximal left ventricular pressure development (±LVdp/dtmax), infarct size, and angiogenesis were evaluated to analyze the cardioprotective effects of apelin on ischemic myocardium. Assays of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, 5-bromo-2'-deoxyuridine incorporation, wound healing, transwells, and tube formation were used to detect the effects of apelin on proliferation, migration, and chemotaxis of cardiac microvascular endothelial cells. Fluorescein isothiocyanate-labeled bovine serum albumin penetrating through monolayered cardiac microvascular endothelial cells was measured to evaluate the effects of apelin on permeability of microvascular endothelial cells. In vivo results showed that apelin increased ±LV dp/dtmax and LVESP values, decreased LVEDP values (all p < 0.05), and promoted angiogenesis in rat heart after ligation of the left anterior descending coronary artery. In vitro results showed that apelin dose-dependently enhanced proliferation, migration, chemotaxis, and tube formation, but not permeability of cardiac microvascular endothelial cells. Apelin also increased the expression of vascular endothelial growth factor receptors-2 (VEGFR2) and the endothelium-specific receptor tyrosine kinase (Tie-2) in cardiac microvascular endothelial cells. These results indicated that apelin played a protective role in myocardial infarction through promoting angiogenesis and decreasing permeability of microvascular

  2. Effects of angiotensin-converting enzyme inhibitors and angiotensin II type 1 receptor antagonists in rats with heart failure. Role of kinins and angiotensin II type 2 receptors.

    PubMed Central

    Liu, Y H; Yang, X P; Sharov, V G; Nass, O; Sabbah, H N; Peterson, E; Carretero, O A

    1997-01-01

    Angiotensin-converting enzyme inhibitors (ACEi) improve cardiac function and remodeling and prolong survival in patients with heart failure (HF). Blockade of the renin-angiotensin system (RAS) with an angiotensin II type 1 receptor antagonist (AT1-ant) may have a similar beneficial effect. In addition to inhibition of the RAS, ACEi may also act by inhibiting kinin destruction, whereas AT1-ant may block the RAS at the level of the AT1 receptor and activate the angiotensin II type 2 (AT2) receptor. Using a model of HF induced by myocardial infarction (MI) in rats, we studied the role of kinins in the cardioprotective effect of ACEi. We also investigated whether an AT1-ant has a similar effect and whether these effects are partly due to activation of the AT2 receptor. Two months after MI, rats were treated for 2 mo with: (a) vehicle; (b) the ACEi ramipril, with and without the B2 receptor antagonist icatibant (B2-ant); or (c) an AT1-ant with and without an AT2-antagonist (AT2-ant) or B2-ant. Vehicle-treated rats had a significant increase in left ventricular end-diastolic (LVEDV) and end-systolic volume (LVESV) as well as interstitial collagen deposition and cardiomyocyte size, whereas ejection fraction was decreased. Left ventricular remodeling and cardiac function were improved by the ACEi and AT1-ant. The B2-ant blocked most of the cardioprotective effect of the ACEi, whereas the effect of the AT1-ant was blocked by the AT2-ant. The decreases in LVEDV and LVESV caused by the AT1-ant were also partially blocked by the B2-ant. We concluded that (a) in HF both ACEi and AT1-ant have a cardioprotective effect, which could be due to either a direct action on the heart or secondary to altered hemodynamics, or both; and (b) the effect of the ACEi is mediated in part by kinins, whereas that of the AT1-ant is triggered by activation of the AT2 receptor and is also mediated in part by kinins. We speculate that in HF, blockade of AT1 receptors increases both renin and

  3. Associations between income inequality at municipality level and health depend on context - a multilevel analysis on myocardial infarction in Sweden.

    PubMed

    Henriksson, Göran; Weitoft, Gunilla Ringbäck; Allebeck, Peter

    2010-09-01

    This study investigates whether a) income inequality in Swedish municipalities increases the risk of myocardial infarction (AMI); b) the association between income inequality and AMI is mediated by level of residential segregation, measured as homogeneity in parishes (as a proxy for neighbourhoods) within municipalities; and c) there is an interaction between parish homogeneity and individual level social position. The study population consisted of all individuals aged 40-64 years in 1990 who lived in municipalities with >50,000 inhabitants (n = 1,284,955). Data on socioeconomic, demographic information and diagnosis data on AMI were obtained by linkage between authority-administered registers and the National Patient Register. All individuals were followed from 1991 onwards until the first relevant discharge, death or end of observation period (1998). We used a multilevel Poisson model where individuals were nested within 729 parishes which in turn were nested in 41 municipalities. We found that the risk for AMI was lower in the municipalities with higher degree of income inequality. Segregation of households in the highest income quintile diluted, but did not eliminate, the association between income inequality and risk of AMI - the degree of parish affluence seemed to be more important as a mediator than other parish characteristics, even when individual level characteristics were added to the model. Interaction analyses showed that the divide between manual workers and non-manual employees became more apparent in parishes with a higher degree of parish affluence. This was more apparent in municipalities with higher income inequality and was due to a decreasing risk among high level non-manual employees and an unchanged risk among manual workers. The results give some support to the idea that income inequality might serve as a proxy for social stratification even in a comparatively egalitarian context.

  4. Iron chelation and a free radical scavenger suppress angiotensin II-induced upregulation of TGF-beta1 in the heart.

    PubMed

    Saito, Kan; Ishizaka, Nobukazu; Aizawa, Toru; Sata, Masataka; Iso-o, Naoyuki; Noiri, Eisei; Mori, Ichiro; Ohno, Minoru; Nagai, Ryozo

    2005-04-01

    Long-term administration of angiotensin II causes myocardial loss and cardiac fibrosis. We previously found iron deposition in the heart of the angiotensin II-infused rat, which may promote angiotensin II-induced cardiac damage. In the present study, we have investigated whether an iron chelator (deferoxamine) and a free radical scavenger (T-0970) affect the angiotensin II-induced upregulation of transforming growth factor-beta1 (TGF-beta1). Angiotensin II infusion for 7 days caused a robust increase in TGF-beta1 mRNA expression in vascular smooth muscle cells, myofibroblast-like cells, and migrated monocytes/macrophages. T-0970 and deferoxamine suppressed the upregulation of TGF-beta1 mRNA and reduced the extent of cardiac fibrosis in the heart of rats treated with angiotensin II. These agents blocked the angiotensin II-induced upregulation of heme oxygenase-1, a potent oxidative and cellular stress-responsive gene, but they did not significantly affect systolic blood pressure or plasma levels of aldosterone. In addition, T-0970 and deferoxamine suppressed the angiotensin II-induced upregulation of monocyte chemoattractant protein-1 in the heart. These results collectively suggest that iron and the iron-mediated generation of reactive oxygen species may contribute to angiotensin II-induced upregulation of profibrotic and proinflammatory genes, such as TGF-beta1 and monocyte chemoattractant protein-1.

  5. A review of the preclinical cardiovascular pharmacology of cilazapril, a new angiotensin converting enzyme inhibitor.

    PubMed

    Waterfall, J F

    1989-01-01

    1. Cilazapril is the monoethyl ester prodrug form of the di-acid cilazaprilat, a new angiotensin converting enzyme (ACE) inhibitor. Cilazaprilat has an IC50 of 1.9 nM as an inhibitor of rabbit lung ACE in vitro making it one of the most potent ACE inhibitors currently available. Studies on a wide range of other enzymes show that the inhibition is highly specific. 2. An oral dose of 0.1 mg kg-1 cilazapril evoked the same maximum degree of plasma ACE inhibition (approximately 76%) in the rat as 0.25 mg kg-1 enalapril. Cilazapril (0.25 mg kg-1 p.o.) inhibited plasma ACE by greater than 95%. The rate of recovery of ACE activity was slower with cilazapril (5-6% h-1) than with enalapril (10% h-1). 3. In anaesthetised rats cilazaprilat was equipotent with ramiprilat and slightly more potent (1.5x) than enalaprilat as an inhibitor of the angiotensin I pressor response. 4. Following oral administration to conscious rats and intravenous administration to anaesthetised dogs, cilazapril was 2-4.5x more potent than enalapril as an ACE inhibitor. 5. In cats cilazapril (0.1 and 0.3 mg kg-1 p.o.) dose dependently decreased plasma ACE activity and the angiotensin pressor response. Peak effects occurred at 2 h after dosing and plasma ACE inhibition was maintained at greater than or equal to 50% for up to 18 h. Mean arterial pressure was also decreased dose dependently with a peak effect at 3-4 h. 6. Daily oral dosing of cilazapril (30 mg kg-1 p.o.) to spontaneously hypertensive rats evoked a progressive and prolonged (24 h) antihypertensive response with a maximum decrease in systolic blood pressure of 110 mm Hg. 7. Cilazapril (10 mg kg-1 p.o. twice daily for 3.5 days) progressively decreased blood pressure in volume depleted renal hypertensive dogs. The maximum fall in systolic pressure was 39 +/- 6 mm Hg. 8. Haemodynamic studies in open chest anaesthetised dogs showed that the hypotensive response to intravenous cilazapril was accompanied by a reduction in total peripheral

  6. Effect of a reduction in uric acid on renal outcomes during losartan treatment: a post hoc analysis of the reduction of endpoints in non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan Trial.

    PubMed

    Miao, Yan; Ottenbros, Stefan A; Laverman, Goos D; Brenner, Barry M; Cooper, Mark E; Parving, Hans-Henrik; Grobbee, Diederick E; Shahinfar, Shahnaz; de Zeeuw, Dick; Lambers Heerspink, Hiddo J

    2011-07-01

    Emerging data show that increased serum uric acid (SUA) concentration is an independent risk factor for end-stage renal disease. Treatment with the antihypertensive drug losartan lowers SUA. Whether reductions in SUA during losartan therapy are associated with renoprotection is unclear. We therefore tested this hypothesis. In a post hoc analysis of 1342 patients with type 2 diabetes mellitus and nephropathy participating in the Reduction of Endpoints in Non-Insulin-Dependent Diabetes Mellitus With the Angiotensin II Antagonist Losartan Trial, we determined the relationship between month 6 change in SUA and renal endpoints, defined as a doubling of serum creatinine or end-stage renal disease. Baseline SUA was 6.7 mg/dL in placebo and losartan-treated subjects. During the first 6 months, losartan lowered SUA by -0.16 mg/dL (95% CI: -0.30 to -0.01; P=0.031) as compared with placebo. The risk of renal events was decreased by 6% (95% CI: 10% to 3%) per 0.5-mg/dL decrement in SUA during the first 6 months. This effect was independent of other risk markers, including estimate glomerular filtration rate and albuminuria. Adjustment of the overall treatment effects for SUA attenuated losartan's renoprotective effect from 22% (95% CI: 6% to 35%) to 17% (95% CI: 1% to 31%), suggesting that approximately one fifth of losartan's renoprotective effect could be attributed to its effect on SUA. Losartan lowers SUA levels compared with placebo treatment in patients with type 2 diabetes mellitus and nephropathy. The degree of reduction in SUA is subsequently associated with the degree in long-term renal risk reduction and explains part of losartan's renoprotective effect. These findings support the view that SUA may be a modifiable risk factor for renal disease.

  7. Olmesartan is an angiotensin II receptor blocker with an inhibitory effect on angiotensin-converting enzyme.

    PubMed

    Agata, Jun; Ura, Nobuyuki; Yoshida, Hideaki; Shinshi, Yasuyuki; Sasaki, Haruki; Hyakkoku, Masaya; Taniguchi, Shinya; Shimamoto, Kazuaki

    2006-11-01

    Angiotensin II receptor blockers (ARBs) are widely used for the treatment of hypertension. It is believed that treatment with an ARB increases the level of plasma angiotensin II (Ang II) because of a lack of negative feedback on renin activity. However, Ichikawa (Hypertens Res 2001; 24: 641-646) reported that long-term treatment of hypertensive patients with olmesartan resulted in a reduction in plasma Ang II level, though the mechanism was not determined. It has been reported that angiotensin 1-7 (Ang-(1-7)) potentiates the effect of bradykinin and acts as an angiotensin-converting enzyme (ACE) inhibitor. It is known that ACE2, which was discovered as a novel ACE-related carboxypeptidase in 2000, hydrolyzes Ang I to Ang-(1-9) and also Ang II to Ang-(1-7). It has recently been reported that olmesartan increases plasma Ang-(1-7) through an increase in ACE2 expression in rats with myocardial infarction. We hypothesized that over-expression of ACE2 may be related to a reduction in Ang II level and the cardioprotective effect of olmesartan. Administration of 0.5 mg/kg/day of olmesartan for 4 weeks to 12-week-old stroke-prone spontaneously hypertensive rats (SHRSP) significantly reduced blood pressure and left ventricular weight compared to those in SHRSP given a vehicle. Co-administration of olmesartan and (D-Ala7)-Ang-(1-7), a selective Ang-(1-7) antagonist, partially inhibited the effect of olmesartan on blood pressure and left ventricular weight. Interestingly, co-administration of (D-Ala7)-Ang-(1-7) with olmesartan significantly increased the plasma Ang II level (453.2+/-113.8 pg/ml) compared to olmesartan alone (144.9+/-27.0 pg/ml, p<0.05). Moreover, olmesartan significantly increased the cardiac ACE2 expression level compared to that in Wistar Kyoto rats and SHRSP treated with a vehicle. Olmesartan significantly improved cardiovascular remodeling and cardiac nitrite/ nitrate content, but co-administration of olmesartan and (D-Ala7)-Ang-(1-7) partially reversed

  8. Comparing Angiotensin II Receptor Blockers on Benefits Beyond Blood Pressure

    PubMed Central

    2016-01-01

    The renin-angiotensin-aldosterone system (RAAS) is one of the main regulators of blood pressure, renal hemodynamics, and volume homeostasis in normal physiology, and contributes to the development of renal and cardiovascular (CV) diseases. Therefore, pharmacologic blockade of RAAS constitutes an attractive strategy in preventing the progression of renal and CV diseases. This concept has been supported by clinical trials involving patients with hypertension, diabetic nephropathy, and heart failure, and those after myocardial infarction. The use of angiotensin II receptor blockers (ARBs) in clinical practice has increased over the last decade. Since their introduction in 1995, seven ARBs have been made available, with approved indications for hypertension and some with additional indications beyond blood pressure reduction. Considering that ARBs share a similar mechanism of action and exhibit similar tolerability profiles, it is assumed that a class effect exists and that they can be used interchangeably. However, pharmacologic and dosing differences exist among the various ARBs, and these differences can potentially influence their individual effectiveness. Understanding these differences has important implications when choosing an ARB for any particular condition in an individual patient, such as heart failure, stroke, and CV risk reduction (prevention of myocardial infarction). A review of the literature for existing randomized controlled trials across various ARBs clearly indicates differences within this class of agents. Ongoing clinical trials are evaluating the role of ARBs in the prevention and reduction of CV rates of morbidity and mortality in high-risk patients. PMID:20524096

  9. Arsenic causes aortic dysfunction and systemic hypertension in rats: Augmentation of angiotensin II signaling.

    PubMed

    Waghe, Prashantkumar; Sarath, Thengumpallil Sasindran; Gupta, Priyanka; Kandasamy, Kannan; Choudhury, Soumen; Kutty, Harikumar Sankaran; Mishra, Santosh Kumar; Sarkar, Souvendra Nath

    2015-07-25

    The groundwater pollutant arsenic can cause various cardiovascular disorders. Angiotensin II, a potent vasoconstrictor, plays an important role in vascular dysfunction by promoting changes in endothelial function, vascular reactivity, tissue remodeling and oxidative stress. We investigated whether modulation of angiotensin II signaling and redox homeostasis could be a mechanism contributing to arsenic-induced vascular disorder. Rats were exposed to arsenic at 25, 50 and 100ppm of sodium arsenite through drinking water consecutively for 90 days. Blood pressure was recorded weekly. On the 91st day, the rats were sacrificed for blood collection and isolation of thoracic aorta. Angiotensin converting enzyme and angiotensin II levels were assessed in plasma. Aortic reactivity to angiotensin II was assessed in organ-bath system. Western blot of AT1 receptors and G protein (Gαq/11), ELISA of signal transducers of MAP kinase pathway and reactive oxygen species (ROS) generation were assessed in aorta. Arsenic caused concentration-dependent increase in systolic, diastolic and mean arterial blood pressure from the 10th, 8th and 7th week onwards, respectively. Arsenic caused concentration-dependent enhancement of the angiotensin II-induced aortic contractile response. Arsenic also caused concentration-dependent increase in the plasma levels of angiotensin II and angiotensin converting enzyme and the expression of aortic AT1 receptor and Gαq/11 proteins. Arsenic increased aortic protein kinase C activity and the concentrations of protein tyrosine kinase, extracellular signal-regulated kinase-1/2 and vascular endothelial growth factor. Further, arsenic increased aortic mRNA expression of Nox2, Nox4 and p22phox, NADPH oxidase activity and ROS generation. The results suggest that arsenic-mediated enhancement of angiotensin II signaling could be an important mechanism in the arsenic-induced vascular disorder, where ROS could augment the angiotensin II signaling through activation

  10. The past, present and future of renin-angiotensin aldosterone system inhibition.

    PubMed

    Mentz, Robert J; Bakris, George L; Waeber, Bernard; McMurray, John J V; Gheorghiade, Mihai; Ruilope, Luis M; Maggioni, Aldo P; Swedberg, Karl; Piña, Ileana L; Fiuzat, Mona; O'Connor, Christopher M; Zannad, Faiez; Pitt, Bertram

    2013-09-01

    The renin-angiotensin aldosterone system (RAAS) is central to the pathogenesis of cardiovascular disease. RAAS inhibition can reduce blood pressure, prevent target organ damage in hypertension and diabetes, and improve outcomes in patients with heart failure and/or myocardial infarction. This review presents the history of RAAS inhibition including a summary of key heart failure, myocardial infarction, hypertension and atrial fibrillation trials. Recent developments in RAAS inhibition are discussed including implementation and optimization of current drug therapies. Finally, ongoing clinical trials, opportunities for future trials and issues related to the barriers and approvability of novel RAAS inhibitors are highlighted.

  11. Effects of dexmedetomidine postconditioning on myocardial ischemia and the role of the PI3K/Akt-dependent signaling pathway in reperfusion injury

    PubMed Central

    CHENG, XIANG YANG; GU, XIAO YU; GAO, QIN; ZONG, QIAO FENG; LI, XIAO HONG; ZHANG, YE

    2016-01-01

    The present study aimed to determine whether post-ischemic treatment with dexmedetomidine (DEX) protected the heart against acute myocardial ischemia/reperfusion (I/R)-induced injury in rats. The phosphatidylinositol-3 kinase/protein kinase B(PI3K/Akt)-dependent signaling pathway was also investigated. Male Sprague Dawley rats (n=64) were subjected to ligation of the left anterior descending artery (LAD), which produced ischemia for 25 min, followed by reperfusion. Following LAD ligation, rats were treated with DEX (5, 10 and 20 µg/kg) or underwent post-ischemic conditioning, which included three cycles of ischemic insult. In order to determine the role of the PI3K/Akt signaling pathway, wortmannin (Wort), a PI3K inhibitor, was used to treat a group of rats that had also been treated with DEX (20 µg/kg). Post-reperfusion, lactate dehydrogenase (LDH), cardiac troponin I (cTnI), creatine kinase isoenzymes (CK-MB), superoxide dismutase (SOD) and malondialdehyde (MDA) serum levels were measured using an ultraviolet spectrophotometer. The protein expression levels of phosphorylated (p)-Akt, Ser9-p-glycogen synthase kinase-3β (p-GSK-3β) and cleaved caspase-3 were detected in heart tissue by western blotting. The mRNA expression levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax) were detected using reverse transcription-polymerase chain reaction. At the end of the experiment, the hearts were removed and perfused in an isolated perfusion heart apparatus with Evans blue (1%) in order to determine the non-ischemic areas. The risk and infarct areas of the heart were not dyed. As expected, I/R induced myocardial infarction, as determined by the increased serum levels of cTnI, CK-MB and MDA, and the decreased levels of SOD. Post-ischemic treatment with DEX increased the expression levels of p-Akt and p-GSK-3β, whereas caspase-3 expression was reduced following DEX treatment compared with in the I/R group. Compared with the I/R group, the ratio of Bcl

  12. Cytoplasmic translocation of HuR contributes to angiotensin II induced cardiac fibrosis.

    PubMed

    Bai, Danna; Ge, Lan; Gao, Yan; Lu, Xiaozhao; Wang, Haichang; Yang, Guodong

    2015-08-01

    Cardiac fibrosis is one of the key structural changes of the hypertrophied left ventricle in hypertensive heart disease. Increased angiotensin II was found to be important in the hypertension related fibrosis, while the underlying mechanism is unknown. In this study, we found that angiotensin II dose-dependently increased the expression of Col1a1, Col3a1 and α-smooth muscle actin, which were blocked by ROS (reactive oxygen species) scavenger N-acetyl cysteine (NAC). Mechanistically, angiotensin II induced robust ROS generation, which in turn induced cytoplasmic translocation of RNA binding protein HuR. Cytoplasmic translocated HuR increased TGFβ pathway activity and subsequent collagen synthesis. In contrast, knockdown of HuR nearly blocked angiotensin II induced TGFβ activation and collagen synthesis. Taken together, we here identified that angiotensin II promotes collagen synthesis in cardiac fibroblast through ROS-HuR-TGFβ pathway.

  13. Cytoplasmic translocation of HuR contributes to angiotensin II induced cardiac fibrosis.

    PubMed

    Bai, Danna; Ge, Lan; Gao, Yan; Lu, Xiaozhao; Wang, Haichang; Yang, Guodong

    2015-08-01

    Cardiac fibrosis is one of the key structural changes of the hypertrophied left ventricle in hypertensive heart disease. Increased angiotensin II was found to be important in the hypertension related fibrosis, while the underlying mechanism is unknown. In this study, we found that angiotensin II dose-dependently increased the expression of Col1a1, Col3a1 and α-smooth muscle actin, which were blocked by ROS (reactive oxygen species) scavenger N-acetyl cysteine (NAC). Mechanistically, angiotensin II induced robust ROS generation, which in turn induced cytoplasmic translocation of RNA binding protein HuR. Cytoplasmic translocated HuR increased TGFβ pathway activity and subsequent collagen synthesis. In contrast, knockdown of HuR nearly blocked angiotensin II induced TGFβ activation and collagen synthesis. Taken together, we here identified that angiotensin II promotes collagen synthesis in cardiac fibroblast through ROS-HuR-TGFβ pathway. PMID:26093296

  14. Characterization of angiotensin-binding sites in the bovine adrenal and the rat brain

    SciTech Connect

    Rogulja, I.

    1989-01-01

    The first study was designed to determine whether systemically administered MSG affects neurons in the CVOs that are potentially important in mediating angiotensin-dependent responses. Rats were pretreated with MSG and the receptors for angiotensin II were assayed by radioligand binding in brain homogenates from the septum anteroventral third ventricular region (AV3V) and the thalamus/hypothalamus region using {sup 125}I-angiotensin II as the radioligand. The results of this experiment indicate that systematically administered MSG in the rat significantly reduced the number (Bmax) of Ang II receptors in a tissue sample which contained both extra blood-brain barrier organs as well as tissue within the blood-brain barrier with no change in the affinity (Kd) of the binding sites. The second chapter reports the successful solubilization of bovine adrenal {sup 125}I Ang II and {sup 125}I Sar{sup 1},Ile{sup 8}-Ang II binding sites with the detergent CHAPS. The results of our studies indicate the presence of two angiotensin binding sites. The one site is specific for naturally occurring angiotensins as well as sarcosine-1 substituted angiotensin analogues. The other site which can be optimally stabilized be re-addition of 0.3% CHAPS into the incubation assay binds sarcosine-1 substituted angiotensins exclusively. Hydrophobic interaction chromatography experiments suggest that these sites, possibly, represent distinct proteins. The third chapter discusses the successful solubilization and partial characterization of the rat brain angiotensin receptor.

  15. Angiotensin-converting enzyme 2 activation improves endothelial function.

    PubMed

    Fraga-Silva, Rodrigo A; Costa-Fraga, Fabiana P; Murça, Tatiane M; Moraes, Patrícia L; Martins Lima, Augusto; Lautner, Roberto Q; Castro, Carlos H; Soares, Célia Maria A; Borges, Clayton L; Nadu, Ana Paula; Oliveira, Marilene L; Shenoy, Vinayak; Katovich, Michael J; Santos, Robson A S; Raizada, Mohan K; Ferreira, Anderson J

    2013-06-01

    Diminished release and function of endothelium-derived nitric oxide coupled with increases in reactive oxygen species production is critical in endothelial dysfunction. Recent evidences have shown that activation of the protective axis of the renin-angiotensin system composed by angiotensin-converting enzyme 2, angiotensin-(1-7), and Mas receptor promotes many beneficial vascular effects. This has led us to postulate that activation of intrinsic angiotensin-converting enzyme 2 would improve endothelial function by decreasing the reactive oxygen species production. In the present study, we tested 1-[[2-(dimetilamino)etil]amino]-4-(hidroximetil)-7-[[(4-metilfenil)sulfonil]oxi]-9H-xantona-9 (XNT), a small molecule angiotensin-converting enzyme 2 activator, on endothelial function to validate this hypothesis. In vivo treatment with XNT (1 mg/kg per day for 4 weeks) improved the endothelial function of spontaneously hypertensive rats and of streptozotocin-induced diabetic rats when evaluated through the vasorelaxant responses to acetylcholine/sodium nitroprusside. Acute in vitro incubation with XNT caused endothelial-dependent vasorelaxation in aortic rings of rats. This vasorelaxation effect was attenuated by the Mas antagonist D-pro7-Ang-(1-7), and it was reduced in Mas knockout mice. These effects were associated with reduction in reactive oxygen species production. In addition, Ang II-induced reactive oxygen species production in human aortic endothelial cells was attenuated by preincubation with XNT. These results showed that chronic XNT administration improves the endothelial function of hypertensive and diabetic rat vessels by attenuation of the oxidative stress. Moreover, XNT elicits an endothelial-dependent vasorelaxation response, which was mediated by Mas. Thus, this study indicated that angiotensin-converting enzyme 2 activation promotes beneficial effects on the endothelial function and it is a potential target for treating cardiovascular disease.

  16. Regulation of endothelial proliferation by the renin-angiotensin system in human umbilical vein endothelial cells.

    PubMed

    Herr, D; Rodewald, M; Fraser, H M; Hack, G; Konrad, R; Kreienberg, R; Wulff, C

    2008-07-01

    This study was performed in order to evaluate the role of angiotensin II in physiological angiogenesis. Human umbilical vein endothelial cells (HUVEC) were stained for angiotensin II type 1 receptor (AGTR1) immunocytochemically and for gene expression of renin-angiotensin system (RAS) components. The regulation of the angiogenesis-associated genes vascular endothelial growth factor (VEGF) and angiopoietins (ANGPT1 and ANGPT2) were studied using quantitative RT-PCR. Furthermore, we examined the effect of angiotensin II on the proliferation of HUVEC using Ki-67 as well as BrdU immunocytochemistry and investigated whether the administration of the AGTR1 blocker candesartan or the VEGF antagonist FLT1-Fc could suppress the observed angiotensin II-dependent proangiogenic effect. AGTR1 was expressed in HUVEC and the administration of angiotensin II significantly increased the gene expression of VEGF and decreased the gene expression of ANGPT1. Since the expression of ANGPT2 was not affected significantly the ratio of ANGPT1/ANGPT2 was decreased. In addition, a significantly increased endothelial cell proliferation was observed after stimulation with angiotensin II, which was suppressed by the simultaneous administration of candesartan or the VEGF antagonist FLT1-Fc. These results indicate the potential capacity of angiotensin II in influencing angiogenesis by the regulation of angiogenesis-associated genes via AGTR1. Since VEGF blockade opposed the effect of angiotensin II on cell proliferation, it is hypothesised that VEGF mediates the angiotensin II-dependent effect in concert with the changes in angiopoietin expression. This is the first report of the RAS on the regulation of angiogenesis-associated genes in physiology.

  17. New Perspectives in the Renin-Angiotensin-Aldosterone System (RAAS) II: Albumin Suppresses Angiotensin Converting Enzyme (ACE) Activity in Human

    PubMed Central

    Fagyas, Miklós; Úri, Katalin; Siket, Ivetta M.; Fülöp, Gábor Á.; Csató, Viktória; Daragó, Andrea; Boczán, Judit; Bányai, Emese; Szentkirályi, István Elek; Maros, Tamás Miklós; Szerafin, Tamás; Édes, István; Papp, Zoltán; Tóth, Attila

    2014-01-01

    About 8% of the adult population is taking angiotensin-converting enzyme (ACE) inhibitors to treat cardiovascular disease including hypertension, myocardial infarction and heart failure. These drugs decrease mortality by up to one-fifth in these patients. We and others have reported previously that endogenous inhibitory substances suppress serum ACE activity, in vivo, similarly to the ACE inhibitor drugs. Here we have made an effort to identify this endogenous ACE inhibitor substance. ACE was crosslinked with interacting proteins in human sera. The crosslinked products were immunoprecipitated and subjected to Western blot. One of the crosslinked products was recognized by both anti-ACE and anti-HSA (human serum albumin) antibodies. Direct ACE-HSA interaction was confirmed by binding assays using purified ACE and HSA. HSA inhibited human purified (circulating) and human recombinant ACE with potencies (IC50) of 5.7±0.7 and 9.5±1.1 mg/mL, respectively. Effects of HSA on the tissue bound native ACE were tested on human saphenous vein samples. Angiotensin I evoked vasoconstriction was inhibited by HSA in this vascular tissue (maximal force with HSA: 6.14±1.34 mN, without HSA: 13.54±2.63 mN), while HSA was without effects on angiotensin II mediated constrictions (maximal force with HSA: 18.73±2.17 mN, without HSA: 19.22±3.50 mN). The main finding of this study is that HSA was identified as a potent physiological inhibitor of the ACE. The enzymatic activity of ACE appears to be almost completely suppressed by HSA when it is present in its physiological concentration. These data suggest that angiotensin I conversion is limited by low physiological ACE activities, in vivo. PMID:24691203

  18. Fimasartan: A New Angiotensin Receptor Blocker.

    PubMed

    Lee, Hae-Young; Oh, Byung-Hee

    2016-07-01

    Fimasartan is the ninth, and most recent, angiotensin II receptor antagonist approved as an antihypertensive agent. Fimasartan, a pyrimidin-4(3H)-one derivative of losartan with the imidazole ring replaced, which enables higher potency and longer duration than losartan. Fecal elimination and biliary excretion are the predominant elimination pathways of fimasartan and the urinary excretion was found to be less than 3 % 24 h after administration. Fimasartan is primarily catabolized by cytochrome P450 isoform 3A and no significant drug interaction was observed when used in combination with hydrochlorothiazide, amlodipine, warfarin, or digoxin. Fimasartan at a dosage range of 60-120 mg once daily showed an antihypertensive effect over 24 h. In a large, population-based observational study, fimasartan showed an excellent safety profile. Anti-inflammatory and organ-protecting effects of fimasartan have been shown in various preclinical studies, including aortic balloon injury, myocardial infarct ischemia/reperfusion, doxorubicin cardiotoxicity, and ischemic stroke models. PMID:27272555

  19. Angiotensin converting enzyme 2 and atherosclerosis.

    PubMed

    Wang, Yutang; Tikellis, Chris; Thomas, Merlin C; Golledge, Jonathan

    2013-01-01

    Angiotensin converting enzyme 2 (ACE2) is a homolog of angiotensin converting enzyme (ACE) which generates angiotensin II from angiotensin I. ACE, its product angiotensin II and the downstream angiotensin type I receptor are important components of the renin-angiotensin system (RAS). Angiotensin II, the most important component of the RAS, promotes the development of atherosclerosis. The identification of ACE2 in 2000 opened a new chapter of research on the regulation of the RAS. ACE2 degrades pro-atherosclerotic angiotensin II and generates anti-atherosclerotic angiotensin 1-7. In this review, we explored the importance of ACE2 in protecting experimental animals from developing atherosclerosis and its involvement in human atherosclerosis. We also examined the published evidence assessing the importance of ACE2 in different cell types relevant to atherosclerosis and putative underlying cellular and molecular mechanisms linking ACE2 with protection from atherosclerosis. ACE2 shifts the balance from angiotensin II to angiotensin 1-7 inhibiting the progression of atherosclerosis in animal models.

  20. Renal implications of the renin-angiotensin-aldosterone system blockade in heart failure.

    PubMed

    Ruilope, L M; Barrios, V; Volpe, M

    2000-11-01

    The renin-angiotensin-aldosterone system actively participates in the derangement of renal function since the early stages of heart failure (HF). A diminished capacity to excrete sodium secondary to increased proximal tubular re-absorption and loss of the renal functional reserve are the two most relevant initial alterations of renal function in which angiotensin II has been proven to act directly. Meanwhile, the octapeptide contributes to maintain glomerular filtration rate (GFR) within normal limits through efferent arteriole vasoconstriction. Administration of angiotensin converting enzyme inhibitors (ACEi) or angiotensin receptor antagonists (ARA) may thus be accompanied by a functional fall in that parameter. Advanced age, higher initial serum creatinine, history of hypertension, diabetes and atrial fibrillation predict the onset of GFR impairment associated with blockade of the renin-angiotensin system. Concomitant administration of betablockers may help to protect renal function, and preliminary data indicate that the combination of ACEi and ARA is not accompanied by a higher renal risk. The good prognostic effects of aldosterone antagonists in HF does not seem to be related to intrarenal effects of these compounds with the exception of preventing potassium loss and hypokalemia. The systematic therapeutic use of drug(s) provided with beneficial renal effects, to treat arterial hypertension or myocardial ischemia, may contribute to delay of, or prevent the development of HF.

  1. Pharmacology of myocardial calcium-handling.

    PubMed

    Vogler, Julia; Eckardt, Lars

    2012-07-01

    Disturbed myocardial calcium (Ca(+)) handling is one of the pathophysiologic hallmarks of cardiovascular diseases such as congestive heart failure, cardiac hypertrophy, and certain types of tachyarrhythmias. Pharmacologic treatment of these diseases thus focuses on restoring myocardial Ca(2+) homeostasis by interacting with Ca(2+)-dependent signaling pathways. In this article, we review the currently used pharmacologic agents that are able to restore or maintain myocardial Ca(2+) homeostasis and their mechanism of action as well as emerging new substances.

  2. Multimodality Imaging of Myocardial Injury and Remodeling

    PubMed Central

    Kramer, Christopher M.; Sinusas, Albert J.; Sosnovik, David E.; French, Brent A.; Bengel, Frank M.

    2011-01-01

    Advances in cardiovascular molecular imaging have come at a rapid pace over the last several years. Multiple approaches have been taken to better understand the structural, molecular, and cellular events that underlie the progression from myocardial injury to myocardial infarction (MI) and, ultimately, to congestive heart failure. Multimodality molecular imaging including SPECT, PET, cardiac MRI, and optical approaches is offering new insights into the pathophysiology of MI and left ventricular remodeling in small-animal models. Targets that are being probed include, among others, angiotensin receptors, matrix metalloproteinases, integrins, apoptosis, macrophages, and sympathetic innervation. It is only a matter of time before these advances are applied in the clinical setting to improve post-MI prognostication and identify appropriate therapies in patients to prevent the onset of congestive heart failure. PMID:20395347

  3. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    PubMed Central

    Nakano, Yasuhiro; Matoba, Tetsuya; Tokutome, Masaki; Funamoto, Daiki; Katsuki, Shunsuke; Ikeda, Gentaro; Nagaoka, Kazuhiro; Ishikita, Ayako; Nakano, Kaku; Koga, Jun-ichiro; Sunagawa, Kenji; Egashira, Kensuke

    2016-01-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous PLGA nanoparticles distribute to the IR myocardium and monocytes in the blood and in the IR heart. Single intravenous treatment at the time of reperfusion with irbesartan-NP (3.0 mg kg−1 irbesartan), but not with control nanoparticles or irbesartan solution (3.0 mg kg−1), inhibits the recruitment of inflammatory monocytes to the IR heart, and reduces the infarct size via PPARγ-dependent anti-inflammatory mechanisms, and ameliorates left ventricular remodeling 21 days after IR. Irbesartan-NP is a novel approach to treat myocardial IR injury in patients with AMI. PMID:27403534

  4. Nanoparticle-Mediated Delivery of Irbesartan Induces Cardioprotection from Myocardial Ischemia-Reperfusion Injury by Antagonizing Monocyte-Mediated Inflammation

    NASA Astrophysics Data System (ADS)

    Nakano, Yasuhiro; Matoba, Tetsuya; Tokutome, Masaki; Funamoto, Daiki; Katsuki, Shunsuke; Ikeda, Gentaro; Nagaoka, Kazuhiro; Ishikita, Ayako; Nakano, Kaku; Koga, Jun-Ichiro; Sunagawa, Kenji; Egashira, Kensuke

    2016-07-01

    Myocardial ischemia-reperfusion (IR) injury limits the therapeutic effect of early reperfusion therapy for acute myocardial infarction (AMI), in which the recruitment of inflammatory monocytes plays a causative role. Here we develop bioabsorbable poly-lactic/glycolic acid (PLGA) nanoparticles incorporating irbesartan, an angiotensin II type 1 receptor blocker with a peroxisome proliferator-activated receptor (PPAR)γ agonistic effect (irbesartan-NP). In a mouse model of IR injury, intravenous PLGA nanoparticles distribute to the IR myocardium and monocytes in the blood and in the IR heart. Single intravenous treatment at the time of reperfusion with irbesartan-NP (3.0 mg kg‑1 irbesartan), but not with control nanoparticles or irbesartan solution (3.0 mg kg‑1), inhibits the recruitment of inflammatory monocytes to the IR heart, and reduces the infarct size via PPARγ-dependent anti-inflammatory mechanisms, and ameliorates left ventricular remodeling 21 days after IR. Irbesartan-NP is a novel approach to treat myocardial IR injury in patients with AMI.

  5. De-novo collateral formation following acute myocardial infarction: Dependence on CCR2⁺ bone marrow cells.

    PubMed

    Zhang, Hua; Faber, James E

    2015-10-01

    Wide variation exists in the extent (number and diameter) of native pre-existing collaterals in tissues of different strains of mice, with supportive indirect evidence recently appearing for humans. This variation is a major determinant of the wide variation in severity of tissue injury in occlusive vascular disease. Whether such genetic-dependent variation also exists in the heart is unknown because no model exists for study of mouse coronary collaterals. Also owing to methodological limitations, it is not known if ischemia can induce new coronary collaterals to form ("neo-collaterals") versus remodeling of pre-existing ones. The present study sought to develop a model to study coronary collaterals in mice, determine whether neo-collateral formation occurs, and investigate the responsible mechanisms. Four strains with known rank-ordered differences in collateral extent in brain and skeletal muscle were studied: C57BLKS>C57BL/6>A/J>BALB/c. Unexpectedly, these and 5 additional strains lacked native coronary collaterals. However after ligation, neo-collaterals formed rapidly within 1-to-2 days, reaching their maximum extent in ≤7 days. Rank-order for neo-collateral formation differed from the above: C57BL/6>BALB/c>C57BLKS>A/J. Collateral network conductance, infarct volume(-1), and contractile function followed this same rank-order. Neo-collateral formation and collateral conductance were reduced and infarct volume increased in MCP1(-/-) and CCR2(-/-) mice. Bone-marrow transplant rescued collateral formation in CCR2(-/-) mice. Involvement of fractalkine➔CX3CR1 signaling and endothelial cell proliferation were also identified. This study introduces a model for investigating the coronary collateral circulation in mice, demonstrates that neo-collaterals form rapidly after coronary occlusion, and finds that MCP➔CCR2-mediated recruitment of myeloid cells is required for this process.

  6. L-type calcium channel β subunit modulates angiotensin II responses in cardiomyocytes.

    PubMed

    Hermosilla, Tamara; Moreno, Cristian; Itfinca, Mircea; Altier, Christophe; Armisén, Ricardo; Stutzin, Andres; Zamponi, Gerald W; Varela, Diego

    2011-01-01

    Angiotensin II regulation of L-type calcium currents in cardiac muscle is controversial and the underlying signaling events are not completely understood. Moreover, the possible role of auxiliary subunit composition of the channels in Angiotensin II modulation of L-type calcium channels has not yet been explored. In this work we study the role of Ca(v)β subunits and the intracellular signaling responsible for L-type calcium current modulation by Angiotensin II. In cardiomyocytes, Angiotensin II exposure induces rapid inhibition of L-type current with a magnitude that is correlated with the rate of current inactivation. Semi-quantitative PCR of cardiomyocytes at different days of culture reveals changes in the Ca(v)β subunits expression pattern that are correlated with the rate of current inactivation and with Angiotensin II effect. Over-expression of individual b subunits in heterologous systems reveals that the magnitude of Angiotensin II inhibition is dependent on the Ca(v)β subunit isoform, with Ca(v)β(1b) containing channels being more strongly regulated. Ca(v)β(2a) containing channels were insensitive to modulation and this effect was partially due to the N-terminal palmitoylation sites of this subunit. Moreover, PLC or diacylglycerol lipase inhibition prevents the Angiotensin II effect on L-type calcium channels, while PKC inhibition with chelerythrine does not, suggesting a role of arachidonic acid in this process. Finally, we show that in intact cardiomyocytes the magnitude of calcium transients on spontaneous beating cells is modulated by Angiotensin II in a Ca(v)β subunit-dependent manner. These data demonstrate that Ca(v)β subunits alter the magnitude of inhibition of L-type current by Angiotensin II. PMID:21525790

  7. Dietary sodium intake modulates renal excretory responses to intrarenal angiotensin (1-7) administration in anesthetized rats.

    PubMed

    O'Neill, Julie; Corbett, Alan; Johns, Edward J

    2013-02-01

    Angiotensin II at the kidney regulates renal hemodynamic and excretory function, but the actions of an alternative metabolite, angiotensin (1-7), are less clear. This study investigated how manipulation of dietary sodium intake influenced the renal hemodynamic and excretory responses to intrarenal administration of angiotensin (1-7). Renal interstitial infusion of angiotensin (1-7) in anesthetized rats fed a normal salt intake had minimal effects on glomerular filtration rate but caused dose-related increases in urine flow and absolute and fractional sodium excretions ranging from 150 to 200%. In rats maintained for 2 wk on a low-sodium diet angiotensin (1-7) increased glomerular filtration rate by some 45%, but the diuretic and natriuretic responses were enhanced compared with those in rats on a normal sodium intake. By contrast, renal interstitial infusion of angiotensin (1-7) in rats maintained on a high-sodium intake had no effect on glomerular filtration rate, whereas the diuresis and natriuresis was markedly attenuated compared with those in rats fed either a normal or low-sodium diet. Plasma renin and angiotensin (1-7) were highest in the rats on the low-sodium diet and depressed in the rats on a high-sodium diet. These findings demonstrate that the renal hemodynamic and excretory responses to locally administered angiotensin (1-7) is dependent on the level of sodium intake and indirectly on the degree of activation of the renin-angiotensin system. The exact way in which angiotensin (1-7) exerts its effects may be dependent on the prevailing levels of angiotensin II and its receptor expression.

  8. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the

  9. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms.

    PubMed

    Bathgate-Siryk, Ashley; Dabul, Samalia; Pandya, Krunal; Walklett, Karlee; Rengo, Giuseppe; Cannavo, Alessandro; De Lucia, Claudio; Liccardo, Daniela; Gao, Erhe; Leosco, Dario; Koch, Walter J; Lymperopoulos, Anastasios

    2014-02-01

    β-Arrestin (βarr)-1 and β-arrestin-2 (βarrs) are universal G-protein-coupled receptor adapter proteins that negatively regulate cardiac β-adrenergic receptor (βAR) function via βAR desensitization and downregulation. In addition, they mediate G-protein-independent βAR signaling, which might be beneficial, for example, antiapoptotic, for the heart. However, the specific role(s) of each βarr isoform in cardiac βAR dysfunction, the molecular hallmark of chronic heart failure (HF), remains unknown. Furthermore, adrenal βarr1 exacerbates HF by chronically enhancing adrenal production and hence circulating levels of aldosterone and catecholamines. Herein, we sought to delineate specific roles of βarr1 in post-myocardial infarction (MI) HF by testing the effects of βarr1 genetic deletion on normal and post-MI cardiac function and morphology. We studied βarr1 knockout (βarr1KO) mice alongside wild-type controls under normal conditions and after surgical MI. Normal (sham-operated) βarr1KO mice display enhanced βAR-dependent contractility and post-MI βarr1KO mice enhanced overall cardiac function (and βAR-dependent contractility) compared with wild type. Post-MI βarr1KO mice also show increased survival and decreased cardiac infarct size, apoptosis, and adverse remodeling, as well as circulating catecholamines and aldosterone, compared with post-MI wild type. The underlying mechanisms, on one hand, improved cardiac βAR signaling and function, as evidenced by increased βAR density and procontractile signaling, via reduced cardiac βAR desensitization because of cardiac βarr1 absence, and, on the other hand, decreased production leading to lower circulating levels of catecholamines and aldosterone because of adrenal βarr1 absence. Thus, βarr1, via both cardiac and adrenal effects, is detrimental for cardiac structure and function and significantly exacerbates post-MI HF.

  10. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm20ΔRRM Mice

    PubMed Central

    Pulcastro, Hannah C.; Awinda, Peter O.; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C. W.

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20ΔRRM) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20ΔRRM animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20ΔRRM on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca2+-activated, skinned papillary muscle strips from Rbm20ΔRRM and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca2+-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20ΔRRM vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20ΔRRM myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the idea that passive

  11. Increased Titin Compliance Reduced Length-Dependent Contraction and Slowed Cross-Bridge Kinetics in Skinned Myocardial Strips from Rbm (20ΔRRM) Mice.

    PubMed

    Pulcastro, Hannah C; Awinda, Peter O; Methawasin, Mei; Granzier, Henk; Dong, Wenji; Tanner, Bertrand C W

    2016-01-01

    Titin is a giant protein spanning from the Z-disk to the M-band of the cardiac sarcomere. In the I-band titin acts as a molecular spring, contributing to passive mechanical characteristics of the myocardium throughout a heartbeat. RNA Binding Motif Protein 20 (RBM20) is required for normal titin splicing, and its absence or altered function leads to greater expression of a very large, more compliant N2BA titin isoform in Rbm20 homozygous mice (Rbm20 (ΔRRM) ) compared to wild-type mice (WT) that almost exclusively express the stiffer N2B titin isoform. Prior studies using Rbm20 (ΔRRM) animals have shown that increased titin compliance compromises muscle ultrastructure and attenuates the Frank-Starling relationship. Although previous computational simulations of muscle contraction suggested that increasing compliance of the sarcomere slows the rate of tension development and prolongs cross-bridge attachment, none of the reported effects of Rbm20 (ΔRRM) on myocardial function have been attributed to changes in cross-bridge cycling kinetics. To test the relationship between increased sarcomere compliance and cross-bridge kinetics, we used stochastic length-perturbation analysis in Ca(2+)-activated, skinned papillary muscle strips from Rbm20 (ΔRRM) and WT mice. We found increasing titin compliance depressed maximal tension, decreased Ca(2+)-sensitivity of the tension-pCa relationship, and slowed myosin detachment rate in myocardium from Rbm20 (ΔRRM) vs. WT mice. As sarcomere length increased from 1.9 to 2.2 μm, length-dependent activation of contraction was eliminated in the Rbm20 (ΔRRM) myocardium, even though myosin MgADP release rate decreased ~20% to prolong strong cross-bridge binding at longer sarcomere length. These data suggest that increasing N2BA expression may alter cardiac performance in a length-dependent manner, showing greater deficits in tension production and slower cross-bridge kinetics at longer sarcomere length. This study also supports the

  12. Hypertension and acute myocardial infarction: an overview.

    PubMed

    Pedrinelli, Roberto; Ballo, Piercarlo; Fiorentini, Cesare; Denti, Silvia; Galderisi, Maurizio; Ganau, Antonello; Germanò, Giuseppe; Innelli, Pasquale; Paini, Anna; Perlini, Stefano; Salvetti, Massimo; Zacà, Valerio

    2012-03-01

    History of hypertension is a frequent finding in patients with acute myocardial infarction (AMI) and its recurring association with female sex, diabetes, older age, less frequent smoking and more frequent vascular comorbidities composes a risk profile quite distinctive from the normotensive ischemic counterpart.Antecedent hypertension associates with higher rates of death and morbid events both during the early and long-term course of AMI, particularly if complicated by left ventricular dysfunction and/or congestive heart failure. Renin-angiotensin-aldosterone system blockade, through either angiotensin-converting enzyme inhibition, angiotensin II receptor blockade or aldosterone antagonism, exerts particular benefits in that high-risk hypertensive subgroup.In contrast to the negative implications carried by antecedent hypertension, higher systolic pressure at the onset of chest pain associates with lower mortality within 1 year from coronary occlusion, whereas increased blood pressure recorded after hemodynamic stabilization from the acute ischemic event bears inconsistent relationships with recurring coronary events in the long-term follow-up.Whether antihypertensive treatment in post-AMI hypertensive patients prevents ischemic relapses is uncertain. As a matter of fact, excessive diastolic pressure drops may jeopardize coronary perfusion and predispose to new acute coronary events, although the precise cause-effect mechanisms underlying this phenomenon need further evaluation. PMID:22317927

  13. Activation of central PPAR-γ attenuates angiotensin II-induced hypertension.

    PubMed

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-08-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that the activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg per minute) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA-binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2, and angiotensin II type 1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA-binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension.

  14. Activation of Central PPAR-γ Attenuates Angiotensin II-Induced Hypertension

    PubMed Central

    Yu, Yang; Xue, Bao-Jian; Wei, Shun-Guang; Zhang, Zhi-Hua; Beltz, Terry G; Guo, Fang; Johnson, Alan Kim; Felder, Robert B

    2015-01-01

    Inflammation and renin-angiotensin system activity in the brain contribute to hypertension through effects on fluid intake, vasopressin release, and sympathetic nerve activity. We recently reported that activation of brain peroxisome proliferator-activated receptor (PPAR)-γ in heart failure rats reduced inflammation and renin-angiotensin system activity in the hypothalamic paraventricular nucleus and ameliorated the peripheral manifestations of heart failure. We hypothesized that activation of brain PPAR-γ might have beneficial effects in angiotensin II-induced hypertension. Sprague-Dawley rats received a 2-week subcutaneous infusion of angiotensin II (120 ng/kg/min) combined with a continuous intracerebroventricular infusion of vehicle, the PPAR-γ agonist pioglitazone (3 nmol/h) or the PPAR-γ antagonist GW9662 (7 nmol/h). Angiotensin II+vehicle rats had increased mean blood pressure, increased sympathetic drive as indicated by the mean blood pressure response to ganglionic blockade, and increased water consumption. PPAR-γ mRNA in subfornical organ and hypothalamic paraventricular nucleus was unchanged, but PPAR-γ DNA binding activity was reduced. mRNA for interleukin-1β, tumor necrosis factor-α, cyclooxygenase-2 and angiotensin II type-1 receptor was augmented in both nuclei, and hypothalamic paraventricular nucleus neuronal activity was increased. The plasma vasopressin response to a 6-hour water restriction also increased. These responses to angiotensin II were exacerbated by GW9662 and ameliorated by pioglitazone, which increased PPAR-γ mRNA and PPAR-γ DNA binding activity in subfornical organ and hypothalamic paraventricular nucleus. Pioglitazone and GW9662 had no effects on control rats. The results suggest that activating brain PPAR-γ to reduce central inflammation and brain renin-angiotensin system activity may be a useful adjunct in the treatment of angiotensin II-dependent hypertension. PMID:26101342

  15. Myocardial Tagging With SSFP

    PubMed Central

    Herzka, Daniel A.; Guttman, Michael A.; McVeigh, Elliot R.

    2007-01-01

    This work presents the first implementation of myocardial tagging with refocused steady-state free precession (SSFP) and magnetization preparation. The combination of myocardial tagging (a noninvasive method for quantitative measurement of regional and global cardiac function) with the high tissue signal-to-noise ratio (SNR) obtained with SSFP is shown to yield improvements in terms of the myocardium–tag contrast-to-noise ratio (CNR) and tag persistence when compared to the current standard fast gradient-echo (FGRE) tagging protocol. Myocardium–tag CNR and tag persistence were studied using numerical simulations as well as phantom and human experiments. Both quantities were found to decrease with increasing imaging flip angle (α) due to an increased tag decay rate and a decrease in myocardial steady-state signal. However, higher α yielded better blood–myocardium contrast, indicating that optimal α is dependent on the application: higher α for better blood–myocardium boundary visualization, and lower α for better tag persistence. SSFP tagging provided the same myocardium–tag CNR as FGRE tagging when acquired at four times the bandwidth and better tag– and blood–myocardium CNRs than FGRE tagging when acquired at equal or twice the receiver bandwidth (RBW). The increased acquisition efficiency of SSFP allowed decreases in breath-hold duration, or increases in temporal resolution, as compared to FGRE. PMID:12541254

  16. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis.

    PubMed

    Husain, Kazim; Hernandez, Wilfredo; Ansari, Rais A; Ferder, Leon

    2015-08-26

    Atherosclerosis is a chronic inflammatory disease associated with cardiovascular dysfunction including myocardial infarction, unstable angina, sudden cardiac death, stroke and peripheral thromboses. It has been predicted that atherosclerosis will be the primary cause of death in the world by 2020. Atherogenesis is initiated by endothelial injury due to oxidative stress associated with cardiovascular risk factors including diabetes mellitus, hypertension, cigarette smoking, dyslipidemia, obesity, and metabolic syndrome. The impairment of the endothelium associated with cardiovascular risk factors creates an imbalance between vasodilating and vasoconstricting factors, in particular, an increase in angiotensin II (Ang II) and a decrease in nitric oxide. The renin-angiotensin system (RAS), and its primary mediator Ang II, also have a direct influence on the progression of the atherosclerotic process via effects on endothelial function, inflammation, fibrinolytic balance, and plaque stability. Anti-inflammatory agents [statins, secretory phospholipase A2 inhibitor, lipoprotein-associated phospholipase A2 inhibitor, 5-lipoxygenase activating protein, chemokine motif ligand-2, C-C chemokine motif receptor 2 pathway inhibitors, methotrexate, IL-1 pathway inhibitor and RAS inhibitors (angiotensin-converting enzyme inhibitors)], Ang II receptor blockers and ranin inhibitors may slow inflammatory processes and disease progression. Several studies in human using anti-inflammatory agents and RAS inhibitors revealed vascular benefits and reduced progression of coronary atherosclerosis in patients with stable angina pectoris; decreased vascular inflammatory markers, improved common carotid intima-media thickness and plaque volume in patients with diagnosed atherosclerosis. Recent preclinical studies have demonstrated therapeutic efficacy of vitamin D analogs paricalcitol in ApoE-deficient atherosclerotic mice.

  17. Inflammation, oxidative stress and renin angiotensin system in atherosclerosis

    PubMed Central

    Husain, Kazim; Hernandez, Wilfredo; Ansari, Rais A; Ferder, Leon

    2015-01-01

    Atherosclerosis is a chronic inflammatory disease associated with cardiovascular dysfunction including myocardial infarction, unstable angina, sudden cardiac death, stroke and peripheral thromboses. It has been predicted that atherosclerosis will be the primary cause of death in the world by 2020. Atherogenesis is initiated by endothelial injury due to oxidative stress associated with cardiovascular risk factors including diabetes mellitus, hypertension, cigarette smoking, dyslipidemia, obesity, and metabolic syndrome. The impairment of the endothelium associated with cardiovascular risk factors creates an imbalance between vasodilating and vasoconstricting factors, in particular, an increase in angiotensin II (Ang II) and a decrease in nitric oxide. The renin-angiotensin system (RAS), and its primary mediator Ang II, also have a direct influence on the progression of the atherosclerotic process via effects on endothelial function, inflammation, fibrinolytic balance, and plaque stability. Anti-inflammatory agents [statins, secretory phospholipase A2 inhibitor, lipoprotein-associated phospholipase A2 inhibitor, 5-lipoxygenase activating protein, chemokine motif ligand-2, C-C chemokine motif receptor 2 pathway inhibitors, methotrexate, IL-1 pathway inhibitor and RAS inhibitors (angiotensin-converting enzyme inhibitors)], Ang II receptor blockers and ranin inhibitors may slow inflammatory processes and disease progression. Several studies in human using anti-inflammatory agents and RAS inhibitors revealed vascular benefits and reduced progression of coronary atherosclerosis in patients with stable angina pectoris; decreased vascular inflammatory markers, improved common carotid intima-media thickness and plaque volume in patients with diagnosed atherosclerosis. Recent preclinical studies have demonstrated therapeutic efficacy of vitamin D analogs paricalcitol in ApoE-deficient atherosclerotic mice. PMID:26322175

  18. Myocardial abscess complicating healed myocardial infarction.

    PubMed Central

    Weisz, S.; Young, D. G.

    1977-01-01

    An isolated myocardial abscess due to Bacteroides fragilis developed in the scar of a myocardial infarction. Fever, chills and signs of pericarditis were the main clinical features. Mild enteritis 1 week prior to the onset of symptoms related to the abscess was the most likely cause of the bacteremia. The diagnosis was established at thoracotomy, performed because of cardiac tamponade. Thirteen other cases of isolated bacterial myocardial abscess accompanying myocardial infarction have been reported, but all the infarctions were recent. Surgical resection for a suspected myocardial abscess should be considered in view of the high mortality, largely from cardiac rupture. Images FIG. 1 PMID:861868

  19. Angiotensin II diminishes the effect of SGK1 on the WNK4-mediated inhibition of ROMK1 channels.

    PubMed

    Yue, Peng; Sun, Peng; Lin, Dao-Hong; Pan, Chunyang; Xing, Wenming; Wang, WenHui

    2011-02-01

    ROMK1 channels are located in the apical membrane of the connecting tubule and cortical collecting duct and mediate the potassium secretion during normal dietary intake. We used a perforated whole-cell patch clamp to explore the effect of angiotensin II on these channels in HEK293 cells transfected with green fluorescent protein (GFP)-ROMK1. Angiotensin II inhibited ROMK1 channels in a dose-dependent manner, an effect abolished by losartan or by inhibition of protein kinase C. Furthermore, angiotensin II stimulated a protein kinase C-sensitive phosphorylation of tyrosine 416 within c-Src. Inhibition of protein tyrosine kinase attenuated the effect of angiotensin II. Western blot studies suggested that angiotensin II inhibited ROMK1 channels by enhancing its tyrosine phosphorylation, a notion supported by angiotensin II's failure to inhibit potassium channels in cells transfected with the ROMK1 tyrosine mutant (R1Y337A). However, angiotensin II restored the with-no-lysine kinase-4 (WNK4)-induced inhibition of R1Y337A in the presence of serum-glucocorticoids-induced kinase 1 (SGK1), which reversed the inhibitory effect of WNK4 on ROMK1. Moreover, protein tyrosine kinase inhibition abolished the angiotensin II-induced restoration of WNK4-mediated inhibition of ROMK1. Angiotensin II inhibited ROMK channels in the cortical collecting duct of rats on a low sodium diet, an effect blocked by protein tyrosine kinase inhibition. Thus, angiotensin II inhibits ROMK channels by two mechanisms: increasing tyrosine phosphorylation of the channel and synergizing the WNK4-induced inhibition. Hence, angiotensin II may have an important role in suppressing potassium secretion during volume depletion. PMID:20927043

  20. Inhibition of the renin-angiotensin system for prevention of atrial fibrillation.

    PubMed

    Zografos, Theodoros; Katritsis, Demosthenes G

    2010-10-01

    Atrial fibrillation (AF) is a source of considerable morbidity and mortality. There has been compelling evidence supporting the role of renin-angiotensin system (RAS) in the genesis and perpetuation of AF through atrial remodeling, and experimental studies have validated the utilization of RAS inhibition for AF prevention. This article reviews clinical trials on the use of angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) for the prevention of AF. Results have been variable, depending on the clinical background of treated patients. ACEIs and ARBs appear beneficial for primary prevention of AF in patients with heart failure, whereas they are not equally effective in hypertensive patients with normal left ventricular function. Furthermore, the use of ACEIs or ARBs for secondary prevention of AF has been found beneficial only after electrical cardioversion. Additional data are needed to establish the potential clinical role of renin-angiotensin inhibition for prevention of AF.

  1. Angiotensin-[1-12] interacts with angiotensin type I receptors

    PubMed Central

    Chan, King H.; Chen, Yi H.; Zhang, Ying; Wong, Yung H.; Dun, Nae J.

    2013-01-01

    Angiotensin-(1-12) [Ang-(1-12)], a newer member of angiotensin peptides, is proposed to be converted enzymatically to angiotensin I (Ang I) and to angiotensin II (Ang II); the latter being the bioactive peptide. We studied the Ang-(1-12) and Ang II responses in COS-7 cells or CHO cells transfected with 5 μg AT1R by monitoring [Ca2+]i using the Fluo-4. Ang II (1 pM-1μM) and Ang-(1-12) (5 pM-5 μM) increased [Ca2+]i with an EC50 of 0.19 nM and 24 nM in COS-7 cells; and 0.65 nM and 28.7 nM in CHO cells. The AT1R antagonist losartan (1 nM-10 μM) suppressed [Ca2+]i induced by Ang-(1-12) and Ang II. In CHO cells transfected with 5 μg AT2R, Ang II (1 pM-1μM) increased [Ca2+]i, with an EC50 of 9.68 nM; whereas, Ang-(1-12) (5 pM-5 μM) failed to elicit a significant change in [Ca2+]i. In CHO cells transfected with AT1R, Ang-(1-12) stimulated ERK phosphorylation with a potency 300-fold less than that of Ang II. To evaluate the activity of Ang-(1-12) on native AT1R, whole cell patch recordings were made from neurons in the rat hypothalamic slices. Ang II or Ang-(1-12) ejected by pressure from a micropipette elicited a membrane depolarization; the latter was blocked by losartan (10 μM), and not affected by the AT2R antagonist PD 123319 (10 μM), nor by the angiotensin converting enzyme inhibitor captopril (10 μM). Our result shows that Ang-(1-12) may produce its biological activity by acting directly on AT1R, albeit at a concentration higher than that of Ang II. PMID:23823979

  2. Cardiac protective effects of irbesartan via the PPAR-gamma signaling pathway in angiotensin-converting enzyme 2-deficient mice

    PubMed Central

    2013-01-01

    Background Angiotensin-converting enzyme 2 (ACE2), a monocarboxypeptidase which metabolizes angiotensin II (Ang II) to generate Ang-(1–7), has been shown to prevent cardiac hypertrophy and injury but the mechanism remains elusive. Irbesartan has the dual actions of angiotensin receptor blockade and peroxisome proliferator-activated receptor-γ (PPARγ) activation. We hypothesized that irbesartan would exert its protective effects on ACE2 deficiency-mediated myocardial fibrosis and cardiac injury via the PPARγ signaling. Methods 10-week-old ACE2 knockout (ACE2KO; Ace2-/y) mice received daily with irbesartan (50 mg/kg) or saline for 2 weeks. The wild-type mice (Ace2+/y) were used to the normal controls. We examined changes in myocardial ultrastructure, fibrosis-related genes and pathological signaling by real-time PCR gene array, Western blotting, Masson trichrome staining and transmission electron microscope analyses, respectively. Results Compared with the Ace2+/y mice, cardiac expression of PPARα and PPARγ were reduced in Ace2-/y mice and the myocardial collagen volume fraction (CVF) and expression of fibrosis-related genes were increased, including transforming growth factor-β1 (TGFβ1), connective tissue growth factor (CTGF), collagen I and collagen III. Moreover, ACE2 deficiency triggered cardiac hypertrophy, increased myocardial fibrosis and adverse ultrastructure injury in ACE2KO hearts with higher levels of atrial natriuretic factor (ANF) and phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2), without affecting cardiac systolic function. Intriguingly, treatment with irbesartan significantly reversed ACE2 deficiency-mediated pathological hypertrophy and myocardial fibrosis in Ace2-/y mice linked with enhancement of plasma Ang-(1–7) level and downregulation of AT1 receptor in heart. Consistent with attenuation of myocardial fibrosis and ultrastructure injury, the myocardial CVF and levels of ANF, TGFβ1, CTGF, collagen I, collagen III

  3. The effect of angiotensin II on in vivo albumin transport in normal rabbit aortic tissue.

    PubMed

    Feig, L A; Peppas, N A; Colton, C K; Smith, K A; Lees, R S

    1982-09-01

    Angiotensin II and other vasoactive amines may have a direct effect on the permeability of the arterial wall. We have investigated the effect of angiotensin II in vivo albumin transport across the aortic wall in rabbits following intravenous injection of [125I]albumin. Transmural concentration profiles of 125I-labeled albumin across the intima and media of the aorta, generated during 25 min of either angiotensin or saline infusion, were measured by a serial-sectioning technique. The uptake of labeled albumin through the aortic wall was found to be dependent on position and to increase from the descending thoracic up to the arch. Angiotensin infusion increased albumin uptake in the region of the aorta proximal to the first pair of intercostal arteries and magnified the position dependence. Angiotensin infusion did not change the uptake of albumin in the descending thoracic aorta between intercostal arteries. The arterial blood pressure elevation associated with angiotensin infusion was not of prime importance in producing the uptake patterns described above.

  4. Des-aspartate angiotensin I (DAA-I) reduces endothelial dysfunction in the aorta of the spontaneously hypertensive rat through inhibition of angiotensin II-induced oxidative stress.

    PubMed

    Loh, Wei Mee; Ling, Wei Chih; Murugan, Dharmani D; Lau, Yeh Siang; Achike, Francis I; Vanhoutte, Paul M; Mustafa, Mohd Rais

    2015-08-01

    Des-aspartate angiotensin I (DAA-I), an endogenous nonapeptide, counteracts several effects of angiotensin II on vascular tone. The aim of this study was to investigate the acute protective effect of DAA-I on endothelial function in the spontaneously hypertensive rat (SHR) as well as its effect on angiotensin II-induced contractions and oxidative stress. Aortic rings were incubated with DAA-I (0.1μM) for 30min prior to the assessment of angiotensin II-induced contractions (0.1nM-10μM) in WKY and SHR aortas. Total nitrate and nitrite levels were assessed using a colorimetric method and reactive oxygen species (ROS) were measured by dihydroethidium (DHE) fluorescence and lucigenin-enhanced chemiluminescence. The effect of DAA-I was also assessed against endothelium-dependent and -independent relaxations to acetylcholine and sodium nitroprusside, respectively. Angiotensin II-induced contractions were significantly reduced by DAA-I, losartan and tempol. Incubation with ODQ (soluble guanylyl cyclase inhibitor) and removal of the endothelium prevented the reduction of angiotensin II-induced contractions by DAA-I. Total nitrate and nitrite levels were increased in DAA-I, losartan and tempol treated-SHR tissues while ROS level was reduced by DAA-I and the latter inhibitors. In addition, DAA-I significantly improved the impaired acetylcholine-induced relaxation in SHR aortas whilst sodium nitroprusside-induced endothelium-independent relaxation remained unaffected. The present findings indicate that improvement of endothelial function by DAA-I in the SHR aorta is mediated through endothelium-dependent release of nitric oxide and inhibition of angiotensin II-induced oxidative stress. PMID:25869508

  5. Human Lung Angiotensin Converting Enzyme

    PubMed Central

    Friedland, Joan; Silverstein, Emanuel; Drooker, Martin; Setton, Charlotte

    1981-01-01

    To enable its immunohistologic localization, angiotensin converting enzyme (EC 3.4.15.1) from human lung was solubilized by trypsinization and purified ∼2,660-fold to apparent homogeneity from a washed lung particulate fraction. The specific activity of pure enzyme was estimated to be 117 μmol/min per mg protein with the substrate hippuryl-l-histidyl-l-leucine. Consistent with previously described lung enzyme studies, catalytic activity was strongly inhibited by EDTA, O-phenanthroline, SQ 20,881, and SQ 14,225 and increased by CoCl2. SQ 20,881 was a somewhat more potent inhibitor than SQ 14,225, unlike rabbit lung enzyme. The Michaelis constant (Km) with hippuryl-l-histidyl-l-leucine was 1.6 mM. The molecular weight was estimated at 150,000 from sucrose density gradient centrifugation. Sodium dodecyl sulfate polyacrylamide gel electrophoresis revealed a single polypeptide chain estimated at 130,000 daltons. Rabbit antibody to human lung enzyme was prepared by parenteral administration of pure angiotensin-converting enzyme in Freund's adjuvant. Rabbit antibody to human lung angiotensin-converting enzyme appeared to crossreact weakly with the rabbit enzyme and strongly inhibited the catalytic activity of the enzymes from human serum, lung, and lymph node. The specificity of the rabbit antibody and purity of the final human lung enzyme preparation was suggested by the single precipitin lines obtained by radial double immunodiffusion, and by the coincidence of enzyme catalytic activity and immunoreactivity on polyacrylamide gel electrophoresis, with both relatively pure and highly impure enzymes. Generally applicable sensitive analysis of acrylamide gels for immunoreactivity (and subsequently for any other activity) by use of intact gel slices in radial double immunodiffusion was devised. Human lung enzyme was very tightly bound to and catalytically active on anti-human enzyme antibody covalently bound to Sepharose 4B, and could not be readily dissociated without

  6. DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy

    PubMed Central

    Jurado-López, Raquel; Martínez-Martínez, Ernesto; Gómez-Hurtado, Nieves; Delgado, Carmen; Visitación Bartolomé, Maria; San Román, José Alberto; Cordova, Claudia; Lahera, Vicente; Nieto, Maria Luisa; Cachofeiro, Victoria

    2012-01-01

    myofibroblasts. They inhibit the angiotensin II-induced proliferation in a PPAR-γ-dependent manner, while at high doses they activate pathways of programmed cell death that are dependent on JNK and PPAR-γ. PMID:22844495

  7. Aortic valvular heart disease: Is there a place for angiotensin-converting-enzyme inhibitors?

    PubMed

    Elder, Douglas H J; McAlpine-Scott, Victoria; Choy, Anna Maria; Struthers, Allan D; Lang, Chim C

    2013-01-01

    Aortic valve disease (AVD) is the most common form of valvular heart disease in the western world. The only proven therapy for severe AVD is open aortic valve replacement, with trans-catheter aortic valve implantation emerging as a promising modality to treat severe aortic stenosis in a selected group of patients. AVD has a long asymptomatic phase with symptoms occurring late in the disease and once symptoms develop, prognosis is poor. There is a growing appreciation that aortic valvular heart disease incorporates a disease process that extends beyond the valve itself leading to an aortic valvular 'heart' disease. The renin-angiotensin system is known to modulate adverse left ventricular remodeling and myocardial fibrosis, which could be caused by increased load caused by the AVD. In this review, the authors explore evidence that suggest that drugs that target the renin-angiotensin system may have a potential therapeutic role in AVD.

  8. Angiotensin II receptors in the gonads

    SciTech Connect

    Aguilera, G.; Millan, M.A.; Harwood, J.P.

    1989-05-01

    The presence of components of the renin-angiotensin system in ovaries and testes suggests that angiotensin II (AII) is involved in gonadal function, and thus we sought to characterize receptors for AII in rat and primate gonads. In the testes, autoradiographic studies showed receptors in the interstitium in all species. In rat interstitial cells fractionated by Percoll gradient, AII receptors coincided with hCG receptors indicating that AII receptors are located on the Leydig cells. In Leydig cells and membranes from rat and rhesus monkey prepuberal testes, AII receptors were specific for AII analogues and of high affinity (Kd=nM). During development, AII receptor content in rat testes decreases with age parallel to a fall in the ratio of interstitial to tubular tissue. In the ovary, the distribution of AII receptors was dependent on the stage of development, being high in the germinal epithelium and stromal tissue between five and 15 days, and becoming localized in secondary follicles in 20-and 40-day-old rats. No binding was found in primordial or primary follicles. In rhesus monkey ovary, AII receptors were higher in stromal tissue and lower in granulosa and luteal cells of the follicles. Characterization of the binding in rat and monkey ovarian membranes showed a single class of sites with a Kd in the nmol/L range and specificity similar to that of the adrenal glomerulosa and testicular AII receptors. Receptors for AII were also present in membrane fractions from PMSG/hCG primed rat ovaries. Infusion of AII (25 ng/min) or captopril (1.4 micrograms/min) during the PMSG/hCG induction period had no effect on ovarian weight or AII receptor concentration in the ovaries.

  9. The Renal Renin-Angiotensin System

    ERIC Educational Resources Information Center

    Harrison-Bernard, Lisa M.

    2009-01-01

    The renin-angiotensin system (RAS) is a critical regulator of sodium balance, extracellular fluid volume, vascular resistance, and, ultimately, arterial blood pressure. In the kidney, angiotensin II exerts its effects to conserve salt and water through a combination of the hemodynamic control of renal blood flow and glomerular filtration rate and…

  10. Cardioprotective effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats.

    PubMed

    Gao, Yan; Gao, Jianping; Chen, Changxun; Wang, Huilin; Guo, Juan; Wu, Rong

    2015-05-01

    The purpose of this study was to explore the effect of polydatin on ventricular remodeling after myocardial infarction in coronary artery ligation rats and to elucidate the underlying mechanisms. A rat model of ventricular remodeling after myocardial infarction was established by left coronary artery ligation. Rats with coronary artery ligation were randomly divided into five groups: control, plus 40 mg/kg captopril, plus 25 mg/kg polydatin, plus 50 mg/kg polydatin, and plus 100 mg/kg polydatin. The sham-operated group was used as a negative control. Rats were administered intragastrically with the corresponding drugs or drinking water for seven weeks. At the end of the treatment, the left ventricular weight index and heart weight index were assessed. The cross-sectional size of cardiomyocytes was measured by staining myocardium tissue with hematoxylin and eosin. Collagen content was counted by Sirius red in aqueous saturated picric acid. The concentrations of angiotensin I, angiotensin II, aldosterone, and endothelin 1 in myocardium or serum were determined by radioimmunoassay. Hydroxyproline and nitric oxide concentrations and glutathione peroxidase and catalase activities in serum were measured by ultraviolet spectrophotometry. Our results showed that seven weeks of polydatin treatment resulted in a significantly reduced left ventricular weight index, heart weight index, serum concentrations of hydroxyproline and aldosterone, an increased concentration of nitric oxide as well as enhanced activities of glutathione peroxidase and catalase. Myocardial angiotensin I, angiotensin II, and endothelin 1 levels were also reduced. The cardiomyocyte cross-sectional area and collagen deposition diminished. This study suggests that polydatin may attenuate ventricular remodeling after myocardial infarction in coronary artery ligation rats through restricting the excessive activation of the renin-angiotensin-aldosterone system and inhibiting peroxidation.

  11. Angiotensin-Converting-Enzyme Inhibition in Stable Coronary Artery Disease

    PubMed Central

    2008-01-01

    BACKGROUND Angiotensin-converting-enzyme (ACE) inhibitors are effective in reducing the risk of heart failure, myocardial infarction, and death from cardiovascular causes in patients with left ventricular systolic dysfunction or heart failure. ACE inhibitors have also been shown to reduce atherosclerotic complications in patients who have vascular disease without heart failure. METHODS In the Prevention of Events with Angiotensin Converting Enzyme Inhibition (PEACE) Trial, we tested the hypothesis that patients with stable coronary artery disease and normal or slightly reduced left ventricular function derive therapeutic benefit from the addition of ACE inhibitors to modern conventional therapy. The trial was a double-blind, placebo-controlled study in which 8290 patients were randomly assigned to receive either trandolapril at a target dose of 4 mg per day (4158 patients) or matching placebo (4132 patients). RESULTS The mean (±SD) age of the patients was 64±8 years, the mean blood pressure 133±17/78±10 mm Hg, and the mean left ventricular ejection fraction 58±9 percent. The patients received intensive treatment, with 72 percent having previously undergone coronary revascularization and 70 percent receiving lipid-lowering drugs. The incidence of the primary end point — death from cardiovascular causes, myocardial infarction, or coronary revascularization — was 21.9 percent in the trandolapril group, as compared with 22.5 percent in the placebo group (hazard ratio in the trandolapril group, 0.96; 95 percent confidence interval, 0.88 to 1.06; P=0.43) over a median follow-up period of 4.8 years. CONCLUSIONS In patients with stable coronary heart disease and preserved left ventricular function who are receiving “current standard” therapy and in whom the rate of cardiovascular events is lower than in previous trials of ACE inhibitors in patients with vascular disease, there is no evidence that the addition of an ACE inhibitor provides further benefit in

  12. Reproduction and the renin-angiotensin system

    NASA Technical Reports Server (NTRS)

    Ganong, W. F.

    1995-01-01

    A unique aspect of the circulating renin-angiotensin system and the many independent tissue renin-angiotensin systems is their interactions at multiple levels with reproduction. These interactions, which have received relatively little attention, include effects of estrogens and possibly androgens on hepatic and renal angiotensinogen mRNA; effects of androgens on the Ren-2 gene and salivary renin in mice; the prorenin surge that occurs with but outlasts the LH surge during the menstrual cycle; the inhibitory effects of estrogens on thirst and water intake; the tissue renin-angiotensin systems in the brain, the anterior pituitary, and the ovaries and testes, that is, in all the components of the hypothalamo-pituitary-gonadal axis; the presence of some components of the renin-angiotensin system in the uterus and the fetoplacental unit; and the possible relation of renin and angiotensin to ovulation and fetal well-being. These interactions are described and their significance considered in this short review.

  13. Reproduction and the renin-angiotensin system.

    PubMed

    Ganong, W F

    1995-01-01

    A unique aspect of the circulating renin-angiotensin system and the many independent tissue renin-angiotensin systems is their interactions at multiple levels with reproduction. These interactions, which have received relatively little attention, include effects of estrogens and possibly androgens on hepatic and renal angiotensinogen mRNA; effects of androgens on the Ren-2 gene and salivary renin in mice; the prorenin surge that occurs with but outlasts the LH surge during the menstrual cycle; the inhibitory effects of estrogens on thirst and water intake; the tissue renin-angiotensin systems in the brain, the anterior pituitary, and the ovaries and testes, that is, in all the components of the hypothalamo-pituitary-gonadal axis; the presence of some components of the renin-angiotensin system in the uterus and the fetoplacental unit; and the possible relation of renin and angiotensin to ovulation and fetal well-being. These interactions are described and their significance considered in this short review.

  14. Myocardial infarction: management of the subacute period.

    PubMed

    Mercado, Michael G; Smith, Dustin K; McConnon, Michael L

    2013-11-01

    Optimal management of myocardial infarction in the subacute period focuses on improving the discharge planning process, implementing therapies early to prevent recurrent myocardial infarction, and avoiding hospital readmission. Evidence-based guidelines for the care of patients with acute coronary syndrome are not followed up to 25% of the time. Antiplatelet therapy, renin-angiotensin-aldosterone system inhibitors, beta blockers, and statins constitute the foundation of medical therapy. Early noninvasive stress testing is an important risk assessment tool, especially in patients who do not undergo revascularization. Discharge preparation should include a review of medications, referral for exercise-based cardiac rehabilitation, activity recommendations, education about lifestyle modification and recognition of cardiac symptoms, and a clear follow-up plan. Because nonadherence to medications is common in patients after a myocardial infarction and is associated with increased mortality risk, modifiable factors associated with medication self-discontinuation should be addressed before discharge. Structured discharge processes should be used to enhance communication and facilitate the transition from the hospital to the family physician's care.

  15. Angiotensin converting enzyme inhibitors and angiotensin II receptor antagonist attenuate tumor growth via polarization of neutrophils toward an antitumor phenotype

    PubMed Central

    Shrestha, Sanjeeb; Noh, Jae Myoung; Kim, Shin-Yeong; Ham, Hwa-Yong; Kim, Yeon-Ja; Yun, Young-Jin; Kim, Min-Ju; Kwon, Min-Soo; Song, Dong-Keun; Hong, Chang-Won

    2016-01-01

    ABSTRACT Tumor microenvironments polarize neutrophils to protumoral phenotypes. Here, we demonstrate that the angiotensin converting enzyme inhibitors (ACEis) and angiotensin II type 1 receptor (AGTR1) antagonist attenuate tumor growth via polarization of neutrophils toward an antitumoral phenotype. The ACEis or AGTR1 antagonist enhanced hypersegmentation of human neutrophils and increased neutrophil cytotoxicity against tumor cells. This neutrophil hypersegmentation was dependent on the mTOR pathway. In a murine tumor model, ACEis and AGTR1 antagonist attenuated tumor growth and enhanced neutrophil hypersegmentation. ACEis inhibited tumor-induced polarization of neutrophils to a protumoral phenotype. Neutrophil depletion reduced the antitumor effect of ACEi. Together, these data suggest that the modulation of Ang II pathway attenuates tumor growth via polarization of neutrophils to an antitumoral phenotype. PMID:26942086

  16. Is there any difference between angiotensin converting enzyme inhibitors and angiotensin receptor blockers for heart failure?

    PubMed

    Rain, Carmen; Rada, Gabriel

    2015-07-06

    Angiotensin receptor blockers are usually considered as equivalent to angiotensin converting enzyme inhibitors for patients with heart failure and low-ejection fraction. Some guidelines even recommend the former as first line treatment given their better adverse effects profile. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified four systematic reviews including eight pertinent randomized controlled trials. We combined the evidence using meta-analysis and generated a summary of findings following the GRADE approach. We concluded angiotensin receptor blockers and angiotensin converting enzyme inhibitors probably have a similar effect on mortality, and they might be equivalent in reducing hospitalization risk too. Treatment withdrawal due to adverse effects is probably lower with angiotensin receptor blockers than with angiotensin converting enzyme inhibitors.

  17. Spontaneous late improvement of myocardial viability in the chronic infarct zone is possible, depending on persistent TIMI 3 flow and a low grade stenosis of the infarct artery

    PubMed Central

    Faraggi, M; Montalescot, G; Sarda, L; Heintz, J; Doumit, D; Drobinski, G; Sotirov, I; Le Guludec, D; Thomas, D

    1999-01-01

    OBJECTIVE—In the chronic phase of myocardial infarction, the relation between myocardial recovery and infarct related artery status remains unclear. The spontaneous changes in rest-redistribution thallium defect size were prospectively studied over six months in 52 patients with chronic Q wave myocardial infarction.
DESIGN—Changes in rest thallium defect size, thallium uptake in the infarct area, and radionuclide left ventricular ejection fraction were compared to the quantitative coronary angiogram data. Two groups of patients were considered: patients with a percentage of stenosis below 100% (group 1, n = 31); and patients with an occluded artery (group 2, n = 21). 
RESULTS—In the overall population, the mean (SD) defect size decreased from 28.2 (17.2)% to 24.9 (19.3)% of the whole myocardium (p = 0.01), while, in this area, the thallium uptake increased from 62.9 (13.7)% to 66.9 (15.6)% (p < 0.001). At the time of inclusion, the defect size, thallium uptake, and ejection fraction were similar in both groups. In group 1 patients only, the reduction in defect size correlated with the improvement in ejection fraction (r = 0.41, p = 0.02) and was related to the percentage of coronary artery stenosis. TIMI 3 patients reduced the defect size while other patients increased this defect (−5.1 (7.0)% v +11.0 (14.4)%, p < 0.001). In contrast, no significant relations were found in group 2 patients.
CONCLUSION—Late spontaneous recovery in thallium defect can occur in patients with a patent infarct related artery, depending on the TIMI flow grade and a low grade stenosis of the infarct related artery, and is associated with functional improvement.

 Keywords: myocardial infarction; thallium; infarct related artery; TIMI 3 flow grade PMID:10092571

  18. Myocardial imaging. Coxsackie myocarditis

    SciTech Connect

    Wells, R.G.; Ruskin, J.A.; Sty, J.R.

    1986-09-01

    A 3-week-old male neonate with heart failure associated with Coxsackie virus infection was imaged with Tc-99m PYP and TI-201. The abnormal imaging pattern suggested myocardial infarction. Autopsy findings indicated that the cause was myocardial necrosis secondary to an acute inflammatory process. Causes of abnormal myocardial uptake of Tc-99m PYP in pediatrics include infarction, myocarditis, cardiomyopathy, bacterial endocarditis, and trauma. Myocardial imaging cannot provide a specific cause diagnosis. Causes of myocardial infarction in pediatrics are listed in Table 1.

  19. The Prognostic Value of the Left Ventricular Ejection Fraction Is Dependent upon the Severity of Mitral Regurgitation in Patients with Acute Myocardial Infarction.

    PubMed

    Cho, Jung Sun; Youn, Ho-Joong; Her, Sung-Ho; Park, Maen Won; Kim, Chan Joon; Park, Gyung-Min; Jeong, Myung Ho; Cho, Jae Yeong; Ahn, Youngkeun; Kim, Kye Hun; Park, Jong Chun; Seung, Ki Bae; Cho, Myeong Chan; Kim, Chong Jin; Kim, Young Jo; Han, Kyoo Rok; Kim, Hyo Soo

    2015-07-01

    The prognostic value of the left ventricle ejection fraction (LVEF) after acute myocardial infarction (AMI) has been questioned even though it is an accurate marker of left ventricle (LV) systolic dysfunction. This study aimed to examine the prognostic impact of LVEF in patients with AMI with or without high-grade mitral regurgitation (MR). A total of 15,097 patients with AMI who received echocardiography were registered in the Korean Acute Myocardial Infarction Registry (KAMIR) between January 2005 and July 2011. Patients with low-grade MR (grades 0-2) and high-grade MR (grades 3-4) were divided into the following two sub-groups according to LVEF: LVEF ≤ 40% (n = 2,422 and 197, respectively) and LVEF > 40% (n = 12,252 and 226, respectively). The primary endpoints were major adverse cardiac events (MACE), cardiac death, and all-cause death during the first year after registration. Independent predictors of mortality in the multivariate analysis in AMI patients with low-grade MR were age ≥ 75 yr, Killip class ≥ III, N-terminal pro-B-type natriuretic peptide > 4,000 pg/mL, high-sensitivity C-reactive protein ≥ 2.59 mg/L, LVEF ≤ 40%, estimated glomerular filtration rate (eGFR), and percutaneous coronary intervention (PCI). However, PCI was an independent predictor in AMI patients with high-grade MR. No differences in primary endpoints between AMI patients with high-grade MR (grades 3-4) and EF ≤ 40% or EF > 40% were noted. MR is a predictor of a poor outcome regardless of ejection fraction. LVEF is an inadequate method to evaluate contractile function of the ischemic heart in the face of significant MR.

  20. Angiotensin converting enzyme gene polymorphism in familial hypertrophic cardiomyopathy patients

    SciTech Connect

    Yu, B; Peric, S.; Ross, D.

    1994-09-01

    An insertion/deletion (I/D) polymorphism of the angiotensin I converting enzyme (ACE) gene is a useful predictor of human plasma ACE levels. ACE levels tend to be lowest in subjects with ACE genotype DD and intermediate in subjects with ACE genotype ID. Angiotensin II (Ang II) as a product of ACE is a cardiac growth factor and produces a marked hypertrophy of the chick myocyte in cell culture. Rat experiments also suggest that a small dose of ACE inhibitor that does not affect the afterload results in prevention or regression of cardiac hypertrophy. In order to study the relationship of ACE and the severity of hypertrophy, the ACE genotype has been determined in 28 patients with a clinical diagnosis of familial hypertrophic cardiomyopathy (FHC) and 51 normal subjects. The respective frequencies of I and D alleles were: 0.52 and 0.48 (in FHC patients) and 0.44 and 0.56 (in the normal controls). There was no significant difference in the allele frequencies between FHC and normal subjects ({chi}{sup 2}=0.023, p>0.05). The II, ID, and DD genotypes were present in 7, 15, and 6 FHC patients, respectively. The averages of maximal thickness of the interventricular septum measured by echocardiography or at autopsy were 18 {plus_minus}3, 19{plus_minus}4, and 19{plus_minus}3 mm in II, ID and DD genotypes, respectively. The ACE gene polymorphism did not correlate with the severity of left ventricular hypertrophy in FHC patients (r{sub s}=0.231, p>0.05). These results do not necessarily exclude the possible effect of Ang II on the hypertrophy since the latter may be produced through the action of chymase in the human ventricles. However, ACE gene polymorphism is not a useful predictor of the severity of myocardial hypertrophy in FHC patients.

  1. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src.

    PubMed

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes-all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  2. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor β-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent.

    PubMed

    Marques-Lopes, Jose; Van Kempen, Tracey; Waters, Elizabeth M; Pickel, Virginia M; Iadecola, Costantino; Milner, Teresa A

    2014-09-01

    The incidence of hypertension increases after menopause. Similar to humans, "slow-pressor" doses of angiotensin II (AngII) increase blood pressure in young males, but not in young female mice. However, AngII increases blood pressure in aged female mice, paralleling reproductive hormonal changes. These changes could influence receptor trafficking in central cardiovascular circuits and contribute to hypertension. Increased postsynaptic N-methyl-D-aspartate (NMDA) receptor activity in the hypothalamic paraventricular nucleus (PVN) is crucial for the sympathoexcitation driving AngII hypertension. Estrogen receptors β (ERβs) are present in PVN neurons. We tested the hypothesis that changes in ovarian hormones with age promote susceptibility to AngII hypertension, and influence NMDA receptor NR1 subunit trafficking in ERβ-containing PVN neurons. Transgenic mice expressing enhanced green fluorescent protein (EGFP) in ERβ-containing cells were implanted with osmotic minipumps delivering AngII (600 ng/kg/min) or saline for 2 weeks. AngII increased blood pressure in 2-month-old males and 18-month-old females, but not in 2-month-old females. By electron microscopy, NR1-silver-intensified immunogold (SIG) was mainly in ERβ-EGFP dendrites. At baseline, NR1-SIG density was greater in 2-month-old females than in 2-month-old males or 18-month-old females. After AngII infusion, NR1-SIG density was decreased in 2-month-old females, but increased in 2-month-old males and 18-month-old females. These findings suggest that, in young female mice, NR1 density is decreased in ERβ-PVN dendrites thus reducing NMDA receptor activity and preventing hypertension. Conversely, in young males and aged females, NR1 density is upregulated in ERβ-PVN dendrites and ultimately leads to the neurohumoral dysfunction driving hypertension. PMID:24639345

  3. Angiotensin II Reduces Lipoprotein Lipase Expression in Visceral Adipose Tissue via Phospholipase C β4 Depending on Feeding but Increases Lipoprotein Lipase Expression in Subcutaneous Adipose Tissue via c-Src

    PubMed Central

    Uchiyama, Tsuyoshi; Tomono, Shoichi; Sato, Koichi; Nakamura, Tetsuya; Kurabayashi, Masahiko; Okajima, Fumikazu

    2015-01-01

    Metabolic syndrome is characterized by visceral adiposity, insulin resistance, high triglyceride (TG)- and low high-density lipoprotein cholesterol-levels, hypertension, and diabetes—all of which often cause cardiovascular and cerebrovascular diseases. It remains unclear, however, why visceral adiposity but not subcutaneous adiposity causes insulin resistance and other pathological situations. Lipoprotein lipase (LPL) catalyzes hydrolysis of TG in plasma lipoproteins. In the present study, we investigated whether the effects of angiotensin II (AngII) on TG metabolism are mediated through an effect on LPL expression. Adipose tissues were divided into visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) for comparison. AngII accelerated LPL expression in SAT but, on the contrary, suppressed its expression in VAT. In both SAT and VAT, AngII signaled through the same type 1 receptor. In SAT, AngII increased LPL expression via c-Src and p38 MAPK signaling. In VAT, however, AngII reduced LPL expression via the Gq class of G proteins and the subsequent phospholipase C β4 (PLCβ4), protein kinase C β1, nuclear factor κB, and inducible nitric oxide synthase signaling pathways. PLCβ4 small interfering RNA experiments showed that PLCβ4 expression is important for the AngII-induced LPL reduction in VAT, in which PLCβ4 expression increases in the evening and falls at night. Interestingly, PLCβ4 expression in VAT decreased with fasting, while AngII did not decrease LPL expression in VAT in a fasting state. In conclusion, AngII reduces LPL expression through PLCβ4, the expression of which is regulated by feeding in VAT, whereas AngII increases LPL expression in SAT. The different effects of AngII on LPL expression and, hence, TG metabolism in VAT and SAT may partly explain their different contributions to the development of metabolic syndrome. PMID:26447765

  4. Activation of the Cardiac Renin-Angiotensin System in High Oxygen-Exposed Newborn Rats: Angiotensin Receptor Blockade Prevents the Developmental Programming of Cardiac Dysfunction.

    PubMed

    Bertagnolli, Mariane; Dios, Anne; Béland-Bonenfant, Sarah; Gascon, Gabrielle; Sutherland, Megan; Lukaszewski, Marie-Amélie; Cloutier, Anik; Paradis, Pierre; Schiffrin, Ernesto L; Nuyt, Anne Monique

    2016-04-01

    Newborn rats exposed to high oxygen (O2), mimicking preterm birth-related neonatal stress, develop later in life cardiac hypertrophy, dysfunction, fibrosis, and activation of the renin-angiotensin system. Cardiac renin-angiotensin system activation in O2-exposed adult rats is characterized by an imbalance in angiotensin (Ang) receptors type 1/2 (AT1/2), with prevailing AT1 expression. To study the role of renin-angiotensin system in the developmental programming of cardiac dysfunction, we assessed Ang receptor expression during neonatal high O2 exposure and whether AT1 receptor blockade prevents cardiac alterations in early adulthood. Sprague-Dawley newborn rats were kept with their mother in 80% O2 or room air (control) from days 3 to 10 (P3-P10) of life. Losartan or water was administered by gavage from P8 to P10 (n=9/group). Rats were studied at P3 (before O2 exposure), P5, P10 (end of O2), and P28. Losartan treatment had no impact on growth or kidney development. AT1 and Ang type 2 receptors were upregulated in the left ventricle by high O2 exposure (P5 and P10), which was prevented by Losartan treatment at P10. Losartan prevented the cardiac AT1/2 imbalance at P28. Losartan decreased cardiac hypertrophy and fibrosis and improved left ventricle fraction of shortening in P28 O2-exposed rats, which was associated with decreased oxidation of calcium/calmodulin-dependent protein kinase II, inhibition of the transforming growth factor-β/SMAD3 pathway, and upregulation of cardiac angiotensin-converting enzyme 2. In conclusion, short-term Ang II blockade during neonatal high O2 prevents the development of cardiac alterations later in life in rats. These findings highlight the key role of neonatal renin-angiotensin system activation in the developmental programming of cardiac dysfunction induced by deleterious neonatal conditions.

  5. Angiotensin receptor-neprilysin inhibitors: clinical potential in heart failure and beyond

    PubMed Central

    Singh, Jagdeep SS; Lang, Chim C

    2015-01-01

    Heart failure remains a major concern across the globe as life expectancies and delivery of health care continue to improve. There has been a dearth of new developments in heart failure therapies in the last decade until last year, with the release of the results from the PARADIGM-HF Trial heralding the arrival of a promising new class of drug, ie, the angiotensin receptor-neprilysin inhibitor. In this review, we discuss the evolution of our incremental understanding of the neurohormonal mechanisms involved in the pathophysiology of heart failure, which has led to our success in modulating its various pathways. We start by examining the renin-angiotensin-aldosterone system, followed by the challenges of modulating the natriuretic peptide system. We then delve deeper into the pharmacology and mechanisms by which angiotensin receptor-neprilysin inhibitors achieve their significant cardiovascular benefits. Finally, we also consider the potential application of this new class of drug in other areas, such as heart failure with preserved ejection fraction, hypertension, patients with renal impairment, and following myocardial infarction. PMID:26082640

  6. 6β-hydroxytestosterone, a cytochrome P450 1B1 metabolite of testosterone, contributes to angiotensin II-induced hypertension and its pathogenesis in male mice.

    PubMed

    Pingili, Ajeeth K; Kara, Mehmet; Khan, Nayaab S; Estes, Anne M; Lin, Zongtao; Li, Wei; Gonzalez, Frank J; Malik, Kafait U

    2015-06-01

    Previously, we showed that Cyp1b1 gene disruption minimizes angiotensin II-induced hypertension and associated pathophysiological changes in male mice. This study was conducted to test the hypothesis that cytochrome P450 1B1-generated metabolites of testosterone, 6β-hydroxytestosterone and 16α-hydroxytestosterone, contribute to angiotensin II-induced hypertension and its pathogenesis. Angiotensin II infusion for 2 weeks increased cardiac cytochrome P450 1B1 activity and plasma levels of 6β-hydroxytestosterone, but not 16α-hydroxytestosterone, in Cyp1b1(+/+) mice without altering Cyp1b1 gene expression; these effects of angiotensin II were not observed in Cyp1b1(-/-) mice. Angiotensin II-induced increase in systolic blood pressure and associated cardiac hypertrophy, and fibrosis, measured by intracardiac accumulation of α-smooth muscle actin, collagen, and transforming growth factor-β, and increased nicotinamide adenine dinucleotide phosphate oxidase activity and production of reactive oxygen species; these changes were minimized in Cyp1b1(-/-) or castrated Cyp1b1(+/+) mice, and restored by treatment with 6β-hydroxytestoterone. In Cyp1b1(+/+) mice, 6β-hydroxytestosterone did not alter the angiotensin II-induced increase in systolic blood pressure; the basal systolic blood pressure was also not affected by this agent in either genotype. Angiotensin II or castration did not alter cardiac, angiotensin II type 1 receptor, angiotensin-converting enzyme, Mas receptor, or androgen receptor mRNA levels in Cyp1b1(+/+) or in Cyp1b1(-/-) mice. These data suggest that the testosterone metabolite, 6β-hydroxytestosterone, contributes to angiotensin II-induced hypertension and associated cardiac pathogenesis in male mice, most probably by acting as a permissive factor. Moreover, cytochrome P450 1B1 could serve as a novel target for developing agents for treating renin-angiotensin and testosterone-dependent hypertension and associated pathogenesis in males.

  7. Reciprocal roles of angiotensin II and Angiotensin II Receptors Blockade (ARB) in regulating Cbfa1/RANKL via cAMP signaling pathway: possible mechanism for hypertension-related osteoporosis and antagonistic effect of ARB on hypertension-related osteoporosis.

    PubMed

    Guan, Xiao-Xu; Zhou, Yi; Li, Ji-Yao

    2011-01-01

    Hypertension is a risk factor for osteoporosis. Animal and epidemiological studies demonstrate that high blood pressure is associated with increased calcium loss, elevated parathyroid hormone, and increased calcium movement from bone. However, the mechanism responsible for hypertension-related osteoporosis remains elusive. Recent epidemiological studies indicate the benefits of Angiotensin II Receptors Blockade (ARB) on decreasing fracture risks. Since receptors for angiotensin II, the targets of ARB, are expressed in both osteoblasts and osteoclasts, we postulated that angiotensin II plays an important role in hypertension-related osteoporosis. Cbfa1 and RANKL, the important factors for maintaining bone homeostasis and key mediators in controlling osteoblast and osteoclast differentiation, are both regulated by cAMP-dependent signaling. Angiotensin II along with factors such as LDL, HDL, NO and homocysteine that are commonly altered both in hypertension and osteoporosis, can down-regulate the expression of Cbfa1 but up-regulate RANKL expression via the cAMP signaling pathway. We thus hypothesized that, by altering the ratio of Cbfa1/RANKL expression via the cAMP-dependent pathway, angiotensin II differently regulates osteoblast and osteoclast differentiation leading to enhanced bone resorption and reduced bone formation. Since ARB can antagonize the adverse effect of angiotensin II on bone by lowering cAMP levels and modifying other downstream targets, including LDL, HDL, NO and Cbfa1/RANKL, we propose the hypothesis that the antagonistic effects of ARB may also be exerted via cAMP signaling pathway. PMID:21845073

  8. p38 MAPK-dependent small HSP27 and αB-crystallin phosphorylation in regulation of myocardial function following cardioplegic arrest.

    PubMed

    Clements, Richard T; Feng, Jun; Cordeiro, Brenda; Bianchi, Cesario; Sellke, Frank W

    2011-05-01

    We previously demonstrated that myocardial p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27) are phosphorylated following cardioplegic arrest in patients undergoing cardiac surgery and correlate with reduced cardiac function. The following studies were performed to determine whether inhibition of p38 MAPK and/or overexpression of nonphosphorylatable HSP27 improves cardiac function following cardioplegic arrest. Langendorff-perfused isolated rat hearts were subjected to 2 h of intermittent cold cardioplegia followed by 30 min of reperfusion. Hearts were treated with (CP+SB) or without (CP) the p38 MAPK inhibitor SB-203580 (5 μM) supplied in the cardioplegia. Sham-treated hearts served as controls. In separate experiments, isolated rat ventricular myocytes infected with either green fluorescent protein (GFP) or a nonphosphorylatable HSP27 mutant (3A-HSP27) were subjected to 3 h of cold hypoxic cardioplegia and simulated reperfusion (CP) followed by video microscopy and length change measurements. Baseline parameters of cardiac function were similar between groups [left ventricular developed pressure (LVDP), 119 ± 4.9 mmHg; positive and negative first derivatives of LV pressure (± dP/dt), 3,139 ± 245 and 2, 314 ± 110 mmHg/s]. CP resulted in reduced cardiac function (LVDP, 72.2 ± 5.8 mmHg; ± dP/dt, 2,076 ± 231 and -1,317 ± 156 mmHg/s) compared with baseline. Treatment with 5 μM SB-203580 significantly improved CP-induced cardiac function (LVDP, 101.9 ± 0 mmHg; ± dP/dt, 2,836 ± 163 and -2,108 ± 120 mmHg/s; P = 0.03, 0.01, and 0.04, CP+SB vs. CP). Inhibition of p38 MAPK significantly lowered CP-induced p38 MAPK, HSP27, and αB-crystallin (cryAB) phosphorylation. In vitro CP decreased myocyte length changes from 10.3 ± 1.5% (GFP) to 5.7 ± 0.8% (GFP+CP). Infection with 3A-HSP27 completely rescued CP-induced decreased myocyte contraction (11.1 ± 1.0%). However, infection with 3A-HSP27 did not block the endogenous HSP27 response

  9. Time-dependent changes in the expression of thyroid hormone receptor alpha 1 in the myocardium after acute myocardial infarction: possible implications in cardiac remodelling.

    PubMed

    Pantos, Constantinos; Mourouzis, Iordanis; Xinaris, Christodoulos; Kokkinos, Alexandros D; Markakis, Konstantinos; Dimopoulos, Antonios; Panagiotou, Matthew; Saranteas, Theodosios; Kostopanagiotou, Georgia; Cokkinos, Dennis V

    2007-04-01

    The present study investigated whether changes in thyroid hormone (TH) signalling can occur after acute myocardial infarction (AMI) with possible physiological consequences on myocardial performance. TH may regulate several genes encoding important structural and regulatory proteins particularly through the TR alpha 1 receptor which is predominant in the myocardium. AMI was induced in rats by ligating the left coronary artery while sham-operated animals served as controls. This resulted in impaired cardiac function in AMI animals after 2 and 13 weeks accompanied by a shift in myosin isoforms expression towards a fetal phenotype in the non-infarcted area. Cardiac hypertrophy was evident in AMI hearts after 13 weeks but not at 2 weeks. This response was associated with a differential pattern of TH changes at 2 and 13 weeks; T(3) and T(4) levels in plasma were not changed at 2 weeks but T(3) was significantly lower and T(4) remained unchanged at 13 weeks. A twofold increase in TR alpha 1 expression was observed after 13 weeks in the non-infarcted area, P<0.05 versus sham operated, while TR alpha 1 expression remained unchanged at 2 weeks. A 2.2-fold decrease in TR beta 1 expression was found in the non-infarcted area at 13 weeks, P<0.05, while no change in TR beta 1 expression was seen at 2 weeks. Parallel studies with neonatal cardiomyocytes showed that phenylephrine (PE) administration resulted in 4.5-fold increase in the expression of TR alpha 1 and 1.6-fold decrease in TR beta 1 expression versus untreated, P<0.05. In conclusion, cardiac dysfunction which occurs at late stages after AMI is associated with increased expression of TR alpha 1 receptor and lower circulating tri-iodothyronine levels. Thus, apo-TR alpha 1 receptor state may prevail contributing to cardiac fetal phenotype. Furthermore, down-regulation of TR beta 1 also contributes to fetal phenotypic changes. alpha1-adrenergic signalling is, at least in part, involved in this response.

  10. Deletion of protein tyrosine phosphatase 1B rescues against myocardial anomalies in high fat diet-induced obesity: Role of AMPK-dependent autophagy.

    PubMed

    Kandadi, Machender R; Panzhinskiy, Evgeniy; Roe, Nathan D; Nair, Sreejayan; Hu, Dahai; Sun, Aijun

    2015-02-01

    Obesity-induced cardiomyopathy may be mediated by alterations in multiple signaling cascades involved in glucose and lipid metabolism. Protein tyrosine phosphatase-1B (PTP1B) is an important negative regulator of insulin signaling. This study was designed to evaluate the role of PTP1B in high fat diet-induced cardiac contractile anomalies. Wild-type and PTP1B knockout mice were fed normal (10%) or high (45%) fat diet for 5months prior to evaluation of cardiac function. Myocardial function was assessed using echocardiography and an Ion-Optix MyoCam system. Western blot analysis was employed to evaluate levels of AMPK, mTOR, raptor, Beclin-1, p62 and LC3-II. RT-PCR technique was employed to assess genes involved in hypertrophy and lipid metabolism. Our data revealed increased LV thickness and LV chamber size as well as decreased fractional shortening following high fat diet intake, the effect was nullified by PTP1B knockout. High fat diet intake compromised cardiomyocyte contractile function as evidenced by decreased peak shortening, maximal velocity of shortening/relengthening, intracellular Ca²⁺ release as well as prolonged duration of relengthening and intracellular Ca²⁺ decay, the effects of which were alleviated by PTP1B knockout. High fat diet resulted in enlarged cardiomyocyte area and increased lipid accumulation, which were attenuated by PTP1B knockout. High fat diet intake dampened myocardial autophagy as evidenced by decreased LC3-II conversion and Beclin-1, increased p62 levels as well as decreased phosphorylation of AMPK and raptor, the effects of which were significantly alleviated by PTP1B knockout. Pharmacological inhibition of AMPK using compound C disengaged PTP1B knockout-conferred protection against fatty acid-induced cardiomyocyte contractile anomalies. Taken together, our results suggest that PTP1B knockout offers cardioprotection against high fat diet intake through activation of AMPK. This article is part of a Special Issue entitled

  11. N- and C-terminal structure-activity study of angiotensin II on the angiotensin AT2 receptor.

    PubMed

    Bouley, R; Pérodin, J; Plante, H; Rihakova, L; Bernier, S G; Maletínská, L; Guillemette, G; Escher, E

    1998-02-19

    The predominant angiotensin II receptor expressed in the human myometrium is the angiotensin AT2 receptor. This preparation was used for a structure-activity relationship study on angiotensin II analogues modified in positions 1 and 8. The angiotensin AT2 receptor present on human myometrium membranes displayed a high affinity (pKd = 9.18) and was relatively abundant (53-253 fmol/mg of protein). The pharmacological profile was typical of an angiotensin AT2 receptor with the following order of affinities: (angiotensin III > or = angiotensin II > angiotensin I > PD123319 > angiotensin-(1-7) > angiotensin-(1-6) approximately angiotensin IV > Losartan). Modifications of the N-terminal side chain and of the primary amine of angiotensin II were evaluated. Neutralisation of the methylcarboxylate (Asp) to a methylcarboxamide (Asn) or to a hydroxymethyl (Ser) or substitution for a methylsulfonate group (cysteic acid) improved the affinity. Extension from methylcarboxylate (Asp) to ethylcarboxylate (Glu) did not affect the affinity. Introduction of larger side chains such as the bulky p-benzoylphenylalanine (p-Bpa) or the positively charged Lys did not substantially affect the affinity. Complete removal of the side chain (angiotensin III), however, resulted in a significant affinity increase. Removal or acetylation of the primary amine of angiotensin II did not noticeably influence the affinity. Progressive alkylation of the primary amine significantly increased the affinity, betain structures being the most potent. It appears that quite important differences exist between the angiotensin AT1 and AT2 receptors concerning their pharmacological profile towards analogues of angiotensin II modified in position 1. On position 8 of angiotensin II, a structure-activity relationship on the angiotensin AT2 receptor was quite similar to that observed with angiotensin AT1 receptor. Bulky, hydrophobic aromatic residues displayed affinities similar to or even better than [Sarcosine1

  12. In silico analysis and molecular docking studies of potential angiotensin-converting enzyme inhibitor using quercetin glycosides

    PubMed Central

    Muhammad, Syed Aun; Fatima, Nighat

    2015-01-01

    The purpose of this study was to analyze the inhibitory action of quercetin glycosides by computational docking studies. For this, natural metabolite quercetin glycosides isolated from buckwheat and onions were used as ligand for molecular interaction. The crystallographic structure of molecular target angiotensin-converting enzyme (ACE) (peptidyl-dipeptidase A) was obtained from PDB database (PDB ID: 1O86). Enalapril, a well-known brand of ACE inhibitor was taken as the standard for comparative analysis. Computational docking analysis was performed using PyRx, AutoDock Vina option based on scoring functions. The quercetin showed optimum binding affinity with a molecular target (angiotensin-converting-enzyme) with the binding energy of −8.5 kcal/mol as compared to the standard (−7.0 kcal/mol). These results indicated that quercetin glycosides could be one of the potential ligands to treat hypertension, myocardial infarction, and congestive heart failure. PMID:26109757

  13. Functional proteomic analysis reveals sex-dependent differences in structural and energy-producing myocardial proteins in rat model of alcoholic cardiomyopathy

    PubMed Central

    Fogle, Rachel L.; Hollenbeak, Christopher S.; Stanley, Bruce A.; Vary, Thomas C.; Kimball, Scot R.

    2011-01-01

    Long-term ethanol exposure leads to a sexually dimorphic response in both the susceptibility to cardiac pathology (protective effect of the female heart) and the expression of selected myocardial proteins. The purpose of the present study was to use proteomics to examine the effect of chronic alcohol consumption on a broader array of cardiac proteins and how these were affected between the sexes. Male and female rats were maintained for 18 wk on a 40% ethanol-containing diet in which alcohol was provided in drinking water and agar blocks. Differences in the content of specific cardiac proteins in isopycnic centrifugal fractions were determined using mass spectrometry on iTRAQ-labeled tryptic fragments. A random effects model of meta-analysis was developed to combine the results from multiple iTRAQ experiments. Analysis of a network of proteins involved in cardiovascular system development and function showed that troponins were oppositely regulated by alcohol exposure in females (upregulated) vs. males (downregulated), and this effect was validated by Western blot analysis. Pathway analysis also revealed that alcohol-consuming males showed increased expression of proteins involved in various steps of oxidative phosphorylation including complexes I, III, IV, and V, whereas females showed no change or decreased content. One implication from these findings is that females may be protected from the toxic effects of alcohol due to their ability to maintain contractile function, maintain efficiency of force generation, and minimize oxidative stress. However, the alcohol-induced insult may lead to increased production of reactive oxygen species and structural abnormalities in male myocardium. PMID:21245415

  14. Hydrogen Sulfide Donor GYY4137 Protects against Myocardial Fibrosis

    PubMed Central

    Meng, Guoliang; Zhu, Jinbiao; Xiao, Yujiao; Huang, Zhengrong; Zhang, Yuqing; Tang, Xin; Xie, Liping; Chen, Yu; Shao, Yongfeng; Ferro, Albert; Wang, Rui; Moore, Philip K.; Ji, Yong

    2015-01-01

    Hydrogen sulfide (H2S) is a gasotransmitter which regulates multiple cardiovascular functions. However, the precise roles of H2S in modulating myocardial fibrosis in vivo and cardiac fibroblast proliferation in vitro remain unclear. We investigated the effect of GYY4137, a slow-releasing H2S donor, on myocardial fibrosis. Spontaneously hypertensive rats (SHR) were administrated with GYY4137 by intraperitoneal injection daily for 4 weeks. GYY4137 decreased systolic blood pressure and inhibited myocardial fibrosis in SHR as evidenced by improved cardiac collagen volume fraction (CVF) in the left ventricle (LV), ratio of perivascular collagen area (PVCA) to lumen area (LA) in perivascular regions, reduced hydroxyproline concentration, collagen I and III mRNA expression, and cross-linked collagen. GYY4137 also inhibited angiotensin II- (Ang II-) induced neonatal rat cardiac fibroblast proliferation, reduced the number of fibroblasts in S phase, decreased collagen I and III mRNA expression and protein synthesis, attenuated oxidative stress, and suppressed α-smooth muscle actin (α-SMA), transforming growth factor-β1 (TGF-β1) expression as well as Smad2 phosphorylation. These results indicate that GYY4137 improves myocardial fibrosis perhaps by a mechanism involving inhibition of oxidative stress, blockade of the TGF-β1/Smad2 signaling pathway, and decrease in α-SMA expression in cardiac fibroblasts. PMID:26078813

  15. Renin-angiotensin system blockade: Its contribution and controversy.

    PubMed

    Miyajima, Akira; Kosaka, Takeo; Kikuchi, Eiji; Oya, Mototsugu

    2015-08-01

    Angiotensin II is a key biological peptide in the renin-angiotensin system that regulates blood pressure and renal hemodynamics, and extensive experimental studies have shown that angiotensin II promotes diverse fibrotic changes and induces neovascularization in several inflammatory diseases. It is known that angiotensin II can be controlled using renin-angiotensin system blockade when angiotensin II is the main factor inducing a particular disease, and renin-angiotensin system blockade has assumed a central role in the treatment of inflammatory nephritis, cardiovascular disorders and retinopathy. In contrast, renin-angiotensin system blockade was found to have not only these effects but also other functions, such as inhibition of cancer growth, angiogenesis and metastasis. Numerous studies have sought to elucidate the mechanisms and support these antitumor effects. However, a recent meta-analysis showed that renin-angiotensin system blockade use might in fact increase the incidence of cancer, so renin-angiotensin system blockade use has become somewhat controversial. Although the renin-angiotensin system has most certainly made great contributions to experimental models and clinical practice, some issues still need to be resolved. The present review discusses the contribution and controversy surrounding the renin-angiotensin system up to the present time.

  16. Angiotensin II induces interleukin-1β-mediated islet inflammation and β-cell dysfunction independently of vasoconstrictive effects.

    PubMed

    Sauter, Nadine S; Thienel, Constanze; Plutino, Yuliya; Kampe, Kapil; Dror, Erez; Traub, Shuyang; Timper, Katharina; Bédat, Benoit; Pattou, Francois; Kerr-Conte, Julie; Jehle, Andreas W; Böni-Schnetzler, Marianne; Donath, Marc Y

    2015-04-01

    Pathological activation of the renin-angiotensin system (RAS) is associated with the metabolic syndrome, and the new onset of type 2 diabetes can be delayed by RAS inhibition. In animal models of type 2 diabetes, inhibition of the RAS improves insulin secretion. However, the direct effects of angiotensin II on islet function and underlying mechanisms independent of changes in blood pressure remain unclear. Here we show that exposure of human and mouse islets to angiotensin II induces interleukin (IL)-1-dependent expression of IL-6 and MCP-1, enhances β-cell apoptosis, and impairs mitochondrial function and insulin secretion. In vivo, mice fed a high-fat diet and treated with angiotensin II and the vasodilator hydralazine to prevent hypertension showed defective glucose-stimulated insulin secretion and deteriorated glucose tolerance. Application of an anti-IL-1β antibody reduced the deleterious effects of angiotensin II on islet inflammation, restored insulin secretion, and improved glycemia. We conclude that angiotensin II leads to islet dysfunction via induction of inflammation and independent of vasoconstriction. Our findings reveal a novel role for the RAS and an additional rationale for the treatment of type 2 diabetic patients with an IL-1β antagonist.

  17. Angiotensins as therapeutic targets beyond heart disease.

    PubMed

    Passos-Silva, Danielle Gomes; Brandan, Enrique; Santos, Robson Augusto Souza

    2015-05-01

    The renin-angiotensin system (RAS) plays a pivotal role in cardiovascular and hydro-electrolyte homeostasis. Blockade of the RAS as a therapeutic strategy for treating hypertension and related cardiovascular diseases is well established. However, actions of the RAS go far beyond the targets initially described. In this regard, the recent identification of novel components of the RAS, including angiotensin-(1-7) [Ang-(1-7)], Ang-(1-9), and alamandine, have opened new possibilities for interfering with the development and manifestations of cardiovascular and non-cardiovascular diseases. In this article, we briefly review novel targets for angiotensins and its therapeutic implications in diverse areas, including cancer, inflammation, and glaucoma. PMID:25847571

  18. Angiotensin converting enzyme inhibition and the kidney

    NASA Technical Reports Server (NTRS)

    Hollenberg, N. K.

    1988-01-01

    Angiotensin II (Ang II) induces a marked reduction in renal blood flow at doses well below those required to induce a pressor response, and as blood flow falls there is a decline in glomerular filtration rate and sodium excretion. This striking sensitivity of the renal blood supply led many workers to consider the possibility that angiotensin functions as a local renal hormone. As angiotensin converting enzyme (ACE) was found in particular abundance in the lung, it seemed reasonable to suspect that most of the conversion occurred there, and that the function of Ang II would be primarily systemic, rather than intrarenal. In this review, I will explore the evidence that has accumulated on these two possibilities, since they have important implications for our current understanding of normal kidney function and derangements of kidney function in disease.

  19. A current evaluation of the safety of angiotensin receptor blockers and direct renin inhibitors

    PubMed Central

    Siragy, Helmy M

    2011-01-01

    The safety of angiotensin II receptor blockers (ARBs) for the treatment of hypertension and cardiovascular and renal diseases has been well documented in numerous randomized clinical trials involving thousands of patients. However, recent concerns have surfaced about possible links between ARBs and increased risks of myocardial infarction and cancer. Less is known about the safety of the direct renin inhibitor aliskiren, which was approved as an antihypertensive in 2007. This article provides a detailed review of the safety of ARBs and aliskiren, with an emphasis on the risks of cancer and myocardial infarction associated with ARBs. Safety data were identified by searching PubMed and Food and Drug Administration (FDA) Web sites through April 2011. ARBs are generally well tolerated, with no known class-specific adverse events. The possibility of an increased risk of myocardial infarction associated with ARBs was suggested predominantly because the Valsartan Antihypertensive Long-Term Use Evaluation (VALUE) trial reported a statistically significant increase in the incidence of myocardial infarction with valsartan compared with amlodipine. However, no large-scale, randomized clinical trials published after the VALUE study have shown a statistically significant increase in the incidence of myocardial infarction associated with ARBs compared with placebo or non-ARBs. Meta-analyses examining the risk of cancer associated with ARBs have produced conflicting results, most likely due to the inherent limitations of analyzing heterogeneous data and a lack of published cancer data. An ongoing safety investigation by the FDA has not concluded that ARBs increase the risk of cancer. Pooled safety results from clinical trials indicate that aliskiren is well tolerated, with a safety profile similar to that of placebo. ARBs and aliskiren are well tolerated in patients with hypertension and certain cardiovascular and renal conditions; their benefits outweigh possible safety concerns

  20. Angiotensin II during Experimentally Simulated Central Hypovolemia

    PubMed Central

    Jensen, Theo Walther; Olsen, Niels Vidiendal

    2016-01-01

    Central hypovolemia, defined as diminished blood volume in the heart and pulmonary vascular bed, is still an unresolved problem from a therapeutic point of view. The development of pharmaceutical agents targeted at specific angiotensin II receptors, such as the non-peptidergic AT2-receptor agonist compound 21, is yielding many opportunities to uncover more knowledge about angiotensin II receptor profiles and possible therapeutic use. Cardiovascular, anti-inflammatory, and neuroprotective therapeutic use of compound 21 have been suggested. However, there has not yet been a focus on the use of these agents in a hypovolemic setting. We argue that the latest debates on the effect of angiotensin II during hypovolemia might guide for future studies, investigating the effect of such agents during experimentally simulated central hypovolemia. The purpose of this review is to examine the role of angiotensin II during episodes of central hypovolemia. To examine this, we reviewed results from studies with three experimental models of simulated hypovolemia: head up tilt table test, lower body negative pressure, and hemorrhage of animals. A systemic literature search was made with the use of PubMed/MEDLINE for studies that measured variables of the renin–angiotensin system or its effect during simulated hypovolemia. Twelve articles, using one of the three models, were included and showed a possible organ-protective effect and an effect on the sympathetic system of angiotensin II during hypovolemia. The results support the possible organ-protective vasodilatory role for the AT2-receptor during hypovolemia on both the kidney and the splanchnic tissue. PMID:26973842

  1. Intrarenal alterations of the angiotensin-converting enzyme type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats.

    PubMed

    Husková, Zuzana; Kopkan, Libor; Červenková, Lenka; Doleželová, Šárka; Vaňourková, Zdeňka; Škaroupková, Petra; Nishiyama, Akira; Kompanowska-Jezierska, Elzbieta; Sadowski, Janusz; Kramer, Herbert J; Červenka, Luděk

    2016-04-01

    The role of the intrarenal renin-angiotensin system (RAS) in the pathophysiology of malignant hypertension is not fully understood. Accumulating evidence indicates that the recently discovered vasodilator axis of the RAS, angiotensin-converting enzyme (ACE) type 2 (ACE2)/angiotensin 1-7 (ANG 1-7), constitutes an endogenous system counterbalancing the hypertensiogenic axis, ACE/angiotensin II (ANG II)/AT1 receptor. This study aimed to evaluate the role of the intrarenal vasodilator RAS axis in the pathophysiology of ANG II-dependent malignant hypertension in Cyp1a1-Ren-2 transgenic rats. ANG II-dependent malignant hypertension was induced by 13 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. It was hypothesized that pharmacologically-induced inhibition of the ACE2/ANG 1-7 complex should aggravate, and activation of this axis should attenuate, the course of ANG II-dependent malignant hypertension. Blood pressure (BP) was monitored by radiotelemetry. ACE2 inhibitor (DX 600, 0.2 μg/day) and ACE2 activator (DIZE, 1 mg/day) were administrated via osmotic minipumps. Even though ACE2 inhibitor significantly decreased and ACE2 activator increased intrarenal ANG 1-7 concentrations, the course of BP, as well as of albuminuria, cardiac hypertrophy and renal glomerular damage, were not altered. It was shown that intrarenal alterations in the ACE2/ANG 1-7 complex did not significantly modify the course of malignant hypertension in I3C-induced Cyp1a1-Ren-2 transgenic rats. Thus, in our experimental setting alterations of this intrarenal vasodilator complex of the RAS do not significantly modify the form of malignant hypertension that clearly depends on the inappropriately increased activity of the ACE/ANG II/AT1 receptor axis.

  2. Angiotensin II reduces calcium uptake into bone.

    PubMed

    Schurman, Scott J; Bergstrom, William H; Shoemaker, Lawrence R; Welch, Thomas R

    2004-01-01

    Children with neonatal Bartter syndrome (NBS) have hypercalciuria, nephrocalcinosis, and osteopenia. A complex of basic-fibroblast growth factor (b-FGF) and a naturally occurring glycosaminoglycan has been identified in the serum and urine of NBS patients. This complex increases bone resorption in a bone disc bioassay system. Angiotensin II (AT II), which is increased in Bartter syndrome, increases the synthesis of b-FGF by cultured endothelial cells. Addition of 10(-8) M AT II to the bioassay, a concentration reported in Bartter syndrome patients, significantly decreased calcium uptake into bone discs [E/C 0.60 (0.04), P < 0.001 compared with buffer, normal E/C >0.90]. Adding b-FGF monoclonal antibody at 10 microg/ml [E/C 0.90 (0.06), P=NS] or indomethacin [E/C 1.00 (0.03), P=NS] to 10(-8 )M AT II neutralized this effect. In separate experiments, newborn rats were given intraperitoneal injections of AT II. Bone discs from these animals were used in the bioassay system and calcium uptake was markedly reduced compared with discs from rats injected with phosphate-buffered saline [AT II 6.6 x 10(-9), E/C 0.10 (0.04), P<0.001, AT II 3.3 x 10(-8), E/C 0.10 (0.05), P<0.001]. AT II decreases calcium uptake in the bone disc bioassay system. This effect can be abrogated by antibody to b-FGF or prostaglandin synthetase inhibition. These results support the hypothesis that in children with NBS, elevated levels of AT II stimulate local skeletal b-FGF synthesis, with a resultant increase in bone resorption via a prostaglandin-dependent pathway. PMID:14648327

  3. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease.

  4. Angiotensin 1-7 Protects against Angiotensin II-Induced Endoplasmic Reticulum Stress and Endothelial Dysfunction via Mas Receptor

    PubMed Central

    Murugan, Dharmani; Lau, Yeh Siang; Lau, Wai Chi; Mustafa, Mohd Rais; Huang, Yu

    2015-01-01

    Angiotensin 1–7 (Ang 1–7) counter-regulates the cardiovascular actions of angiotensin II (Ang II). The present study investigated the protective effect of Ang 1–7 against Ang II-induced endoplasmic reticulum (ER) stress and endothelial dysfunction. Ex vivo treatment with Ang II (0.5 μM, 24 hours) impaired endothelium-dependent relaxation in mouse aortas; this harmful effect of Ang II was reversed by co-treatment with ER stress inhibitors, l4-phenylbutyric acid (PBA) and tauroursodeoxycholic acid (TUDCA) as well as Ang 1–7. The Mas receptor antagonist, A779, antagonized the effect of Ang 1–7. The elevated mRNA expression of CHOP, Grp78 and ATF4 or protein expression of p-eIF2α and ATF6 (ER stress markers) in Ang II-treated human umbilical vein endothelial cells (HUVECs) and mouse aortas were blunted by co-treatment with Ang 1–7 and the latter effect was reversed by A779. Furthermore, Ang II-induced reduction in both eNOS phosphorylation and NO production was inhibited by Ang 1–7. In addition, Ang 1–7 decreased the levels of ER stress markers and augmented NO production in HUVECs treated with ER stress inducer, tunicamycin. The present study provides new evidence for functional antagonism between the two arms of the renin-angiotensin system in endothelial cells by demonstrating that Ang 1–7 ameliorates Ang II-stimulated ER stress to raise NO bioavailability, and subsequently preserves endothelial function. PMID:26709511

  5. Enalapril protects against myocardial ischemia/reperfusion injury in a swine model of cardiac arrest and resuscitation

    PubMed Central

    Wang, Guoxing; Zhang, Qian; Yuan, Wei; Wu, Junyuan; Li, Chunsheng

    2016-01-01

    There is strong evidence to suggest that angiotensin-converting enzyme inhibitors (ACEIs) protect against local myocardial ischemia/reperfusion (I/R) injury. This study was designed to explore whether ACEIs exert cardioprotective effects in a swine model of cardiac arrest (CA) and resuscitation. Male pigs were randomly assigned to three groups: sham-operated group, saline treatment group and enalapril treatment group. Thirty minutes after drug infusion, the animals in the saline and enalapril groups were subjected to ventricular fibrillation (8 min) followed by cardiopulmonary resuscitation (up to 30 min). Cardiac function was monitored, and myocardial tissue and blood were collected for analysis. Enalapril pre-treatment did not improve cardiac function or the 6-h survival rate after CA and resuscitation; however, this intervention ameliorated myocardial ultrastructural damage, reduced the level of plasma cardiac troponin I and decreased myocardial apoptosis. Plasma angiotensin (Ang) II and Ang-(1–7) levels were enhanced in the model of CA and resuscitation. Enalapril reduced the plasma Ang II level at 4 and 6 h after the return of spontaneous circulation whereas enalapril did not affect the plasma Ang-(1–7) level. Enalapril pre-treatment decreased the myocardial mRNA and protein expression of angiotensin-converting enzyme (ACE). Enalapril treatment also reduced the myocardial ACE/ACE2 ratio, both at the mRNA and the protein level. Enalapril pre-treatment did not affect the upregulation of ACE2, Ang II type 1 receptor (AT1R) and MAS after CA and resuscitation. Taken together, these findings suggest that enalapril protects against ischemic injury through the attenuation of the ACE/Ang II/AT1R axis after CA and resuscitation in pigs. These results suggest the potential therapeutic value of ACEIs in patients with CA. PMID:27633002

  6. Renal Sympathetic Denervation in Rats Ameliorates Cardiac Dysfunction and Fibrosis Post-Myocardial Infarction Involving MicroRNAs

    PubMed Central

    Zheng, Xiaoxin; Li, Xiaoyan; Lyu, Yongnan; He, Yiyu; Wan, Weiguo; Jiang, Xuejun

    2016-01-01

    Background The role of renal sympathetic denervation (RSD) in ameliorating post-myocardial infarction (MI) left ventricular (LV) fibrosis via microRNA-dependent regulation of connective tissue growth factor (CTGF) remains unknown. Material/Methods MI and RSD were induced in Sprague–Dawley rats by ligating the left coronary artery and denervating the bilateral renal nerves, respectively. Norepinephrine, renin, angiotensin II and aldosterone in plasma, collagen, microRNA21, microRNA 101a, microRNA 133a and CTGF in heart tissue, as well as cardiac function were evaluated six weeks post-MI. Results In the RSD group, parameters of cardiac function were significantly improved as evidenced by increased LV ejection fraction (p<0.01), LV end-systolic diameter (p<0.01), end-diastolic diameter (p<0.05), LV systolic pressure (p<0.05), maximal rate of pressure rise and decline (dP/dtmax and dP/dtmin, p<0.05), and decreased LV end-diastolic pressure (p<0.05) when compared with MI rats. Further, reduced collagen deposition in peri-infarct myocardium was observed in RSD-treated rats along with higher microRNA101a and microRNA133a (p<0.05) and lower microRNA21 expression (p<0.01) than in MI rats. CTGF mRNA and protein levels were decreased in LV following RSD (p<0.01), accompanied by decreased expression of norepinephrine, renin, angiotensin II and aldosterone in plasma (p<0.05) compared with untreated MI rats. Conclusions The potential therapeutic effects of RSD on post-MI LV fibrosis may be partly mediated by inhibition of CTGF expression via upregulation of microRNA 101a and microRNA 133a and downregulation of microRNA21. PMID:27490896

  7. Renin-Angiotensin System Inhibition in Conscious Dogs during Acute Hypoxemia

    PubMed Central

    Liang, Chang-Seng; Gavras, Haralambos

    1978-01-01

    The role of the renin-angiotensin system in mediating the circulatory and metabolic responses to hypoxia was studied in three groups of conscious dogs that were infused continuously with normal saline, teprotide (10 μg/kg per min), and saralasin (1 μg/kg per min), respectively. Hypoxia was produced by switching from breathing room air to 5 or 8% oxygen-nitrogen mixture. Plasma renin activity increased from 2.3±0.4 to 4.9±0.8 ng/ml per h during 8% oxygen breathing, and from 2.8±0.4 to 8.4±1.8 ng/ml per h during 5% oxygen breathing. As expected, cardiac output, heart rate, mean aortic blood pressure, and left ventricular dP/dt and dP/dt/P increased during both 5 and 8% oxygen breathing in the saline-treated dogs; greater increases occurred during the more severe hypoxia. Teprotide and saralasin infusion diminished the hemodynamic responses to 5% oxygen breathing, but did not affect the responses to 8% oxygen breathing significantly. In addition, the increased blood flows to the myocardium, kidneys, adrenals, brain, intercostal muscle, and diaphragm that usually occur during 5% oxygen breathing were reduced by both agents. These agents also reduced the increases in plasma norepinephrine concentration during 5% oxygen breathing, but had no effects on tissue aerobic or anaerobic metabolism. In dogs pretreated with propranolol and phentolamine, administration of teprotide (0.5 mg/kg) during 5% oxygen breathing reduced mean aortic blood pressure and total peripheral vascular resistance, and increased cardiac output and heart rate, but did not affect left ventricular dP/dt, dP/dt/P, and end-diastolic pressure. Simultaneously, renal and myocardial blood flows increased and myocardial oxygen extraction decreased, while myocardial oxygen consumption did not change significantly. These results suggest that the renin-angiotensin system plays an important role in the hemodynamic responses to severe hypoxia. It appears that angiotensin not only exerts a direct

  8. Significant role of female sex hormones in cardiac myofilament activation in angiotensin II-mediated hypertensive rats.

    PubMed

    Pandit, Sulaksana; Woranush, Warunya; Wattanapermpool, Jonggonnee; Bupha-Intr, Tepmanas

    2014-07-01

    Ovariectomy leads to suppression of cardiac myofilament activation in healthy rats implicating the physiological essence of female sex hormones on myocardial contraction. However, the possible function of these hormones during pathologically induced myofilament adaptation is not known. In this study, sham-operated and ovariectomized female rats were chronically exposed to angiotensin II (AII), which has been shown to cause myocardial adaptation. In the shams, AII induced cardiac adaptation by increasing myofilament Ca(2+) sensitivity. Interestingly, this hypersensitivity was further enhanced in AII-infused ovariectomized rats. Ovariectomy increased the phosphorylation levels of cardiac tropomyosin, which may underlie the mechanism of hypersensitivity. On the other hand, AII infusion did not alter maximal tension that was suppressed after ovariectomy. This finding coincided with a comparable increase in β-isoform of myosin heavy chains in both ovariectomized groups. Together, it is conceivable that female sex hormones serve as predominant factors that regulate cardiac myofilament activation. Furthermore, they may prevent stress-induced myofilament maladaptation.

  9. Hypertrophic response to hemodynamic overload: role of load vs. renin-angiotensin system activation

    NASA Technical Reports Server (NTRS)

    Koide, M.; Carabello, B. A.; Conrad, C. C.; Buckley, J. M.; DeFreyte, G.; Barnes, M.; Tomanek, R. J.; Wei, C. C.; Dell'Italia, L. J.; Cooper, G. 4th; Zile, M. R.

    1999-01-01

    Myocardial hypertrophy is one of the basic mechanisms by which the heart compensates for hemodynamic overload. The mechanisms by which hemodynamic overload is transduced by the cardiac muscle cell and translated into cardiac hypertrophy are not completely understood. Candidates include activation of the renin-angiotensin system (RAS) and angiotensin II receptor (AT1) stimulation. In this study, we tested the hypothesis that load, independent of the RAS, is sufficient to stimulate cardiac growth. Four groups of cats were studied: 14 normal controls, 20 pulmonary artery-banded (PAB) cats, 7 PAB cats in whom the AT1 was concomitantly and continuously blocked with losartan, and 8 PAB cats in whom the angiotensin-converting enzyme (ACE) was concomitantly and continuously blocked with captopril. Losartan cats had at least a one-log order increase in the ED50 of the blood pressure response to angiotensin II infusion. Right ventricular (RV) hypertrophy was assessed using the RV mass-to-body weight ratio and ventricular cardiocyte size. RV hemodynamic overload was assessed by measuring RV systolic and diastolic pressures. Neither the extent of RV pressure overload nor RV hypertrophy that resulted from PAB was affected by AT1 blockade with losartan or ACE inhibition with captopril. RV systolic pressure was increased from 21 +/- 3 mmHg in normals to 68 +/- 4 mmHg in PAB, 65 +/- 5 mmHg in PAB plus losartan and 62 +/- 3 mmHg in PAB plus captopril. RV-to-body weight ratio increased from 0.52 +/- 0.04 g/kg in normals to 1.11 +/- 0.06 g/kg in PAB, 1.06 +/- 0.06 g/kg in PAB plus losartan and 1.06 +/- 0.06 g/kg in PAB plus captopril. Thus 1) pharmacological modulation of the RAS with losartan and captopril did not change the extent of the hemodynamic overload or the hypertrophic response induced by PAB; 2) neither RAS activation nor angiotensin II receptor stimulation is an obligatory and necessary component of the signaling pathway that acts as an intermediary coupling load to the

  10. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension. PMID:26976916

  11. Combined Angiotensin Receptor Antagonism and Neprilysin Inhibition.

    PubMed

    Hubers, Scott A; Brown, Nancy J

    2016-03-15

    Heart failure affects ≈5.7 million people in the United States alone. Angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, β-blockers, and aldosterone antagonists have improved mortality in patients with heart failure and reduced ejection fraction, but mortality remains high. In July 2015, the US Food and Drug Administration approved the first of a new class of drugs for the treatment of heart failure: Valsartan/sacubitril (formerly known as LCZ696 and currently marketed by Novartis as Entresto) combines the angiotensin receptor blocker valsartan and the neprilysin inhibitor prodrug sacubitril in a 1:1 ratio in a sodium supramolecular complex. Sacubitril is converted by esterases to LBQ657, which inhibits neprilysin, the enzyme responsible for the degradation of the natriuretic peptides and many other vasoactive peptides. Thus, this combined angiotensin receptor antagonist and neprilysin inhibitor addresses 2 of the pathophysiological mechanisms of heart failure: activation of the renin-angiotensin-aldosterone system and decreased sensitivity to natriuretic peptides. In the Prospective Comparison of ARNI With ACEI to Determine Impact on Global Mortality and Morbidity in Heart Failure (PARADIGM-HF) trial, valsartan/sacubitril significantly reduced mortality and hospitalization for heart failure, as well as blood pressure, compared with enalapril in patients with heart failure, reduced ejection fraction, and an elevated circulating level of brain natriuretic peptide or N-terminal pro-brain natriuretic peptide. Ongoing clinical trials are evaluating the role of valsartan/sacubitril in the treatment of heart failure with preserved ejection fraction and hypertension. We review here the mechanisms of action of valsartan/sacubitril, the pharmacological properties of the drug, and its efficacy and safety in the treatment of heart failure and hypertension.

  12. Myocardial Na,K-ATPase: Clinical aspects

    PubMed Central

    Kjeldsen, Keld

    2003-01-01

    The specific binding of digitalis glycosides to Na,K-ATPase is used as a tool for Na,K-ATPase quantification with high accuracy and precision. In myocardial biopsies from patients with heart failure, total Na,K-ATPase concentration is decreased by around 40%; a correlation exists between a decrease in heart function and a decrease in Na,K-ATPase concentration. During digitalization, around 30% of remaining pumps are occupied by digoxin. Myocardial Na,K-ATPase is also influenced by other drugs used for the treatment of heart failure. Thus, potassium loss during diuretic therapy has been found to reduce myocardial Na,K-ATPase, whereas angiotensin-converting enzyme inhibitors may stimulate Na,K pump activity. Furthermore, hyperaldosteronism induced by heart failure has been found to decrease Na,K-ATPase activity. Accordingly, treatment with the aldosterone antagonist, spironolactone, may also influence Na,K-ATPase activity. The importance of Na,K pump modulation with heart disease, inhibition in digitalization and other effects of medication should be considered in the context of sodium, potassium and calcium regulation. It is recommended that digoxin be administered to heart failure patients who, after institution of mortality-reducing therapy, still have heart failure symptoms, and that the therapy be continued if symptoms are revealed or reduced. Digitalis glycosides are the only safe inotropic drugs for oral use that improve hemodynamics in heart failure. An important aspect of myocardial Na,K pump affection in heart disease is its influence on extracellular potassium (Ke) homeostasis. Two important aspects should be considered: potassium handling among myocytes, and effects of potassium entering the extracellular space of the heart via the bloodstream. It should be noted that both of these aspects of Ke homeostasis are affected by regulatory aspects, eg, regulation of the Na,K pump by physiological and pathophysiological conditions, as well as by medical

  13. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II.

    PubMed

    Bryant, R W; Epstein, A N; Fitzsimons, J T; Fluharty, S J

    1980-04-01

    1. Prolonged exposure of the brain of the normal Na-replete rat to angiotensin II produced a marked and persistent Na appetite. In a first series of experiments, short-term, repeated systemic injections of isoprenaline or renin (both of which raise circulating angiotensin levels), and repeated intracranial injections of angiotensin II evoked increased ingestion of 2 . 7% NaCl. In the second series of experiments, continuous infusions of angiotensin II directly into the brain evoked extremely large intakes of 3% NaCl. 2. In addition to large intakes of hypertonic NaCl some rats drank daily volumes of water that exceeded their body weight. 3. Not only did the animals drink large volumes of 3% NaCl some rats drank daily volumes of water that exceeded their body weight. 3. Not only did the animals drink large volumes of 3% NaCl during continuous angiotensin II infusion, but after termination of the infusion they continued to ingest NaCl at a rate comparable to that of the adrenalectomized rat. In most of the animals the persistent NaCl intake diminished over several days, but other animals continued to drink NaCl for as long as their intake was measured (up to 7 months). 4. The response to continuous infusion of angiotensin II was dose-dependent. Both water and 3% NaCl intake increased over a dose range of 6 ng h-1 to 6000 ng h-1. The persistence of the sodium appetitite was also dose-dependent across the same range of doses. 5. Angiotensin-induced salt appetite is specific for Na. Animals did not drink 0 . 5 M-NH4Cl and only occasionally drank minimal amounts of 0 . 5 M-KCl during continuous infusion. 6. The large water turnover was not responsible for the Na appetite. Rats given access to 3% NaCl only during infusion of angiotensin copiously. Animals that were not infused but were given saccharine-flavoured water in order to increase their water intakes did not drink 3% NaCl offered at the same time even though fluid intake was high. Rats that did not receive

  14. Biochemical properties of the angiotensin-converting-like enzyme from the leech Theromyzon tessulatum.

    PubMed

    Laurent, V; Salzet, M

    1996-01-01

    This article reports the evidence and the biochemical properties of an angiotensin-converting (ACE)-like enzyme from head parts of the leech Theromyzon tessulatum. After solubilization from membranes with Triton X-114, the ACE-like enzyme was purified from the detergent-poor fraction. Four steps of purification including gel permeation and anion exchange chromatographies followed by a reversed-phase HPLC were needed. This poor glycosylated peptidyl dipeptidase (of ca. 120 kDa) hydrolyzes, at pH 8.4 and at 37 degrees C, the Phe8-His9 bond of angiotensin I with a high catalytic activity (i.e., K(m): 830 microM and Kcat/K(m): 153 s-1 mM-1). The hydrolysis of angiotensin I is inhibitable at 80% by captopril (IC50 = 175 nM) and lisinopril (IC50 = 35 nM). This activity is strictly dependent on the presence of NaCl and is increased by Zn2+. This zinc metallopeptidase also attacks peptides that have in their sequence either Gly-His, Gly-Phe, or Phe-His bond [e.g., enkephalins (Kcat/K(m): 12 s-1 mM-1) or bradykinin (Kcat/K(m): 2200 s-1 mM-1]. Taken together, these arguments are consistent with an ACE-like activity implicated in metabolism of angiotensins and bradykinin in leeches.

  15. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  16. Dopamine and angiotensin type 2 receptors cooperatively inhibit sodium transport in human renal proximal tubule cells.

    PubMed

    Gildea, John J; Wang, Xiaoli; Shah, Neema; Tran, Hanh; Spinosa, Michael; Van Sciver, Robert; Sasaki, Midori; Yatabe, Junichi; Carey, Robert M; Jose, Pedro A; Felder, Robin A

    2012-08-01

    Little is known regarding how the kidney shifts from a sodium and water reclaiming state (antinatriuresis) to a state where sodium and water are eliminated (natriuresis). In human renal proximal tubule cells, sodium reabsorption is decreased by the dopamine D(1)-like receptors (D(1)R/D(5)R) and the angiotensin type 2 receptor (AT(2)R), whereas the angiotensin type 1 receptor increases sodium reabsorption. Aberrant control of these opposing systems is thought to lead to sodium retention and, subsequently, hypertension. We show that D(1)R/D(5)R stimulation increased plasma membrane AT(2)R 4-fold via a D(1)R-mediated, cAMP-coupled, and protein phosphatase 2A-dependent specific signaling pathway. D(1)R/D(5)R stimulation also reduced the ability of angiotensin II to stimulate phospho-extracellular signal-regulated kinase, an effect that was partially reversed by an AT(2)R antagonist. Fenoldopam did not increase AT(2)R recruitment in renal proximal tubule cells with D(1)Rs uncoupled from adenylyl cyclase, suggesting a role of cAMP in mediating these events. D(1)Rs and AT(2)Rs heterodimerized and cooperatively increased cAMP and cGMP production, protein phosphatase 2A activation, sodium-potassium-ATPase internalization, and sodium transport inhibition. These studies shed new light on the regulation of renal sodium transport by the dopaminergic and angiotensin systems and potential new therapeutic targets for selectively treating hypertension.

  17. Key features of candesartan cilexetil and a comparison with other angiotensin II receptor antagonists.

    PubMed

    Sever, P S

    1999-01-01

    Current research on angiotensin II AT1-receptor antagonists (AIIRAs) and selected studies presented at the recent symposium held in Amsterdam, The Netherlands, on 6 June 1998, titled 'Angiotensin II Receptor Antagonists are NOT all the Same' are reviewed. AIIRAs offer a number of potential advantages over alternative antihypertensive agents acting via the renin-angiotensin-aldosterone system. They combine blood pressure-lowering effects at least equivalent to those of angiotensin-converting enzyme (ACE) inhibitors, coupled with placebo-like tolerability. Candesartan cilexetil is a novel AIIRA that has demonstrated clinical efficacy superior to losartan, has a sustained duration of action over 24 hours (trough:peak ratio close to 100%) and is well tolerated in patients with essential hypertension. Candesartan cilexetil has a rapid onset of action (approximately 80% of total blood pressure reduction within the first 2 weeks) and dose-dependent effects on blood pressure, is comparable in efficacy to a number of classes of antihypertensives, and is effective in combination therapy (eg, with hydrochlorothiazide and amlodipine). This favourable profile may be due in part to the highly selective, tight binding to and slow dissociation of candesartan from the AT1 receptor. Preliminary studies suggest that candesartan cilexetil also protects end organs (kidney, heart, vasculature, and brain) beyond blood pressure control. PMID:10076915

  18. Classical Renin-Angiotensin System in Kidney Physiology

    PubMed Central

    Sparks, Matthew A.; Crowley, Steven D.; Gurley, Susan B.; Mirotsou, Maria; Coffman, Thomas M.

    2014-01-01

    The renin-angiotensin system has powerful effects in control of the blood pressure and sodium homeostasis. These actions are coordinated through integrated actions in the kidney, cardio-vascular system and the central nervous system. Along with its impact on blood pressure, the renin-angiotensin system also influences a range of processes from inflammation and immune responses to longevity. Here, we review the actions of the “classical” renin-angiotensin system, whereby the substrate protein angiotensinogen is processed in a two-step reaction by renin and angiotensin converting enzyme, resulting in the sequential generation of angiotensin I and angiotensin II, the major biologically active renin-angiotensin system peptide, which exerts its actions via type 1 and type 2 angiotensin receptors. In recent years, several new enzymes, peptides, and receptors related to the renin-angiotensin system have been identified, manifesting a complexity that was previously unappreciated. While the functions of these alternative pathways will be reviewed elsewhere in this journal, our focus here is on the physiological role of components of the “classical” renin-angiotensin system, with an emphasis on new developments and modern concepts. PMID:24944035

  19. Metabolic Actions of Angiotensin II and Insulin: A Microvascular Endothelial Balancing Act

    PubMed Central

    Muniyappa, Ranganath; Yavuz, Shazene

    2012-01-01

    Metabolic actions of insulin to promote glucose disposal are augmented by nitric oxide (NO)-dependent increases in microvascular blood flow to skeletal muscle. The balance between NO-dependent vasodilator actions and endothelin-1-dependent vasoconstrictor actions of insulin is regulated by phosphatidylinositol 3-kinase-dependent (PI3K) - and mitogen-activated protein kinase (MAPK)-dependent signaling in vascular endothelium, respectively. Angiotensin II acting on AT2 receptor increases capillary blood flow to increase insulin-mediated glucose disposal. In contrast, AT1 receptor activation leads to reduced NO bioavailability, impaired insulin signaling, vasoconstriction, and insulin resistance. Insulin-resistant states are characterized by dysregulated local renin-angiotensin-aldosterone system (RAAS). Under insulin-resistant conditions, pathway-specific impairment in PI3K-dependent signaling may cause imbalance between production of NO and secretion of endothelin-1, leading to decreased blood flow, which worsens insulin resistance. Similarly, excess AT1 receptor activity in the microvasculature may selectively impair vasodilation while simultaneously potentiating the vasoconstrictor actions of insulin. Therapeutic interventions that target pathway-selective impairment in insulin signaling and the imbalance in AT1 and AT2 receptor signaling in microvascular endothelium may simultaneously ameliorate endothelial dysfunction and insulin resistance. In the present review, we discuss molecular mechanisms in the endothelium underlying microvascular and metabolic actions of insulin and Angiotensin II, the mechanistic basis for microvascular endothelial dysfunction and insulin resistance in RAAS dysregulated clinical states, and the rationale for therapeutic strategies that restore the balance in vasodilator and constrictor actions of insulin and Angiotensin II in the microvasculature. PMID:22684034

  20. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  1. Design of a MCoTI-Based Cyclotide with Angiotensin (1-7)-Like Activity.

    PubMed

    Aboye, Teshome; Meeks, Christopher J; Majumder, Subhabrata; Shekhtman, Alexander; Rodgers, Kathleen; Camarero, Julio A

    2016-01-26

    We report for the first time the design and synthesis of a novel cyclotide able to activate the unique receptor of angiotensin (1-7) (AT1-7), the MAS1 receptor. This was accomplished by grafting an AT1-7 peptide analog onto loop 6 of cyclotide MCoTI-I using isopeptide bonds to preserve the α-amino and C-terminal carboxylate groups of AT1-7, which are required for activity. The resulting cyclotide construct was able to adopt a cyclotide-like conformation and showed similar activity to that of AT1-7. This cyclotide also showed high stability in human serum thereby providing a promising lead compound for the design of a novel type of peptide-based in the treatment of cancer and myocardial infarction.

  2. Design of a MCoTI-based Cyclotide with Angiotensin 1–7-like Activity

    PubMed Central

    Aboye, Teshome; Meeks, Christopher J.; Majumder, Subhabrata; Shekhtman, Alexander; Rodgers, Kathleen; Camarero, Julio A.

    2016-01-01

    We report for the first time the design and synthesis of a novel cyclotide able to activate the unique receptor of angiotensin-(1–7) (AT1–7), the MAS1 receptor. This was accomplished by grafting an AT 1–7 peptide analog onto loop 6 of cyclotide MCoTI-I using isopeptide bonds to preserve the α-amino and C-terminal carboxylate groups of AT1–7, which are required for activity. The resulting cyclotide construct was able to adopt a cyclotide-like conformation and showed similar activity to that of AT1–7. This cyclotide also showed high stability in human serum thereby providing a promising lead compound for the design of a novel type of peptide-based in the treatment of cancer and myocardial infarction. PMID:26821010

  3. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes.

    PubMed

    Lyu, Linmao; Wang, Hui; Li, Bin; Qin, Qingyun; Qi, Lei; Nagarkatti, Mitzi; Nagarkatti, Prakash; Janicki, Joseph S; Wang, Xing Li; Cui, Taixing

    2015-12-01

    Chronic activation of the myocardial renin angiotensin system (RAS) elevates the local level of angiotensin II (Ang II) thereby inducing pathological cardiac hypertrophy, which contributes to heart failure. However, the precise underlying mechanisms have not been fully delineated. Herein we report a novel paracrine mechanism between cardiac fibroblasts (CF)s and cardiomyocytes whereby Ang II induces pathological cardiac hypertrophy. In cultured CFs, Ang II treatment enhanced exosome release via the activation of Ang II receptor types 1 (AT1R) and 2 (AT2R), whereas lipopolysaccharide, insulin, endothelin (ET)-1, transforming growth factor beta (TGFβ)1 or hydrogen peroxide did not. The CF-derived exosomes upregulated the expression of renin, angiotensinogen, AT1R, and AT2R, downregulated angiotensin-converting enzyme 2, and enhanced Ang II production in cultured cardiomyocytes. In addition, the CF exosome-induced cardiomyocyte hypertrophy was blocked by both AT1R and AT2R antagonists. Exosome inhibitors, GW4869 and dimethyl amiloride (DMA), inhibited CF-induced cardiomyocyte hypertrophy with little effect on Ang II-induced cardiomyocyte hypertrophy. Mechanistically, CF exosomes upregulated RAS in cardiomyocytes via the activation of mitogen-activated protein kinases (MAPKs) and Akt. Finally, Ang II-induced exosome release from cardiac fibroblasts and pathological cardiac hypertrophy were dramatically inhibited by GW4869 and DMA in mice. These findings demonstrate that Ang II stimulates CFs to release exosomes, which in turn increase Ang II production and its receptor expression in cardiomyocytes, thereby intensifying Ang II-induced pathological cardiac hypertrophy. Accordingly, specific targeting of Ang II-induced exosome release from CFs may serve as a novel therapeutic approach to treat cardiac pathological hypertrophy and heart failure.

  4. Angiotensin-Converting Enzyme Inhibitors and Active Tuberculosis

    PubMed Central

    Wu, Jiunn-Yih; Lee, Meng-Tse Gabriel; Lee, Si-Huei; Lee, Shih-Hao; Tsai, Yi-Wen; Hsu, Shou-Chien; Chang, Shy-Shin; Lee, Chien-Chang

    2016-01-01

    Abstract Numerous epidemiological data suggest that the use of angiotensin-converting enzyme inhibitors (ACEis) can improve the clinical outcomes of pneumonia. Tuberculosis (TB) is an airborne bacteria like pneumonia, and we aimed to find out whether the use of ACEis can decrease the risk of active TB. We conducted a nested case–control analysis by using a 1 million longitudinally followed cohort, from Taiwan national health insurance research database. The rate ratios (RRs) for TB were estimated by conditional logistic regression, and adjusted using a TB-specific disease risk score (DRS) with 71 TB-related covariates. From January, 1997 to December, 2011, a total of 75,536 users of ACEis, and 7720 cases of new active TB were identified. Current use (DRS adjusted RR, 0.87 [95% CI, 0.78–0.97]), but not recent and past use of ACEis, was associated with a decrease in risk of active TB. Interestingly, it was found that chronic use (>90 days) of ACEis was associated with a further decrease in the risk of TB (aRR, 0.74, [95% CI, 0.66–0.83]). There was also a duration response effect, correlating decrease in TB risk with longer duration of ACEis use. The decrease in TB risk was also consistent across all patient subgroups (age, sex, heart failure, cerebrovascular diseases, myocardial infraction, renal diseases, and diabetes) and patients receiving other cardiovascular medicine. In this large population-based study, we found that subjects with recent and chronic use of ACEis were associated with decrease in TB risk. PMID:27175655

  5. Documentation of angiotensin II receptors in glomerular epithelial cells

    NASA Technical Reports Server (NTRS)

    Sharma, M.; Sharma, R.; Greene, A. S.; McCarthy, E. T.; Savin, V. J.; Cowley, A. W. (Principal Investigator)

    1998-01-01

    Angiotensin II decreases glomerular filtration rate, renal plasma flow, and glomerular capillary hydraulic conductivity. Although angiotensin II receptors have been demonstrated in mesangial cells and proximal tubule cells, the presence of angiotensin II receptors in glomerular epithelial cells has not previously been shown. Previously, we have reported that angiotensin II caused an accumulation of cAMP and a reorganization of the actin cytoskeleton in cultured glomerular epithelial cells. Current studies were conducted to verify the presence of angiotensin II receptors by immunological and non-peptide receptor ligand binding techniques and to ascertain the activation of intracellular signal transduction in glomerular epithelial cells in response to angiotensin II. Confluent monolayer cultures of glomerular epithelial cells were incubated with angiotensin II, with or without losartan and/or PD-123,319 in the medium. Membrane vesicle preparations were obtained by homogenization of washed cells followed by centrifugation. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of membrane proteins followed by multiscreen immunoblotting was used to determine the presence of angiotensin II receptor type 1 (AT1) or type 2 (AT2). Angiotensin II-mediated signal transduction in glomerular epithelial cells was studied by measuring the levels of cAMP, using radioimmunoassay. Results obtained in these experiments showed the presence of both AT1 and AT2 receptor types in glomerular epithelial cells. Angiotensin II was found to cause an accumulation of cAMP in glomerular epithelial cells, which could be prevented only by simultaneous use of losartan and PD-123,319, antagonists for AT1 and AT2, respectively. The presence of both AT1 and AT2 receptors and an increase in cAMP indicate that glomerular epithelial cells respond to angiotensin II in a manner distinct from that of mesangial cells or proximal tubular epithelial cells. Our results suggest that glomerular epithelial

  6. Investigations in foot shock stress of variable intensity in mice: Adaptation and role of angiotensin II.

    PubMed

    Bali, Anjana; Jaggi, Amteshwar Singh

    2015-08-15

    The present study investigated the stress adaptation and role of angiotensin in response to repeated exposures of electric foot shocks of varying intensity. Mice were subjected to moderate (0.5mA) or severe (1.5mA) electric foot shocks for 1h for 5 days. Stress-induced behavioral changes were assessed by actophotometer, hole board, open field and social interaction tests. The serum corticosterone levels were measured as an index of HPA axis. Telmisartan (a selective AT1 receptor blocker) was employed as a pharmacological tool. A single exposure of moderate and severe stress produced behavioral deficits and increased the corticosterone levels. The restoration of these alterations was observed in response to repeated exposures of moderate stress, while no adaptation was observed in severe foot shock stress. A single administration of telmisartan (5mg/kg) exacerbated the moderate stress-induced decrease in behavioral activity and increase in corticosterone levels on the first day of stress exposure, suggesting the anti-stress role of angiotensin. In contrast, telmisartan normalized severe stress-induced behavioral and biochemical alterations suggesting the stress inducing actions of angiotensin. Furthermore, treatment with telmisartan abolished the stress adaptive response following repeated exposures of moderate stress suggesting that angiotensin has an adaptive role. It is concluded that there is a differential adaptive response in foot shock stress depending upon the severity of stress. Angiotensin II may act as an anti-stress agent and helps to promote the adaptation during medium stress, whereas it may promote stress response during severe stress.

  7. Sustained diacylglycerol formation from inositol phospholipids in angiotensin II-stimulated vascular smooth muscle cells

    SciTech Connect

    Griendling, K.K.; Rittenhouse, S.E.; Brock, T.A.; Ekstein, L.S.; Gimbrone, M.A. Jr.; Alexander, R.W.

    1986-05-05

    Angiotensin II acts on cultured rat aortic vascular smooth muscle cells to stimulate phospholipase C-mediated hydrolysis of membrane phosphoinositides and subsequent formation of diacylglycerol and inositol phosphates. In intact cells, angiotensin II induces a dose-dependent increase in diglyceride which is detectable after 5 s and sustained for at least 20 min. Angiotensin II (100 nM)-stimulated diglyceride formation is biphasic, peaking at 15 s (227 +/- 19% control) and at 5 min (303 +/- 23% control). Simultaneous analysis of labeled inositol phospholipids shows that at 15 s phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 4-phosphate (PIP) decline to 52 +/- 6% control and 63 +/- 5% control, respectively, while phosphatidylinositol (PI) remains unchanged. In contrast, at 5 min, PIP2 and PIP have returned toward control levels (92 +/- 2 and 82 +/- 4% control, respectively), while PI has decreased substantially (81 +/- 2% control). The calcium ionophore ionomycin (15 microM) stimulates diglyceride accumulation but does not cause PI hydrolysis. 4 beta-Phorbol 12-myristate 13-acetate, an activator of protein kinase C, inhibits early PIP and PIP2 breakdown and diglyceride formation, without inhibiting late-phase diglyceride accumulation. Thus, angiotensin II induces rapid transient breakdown of PIP and PIP2 and delayed hydrolysis of PI. The rapid attenuation of polyphosphoinositide breakdown is likely caused by a protein kinase C-mediated inhibition of PIP and PIP2 hydrolysis. While in vascular smooth muscle stimulated with angiotensin II inositol 1,4,5-trisphosphate formation is transient, diglyceride production is biphasic, suggesting that initial and sustained diglyceride formation from the phosphoinositides results from different biochemical and/or cellular processes.

  8. A Low-Protein Diet Enhances Angiotensin II Production in the Lung of Pregnant Rats but Not Nonpregnant Rats

    PubMed Central

    Gao, Haijun; Tanchico, Daren Tubianosa; Yallampalli, Uma; Yallampalli, Chandrasekhar

    2016-01-01

    Pulmonary angiotensin II production is enhanced in pregnant rats fed a low-protein (LP) diet. Here we assessed if LP diet induces elevations in angiotensin II production in nonpregnant rats and whether Ace expression and ACE activity in lungs are increased. Nonpregnant rats were fed a normal (CT) or LP diet for 8, 12, or 17 days and timed pregnant rats fed for 17 days from Day 3 of pregnancy. Plasma angiotensin II, expressions of Ace and Ace2, and activities of these proteins in lungs, kidneys, and plasma were measured. These parameters were compared among nonpregnant rats or between nonpregnant and pregnant rats fed different diets. Major findings are as follows: (1) plasma angiotensin II levels were slightly higher in the LP than CT group on Days 8 and 12 in nonpregnant rats; (2) expression of Ace and Ace2 and abundance and activities of ACE and ACE2 in lungs, kidneys, and plasma of nonpregnant rats were unchanged by LP diet except for minor changes; (3) the abundance and activities of ACE in lungs of pregnant rats fed LP diet were greater than nonpregnant rats, while those of ACE2 were decreased. These results indicate that LP diet-induced increase in pulmonary angiotensin II production depends on pregnancy. PMID:27195150

  9. Renin angiotensin system-regulating aminopeptidase activities in serum of pre- and postmenopausal women with breast cancer.

    PubMed

    Martínez-Martos, José Manuel; del Pilar Carrera-González, María; Dueñas, Basilio; Mayas, María Dolores; García, María Jesús; Ramírez-Expósito, María Jesús

    2011-10-01

    Angiotensin peptides regulate vascular tone and natriohydric balance through the renin angiotensin system (RAS) and are related with the angiogenesis which plays an important role in the metastatic pathway. Estrogen influences the aminopeptidases (APs) involved in the metabolism of bioactive peptides of RAS through several pathways. We analyze RAS-regulating AP activities in serum of pre- and postmenopausal women with breast cancer to evaluate the putative value of these activities as biological markers of the development of breast cancer. We observed an increase in aminopeptidase N (APN) and aminopeptidase B (APB) activities in women with breast cancer; however, a decrease in aspartyl-aminopeptidase (AspAP) activity in premenopausal women. These results suggest a slow metabolism of angiotensin II (Ang II) to angiotensin III (Ang III) in premenopausal women and a rapid metabolism of Ang III to angiotensin IV (Ang IV) in pre- and postmenopausal women with breast cancer. An imbalance in the signals activated by Ang II may produce abnormal vascular growth with different response between pre- and postmenopausal women depending on the hormonal profile and the development of the disease.

  10. The frail renin-angiotensin system.

    PubMed

    Abadir, Peter M

    2011-02-01

    Over the last few decades, the understanding of the renin-angiotensin system (RAS) has advanced dramatically. RAS is now thought to play a crucial role in physiologic and pathophysiologic mechanisms in almost every organ system and is a key regulator of hypertension, cardiovascular disease, and renal function. Angiotensin II (Ang II) promotes inflammation and the generation of reactive oxygen species and governs onset and progression of vascular senescence, which are all associated with functional and structural changes, contributing to age-related diseases. Although the vast majority of the actions of Ang II, including vascular senescence, are mediated by the Ang II type 1 receptor (AT1R), the identification, characterization, and cloning of the angiotensin type 2 receptor has focused attention on this receptor and to its antagonistic effect on the detrimental effects of AT1R. This review provides an overview of the changes in RAS with aging and age-disease interactions culminating in the development of frailty. PMID:21093722

  11. Renin-angiotensin system in ventilator-induced diaphragmatic dysfunction: Potential protective role of Angiotensin (1-7).

    PubMed

    Sigurta', Anna; Zambelli, Vanessa; Bellani, Giacomo

    2016-09-01

    Ventilator-induced diaphragmatic dysfunction is a feared complication of mechanical ventilation that adversely affects the outcome of intensive care patients. Human and animal studies demonstrate atrophy and ultrastructural alteration of diaphragmatic muscular fibers attributable to increased oxidative stress, depression of the anabolic pathway regulated by Insulin-like growing factor 1 and increased proteolysis. The renin-angiotensin system, through its main peptide Angiotensin II, plays a major role in skeletal muscle diseases, mainly increasing oxidative stress and inducing insulin resistance, atrophy and fibrosis. Conversely, its counter-regulatory peptide Angiotensin (1-7) has a protective role in these processes. Recent data on rodent models show that renin-angiotensin system is activated after mechanical ventilation and that infusion of Angiotensin II induces diaphragmatic skeletal muscle atrophy. Given: (A) common pathways shared by ventilator-induced diaphragmatic dysfunction and skeletal muscle pathology induced by renin-angiotensin system, (B) evidences of an involvement of renin-angiotensin system in diaphragm atrophy and dysfunction, we hypothesize that renin-angiotensin system plays an important role in ventilator-induced diaphragmatic dysfunction, while Angiotensin (1-7) can have a protective effect on this pathological process. The activation of renin-angiotensin system in ventilator-induced diaphragmatic dysfunction can be demonstrated by quantification of its main components in the diaphragm of ventilated humans or animals. The infusion of Angiotensin (1-7) in an established rodent model of ventilator-induced diaphragmatic dysfunction can be used to test its potential protective role, that can be further confirmed with the infusion of Angiotensin (1-7) antagonists like A-779. Verifying this hypothesis can help in understanding the processes involved in ventilator-induced diaphragmatic dysfunction pathophysiology and open new possibilities for its

  12. Renin-angiotensin system in ventilator-induced diaphragmatic dysfunction: Potential protective role of Angiotensin (1-7).

    PubMed

    Sigurta', Anna; Zambelli, Vanessa; Bellani, Giacomo

    2016-09-01

    Ventilator-induced diaphragmatic dysfunction is a feared complication of mechanical ventilation that adversely affects the outcome of intensive care patients. Human and animal studies demonstrate atrophy and ultrastructural alteration of diaphragmatic muscular fibers attributable to increased oxidative stress, depression of the anabolic pathway regulated by Insulin-like growing factor 1 and increased proteolysis. The renin-angiotensin system, through its main peptide Angiotensin II, plays a major role in skeletal muscle diseases, mainly increasing oxidative stress and inducing insulin resistance, atrophy and fibrosis. Conversely, its counter-regulatory peptide Angiotensin (1-7) has a protective role in these processes. Recent data on rodent models show that renin-angiotensin system is activated after mechanical ventilation and that infusion of Angiotensin II induces diaphragmatic skeletal muscle atrophy. Given: (A) common pathways shared by ventilator-induced diaphragmatic dysfunction and skeletal muscle pathology induced by renin-angiotensin system, (B) evidences of an involvement of renin-angiotensin system in diaphragm atrophy and dysfunction, we hypothesize that renin-angiotensin system plays an important role in ventilator-induced diaphragmatic dysfunction, while Angiotensin (1-7) can have a protective effect on this pathological process. The activation of renin-angiotensin system in ventilator-induced diaphragmatic dysfunction can be demonstrated by quantification of its main components in the diaphragm of ventilated humans or animals. The infusion of Angiotensin (1-7) in an established rodent model of ventilator-induced diaphragmatic dysfunction can be used to test its potential protective role, that can be further confirmed with the infusion of Angiotensin (1-7) antagonists like A-779. Verifying this hypothesis can help in understanding the processes involved in ventilator-induced diaphragmatic dysfunction pathophysiology and open new possibilities for its

  13. Effect of deletion polymorphism of angiotensin converting enzyme gene on progression of diabetic nephropathy during inhibition of angiotensin converting enzyme: observational follow up study.

    PubMed Central

    Parving, H. H.; Jacobsen, P.; Tarnow, L.; Rossing, P.; Lecerf, L.; Poirier, O.; Cambien, F.

    1996-01-01

    OBJECTIVE: To evaluate the concept that an insertion/deletion polymorphism of the angiotensin converting enzyme gene predicts the therapeutic efficacy of inhibition of angiotensin converting enzyme on progression of diabetic nephropathy. DESIGN: Observational follow up study of patients with insulin dependent diabetes and nephropathy who had been treated with captopril for a median of 7 years (range 3-9 years). SETTING: Outpatient diabetic clinic in a tertiary referral centre. PATIENTS: 35 patients with insulin dependent diabetes and nephropathy were investigated during captopril treatment (median 75 mg/day (range 12.5 to 150 mg/day)) that was in many cases combined with a loop diuretic, 11 patients were homozygous for the deletion allele and 24 were heterozygous or homozygous for the insertion allele of the angiotensin converting enzyme gene. MAIN OUTCOME MEASURES: Albuminuria, arterial blood pressure, and glomerular filtration rate according to insertion/deletion polymorphism. RESULTS: The two groups had comparable glomerular filtration rate, albuminuria, blood pressure, and haemoglobin A1c concentration at baseline. Captopril induced nearly the same reduction in mean blood pressure in the two groups-to 103 (SD 5) mm Hg in the group with the deletion and 102 (8) mm Hg in the group with the insertion-and in geometric mean albumin excretion-573 (antilog SE 1.3) micrograms/min and 470 (1.2) micrograms/min, respectively. The rate of decline in glomerular filtration rate (linear regression of all glomerular filtration rate measurements during antihypertensive treatment) was significantly steeper in the group homozygous for the double deletion allele than in the other group (mean 5.7 (3.7) ml/min/year and 2.6 (2.8) ml/min/year, respectively; P = 0.01). Multiple linear regression analysis showed that haemoglobin A1c concentration, albuminuria, and the double deletion genotype independently influenced the sustained rate of decline in glomerular filtration rate (R1

  14. Myocardial diseases of animals.

    PubMed Central

    Van Vleet, J. F.; Ferrans, V. J.

    1986-01-01

    In this review we have attempted a comprehensive compilation of the cardiac morphologic changes that occur in spontaneous and experimental myocardial diseases of animals. Our coverage addresses diseases of mammals and birds and includes these diseases found in both domesticated and wild animals. A similar review of the myocardial diseases in this broad range of animal species has not been attempted previously. We have summarized and illustrated the gross, microscopic, and ultrastructural alterations for these myocardial diseases; and, whenever possible, we have reviewed their biochemical pathogenesis. We have arranged the myocardial diseases for presentation and discussion according to an etiologic classification with seven categories. These include a group of idiopathic or primary cardiomyopathies recognized in man (hypertrophic, dilated, and restrictive types) and a large group of secondary cardiomyopathies with known causes, such as inherited tendency; nutritional deficiency; toxicity; physical injury and shock; endocrine disorders, and myocarditides of viral, bacterial, and protozoal causation. Considerable overlap exists between each of the etiologic groups in the spectrum of pathologic alterations seen in the myocardium. These include various degenerative changes, myocyte necrosis, and inflammatory lesions. However, some diseases show rather characteristic myocardial alterations such as vacuolar degeneration in anthracycline cardiotoxicity, myofibrillar lysis in furazolidone cardiotoxicity, calcification in calcinosis of mice, glycogen accumulation in the glycogenoses, lipofuscinosis in cattle, fatty degeneration in erucic acid cardiotoxicity, myofiber disarray in hypertrophic cardiomyopathy, and lymphocytic inflammation with inclusion bodies in canine parvoviral myocarditis. The myocardial diseases represent the largest group in the spectrum of spontaneous cardiac diseases of animals. Pericardial and endocardial diseases and congential cardiac diseases are

  15. Synthesis of angiotensins by cultured granuloma macrophages in murine schistosomiasis mansoni

    SciTech Connect

    Weinstock, J.V.; Blum, A.M.

    1986-03-01

    Components of the angiotensin system are present in granulomas of murine schistosomiasis mansoni. Angiotensins may have immunoregulatory function. Granuloma macrophages cultured for up to 3 days generated substantial angiotensin I (AI) and angiotensin II (AII) which appeared in the culture supernatants. Macrophage monolayers were incubated with (/sup 3/H) amino acids, and culture supernatants were extracted with acetone and analyzed by HPLC. Radiolabeled products eluded at times corresponding to those of authentic angiotensins. Immunoadsorption of angiotensins with angiotensin antisera removed reputed radiolabeled angiotensins from the supernatants. Treatment of the elution fraction corresponding to that of authentic AI with angiotensin converting enzyme resulted in the generation of radiolabeled polypeptides which co-eluted with authentic AII and His-Leu. Similar experiments conducted with nonadherent granuloma cells devoid of macrophages failed to demonstrate angiotensin production. These results suggest that granuloma macrophages can synthesize angiotensin.

  16. Renin Inhibition and AT1R blockade improve metabolic signaling, oxidant stress and myocardial tissue remodeling

    PubMed Central

    Whaley-Connell, Adam; Habibi, Javad; Rehmer, Nathan; Ardhanari, Sivakumar; Hayden, Melvin R; Pulakat, Lakshmi; Krueger, Caroline; M Ferrario, Carlos; DeMarco, Vincent G; Sowers, James R

    2013-01-01

    Objective Strategies that block angiotensin II actions on its angiotensin type 1 receptor or inhibit actions of aldosterone have been shown to reduce myocardial hypertrophy and interstitial fibrosis in states of insulin resistance. Thereby, we sought to determine if combination of direct renin inhibition with angiotensin type 1 receptor blockade in vivo, through greater reductions in systolic blood pressure (SBP) and aldosterone would attenuate left ventricular hypertrophy and interstitial fibrosis to a greater extent than either intervention alone. Materials/Methods We utilized the transgenic Ren2 rat which manifests increased tissue expression of murine renin which, in turn, results in increased renin-angiotensin system activity, aldosterone secretion and insulin resistance. Ren2 rats were treated with aliskiren, valsartan, the combination (aliskiren+valsartan), or vehicle for 21 days. Results Compared to Sprague-Dawley controls, Ren2 rats displayed increased systolic blood pressure, elevated serum aldosterone levels, cardiac tissue hypertrophy, interstitial fibrosis and ultrastructural remodeling. These biochemical and functional alterations were accompanied by increases in the NADPH oxidase subunit Nox2 and 3-nitrotyrosine content along with increases in mammalian target of rapamycin and reductions in protein kinase B phosphorylation. Combination therapy contributed to greater reductions in systolic blood pressure and serum aldosterone but did not result in greater improvement in metabolic signaling or markers of oxidative stress, fibrosis or hypertrophy beyond either intervention alone. Conclusions Thereby, our data suggest that the greater impact of combination therapy on reductions in aldosterone does not translate into greater reductions in myocardial fibrosis or hypertrophy in this transgenic model of tissue renin overexpression. PMID:23352204

  17. Protective effect of taurine on myocardial antioxidant status in isoprenaline-induced myocardial infarction in rats.

    PubMed

    Shiny, K S; Kumar, S Hari Senthil; Farvin, K H Sabeena; Anandan, R; Devadasan, K

    2005-10-01

    We have examined the protective effect of taurine on the myocardial antioxidant defense system in isoprenaline (isoproterenol)-induced myocardial infarction in rats, an animal model of myocardial infarction in man. Levels of diagnostic marker enzymes in plasma, lipid peroxides and reduced glutathione, and the activity of glutathione-dependent antioxidant enzymes and anti-peroxidative enzymes in the heart tissue were determined. Intraperitoneal administration of taurine significantly prevented the isoprenaline-induced increases in the levels of alanine aminotransferase, aspartate aminotransferase, lactate dehydrogenase, and creatine phosphokinase in the plasma of rats. Taurine exerted an antioxidant effect against isoprenaline-induced myocardial infarction by preventing the accumulation of lipid peroxides and by maintaining the level of reduced glutathione and the activity of glutathione peroxidase, glutathione-S-transferase, catalase and superoxide dismutase at near normality. The results indicated that the cardioprotective potential of taurine was probably due to the increase of the activity of the free radical enzymes, or to a counteraction of free radicals by its antioxidant nature, or to a strengthening of myocardial membrane by its membrane stabilizing property.

  18. [Protective effect and mechanism of β-CM7 on renin angiotensin system & diabetic cardiomyopathy].

    PubMed

    Wang, Kun; Han, Dongning; Zhang, Yujuan; Rong, Chao; Zhang, Yuanshu

    2016-02-01

    This article aimed at exploring the effects and protective mechanism of β-CM7 on renin angiotensin system (RAS) in diabetic rats myocardial tissue. We divided 32 male SD rats into 4 groups: control group, diabetic model control group, insulin (3.7x10(-8) mol/d) treatment group and β-CM7 (7.5x10(-8) mol/d) treatment group. After 30 days, all rats were decapitated and myocardical tissues were collected immediately. After injection, β-CM7 could decrease the content of Ang II, increase the content of Angl-7. And β-CM7 could improve the mRNA of AT1 receptor and Mas receptor. β-CM7 also could improve the mRNA of ACE and ACE2, enhance the activity of ACE and ACE2. These data confirmed tli β-CM7 could activate ACE2-Angl-7-Mas axis, negative passage in RAS, to inhibit the expression ACE mnRiJA and protein in rat myocardium, alleviate the myocardial tissue damage induced by Ang II. The effect of β-CM7 on inhibiting myocardium damage might be related to ACE/ACE2 passageway. PMID:27382769

  19. Depression after myocardial infarction.

    PubMed

    Ziegelstein, R C

    2001-01-01

    Depression is an independent risk factor for increased postmyocardial infarction morbidity and mortality, even after controlling for the extent of coronary artery disease, infarct size, and the severity of left ventricular dysfunction. This risk factor takes on added significance when one considers that almost half of patients recovering from a myocardial infarction have major or minor depression and that major depression alone occurs in about one in five of these individuals. Despite the well-documented risk of depression, questions remain about the mechanism of the relationship between mood disturbance and adverse outcome. The link may be explained by an association with lower levels of social support, poor adherence to recommended medical therapy and lifestyle changes intended to reduce the risk of subsequent cardiac events, disturbances in autonomic tone, enhanced platelet activation and aggregation, and systemic immune activation. Unfortunately, questions about the pathophysiologic mechanism of depression in this setting are paralleled by uncertainties about the optimal treatment of depression for patients recovering from a myocardial infarction and by a lack of knowledge about whether treating depression lowers the associated increased mortality risk. Ongoing research studies will help to determine the benefits of psychosocial interventions and of antidepressant therapy for patients soon after myocardial infarction. Although the identification of depression as a risk factor may by itself be a reason to incorporate a comprehensive psychological evaluation into the routine care of patients with myocardial infarction, this practice should certainly become standard if studies show that treating depression reduces the increased mortality risk of these patients.

  20. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    PubMed

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events.

  1. Renin-angiotensin-aldosterone system inhibition: overview of the therapeutic use of angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and direct renin inhibitors.

    PubMed

    Mercier, Kelly; Smith, Holly; Biederman, Jason

    2014-12-01

    Angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) therapy in hypertensive diabetic patients with macroalbuminuria, microalbuminuria, or normoalbuminuria has been repeatedly shown to improve cardiovascular mortality and reduce the decline in glomerular filtration rate. Renin-angiotensin-aldosterone system (RAAS) blockade in normotensive diabetic patients with normoalbuminuria or microalbuminuria cannot be advocated at present. Dual RAAS inhibition with ACE inhibitors plus ARBs or ACE inhibitors plus direct renin inhibitors has failed to improve cardiovascular or renal outcomes but has predisposed patients to serious adverse events. PMID:25439533

  2. Effects of valsartan on ventricular arrhythmia induced by programmed electrical stimulation in rats with myocardial infarction

    PubMed Central

    Jiao, Kun-Li; Li, Yi-Gang; Zhang, Peng-Pai; Chen, Ren-Hua; Yu, Yi

    2012-01-01

    Abstract The impact of angiotensin II receptor blockers (ARBs) on electrical remodelling after myocardial infarction (MI) remains unclear. The purpose of the present study was to evaluate the effect of valsartan on incidence of ventricular arrhythmia induced by programmed electrical stimulation (PES) and potential link to changes of myocardial connexins (Cx) 43 expression and distribution in MI rats. Fifty-nine rats were randomly divided into three groups: Sham (n = 20), MI (n = 20) and MI + Val (20 mg/kg/day per gavage, n = 19). After eight weeks, the incidence of PES-induced ventricular tachycardia (VT) and fibrillation (VF) was compared among groups. mRNA and protein expressions of Cx43, angiotensin II type 1 receptor (AT1R) in the LV border zone (BZ) and non-infarct zone (NIZ) were determined by real-time PCR and Western blot, respectively. Connexins 43 protein and collagen distribution were examined by immunohistochemistry in BZ and NIZ sections from MI hearts. Valsartan effectively improved the cardiac function, reduced the prolonged QTc (163.7 ± 3.7 msec. versus 177.8 ± 4.5 msec., P < 0.05) after MI and the incidence of VT or VF evoked by PES (21.1% versus 55%, P < 0.05). Angiotensin II type 1 receptor expression was significantly increased in BZ and NIZ sections after MI, which was down-regulated by valsartan. The mRNA and protein expressions of Cx43 in BZ were significantly reduced after MI and up-regulated by valsartan. Increased collagen deposition and reduced Cx43 expression in BZ after MI could be partly attenuated by Valsartan. Valsartan reduced the incidence of PES-induced ventricular arrhythmia, this effect was possibly through modulating the myocardial AT1R and Cx43 expression. PMID:22128836

  3. The renin angiotensin system and the metabolic syndrome

    PubMed Central

    Wang, Chih-Hong; Li, Feng; Takahashi, Nobuyuki

    2010-01-01

    The renin angiotensin system (RAS) is important for fluid and blood pressure regulation. Recent studies suggest that an overactive RAS is involved in the metabolic syndrome. This article discusses recent advances on how genetic alteration of the RAS affects cardiovascular and metabolic phenotypes, with a special emphasis on the potential role of angiotensin-independent effects of renin. PMID:21132096

  4. Association of angiotensin converting enzyme and angiotensin II type 1 receptor genotypes with left ventricular function and mass in patients with angiographically normal coronary arteries.

    PubMed Central

    Hamon, M.; Amant, C.; Bauters, C.; Richard, F.; Helbecque, N.; McFadden, E.; Lablanche, J. M.; Bertrand, M.; Amouyel, P.

    1997-01-01

    OBJECTIVE: To analyse the potential association of the angiotensin converting enzyme (ACE) and angiotensin II type 1 receptor (AT1R) gene polymorphisms on left ventricular function and mass in patients with normal coronary arteries. DESIGN: Consecutive sample. SETTING: University hospital. SUBJECTS: 141 consecutive white patients referred for coronary angiography and with angiographically normal coronary arteries. Patients with valvar diseases, cardiomyopathies, or a history of myocardial infarction were excluded. MAIN OUTCOME MEASURES: Left ventricular variables were measured for all patients. The ACE and AT1R genotypes were determined with a polymerase chain reaction based protocol using DNA prepared from white blood cells. A general linear model was used to compare data according to the ACE and to the AT1R genotypes. RESULTS: A strong association was observed between left ventricular mass and systemic hypertension (mean (SD) hypertension: 114 (31) g/m2; no hypertension 98 (23) g/m2; P < 0.003). However, no influence of ACE and AT1R polymorphisms on left ventricular mass was found, regardless of systemic hypertension. The subjects homozygous for the AT1R CC mutation had a significantly lower ejection fraction than those with allele A (AC+AA) (mean (SD) 62(12)% and 68(10)%, respectively, P < 0.05). No synergistic interaction of ACE and AT1R gene polymorphisms on left ventricular function and mass was found. CONCLUSIONS: These data do not support an association of the ACE and AT1R genotypes on left ventricular hypertrophy in white patients with normal coronary arteries. PMID:9227291

  5. Comparative Effectiveness of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers in Terms of Major Cardiovascular Disease Outcomes in Elderly Patients

    PubMed Central

    Chien, Shu-Chen; Ou, Shuo-Ming; Shih, Chia-Jen; Chao, Pei-Wen; Li, Szu-Yuan; Lee, Yi-Jung; Kuo, Shu-Chen; Wang, Shuu-Jiun; Chen, Tzeng-Ji; Tarng, Der-Cherng; Chu, Hsi; Chen, Yung-Tai

    2015-01-01

    Abstract Renin and aldosterone activity levels are low in elderly patients, raising concerns about the benefits and risks of angiotensin-converting-enzyme inhibitors (ACEIs) and angiotensin II receptor blockers (ARB) use. However, data from direct comparisons of the effects of ACEIs on ARBs in the elderly population remain inconclusive. In this nationwide study, all patients aged ≥ 70 years were retrieved from the Taiwan National Health Insurance database for the period 2000 to 2009 and were followed up until the end of 2010. The ARB cohort (12,347 patients who continuously used ARBs for ≥ 90 days) was matched to ACEI cohort using high-dimensional propensity score (hdPS). Intention-to-treat (ITT) and as-treated (AT) analyses were conducted. In the ITT analysis, after considering death as a competing risk, the ACEI cohort had similar risks of myocardial infarction (hazard ratio [HR] 0.92, 95% confidence interval [CI] 0.79–1.06), ischemic stroke (HR 0.98, 95% CI 0.90–1.07), and heart failure (HR 0.93, 95% CI 0.83–1.04) compared with the ARB cohort. No difference in adverse effects, such as acute kidney injury (HR 0.99, 95% CI 0.89–1.09) and hyperkalemia (HR 1.02, 95% CI 0.87–1.20), was observed between cohorts. AT analysis produced similar results to those of ITT analysis. We were unable to demonstrate a survival difference between cohorts (HR 1.03, 95% CI 0.88–1.21) after considering drug discontinuation as a competing risk in AT analysis. Our study supports the notion that ACEI and ARB users have similar risks of major adverse cardiovascular events (MACE), even in elderly populations. PMID:26512568

  6. Effects of linagliptin and liraglutide on glucose- and angiotensin II-induced collagen formation and cytoskeleton degradation in cardiac fibroblasts in vitro

    PubMed Central

    Wang, Xian-wei; Zhang, Fen-xi; Yang, Fen; Ding, Zu-feng; Agarwal, Nidhi; Guo, Zhi-kun; Mehta, Jawahar L

    2016-01-01

    Aim: Glucagon-like peptide-1 (GLP-1) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors can not only lower blood glucose levels, but also alleviate cardiac remodeling after myocardial ischemia and hypertension. In the present study, we investigated the effects of a DPP-4 inhibitor (linagliptin) and a GLP-1 activator (liraglutide) on glucose- and angiotensin II (Ang II)-induced collagen formation and cytoskeleton reorganization in cardiac fibroblasts in vitro, and elucidated the related mechanisms. Methods: Cardiac fibroblasts were isolated from the hearts of 6-week-old C57BL/6 mice, and then exposed to different concentrations of glucose or Ang II for 24 h. The expression of fibrotic signals (fibronectin, collagen-1, -3 and -4), as well as ERK1/2 and NF-κB-p65 in the fibroblasts was examined using Western blotting assays. F-actin degradation was detected under inverted laser confocal microscope in fibroblasts stained with Rhodamine phalloidin. Results: Glucose (1–40 mmol/L) and Ang II (10−8–10−5 mol/L) dose-dependently increased the expression of fibronectin, collagens, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. High concentrations of glucose (≥40 mmol/L) and Ang II (≥10−6 mol/L) caused a significant degradation of F-actin (less assembly F-actin fibers and more disassembly fibers). ERK1/2 inhibitor U0126 (10 μmol/L) and NF-κB inhibitor JSH-23 (10 μmol/L) both markedly suppressed glucose- and angiotensin II-induced fibronectin and collagen expressions in cardiac fibroblasts. Furthermore, pretreatment with liraglutide (10–100 nmol/L) or linagliptin (3 and 30 nmol/L) significantly decreased glucose- and Ang II-induced expression of fibrotic signals, phospho-ERK1/2 and phospho-NF-κB-p65 in cardiac fibroblasts. Moreover, pretreatment with liraglutide (30 nmol/L) or liraglutide (100 nmol/L) markedly inhibited glucose-induced F-actin degradation, however, only liraglutide inhibited Ang II-induced F-actin degradation. Conclusion

  7. Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine.

    PubMed

    Nagata, Sayaka; Hatakeyama, Kinta; Asami, Maki; Tokashiki, Mariko; Hibino, Hajime; Nishiuchi, Yuji; Kuwasako, Kenji; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo

    2013-11-29

    The renin-angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue.

  8. Big angiotensin-25: a novel glycosylated angiotensin-related peptide isolated from human urine.

    PubMed

    Nagata, Sayaka; Hatakeyama, Kinta; Asami, Maki; Tokashiki, Mariko; Hibino, Hajime; Nishiuchi, Yuji; Kuwasako, Kenji; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo

    2013-11-29

    The renin-angiotensin system (RAS), including angiotensin II (Ang II), plays an important role in the regulation of blood pressure and body fluid balance. Consequently, the RAS has emerged as a key target for treatment of kidney and cardiovascular disease. In a search for bioactive peptides using an antibody against the N-terminal portion of Ang II, we identified and characterized a novel angiotensin-related peptide from human urine as a major molecular form. We named the peptide Big angiotensin-25 (Bang-25) because it consists of 25 amino acids with a glycosyl chain and added cysteine. Bang-25 is rapidly cleaved by chymase to Ang II, but is resistant to cleavage by renin. The peptide is abundant in human urine and is present in a wide range of organs and tissues. In particular, immunostaining of Bang-25 in the kidney is specifically localized to podocytes. Although the physiological function of Bang-25 remains uncertain, our findings suggest it is processed from angiotensinogen and may represent an alternative, renin-independent path for Ang II synthesis in tissue. PMID:24211583

  9. Bovine myocardial epithelial inclusions.

    PubMed

    Baker, D C; Schmidt, S P; Langheinrich, K A; Cannon, L; Smart, R A

    1993-01-01

    Light microscopic, histochemical, immunohistochemical, and ultrastructural methods were used to examine myocardial epithelial masses in the hearts of ten cattle. The tissues consisted of paraffin-embedded or formalin-fixed samples from eight hearts that were being inspected in slaughter houses and from two hearts from calves that died of septicemia. The ages of the cattle ranged from 4 days to 12 years; the breeds were unspecified for all but one Hereford female and the two Holstein calves; and there were three males, four females, and three steers. The masses in these cases were compared with similar appearing lesions found in other animal species. The lesions in the bovine hearts were single to multiple, well circumscribed, found in the left ventricle wall, and composed of squamous to cuboidal epithelial cells that formed tubular, ductular, and acinar structures with lumens that were void or filled with amorphous protein globules. Electron microscopic examination revealed epithelial cells that had sparse apical microvilli, tight apical intercellular junctions, perinuclear bundles of filaments, and rare cilia. Almost half of the bovine epithelial masses (4/9) had occasional diastase-resistant periodic acid-Schiff-positive granules in their cytoplasm, and few had hyaluronidase-resistant alcian blue-positive granules (2/9) or colloidal iron-positive granules (1/9). All myocardial masses had abundant collagen surrounding the tubular and acinar structures, and 2/9 had elastin fibers as well. None of the myocardial masses had Churukian-Schenk or Fontana Masson's silver staining granules in epithelial cells. Immunohistochemically, all bovine myocardial tumors stained positively for cytokeratin (8/8), and occasional masses stained positively for vimentin (3/8) or carcinoembryonic antigen (3/8). None of the masses stained positively for desmin. The myocardial epithelial tumors most likely represent endodermal rests of tissue misplaced during organogenesis.

  10. Inhibition by trifluoperazine of glycogenolytic effects of phenylephrine, vasopressin, and angiotensin II.

    PubMed

    Koide, Y; Kimura, S; Tada, R; Kugai, N; Yamashita, K

    1982-06-01

    The effects of trifluoperazine on the activation of glycogenolysis by various hormones were studied in perfused rat liver. Trifluoperazine significantly inhibited glycogenolytic effect of phenylephrine and angiotensin II by lowering maximal response, and that of vasopressin by shifting the dose-response curve to the right, while alpha-antagonist phentolamine was inhibitory only to phenylephrine. Phosphorylase activation of phenylephrine was inhibited by trifluoperazine in parallel with glycogenolytic response. The increase in 45Ca2+ efflux induced by phenylephrine, angiotensin II, and vasopressin was also inhibited by the agent. These inhibitory effects of trifluoperazine were not related to the change in tissue cyclic AMP or cyclic GMP levels. On the other hand, neither the glycogenolytic effect of glucagon, cyclic AMP, and N6,O2-dibutyryl cyclic AMP nor phosphorylase activation by glucagon was affected by trifluoperazine. Thus, trifluoperazine specifically inhibits the activation of glycogenolysis by Ca2+-dependent hormones.

  11. Glycyl-histidyl-lysine interacts with the angiotensin II AT1 receptor.

    PubMed

    García-Sáinz, J A; Olivares-Reyes, J A

    1995-01-01

    Gly-His-Lys, a tripeptide isolated from human plasma that increases the growth rate of many cells, stimulated in dose-dependent fashion the activity of phosphorylase a in isolated rat hepatocytes. Such effect was associated to increases in both IP3 production and [Ca++]i. Interestingly, these effects of Gly-His-Lys were antagonized by losartan, a nonpeptide angiotensin II receptor antagonist (AT1 selective), which suggested that these receptors were involved in its effect. Binding competition experiments using the radioligand [125I][Sar1-Ile8]angiotensin II clearly indicated that Gly-His-Lys interacts with AT1 receptors. It was also observed that other histidine-containing tripeptides were also capable of interacting with these receptors. PMID:8545239

  12. Imaging of experimental myocardial infarction with technetium-99m 2,3-dimercaptosuccinic acid

    SciTech Connect

    Karlsberg, R.P.; Milne, N.; Lyons, K.P.; Aronow, W.S.

    1981-03-01

    We have studied the use of Tc-99m-labeled 2,3-dimercaptosuccinic acid(Tc-99m DMSA) to scintigraph acute myocardial infaction after coronary occlusion in dogs. Optimal images were obtained 5 hr after injection of radiotracer, with consistent delineation 48 hr after occlusion. Delivery of tracer was dependent on blood flow. Uptake of tracer correlated to extent of infarction as determined by the myocardial depletion of creatine kinase. Myocardial Tc-99m DMSA was protein-bound.

  13. Primacy of angiotensin converting enzyme in angiotensin-(1-12) metabolism.

    PubMed

    Moniwa, Norihito; Varagic, Jasmina; Simington, Stephen W; Ahmad, Sarfaraz; Nagata, Sayaka; Voncannon, Jessica L; Ferrario, Carlos M

    2013-09-01

    Angiotensin-(1-12) [ANG-(1-12)], a new member of the renin-angiotensin system, is recognized as a renin independent precursor for ANG II. However, the processing of ANG-(1-12) in the circulation in vivo is not fully established. We examined the effect of angiotensin converting enzyme (ACE) and chymase inhibition on angiotensin peptides formation during an intravenous infusion of ANG-(1-12) in normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). WKY and SHR were assigned to a short ANG-(1-12) infusion lasting 5, 15, 30, or 60 min (n = 4-10 each group). In another experiment WKY and SHR were assigned to a continuous 15-min ANG-(1-12) infusion with pretreatment of saline, lisinopril (10 mg/kg), or chymostatin (10 mg/kg) (n = 7-13 each group). Saline or lisinopril were infused intravenously 15 min before the administration of ANG-(1-12) (2 nmol·kg(-1)·min(-1)), whereas chymostatin was given by bolus intraperitoneal injection 30 min before ANG-(1-12). Infusion of ANG-(1-12) increased arterial pressure and plasma ANG-(1-12), ANG I, ANG II, and ANG-(1-7) levels in WKY and SHR. Pretreatment with lisinopril caused increase in ANG-(1-12) and ANG I and large decreases in ANG II compared with the other two groups in both strains. Pretreatment of chymostatin had no effect on ANG-(1-12), ANG I, and ANG II levels in both strains, whereas it increased ANG-(1-7) levels in WKY. We conclude that ACE acts as the primary enzyme for the conversion of ANG-(1-12) to smaller angiotensin peptides in the circulation of WKY and SHR and that chymase may be an ANG-(1-7) degrading enzyme.

  14. Involvement of insulin-regulated aminopeptidase in the effects of the renin-angiotensin fragment angiotensin IV: a review.

    PubMed

    Stragier, Bart; De Bundel, Dimitri; Sarre, Sophie; Smolders, Ilse; Vauquelin, Georges; Dupont, Alain; Michotte, Yvette; Vanderheyden, Patrick

    2008-09-01

    For decades, angiotensin (Ang) II was considered as the end product and the only bioactive peptide of the renin-angiotensin system (RAS). However, later studies revealed biological activity for other Ang fragments. Amongst those, Ang IV has drawn a lot of attention since it exerts a wide range of central and peripheral effects including the ability to enhance learning and memory recall, anticonvulsant and anti-epileptogenic properties, protection against cerebral ischemia, activity at the vascular level and an involvement in atherogenesis. Some of these effects are AT(1) receptor dependent but others most likely result from the binding of Ang IV to insulin-regulated aminopeptidase (IRAP) although the exact mechanism(s) of action that mediate the Ang IV-induced effects following this binding are until now not fully known. Nevertheless, three hypotheses have been put forward: since Ang IV is an inhibitor of the catalytic activity of IRAP, its in vivo effects might result from a build-up of IRAP's neuropeptide substrates. Second, IRAP is co-localized with the glucose transporter GLUT4 in several tissue types and therefore, Ang IV might interact with the uptake of glucose. A final and more intriguing hypothesis ascribes a receptor function to IRAP and hence an agonist role to Ang IV. Taken together, it is clear that further work is required to clarify the mechanism of action of Ang IV. On the other hand, a wide range of studies have made it clear that IRAP might become an important target for drug development against different pathologies such as Alzheimer's disease, epilepsy and ischemia.

  15. Perioperative Assessment of Myocardial Deformation

    PubMed Central

    Duncan, Andra E.; Alfirevic, Andrej; Sessler, Daniel I.; Popovic, Zoran B.; Thomas, James D.

    2014-01-01

    Evaluation of left ventricular performance improves risk assessment and guides anesthetic decisions. However, the most common echocardiographic measure of myocardial function, the left ventricular ejection fraction (LVEF), has important limitations. LVEF is limited by subjective interpretation which reduces accuracy and reproducibility, and LVEF assesses global function without characterizing regional myocardial abnormalities. An alternative objective echocardiographic measure of myocardial function is thus needed. Myocardial deformation analysis, which performs quantitative assessment of global and regional myocardial function, may be useful for perioperative care of surgical patients. Myocardial deformation analysis evaluates left ventricular mechanics by quantifying strain and strain rate. Strain describes percent change in myocardial length in the longitudinal (from base to apex) and circumferential (encircling the short-axis of the ventricle) direction and change in thickness in the radial direction. Segmental strain describes regional myocardial function. Strain is a negative number when the ventricle shortens longitudinally or circumferentially and is positive with radial thickening. Reference values for normal longitudinal strain from a recent meta-analysis using transthoracic echocardiography are (mean ± SD) −19.7 ± 0.4%, while radial and circumferential strain are 47.3 ± 1.9 and −23.3 ± 0.7%, respectively. The speed of myocardial deformation is also important and is characterized by strain rate. Longitudinal systolic strain rate in healthy subjects averages −1.10 ± 0.16 sec−1. Assessment of myocardial deformation requires consideration of both strain (change in deformation), which correlates with LVEF, and strain rate (speed of deformation), which correlates with rate of rise of left ventricular pressure (dP/dt). Myocardial deformation analysis also evaluates ventricular relaxation, twist, and untwist, providing new and noninvasive methods to

  16. Angiotensin II: role in skeletal muscle atrophy.

    PubMed

    Cabello-Verrugio, Claudio; Córdova, Gonzalo; Salas, José Diego

    2012-09-01

    Skeletal muscle, the main protein reservoir in the body, is a tissue that exhibits high plasticity when exposed to changes. Muscle proteins can be mobilized into free amino acids when skeletal muscle wasting occurs, a process called skeletal muscle atrophy. This wasting is an important systemic or local manifestation under disuse conditions (e.g., bed rest or immobilization), in starvation, in older adults, and in several diseases. The molecular mechanisms involved in muscle wasting imply the activation of specific signaling pathways which ultimately manage muscle responses to modulate biological events such as increases in protein catabolism, oxidative stress, and cell death by apoptosis. Many factors have been involved in the generation and maintenance of atrophy in skeletal muscle, among them angiotensin II (Ang-II), the main peptide of renin-angiotensin system (RAS). Together with Ang-II, the angiotensin-converting enzyme (ACE) and the Ang-II receptor type 1 (AT-1 receptor) are expressed in skeletal muscle, forming an important local axis that can regulate its function. In many of the conditions that lead to muscle wasting, there is an impairment of RAS in a global or local fashion. At this point, there are several pieces of evidence that suggest the participation of Ang-II, ACE, and AT-1 receptor in the generation of skeletal muscle atrophy. Interestingly, the Ang-II participation in muscle atrophy is strongly ligated to the regulation of hypertrophic activity of factors such as insulin-like growth factor 1 (IGF-1). In this article, we reviewed the current state of Ang-II and RAS function on skeletal muscle wasting and its possible use as a therapeutic target to improve skeletal muscle function under atrophic conditions.

  17. Local renin-angiotensin system mediates endothelial dilator dysfunction in aging arteries.

    PubMed

    Flavahan, Sheila; Chang, Fumin; Flavahan, Nicholas A

    2016-09-01

    Aging impairs endothelium-dependent NO-mediated dilatation, which results from increased production of reactive oxygen species (ROS). The local generation of angiotensin II (ANG II) is increased in aging arteries and contributes to inflammatory and fibrotic activity of smooth muscle cells and arterial wall remodeling. Although prolonged in vivo ANG II inhibition improves the impaired endothelial dilatation of aging arteries, it is unclear whether this reflects inhibition of intravascular or systemic ANG II systems. Experiments were therefore performed on isolated tail arteries from young (3-4 mo) and old (22-24 mo) F344 rats to determine if a local renin-angiotensin system contributes to the endothelial dilator dysfunction of aging. Aging impaired dilatation to the endothelial agonist acetylcholine but did not influence responses to a nitric oxide (NO) donor (DEA NONOate). Dilatation to acetylcholine was greatly reduced by NO synthase inhibition [nitro-l-arginine methyl ester (l-NAME)] in young and old arteries. In isolated arteries, acute inhibition of angiotensin-converting enzyme (ACE) (perindoprilat), renin (aliskiren), or AT1 receptors (valsartan, losartan) did not influence dilatation to acetylcholine in young arteries but increased responses in old arteries. After ANG II inhibition, the dilator response to acetylcholine was similar in young and old arteries. ROS activity, which was increased in endothelium of aging arteries, was also reduced by inhibiting ANG II (perindoprilat, losartan). Renin expression was increased by 5.6 fold and immunofluorescent levels of ANG II were confirmed to be increased in aging compared with young arteries. Exogenous ANG II inhibited acetylcholine-induced dilatation. Therefore, aging-induced impairment of endothelium-dependent dilatation in aging is caused by a local intravascular renin-angiotensin system.

  18. Comparative effectiveness of angiotensin-converting-enzyme inhibitors and angiotensin II receptor blockers in patients with type 2 diabetes and retinopathy

    PubMed Central

    Shih, Chia-Jen; Chen, Hung-Ta; Kuo, Shu-Chen; Li, Szu-Yuan; Lai, Pi-Hsiang; Chen, Shu-Chen; Ou, Shuo-Ming; Chen, Yung-Tai

    2016-01-01

    Background: Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin II receptor blockers (ARBs) are effective treatments for diabetic retinopathy, but randomized trials and meta-analyses comparing their effects on macrovascular complications have yielded conflicting results. We compared the effectiveness of these drugs in patients with pre-existing diabetic retinopathy in a large population-based cohort. Methods: We conducted a propensity score–matched cohort study using Taiwan’s National Health Insurance Research Database. We included adult patients prescribed an ACE inhibitor or ARB within 90 days after diagnosis of diabetic retinopathy between 2000 and 2010. Primary outcomes were all-cause death and major adverse cardiovascular events (myocardial infarction, ischemic stroke or cardiovascular death). Secondary outcomes were hospital admissions with acute kidney injury or hyperkalemia. Results: We identified 11 246 patients receiving ACE inhibitors and 15 173 receiving ARBs, of whom 9769 patients in each group were matched successfully by propensity scores. In the intention-to-treat analyses, ARBs were similar to ACE inhibitors in risk of all-cause death (hazard ratio [HR] 0.94, 95% confidence interval [CI] 0.87–1.01) and major adverse cardiovascular events (HR 0.95, 95% CI 0.87–1.04), including myocardial infarction (HR 1.03, 95% CI 0.88–1.20), ischemic stroke (HR 0.94, 95% CI 0.85–1.04) and cardiovascular death (HR 1.01, 95% CI 0.88–1.16). They also did not differ from ACE inhibitors in risk of hospital admission with acute kidney injury (HR 1.01, 95% CI 0.91–1.13) and hospital admission with hyperkalemia (HR 1.01, 95% CI 0.86–1.18). Results were similar in as-treated analyses. Interpretation: Our study showed that ACE inhibitors were similar to ARBs in risk of all-cause death, major adverse cardiovascular events and adverse effects among patients with pre-existing diabetic retinopathy. PMID:27001739

  19. Alterations in vasomotor control of coronary resistance vessels in remodelled myocardium of swine with a recent myocardial infarction.

    PubMed

    Duncker, Dirk J; de Beer, Vincent J; Merkus, Daphne

    2008-05-01

    The mechanism underlying the progressive deterioration of left ventricular (LV) dysfunction after myocardial infarction (MI) towards overt heart failure remains incompletely understood, but may involve impairments in coronary blood flow regulation within remodelled myocardium leading to intermittent myocardial ischemia. Blood flow to the remodelled myocardium is hampered as the coronary vasculature does not grow commensurate with the increase in LV mass and because extravascular compression of the coronary vasculature is increased. In addition to these factors, an increase in coronary vasomotor tone, secondary to neurohumoral activation and endothelial dysfunction, could also contribute to the impaired myocardial oxygen supply. Consequently, we explored, in a series of studies, the alterations in regulation of coronary resistance vessel tone in remodelled myocardium of swine with a 2 to 3-week-old MI. These studies indicate that myocardial oxygen balance is perturbed in remodelled myocardium, thereby forcing the myocardium to increase its oxygen extraction. These perturbations do not appear to be the result of blunted beta-adrenergic or endothelial NO-mediated coronary vasodilator influences, and are opposed by an increased vasodilator influence through opening of K(ATP) channels. Unexpectedly, we observed that despite increased circulating levels of noradrenaline, angiotensin II and endothelin-1, alpha-adrenergic tone remained negligible, while the coronary vasoconstrictor influences of endogenous endothelin and angiotensin II were virtually abolished. We conclude that, early after MI, perturbations in myocardial oxygen balance are observed in remodelled myocardium. However, adaptive alterations in coronary resistance vessel control, consisting of increased vasodilator influences in conjunction with blunted vasoconstrictor influences, act to minimize the impairments of myocardial oxygen balance.

  20. Vitexin exerts cardioprotective effect on chronic myocardial ischemia/reperfusion injury in rats via inhibiting myocardial apoptosis and lipid peroxidation

    PubMed Central

    Che, Xia; Wang, Xin; Zhang, Junyan; Peng, Chengfeng; Zhen, Yilan; Shao, Xu; Zhang, Gongliang; Dong, Liuyi

    2016-01-01

    Purpose: The aim of this study was to explore the cardioprotective effect of vitexin on chronic myocardial ischemia/reperfusion injury in rats and potential mechanisms. Methods: A chronic myocardial ischemia/reperfusion injury model was established by ligating left anterior descending coronary for 60 minutes, and followed by reperfusion for 14 days. After 2 weeks ischemia/reperfusion, cardiac function was measured to assess myocardial injury. The level of ST segment was recorded in different periods by electrocardiograph. The change of left ventricular function and myocardial reaction degree of fibrosis of heart was investigated by hematoxylin and eosin (HE) staining and Sirius red staining. Endothelium-dependent relaxations due to acetylcholine were observed in isolated rat thoracic aortic ring preparation. The blood samples were collected to measure the levels of MDA, the activities of SOD and NADPH in serum. Epac1, Rap1, Bax and Bcl-2 were examined by using Western Blotting. Results: Vitexin exerted significant protective effect on chronic myocardial ischemia/reperfusion injury, improved obviously left ventricular diastolic function and reduced myocardial reactive fibrosis degree in rats of myocardial ischemia. Medium and high-dose vitexin groups presented a significant decrease in Bax, Epac1 and Rap1 production and increase in Bcl-2 compared to the I/R group. It may be related to preventing myocardial cells from apoptosis, improving myocardial diastolic function and inhibiting lipid peroxidation. Conclusions: Vitexin is a cardioprotective herb, which may be a promising useful complementary and alternative medicine for patients with coronary heart disease. PMID:27648122

  1. Palmitoylethanolamide treatment reduces blood pressure in spontaneously hypertensive rats: involvement of cytochrome p450-derived eicosanoids and renin angiotensin system.

    PubMed

    Mattace Raso, Giuseppina; Pirozzi, Claudio; d'Emmanuele di Villa Bianca, Roberta; Simeoli, Raffaele; Santoro, Anna; Lama, Adriano; Di Guida, Francesca; Russo, Roberto; De Caro, Carmen; Sorrentino, Raffaella; Calignano, Antonio; Meli, Rosaria

    2015-01-01

    Palmitoylethanolamide (PEA), a peroxisome proliferator-activated receptor-α agonist, has been demonstrated to reduce blood pressure and kidney damage secondary to hypertension in spontaneously hypertensive rat (SHR). Currently, no information is available concerning the putative effect of PEA on modulating vascular tone. Here, we investigate the mechanisms underpinning PEA blood pressure lowering effect, exploring the contribution of epoxyeicosatrienoic acids, CYP-dependent arachidonic acid metabolites, as endothelium-derived hyperpolarizing factors (EDHF), and renin angiotensin system (RAS) modulation. To achieve this aim SHR and Wistar-Kyoto rats were treated with PEA (30 mg/kg/day) for five weeks. Functional evaluations on mesenteric bed were performed to analyze EDHF-mediated vasodilation. Moreover, mesenteric bed and carotid were harvested to measure CYP2C23 and CYP2J2, the key isoenzymes in the formation of epoxyeicosatrienoic acids, and the soluble epoxide hydrolase, which is responsible for their degradation in the corresponding diols. Effect of PEA on RAS modulation was investigated by analyzing angiotensin converting enzyme and angiotensin receptor 1 expression. Here, we showed that EDHF-mediated dilation in response to acetylcholine was increased in mesenteric beds of PEA-treated SHR. Western blot analysis revealed that the increase in CYP2C23 and CYP2J2 observed in SHR was significantly attenuated in mesenteric beds of PEA-treated SHR, but unchanged in the carotids. Interestingly, in both vascular tissues, PEA significantly decreased the soluble epoxide hydrolase protein level, accompanied by a reduced serum concentration of its metabolite 14-15 dihydroxyeicosatrienoic acid, implying a reduction in epoxyeicosatrienoic acid hydrolisis. Moreover, PEA treatment down-regulated angiotensin receptor 1 and angiotensin converting enzyme expression, indicating a reduction in angiotensin II-mediated effects. Consistently, a damping of the activation of

  2. Silent myocardial ischemia.

    PubMed

    Gutterman, David D

    2009-05-01

    Although much progress has been made in reducing mortality from ischemic cardiovascular disease, this condition remains the leading cause of death throughout the world. This might in part be due to the fact that over half of patients have a catastrophic event (heart attack or sudden death) as their initial manifestation of coronary disease. Contributing to this statistic is the observation that the majority of myocardial ischemic episodes are silent, indicating an inability or failure to sense ischemic damage or stress on the heart. This review examines the clinical characteristics of silent myocardial ischemia, and explores mechanisms involved in the generation of angina pectoris. Possible mechanisms for the more common manifestation of injurious reductions in coronary flow; namely, silent ischemia, are also explored. A new theory for the mechanism of silent ischemia is proposed. Finally, the prognostic importance of silent ischemia and potential future directions for research are discussed.

  3. Myocardial apoptosis and SIDS.

    PubMed

    Grasmeyer, Sarah; Madea, Burkhard

    2015-01-01

    Apoptosis mediates cardiac damage in severe forms of myocarditis. In fatal myocarditis, large amounts of cardiomyocytes show apoptotic DNA fragmentation, while in human controls, few apoptotic cardiomyocytes are found. In the present study the frequency of apoptosis in 88 SIDS cases (category 1b according to the San Diego Classification) and 15 control cases was investigated. In every case myocardial samples from 8 standard locations were collected. Detection of apoptotic cardiomyocytes was performed by TUNEL method. Furthermore the myocardial tissue was stained with HE and immunohistochemical methods (LCA, CD68, CD45-R0). More than 90% of the slides did not contain apoptotic cardiomyocytes at all. The detection rate of apoptotic cardiomyocytes was almost equal in control group (26.7%) and SIDS group (23.86%). A quantification of apoptotic cardiomyocytes per mm(2) revealed no significant difference between both groups either. Altogether there is no evidence for a higher rate of apoptosis in SIDS.

  4. Intravenous angiotensin and salt appetite in rats.

    PubMed

    Fitts, Douglas A; Zierath, Dannielle K; Savos, Anna V; Ho, Jacqueline M; Bassett, John E

    2007-01-01

    Circulating angiotensin II is crucial for the activation of salt appetite after sodium depletion. We tested if angiotensin (ANG) II infused intravenously at 50 ng/kg/min overnight (chronic) can mimic the rapid salt appetite similar to furosemide and overnight sodium depletion. In experiment 1, rats received chronic ANG II or vehicle infusions all night with access to water and chow but no saline solution. In the morning, the infusions continued, but half of the vehicle-infused group was switched to ANG II (acute). Thirty minutes after the switch, all rats received 10 mg/kg furosemide SC. One hour later they were provided water and 0.3 M NaCl to drink. Rats infused with vehicle or acute ANG drank little, but the chronic ANG group drank 11+/-1 ml of saline in 90 min. In experiment 2, the furosemide was omitted, and a group receiving a chronic infusion of phenylephrine at 6.25 microg/kg/min was included. The chronic ANG group drank 10+/-1 ml saline in 90 min, but the phenylephrine group, which also incurred a significant negative sodium balance overnight, drank little. Thus, an overnight infusion of ANG II is sufficient to mimic the robust expression of salt appetite as observed after furosemide and overnight sodium depletion.

  5. [Angiotensin converting enzyme and Alzheimer's disease].

    PubMed

    Kugaevskaia, E V

    2013-01-01

    Alzheimer's disease (AD) is an incurable degenerative disease of the central nervous system, leading to dementia. The basis of AD is neurodegenerative process that leads to death of neurons in the cerebral cortex. This neurodegenerative process is associated with the formation of neurofibrillary tangles in the brain and the deposition of senile plaques, the main component of which is a beta-amyloid peptide (Abeta). Risk factors for AD are age, as well as hypertension, atherosclerosis, diabetes and hypercholesterolemia in the pathogenesis of which involved angiotensin converting enzyme (ACE)--key enzyme of the renin-angiotensin (RAS) and kallikrein-kinin (KKS) systems. Recently it was discovered that ACE, along with other metallopeptidases, participates in the metabolism of Abeta, cleaving the bonds at the N-terminal and C-terminal region of the molecule Abeta. The role of the ACE in the degradation processes of Abeta takes an interest. It is associated with the fact that the using of ACE inhibitors is the main therapeutic approach used in the treatment of various forms of hypertension and other cardiovascular diseases. However, until now not been resolved, can be used antihypertensive drugs that inhibit RAS for the treatment or prevention of AD. Currently, there are numerous studies on finding the relationship between RAS and AD. PMID:23650720

  6. The intracrine renin-angiotensin system.

    PubMed

    Kumar, Rajesh; Thomas, Candice M; Yong, Qian Chen; Chen, Wen; Baker, Kenneth M

    2012-09-01

    The RAS (renin-angiotensin system) is one of the earliest and most extensively studied hormonal systems. The RAS is an atypical hormonal system in several ways. The major bioactive peptide of the system, AngII (angiotensin II), is neither synthesized in nor targets one specific organ. New research has identified additional peptides with important physiological and pathological roles. More peptides also mean newer enzymatic cascades that generate these peptides and more receptors that mediate their function. In addition, completely different roles of components that constitute the RAS have been uncovered, such as that for prorenin via the prorenin receptor. Complexity of the RAS is enhanced further by the presence of sub-systems in tissues, which act in an autocrine/paracrine manner independent of the endocrine system. The RAS seems relevant at the cellular level, wherein individual cells have a complete system, termed the intracellular RAS. Thus, from cells to tissues to the entire organism, the RAS exhibits continuity while maintaining independent control at different levels. The intracellular RAS is a relatively new concept for the RAS. The present review provides a synopsis of the literature on this system in different tissues.

  7. Myocardial gene therapy

    NASA Astrophysics Data System (ADS)

    Isner, Jeffrey M.

    2002-01-01

    Gene therapy is proving likely to be a viable alternative to conventional therapies in coronary artery disease and heart failure. Phase 1 clinical trials indicate high levels of safety and clinical benefits with gene therapy using angiogenic growth factors in myocardial ischaemia. Although gene therapy for heart failure is still at the pre-clinical stage, experimental data indicate that therapeutic angiogenesis using short-term gene expression may elicit functional improvement in affected individuals.

  8. Glial high-affinity binding site with specificity for angiotensin II not angiotensin III: a possible N-terminal-specific converting enzyme

    SciTech Connect

    Printz, M.P.; Jennings, C.; Healy, D.P.; Kalter, V.

    1986-01-01

    Anomalous binding properties of angiotensin II to fetal rat brain primary cultures suggested a possible contribution from contaminating glia. To investigate this possibility, cultures of C6 glioma, a clonal rat cell line, were examined for the presence of angiotensin II receptors. A specific high-affinity site for (/sup 125/I)angiotensin II was measured both by traditional methodology using whole cells and by autoradiography. This site shared properties similar to that found with the brain cells, namely low ligand internalization and markedly decreased affinity for N-terminal sarcosine or arginine-angiotensin analogs. The competition rank order was angiotensin II much greater than (Sar1,Ile8)angiotensin II greater than or equal to des(Asp1,Arg2)angiotensin II. Angiotensin III did not compete for binding to the site. High-pressure liquid chromatography analysis indicated that the ligand either in the incubation or bound to the site was stable at 15 degrees C, but there was very rapid and extensive degradation by the C6 glioma cells at 37 degrees C. It is concluded that the site exhibits unusual N-terminal specificity for angiotensin with nanomolar affinity for angiotensin II. If angiotensin III is an active ligand in the brain, the site may have a converting enzyme function. Alternatively, it may form the des-Asp derivatives of angiotensin for subsequent degradation by other enzymatic pathways. Either way, it is proposed that the site may modulate the brain-angiotensin system.

  9. Olmesartan Potentiates the Anti-Angiogenic Effect of Sorafenib in Mice Bearing Ehrlich's Ascites Carcinoma: Role of Angiotensin (1–7)

    PubMed Central

    Abd-Alhaseeb, Mohammad M.; Zaitone, Sawsan A.; Abou-El-Ela, Soad H.; Moustafa, Yasser M.

    2014-01-01

    Local renin-angiotensin systems exist in various malignant tumor tissues; this suggests that the main effector peptide, angiotensin II, could act as a key factor in tumor growth. The underlying mechanisms for the anti-angiogenic effect of angiotensin II type 1 receptor blockers need to be further evaluated. The present study was carried out to investigate the anti-angiogenic effect of olmesartan alone or in combination with sorafenib, an angiotensin (1–7) agonist or an angiotensin (1–7) antagonist in Ehrlich's ascites carcinoma-bearing mice. The tumor was induced by intradermal injection of Ehrlich's ascites carcinoma cells into mice. Tumor discs were used to evaluate the microvessel density; the serum levels of vascular endothelial growth factor (VEGF) and serum insulin-like growth factor I (IGF-I); and their intratumoral receptors, VEGF receptor-2 and IGF-I receptor, respectively. All parameters were determined following the treatment course, which lasted for 21 days post-inoculation. Monotherapy with olmesartan and its combination with sorafenib resulted in a significant reduction in microvessel density and serum levels of VEGF and IGF-I, as well as their intratumoral receptors. In addition, the combination of olmesartan (30 mg/kg) with an angiotensin (1–7) agonist reduced the microvessel density, IGF-I serum levels and the levels of its intratumoral receptor. In conclusion, olmesartan reduced the levels of the angiogenesis markers IGF-I and VEGF and down-regulated the intratumoral expression of their receptors in a dose-dependent manner, and these effects were dependent on the angiotensin (1–7) receptor. These results suggest that olmesartan is a promising adjuvant to sorafenib in the treatment of cancer. PMID:24465768

  10. Influence of trifluoperazine on ACTH- or angiotensin-stimulated mineralocorticoid and glucocorticoid secretion in man.

    PubMed

    Zofková, I; Hampl, R

    1987-08-01

    During stimulation of adrenocortical secretion the calcium--calmodulin system is activated to a different extent, depending on the secretagogue substance. In the submitted paper the influence of therapeutic doses of the calmodulin inhibitor, trifluoperazine, on aldosterone and cortisol secretion stimulated by ACTH or by activation of endogenous angiotensin by furosemide was investigated in healthy subjects. Trifluoperazine already in amounts of 6 mg/day administered for one week inhibited the "basal" aldosterone secretion assessed in a vertical position (p less than 0.01) and ACTH stimulated secretion (during the 30th minute p less than 0.05). The basal aldosterone secretion assessed in a horizontal position was not affected by trifluoperazine, similarly as it did not affect the secretory response to endogenous angiotensin activated by furosemide, regardless whether a dose of 6 mg or 12 mg/day was used. ACTH stimulated cortisol blood levels were after trifluoperazine insignificantly but constantly lower throughout the test, while they were not altered by trifluoperazine in the furosemide test. The plasma calcium level was not significantly affected by trifluoperazine. It may be concluded that trifluoperazine alters ACTH stimulated mineralocorticoid secretion, while it does not influence angiotensin stimulated secretion. The revealed differences in adrenocortical response to trifluoperazine in vivo cannot be explained merely by a different sensitivity of the calcium-calmodulin system to stimulation by two different secretagogues, but by interaction of some regulatory mechanisms influenced by trifluoperazine with adrenocortical secretion.

  11. The renin-angiotensin-aldosterone system and the eye in diabetes.

    PubMed

    Strain, W David; Chaturvedi, Nish

    2002-12-01

    Diabetic retinopathy is the leading cause of blindness in the under 65s, and with the burden of disease case load expected to exceed 200 million worldwide within 10 years, much effort is being spent on prophylactic interventions. Early work focused on improving glycaemic control; however, with the publication of EURODIAB Controlled trial of Lisinopril in Insulin-dependent Diabetes (EUCLID) and United Kingdom Prospective Diabetes Study (UKPDS), the focus has recently moved to control of blood pressure and specifically the renin-angiotensin system (RAS). There is a large body of evidence for a local RAS within the eye that is activated in diabetes. This appears to be directly responsible, as well as indirectly through other mediators, for an increase in concentration of vascular endothelial growth factor (VEGF), a selective angiogenic and vasopermeability factor that is implicated in the pathogenesis of diabetic retinopathy. Inhibition of angiotensin-converting enzyme appears to reduce concentrations of VEGF, with a concurrent anti-proliferative effect independent of systemic VEGF levels or blood pressure. Angiotensin II (Ang II) Type 1 (AT(1)) receptor blockade has been shown to reduce neovascularisation independent of VEGF levels in animal models. This may be due to antagonism of activation of mitogen-activated protein kinase, which is a potent cellular proliferation stimulator, by Ang II, although this needs further evaluation.

  12. Knockout of Angiotensin AT2 receptors accelerates healing but impairs quality

    PubMed Central

    Faghih, Mahya; Hosseini, Sayed M.; Smith, Barbara; Ansari, Amir Mehdi.; Lay, Frank; Ahmed, Ali Karim; Inagami, Tedashi; Marti, Guy P.; Harmon, John W.; Walston, Jeremy D.; Abadir, Peter M.

    2015-01-01

    Wounds are among the most common, painful, debilitating and costly conditions in older adults. Disruption of the angiotensin type 1 receptors (AT1R), has been associated with impaired wound healing, suggesting a critical role for AT1R in this repair process. Biological functions of angiotensin type 2 receptors (AT2R) are less studied. We investigated effects of genetically disrupting AT2R on rate and quality of wound healing. Our results suggest that AT2R effects on rate of wound closure depends on the phase of wound healing. We observed delayed healing during early phase of wound healing (inflammation). An accelerated healing rate was seen during later stages (proliferation and remodeling). By day 12, fifty percent of AT2R−/− mice had complete wound closure as compared to none in either C57/BL6 or AT1R−/− mice. There was a significant increase in AT1R, TGFβ1 and TGFβ2 expression during the proliferative and remodeling phases in AT2R−/− mice. Despite the accelerated closure rate, AT2R−/− mice had more fragile healed skin. Our results suggest that in the absence of AT2R, wound healing rate is accelerated, but yielded worse skin quality. Elucidating the contribution of both of the angiotensin receptors may help fine tune future intervention aimed at wound repair in older individuals. PMID:26727887

  13. A Modern Understanding of the Traditional and Nontraditional Biological Functions of Angiotensin-Converting Enzyme

    PubMed Central

    Ong, Frank S.; Blackwell, Wendell-Lamar B.; Shah, Kandarp H.; Giani, Jorge F.; Gonzalez-Villalobos, Romer A.; Shen, Xiao Z.; Fuchs, Sebastien

    2013-01-01

    Angiotensin-converting enzyme (ACE) is a zinc-dependent peptidase responsible for converting angiotensin I into the vasoconstrictor angiotensin II. However, ACE is a relatively nonspecific peptidase that is capable of cleaving a wide range of substrates. Because of this, ACE and its peptide substrates and products affect many physiologic processes, including blood pressure control, hematopoiesis, reproduction, renal development, renal function, and the immune response. The defining feature of ACE is that it is composed of two homologous and independently catalytic domains, the result of an ancient gene duplication, and ACE-like genes are widely distributed in nature. The two ACE catalytic domains contribute to the wide substrate diversity of ACE and, by extension, the physiologic impact of the enzyme. Several studies suggest that the two catalytic domains have different biologic functions. Recently, the X-ray crystal structure of ACE has elucidated some of the structural differences between the two ACE domains. This is important now that ACE domain-specific inhibitors have been synthesized and characterized. Once widely available, these reagents will undoubtedly be powerful tools for probing the physiologic actions of each ACE domain. In turn, this knowledge should allow clinicians to envision new therapies for diseases not currently treated with ACE inhibitors. PMID:23257181

  14. Aliskiren inhibits the renin-angiotensin system in retinal pigment epithelium cells.

    PubMed

    Simão, Sónia; Santos, Daniela F; Silva, Gabriela A

    2016-09-20

    Observations of increased angiotensin II levels and activation of the (pro)renin receptor in retinopathies support the role of ocular renin-angiotensin system (RAS) in the development of retinal diseases. While targeting RAS presents significant therapeutic potential, current RAS-based therapies are ineffective halting the progression of these diseases. A new class of drugs, the direct renin inhibitors such as aliskiren, is a potential therapeutic alternative. However, it is unclear how aliskiren acts in the retina, in particular in the retinal pigment epithelium (RPE), the structure responsible for the maintenance of retinal homeostasis whose role is deeply compromised in retinal diseases. We firstly analyzed the expression and activity of the main RAS components in RPE cells. Time- and concentration-dependent treatments with aliskiren were performed to modulate different pathways of the RAS in RPE cells. Our data demonstrate that RPE cells express the main RAS constituents. Exposure of RPE cells to aliskiren inhibited the activity of renin and consequently decreased the levels of angiotensin II. Additionally, aliskiren reduced the translocation of the (pro)renin receptor to the cellular membrane of RPE cells preventing the activation of ERK1/2. Our findings of the RPE well-defined RAS, together with the demonstration that aliskiren effectively blocks this system at different steps of the cascade, suggest that aliskiren might be an alternative and successful drug in preventing the deleterious effects derived from the overactivation of the RAS, known to contribute to the pathogenesis of different retinal diseases.

  15. Effect of angiotensin II, ATP, and ionophore A23187 on potassium efflux in adrenal glomerulosa cells

    SciTech Connect

    Lobo, M.V.; Marusic, E.T.

    1986-02-01

    Angiotensin II stimulus on perifused bovine adrenal glomerulosa cells elicited an increase in 86Rb efflux from cells previously equilibrated with the radioisotope. When 45Ca fluxes were measured under similar conditions, it was observed that Ca and Rb effluxes occurred within the first 30 s of the addition of the hormone and were independent of the presence of external Ca. The 86Rb efflux due to angiotensin II was inhibited by quinine and apamin. The hypothesis that the angiotensin II response is a consequence of an increase in the K permeability of the glomerulosa cell membrane triggered by an increase in cytosolic Ca is supported by the finding that the divalent cation ionophore A23187 also initiated 86Rb or K loss (as measured by an external K electrode). This increased K conductance was also seen with 10(-4) M ATP. Quinine and apamin greatly reduced the effect of ATP or A23187 on 86Rb or K release in adrenal glomerulosa cells. The results suggest that Ca-dependent K channels or carriers are present in the membranes of bovine adrenal glomerulosa cells and are sensitive to hormonal stimulus.

  16. Characterization of the renin-angiotensin system in the turtle Pseudemys scripta.

    PubMed

    Cipolle, M D; Zehr, J E

    1984-07-01

    Studies were conducted in freshwater turtles Pseudemys scripta to define some characteristics of the renin-angiotensin system in this reptile. Dialyzed acid-treated kidney extract (1 g tissue per ml water) produced a prolonged pressor response in unanesthetized turtles, which was eliminated by boiling the extract or by pretreating the turtle with [Sar1, Ile8]angiotensin II. A rat pressor assay was employed because turtle angiotensin (ANG) was bound poorly by the anti-[Asp1, Ile5, His9]ANG I used in our radioimmunoassay. Kidney extract incubated with homologous plasma (pH 5.5 and 25 degrees C) produced a time-dependent pressor response in rats. The pressor activity of the product was eliminated by dialysis or by pretreating the rats with [Sar1, Ile8]ANG II. The pressor response in anesthetized turtles to ANG I was significantly reduced by captopril, whereas the ANG II response remained unchanged, thus demonstrating the presence of ANG-converting enzyme activity in these animals. We determined the velocity of turtle ANG formation at various dilutions of enzyme (kidney extract) or substrate (plasma). Turtle kidney extract incubated with homologous plasma displayed typical Michaelis-Menten kinetics. Finally we conducted experiments to determine whether a portion of turtle plasma renin exists in an inactive form. Trypsinization caused a slight increase in plasma renin activity (PRA), whereas acidification to pH 3.3 yielded a fourfold increase in PRA.

  17. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    PubMed

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  18. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    PubMed

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.

  19. Renal Denervation Prevents Immune Cell Activation and Renal Inflammation in Angiotensin II–Induced Hypertension

    PubMed Central

    Xiao, Liang; Kirabo, Annet; Wu, Jing; Saleh, Mohamed A.; Zhu, Linjue; Wang, Feng; Takahashi, Takamune; Loperena, Roxana; Foss, Jason D.; Mernaugh, Raymond L.; Chen, Wei; Roberts, Jackson; Osborn, John W.; Itani, Hana A.; Harrison, David G.

    2015-01-01

    Rationale Inflammation and adaptive immunity plays a crucial role in the development of hypertension. Angiotensin II and likely other hypertensive stimuli activate the central nervous system and promote T cell activation and end-organ damage in peripheral tissues. Objective To determine if renal sympathetic nerves mediate renal inflammation and T cell activation in hypertension. Methods and Results Bilateral renal denervation (RDN) using phenol application to the renal arteries reduced renal norepinephrine (NE) levels and blunted angiotensin II induced hypertension. Bilateral RDN also reduced inflammation, as reflected by decreased accumulation of total leukocytes, T cells and both CD4+ and CD8+ T cells in the kidney. This was associated with a marked reduction in renal fibrosis, albuminuria and nephrinuria. Unilateral RDN, which partly attenuated blood pressure, only reduced inflammation in the denervated kidney, suggesting that this effect is pressure independent. Angiotensin II also increased immunogenic isoketal-protein adducts in renal dendritic cells (DCs) and increased surface expression of costimulation markers and production of IL-1α, IL-1β, and IL-6 from splenic dendritic cells. NE also dose dependently stimulated isoketal formation in cultured DCs. Adoptive transfer of splenic DCs from angiotensin II-treated mice primed T cell activation and hypertension in recipient mice. RDN prevented these effects of hypertension on DCs. In contrast to these beneficial effects of ablating all renal nerves, renal afferent disruption with capsaicin had no effect on blood pressure or renal inflammation. Conclusions Renal sympathetic nerves contribute to dendritic cell activation, subsequent T cell infiltration and end-organ damage in the kidney in the development of hypertension. PMID:26156232

  20. [Characteristics of therapy of acute myocardial infarction in diabetes].

    PubMed

    Motz, W; Kerner, W

    2012-05-01

    Therapy of acute myocardial infarction (STEMI and NSTEMI) in diabetics does not principally differ from that of non-diabetic patients. Due to the higher mortality in diabetics reperfusion measures, such as direct percutaneous coronary intervention (PCI), should be rapidly performed. An intensive drug treatment with thrombocyte aggregation inhibitors, angiotensin-converting enzyme (ACE) inhibitors and beta-receptor blocking agents must be carried out according to the current guidelines. An important factor is the high risk of renal failure due to the contrast dye administered during PCI in the presence of pre-existing diabetic kidney damage which should be limited to 100 ml if possible. Direct PCI should be limited to the infarcted vessel. After stabilization a comprehensive strategy to cure coronary artery disease, whether with PCI or coronary artery bypass graft (CABG) should be finalized. If severe coronary 3-vessel disease is present, CABG should be favored in diabetic patients. After surviving an acute myocardial infarction differentiated metabolic monitoring is mandatory.

  1. Perioperative myocardial infarction in patients undergoing myocardial revascularization surgery

    PubMed Central

    Pretto, Pericles; Martins, Gerez Fernandes; Biscaro, Andressa; Kruczan, Dany David; Jessen, Barbara

    2015-01-01

    Introduction Perioperative myocardial infarction adversely affects the prognosis of patients undergoing coronary artery bypass graft and its diagnosis was hampered by numerous difficulties, because the pathophysiology is different from the traditional instability atherosclerotic and the clinical difficulty to be characterized. Objective To identify the frequency of perioperative myocardial infarction and its outcome in patients undergoing coronary artery bypass graft. Methods Retrospective cohort study performed in a tertiary hospital specialized in cardiology, from May 01, 2011 to April 30, 2012, which included all records containing coronary artery bypass graft records. To confirm the diagnosis of perioperative myocardial infarction criteria, the Third Universal Definition of Myocardial Infarction was used. Results We analyzed 116 cases. Perioperative myocardial infarction was diagnosed in 28 patients (24.1%). Number of grafts and use and cardiopulmonary bypass time were associated with this diagnosis and the mean age was significantly higher in this group. The diagnostic criteria elevated troponin I, which was positive in 99.1% of cases regardless of diagnosis of perioperative myocardial infarction. No significant difference was found between length of hospital stay and intensive care unit in patients with and without this complication, however patients with perioperative myocardial infarction progressed with worse left ventricular function and more death cases. Conclusion The frequency of perioperative myocardial infarction found in this study was considered high and as a consequence the same observed average higher troponin I, more cases of worsening left ventricular function and death. PMID:25859867

  2. Transmural Myocardial Mechanics During Isovolumic Contraction

    PubMed Central

    Ashikaga, Hiroshi; van der Spoel, Tycho I. G.; Coppola, Benjamin A.; Omens, Jeffrey H.

    2010-01-01

    OBJECTIVES We sought to resolve the 3-dimensional transmural heterogeneity in myocardial mechanics observed during the isovolumic contraction (IC) phase. BACKGROUND Although myocardial deformation during IC is expected to be little, recent tissue Doppler imaging studies suggest dynamic myocardial motions during this phase with biphasic longitudinal tissue velocities in left ventricular (LV) long-axis views. A unifying understanding of myocardial mechanics that would account for these dynamic aspects of IC is lacking. METHODS We determined the time course of 3-dimensional finite strains in the anterior LV of 14 adult mongrel dogs in vivo during IC and ejection with biplane cineradiography of implanted transmural markers. Transmural fiber orientations were histologically measured in the heart tissue postmortem. The strain time course was determined in the subepicardial, midwall, and subendocardial layers referenced to the end-diastolic configuration. RESULTS During IC, there was circumferential stretch in the subepicardial layer, whereas circumferential shortening was observed in the midwall and the subendocardial layer. There was significant longitudinal shortening and wall thickening across the wall. Although longitudinal tissue velocity showed a biphasic profile; tissue deformation in the longitudinal as well as other directions was almost linear during IC. Subendocardial fibers shortened, whereas subepicardial fibers lengthened. During ejection, all strain components showed a significant change over time that was greater in magnitude than that of IC. Significant transmural gradient was observed in all normal strains. CONCLUSIONS IC is a dynamic phase characterized by deformation in circumferential, longitudinal, and radial directions. Tissue mechanics during IC, including fiber shortening, appear uninterrupted by rapid longitudinal motion created by mitral valve closure. This study is the first to report layer-dependent deformation of circumferential strain

  3. Angiotensin type 2 receptor actions contribute to angiotensin type 1 receptor blocker effects on kidney fibrosis

    PubMed Central

    Naito, Takashi; Ma, Li-Jun; Yang, Haichun; Zuo, Yiqin; Tang, Yiwei; Han, Jee Young; Kon, Valentina

    2010-01-01

    Angiotensin type 1 (AT1) receptor blocker (ARB) ameliorates progression of chronic kidney disease. Whether this protection is due solely to blockade of AT1, or whether diversion of angiotensin II from the AT1 to the available AT2 receptor, thus potentially enhancing AT2 receptor effects, is not known. We therefore investigated the role of AT2 receptor in ARB-induced treatment effects in chronic kidney disease. Adult rats underwent 5/6 nephrectomy. Glomerulosclerosis was assessed by renal biopsy 8 wk later, and rats were divided into four groups with equivalent glomerulosclerosis: no further treatment, ARB, AT2 receptor antagonist, or combination. By week 12 after nephrectomy, systolic blood pressure was decreased in all treatment groups, but proteinuria was decreased only with ARB. Glomerulosclerosis increased significantly in AT2 receptor antagonist vs. ARB. Kidney cortical collagen content was decreased in ARB, but increased in untreated 5/6 nephrectomy, AT2 receptor antagonist, and combined groups. Glomerular cell proliferation increased in both untreated 5/6 nephrectomy and AT2 receptor antagonist vs. ARB, and phospho-Erk2 was increased by AT2 receptor antagonist. Plasminogen activator inhibitor-1 mRNA and protein were increased at 12 wk by AT2 receptor antagonist in contrast to decrease with ARB. Podocyte injury is a key component of glomerulosclerosis. We therefore assessed effects of AT1 vs. AT2 blockade on podocytes and interaction with plasminogen activator inhibitor-1. Cultured wild-type podocytes, but not plasminogen activator inhibitor-1 knockout, responded to angiotensin II with increased collagen, an effect that was completely blocked by ARB with lesser effect of AT2 receptor antagonist. We conclude that the benefical effects on glomerular injury achieved with ARB are contributed to not only by blockade of the AT1 receptor, but also by increasing angiotensin effects transduced through the AT2 receptor. PMID:20042458

  4. Cardioprotection against experimental myocardial ischemic injury using cornin

    PubMed Central

    Xu, Y.; Xu, Y.; Luan, H.; Jiang, Y.; Tian, X.; Zhang, S.

    2016-01-01

    Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt. PMID:26871971

  5. Cardioprotection against experimental myocardial ischemic injury using cornin.

    PubMed

    Xu, Y; Xu, Y; Luan, H; Jiang, Y; Tian, X; Zhang, S

    2016-02-01

    Phosphorylated-cyclic adenosine monophosphate response element-binding protein (Phospho-CREB) has an important role in the pathogenesis of myocardial ischemia. We isolated the iridoid glycoside cornin from the fruit of Verbena officinalis L, investigated its effects against myocardial ischemia and reperfusion (I/R) injury in vivo, and elucidated its potential mechanism in vitro. Effects of cornin on cell viability, as well as expression of phospho-CREB and phospho-Akt in hypoxic H9c2 cells in vitro, and myocardial I/R injury in vivo, were investigated. Cornin attenuated hypoxia-induced cytotoxicity significantly in H9c2 cells in a concentration-dependent manner. Treatment of H9c2 cells with cornin (10 µM) blocked the reduction of expression of phospho-CREB and phospho-Akt in a hypoxic condition. Treatment of rats with cornin (30 mg/kg, iv) protected them from myocardial I/R injury as indicated by a decrease in infarct volume, improvement in hemodynamics, and reduction of severity of myocardial damage. Cornin treatment also attenuated the reduction of expression of phospho-CREB and phospho-Akt in ischemic myocardial tissue. These data suggest that cornin exerts protective effects due to an increase in expression of phospho-CREB and phospho-Akt.

  6. The implications of angiotensin-converting enzymes and their modulators in neurodegenerative disorders: current and future perspectives.

    PubMed

    Kaur, Parneet; Muthuraman, Arunachalam; Kaur, Manjinder

    2015-04-15

    Angiotensin converting enzyme (ACE) is a dipeptidyl peptidase transmembrane bound enzyme. Generally, ACE inhibitors are used for the cardiovascular disorders. ACE inhibitors are primary agents for the management of hypertension, so these cannot be avoided for further use. The present Review focuses on the implications of angiotensin converting enzyme inhibitors in neurodegenerative disorders such as dementia, Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, stroke, and diabetic neuropathy. ACE inhibitors such as ramipril, captopril, perindopril, quinapril, lisinopril, enalapril, and trandolapril have been documented to ameliorate the above neurodegenerative disorders. Neurodegeneration occurs not only by angiotensin II, but also by other endogenous factors, such as the formation of free radicals, amyloid beta, immune reactions, and activation of calcium dependent enzymes. ACE inhibitors interact with the above cellular mechanisms. Thus, these may act as a promising factor for future medicine for neurological disorders beyond the cardiovascular actions. Central acting ACE inhibitors can be useful in the future for the management of neuropathic pain due to following actions: (i) ACE-2 converts angiotensinogen to angiotensin(1-7) (hepatapeptide) which produces neuroprotective action; (ii) ACE inhibitors downregulate kinin B1 receptors in the peripheral nervous system which is responsible for neuropathic pain. However, more extensive research is required in the field of neuropathic pain for the utilization of ACE inhibitors in human.

  7. Identification of angiotensin II receptor subtypes

    SciTech Connect

    Chiu, A.T.; Herblin, W.F.; McCall, D.E.; Ardecky, R.J.; Carini, D.J.; Duncia, J.V.; Pease, L.J.; Wong, P.C.; Wexler, R.R.; Johnson, A.L.; )

    1989-11-30

    We have demonstrated the existence of two distinct subtypes of the angiotensin II receptor in the rat adrenal gland using radioligand binding and tissue section autoradiography. The identification of the subtypes was made possible by the discovery of two structurally dissimilar, nonpeptide compounds, DuP 753 and EXP655, that show reciprocal selectivity for the two subtypes. In the rat adrenal cortex, DuP 753 inhibited 80% of the total AII binding with an IC50 value on the sensitive sites of 2 x 10(-8) M, while EXP655 displaced only 20%. In the rat adrenal medulla, EXP655 gave 90% inhibition of AII binding with an IC50 value of 3.0 x 10(-8) M, while DuP 753 was essentially inactive. The combination of the two compounds completely inhibited AII binding in both tissues.

  8. The renin-angiotensin system and its blockers.

    PubMed

    Igić, Rajko; Škrbić, Ranko

    2014-01-01

    Research on the renin-angiotensin system (RAS) has contributed significantly to advances in understanding cardiovascular and renal homeostasis and to the treatment of cardiovascular diseases. This review offers a brief history of the RAS with an overview of its major components and their functions, as well as blockers of the RAS, their clinical usage and current research that targets various components of the RAS. Because angiotensin-converting enzyme (ACE) metabolizes two biologically active peptides, one in the kallikrein-kinin system (KKS) and one in the RAS, it is the essential connection between the two systems. ACE releases very powerful hypertensive agent, angiotensin II and also inactivates strong hypotensive peptide, bradykinin. Inhibition of ACE thus has a dual effect, resulting in decreased angiotensin II and increased bradykinin. We described the KKS as well. PMID:25731011

  9. Hypertension: renin-angiotensin-aldosterone system alterations.

    PubMed

    Te Riet, Luuk; van Esch, Joep H M; Roks, Anton J M; van den Meiracker, Anton H; Danser, A H Jan

    2015-03-13

    Blockers of the renin-angiotensin-aldosterone system (RAAS), that is, renin inhibitors, angiotensin (Ang)-converting enzyme (ACE) inhibitors, Ang II type 1 receptor antagonists, and mineralocorticoid receptor antagonists, are a cornerstone in the treatment of hypertension. How exactly they exert their effect, in particular in patients with low circulating RAAS activity, also taking into consideration the so-called Ang II/aldosterone escape that often occurs after initial blockade, is still incompletely understood. Multiple studies have tried to find parameters that predict the response to RAAS blockade, allowing a personalized treatment approach. Consequently, the question should now be answered on what basis (eg, sex, ethnicity, age, salt intake, baseline renin, ACE or aldosterone, and genetic variance) a RAAS blocker can be chosen to treat an individual patient. Are all blockers equal? Does optimal blockade imply maximum RAAS blockade, for example, by combining ≥2 RAAS blockers or by simply increasing the dose of 1 blocker? Exciting recent investigations reveal a range of unanticipated extrarenal effects of aldosterone, as well as a detailed insight in the genetic causes of primary aldosteronism, and mineralocorticoid receptor blockers have now become an important treatment option for resistant hypertension. Finally, apart from the deleterious ACE-Ang II-Ang II type 1 receptor arm, animal studies support the existence of protective aminopeptidase A-Ang III-Ang II type 2 receptor and ACE2-Ang-(1 to 7)-Mas receptor arms, paving the way for multiple new treatment options. This review provides an update about all these aspects, critically discussing the many controversies and allowing the reader to obtain a full understanding of what we currently know about RAAS alterations in hypertension. PMID:25767283

  10. Angiotensin II: multitasking in the brain.

    PubMed

    Saavedra, Juan M; Benicky, Julius; Zhou, Jin

    2006-03-01

    In addition to controlling systemic blood pressure, angiotensin II (Ang II) has several roles in the brain, including the regulation of cerebrovascular flow and the reaction to stress. In order to clarify the central effects of Ang II and its type 1 (AT1) receptors, we reviewed the literature reporting recent research on the effects of pretreatment with the AT1-receptor blocker, candesartan, on experimental ischemia, cerebrovascular remodeling, and inflammation in spontaneously hypertensive rats (SHRs), and the responses to stress induced by isolation and by cold-restraint. Angiotensin II regulates the brain circulation through stimulation of AT1-receptors located in the cerebrovascular endothelium and central pathways. SHRs express greater numbers of endothelial AT1-receptors and a central sympathetic overdrive, resulting in pathological cerebrovascular growth, inflammation, decreased cerebrovascular compliance, and enhanced vulnerability to brain ischemia. Sustained central AT1-receptor antagonism reverses these effects. Sustained reduction of AT1-receptor stimulation before stress prevents the hormonal and sympathoadrenal stress responses during isolation and prevents the gastric ulceration stress response to cold-restraint, indicating that increased AT1-receptor stimulation is essential to enhance the central sympathetic response and the formation and release of corticotropin-releasing factor (CRF) and arginine vasopressin that occur during stress. AT1-receptor blocking agents reverse the cortical alterations in CRF1 and benzodiazepine receptors characteristic of isolation stress, effects probably related to their anti-anxiety effect in rodents. Sustained reduction of Ang II tone by AT1-receptor antagonism could be considered as a preventive and therapeutic approach for brain ischemia and stress-related and mood disorders. Additional preclinical studies and controlled clinical trials are necessary to confirm the efficacy of this novel therapeutic approach.

  11. Role of the Renin-Angiotensin-Aldosterone System and Its Pharmacological Inhibitors in Cardiovascular Diseases: Complex and Critical Issues.

    PubMed

    Borghi, Claudio; Rossi, Francesco

    2015-12-01

    Hypertension is one of the major risk factor able to promote development and progression of several cardiovascular diseases, including left ventricular hypertrophy and dysfunction, myocardial infarction, stroke, and congestive heart failure. Also, it is one of the major driven of high cardiovascular risk profile in patients with metabolic complications, including obesity, metabolic syndrome and diabetes, as well as in those with renal disease. Thus, effective control of hypertension is a key factor for any preventing strategy aimed at reducing the burden of hypertension-related cardiovascular diseases in the clinical practice. Among various regulatory and contra-regulatory systems involved in the pathogenesis of cardiovascular and renal diseases, renin-angiotensin system (RAS) plays a major role. However, despite the identification of renin and the availability of various assays for measuring its plasma activity, the specific pathophysiological role of RAS has not yet fully characterized. In the last years, however, several notions on the RAS have been improved by the results of large, randomized clinical trials, performed in different clinical settings and in different populations treated with RAS inhibiting drugs, including angiotensin converting enzyme (ACE) inhibitors and antagonists of the AT1 receptor for angiotensin II (ARBs). These findings suggest that the RAS should be considered to have a central role in the pathogenesis of different cardiovascular diseases, for both therapeutic and preventive purposes, without having to measure its level of activation in each patient. The present document will discuss the most critical issues of the pathogenesis of different cardiovascular diseases with a specific focus on RAS blocking agents, including ACE inhibitors and ARBs, in the light of the most recent evidence supporting the use of these drugs in the clinical management of hypertension and hypertension-related cardiovascular diseases.

  12. Effect of angiotensin on glomerular filtration of albumin.

    PubMed

    Eisenbach, G M; Van Liew, J B

    1975-01-01

    Angiotensin-induced proteinuria was examined at the glomerular-tubular level in rats. Ultra-micro-disc electrophoresis was employed to determine albumin concentration of rat proximal tubular fluid samples under control conditions and during the infusion of 0.15 mug/min X 100 g body weight angiotensin II using micropuncture techniques. Under control conditions proximal tubular albumin concentration was 1.32 +/- 0.79 (SD) mg/100 ml (n = 71). There was no correlation between albumin concentration and (TF/P)-inulin ratio indicating an albumin reabsorption in the proximal tubule parallel to fluid reabsorption under control conditions. During angiotensin infusion using re-collection techniques, there is an average increase of 26 times in tubular albumin concentration, indicating an increase in albumin filtered. There was no change in GFR, SNGFR, transit time, (TF/P)-inulin ratio, an increase in urine flow rate, sodium excretion, protein excretion, mean arterial blood pressure during angiotensin infusion. Since effective glomerular filtration pressure was not increased during angiotensin it is concluded that angiotensin-induced proteinuria is due to an increase in filtered protien mediated by a change in glomerular permeability to proteins.

  13. Angiotensin Receptors: Structure, Function, Signaling and Clinical Applications

    PubMed Central

    Singh, Khuraijam Dhanachandra; Karnik, Sadashiva S

    2016-01-01

    Angiotensinogen – a serpin family protein predominantly produced by the liver is systematically processed by proteases of the Renin Angiotensin system (RAS) generating hormone peptides. Specific cell surface receptors for at least three distinct angiotensin peptides produce distinct cellular signals that regulate system-wide physiological response to RAS. Two well characterized receptors are angiotensin type 1 receptor (AT1 receptor) and type 2 receptor (AT2 receptor). They respond to the octapeptide hormone angiotensin II. The oncogene product MAS is a putative receptor for Ang (1–7). While these are G-protein coupled receptors (GPCRs), the in vivo angiotensin IV binding sites may be type 2 transmembrane proteins. These four receptors together regulate cardiovascular, hemodynamic, neurological, renal, and endothelial functions; as well as cell proliferation, survival, matrix-cell interactions and inflammation. Angiotensin receptors are important therapeutic targets for several diseases. Thus, researchers and pharmaceutical companies are focusing on drugs targeting AT1 receptor than AT2 receptor, MAS and AngIV binding sites. AT1 receptor blockers are the cornerstone of current treatment for hypertension, heart failure, renal failure and many types of vascular diseases including atherosclerosis, aortic aneurism and Marfan syndrome. PMID:27512731

  14. Origin of the angiotensin II secreted by cells.

    PubMed

    Ganong, W F

    1994-03-01

    Circulating angiotensin II is unique in that it is formed in the blood by the interaction of circulating proteins. There are in addition many local renin-angiotensin systems in tissues in which angiotensin II is apparently secreted by various types of cells. This brief review considers the possible pathways for synthesis of locally produced angiotensin II in the brain, the anterior pituitary, the testes, the ovaries, the adrenal cortex, the kidneys, the heart, blood vessel walls, and brown and white fat. Synthesis by cells in culture is also reviewed. The possibility that certain cells contain a complete intracellular renin-angiotensin system is not ruled out, but there are problems with this hypothesis. Proteases other than renin may be involved, and there may be different pathways in different tissues. However, it appears that at least in some tissues, angiotensinogen is produced in one population of cells and transported in a paracrine fashion to other renin-containing cells, where it serves as the substrate for production of angiotensin II.

  15. Voltage-programming-based capillary gel electrophoresis for the fast detection of angiotensin-converting enzyme insertion/deletion polymorphism with high sensitivity.

    PubMed

    Woo, Nain; Kim, Su-Kang; Kang, Seong Ho

    2016-08-01

    A voltage-programming-based capillary gel electrophoresis method with a laser-induced fluorescence detector was developed for the fast and highly sensitive detection of DNA molecules related to angiotensin-converting enzyme insertion/deletion polymorphism, which has been reported to influence predisposition to various diseases such as cardiovascular disease, high blood pressure, myocardial infarction, and Alzheimer's disease. Various voltage programs were investigated for fast detection of specific DNA molecules of angiotensin-converting enzyme insertion/deletion polymorphism as a function of migration time and separation efficiency to establish the effect of voltage strength to resolution. Finally, the amplified products of the angiotensin-converting enzyme insertion/deletion polymorphism (190 and 490 bp DNA) were analyzed in 3.2 min without losing resolution under optimum voltage programming conditions, which were at least 75 times faster than conventional slab gel electrophoresis. In addition, the capillary gel electrophoresis method also successfully applied to the analysis of real human blood samples, although no polymorphism genes were detected by slab gel electrophoresis. Consequently, the developed voltage-programming capillary gel electrophoresis method with laser-induced fluorescence detection is an effective, rapid analysis technique for highly sensitive detection of disease-related specific DNA molecules.

  16. The angiotensin-(1-7)/Mas axis reduces myonuclear apoptosis during recovery from angiotensin II-induced skeletal muscle atrophy in mice.

    PubMed

    Meneses, Carla; Morales, María Gabriela; Abrigo, Johanna; Simon, Felipe; Brandan, Enrique; Cabello-Verrugio, Claudio

    2015-09-01

    Angiotensin-(1-7) [Ang (1-7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1-7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1-7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1-7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1-7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1-7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1-7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.

  17. Preparation and Biological Activity of the Monoclonal Antibody against the Second Extracellular Loop of the Angiotensin II Type 1 Receptor

    PubMed Central

    Wei, Mingming; Zhao, Chengrui; Zhang, Suli; Wang, Li; Liu, Huirong; Ma, Xinliang

    2016-01-01

    The current study was to prepare a mouse-derived antibody against the angiotensin II type 1 receptor (AT1-mAb) based on monoclonal antibody technology, to provide a foundation for research on AT1-AA-positive diseases. Balb/C mice were actively immunized with the second extracellular loop of the angiotensin II type 1 receptor (AT1R-ECII). Then, mouse spleen lymphocytes were fused with myeloma cells and monoclonal hybridomas that secreted AT1-mAb were generated and cultured, after which those in logarithmic-phase were injected into the abdominal cavity of mice to retrieve the ascites. Highly purified AT1-mAb was isolated from mouse ascites after injection with 1 × 107 hybridomas. A greater amount of AT1-mAb was purified from mouse ascites compared to the cell supernatant of hybridomas. AT1-mAb purified from mouse ascites constricted the thoracic aorta of mice and increased the beat frequency of neonatal rat myocardial cells via the AT1R, identical to the effects of AT1-AA extracted from patients' sera. Murine blood pressure increased after intravenous injection of AT1-mAb via the tail vein. High purity and good biological activity of AT1-mAb can be obtained from mouse ascites after intraperitoneal injection of monoclonal hybridomas that secrete AT1-mAb. These data provide a simple tool for studying AT1-AA-positive diseases. PMID:27057554

  18. Effects of Angiotensin-II Receptor Blocker on Inhibition of Thrombogenicity in a Canine Atrial Fibrillation Model

    PubMed Central

    Jung, Jae Seung; Kim, Min Kyung; Sim, Jaemin; Kim, Jin Seok; Lim, Hong Euy; Park, Sang Weon; Kim, Young-Hoon

    2016-01-01

    Background and Objectives Angiotensin-II receptor blockers (ARBs) are known to reduce the development of atrial fibrillation (AF) through reverse-remodeling. However, the effect of ARBs on thrombogenicity in AF remains unknown. Materials and Methods Twelve dogs were assigned to control (n=4), ARB (candesartan cilexitil 10 mg/kg/day p.o., 12 weeks; n=4), or sham (n=4) groups. Sustained AF was induced by rapid atrial pacing. Both arterial and venous serum levels of tissue inhibitor of matrix metalloproteinase-1, von Willebrand factor, P-selectin, and vascular cell adhesion molecule-1 (VCAM-1) were measured at baseline and during AF (0, 4, and 12 weeks) with enzyme-linked immunosorbent assay. Biopsies from both atria including the appendages were performed to semi-quantitatively assess endocardial and myocardial fibrosis after 12 weeks. Results The serum levels of bio-markers were not significantly different at baseline or during AF between the control and the candesartan groups. The levels were not significantly different over time, but there was a trend toward a decrease in arterial VCAM-1 from 4 to 12 weeks in the candesartan group compared to the control group. The grades of endocardial fibrosis after 12 weeks but not those of myocardial fibrosis were slightly reduced in the candesartan group compared to the control group. Conclusion This study did not show that the ARB candesartan significantly reverses thrombogenicity or fibrosis during AF. Future studies using a larger number of subjects are warranted to determine the therapeutic effect of renin-angiotensin-aldosterone system blockade on prothrombogenic processes in AF. PMID:27275170

  19. PICSO: from myocardial salvage to tissue regeneration.

    PubMed

    Mohl, Werner; Gangl, Clemens; Jusić, Alem; Aschacher, Thomas; De Jonge, Martin; Rattay, Frank

    2015-01-01

    Despite advances in primary percutaneous interventions (PPCI), management of microvascular obstructions in reperfused myocardial tissue remains challenging and is a high-risk procedure. This has led to renewed interest in the coronary venous system as an alternative route of access to the myocardium. This article reviews historical data describing therapeutic options via cardiac veins as well as discussing the clinical potential and limitations of a catheter intervention: pressure controlled intermittent coronary sinus occlusion (PICSO). Collected experimental and clinical information suggest that PICSO also offers the potential for tissue regeneration beyond myocardial salvage. A meta-analysis of observer controlled pICSO application in animal studies showed a dose dependent reduction in infarct size of 29.3% (p < 0.001). Additionally, a 4-fold increase of hemeoxygenase-1 gene expression (p < 0.001) in the center of infarction and a 2.5 fold increase of vascular endothelial growth factor (VEGF) (p < 0.002) in border zones suggest that molecular pathways are initiating structural maintenance. Early clinical evidence confirmed significant salvage and event free survival in patients with acute myocardial infarction and risk reduction for event free survival 5 years after the acute event (p < 0.0001). This experimental and clinical evidence was recently corroborated using modern PICSO technology in PPCI showing a significant reduction of infarct size, when compared to matched controls (p < 0.04). PICSO enhances redistribution of flow towards deprived zones, clearing microvascular obstruction and leading to myocardial protection. Beyond salvage, augmentation of molecular regenerative networks suggests a second mechanism of PICSO involving the activation of vascular cells in cardiac veins, thus enhancing structural integrity and recovery. PMID:25616738

  20. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II.

    PubMed

    Peng, Kesong; Tian, Xinqiao; Qian, Yuanyuan; Skibba, Melissa; Zou, Chunpeng; Liu, Zhiguo; Wang, Jingying; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2016-03-01

    Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)-induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal-regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II-induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II-induced EGFR activation is mediated by c-Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c-Src-dependent EGFR activation may play an important role in Ang II-induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II-associated cardiac diseases. PMID:26762600

  1. Ets-1 upregulation mediates angiotensin II-related cardiac fibrosis.

    PubMed

    Hao, Guanghua; Han, Zhenhua; Meng, Zhe; Wei, Jin; Gao, Dengfeng; Zhang, Hong; Wang, Nanping

    2015-01-01

    Ets-1, the prototypical member of the family of Ets transcription factors, has been shown to participate in tissue fibrotic remodeling. However, its role in cardiac fibrosis has not been established. The aim of this study was to investigate the role of Ets-1 in profibrotic actions of angiotensin II (Ang II) in cardiac fibroblasts (CFs) and in the in vivo heart. In growth-arrested CFs, Ang II induced Ets-1 expression in a time- and concentration-dependent manner. Pretreatment with Ang II type 1 receptor blocker losartan, protein kinase C inhibitor bisindolylmaleimide I, extracellular signal-regulated kinase (ERK) inhibitor PD98059, or c-Jun NH(2)-terminal kinase (JNK) inhibitor SP600125 partly inhibited this induction accompanied with impaired cell proliferation and production of plasminogen activator inhibitor-1 (PAI-1) and connective tissue growth factor (CTGF) protein, the two downstream targets of Ets-1. Knockdown of Ets-1 by siRNA significantly inhibited the inductive effects of Ang II on cell proliferation and expression of CTGF and PAI-1. Moreover, the levels of Ets-1, PAI-1 and CTGF protein were simultaneously upregulated in left ventricle of Ang II-infused rats in parallel with an increase in the activation of ERK and JNK. Our data suggest that Ets-1 may mediate Ang II-induced cardiac fibrotic effects.

  2. Angiotensin receptor binding and pressor effects in cat subretrofacial nucleus

    SciTech Connect

    Allen, A.M.; Dampney, R.A.L.; Mendelsohn, F.A.O. Univ. of Sydney )

    1988-11-01

    Central administration of angiotensin II (ANG II) increases arterial blood pressure via increased sympathetic activity. The authors have examined the possibility that one site of action of ANG II is the subretrofacial (SRF) nucleus in the rostral ventrolateral medulla, since this nucleus is known to play a critical role in the tonic and phasic control of arterial pressure. In vitro autoradiography, employing {sup 125}I-labeled (Sar{sup 1}, Ile{sup 8})ANG II as radioligand, was used to localize binding sites for ANG-II in the cat ventrolateral medulla. A high density of ANG II-receptor binding sites was found confined to the SRF nucleus. In a second group of experiments in anesthetized cats, microinjections of ANG II, in doses ranging from 10 to 50 pmol, were made into histologically identified sites within and outside the SRF nucleus. Microinjections into the nucleus resulted in a dose-dependent increase in arterial pressure, which was abolished by systemic administration of the ganglion-blocking drug hexamethonium bromide. In contrast, microinjections just outside the SRF nucleus had no effect on arterial pressure. It is concluded that activation of ANG II-receptor binding sites within the SRF nucleus leads to an increase in arterial pressure via increased sympathetic efferent activity.

  3. Myocardial fibre calcification.

    PubMed Central

    McClure, J; Pieterse, A S; Pounder, D J; Smith, P S

    1981-01-01

    Three cases of myocardial fibre calcification found at post-mortem examination are described. In one case there was antemortem hypercalcaemia and hyperphosphataemia and the case was clearly an example of metastatic calcification. In the other two cases there was ischaemic myocardial necrosis and calcification was seen in fibres which were not overtly necrotic, but which were both in proximity to (the majority) and remote from the necrotic zones. Since renal failure with hyperphosphataemia was present in both cases, these were considered to be examples of augmented (by the hyperphosphataemia) dystrophic calcification. The histological, histochemical and ultrastructural features were identical in the three cases. Hydroxyapatite formation was observed initially in mitochondria, followed by spillage of crystals into the cytosol and ultimately into the interstitium. It is suggested that the fundamental lesion is a dysfunction of the fibre membrane; the similarity of this reaction with the calcification seen in skeletal muscle fibres in various myopathies is noted and a unifying hypothesis of the mechanism of skeletal and cardiac muscle fibre calcification is thereby suggested. Images PMID:7309897

  4. Trauma induced myocardial infarction.

    PubMed

    Lolay, Georges A; Abdel-Latif, Ahmed K

    2016-01-15

    Chest Trauma in athletes is a common health problem. However, myocardial infarction secondary to coronary dissection in the setting of blunt chest trauma is extremely rare. We report a case of acute inferior wall myocardial infarction following blunt chest trauma. A 32-year-old male with no relevant medical problems was transferred to our medical center for retrosternal chest pain after being elbowed in the chest during a soccer game. Few seconds later, he started experiencing sharp retrosternal chest pain that was severe to that point where he called the emergency medical service. Upon arrival to the trauma department patient was still complaining of chest pain. ECG demonstrated ST segment elevation in the inferior leads with reciprocal changes in the lateral leads all consistent with active ischemia. After rolling out aortic dissection, patient was loaded with ASA, ticagerlor, heparin and was emergently taken to the cardiac catheterization lab. Coronary angiography demonstrated 100% thrombotic occlusion in the distal right coronary artery with TIMI 0 flow distally. After thrombus aspiration, a focal dissection was noted on the angiogram that was successfully stented. Two days after admission patient was discharged home. Echocardiography prior to discharge showed inferior wall akinesis, normal right ventricular systolic function and normal overall ejection fraction.

  5. Angiotensin II Type 1 Receptor-Mediated Electrical Remodeling in Mouse Cardiac Myocytes.

    PubMed

    Kim, Jeremy; Gao, Junyuan; Cohen, Ira S; Mathias, Richard T

    2015-01-01

    We recently characterized an autocrine renin angiotensin system (RAS) in canine heart. Activation of Angiotensin II Type 1 Receptors (AT1Rs) induced electrical remodeling, including inhibition of the transient outward potassium current Ito, prolongation of the action potential (AP), increased calcium entry and increased contractility. Electrical properties of the mouse heart are very different from those of dog heart, but if a similar system existed in mouse, it could be uniquely studied through genetic manipulations. To investigate the presence of a RAS in mouse, we measured APs and Ito in isolated myocytes. Application of angiotensin II (A2) for 2 or more hours reduced Ito magnitude, without affecting voltage dependence, and prolonged APs in a dose-dependent manner. Based on dose-inhibition curves, the fast and slow components of Ito (Ito,fast and IK,slow) appeared to be coherently regulated by [A2], with 50% inhibition at an A2 concentration of about 400 nM. This very high K0.5 is inconsistent with systemic A2 effects, but is consistent with an autocrine RAS in mouse heart. Pre-application of the microtubule destabilizing agent colchicine eliminated A2 effects on Ito and AP duration, suggesting these effects depend on intracellular trafficking. Application of the biased agonist SII ([Sar1-Ile4-Ile8]A2), which stimulates receptor internalization without G protein activation, caused Ito reduction and AP prolongation similar to A2-induced changes. These data demonstrate AT1R mediated regulation of Ito in mouse heart. Moreover, all measured properties parallel those measured in dog heart, suggesting an autocrine RAS may be a fundamental feedback system that is present across species. PMID:26430746

  6. The iron-regulatory peptide hepcidin is upregulated in the ischemic and in the remote myocardium after myocardial infarction.

    PubMed

    Simonis, Gregor; Mueller, Katrin; Schwarz, Peggy; Wiedemann, Stephan; Adler, Guido; Strasser, Ruth H; Kulaksiz, Hasan

    2010-09-01

    Recent evidence suggests that iron metabolism contributes to the ischemic damage after myocardial infarction. Hepcidin, a recently discovered peptide hormone, regulates iron uptake and metabolism, protecting the body from iron overload. In this study we analyzed the regulation of hepcidin in the heart and blood of rats after myocardial infarction. To induce a myocardial infarction in the rats, left anterior descending coronary artery ligation was performed. After 1-24h, biopsies from the ischemic and the non-ischemic myocardium were taken. In these biopsies, the mRNA levels and the protein expression of hepcidin were analyzed by quantitative RT-PCR and immunoblot analysis, respectively. In parallel, the serum levels of prohepcidin were measured by ELISA. Six hours after myocardial infarction, the hepcidin mRNA expression was temporally upregulated in the ischemic and in the non-ischemic myocardium. The upregulation was specific for hepcidin, since other iron-related genes (hemojuvelin, IREG-1) remained unchanged. Furthermore, the alteration of the hepcidin protein expression in the ischemic area was connected to the level of hepcidin in the serum of the infarcted rats, where hepcidin also raised up. Angiotensin receptor blockade with candesartan did not influence the mRNA regulation of hepcidin. Together, these data show a particular upregulation of the iron-regulatory peptide hepcidin in the ischemic and the non-ischemic myocardium after myocardial infarction. It is speculated that upregulation of hepcidin may reduce iron toxicity and thus infarct size expansion in an infarcted heart.

  7. Differential systemic and regional hemodynamic profiles of four angiotensin-I converting-enzyme inhibitors in the rat.

    PubMed

    Richer, C; Doussau, M P; Giudicelli, J F

    1989-12-01

    Angiotensin-converting enzyme (ACE) inhibitors decrease blood pressure by reducing systemic vascular resistance. That the peripheral vasodilating properties of ACE inhibitors might not be homogeneously distributed in all vascular beds and might differ from one drug to another has been investigated in the normotensive rat by the pulsed Doppler technique using the active components of four different ACE inhibitors: captopril, enalapril, perindopril, and ramipril. Systemic (cardiac output and blood pressure) and regional (kidney, mesentery, hindquarter) hemodynamic responses to saline or to cumulative bolus injections (0.01-1 mg/kg) of captopril, enalaprilat, perindoprilat, or ramiprilat were continuously monitored. The effects of successive bolus injections (0.3-300 ng/kg) of angiotensinII were also investigated. The four ACE inhibitors produced an almost complete blockade of plasma angiotensin-II converting-enzyme activity (83%, 100%, 100%, and 100%, respectively), induced dose-dependent decreases in mean blood pressure, did not significantly affect cardiac output, and reduced total peripheral and mesenteric vascular resistances to the same extent. Hindlimb vascular resistance was identically decreased, but to a lower extent than total peripheral resistance by enalaprilat, perindoprilat, and ramiprilat, whereas it was increased by captopril at low doses only. Renal resistance was markedly decreased by the four drugs, and especially by captopril. The decreasing rank order for ACE-inhibitor-induced vasodilation is exactly the same (renal greater than total peripheral = mesenteric greater than hindlimb vascular resistances) as that of angiotensin-H-induced regional vasoconstriction, indicating that the vasodilator properties of ACE inhibitors are mainly due to angiotensin-II vasomotor tone suppression. None of the investigated compounds significantly affected mesenteric and hindlimb blood flows, except captopril, which lowered the latter significantly

  8. Blood, pituitary, and brain renin-angiotensin systems and regulation of secretion of anterior pituitary gland.

    PubMed

    Ganong, W F

    1993-07-01

    In addition to increasing blood pressure, stimulating aldosterone and vasopressin secretion, and increasing water intake, angiotensin II affects the secretion of anterior pituitary hormones. Some of these effects are direct. There are angiotensin II receptors on lactotropes and corticotropes in rats, and there may be receptors on thyrotropes and other secretory cells. Circulating angiotensin II reaches these receptors, but angiotensin II is almost certainly generated locally by the pituitary renin-angiotensin system as well. There are also indirect effects produced by the effects of brain angiotensin II on the secretion of hypophyseotropic hormones. In the anterior pituitary of the rat, the gonadotropes contain renin, angiotensin II, and some angiotensin-converting enzyme. There is debate about whether these cells also contain small amounts of angiotensinogen, but most of the angiotensinogen is produced by a separate population of cells and appears to pass in a paracrine fashion to the gonadotropes. An analogous situation exists in the brain. Neurons contain angiotensin II and probably renin, but most angiotensin-converting enzyme is located elsewhere and angiotensinogen is primarily if not solely produced by astrocytes. Angiotensin II causes secretion of prolactin and adrenocorticotropic hormone (ACTH) when added to pituitary cells in vitro. Paracrine regulation of prolactin secretion by angiotensin II from the gonadotropes may occur in vitro under certain circumstances, but the effects of peripheral angiotensin II on ACTH secretion appear to be mediated via the brain and corticotropin-releasing hormone (CRH). In the brain, there is good evidence that locally generated angiotensin II causes release of norepinephrine that in turn stimulates gonadotropin-releasing hormone-secreting neurons, increasing circulating luteinizing hormone. In addition, there is evidence that angiotensin II acts in the arcuate nuclei to increase the secretion of dopamine into the portal

  9. Hyperkalemia associated with use of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers.

    PubMed

    Raebel, Marsha A

    2012-06-01

    The aims of this article are to review the current understanding of hyperkalemia associated with angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB) therapy. This includes reviewing the pathophysiology of how these agents affect potassium handling within the kidney, risk factors for developing hyperkalemia, incidence, clinical signs and symptoms, and providing a practical approach to treatment of the patient who is either at risk of, or experiencing, hyperkalemia. ACEi and ARB are effective therapeutic agents used in a variety of clinical scenarios. However, related to their effects on the renin-angiotensin-aldosterone system, their use can be associated with hyperkalemia, particularly in patients who have chronic renal insufficiency. Published incidence estimates of hyperkalemia associated with ACEi or ARB vary, but up to 10% of patients may experience at least mild hyperkalemia. Important considerations when initiating ACEi or ARB therapy include obtaining an estimate of glomerular filtration rate and a baseline serum potassium concentration, as well as assessing whether the patient has excessive potassium intake from diet, supplements, or drugs that can also increase serum potassium. Serum potassium monitoring shortly after initiation of therapy can assist in preventing hyperkalemia. If hyperkalemia does develop, prompt recognition of cardiac dysrhythmias and effective treatment to antagonize the cardiac effects of potassium, redistribute potassium into cells, and remove excess potassium from the body is important.Understanding the mechanism of action of ACEi and ARB coupled with judicious drug use and clinical vigilance can minimize the risk to the patient of developing hyperkalemia. Should hyperkalemia occur, prompt recognition and management can optimize clinical outcome.

  10. The renin-angiotensin system and the central nervous system.

    PubMed

    Ganong, W F

    1977-04-01

    One of several factors affecting the secretion of renin by the kidneys is the sympathetic nervous system. The sympathetic input is excitatory and is mediated by beta-adrenergic receptors, which are probably located on the membranes of the juxtaglomerular cells. Stimulation of sympathetic areas in the medulla, midbrain and hypothalamus raises blood pressure and increases renin secretion, whereas stimulation of other parts of the hypothalamus decreases blood pressure and renin output. The centrally active alpha-adrenergic agonist clonidine decreases renin secretion, lowers blood pressure, inhibits ACTH and vasopressin secretion, and increases growth hormone secretion in dogs. The effects on ACTH and growth hormone are abolished by administration of phenoxybenzamine into the third ventricle, whereas the effect on blood pressure is abolished by administration of phenoxybenzamine in the fourth ventricle without any effect on the ACTH and growth hormone responses. Fourth ventricular phenoxybenzamine decreases but does not abolish the inhibitory effect of clonidine on renin secretion. Circulating angiotensin II acts on the brain via the area postrema to raise blood pressure and via the subfornical organ to increase water intake. Its effect on vasopressin secretion is debated. The brain contains a renin-like enzyme, converting enzyme, renin substrate, and angiotensin. There is debate about the nature and physiological significance of the angiotensin II-generating enzyme in the brain, and about the nature of the angiotensin I and angiotensin II that have been reported to be present in the central nervous system. However, injection of angiotensin II into the cerebral ventricles produces drinking, increased secretion of vasopressin and ACTH, and increased blood pressure. The same responses are produced by intraventricular renin. Angiotensin II also facilitates sympathetic discharge in the periphery, and the possibility that it exerts a similar action on the adrenergic neurons

  11. Angiotensin II Receptor Blockers and Cancer Risk

    PubMed Central

    Zhao, Yun-Tao; Li, Peng-Yang; Zhang, Jian-Qiang; Wang, Lei; Yi, Zhong

    2016-01-01

    Abstract Angiotensin II receptor blockers (ARB) are widely used drugs that are proven to reduce cardiovascular disease events; however, several recent meta-analyses yielded conflicting conclusions regarding the relationship between ARB and cancer incidence, especially when ARB are combined with angiotensin-converting enzyme inhibitors (ACEI). We investigated the risk of cancer associated with ARB at different background ACEI levels. Search of PubMed and EMBASE (1966 to December 17, 2015) without language restriction. Randomized, controlled trials (RCTs) had at least 12 months of follow-up data and reported cancer incidence was included. Study characteristics, quality, and risk of bias were assessed by 2 reviewers independently. Nineteen RCTs including 148,334 patients were included in this study. Random-effects model meta-analyses were used to estimate the risk ratio (RR) of cancer risk. No excessive cancer risk was observed in our analyses of ARB alone versus placebo alone without background ACEI use (risk ratio [RR] 1.08, 95% confidence interval [CI] 1.00–1.18, P = 0.05); ARB alone versus ACEI alone (RR 1.03, 95%CI 0.94–1.14, P = 0.50); ARB plus partial use of ACEI versus placebo plus partial use of ACEI (RR 0.97, 95%CI 0.90–1.04, P = 0.33); and ARB plus ACEI versus ACEI (RR 0.99, 95%CI 0.79–1.24, P = 0.95). Lack of long-term data, inadequate reporting of safety data, significant heterogeneity in underlying study populations, and treatment regimens. ARB have a neutral effect on cancer incidence in randomized trials. We observed no significant differences in cancer incidence when we compared ARB alone with placebo alone, ARB alone with ACEI alone, ARB plus partial use of ACEI with placebo plus partial use of ACEI, or ARB plus ACEI combination with ACEI. PMID:27149494

  12. Teleost-type angiotensin is present in Australian lungfish, Neoceratodus forsteri.

    PubMed

    Joss, J M; Itahara, Y; Watanabe, T X; Nakajima, K; Takei, Y

    1999-05-01

    Angiotensin I (ANG I) was produced from the incubation of lungfish plasma with homologous kidney extracts. The purified peptide was found to have the sequence of H-Asn-Arg-Val-Tyr-Val-His-Pro-Phe-Thr-Leu-OH, which is homologous for the first eight residues with all teleost angiotensins so far sequenced, although lungfish generally possess tetrapod-type hormones. The lungfish decapeptide (ANG I) induced dose-dependent increases in arterial pressure in the rat. The lungfish octapeptide (ANG II) released aldosterone from kidney-adrenal tissue in vitro in a dose-dependent manner and induced dose-dependent increases in arterial pressure of the lungfish. Substitution of asparagine with aspartic acid in the first position (tetrapod-type ANG II) did not alter the blood pressure response significantly, but a second substitution of the valine in the (5)-position with isoleucine (ANG II form found in human and rat) abolished the rise in arterial pressure in lungfish over the same dose range.

  13. Intrarenal distributions and changes of Angiotensin-converting enzyme and Angiotensin-converting enzyme 2 in feline and canine chronic kidney disease.

    PubMed

    Mitani, Sawane; Yabuki, Akira; Sawa, Mariko; Chang, Hye-Sook; Yamato, Osamu

    2014-01-01

    Angiotensin-converting enzyme (ACE) is a key enzyme in the renin-angiotensin system (RAS). ACE2 is a newly identified member of the RAS. The present immunohistochemical study focused on changes in intrarenal ACE and ACE2 immunoreactivity in feline and canine chronic kidney disease (CKD). ACE immunoreactivity was predominantly observed in the brush border of the proximal tubules in dogs and cats. ACE immunoreactivity was lower in CKD kidneys than in normal kidneys, and quantitative analysis demonstrated negative correlations between ACE and renal tissue damage in dogs. ACE2 immunoreactivity was also detected in the proximal tubules; it increased or decreased with CKD in dogs, depending on the renal region assessed. The changes in ACE and ACE2 in CKD were associated with the plasma creatinine concentration in dogs. Findings from dogs with glomerulonephritis were similar to those from dogs with non-glomerulonephritis. The present study suggests that changes in the intrarenal expression of ACE and ACE2 contribute to the pathological mechanisms of canine CKD, but not to the mechanisms of feline CKD. PMID:24004970

  14. Effect of the Angiotensin I Converting Enzyme Inhibitor, MK-421, on Experimentally Induced Drinking

    NASA Technical Reports Server (NTRS)

    Fregley, Melvin J.; Fater, Dennis C.; Greenleaf, John E.

    1982-01-01

    MK-421, the ethyl ester maleate salt of N-(S)-1-(ethoxycarbonyl)-3-phenyl-propyl- Ala-L-Pro, is an angiotensin I converting enzyme inhibitor. An initial objective was to determine whether MK-421, administered at 0, 2.5, 5.0, 10.0, 20.0 and 40.0 mg/kg, ip to 96 female rats 15 min prior to administration of the beta-adrenergic agonist, isoproterenol (25 microgram/kg, ip), would inhibit the drinking induced by isoproterenol during 2 h after its administration. The water intake induced by isoproterenol was inhibited significantly by 2.5 mg MK-421/kg. When a similar experiment was performed using Angiotensin I (AI) (200 microgram/kg, ip) as the dipsogenic agent, MK-421 (5 mg/kg, ip), administered 15 min prior to AI, inhibited significantly both the dipsogenic and the diuretic effect of AI. However, administration of angiotensin II (AII, 200 microgram/kg, ip) 15 min after MK-421 (5mg/kg) was accompanied by a water intake that did not differ from AII alone. The drink induced by ip administration of 1.0 m NaCl solution (1% of body wt, ip) was not inhibited by administration of MK-421 (5 mg/kg) 15 min prior to allowing access to water while the drink induced by a 24 h dehydration was partially inhibited. Thus, the drinks induced by administraition of either isoproterenol or AI are dependent on formation of AII. That induced by dehydration is partially dependent, while that induced by hypertonic siilinc is independent of the formation of AII.

  15. Norepinephrine uptake by rat jejunum: Modulation by angiotensin II

    SciTech Connect

    Suvannapura, A.; Levens, N.R. )

    1988-02-01

    Angiotensin II (ANG II) is believed to stimulate sodium and water absorption from the small intestine by enhancing sympathetic nerve transmission. This study is designed to determine whether ANG II can enhance sympathetic neurotransmission within the small intestine by inhibition norepinephrine (NE) uptake. Intracellular NE accumulation by rat jejunum was concentration dependent and resolved into high- and low-affinity components. The high-affinity component (uptake 1) exhibited a Michaelis constant (K{sub m}) of 1.72 {mu}M and a maximum velocity (V{sub max}) of 1.19 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. The low-affinity component (uptake 2) exhibited a K{sub m} of 111.1 {mu}M and a V{sub max} of 37.1 nmol {center dot} g{sup {minus}1} {center dot} 10 min{sup {minus}1}. Cocaine, an inhibitor of neuronal uptake, inhibited the intracellular accumulation of label by 80%. Treatment of animals with 6-hydroxydopamine, which depletes norepinephrine from sympathetic terminals, also attenuated NE uptake by 60%. Thus accumulation within sympathetic nerves constitutes the major form of ({sup 3}H)NE uptake into rat jejunum. ANG II inhibited intracellular ({sup 3}H)NE uptake in a concentration-dependent manner. At a dose of 1 mM, ANG II inhibited intracellular ({sup 3}H)NE accumulation by 60%. Cocaine failed to potentiate the inhibition of ({sup 3}H)NE uptake produced by ANG II. Thus ANG II appears to prevent ({sup 3}H)NE accumulation within rat jejunum by inhibiting neuronal uptake.

  16. Role of the ACE2/Angiotensin 1-7 Axis of the Renin-Angiotensin System in Heart Failure.

    PubMed

    Patel, Vaibhav B; Zhong, Jiu-Chang; Grant, Maria B; Oudit, Gavin Y

    2016-04-15

    Heart failure (HF) remains the most common cause of death and disability, and a major economic burden, in industrialized nations. Physiological, pharmacological, and clinical studies have demonstrated that activation of the renin-angiotensin system is a key mediator of HF progression. Angiotensin-converting enzyme 2 (ACE2), a homolog of ACE, is a monocarboxypeptidase that converts angiotensin II into angiotensin 1-7 (Ang 1-7) which, by virtue of its actions on the Mas receptor, opposes the molecular and cellular effects of angiotensin II. ACE2 is widely expressed in cardiomyocytes, cardiofibroblasts, and coronary endothelial cells. Recent preclinical translational studies confirmed a critical counter-regulatory role of ACE2/Ang 1-7 axis on the activated renin-angiotensin system that results in HF with preserved ejection fraction. Although loss of ACE2 enhances susceptibility to HF, increasing ACE2 level prevents and reverses the HF phenotype. ACE2 and Ang 1-7 have emerged as a key protective pathway against HF with reduced and preserved ejection fraction. Recombinant human ACE2 has been tested in phase I and II clinical trials without adverse effects while lowering and increasing plasma angiotensin II and Ang 1-7 levels, respectively. This review discusses the transcriptional and post-transcriptional regulation of ACE2 and the role of the ACE2/Ang 1-7 axis in cardiac physiology and in the pathophysiology of HF. The pharmacological and therapeutic potential of enhancing ACE2/Ang 1-7 action as a novel therapy for HF is highlighted.

  17. [Ischemia-reperfusion myocardial injury].

    PubMed

    de Micheli, Alfredo; Chávez, Edmundo

    2003-01-01

    In this article, we present some considerations on the myocardial damage due to a deficit of oxygen supply. In fact, this damage properly constitutes a partial diastolic depolarization or injury, i.e., a moderate reduction of the rest transmembrane potential. This phenomenon is characteristic of the acute phase of the myocardial infarction syndrome and is responsible for the main electrical manifestations appearing in this phase: disorders of rhythm and conduction, as well as a reduced contractility of the involved myocardial fibers. All the mentioned phenomena are due to a defect of the myocardial energetic mechanisms, owing to the mitochondrial alterations in myocytes: early reduction of the nicotinamide adenine nucleotides, accumulation of calcium ("calcium overload") into mitochondria, and a drop in oxidative phosphorylation. These changes can present again, more exaggerated, in a following phase of evolution of the myocardial infarction due to myocardial reperfusion. Its severity is related to the duration of the initial ischemia period. Moreover, consequences of the oxidative stress can add producing cellular damage by liberation of reactive oxygen species. Oxidant stress causes also alterations in the mitochondrial DNA, i.e., mutations due to oxidation of nitrogenous bases. During the initial ischemia phase, as well as during reperfusion, metabolic therapy can be very useful as, for example, glucose-insulin-potassium solutions (G-I-K). These could act as scavengers of the free radicals derived from oxygen and avoid or reduce the myocardial damage due to reperfused myocytes. Metabolic drugs, as for example trimetazidine, antioxidants, etc, can also be used in the myocardial reperfusion phase.

  18. Angiotensin II: Immunohistochemical Study in Sardinian Pterygium

    PubMed Central

    Demurtas, P.; Corrias, M.; Zucca, I.; Piras, F.; Sirigu, P.; Perra, M.T.

    2014-01-01

    The Angiotensin II (Ang II) is the principal effector peptide of the RAS system. It has a pleiotropic effect and, beside its physiological role, it has the property to stimulate angiogenesis and activate multiple signalling pathways related to cell proliferation. The purpose of the study was to determinate the Ang II expression and localization in Sardinian pterygium and normal conjunctiva by immunohistochemistry, and its possible involvement in the development and progression of the disease. Twenty-three pterygiums and eleven normal conjunctiva specimens obtained from Sardinian patients, were processed for paraffin embedding and assessed for the immunohistochemi-cal revelation of Ang II. Significant Ang II expression was identified in pterygium and conjunctiva. Particularly, thirteen pterygium specimens (n=13) displayed exclusively moderate to strong nuclear staining; some specimens (n=5) showed exclusively a moderate cytoplasmic immunoreactivity, and few specimens (n=2) displayed moderate to strong immunoreactivity in both cytoplasm and nucleus. Only 3 specimens were negative. Statistical significance difference in respect of nuclear and cytoplasmic localization was observed between normal conjunctiva and pterygium (P=0.020). The results showed a predominant intranuclear localization of Ang II in pterygium epithelial cells, in spite of conjunctiva that mainly showed cytoplasmic localization. These findings suggest a possible role for Ang II in the development and/or progression of pterygium mediated by the activation of local RAS system. PMID:25308851

  19. Angiotensin stimulates respiration in spontaneously hypertensive rats.

    PubMed

    Jennings, D B; Lockett, H J

    2000-05-01

    Spontaneously hypertensive rats (SHR) have an activated brain angiotensin system. We hypothesized 1) that ventilation (V) would be greater in conscious SHR than in control Wistar-Kyoto (WKY) rats and 2) that intravenous infusion of the ANG II-receptor blocker saralasin would depress respiration in SHR, but not in WKY. Respiration and oxygen consumption (VO(2)) were measured in conscious aged-matched groups (n = 16) of adult female SHR and WKY. For protocol 1, rats were habituated to a plethysmograph and measurements obtained over 60-75 min. After installation of chronic intravenous catheters, protocol 2 consisted of 30 min of saline infusion ( approximately 14 microliter. kg(-1). min(-1)) followed by 40 min of saralasin (1.3 microgram. kg(-1). min(-1)). V, tidal volume (VT), inspiratory flow [VT/inspiratory time (TI)], breath expiratory time, and VO(2) were higher, and breath TI was lower in "continuously quiet" SHR. In SHR, but not in WKY rats, ANG II-receptor block decreased V, VT, and VT/TI and increased breath TI. During ANG II-receptor block, an average decrease in VO(2) in SHR was not significant. About one-half of the higher V in SHR appears to be accounted for by an ANG II mechanism acting either via peripheral arterial receptors or circumventricular organs.

  20. Heterogeneity of angiotensin II receptors in membranes of developing rat metanephros.

    PubMed

    Uva, B; Vallarino, M; Ghiani, P

    1985-10-01

    Specific and high affinity binding sites for angiotensin II were demonstrated in the membranes of the developing rat metanephros during the second half of pregnancy and in the newborn by binding studies with 125I angiotensin II. Only one type of angiotensin receptor was found during intrauterine life while after birth two classes of angiotensin receptors were present in the membranes of the cortical renal tissue.

  1. Effect of intracerebroventricular administration of angiotensin II on emetic reflex in dogs.

    PubMed

    Gupta, Y K; Chugh, A; Bhandari, P; Seth, S D

    1989-06-01

    Area postrema is rich in angiotensin II receptors and intravenous (iv) administration of angiotensin II has been reported to elicit emesis. However, in the present study intracerebroventricular (icv) administration of angiotensin II up to a dose of 10 micrograms failed to elicit emesis. It is suggested that presence of a cerebrospinal fluid-brain barrier in area postrema most probably prevents access of icv angiotensin II to its receptors which are otherwise accessible on iv administration. PMID:2583747

  2. Myocardial defect detection using PET-CT: phantom studies.

    PubMed

    Mananga, Eugene S; El Fakhri, Georges; Schaefferkoetter, Joshua; Bonab, Ali A; Ouyang, Jinsong

    2014-01-01

    It is expected that both noise and activity distribution can have impact on the detectability of a myocardial defect in a cardiac PET study. In this work, we performed phantom studies to investigate the detectability of a defect in the myocardium for different noise levels and activity distributions. We evaluated the performance of three reconstruction schemes: Filtered Back-Projection (FBP), Ordinary Poisson Ordered Subset Expectation Maximization (OP-OSEM), and Point Spread Function corrected OSEM (PSF-OSEM). We used the Channelized Hotelling Observer (CHO) for the task of myocardial defect detection. We found that the detectability of a myocardial defect is almost entirely dependent on the noise level and the contrast between the defect and its surroundings.

  3. Relationship between angiotensin I-converting enzyme insertion/deletion gene polymorphism and retinal vein occlusion

    PubMed Central

    2014-01-01

    To evaluate the association between angiotensin I-converting enzyme insertion/deletion (ACE I/D) gene polymorphism and retinal vein occlusion (RVO). A total of 80 patients with retinal vein occlusion who was admitted to the Eye Department of Kartal Training and Research Hospital between 2008 and 2011, and 80 subjects were enrolled in this retrospective case–control study. Patients who experienced RVO within one week to six months of study enrolment were included, and those with coronary artery diseases, prior myocardial infarction history and coagulation disturbances were excluded from the study. The diagnosis was made by ophthalmoscopic fundus examination and fluorescein angiography. The ACE gene I/D polymorphism was determined by polymerase chain reaction, and the ACE gene was classified into three types: I/I, I/D and D/D. In multivariate logistic regression analysis, ACE D/D genotype (p = 0.035), diabetes-mellitus (p = 0.019) and hypertension (p = 0.001) were found to be independent predictive factors for RVO. The results of the present study reveal that ACE D/D polymorphism is an independent predictive factor for RVO. However, one cannot definitely conclude that ACE gene polymorphism is a risk factor for retinal vein occlusion. PMID:25161389

  4. Stimulation of the renin-angiotensin system in cats with hypertrophic cardiomyopathy.

    PubMed

    Taugner, F M

    2001-01-01

    Feline hypertrophic cardiomyopathy (HCM) is a disease of the ventricular myocardium, which may cause sudden death in cats, but neither the aetiology nor the effect on the circulation are well understood. Fourteen cats of either sex with naturally occurring HCM were studied post mortem. Their ages ranged from 9 months to 10 years with an average age of 4.9 years. Heart weights and heart weight expressed as a percentage of body weight were elevated (27.9 g and 0.65%, respectively) as compared with normal values obtained in previous studies. Myocardial disarray was evident in nine of the 14 cats and moderate to severe fibrosis was present in six animals. To evaluate the renal renin-angiotensin system, semiquantitative morphometric data were obtained by means of renin immunohistochemistry and compared with results from an earlier study of 10 healthy cats by the author. The juxtaglomerular index was 36.8% in the cats with HCM as compared with 30.6% in healthy cats. The renin-positive portion of the afferent arteriole was increased in cats affected by HCM to 86.0 microm as compared with 49.9 microm in normal cats. The increase in kidney renin values in cats with HCM may have been due to decreased blood pressure and reduced renal perfusion resulting from impaired cardiac output. PMID:11578127

  5. Angiotensin II binding to cultured bovine adrenal chromaffin cells: identification of angiotensin II receptors

    SciTech Connect

    Boyd, V.L.; Printz, M.P.

    1986-03-05

    Physiological experiments have provided evidence that angiotensin II stimulates catecholamine secretion from the adrenal gland. Their laboratory and others have now shown by receptor autoradiography the presence of angiotensin II receptors (AIIR) in bovine and rat adrenal medulla. In order to extend these studies they have undertaken to define AIIR on cultured bovine adrenal chromaffin cells. Cells were isolated using the method of Levitt including cell enrichment with Percoll gradient centrifugation. Primary cultures of bovine adrenal medullary cells were maintained in DME/F12 medium containing 10% FCS. Cells were characterized by immunocytochemistry for Met- and Leu-enkephalin, PNMT, DBH and Chromagranin A. Cultured cells bind with high affinity and specificity (/sup 125/I)-ANG II yielding a K/sub D/ of 0.74 nM and B/sub max/ of 24,350 sites/cell. After Percoll treatment values of .77 nm and 34,500 sites/cell are obtained. K/sub D/ values are in close agreement with that obtained in adrenal slices by Healy. Competition studies identify a rank order of binding by this receptor similar to that of other tissues. They conclude that cultured chromaffin cells provide a suitable model system for the investigation and characterization of the ANG II receptor and for cellular studies of its functional significance.

  6. The Nox1/4 Dual Inhibitor GKT137831 or Nox4 Knockdown Inhibits Angiotensin-II-Induced Adult Mouse Cardiac Fibroblast Proliferation and Migration. AT1 Physically Associates With Nox4.

    PubMed

    Somanna, Naveen K; Valente, Anthony J; Krenz, Maike; Fay, William P; Delafontaine, Patrice; Chandrasekar, Bysani

    2016-05-01

    Both oxidative stress and inflammation contribute to chronic hypertension-induced myocardial fibrosis and adverse cardiac remodeling. Here we investigated whether angiotensin (Ang)-II-induced fibroblast proliferation and migration are NADPH oxidase (Nox) 4/ROS and IL-18 dependent. Our results show that the potent induction of mouse cardiac fibroblast (CF) proliferation and migration by Ang-II is markedly attenuated by Nox4 knockdown and the Nox inhibitor DPI. Further, Nox4 knockdown and DPI pre-treatment attenuated Ang-II-induced IL-18, IL-18Rα and collagen expression, and MMP9 and LOX activation. While neutralization of IL-18 blunted Ang-II-induced CF proliferation and migration, knockdown of MMP9 attenuated CF migration. The antioxidant NAC and the cell-permeable SOD mimetics Tempol, MnTBAP, and MnTMPyP attenuated oxidative stress and inhibited CF proliferation and migration. The Nox1/Nox4 dual inhibitor GKT137831 also blunted Ang-II-induced H2 O2 production and CF proliferation and migration. Further, AT1 bound Nox4, and Ang-II enhanced their physical association. Notably, GKT137831 attenuated the AT1/Nox4 interaction. These results indicate that Ang-II induces CF proliferation and migration in part via Nox4/ROS-dependent IL-18 induction and MMP9 activation, and may involve AT1/Nox4 physical association. Thus, either (i) neutralizing IL-18, (ii) blocking AT1/Nox4 interaction or (iii) use of the Nox1/Nox4 inhibitor GKT137831 may have therapeutic potential in chronic hypertension-induced adverse cardiac remodeling.

  7. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  8. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  9. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  10. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  11. 21 CFR 862.1090 - Angiotensin converting enzyme (A.C.E.) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Angiotensin converting enzyme (A.C.E.) test system... Test Systems § 862.1090 Angiotensin converting enzyme (A.C.E.) test system. (a) Identification. An angiotensin converting enzyme (A.C.E.) test system is a device intended to measure the activity of...

  12. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release.

    PubMed Central

    Zini, S; Fournie-Zaluski, M C; Chauvel, E; Roques, B P; Corvol, P; Llorens-Cortes, C

    1996-01-01

    Angiotensin (Ang) II and Ang III are two peptide effectors of the brain renin-angiotensin system that participate in the control of blood pressure and increase water consumption and vasopressin release. In an attempt to delineate the respective roles of these peptides in the regulation of vasopressin secretion, their metabolic pathways and their effects on vasopressin release were identified in vivo. For this purpose, we used recently developed selective inhibitors of aminopeptidase A (APA) and aminopeptidase N (APN), two enzymes that are believed to be responsible for the N-terminal cleavage of Ang II and Ang III, respectively. Mice received [3H]Ang II intracerebroventricularly (i.c.v.) in the presence or absence of the APN inhibitor, EC33 (3-amino-4-thio-butyl sulfonate) of the APN inhibitor, EC27 (2-amino-pentan-1,5-dithiol). [3H]Ang II and [3H]Ang III levels were evaluated from hypothalamus homogenates by HPLC. EC33 increased the half-life of [3H]Ang II 2.6-fold and completely blocked the formation of [3H]Ang III, whereas EC27 increased the half-life of [3H]Ang III 2.3-fold. In addition, the effects of EC33 and EC27 on Ang-induced vasopressin release were studied in mice. Ang II was injected i.c.v. in the presence or absence of EC33, and plasma vasopressin levels were estimated by RIA. While vasopressin levels were increased 2-fold by Ang II (5 ng), EC33 inhibited Ang II-induced vasopressin release in a dose-dependent manner. In contrast, EC27 injected alone increased in a dose-dependent manner vasopressin levels. The EC27-induced vasopressin release was completely blocked by the coadministration of the Ang receptor antagonist (Sar1-Ala8) Ang II. These results demonstrate for the first time that (i) APA and APN are involved in vivo in the metabolism of brain Ang II and Ang III, respectively, and that (ii) the action of Ang II on vasopressin release depends upon the prior conversion of Ang II to Ang III. This shows that Ang III behaves as one of the main

  13. The effects of angiotensin II on blood perfusion in the rat renal papilla

    PubMed Central

    Walker, L L; Rajaratne, A A J; Blair-West, J R; Harris, P J

    1999-01-01

    Systemic infusion of angiotensin II (AII) increased papillary blood perfusion (PBP) measured by laser-Doppler flowmetry in rats, aged about 5 weeks. The mechanisms involved in this response were determined by infusion of AII in the presence of systemic doses of losartan (a type 1 AII receptor antagonist), HOE-140 (a bradykinin B2 receptor antagonist), and an inhibitor of NO production - Nω -nitro-L-arginine (NOLA). Mean arterial blood pressure (MAP) and PBP increased in a dose-dependent manner in response to intravenous infusions of AII. Infusion of losartan abolished these responses to AII but HOE-140 was without effect. Infusion of NOLA abolished the increase in PBP but did not affect the pressor response to AII. Systemic infusion of sodium nitroprusside restored the response to AII in experiments with NOLA infusion. The results indicate that the increase in PBP caused by AII is mediated via angiotensin AT1 receptors and does not involve bradykinin B2 receptors. The AII-induced increase in PBP is dependent upon the presence of NO, thus providing a mechanism for maintenance of papillary perfusion in the face of generalized renal vasoconstriction due to AII. PMID:10432357

  14. Angiotensin II induces monocyte chemoattractant protein-1 gene expression in rat vascular smooth muscle cells.

    PubMed

    Chen, X L; Tummala, P E; Olbrych, M T; Alexander, R W; Medford, R M

    1998-11-01

    Monocyte infiltration into the vessel wall, a key initial step in the process of atherosclerosis, is mediated in part by monocyte chemoattractant protein-1 (MCP-1). Hypertension, particularly in the presence of an activated renin-angiotensin system, is a major risk factor for the development of atherosclerosis. To investigate a potential molecular basis for a link between hypertension and atherosclerosis, we studied the effects of angiotensin II (Ang II) on MCP-1 gene expression in rat aortic smooth muscle cells. Rat smooth muscle cells treated with Ang II exhibited a dose-dependent increase in MCP-1 mRNA accumulation that was prevented by the AT1 receptor antagonist losartan. Ang II also activated MCP-1 gene transcription. Inhibition of NADH/NADPH oxidase, which generates superoxide and H2O2, with diphenylene iodonium or apocynin decreased Ang II-induced MCP-1 mRNA accumulation. Induction of MCP-1 gene expression by Ang II was inhibited by catalase, suggesting a second messenger role for H2O2. The tyrosine kinase inhibitor genistein and the mitogen-activated protein kinase kinase inhibitor PD098059 inhibited Ang II-induced MCP-1 gene expression, consistent with a mitogen-activated protein kinase-dependent signaling mechanism. Ang II may thus promote atherogenesis by direct activation of MCP-1 gene expression in vascular smooth muscle cells.

  15. Engagement of renin-angiotensin system in prostate cancer.

    PubMed

    Uemura, Hiroji; Hoshino, Koji; Kubota, Yoshinobu

    2011-05-01

    Angiotensin II (Ang-II) plays a role not only as a vasoconstrictor in controlling blood pressure and electrolyte and fluid homeostasis, but also as a mitogenic factor through the Ang-II type-1 (AT1) receptor in cardiovascular cells. Since a low prevalence of cancer in hypertensive patients receiving angiotensin converting enzyme inhibitors has been reported, the molecular mechanisms of the renin-angiotensin system (RAS) in cancer cells have been elucidated. Interestingly, there is increasing evidence that the RAS is implicated in the development of prostate cancer. As previously reported, AT1 receptor blockers (ARBs), a class of antihypertensive agent, have the potential to inhibit the growth of prostate cancer cells and tumors through the AT1 receptor. This review highlights that the RAS plays a potential role in various aspects of prostate cancer, and ARBs could be useful for treatment of prostate cancer or its chemoprevention.

  16. Retrieval improvement is induced by water shortage through angiotensin II.

    PubMed

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-03-01

    Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory. We demonstrated that endogenous angiotensins enhance consolidation of a long-term associative memory in the crab Chasmagnathus and that water shortage improves memory consolidation through brain ANGII actions. Here, we show that weakly trained crabs, when water-deprived, exhibit enhanced retrieval. Subsequently, memory retention is indistinguishable from that of strongly trained crabs. ANGII, but not angiotensin IV, is a necessary and sufficient condition for such enhancing effect. We conclude that ANGII released due to water shortage leads to enhanced memory retrieval. Thus, it seems that ANGII has an evolutionary preserved role as a multifunction coordinator that enables an adaptative response to water-shortage. The facilitation of memory consolidation and retrieval would be among those coordinated functions.

  17. Retrieval improvement is induced by water shortage through angiotensin II.

    PubMed

    Frenkel, Lia; Maldonado, Héctor; Delorenzi, Alejandro

    2005-03-01

    Angiotensin II (ANGII) has an evolutionary preserved role in determining adaptative responses to water-shortages. In addition, it has been shown to modulate diverse phases of memory. Still, it is not clear whether ANGII improves or spoils memory. We demonstrated that endogenous angiotensins enhance consolidation of a long-term associative memory in the crab Chasmagnathus and that water shortage improves memory consolidation through brain ANGII actions. Here, we show that weakly trained crabs, when water-deprived, exhibit enhanced retrieval. Subsequently, memory retention is indistinguishable from that of strongly trained crabs. ANGII, but not angiotensin IV, is a necessary and sufficient condition for such enhancing effect. We conclude that ANGII released due to water shortage leads to enhanced memory retrieval. Thus, it seems that ANGII has an evolutionary preserved role as a multifunction coordinator that enables an adaptative response to water-shortage. The facilitation of memory consolidation and retrieval would be among those coordinated functions. PMID:15721803

  18. Emodin-mediated protection from acute myocardial infarction via inhibition of inflammation and apoptosis in local ischemic myocardium.

    PubMed

    Wu, Yanxia; Tu, Xin; Lin, Guosheng; Xia, Hao; Huang, Hao; Wan, Jing; Cheng, Zhide; Liu, Mengyuan; Chen, Gao; Zhang, Haimou; Fu, Jinrong; Liu, Qian; Liu, Dong-Xu

    2007-10-13

    Acute myocardial infarction (AMI) is associated with inflammation and apoptosis. Emodin plays an anti-inflammatory role in several inflammatory diseases. Recent studies have demonstrated that emodin protects against myocardial ischemia/reperfusion injury. However, its mechanism underlying its effects remains unknown. In a murine model of AMI, based on ligation of the left coronary artery, administration of emodin reduced myocardial infarct size (MIS) in a dose-dependent manner. Emodin significantly suppressed TNF-alpha expression and NF-kappaB activation in the local myocardial infarction area. Treatment with emodin inhibited myocardial cell apoptosis by inhibiting caspase-3 activation. Therefore, these studies demonstrate that emodin protects against myocardial cell injury via suppression of local inflammation and apoptosis.

  19. Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation

    PubMed Central

    Szakadáti, Gyöngyi; Tóth, András D.; Oláh, Ilona; Erdélyi, László Sándor; Balla, Tamas; Várnai, Péter; Balla, András

    2015-01-01

    Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein–dependent and –independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase–tagged receptors and yellow fluorescent protein–tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II–stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II–stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor. PMID:25804845

  20. Nitric oxide up-regulates endothelial expression of angiotensin II type 2 receptors.

    PubMed

    Dao, Vu Thao-Vi; Medini, Sawsan; Bisha, Marion; Balz, Vera; Suvorava, Tatsiana; Bas, Murat; Kojda, Georg

    2016-07-15

    Increasing vascular NO levels following up-regulation of endothelial nitric oxide synthase (eNOS) is considered beneficial in cardiovascular disease. Whether such beneficial effects exerted by increased NO-levels include the vascular renin-angiotensin system remains elucidated. Exposure of endothelial cells originated from porcine aorta, mouse brain and human umbilical veins to different NO-donors showed that expression of the angiotensin-II-type-2-receptor (AT2) mRNA and protein is up-regulated by activation of soluble guanylyl cyclase, protein kinase G and p38 mitogen-activated protein kinase without changing AT2 mRNA stability. In mice, endothelial-specific overexpression of eNOS stimulated, while chronic treatment with the NOS-blocker l-nitroarginine inhibited AT2 expression. The NO-induced AT2 up-regulation was associated with a profound inhibition of angiotensin-converting enzyme (ACE)-activity. In endothelial cells this reduction of ACE-activity was reversed by either the AT2 antagonist PD 123119 or by inhibition of transcription with actinomycin D. Furthermore, in C57Bl/6 mice an acute i.v. bolus of l-nitroarginine did not change AT2-expression and ACE-activity suggesting that inhibition of ACE-activity by endogenous NO is crucially dependent on AT2 protein level. Likewise, three weeks of either voluntary or forced exercise training increased AT2 expression and reduced ACE-activity in C57Bl/6 but not in mice lacking eNOS suggesting significance of this signaling interaction for vascular physiology. Finally, aortic AT2 expression is about 5 times greater in female as compared to male C57Bl/6 and at the same time aortic ACE activity is reduced in females by more than 50%. Together these findings imply that endothelial NO regulates AT2 expression and that AT2 may regulate ACE-activity. PMID:27235748

  1. Investigation of the fate of type I angiotensin receptor after biased activation.

    PubMed

    Szakadáti, Gyöngyi; Tóth, András D; Oláh, Ilona; Erdélyi, László Sándor; Balla, Tamas; Várnai, Péter; Hunyady, László; Balla, András

    2015-06-01

    Biased agonism on the type I angiotensin receptor (AT1-R) can achieve different outcomes via activation of G protein-dependent and -independent cellular responses. In this study, we investigated whether the biased activation of AT1-R can lead to different regulation and intracellular processing of the receptor. We analyzed β-arrestin binding, endocytosis, and subsequent trafficking steps, such as early and late phases of recycling of AT1-R in human embryonic kidney 293 cells expressing wild-type or biased mutant receptors in response to different ligands. We used Renilla luciferase-tagged receptors and yellow fluorescent protein-tagged β-arrestin2, Rab5, Rab7, and Rab11 proteins in bioluminescence resonance energy transfer measurements to follow the fate of the receptor after stimulation. We found that not only is the signaling of the receptor different upon using selective ligands, but the fate within the cells is also determined by the type of the stimulation. β-arrestin binding and the internalization kinetics of the angiotensin II-stimulated AT1-R differed from those stimulated by the biased agonists. Similarly, angiotensin II-stimulated wild-type AT1-R showed differences compared with a biased mutant AT1-R (DRY/AAY AT1-R) with regards to β-arrestin binding and endocytosis. We found that the differences in the internalization kinetics of the receptor in response to biased agonist stimulation are due to the differences in plasma membrane phosphatidylinositol 4,5-bisphosphate depletion. Moreover, the stability of the β-arrestin binding is a major determinant of the later fate of the internalized AT1-R receptor.

  2. Angiotensin II (de)sensitization: Fluid intake studies with implications for cardiovascular control.

    PubMed

    Daniels, Derek

    2016-08-01

    Cardiovascular disease is the leading cause of death worldwide and hypertension is the most common risk factor for death. Although many anti-hypertensive pharmacotherapies are approved for use in the United States, rates of hypertension have increased over the past decade. This review article summarizes a presentation given at the 2015 meeting of the Society for the Study of Ingestive Behavior. The presentation described work performed in our laboratory that uses angiotensin II-induced drinking as a model system to study behavioral and cardiovascular effects of the renin-angiotensin system, a key component of blood pressure regulation, and a common target of anti-hypertensives. Angiotensin II (AngII) is a potent dipsogen, but the drinking response shows a rapid desensitization after repeated injections of AngII. This desensitization appears to be dependent upon the timing of the injections, requires activation of the AngII type 1 (AT1) receptor, requires activation of mitogen-activated protein (MAP) kinase family members, and involves the anteroventral third ventricle (AV3V) region as a critical site of action. Moreover, the response does not appear to be the result of a more general suppression of behavior, a sensitized pressor response to AngII, or an aversive state generated by the treatment. More recent studies suggest that the treatment regimen used to produce desensitization in our laboratory also prevents the sensitization that occurs after daily bolus injections of AngII. Our hope is that these findings can be used to support future basic research on the topic that could lead to new developments in treatments for hypertension.

  3. QM/MM investigation of the catalytic mechanism of angiotensin-converting enzyme.

    PubMed

    Mu, Xia; Zhang, Chunchun; Xu, Dingguo

    2016-06-01

    Angiotensin-converting enzyme (ACE) converts angiotensin I to angiotensin II and degrades bradykinin and other vasoactive peptides. ACE inhibitors are used to treat diseases such as hypertension and heart failure. It is thus highly desirable to understand the catalytic mechanism of ACE, as this should facilitate the design of more powerful and selective ACE inhibitors. ACE exhibits two different active domains, the C-domain and the N-domain. In this work, we systematically investigated the inhibitor- and substrate-binding patterns in the N-domain of human ACE using a combined quantum mechanical and molecular mechanical approach. The hydrolysis of hippuryl-histidyl-leucine (HHL) as catalyzed by the N-domain of human somatic ACE was explored, and the effects of chloride ion on the overall reaction were also investigated. Two models, one with and one without a chloride ion at the first binding position, were then designed to examine the chloride dependence of inhibitor-substrate binding and the catalytic mechanism. Our calculations indicate that the hydrolysis reaction follows a stepwise general base/general acid catalysis path. The estimated mean free energy barrier height in the two models is about 15.6 kcal/mol, which agrees very well with the experimentally estimated value of 15.8 kcal/mol. Our simulations thus suggest that the N-domain is in a mixed form during ACE-catalyzed hydrolysis, with the single-chloride-ion and the double-chloride-ion forms existing simultaneously. Graphical Abstract Superposition of ACE C- and N- domains. PMID:27184002

  4. Angiotensin II (de)sensitization: Fluid intake studies with implications for cardiovascular control.

    PubMed

    Daniels, Derek

    2016-08-01

    Cardiovascular disease is the leading cause of death worldwide and hypertension is the most common risk factor for death. Although many anti-hypertensive pharmacotherapies are approved for use in the United States, rates of hypertension have increased over the past decade. This review article summarizes a presentation given at the 2015 meeting of the Society for the Study of Ingestive Behavior. The presentation described work performed in our laboratory that uses angiotensin II-induced drinking as a model system to study behavioral and cardiovascular effects of the renin-angiotensin system, a key component of blood pressure regulation, and a common target of anti-hypertensives. Angiotensin II (AngII) is a potent dipsogen, but the drinking response shows a rapid desensitization after repeated injections of AngII. This desensitization appears to be dependent upon the timing of the injections, requires activation of the AngII type 1 (AT1) receptor, requires activation of mitogen-activated protein (MAP) kinase family members, and involves the anteroventral third ventricle (AV3V) region as a critical site of action. Moreover, the response does not appear to be the result of a more general suppression of behavior, a sensitized pressor response to AngII, or an aversive state generated by the treatment. More recent studies suggest that the treatment regimen used to produce desensitization in our laboratory also prevents the sensitization that occurs after daily bolus injections of AngII. Our hope is that these findings can be used to support future basic research on the topic that could lead to new developments in treatments for hypertension. PMID:26801390

  5. Effect of drugs used in different type of myocardial infarction (STEMI or (NTEMI) on mortality.

    PubMed

    Vincze, Z; Brugos, B; Lorincz, I; Paragh, G

    2014-06-01

    We examined 416 patients with acute myocardial infarction. 249 patients had STEMI and 167 NSTEMI. 227 were men and 189 women. 142 men had STEMI and 85 men had NSTEMI. 107 women were diagnosed with STEMI and 82 with NSTEMI. 22.5% of patient with STEMI and 20.2% of patients with NSTEMI died (p = 0.58). We compared the effect of anticoagulant treatment, clopidogrel, salicylate, nitrate, beta-blocker, angiotensin-converting enzyme inhibitor, statin and trimetazidine therapy on mortality in function of the type of myocardial infarction. There were no differences between mortality of patients with STEMI and NSTEMI with respect of use of heparine, salicylate, nitrate, beta-blocker, ACE inhibitor, statin and trimetazidine. While examining the effect of clopidogrel, we observed a significantly lower mortality rate in patients with NSTEMI compared to the STEMI group (p = 0.005). These differences are due to the known variability in clopidogrel absorption and metabolism, which could be influenced by the type of myocardial infarction.

  6. Angiotensin-converting enzyme and matrix metalloproteinase inhibition with developing heart failure: comparative effects on left ventricular function and geometry

    NASA Technical Reports Server (NTRS)

    McElmurray, J. H. 3rd; Mukherjee, R.; New, R. B.; Sampson, A. C.; King, M. K.; Hendrick, J. W.; Goldberg, A.; Peterson, T. J.; Hallak, H.; Zile, M. R.; Spinale, F. G.

    1999-01-01

    The progression of congestive heart failure (CHF) is left ventricular (LV) myocardial remodeling. The matrix metalloproteinases (MMPs) contribute to tissue remodeling and therefore MMP inhibition may serve as a useful therapeutic target in CHF. Angiotensin converting enzyme (ACE) inhibition favorably affects LV myocardial remodeling in CHF. This study examined the effects of specific MMP inhibition, ACE inhibition, and combined treatment on LV systolic and diastolic function in a model of CHF. Pigs were randomly assigned to five groups: 1) rapid atrial pacing (240 beats/min) for 3 weeks (n = 8); 2) ACE inhibition (fosinopril, 2.5 mg/kg b.i.d. orally) and rapid pacing (n = 8); 3) MMP inhibition (PD166793 2 mg/kg/day p.o.) and rapid pacing (n = 8); 4) combined ACE and MMP inhibition (2.5 mg/kg b.i.d. and 2 mg/kg/day, respectively) and rapid pacing (n = 8); and 5) controls (n = 9). LV peak wall stress increased by 2-fold with rapid pacing and was reduced in all treatment groups. LV fractional shortening fell by nearly 2-fold with rapid pacing and increased in all treatment groups. The circumferential fiber shortening-systolic stress relation was reduced with rapid pacing and increased in the ACE inhibition and combination groups. LV myocardial stiffness constant was unchanged in the rapid pacing group, increased nearly 2-fold in the MMP inhibition group, and was normalized in the ACE inhibition and combination treatment groups. Increased MMP activation contributes to the LV dilation and increased wall stress with pacing CHF and a contributory downstream mechanism of ACE inhibition is an effect on MMP activity.

  7. Angiotensin-(1-7) regulates Angiotensin II-induced VCAM-1 expression on vascular endothelial cells

    SciTech Connect

    Zhang, Feng; Ren, Jingyi; Chan, Kenneth; Chen, Hong

    2013-01-11

    Highlights: Black-Right-Pointing-Pointer We for the first time found that Ang-(1-7) inhibits Ang II-induced VCAM-1 expression. Black-Right-Pointing-Pointer The inhibitory effect of Ang-(1-7) on VCAM-1 is mediated by MAS receptor. Black-Right-Pointing-Pointer The effect of Ang-(1-7) is due to the suppression of NF-kappaB translocation. -- Abstract: Angiotensin II (Ang II) and Angiotensin-(1-7) (Ang-(1-7)) are key effector peptides in the renin-angiotensin system. Increased circulatory Ang II level is associated with the development of hypertension and atherosclerosis, whereas Ang-(1-7) is a counter-regulatory mediator of Ang II which appears to be protective against cardiovascular disease. However, whether Ang-(1-7) regulates the action of Ang II on vascular endothelial cells (EC) remains unclear. We investigated the effects of Ang II and Ang-(1-7) in the context of atherogenesis, specifically endothelial cell VCAM-1 expression that is implicated in early plaque formation. The results show that Ang II increased VCAM-1 mRNA expression and protein displayed on EC surface, while Ang-(1-7) alone exerted no effects. However, Ang-(1-7) significantly suppressed Ang II-induced VCAM-1 expression. Ang-(1-7) also inhibited the Ang II-induced VCAM-1 promoter activity driven by transcription factor NF-KappaB. Furthermore, immunofluorescence assay and ELISA showed that Ang II facilitated the nuclear translocation of NF-kappaB in ECs, and this was attenuated by the presence of Ang-(1-7). The inhibitory effects of Ang-(1-7) on Ang II-induced VCAM-1 promoter activity and NF-kappaB nuclear translocation were all reversed by the competitive antagonist of Ang-(1-7) at the Mas receptor. Our results suggest that Ang-(1-7) mediates its affects on ECs through the Mas receptor, and negatively regulates Ang II-induced VCAM-1 expression by attenuating nuclear translocation of NF-kappaB.

  8. Mechanisms underlying angiotensin II-induced calcium oscillations

    PubMed Central

    Edwards, Aurélie; Pallone, Thomas L.

    2008-01-01

    To gain insight into the mechanisms that underlie angiotensin II (ANG II)-induced cytoplasmic Ca2+ concentration ([Ca]cyt) oscillations in medullary pericytes, we expanded a prior model of ion fluxes. ANG II stimulation was simulated by doubling maximal inositol trisphosphate (IP3) production and imposing a 90% blockade of K+ channels. We investigated two configurations, one in which ryanodine receptors (RyR) and IP3 receptors (IP3R) occupy a common store and a second in which they reside on separate stores. Our results suggest that Ca2+ release from stores and import from the extracellular space are key determinants of oscillations because both raise [Ca] in subplasmalemmal spaces near RyR. When the Ca2+-induced Ca2+ release (CICR) threshold of RyR is exceeded, the ensuing Ca2+ release is limited by Ca2+ reuptake into stores and export across the plasmalemma. If sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps do not remain saturated and sarcoplasmic reticulum Ca2+ stores are replenished, that phase is followed by a resumption of leak from internal stores that leads either to [Ca]cyt elevation below the CICR threshold (no oscillations) or to elevation above it (oscillations). Our model predicts that oscillations are more prone to occur when IP3R and RyR stores are separate because, in that case, Ca2+ released by RyR during CICR can enhance filling of adjacent IP3 stores to favor a high subsequent leak that generates further CICR events. Moreover, the existence or absence of oscillations depends on the set points of several parameters, so that biological variation might well explain the presence or absence of oscillations in individual pericytes. PMID:18562632

  9. Cellular mechanisms mediating rat renal microvascular constriction by angiotensin II.

    PubMed Central

    Takenaka, T; Suzuki, H; Fujiwara, K; Kanno, Y; Ohno, Y; Hayashi, K; Nagahama, T; Saruta, T

    1997-01-01

    To assess cellular mechanisms mediating afferent (AA) and efferent arteriolar (EA) constriction by angiotensin II (AngII), experiments were performed using isolated perfused hydronephrotic kidneys. In the first series of studies, AngII (0.3 nM) constricted AAs and EAs by 29+/-3 (n = 8, P < 0.01) and 27+/-3% (n = 8, P < 0.01), respectively. Subsequent addition of nifedipine restored AA but not EA diameter. Manganese (8 mM) reversed EA constriction by 65+/-9% (P < 0.01). In the second group, the addition of N-ethylmaleimide (10 microM), a Gi/Go protein antagonist, abolished AngII- induced EA (n = 6) but not AA constriction (n = 6). In the third series of experiments, treatment with 2-nitro-4-carboxyphenyl-N, N-diphenyl-carbamate (200 microM), a phospholipase C inhibitor, blocked both AA and EA constriction by AngII (n = 6 for each). In the fourth group, thapsigargin (1 microM) prevented AngII-induced AA constriction (n = 8) and attenuated EA constriction (8+/-2% decrease in EA diameter at 0.3 nM AngII, n = 8, P < 0.05). Subsequent addition of manganese (8 mM) reversed EA constriction. Our data provide evidence that in AAs, AngII stimulates phospholipase C with subsequent calcium mobilization that is required to activate voltage-dependent calcium channels. Our results suggest that AngII constricts EAs by activating phospholipase C via the Gi protein family, thereby eliciting both calcium mobilization and calcium entry. PMID:9329977

  10. Angiotensin II activates the calcineurin/NFAT signaling pathway and induces cyclooxygenase-2 expression in rat endometrial stromal cells.

    PubMed

    Abraham, Florencia; Sacerdoti, Flavia; De León, Romina; Gentile, Teresa; Canellada, Andrea

    2012-01-01

    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca(2+) concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca(2+) signals is the activity of the Ca(2+)- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression--both mRNA and protein--was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression--both mRNA and protein--was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal

  11. Angiotensin II Activates the Calcineurin/NFAT Signaling Pathway and Induces Cyclooxygenase-2 Expression in Rat Endometrial Stromal Cells

    PubMed Central

    Abraham, Florencia; Sacerdoti, Flavia; De León, Romina; Gentile, Teresa; Canellada, Andrea

    2012-01-01

    Cyclooxygenase (COX)-2, the inducible isoform of cyclooxygenase, plays a role in the process of uterine decidualization and blastocyst attachment. On the other hand, overexpression of COX-2 is involved in the proliferation of the endometrial tissue during endometriosis. Deregulation of the renin-angiotensin-system plays a role in the pathophysiology of endometriosis and pre-eclampsia. Angiotensin II increases intracellular Ca2+ concentration by targeting phospholypase C-gamma in endometrial stromal cells (ESC). A key element of the cellular response to Ca2+ signals is the activity of the Ca2+- and calmodulin-dependent phosphatase calcineurin. Our first aim was to study whether angiotensin II stimulated Cox-2 gene expression in rat ESC and to analyze whether calcineurin activity was involved. In cells isolated from non-pregnant uteri, COX-2 expression -both mRNA and protein- was induced by co-stimulation with phorbol ester and calcium ionophore (PIo), as well as by angiotensin II. Pretreatment with the calcineurin inhibitor cyclosporin A inhibited this induction. We further analyzed the role of the calcineurin/NFAT signaling pathway in the induction of Cox-2 gene expression in non-pregnant rat ESC. Cyclosporin A abolished NFATc1 dephosphorylation and translocation to the nucleus. Cyclosporin A also inhibited the transcriptional activity driven by the Cox-2 promoter. Exogenous expression of the peptide VIVIT -specific inhibitor of calcineurin/NFAT binding- blocked the activation of Cox-2 promoter and the up-regulation of COX-2 protein in these cells. Finally we analyzed Cox-2 gene expression in ESC of early-pregnant rats. COX-2 expression -both mRNA and protein- was induced by stimulation with PIo as well as by angiotensin II. This induction appears to be calcineurin independent, since it was not abrogated by cyclosporin A. In conclusion, angiotensin II induced Cox-2 gene expression by activating the calcineurin/NFAT signaling pathway in endometrial stromal cells of

  12. Rat myocardial protein degradation.

    PubMed

    Steer, J H; Hopkins, B E

    1981-07-01

    1. Myocardial protein degradation rates were determined by following tyrosine release from rat isolated left hemi-atria in vitro. 2. After two 20 min preincubations the rate of tyrosine release from hemi-atria was constant for 4 h. 3. Skeletal muscle protein degradation was determined by following tyrosine release from rat isolated hemi-diaphragm (Fulks, Li & Goldberg, 1975). 4. Insulin (10(-7) M) inhibited tyrosine release from hemi-atria and hemi-diaphragm to a similar extent. A 48 h fast increased tyrosine release rate from hemi-diaphragm and decreased tyrosine release rate from hemi-atria. Hemi-diaphragm tyrosine release was inhibited by 15 mmol/l D-glucose but a variety of concentrations of D-glucose (0, 5, 15 mmol/l) had no effect on tyrosine release from hemi-atria. Five times the normal plasma levels of the branched-chain amino acids leucine, isoleucine and valine had no effect on tyrosine release from either hemi-atria or hemi-diaphragm.

  13. Myocardial mechanics in cardiomyopathies.

    PubMed

    Modesto, Karen; Sengupta, Partho P

    2014-01-01

    Cardiomyopathies are a heterogeneous group of diseases that can be phenotypically recognized by specific patterns of ventricular morphology and function. The authors summarize recent clinical observations that mechanistically link the multidirectional components of left ventricular (LV) deformation with morphological phenotypes of cardiomyopathies for offering key insights into the transmural heterogeneity of myocardial function. Subendocardial dysfunction predominantly alters LV longitudinal shortening, lengthening and suction performance and contributes to the phenotypic patterns of heart failure (HF) with preserved ejection fraction (EF) seen with hypertrophic and restrictive patterns of cardiomyopathy. On the other hand, a more progressive transmural disease results in reduction of LV circumferential and twist mechanics leading to the phenotypic pattern of dilated cardiomyopathy and the clinical syndrome of HF with reduced (EF). A proper characterization of LV transmural mechanics, energetics, and space-time distributions of pressure and shear stress may allow recognition of early functional changes that can forecast progression or reversal of LV remodeling. Furthermore, the interactions between LV muscle and fluid mechanics hold the promise for offering newer mechanistic insights and tracking impact of novel therapies.

  14. Myocardial perfusion imaging for detection of silent myocardial ischemia

    SciTech Connect

    Beller, G.A.

    1988-04-21

    Despite the widespread use of the exercise stress test in diagnosing asymptomatic myocardial ischemia, exercise radionuclide imaging remains useful for detecting silent ischemia in numerous patient populations, including those who are totally asymptomatic, those who have chronic stable angina, those who have recovered from an episode of unstable angina or an uncomplicated myocardial infarction, and those who have undergone angioplasty or received thrombolytic therapy. Studies show that thallium scintigraphy is more sensitive than exercise electrocardiography in detecting ischemia, i.e., in part, because perfusion defects occur more frequently than ST depression and before angina in the ischemic cascade. Thallium-201 scintigraphy can be performed to differentiate a true- from a false-positive exercise electrocardiographic test in patients with exercise-induced ST depression and no angina. The development of technetium-labeled isonitriles may improve the accuracy of myocardial perfusion imaging. 11 references.

  15. MYOCARDIAL AKT: THE OMNIPRESENT NEXUS

    PubMed Central

    Sussman, Mark A.; Völkers, Mirko; Fischer, Kimberlee; Bailey, Brandi; Cottage, Christopher T.; Din, Shabana; Gude, Natalie; Avitabile, Daniele; Alvarez, Roberto; Sundararaman, Balaji; Quijada, Pearl; Mason, Matt; Konstandin, Mathias H.; Malhowski, Amy; Cheng, Zhaokang; Khan, Mohsin; McGregor, Michael

    2013-01-01

    One of the greatest examples of integrated signal transduction is revealed by examination of effects mediated by AKT kinase in myocardial biology. Positioned at the intersection of multiple afferent and efferent signals, AKT exemplifies a molecular sensing node that coordinates dynamic responses of the cell in literally every aspect of biological responses. The balanced and nuanced nature of homeostatic signaling is particularly essential within the myocardial context, where regulation of survival, energy production, contractility, and response to pathological stress all flow through the nexus of AKT activation or repression. Equally important, the loss of regulated AKT activity is primarily the cause or consequence of pathological conditions leading to remodeling of the heart and eventual decompensation. This review presents an overview compendium of the complex world of myocardial AKT biology gleaned from more than a decade of research. Summarization of the widespread influence that AKT exerts upon myocardial responses leaves no doubt that the participation of AKT in molecular signaling will need to be reckoned with as a seemingly omnipresent regulator of myocardial molecular biological responses. PMID:21742795

  16. How reliable is myocardial imaging in the diagnosis of acute myocardial infarction

    SciTech Connect

    Willerson, J.T.

    1983-01-01

    Myocardial scintigraphic techniques available presently allow a sensitive and relatively specific diagnosis of acute myocardial infarction when they are used correctly, although every technique has definite limitations. Small myocardial infarcts (less than 3 gm.) may be missed, and there are temporal limitations in the usefulness of the scintigraphic techniques. The development of tomographic methodology that may be used with single-photon radionuclide emitters (including technetium and /sup 201/Tl will allow the detection of relatively small abnormalities in myocardial perfusion and regions of myocardial infarction and will help to provide a more objective interpretation of the myocardial scintigrams. The use of overlay techniques allowing simultaneous assessment of myocardial perfusion, infarct-avid imaging, and radionuclide ventriculograms will provide insight into the relevant aspects of the extent of myocardial damage, the relationship of damage to myocardial perfusion, and the functional impact of myocardial infarction on ventricular performance.

  17. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults

    PubMed Central

    Coelho, Vinícius A.; Probst, Vanessa S.; Nogari, Bruna M.; Teixeira, Denilson C.; Felcar, Josiane M.; Santos, Denis C.; Gomes, Marcus Vinícius M.; Andraus, Rodrigo A. C.; Fernandes, Karen B. P.

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group − individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength. PMID:27065543

  18. Angiotensin-II blockage, muscle strength, and exercise capacity in physically independent older adults.

    PubMed

    Coelho, Vinícius A; Probst, Vanessa S; Nogari, Bruna M; Teixeira, Denilson C; Felcar, Josiane M; Santos, Denis C; Gomes, Marcus Vinícius M; Andraus, Rodrigo A C; Fernandes, Karen B P

    2016-01-01

    [Purpose] This study aimed to assess the exercise capacity and muscle strength in elderly people using drugs for angiotensin-II blockage. [Subjects and Methods] Four hundred and seven older adults were recruited for this study. Data about comorbidities and medication use were recorded and the individuals were divided into three groups: control group- elderly people with normal exercise capacity (n=235); angiotensin-converting enzyme inhibitor group - individuals using angiotensin-converting enzyme inhibitors (n=140); and angiotensin-II receptor blocker group- patients using angiotensin-II receptor blockers (n= 32). Exercise capacity was evaluated by a 6-minute walking test and muscle strength was measured using a handgrip dynamometer. [Results] Patients from the angiotensin-converting enzyme inhibitor group (mean: 99 ± 12%) and the angiotensin-II receptor blocker group (mean: 101 ± 14%) showed higher predicted values in the 6-minute walking test than the control group patients (mean: 96 ± 10%). Patients from the angiotensin-converting enzyme inhibitor group (mean: 105 ± 19%) and the angiotensin-II receptor blocker group (mean: 105.1 ± 18.73%) showed higher predicted values of muscle strength than control group patients (mean: 98.15 ± 18.77%). [Conclusion] Older adults using angiotensin-converting enzyme inhibitors or angiotensin-II receptor blockers have better functional exercise capacity and muscle strength.

  19. Pancreatic angiotensin-converting enzyme 2 improves glycemia in angiotensin II-infused mice

    PubMed Central

    Chhabra, Kavaljit H.; Xia, Huijing; Pedersen, Kim Brint; Speth, Robert C.

    2013-01-01

    An overactive renin-angiotensin system (RAS) is known to contribute to type 2 diabetes mellitus (T2DM). Although ACE2 overexpression has been shown to be protective against the overactive RAS, a role for pancreatic ACE2, particularly in the islets of Langerhans, in regulating glycemia in response to elevated angiotensin II (Ang II) levels remains to be elucidated. This study examined the role of endogenous pancreatic ACE2 and the impact of elevated Ang II levels on the enzyme's ability to alleviate hyperglycemia in an Ang II infusion mouse model. Male C57bl/6J mice were infused with Ang II or saline for a period of 14 days. On the 7th day of infusion, either an adenovirus encoding human ACE2 (Ad-hACE2) or a control adenovirus (Ad-eGFP) was injected into the mouse pancreas. After an additional 7–8 days, glycemia and plasma insulin levels as well as RAS components expression and oxidative stress were assessed. Ang II-infused mice exhibited hyperglycemia, hyperinsulinemia, and impaired glucose-stimulated insulin secretion from pancreatic islets compared with control mice. This phenotype was associated with decreased ACE2 expression and activity, increased Ang II type 1 receptor (AT1R) expression, and increased oxidative stress in the mouse pancreas. Ad-hACE2 treatment restored pancreatic ACE2 expression and compensatory activity against Ang II-mediated impaired glycemia, thus improving β-cell function. Our data suggest that decreased pancreatic ACE2 is a link between overactive RAS and impaired glycemia in T2DM. Moreover, maintenance of a normal endogenous ACE2 compensatory activity in the pancreas appears critical to avoid β-cell dysfunction, supporting a therapeutic potential for ACE2 in controlling diabetes resulting from an overactive RAS. PMID:23462816

  20. Cognitive effects attributed to angiotensin II may result from its conversion to angiotensin IV.

    PubMed

    Braszko, Jan Jozef; Walesiuk, Anna; Wielgat, Przemyslaw

    2006-09-01

    This study tests the hypothesis that the facilitation of learning and improvement of memory observed after an intracerebroventricular (i.c.v.) injection of angiotensin II (Ang II) is, in fact, caused by its derivative angiotensin IV (Ang IV). We ran two memory tests as well as an auxiliary test assessing motor performance in rats injected (i.c.v., 1 nmol in 2 microl saline) with Ang II or Ang IV. There were separate groups receiving peptide or saline five, 10 and 15 minutes before testing. Ang IV significantly increased step-through latencies in a passive avoidance paradigm as well as improved discrimination between familiar and unfamiliar objects in an object recognition test in all groups showing better retrieval of memory of aversive as well as appetitive stimuli in the peptide-treated groups regardless of the time of its injection. In contrast, rats treated with Ang II demonstrated significant improvement of memory of aversive and appetitive stimuli in the same tests only 15 minutes after its i.c.v. injection, with no effect in the groups injected five minutes before testing and slight efficacy in those injected 10 minutes before the test. Numbers of crossings, rearings and bar approaches in an open field were similar both in the peptide-treated and control groups making it unlikely that changes in motor performance affected the memory tests. In line with the present views on the intracellular metabolism of Ang II, these results suggest degradation to Ang IV by aminopeptidases A and N is necessary before the cognitive effects can occur.

  1. Are angiotensin-converting enzyme inhibitors or angiotensin 2 receptor antagonists effective in heart failure with preserved ejection fraction?

    PubMed

    Rain, Carmen; Rada, Gabriel

    2015-03-19

    Angiotensin-converting enzyme inhibitors (ACEI) and angiotensin receptor blockers (ARB) constitute first line treatment for patients with heart failure with reduced ejection fraction. However, their role in patients with preserved ejection fraction remains controversial. Searching in Epistemonikos database, which is maintained by screening 30 databases, we identified five systematic reviews including five randomized trials. We combined the evidence using meta-analysis and generated a summary of findings table following the GRADE approach. We concluded ACEI and ARB do not decrease mortality or hospitalization risk in this group of patients.

  2. Resistance to outflow of cerebrospinal fluid after central infusions of angiotensin

    NASA Technical Reports Server (NTRS)

    Morrow, B. A.; Keil, L. C.; Severs, W. B.

    1992-01-01

    Infusions of artificial cerebrospinal fluid (CSF) into the cerebroventricles of conscious rats can raise CSF pressure (CSFp). This response can be modified by some neuropeptides. One of these, angiotensin, facilitates the rise in CSFp. We measured CSFp in conscious rats with a computerized system and evaluated resistance to CSF outflow during infusion of artificial CSF, with or without angiotensin, from the decay kinetics of superimposed bolus injections. Angiotensin (10 ng/min) raised CSFp (P less than 0.05) compared with solvent, but the resistance to CSF outflow of the two groups was similar (P greater than 0.05). Because CSFp was increased by angiotensin without an increase in the outflow resistance, a change in some volume compartment is likely. Angiotensin may raise CSFp by increasing CSF synthesis; this possibility is supported, since the choroid plexuses contain an intrinsic isorenin-angiotensin system. Alternatively, angiotensin may dilate pial arteries, leading to an increased intracranial blood volume.

  3. Myocardial contusion caused by a baseball.

    PubMed

    Morikawa, M; Hirose, K; Mori, T; Kusukawa, J; Tomioka, N; Watanabe, Y

    1996-10-01

    Myocardial contusion is a rare type of sports injury. We report a case of myocardial contusion caused by a baseball. In this patient, arrhythmias were induced by an exercise test 1 week after injury. That patients with myocardial contusion but without arrhythmias at rest need to be treated carefully is emphasized.

  4. Influence of renal dysfunction on clinical outcomes in patients with congestive heart failure complicating acute myocardial infarction.

    PubMed

    Kim, Chang Seong; Kim, Min Jee; Kang, Yong Un; Choi, Joon Seok; Bae, Eun Hui; Ma, Seong Kwon; Ahn, Young-Keun; Jeong, Myung Ho; Kim, Young Jo; Cho, Myeong Chan; Kim, Chong Jin; Kim, Soo Wan

    2013-01-01

    The clinical course and medical treatment of patients with congestive heart failure (CHF) complicating acute myocardial infarction (AMI) are not well established, especially in patients with concomitant renal dysfunction. We performed a retrospective analysis of the prospective Korean Acute Myocardial Infarction Registry to assess the medical treatments and clinical outcomes of patients with CHF (Killip classes II or III) complicated by AMI, in the presence or absence of renal dysfunction. Of 13,498 patients with AMI, 2769 (20.5%) had CHF on admission. Compared to CHF patients with preserved renal function, in-hospital mortality and major adverse cardiac events were increased both at 1 month and at 1 year after discharge in patients with renal dysfunction (1154; 41.7%). Postdischarge use of aspirin, betablockers, calcium channel blockers, angiotensin-converting enzyme inhibitors, or angiotensin II receptor blockers and statins significantly reduced the 1-year mortality rate for CHF patients with renal dysfunction; such reduction was not observed for those without renal dysfunction, except in the case of aspirin. Patients with CHF complicating AMI, which is accompanied by renal dysfunction, are at higher risk for adverse cardiovascular outcomes than patients without renal dysfunction. However, they receive fewer medications proven to reduce mortality rates.

  5. Restoration of muscle strength in dystrophic muscle by angiotensin-1-7 through inhibition of TGF-β signalling.

    PubMed

    Acuña, María José; Pessina, Patrizia; Olguin, Hugo; Cabrera, Daniel; Vio, Carlos P; Bader, Michael; Muñoz-Canoves, Pura; Santos, Robson A; Cabello-Verrugio, Claudio; Brandan, Enrique

    2014-03-01

    Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease, and is characterized by the lack of dystrophin, muscle wasting, increased transforming growth factor (TGF)-β Smad-dependent signalling and fibrosis. Acting via the Mas receptor, angiotensin-1-7 [Ang-(1-7)], is part of the renin-angiotensin system, with the opposite effect to that of angiotensin II. We hypothesized that the Ang-(1-7)/Mas receptor axis might protect chronically damaged tissues as in skeletal muscle of the DMD mouse model mdx. Infusion or oral administration of Ang-(1-7) in mdx mice normalized skeletal muscle architecture, decreased local fibrosis and improved muscle function in vitro and in vivo. These positive effects were mediated by the inhibition of TGF-β Smad signalling, which in turn led to reduction of the pro-fibrotic microRNA miR-21 concomitant with a reduction in the number of TCF4 expressing fibroblasts. Mdx mice infused with Mas antagonist (A-779) and mdx deficient for the Mas receptor showed highly deteriorated muscular architecture, increased fibrosis and TGF-β signalling with diminished muscle strength. These results suggest that this novel compound Ang-(1-7) might be used to improve quality of life and delay death in individuals with DMD and this drug should be investigated in further pre-clinical trials.

  6. Obesity induces neuroinflammation mediated by altered expression of the renin-angiotensin system in mouse forebrain nuclei.

    PubMed

    de Kloet, Annette D; Pioquinto, David J; Nguyen, Dan; Wang, Lei; Smith, Justin A; Hiller, Helmut; Sumners, Colin

    2014-09-01

    Obesity is a widespread health concern that is associated with an increased prevalence of hypertension and cardiovascular disease. Both obesity and hypertension have independently been associated with increased levels of inflammatory cytokines and immune cells within specific brain regions, as well as increased activity of the renin-angiotensin system (RAS). To test the hypothesis that high-fat diet (HFD) induced obesity leads to an angiotensin-II (Ang-II)-dependent increase in inflammatory cells within specific forebrain regions that are important for cardiovascular regulation, we first assessed microglial activation, astrocyte activation, inflammation and RAS component gene expression within selected metabolic and cardiovascular control centers of the forebrain in adult male C57BL/6 mice given either a HFD or a low-fat diet (LFD) for 8weeks. Subsequently, we assessed the necessity of the paraventricular nucleus of the hypothalamus (PVN) angiotensin type-1a (AT1a) receptor for these responses by using the Cre/lox system in mice to selectively delete the AT1a receptor from the PVN. These studies reveal that in addition to the arcuate nucleus of the hypothalamus (ARC), the PVN and the subfornical organ (SFO), two brain regions that are known to regulate blood pressure and energy balance, also initiate proinflammatory responses after the consumption of a diet high in fat. They further indicate that some, but not all, of these responses are reversed upon deletion of AT1a specifically within the PVN.

  7. Morphological aspects of myocardial bridges.

    PubMed

    Lujinović, Almira; Kulenović, Amela; Kapur, Eldan; Gojak, Refet

    2013-11-01

    Although some myocardial bridges can be asymptomatic, their presence often causes coronary disease either through direct compression of the "tunnel" segment or through stimulation and accelerated development of atherosclerosis in the segment proximally to the myocardial bridge. The studied material contained 30 human hearts received from the Department of Anatomy. The hearts were preserved 3 to 5 days in 10% formalin solution. Thereafter, the fatty tissue was removed and arterial blood vessels prepared by careful dissection with special reference to the presence of the myocardial bridges. Length and thickness of the bridges were measured by the precise electronic caliper. The angle between the myocardial bridge fibre axis and other axis of the crossed blood vessel was measured by a goniometer. The presence of the bridges was confirmed in 53.33% of the researched material, most frequently (43.33%) above the anterior interventricular branch. The mean length of the bridges was 14.64 ± 9.03 mm and the mean thickness was 1.23 ± 1.32 mm. Myocardial bridge fibres pass over the descending blood vessel at the angle of 10-90 degrees. The results obtained on a limited sample suggest that the muscular index of myocardial bridge is the highest for bridges located on RIA, but that the difference is not significant in relation to bridges located on other branches. The results obtained suggest that bridges located on other branches, not only those on RIA, could have a great contractive power and, consequently, a great compressive force, which would be exerted on the wall of a crossed blood vessel.

  8. Postmortem detection of inapparent myocardial infarction

    PubMed Central

    McVie, J. G.

    1970-01-01

    Two methods of detecting early inapparent myocardial infarcts have been studied and their value in diagnostic practice compared. The better method proved to be the determination of the potassium to sodium ratio (ionic ratio) which falls in infarcted tissue within minutes of the onset of anoxia. The second method was nitro blue tetrazolium staining of gross sections of myocardium which revealed any infarct older than three and a half hours. As staining is dependent upon enzyme activity, the latter method is disturbed by autolysis. It was shown, on the other hand, that the ionic ratio (K+/Na+) was not affected by autolysis and was therefore well suited to forensic practice. Sixteen non-infarcted control hearts, plus the nine from cases of sudden death due to causes other than myocardial infarction, all yielded high ionic ratios (K+/Na+), average 1·4, and stained normally with tetrazolium (the normal controls). Positive control was provided by 20 histologically proven infarcts of which the ionic ratios (K+/Na+) were all low (average 0·7). Histochemical staining with tetrazolium delineated infarcted areas in each case. In a series of 29 sudden deaths, a cause of death other than myocardial infarction was found at necropsy in nine, mentioned above as normal controls. The remaining 20 hearts were not infarcted histologically, but were shown to be infarcted by examination of the ionic ratios (K+/Na+). These ratios were low (average 0·8) including three borderline ratios. Confirmatory evidence of infarction included nitro blue tetrazolium staining which revealed infarcts in 10 of the 20 cases, and clinical and necropsy observations. The ionic ratio (K+/Na+) decreases as the age of the infarct increases for at least 24 hours. Thereafter as healing proceeds, the ratio gradually reverts to normal. Thus, previous infarction and replacement fibrosis do not significantly alter the ionic ratio (K+/Na+). Nor is it changed by left ventricular hypertrophy, the presence of

  9. Activation of the Renin-Angiotensin System Promotes Colitis Development

    PubMed Central

    Shi, Yongyan; Liu, Tianjing; He, Lei; Dougherty, Urszula; Chen, Li; Adhikari, Sarbani; Alpert, Lindsay; Zhou, Guolin; Liu, Weicheng; Wang, Jiaolong; Deb, Dilip K.; Hart, John; Liu, Shu Q.; Kwon, John; Pekow, Joel; Rubin, David T.; Zhao, Qun; Bissonnette, Marc; Li, Yan Chun

    2016-01-01

    The renin-angiotensin system (RAS) plays pathogenic roles in renal and cardiovascular disorders, but whether it is involved in colitis is unclear. Here we show that RenTgMK mice that overexpress active renin from the liver developed more severe colitis than wild-type controls. More than 50% RenTgMK mice died whereas all wild-type mice recovered. RenTgMK mice exhibited more robust mucosal TH17 and TH1/TH17 responses and more profound colonic epithelial cell apoptosis compared to wild-type controls. Treatment with aliskiren (a renin inhibitor), but not hydralazine (a smooth muscle relaxant), ameliorated colitis in RenTgMK mice, although both drugs normalized blood pressure. Chronic infusion of angiotensin II into wild-type mice mimicked the severe colitic phenotype of RenTgMK mice, and treatment with losartan [an angiotensin type 1 receptor blocker (ARB)] ameliorated colitis in wild-type mice, confirming a colitogenic role for the endogenous RAS. In human biopsies, pro-inflammatory cytokines were suppressed in patients with inflammatory bowel disease who were on ARB therapy compared to patients not receiving ARB therapy. These observations demonstrate that activation of the RAS promotes colitis in a blood pressure independent manner. Angiotensin II appears to drive colonic mucosal inflammation by promoting intestinal epithelial cell apoptosis and mucosal TH17 responses in colitis development. PMID:27271344

  10. Some Comparative Aspects of the Renin-Angiotensin System.

    ERIC Educational Resources Information Center

    Malvin, Richard L.

    1984-01-01

    The renin-angiotensin system (RAS) maintains salt and water balance. Discusses functions of the RAS as defined in mammalian species, considering how the system arose and what its original function was. Also discusses where some of the changes occurred in the system (and why) as well as other topics. (JN)

  11. Expression of Angiotensin II Receptor-1 in Human Articular Chondrocytes

    PubMed Central

    Kawakami, Yuki; Matsuo, Kosuke; Murata, Minako; Yudoh, Kazuo; Nakamura, Hiroshi; Shimizu, Hiroyuki; Beppu, Moroe; Inaba, Yutaka; Saito, Tomoyuki; Kato, Tomohiro; Masuko, Kayo

    2012-01-01

    Background. Besides its involvement in the cardiovascular system, the renin-angiotensin-aldosterone (RAS) system has also been suggested to play an important role in inflammation. To explore the role of this system in cartilage damage in arthritis, we investigated the expression of angiotensin II receptors in chondrocytes. Methods. Articular cartilage was obtained from patients with osteoarthritis, rheumatoid arthritis, and traumatic fractures who were undergoing arthroplasty. Chondrocytes were isolated and cultured in vitro with or without interleukin (IL-1). The expression of angiotensin II receptor types 1 (AT1R) and 2 (AT2R) mRNA by the chondrocytes was analyzed using reverse transcription-polymerase chain reaction (RT-PCR). AT1R expression in cartilage tissue was analyzed using immunohistochemistry. The effect of IL-1 on AT1R/AT2R expression in the chondrocytes was analyzed by quantitative PCR and flow cytometry. Results. Chondrocytes from all patient types expressed AT1R/AT2R mRNA, though considerable variation was found between samples. Immunohistochemical analysis confirmed AT1R expression at the protein level. Stimulation with IL-1 enhanced the expression of AT1R/AT2R mRNA in OA and RA chondrocytes. Conclusions. Human articular chondrocytes, at least partially, express angiotensin II receptors, and IL-1 stimulation induced AT1R/AT2R mRNA expression significantly. PMID:23346400

  12. Radical scavenging and angiotensin converting enzyme inhibitory activities of standardized extracts of Ficus racemosa stem bark.

    PubMed

    Ahmed, Faiyaz; Siddesha, Jalahalli M; Urooj, Asna; Vishwanath, Bannikuppe S

    2010-12-01

    The present study evaluated the radical scavenging and angiotensin converting enzyme (ACE) inhibitory activity of cold and hot aqueous extracts of Ficus racemosa (Moraceae) stem bark. The extracts were standardized using HPLC. Radical scavenging activity was determined using 1,1-diphenyl-2-picrylhydrazyl radical and angiotensin converting enzyme inhibitory activity using rabbit lung and partially purified porcine kidney ACE. HPLC profiles of cold aqueous extract (FRC) showed the presence of bergenin, an isocoumarin, while hot aqueous extract (FRH) was found to contain ferulic acid, kaempferol and coumarin in addition to bergenin. FRH showed significantly higher (p ≤ 0.01) radical scavenging activity than FRC and butylated hydroxytoluene (BHT), consequently resulting in a significantly lower (p ≤ 0.01) IC₅₀ value than FRC and BHT. Both the extracts exhibited a dose dependent inhibition of porcine kidney and rabbit lung ACE. FRH showed significantly higher (p ≤ 0.01) activity than FRC with lower IC(50) values of 1.36 and 1.91 μg/mL respectively, for porcine kidney and rabbit lung ACE, compared with those of FRC (128 and 291 μg/mL). Further, a significant correlation (r = 0.893; p ≤ 0.05) was observed between radical scavenging activity and ACE-inhibitory activity. This is the first report on the ACE-inhibitory activity of F. racemosa stem bark suggesting its potential to be utilized as a therapeutic alternative for hypertension. PMID:20564493

  13. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis

    PubMed Central

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A.; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao

    2016-01-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  14. Activation of calpain by renin-angiotensin system in pleural mesothelial cells mediates tuberculous pleural fibrosis.

    PubMed

    Yang, Jie; Xiang, Fei; Cai, Peng-Cheng; Lu, Yu-Zhi; Xu, Xiao-Xiao; Yu, Fan; Li, Feng-Zhi; Greer, Peter A; Shi, Huan-Zhong; Zhou, Qiong; Xin, Jian-Bao; Ye, Hong; Su, Yunchao; Ma, Wan-Li

    2016-07-01

    Pleural fibrosis is defined as an excessive deposition of extracellular matrix (ECM) components that results in destruction of the normal pleural tissue architecture. It can result from diverse inflammatory conditions, especially tuberculous pleurisy. Pleural mesothelial cells (PMCs) play a pivotal role in pleural fibrosis. Calpain is a family of calcium-dependent endopeptidases, which plays an important role in ECM remodeling. However, the role of calpain in pleural fibrosis remains unknown. In the present study, we found that tuberculous pleural effusion (TPE) induced calpain activation in PMCs and that inhibition of calpain prevented TPE-induced collagen-I synthesis and cell proliferation of PMCs. Moreover, our data revealed that the levels of angiotensin (ANG)-converting enzyme (ACE) were significantly higher in pleural fluid of patients with TPE than those with malignant pleural effusion, and ACE-ANG II in TPE resulted in activation of calpain and subsequent triggering of the phosphatidylinositol 3-kinase (PI3K)/Akt/NF-κB signaling pathway in PMCs. Finally, calpain activation in PMCs and collagen depositions were confirmed in pleural biopsy specimens from patients with tuberculous pleurisy. Together, these studies demonstrated that calpain is activated by renin-angiotensin system in pleural fibrosis and mediates TPE-induced collagen-I synthesis and proliferation of PMCs via the PI3K/Akt/NF-κB signaling pathway. Calpain in PMCs might be a novel target for intervention in tuberculous pleural fibrosis. PMID:27261452

  15. Synthesis and evaluation of novel angiotensin II receptor 1 antagonists as anti-hypertension drugs.

    PubMed

    Bao, Xiaolu; Zhu, Weibo; Zhang, Ruijing; Wen, Caihong; Wang, Li; Yan, Yijia; Tang, Hesheng; Chen, Zhilong

    2016-05-01

    Three new angiotensin II receptor 1 antagonists, 1, 2 and 3 were designed, synthesized and evaluated. The AT1 receptor-binding assays in vitro showed that all the synthesized compounds had nanomolar affinity for the AT1 receptor. From which compound 3 was found to be the most potent ligands with an IC50 value of 2.67±0.23 nM. Biological evaluation in vivo revealed that all the compounds could cause significant decrease on MBP in a dose dependent manner in spontaneously hypertensive rats, and compound 3 especially showed an efficient and long-lasting effect in reducing blood pressure, whose maximal response lowered 41 mmHg of MBP at 10mg/kg and 62 mmHg at 15 mg/kg after oral administration, the significant anti-hypertensive effect lasted beyond 12 h, which is better than the reference compound losartan. The pharmacokinetic experiments showed that compound 3 could be absorbed efficiently and metabolized smoothly both in blood and in tissues in Wistar rats. The acute toxicity assay suggested that it has low toxicity with the LD50 value of 2974.35 mg/kg. These results demonstrate that compound 3 is a potent angiotensin AT1 receptor antagonist which could be considered as a novel anti-hypertension candidate and deserved for further investigation. PMID:27004954

  16. Synthesis and biological evaluation of a new angiotensin II receptor antagonist.

    PubMed

    Zheng, H-l; Zhu, W-b; Wu, D; Da, Y-j; Yan, Y-J; Bian, J; Chen, Z-l

    2014-12-01

    The design, synthesis, in vitro and in vivo evaluation of (2 R,6 S)-4-({1-[2-(1 H-tetrazol-5-yl)phenyl]-1 H-indol-4-yl}methyl)-2,6-dimethylmorpholine, compound 1, as a novel angiotensin II receptor antagonist is outlined. Radioligand binding assays showed that 1 displayed a high affinity for the angiotensin II type 1receptor with IC50 value of 0.82 nM. It acted as a potent anti-hypertensive derivative (maximal reduction of mean arterial pressure of 47 mm Hg at 10 mg/kg po in spontaneously hypertensive rat producing a dose-dependent fall in blood pressure following oral administration lasting beyond 10 h. Acute toxicity tests measured the LD50 of 1 value as 2431.7 mg/kg, which is higher than Losartan (LD50=2248 mg/kg). In addition further testing showed that 1 also demonstrated efficient anti-proliferative activity in vitro and anti-prostate cancer activity in vivo were also found. Taken together this compound could be considered as an effective and durable anti-hypertension drug candidate with additional anti-prostate cancer activity. These encouraging results are deserved of further investigation towards its use for therapeutic benefit. PMID:24573978

  17. Acute myocardial infarction in rats.

    PubMed

    Wu, Yewen; Yin, Xing; Wijaya, Cori; Huang, Ming-He; McConnell, Bradley K

    2011-01-01

    With heart failure leading the cause of death in the USA (Hunt), biomedical research is fundamental to advance medical treatments for cardiovascular diseases. Animal models that mimic human cardiac disease, such as myocardial infarction (MI) and ischemia-reperfusion (IR) that induces heart failure as well as pressure-overload (transverse aortic constriction) that induces cardiac hypertrophy and heart failure (Goldman and Tarnavski), are useful models to study cardiovascular disease. In particular, myocardial ischemia (MI) is a leading cause for cardiovascular morbidity and mortality despite controlling certain risk factors such as arteriosclerosis and treatments via surgical intervention (Thygesen). Furthermore, an acute loss of the myocardium following myocardial ischemia (MI) results in increased loading conditions that induces ventricular remodeling of the infarcted border zone and the remote non-infarcted myocardium. Myocyte apoptosis, necrosis and the resultant increased hemodynamic load activate multiple biochemical intracellular signaling that initiates LV dilatation, hypertrophy, ventricular shape distortion, and collagen scar formation. This pathological remodeling and failure to normalize the increased wall stresses results in progressive dilatation, recruitment of the border zone myocardium into the scar, and eventually deterioration in myocardial contractile function (i.e. heart failure). The progression of LV dysfunction and heart failure in rats is similar to that observed in patients who sustain a large myocardial infarction, survive and subsequently develops heart failure (Goldman). The acute myocardial infarction (AMI) model in rats has been used to mimic human cardiovascular disease; specifically used to study cardiac signaling mechanisms associated with heart failure as well as to assess the contribution of therapeutic strategies for the treatment of heart failure. The method described in this report is the rat model of acute myocardial

  18. Effect of angiotensin II on uterine and systemic vasculature in pregnant sheep.

    PubMed Central

    Naden, R P; Rosenfeld, C R

    1981-01-01

    The response of uteroplacental blood flow (UBF) to angiotensin II is controversial. Moreover, the relationship of the uterine and systemic responses to infused angiotensin II is not well understood. Thus, in eight chronically instrumented, near-term pregnant sheep, we have determined the relationships between the dose and duration of constant systemic infusions of angiotensin II ([Val5] ANG II) and changes in UBF, uterine vascular resistance (UVR), mean arterial pressure (MAP), and systemic vascular resistance (SVR). [Val5] ANG II caused dose-dependent increases in UVR and MAP at all doses studied (P less than 0.05). The response in UBF was bidirectional, with increases at doses less than or equal to 1.15 microgram/min and decreases at greater than or equal to 2.29 micrograms/min (P less than 0.05). Increases in UBP occurred when the relative rise (delta) in MAP greater than delta UVR, whereas UBF was unchanged when delta MAP = delta UVR and decreased when delta MAP less than delta UVR. SVR also rose in a dose-dependent fashion (P less than 0.05); delta SVR was greater than delta UVR at doses less than or equal to 2.29 micrograms [Val5] ANG II/min (P less than 0.01). In studies of the effect of duration of [Val5] ANG II infusions, UBF increased at all doses during the 1st min, followed by stabilization at 4--5 min, with eventual decreases at doses greater than or equal to 2.29 micrograms/min and increases at doses less than 2.29 micrograms/min. The relationship between the changes in MAP and UVR to the response of UBF was as noted above. It is evident that (a) [Val5] NAG II is uterine vasoconstrictor, (b) changes in UBF are dependent upon relative changes in perfusion pressure and UVR, which in turn are dependent upon both the dose and duration of a [Val5] ANG II infusion, and (c) the uteroplacental vasculature is relatively refractory to the vasoconstricting effects of low doses of [Val5] ANG II. PMID:7263862

  19. Thallium-201 myocardial scintigraphy in acute myocardial infarction and ischemia

    SciTech Connect

    Wackers, F.J.

    1982-04-01

    Thallium-201 scintigraphy provides a sensitive and reliable method of detecting acute myocardial infarction and ischemia when imaging is performed with understanding of the temporal characteristics and accuracy of the technique. The results of scintigraphy are related to the time interval between onset of symptoms and time of imaging. During the first 6 hr after chest pain almost all patients with acute myocardial infarction and approximately 50% of the patients with unstable angina will demonstrate /sup 201/TI pefusion defects. Delayed imaging at 2-4 hr will permit distinction between ischemia and infarction. In patients with acute myocardial infarction, the size of the perfusion defect accurately reflects the extent of the infarcted and/or jeopardized myocardium, which may be used for prognostic stratification. In view of the characteristics of /sup 201/TI scintigraphy, the most practical application of this technique is in patients in whom myocardial infarction has to be ruled out, and for early recognition of patients at high risk for complications.

  20. Brain renin-angiotensin system and dopaminergic cell vulnerability

    PubMed Central

    Labandeira-García, Jose L.; Garrido-Gil, Pablo; Rodriguez-Pallares, Jannette; Valenzuela, Rita; Borrajo, Ana; Rodríguez-Perez, Ana I.

    2014-01-01

    Although the renin-angiotensin system (RAS) was classically considered as a circulating system that regulates blood pressure, many tissues are now known to have a local RAS. Angiotensin, via type 1 receptors, is a major activator of the NADPH-oxidase complex, which mediates several key events in oxidative stress (OS) and inflammatory processes involved in the pathogenesis of major aging-related diseases. Several studies have demonstrated the presence of RAS components in the basal ganglia, and particularly in the nigrostriatal system. In the nigrostriatal system, RAS hyperactivation, via NADPH-oxidase complex activation, exacerbates OS and the microglial inflammatory response and contributes to progression of dopaminergic degeneration, which is inhibited by angiotensin receptor blockers and angiotensin converting enzyme (ACE) inhibitors. Several factors may induce an increase in RAS activity in the dopaminergic system. A decrease in dopaminergic activity induces compensatory upregulation of local RAS function in both dopaminergic neurons and glia. In addition to its role as an essential neurotransmitter, dopamine may also modulate microglial inflammatory responses and neuronal OS via RAS. Important counterregulatory interactions between angiotensin and dopamine have also been observed in several peripheral tissues. Neurotoxins and proinflammatory factors may also act on astrocytes to induce an increase in RAS activity, either independently of or before the loss of dopamine. Consistent with a major role of RAS in dopaminergic vulnerability, increased RAS activity has been observed in the nigra of animal models of aging, menopause and chronic cerebral hypoperfusion, which also showed higher dopaminergic vulnerability. Manipulation of the brain RAS may constitute an effective neuroprotective strategy against dopaminergic vulnerability and progression of Parkinson’s disease. PMID:25071471

  1. Role of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in hypertension of chronic kidney disease and renoprotection. Study results

    PubMed Central

    Baltatzi, M; Savopoulos, Ch; Hatzitolios, A

    2011-01-01

    Chronic kidney disease (CKD) is a global health problem associated with considerable morbidity and mortality and despite advances in the treatment of end stage renal disease (ESRD) mechanisms to prevent and delay its progression are still being sought. The renin-angiotensin-aldosterone system (RAAS) plays a pivotal role in many of the pathophysiologic changes that lead to progression of renal disease. Traditionally RAAS was considered as an endocrine system and its principal role was to maintain blood pressure (BP). In recent years local RAAS has been described to operate independently from systemic and local angiotensin II (AngII) in the kidney to contribute in hypertension and kidney damage. The benefits of strict BP control in slowing kidney disease progression have been demonstrated in several clinical trials and the question whether specific agents like angiotensin converting enzyme antagonists (ACEIs) and angiotensin receptor blockers (ARBs) provide renoprotective benefits beyond BP lowering is to be answered. Several studies support these agents reduce proteinuria and protect renal function, whereas the opposite is stated by others. According to guidelines, their use is recommended as first line agents in diabetic renal disease and non diabetic renal disease with albuminuria, whereas there is no data to support the same in non diabetic nonalbuminuric renal disease. Dual blockage of RAAS with the combination of ACEIs and ARBs could offer an alternative in strict RAAS blockade, but studies up to now can not prove its safety and the combination is not recommended until ongoing trials will provide new and unarguable results. PMID:21897755

  2. Carbon monoxide pollution impairs myocardial perfusion reserve: implication of coronary endothelial dysfunction.

    PubMed

    Meyer, G; Boissiere, J; Tanguy, S; Rugale, C; Gayrard, S; Jover, B; Obert, P; Reboul, C

    2011-12-01

    Chronic exposure to simulated urban CO pollution is reported to be associated with cardiac dysfunction. Despite the potential implication of myocardial perfusion alteration in the pathophysiology of CO pollution, the underlying mechanisms remain today still unknown. Therefore, the aim of this work was to evaluate the effects of prolonged exposure to simulated urban CO pollution on the regulation of myocardial perfusion. Cardiac hemodynamics and myocardial perfusion were assessed under basal conditions and during the infusion of a β-Adrenergic agonist. The effects of CO exposure on capillary density, coronary endothelium-dependent vasodilatation, eNOS expression and eNOS uncoupling were also evaluated. Our main results were that prolonged CO exposure was associated with a blunted myocardial perfusion response to a physiological stress responsible for an altered contractile reserve. The impairment of myocardial perfusion reserve was not accounted for a reduced capillary density but rather by an alteration in coronary endothelium-dependent vasorelaxation (-45% of maximal relaxation to ACh). In addition, though chronic CO exposure did not change eNOS expression, it significantly increased eNOS uncoupling. Therefore, the present work underlines the fact that chronic CO exposure, at levels found in urban air pollution, is associated with reduced myocardial perfusion reserve. This phenomenon is explained at the coronary-vessel level by deleterious effects of CO exposure on the endothelium NO-dependent vasorelaxation via eNOS uncoupling.

  3. Myocardial contusion following nonfatal blunt chest trauma

    SciTech Connect

    Kumar, S.A.; Puri, V.K.; Mittal, V.K.; Cortez, J.

    1983-04-01

    Currently available diagnostic techniques for myocardial contusion following blunt chest trauma were evaluated. We investigated 30 patients prospectively over a period of 1 year for the presence of myocardial contusion. Among the 30 patients, eight were found to have myocardial contusion on the basis of abnormal electrocardiograms, elevated creatine phosphokinase MB fraction (CPK-MB), and positive myocardial scan. Myocardial scan was positive in seven of eight patients (87.5%). CPK-MB fraction was elevated in four of eight patients (50%). Definitive electrocardiographic changes were seen in only two of eight patients (25%). It appears that myocardial scan using technetium pyrophosphate and CPK-MB fraction determinations are the most reliable aids in diagnosis of myocardial contusion following blunt chest trauma.

  4. Metabolism of angiotensins by head membranes of the leech Theromyzon tessulatum.

    PubMed

    Laurent, V; Salzet, M

    1996-04-15

    Angiotensins (angiotensin I, angiotensin II, angiotensin II-amide) have been isolated in leeches and such peptides are involved in diuresis in these animals. To explore possible inactivation mechanisms of these peptides, angiotensins were incubated with head membranes of the leech T. tessulatum. Membranes derived from head parts of this leech are very rich in peptidases. They contain endopeptidase-24.11-like enzyme (NEP-like) associated with a battery of exopeptidase. The way that angiotensins are degraded by the combined attack of these membrane peptidases has been investigated. The contribution of individual peptidases was assessed by adding inhibitors (phosphoramidon, captopril and amastatin) to the membrane fractions, when they were incubated with the peptides. In the case of angiotensin I, the primary attack was performed by a combined action of the NEP-like and the ACE-like enzymes, followed by aminopeptidase attacks. Angiotensin II and III were hydrolyzed by NEP-like enzyme at the same Tyr-Ile bond, whereas the N-terminal arginine residue of angiotensin III was removed by an arginyl aminopeptidase. These results show that angiotensins are efficiently degraded by membranes and that NEP-like enzyme plays a key role in this process.

  5. The Uterine Placental Bed Renin-Angiotensin System in Normal and Preeclamptic Pregnancy

    PubMed Central

    Anton, Lauren; Merrill, David C.; Neves, Liomar A. A.; Diz, Debra I.; Corthorn, Jenny; Valdes, Gloria; Stovall, Kathryn; Gallagher, Patricia E.; Moorefield, Cheryl; Gruver, Courtney; Brosnihan, K. Bridget

    2009-01-01

    Previously, we demonstrated activation of the renin-angiotensin system in the fetal placental chorionic villi, but it is unknown whether the immediately adjacent area of the maternal uterine placental bed is regulated similarly. This study measured angiotensin peptides, renin-angiotensin system component mRNAs, and receptor binding in the fundus from nonpregnant subjects (n = 19) and in the uterine placental bed from normal (n = 20) and preeclamptic (n = 14) subjects. In the uterine placental bed from normal pregnant women, angiotensin II peptide levels and angiotensinogen, angiotensin-converting enzyme, angiotensin receptor type 1 (AT1), AT2, and Mas mRNA expression were lower as compared with the nonpregnant subjects. In preeclamptic uterine placental bed, angiotensin II peptide levels and renin and angiotensin-converting enzyme mRNA expression were significantly higher than normal pregnant subjects. The AT2 receptor was the predominant receptor subtype in the nonpregnant fundus, whereas all angiotensin receptor binding was undetectable in normal and preeclamptic pregnant uterine placental bed compared with nonpregnant fundus. These findings suggest that the maternal uterine placental bed may play an endocrine role by producing angiotensin II, which acts in the adjacent placenta to vasoconstrict fetal chorionic villi vessels where we have shown previously that AT1 receptors predominate. This would lead to decreased maternal-fetal oxygen exchange and fetal nutrition, a known characteristic of preeclampsia. PMID:19520788

  6. Apelin-13 increases myocardial progenitor cells and improves repair postmyocardial infarction.

    PubMed

    Li, Lanfang; Zeng, Heng; Chen, Jian-Xiong

    2012-09-01

    Apelin is an endogenous ligand for the angiotensin-like 1 receptor (APJ) and has beneficial effects against myocardial ischemia-reperfusion injury. Little is known about the role of apelin in the homing of vascular progenitor cells (PCs) and cardiac functional recovery postmyocardial infarction (post-MI). The present study investigated whether apelin affects PC homing to the infarcted myocardium, thereby mediating repair and functional recovery post-MI. Mice were infarcted by coronary artery ligation, and apelin-13 (1 mg·kg(-1)·day(-1)) was injected for 3 days before MI and for 14 days post-MI. Homing of vascular PCs [CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/stromal cell-derived factor (SDF)-1α(+), and CD133(+)/CXC chemokine receptor (CXCR)-4(+)] into the ischemic area was examined. Myocardial Akt, endothelial nitric oxide synthase (eNOS), VEGF, jagged1, notch3, SDF-1α, and CXCR-4 expression were assessed at 24 h and 14 days post-MI. Functional analyses were performed on day 14 post-MI. Mice that received apelin-13 treatment demonstrated upregulation of SDF-1α/CXCR-4 expression and dramatically increased the number of CD133(+)/c-Kit(+)/Sca1(+), CD133(+)/SDF-1α(+), and c-Kit(+)/CXCR-4(+) cells in infarcted hearts. Apelin-13 also significantly increased Akt and eNOS phosphorylation and upregulated VEGF, jagged1, and notch3 expression in ischemic hearts. This was accompanied by a significant reduction of myocardial apoptosis. Furthermore, treatment with apelin-13 promoted myocardial angiogenesis and attenuated cardiac fibrosis and hypertrophy together with a significant improvement of cardiac function at 14 days post-MI. Apelin-13 increases angiogenesis and improves cardiac repair post-MI by a mechanism involving the upregulation of SDF-1α/CXCR-4 and homing of vascular PCs. PMID:22752632

  7. Multiple Risk Factors of Alcoholic and Non-Alcoholic Myocardial Infarction Patients

    PubMed Central

    Harisharan; Singh, Awnish Kumar; Dangal, Nidhu Ram; Surapaneni, Krishna Mohan; Joshi, Ashish

    2016-01-01

    Background: Myocardial infarction (MI) is one of the most critical medical emergency and contributor to morbidity and mortality worldwide. Myocardial infarction is the most common form of coronary heart disease and leading cause of premature death. Past century has seen substantial advancement in the field of medical sciences but still mortality trends due to myocardial infarction is increasing in developing countries including India. We have conducted this study to compare the Sociodemographic characteristics of alcoholic and non alcoholic MI patients admitted in coronary care unit of Saveetha Medical College, Chennai, India. Methods: An exploratory cross sectional study was performed by enrolling a convenient sample of 100 Myocardial Infarction patients. Information about Sociodemographic characteristics, past medical history, alcohol and tobacco intake, physical activity, psychological stress and biochemical measurements was gathered. Results: The mean age of the respondents was 46 (SD=6) years and majority of them were male i.e. 82%. 100% married and 89% literate, there were 24% past and 22% present alcoholics. Consumption of alcohol on a monthly, weekly and daily basis was 8%, 11% and 5% respectively. Preference to brandy was 67%, rum was 21% and that the beer was 12%. Current smoker were 20% and former were 11%. 93% and 52% respondents were under medication of beta blocker and angiotensin-converting-enzyme (ACE) inhibitors respectively. Conclusion: Worldwide, MI is the most common cause of mortality and morbidity and hence early diagnosis and management is most essential. Results from our study revealed that, participants had sedentary lifestyles where risk factors of MI such as alcohol consumption, and smoking does existed. PMID:26234988

  8. Myocardial revascularization in Jehovah Witnesses.

    PubMed

    Seifert, P E; Auer, J E; Hohensee, P

    1989-04-01

    The refusal of certain patients to accept blood transfusions need not be a deterrent to surgery. We report on nine Jehovah's Witnesses who over a one-year period underwent myocardial revascularization without significant blood loss or decrease in hematocrit values. PMID:2786287

  9. [Myocardial infarction in young population].

    PubMed

    Shklovskii, B L; Prokhorchik, A A; Koltunov, A N; Lishchuk, A N; Ryzhman, N N; Ivanov, A V; Navaznov, V V; Baksheev, V I

    2015-03-01

    Description of clinical observation and literature review. Myocardial infarction in patients younger than 45 years is rare, but it is an important clinical, organizational and psychological problem. A case of myocardial infarction in 19-years old patient, who suffered since 6 years from kidney disease, is described. Transmural left-ventricular myocardial infarction has developed on the background of chronic glomerulonephritis, excessive exercise, and traditional risk factors for cardiovascular disease. Coronary venous bypass with the benefit-pleasing outcome is performed. When analysing the literature, the authors emphasize that in comparison with elderly patients, young people have different profiles of risk factors, clinical manfestations and prognosis of myocardial infarction. It is emphasized that kidney chronic disease, regardless the stage, worsen short-term and long-term outcomes of cardiovascular disease. Early stabilization is possible under the condition of risk stratification and-early revascularization, which leads to better clinical outcomes. Particular attention should be given to a comprehensive assessment, it prognostic criteria, risk factor modification, secondary prevention of major and associated diseases, clinical- and -dynamic observation, including patients with asymptomatic course of the disease.

  10. Spousal Adjustment to Myocardial Infarction.

    ERIC Educational Resources Information Center

    Ziglar, Elisa J.

    This paper reviews the literature on the stresses and coping strategies of spouses of patients with myocardial infarction (MI). It attempts to identify specific problem areas of adjustment for the spouse and to explore the effects of spousal adjustment on patient recovery. Chapter one provides an overview of the importance in examining the…

  11. Myocardial infarction following sternal surgery.

    PubMed Central

    Aggarwal, R. K.; Morrison, W. L.

    1996-01-01

    We report a case of myocardial infarction in a 32-year-old man undergoing sternal surgery. Thrombotic occlusion of the right coronary artery with no underlying atheromatous disease was demonstrated angiographically and successfully treated with intracoronary thrombolysis. Images Figure 1 Figure 2 PMID:8796219

  12. Central Renin-Angiotensin System Activation and Inflammation Induced by High-Fat Diet Sensitize Angiotensin II-Elicited Hypertension.

    PubMed

    Xue, Baojian; Thunhorst, Robert L; Yu, Yang; Guo, Fang; Beltz, Terry G; Felder, Robert B; Johnson, Alan Kim

    2016-01-01

    Obesity has been shown to promote renin-angiotensin system activity and inflammation in the brain and to be accompanied by increased sympathetic activity and blood pressure. Our previous studies demonstrated that administration of a subpressor dose of angiotensin (Ang) II sensitizes subsequent Ang II-elicited hypertension. The present study tested whether high-fat diet (HFD) feeding also sensitizes the Ang II-elicited hypertensive response and whether HFD-induced sensitization is mediated by an increase in renin-angiotensin system activity and inflammatory mechanisms in the brain. HFD did not increase baseline blood pressure, but enhanced the hypertensive response to Ang II compared with a normal-fat diet. The sensitization produced by the HFD was abolished by concomitant central infusions of either a tumor necrosis factor-α synthesis inhibitor, pentoxifylline, an Ang II type 1 receptor blocker, irbesartan, or an inhibitor of microglial activation, minocycline. Furthermore, central pretreatment with tumor necrosis factor-α mimicked the sensitizing action of a central subpressor dose of Ang II, whereas central pentoxifylline or minocycline abolished this Ang II-induced sensitization. Real-time quantitative reverse transcription-polymerase chain reaction analysis of lamina terminalis tissue indicated that HFD feeding, central tumor necrosis factor-α, or a central subpressor dose of Ang II upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines, whereas inhibition of Ang II type 1 receptor and of inflammation reversed these changes. The results suggest that HFD-induced sensitization of Ang II-elicited hypertension is mediated by upregulation of the brain renin-angiotensin system and of central proinflammatory cytokines.

  13. The effect of altered sodium balance upon renal vascular reactivity to angiotensin II and norepinephrine in the dog. Mechanism of variation in angiotensin responses.

    PubMed Central

    Oliver, J A; Cannon, P J

    1978-01-01

    The mechanism whereby the vasoconstrictor response to angiotensin II (AII) is influenced by sodium balance or disease is unclear. To explore this question, the renal vascular responses (RVR) to intrarenal injections of subpressor doses of AII and norepinephrine were studied in dogs with an electromagnetic flowmeter. Acute and chronic sodium depletion increased plasma renin activity (PRA) and blunted the RVR to AII, while acute sodium repletion and chronic sodium excess plus desoxycorticosterone acetate decreased PRA and enhanced the RVR to AII. The magnitude of the RVR to AII was inversely related to PRA. The RVR to norepinephrine was unaffected by sodium balance and was not related to PRA. Inhibition of the conversion of angiotensin I to AII by SQ 20,881 during sodium depletion lowered mean arterial blood pressure (MABP), increased renal blood flow (RBF), and enhanced the RVR to AII but not to norepinephrine. Administration of bradykinin to chronically sodium-depleted dogs also lowered the MABP and increased RBF but had no effect on the RVR to AII. SQ 20,881 had no effect on MABP, RBF, or the RVR to AII in the dogs with chronic sodium excess and desoxycorticosterone acetate. Administration of indomethacin to chronically sodium-depleted dogs lowered RBF but did not influence the RVR to AII. The results indicate that the RVR to AII is selectively influenced by sodium balance and that the magnitude of the response is inversely related to the availability of endogenous AII. The data did not suggest that the variations in the RVR to AII were because of direct effects of sodium on vascular contraction, changes in the number of vascular AII receptors, or the renal prostaglandins. The results are consistent with the hypothesis that the vasoconstrictor effect of AII in the renal vasculature is primarily dependent upon the degree to which the AII vascular receptors are occupied by endogenous hormone. PMID:641142

  14. [Use of SPECT-scanning of the heart in estimating of influence of drugs of the background therapy of ischemic heart disease on myocardial perfusion].

    PubMed

    Svistov, A S; Sukhov, V Iu; Makiev, R G; Alanichev, A E

    2012-10-01

    Some new facts about the influence of different groups of drugs on myocardial perfusion were educed during the research. Educed facts conduce representation extension by matching the optimal therapy of ischemic heart disease. With the help of SPECT-scanning were educed myocardial blood flow, areas of maximal hypoperfusion and its influence on time pattern and redistribution of myocardial blood flow in patients receiving disease-modifying agents and statins. Some regularities of change of myocardial blood flow depending on applied group of drugs and peculiarities of influence of myocardial perfusion in certain time interval were revealed. Criteria with prognostic significance in prospective individual effectiveness of anti-ischemic drugs were pointed out. New approach, based on choice of anti-ischemic therapy depending on extent of influence on myocardial perfusion and also individual clinical and functional traits of patients, was applied. PMID:23213770

  15. The role of the renin-angiotensin system in the development of insulin resistance in skeletal muscle.

    PubMed

    Henriksen, Erik J; Prasannarong, Mujalin

    2013-09-25

    The canonical renin-angiotensin system (RAS) involves the initial action of renin to cleave angiotensinogen to angiotensin I (ANG I), which is then converted to ANG II by the angiotensin converting enzyme (ACE). ANG II plays a critical role in numerous physiological functions, and RAS overactivity underlies many conditions of cardiovascular dysregulation. In addition, ANG II, by acting on both endothelial and myocellular AT1 receptors, can induce insulin resistance by increasing cellular oxidative stress, leading to impaired insulin signaling and insulin-stimulated glucose transport activity. This insulin resistance associated with RAS overactivity, when coupled with progressive ß-cell dysfunction, eventually leads to the development of type 2 diabetes. Interventions that target RAS overactivity, including ACE inhibitors, ANG II receptor blockers, and, most recently, renin inhibitors, are effective both in reducing hypertension and in improving whole-body and skeletal muscle insulin action, due at least in part to enhanced Akt-dependent insulin signaling and insulin-dependent glucose transport activity. ANG-(1-7), which is produced from ANG II by the action of ACE2 and acts via Mas receptors, can counterbalance the deleterious actions of the ACE/ANG II/AT1 receptor axis on the insulin-dependent glucose transport system in skeletal muscle. This beneficial effect of the ACE2/ANG-(1-7)/Mas receptor axis appears to depend on the activation of Akt. Collectively, these findings underscore the importance of RAS overactivity in the multifactorial etiology of insulin resistance in skeletal muscle, and provide support for interventions that target the RAS to ameliorate both cardiovascular dysfunctions and insulin resistance in skeletal muscle tissue.

  16. Biochemical Markers of Myocardial Damage

    PubMed Central

    2016-01-01

    Heart diseases, especially coronary artery diseases (CAD), are the leading causes of morbidity and mortality in developed countries. Effective therapy is available to ensure patient survival and to prevent long term sequelae after an acute ischemic event caused by CAD, but appropriate therapy requires rapid and accurate diagnosis. Research into the pathology of CAD have demonstrated the usefulness of measuring concentrations of chemicals released from the injured cardiac muscle can aid the diagnosis of diseases caused by myocardial ischemia. Since the mid-1950s successively better biochemical markers have been described in research publications and applied for the clinical diagnosis of acute ischemic myocardial injury. Aspartate aminotransferase of the 1950s was replaced by other cytosolic enzymes such as lactate dehydrogenase, creatine kinase and their isoenzymes that exhibited better cardiac specificity. With the availability of immunoassays, other muscle proteins, that had no enzymatic activity, were also added to the diagnostic arsenal but their limited tissue specificity and sensitivity lead to suboptimal diagnostic performance. After the discovery that cardiac troponins I and T have the desired specificity, they have replaced the cytosolic enzymes in the role of diagnosing myocardial ischemia and infarction. The use of the troponins provided new knowledge that led to revision and redefinition of ischemic myocardial injury as well as the introduction of biochemicals for estimation of the probability of future ischemic myocardial events. These markers, known as cardiac risk markers, evolved from the diagnostic markers such as CK-MB or troponins, but markers of inflammation also belong to these groups of diagnostic chemicals. This review article presents a brief summary of the most significant developments in the field of biochemical markers of cardiac injury and summarizes the most recent significant recommendations regarding the use of the cardiac markers in

  17. Myocardial disarray. A critical review.

    PubMed Central

    Becker, A E; Caruso, G

    1982-01-01

    Myocardial disarray or disorganisation is at present a contentious topic, not least because its value as a clinical marker for hypertrophic cardiomyopathy has changed considerably over the years. Initially observed as one of the features of asymmetric septal hypertrophy, disarray has since been promoted as its pathognomonic histological feature, regarded by some observers as the morphological manifestation of a genetically transmitted myocardial defect. Recently, however, it has become evident that myocardial disarray is not limited to hypertrophic cardiomyopathy, but is encountered in hearts with both congenital and acquired conditions, and is also observed in normal hearts. The specificity of disarray for hypertrophic cardiomyopathy is thus seriously questioned. Latterly, it has been suggested that disarray, judged from through-and-through sections of the ventricular midseptum is a highly specific and sensitive marker of hypertrophic cardiomyopathy when considered in quantitative rather than qualitative fashion. The present study sets out to answer the question whether disarray could be the histological expression of the normal but intricate fibre architecture of the heart, a consideration also initiated by debatable definitions of normality and abnormality of myocardial histology. Gross fibre dissections in five normal hearts showed that many sites occurred in which disarray was a natural phenomenon. In five more hearts it was found that the plane of section of a tissue block might profoundly influence the histology. In fact, tissue cubicles sampled from different faces showed a change in histology in the vast majority. Thus the diagnostic significance of myocardial disarray as a marker of hypertrophic cardiomyopathy in the clinical setting almost vanishes; a change in orientation of a tissue section may actually turn "normality" into "disarray". Images PMID:7044398

  18. Biochemical Markers of Myocardial Damage.

    PubMed

    Bodor, Geza S

    2016-04-01

    Heart diseases, especially coronary artery diseases (CAD), are the leading causes of morbidity and mortality in developed countries. Effective therapy is available to ensure patient survival and to prevent long term sequelae after an acute ischemic event caused by CAD, but appropriate therapy requires rapid and accurate diagnosis. Research into the pathology of CAD have demonstrated the usefulness of measuring concentrations of chemicals released from the injured cardiac muscle can aid the diagnosis of diseases caused by myocardial ischemia. Since the mid-1950s successively better biochemical markers have been described in research publications and applied for the clinical diagnosis of acute ischemic myocardial injury. Aspartate aminotransferase of the 1950s was replaced by other cytosolic enzymes such as lactate dehydrogenase, creatine kinase and their isoenzymes that exhibited better cardiac specificity. With the availability of immunoassays, other muscle proteins, that had no enzymatic activity, were also added to the diagnostic arsenal but their limited tissue specificity and sensitivity lead to suboptimal diagnostic performance. After the discovery that cardiac troponins I and T have the desired specificity, they have replaced the cytosolic enzymes in the role of diagnosing myocardial ischemia and infarction. The use of the troponins provided new knowledge that led to revision and redefinition of ischemic myocardial injury as well as the introduction of biochemicals for estimation of the probability of future ischemic myocardial events. These markers, known as cardiac risk markers, evolved from the diagnostic markers such as CK-MB or troponins, but markers of inflammation also belong to these groups of diagnostic chemicals. This review article presents a brief summary of the most significant developments in the field of biochemical markers of cardiac injury and summarizes the most recent significant recommendations regarding the use of the cardiac markers in

  19. The combination of amlodipine and angiotensin receptor blocker or diuretics in high-risk hypertensive patients: rationale, design and baseline characteristics

    PubMed Central

    Wang, W; Ma, L; Zhang, Y; Deng, Q; Liu, M; Liu, L

    2011-01-01

    The Chinese Hypertension Intervention Efficacy Study (CHIEF) is a multi-centre randomized controlled clinical trial comparing the effects of amlodipine+angiotensin II receptor blocker and amlodipine+diuretics on the incidence of cardiovascular events, represented as a composite of non-fatal stroke, non-fatal myocardial infarction and cardiovascular death events in high-risk Chinese hypertensive patients. The study also evaluates the long-term effects of lipid-lowering treatment and lifestyle modification. From October 2007 to October 2008, 13 542 patients were enrolled into the study in 180 centres in China. Patients will be followed up for 4 years. There was no difference in baseline characteristics between the two blood pressure arms. PMID:20445570

  20. Optimal antagonism of the Renin-Angiotensin-aldosterone system: do we need dual or triple therapy?

    PubMed

    Werner, Christian; Pöss, Janine; Böhm, Michael

    2010-07-01

    The cardiovascular and cardiorenal disease continuum comprises the transition from cardiovascular risk factors to endothelial dysfunction and atherosclerosis, to clinical complications such as myocardial infarction (MI) and stroke, to the development of persistent target-organ damage and, ultimately, to chronic congestive heart failure (CHF), end-stage renal disease or premature death. The renin-angiotensin-aldosterone system (RAAS) is involved in all steps along this pathway, and RAAS blockade with ACE inhibitors or angiotensin AT(1)-receptor antagonists (angiotensin receptor blockers; ARBs) has turned out to be beneficial for patient outcomes throughout the disease continuum. Both ACE inhibitors and ARBs can prevent or reverse endothelial dysfunction and atherosclerosis, thereby reducing the risk of cardiovascular events. These drugs have further been shown to reduce end-organ damage in the heart, kidneys and brain. Aldosterone antagonists such as spironolactone and eplerenone are increasingly recognized as a third class of RAAS inhibitor with potent risk-reducing properties, especially but not solely with respect to the inhibition of cardiac remodelling and the possible prevention of heart failure. In secondary prevention, head-to-head comparisons of ACE inhibitors and ARBs, such as the recent ONTARGET study, provided evidence that, in addition to better tolerability, ARBs are non-inferior to ACE inhibitors in the prevention of clinical endpoints such as MI and stroke in cardiovascular high-risk patients. However, the combination of both ramipril and telmisartan at the maximally tolerated dosage achieved no further benefits and was associated with more adverse events such as symptomatic hypotension and renal dysfunction. In acute MI complicated by heart failure, the VALIANT trial has shown similar effects of ACE inhibition with captopril and ARB treatment with valsartan, but dual RAAS blockade did not further reduce events. In CHF, meta-analyses of RESOLVD, Val

  1. Coronary microvascular obstruction in acute myocardial infarction.

    PubMed

    Niccoli, Giampaolo; Scalone, Giancarla; Lerman, Amir; Crea, Filippo

    2016-04-01

    The success of a primary percutaneous intervention (PCI) in the setting of ST elevation myocardial infarction depends on the functional and structural integrity of coronary microcirculation. Coronary microvascular dysfunction and obstruction (CMVO) occurs in up to half of patients submitted to apparently successful primary PCI and is associated to a much worse outcome. The current review summarizes the complex mechanisms responsible for CMVO, including pre-existing coronary microvascular dysfunction, and highlights the current limitations in the assessment of microvascular function. More importantly, at the light of the substantial failure of trials hitherto published on the treatment of CMVO, this review proposes a novel integrated therapeutic approach, which should overcome the limitations of previous studies.

  2. Blood pressure, magnesium and other mineral balance in two rat models of salt-sensitive, induced hypertension: effects of a non-peptide angiotensin II receptor type 1 antagonist.

    PubMed

    Rondón, Lusliany Josefina; Marcano, Eunice; Rodríguez, Fátima; del Castillo, Jesús Rafael

    2014-01-01

    The renin-angiotensin system is critically involved in regulating arterial blood pressure (BP). Inappropriate angiotensin type-1 receptor activation by angiotensin-II (Ang-II) is related to increased arterial BP. Mg has a role in BP; it can affect cardiac electrical activity, myocardial contractility, and vascular tone. To evaluate the relationship between high BP induced by a high sodium (Na) diet and Mg, and other mineral balances, two experimental rat models of salt-sensitive, induced-hypertension were used: Ang-II infused and Dahl salt-sensitive (SS) rats. We found that: 1) Ang-II infusion progressively increased BP, which was accompanied by hypomagnesuria and signs of secondary hyperaldosteronism; 2) an additive effect between Ang-II and a high Na load may have an effect on strontium (Sr), zinc (Zn) and copper (Cu) balances; 3) Dahl SS rats fed a high Na diet had a slow pressor response, accompanied by altered Mg, Na, potassium (K), and phosphate (P) balances; and 4) losartan prevented BP increases induced by Ang II-NaCl, but did not modify mineral balances. In Dahl SS rats, losartan attenuated high BP and ameliorated magnesemia, Na and K balances. Mg metabolism maybe considered a possible defect in this strain of rat that may contribute to hypertension.

  3. Is angiotensin-converting enzyme inhibitors/angiotensin receptor blockers therapy protective against prostate cancer?

    PubMed Central

    Mao, Yeqing; Xu, Xin; Wang, Xiao; Zheng, Xiangyi; Xie, Liping

    2016-01-01

    Emerging evidence suggests that renin-angiotensin system (RAS) may act as a molecular and therapeutic target for treating site-specific cancers, including prostate cancer. However, previous observational studies regarding the association between RAS inhibitors and prostate cancer risk have reported inconsistent results. We examined this association by performing a systematic review and meta-analysis. A total of 20,267 patients from nine cohort studies were enrolled. Compared with non-users of RAS inhibitors, individuals using RAS inhibitors had a reduced risk of prostate cancer (RR 0.92, 95 % CI 0.87-0.98), without statistically significant heterogeneity among studies (P = 0.118 for heterogeneity, I2 = 37.6 %). In addition, when subgroup analyses by study quality and number of cases, more statistically significant associations were observed in studies of high quality (RR 0.93, 95 % CI 0.88-0.97) and large sample size (RR 0.94, 95 % CI 0.91-0.98). There was no evidence of significant publication bias with Begg's test (P = 0.602) or with Egger's test (P = 0.350). Overall, this study indicates that use of RAS inhibitors may be associated with a decreased risk of prostate cancer. Large-scale well designed studies are needed to further explore this association. PMID:26760503

  4. Participation of angiotensin II in learning and memory. II. Interactions of angiotensin II with dopaminergic drugs.

    PubMed

    Yonkov, D I; Georgiev, V P; Opitz, M J

    1986-04-01

    The effect of angiotensin II (ATII) and of its interactions with dopaminergic drugs injected post-trial on retention in active avoidance tasks in shuttle-box-trained rats were studied. ATII at doses of 0.10 and 0.50 micrograms administered intracerebroventricularly (i.c.v.) immediately after training improved retention. The dopaminergic receptor agonist apomorphine at a dose of 0.10 mg/kg injected intraperitoneally (i.p.) facilitated retention whereas elymoclavine (a dopaminergic agonist) at a dose of 2.5 mg/kg i.p. had no effect. ATII at a dose of 0.10 micrograms i.c.v. administered after apomorphine 0.10 mg/kg or elymoclavine 2.5 mg/kg exerted a stronger retention-facilitating effect. The dopaminergic receptor antagonist haloperidol at a dose of 1 mg/kg i.p. markedly impaired retention. ATII at a dose of 0.50 micrograms administered after haloperidol (1 mg/kg) did not exercise its retention-facilitating effect. It is concluded that the retention facilitating effects of ATII are realized through interactions with brain dopaminergic transmission.

  5. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation.

    PubMed

    Xue, Baojian; Yu, Yang; Zhang, Zhongming; Guo, Fang; Beltz, Terry G; Thunhorst, Robert L; Felder, Robert B; Johnson, Alan Kim

    2016-05-01

    Obesity is characterized by increased circulating levels of the adipocyte-derived hormone leptin, which can increase sympathetic nerve activity and raise blood pressure. A previous study revealed that rats fed a high-fat diet (HFD) have an enhanced hypertensive response to subsequent angiotensin II administration that is mediated at least, in part, by increased activity of brain renin-angiotensin system and proinflammatory cytokines. This study tested whether leptin mediates this HFD-induced sensitization of angiotensin II-elicited hypertension by interacting with brain renin-angiotensin system and proinflammatory cytokine mechanisms. Rats fed an HFD for 3 weeks had significant increases in white adipose tissue mass, plasma leptin levels, and mRNA expression of leptin and its receptors in the lamina terminalis and hypothalamic paraventricular nucleus. Central infusion of a leptin receptor antagonist during HFD feeding abolished HFD sensitization of angiotensin II-elicited hypertension. Furthermore, central infusion of leptin mimicked the sensitizing action of HFD. Concomitant central infusions of the angiotensin II type 1 receptor antagonist irbesartan, the tumor necrosis factor-α synthesis inhibitor pentoxifylline, or the inhibitor of microglial activation minocycline prevented the sensitization produced by central infusion of leptin. RT-PCR analysis indicated that either HFD or leptin administration upregulated mRNA expression of several components of the renin-angiotensin system and proinflammatory cytokines in the lamina terminalis and paraventricular nucleus. The leptin antagonist and the inhibitors of angiotensin II type 1 receptor, tumor necrosis factor-α synthesis, and microglial activation all reversed the expression of these genes. The results suggest that HFD-induced sensitization of angiotensin II-elicited hypertension is mediated by leptin through upregulation of central renin-angiotensin system and proinflammatory cytokines.

  6. Inhibition of the renin-angiotensin system for lowering coronary artery disease risk.

    PubMed

    Sheppard, Richard J; Schiffrin, Ernesto L

    2013-04-01

    The renin-angiotensin system when activated exerts proliferative and pro-inflammatory actions and thereby contributes to progression of atherosclerosis, including that occurring in the coronary arteries. It thus contributes as well to coronary artery disease (CAD). Several clinical trials have examined effects of renin-angiotensin system inhibition for primary and secondary prevention of coronary heart disease. These include important trials such as HOPE, EUROPA and PEACE using angiotensin converting enzyme inhibitors, VALIANT, OPTIMAAL and TRANSCEND using angiotensin receptor blockers, and the ongoing TOPCAT study in patients with preserved ejection fraction heart failure, many of who also have coronary artery disease. Data are unavailable as yet of effects of either direct renin inhibitors or the new angiotensin receptor/neprilysin inhibitor agents. Today, inhibition of the renin-angiotensin system is standard-of-care therapy for lowering cardiovascular risk in secondary prevention in high cardiovascular risk subjects. PMID:23523606

  7. Myocardial viability in patients with chronic coronary artery disease and previous myocardial infarction: comparison of myocardial contrast echocardiography and myocardial perfusion scintigraphy.

    PubMed

    Vernon, S; Kaul, S; Powers, E R; Camarano, G; Gimple, L W; Ragosta, M

    1997-11-01

    The aim of this study was to compare perfusion patterns on myocardial contrast echocardiography with those on myocardial perfusion scintigraphy for the assessment of myocardial viability in patients with previous myocardial infarction. Accordingly, perfusion scores with the two techniques were compared in 91 ventricular regions in 21 patients with previous (>6 weeks old) myocardial infarction. Complete concordance between the two techniques was found in 63 (69%) regions; 25 (27%) regions were discordant by only 1 grade, and complete discordance (2 grades) was found in only 3 (3%) regions. A kappa statistic of 0.65 indicated good concordance between the two techniques. Although the scores on both techniques demonstrated a relation with the wall motion score, the correlation between the myocardial contrast echocardiography and wall motion scores was closer (r = -0.63 vs r = -0.50, p = 0.05). It is concluded that myocardial contrast echocardiography provides similar information regarding myocardial viability as myocardial perfusion scintigraphy in patients with coronary artery disease and previous myocardial infarction.

  8. Upregulation of M3 muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II

    PubMed Central

    2013-01-01

    Background M3 muscarinic acetylcholine receptor (M3-mAChR) is stably expressed in the myocardium, but its pathophysiological role remains largely undefined. This study aimed to investigate the role of M3-mAChR in cardiac hypertrophy induced by angiotensin II (Ang II) and elucidate the underlying mechanisms. Methods Cardiac-specific M3-mAChR overexpression transgenic (TG) mice and rat H9c2 cardiomyoblasts with ectopic expression of M3-mAChR were established. Models of cardiac hypertrophy were induced by transverse aortic constriction (TAC) or Ang II infusion in the mice in vivo, and by isoproterenol (ISO) or Ang II treatment of H9c2 cells in vitro. Cardiac hypertrophy was evaluated by electrocardiography (ECG) measurement, hemodynamic measurement and histological analysis. mRNA and protein expression were detected by real-time RT-PCR and Western blot analysis. Results M3-mAChR was upregulated in hypertrophic heart, while M2-mAChR expression did not change significantly. M3-mAChR overexpression significantly attenuated the increased expression of atrial natriuretic peptide and β-myosin heavy chain induced by Ang II both in vivo and in vitro. In addition, M3-mAChR overexpression downregulated AT1 receptor expression and inhibited the activation of MAPK signaling in the heart. Conclusion The upregulation of M3-mAChR during myocardial hypertrophy could relieve the hypertrophic response provoked by Ang II, and the mechanism may involve the inhibition of MAPK signaling through the downregulation of AT1 receptor. PMID:24028210

  9. Data of the natural and pharmaceutical angiotensin-converting enzyme inhibitor isoleucine-tryptophan as a potent blocker of matrix metalloproteinase-2 expression in rat aorta.

    PubMed

    Kopaliani, Irakli; Martin, Melanie; Zatschler, Birgit; Müller, Bianca; Deussen, Andreas

    2016-09-01

    The present data are related to the research article entitled "Whey peptide isoleucine-tryptophan inhibits expression and activity of matrix metalloproteinase-2 in rat aorta" [1]. Here we present data on removal of endothelium from aorta, endothelium dependent aortic relaxation and inhibition of expression of pro-MMP2 by di-peptide isoleucine-tryptophan (IW). Experiments were performed in rat aortic endothelial cells (EC) and smooth muscle cells (SMC) in vitro, along with isolated rat aorta ex vivo. The cells and isolated aorta were stimulated with angiotensin II (ANGII) or angiotensin I (ANGI). ACE activity was inhibited by treatment with either IW or captopril (CA). Losartan was used as a blocker of angiotensin type-1 receptor. IW inhibited MMP2 protein expression induced with ANGI in a dose-dependent manner. IW was effective both in ECs and SMCs, as well as in isolated aorta. Similarly, captopril (CA) inhibited ANGI-induced MMP2 protein expression in both in vitro and ex vivo. Neither IW nor CA inhibited ANGII-induced MMP2 protein expression in contrast to losartan. The data also displays that removal of endothelium in isolated rat aorta abolished the endothelium-dependent relaxation induced with acetylcholine. However, SMC-dependent relaxation induced with sodium nitroprusside remained intact. Finally, the data provides histological evidence of selective removal of endothelial cells from aorta. PMID:27508250

  10. Chasing myocardial outcomes: perioperative myocardial infarction and cardiac troponin.

    PubMed

    Royo, Marc B; Fleisher, Lee A

    2016-02-01

    Perioperative myocardial infarction represents the most common cardiovascular complication following non-cardiac surgery, but frequently presents without the usual clinical signs and symptoms consistent with acute coronary syndrome. Given the silent nature of this event, a clinician's reliance on risk stratification tools and cardiac specific biomarkers to assist in the identification of at-risk individuals is heightened in the perioperative setting. Although cardiac troponin elevations following non-cardiac surgery have been consistently linked to increased mortality, uncertainty remains over how to clinically intervene to prevent harm. This decision is further complicated by the increasing sensitivity of the newest generation of cardiac biomarker immunoassays. In this narrative review, the growing body of evidence surrounding cardiac troponin elevations in the perioperative setting, how the evidence has been integrated into recent clinical practice guidelines, and its implications for the detection of perioperative myocardial infarction are discussed. PMID:26634279

  11. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    PubMed

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations.

  12. Parametric methods for characterizing myocardial tissue by magnetic resonance imaging (part 2): T2 mapping.

    PubMed

    Perea Palazón, R J; Solé Arqués, M; Prat González, S; de Caralt Robira, T M; Cibeira López, M T; Ortiz Pérez, J T

    2015-01-01

    Cardiac magnetic resonance imaging is considered the reference technique for characterizing myocardial tissue; for example, T2-weighted sequences make it possible to evaluate areas of edema or myocardial inflammation. However, traditional sequences have many limitations and provide only qualitative information. Moreover, traditional sequences depend on the reference to remote myocardium or skeletal muscle, which limits their ability to detect and quantify diffuse myocardial damage. Recently developed magnetic resonance myocardial mapping techniques enable quantitative assessment of parameters indicative of edema. These techniques have proven better than traditional sequences both in acute cardiomyopathy and in acute ischemic heart disease. This article synthesizes current developments in T2 mapping as well as their clinical applications and limitations. PMID:26315259

  13. Role of renin angiotensin system inhibitors in cardiovascular and renal protection: a lesson from clinical trials.

    PubMed

    Stojiljkovic, Ljuba; Behnia, Rahim

    2007-01-01

    Beneficial effects of angiotensin converting enzyme inhibitors (ACEI) and angiotensin type 1 receptor (AT1) blockers in patients with cardiovascular and renal diseases have been clearly demonstrated in numerous large outcomes studies. In patients with heart failure (HF), ACEI have been shown to reduce overall mortality, mortality from cardiovascular causes, to increase life expectancy, as well as to preserve the renal function (CONSENSUS, SAVE, TRACE, AIRE, AIREX, CATS trials). In addition, in the PROGRESS study ACEI substantially decreased the risk of stroke and transient ischemic attacks in patients with cerebrovascular disorders. The HOPE and EUROPA studies confirmed that long term therapy with ACEI provides significant survival benefit in patients with broad range of atherosclerotic cardiovascular diseases. After these large and well designed clinical studies, ACEI have become standard therapy for routine secondary prevention in all patients with cardiovascular diseases, unless contraindicated. AT1 receptor blockers have been recently added to the cardiovascular therapeutic armamentarium. They are believed to provide additional protection by inhibition of locally synthesized angiotensin II on the level of AT1 receptor. The ELITE II, ValHeFT and CHARM studies have shown that AT1 receptor blockers are equally effective as ACEI in reduction of mortality and morbidity in patients with HF. Importantly, they may be used together with ACEI, or as alternative treatment in ACEI intolerant patients. Renal protection is another important effect of both ACEI and AT1 blockers that has been confirmed in several large clinical trials. The North American Microalbuminemia Study group and EUCLID group demonstrated significant reduction in progression of diabetic nephropathy in patients with insulin dependent diabetes mellitus (IDDM) treated with ACEI. AT1 receptor blockers are mainly studied in the non-insulin dependent diabetes mellitus (NIDDM) nephropathy. Four recent clinical

  14. Myocardial steatosis and necrosis in atria and ventricles of rats given pyruvate dehydrogenase kinase inhibitors.

    PubMed

    Jones, Huw Bowen; Reens, Jaimini; Johnson, Elizabeth; Brocklehurst, Simon; Slater, Ian

    2014-12-01

    Pharmaceutical therapies for non-insulin-dependent diabetes mellitus (NIDDM) include plasma glucose lowering by enhancing glucose utilization. The mitochondrial pyruvate dehydrogenase (PDH) complex is important in controlling the balance between glucose and fatty acid substrate oxidation. Administration of pyruvate dehydrogenase kinase inhibitors (PDHKIs) to rats effectively lowers plasma glucose but results in myocardial steatosis that in some instances is associated primarily with atrial and to a lesser degree with ventricular pathology. Induction of myocardial steatosis is not dose-dependent, varies from minimal to moderate severity, and is either of multifocal or diffuse distribution. Ventricular histopathology was restricted to few myocardial degenerative fibers, while that in the atrium/atria was of either acute or chronic appearance with the former showing myocardial degeneration/necrosis, acute myocarditis, edema, endothelial activation (rounding up), endocarditis, and thrombosis associated with moderate myocardial steatosis and the latter with myocardial loss, replacement fibrosis, and no apparent or minimal association with steatosis. The evidence from these evaluations indicate that excessive intramyocardial accumulation of lipid may be either primarily adverse or represents an indicator of other adversely affected cellular processes.

  15. [Renin-angiotensin system under extracorporeal circulation during heart valve surgery].

    PubMed

    Heck, I; Hack, G; Wickenhöfer, R

    1983-08-01

    Angiotensin I (A I), angiotensin II (A II) and the activity of angiotensin-converting enzyme (ACE) were measured in 15 patients undergoing cardiopulmonary bypass for mitral or aortic valve replacement. During cardiopulmonary bypass A I, A II, A I/II ratio and arteriovenous A II--difference decreased markedly, whereas the activity of ACE fell only during a small 15 min period after start of extracorporeal circulation. Possible reasons for these effects are discussed.

  16. A specific binding site recognizing a fragment of angiotensin II in bovine adrenal cortex membranes.

    PubMed

    Bernier, S G; Fournier, A; Guillemette, G

    1994-12-12

    We have characterized a specific binding site for angiotensin IV in bovine adrenal cortex membranes. Pseudo-equilibrium studies at 37 degrees C for 2 h have shown that this binding site recognizes angiotensin IV with a high affinity (Kd = 0.24 +/- 0.03 nM). The binding site is saturable and relatively abundant (maximal binding capacity around 0.5 pmol/mg protein). Non-equilibrium kinetic analyses at 37 degrees C revealed a calculated kinetic Kd of 47 pM. The binding site is pharmacologically distinct from the classic angiotensin receptors AT1 or AT2. Competitive binding studies with bovine adrenal cortex membranes demonstrated the following rank order of effectiveness: angiotensin IV (Val-Tyr-Ile-His-Pro-Phe) = angiotensin II-(3-7) (Val-Tyr-Ile-His-Pro) > angiotensin III (Arg-Val-Tyr-Ile-His-Pro-Phe) > or = angiotensin II-(4-7) (Tyr-Ile-His-Pro) > angiotensin II (Asp-Arg-Val-Tyr-Ile-His-Pro-Phe) > angiotensin II-(1-6) (Asp-Arg-Val-Tyr-Ile-His) > angiotensin II-(4-8) (Tyr-Ile-His-Pro-Phe) > > > angiotensin II-(3-6) (Val-Tyr-Ile-His), angiotensin II-(4-6) (Tyr-Ile-His), L-158,809 (5,7-dimethyl-2-ethyl-3-[(2'(1-H-tetrazol-5-yl)[1,1'-biphenyl]-4-y l) methyl]-3-H-imidazo[4,5-beta]pyridine H2O) and PD 123319 (1-[4-(dimethylamino)3-methylphenyl]methyl-5-(diphenylacetyl)4,5,6 ,7- tetrahydro-1H-imidazo[4,5-c]pyridine-6-carboxylic acid). The divalent cations Mg2+ and Ca2+ were shown to diminish the binding of 125I-angiotensioffn IV to bovine adrenal cortex membranes.(ABSTRACT TRUNCATED AT 250 WORDS)

  17. The importance of the renin-angiotensin system in normal cardiovascular homeostasis

    NASA Technical Reports Server (NTRS)

    Haber, E.

    1975-01-01

    Studies were carried out on adult mongrel dogs (20 to 30 kilograms) to investigate the importance of the renin-angiotensin system. Results indicate that the renin-angiotensin system plays a major role in the maintenance of circulatory homeostasis when extracellular fluid volume is depleted. It was also found that angiotensin II concentration, in addition to renal perfusion pressure, is a factor in the regulation of renin release.

  18. Des-aspartate-angiotensin I attenuates ICAM-1 formation in hydrogen peroxide-treated L6 skeletal muscle cells and soleus muscle of mice subjected to eccentric exercise.

    PubMed

    Sim, Meng-Kwoon; Wong, Yong-Chiat; Xu, Xiao-Guang; Loke, Weng-Keong

    2014-01-10

    L6 skeletal muscle cells overexpressed ICAM-1 when treated with H2O2. Maximum effect was observed at 200 μM H2O2. Des-aspartate-angiotensin I (DAA-I) concentration-dependently attenuated the overexpression. Maximum attenuation occurred at 10(-10) M DAA-I. H2O2 activated NFκB and its translocation into the nucleus of L6 muscle cells suggesting that NFκB mediates the H2O2-induced overexpression of ICAM-1. DAA-I inhibited the activation and translocation of NFκB. H2O2 is a major oxidant formed during skeletal muscle contraction and is implicated in oxidative stress and skeletal muscle damage in excessive unaccustomed exercise. The data show that DAA-I has antioxidant action, and its action was further investigated in the soleus muscle of mice subjected to 240 min of eccentric exercise on a rodent treadmill. The eccentric exercise induced superoxide formation and overexpression of ICAM-1 in the soleus muscle of the mice at 3 days post exercise. DAA-I (0.2 nmole/kg/day) administered orally on day 1 (pre-exercise) and 2 days post-exercise attenuated both the ROS formation and ICAM-1 overexpression. Earlier studies show that DAA-I acts as an agonist on the angiotensin AT1 receptor and elicits responses opposing those of angiotensin II. The present and earlier findings support the recent suggestion that angiotensin II is involved in skeletal muscle damage, and curtailment of its actions via ACE inhibitors and losartan protects and improves skeletal muscle damage. These findings open up new avenues for treatment and management of skeletal muscle damage via the interventions of the renin angiotensin system.

  19. Differential brain angiotensin-II type I receptor expression in hypertensive rats.

    PubMed

    Braga, Valdir A

    2011-09-01

    Blood-borne angiotensin-II (Ang-II) has profound effects in the brain. We tested the hypothesis that Ang-II-dependent hypertension involves differential Ang-II type I (AT(1)) receptors expression in the subfornical organ (SFO) and the rostral ventrolateral medulla (RVLM). Male Wistar rats were implanted with 14-day osmotic minipump filled with Ang-II (150 ng/kg/min) or saline. AT(1) receptor mRNA levels were detected in the SFO and RVLM by reverse transcription-polymerase chain reaction (RT-PCR). Ang-II caused hypertension (134 ± 10 mmHg vs. 98 ± 9 mmHg, n = 9, p < 0.05). RT-PCR revealed that Ang-II infusion induced increased AT(1) receptor mRNA levels in RVLM and decreased in SFO. Our data suggest that Ang-II-induced hypertension involves differential expression of brain AT(1) receptors. PMID:21897104

  20. Angiotensin I converting enzyme activity in rabbit corneal endothelial cells.

    PubMed

    Neels, H M; Vanden Berghe, D A; Neetens, A J; Delgadillo, R A; Scharpe, S L

    1983-01-01

    Angiotensin I converting enzyme (ACE) was studied in Vero cells, rabbit corneal fibroblasts, and rabbit corneal endothelial cells. The enzyme activity was determined by means of an assay employing hippuryl-glycyl-glycine as a substrate. The hippuric acid end product was separated from the substrate by reversed phase liquid chromatography and measured spectrophotometrically at 228 nm. The enzyme was further characterized by a captopril inhibition study. Significant ACE activity was found in rabbit corneal endothelial cells but not in other types of cells tested. This is the first report of the presence of this enzyme in a specific ocular cell type and suggests that angiotensin II may play a role in normal ocular physiology.

  1. [Arteriosclerosis obliterans. Treatment with angiotensin-converting enzyme inhibitors].

    PubMed

    Orea, A; Valdés, R; Niebla, L; Rivas, R; Camacho, B

    1990-01-01

    We compare the effects of two of the main angiotensin convertase enzyme inhibitors, captopril and enalapril, aiming to evaluate their effects in the arterial circulation performance, micro-circulation, and changes in regional blood flow, assuming their property of lowering the angiotensin II blood levels, a very strong peripheral vasoconstrictor. We studied 22 patients: all of them with hypertension and/or skin ulcerations, dropping out those who had venous. They were evaluated periodically, clinically and with photoelectric plethysmography of lower extremities. To interpret the traces we designed an ideogram which gathered the plethysmographic behavior before and after the treatment. Nearly 80% showed considerable improvement in pain, functional capacity and plethysmographic traces patterns. healing of the ulcerations was achieved in all case. We propose some hypothesis to explain the good effect that we have observed.

  2. The Renin Angiotensin System and the Metabolic Syndrome

    PubMed Central

    de Kloet, Annette D.; Krause, Eric G.; Woods, Stephen C.

    2010-01-01

    The renin angiotensin system (RAS; most well-known for its critical roles in the regulation of cardiovascular function and hydromineral balance) has regained the spotlight for its potential roles in various aspects of the metabolic syndrome. It may serve as a causal link among obesity and several co-morbidities. Drugs that reduce the synthesis or action of angiotensin-II (A-II; the primary effector peptide of the RAS) have been used to treat hypertension for decades and, more recently, clinical trials have determined the utility of these pharmacological agents to prevent insulin resistance. Moreover, there is evidence that the RAS contributes to body weight regulation by acting in various tissues. This review summarizes what is known of the actions of the RAS in the brain and throughout the body to influence various metabolic disorders. Special emphasis is given to the role of the RAS in body weight regulation. PMID:20381510

  3. Automated determination of angiotensin-converting enzyme in serum.

    PubMed

    Peters, R H; Golbach, A J; van den Bergh, F A

    1987-07-01

    This is an adaptation of the Fujirebio "ACEcolor" kit for automated measurement of angiotensin-converting enzyme (EC 3.4.15.1) in serum with the Cobas Fara centrifugal analyzer. The linear range extends to an activity of 110 U/L. Results obtained by the present method and by the manual method were identical, and correlated closely (r = 0.983) with those by Cushman's modified method. The reference interval for 77 adult blood-bank donors was 9-25 U/L (mean 17, SD 4 U/L). Within-run and between-run CVs are 1.7 and 4.0%, respectively. The present method permits rapid, precise, and economical measurement of the enzyme and allows users of a Cobas Fara centrifugal analyzer to introduce a fully automated assay for angiotensin-converting enzyme into their clinical laboratory.

  4. A metabolite of aspartame inhibits angiotensin converting enzyme.

    PubMed

    Grobelny, D; Galardy, R E

    1985-04-30

    Aspartame (L-aspartyl-L-phenylalanine methyl ester, is a widely used artificIal sweetener. In humans and other animals aspartame is initially hydrolyzed to L-aspartyl-L-phenylalanine by intestinal esterases. L-Aspartyl-L-phenylalanine inhibits angiotensin converting enzyme purified from rabbit lungs with a Ki of 11 +/- 2 microM, equipotent to the IC50 of 12 microM for 2-D-methyl-succinyl-L-proline which has been reported to be an orally active antihypertensive agent in rats. Thus the possibility exists that L-aspartyl-L-phenylalanine inhibits angiotensin converting enzyme in humans consuming large quantities of aspartame. Both aspartame itself and the diketopiperazine formed from it, 3-carboxymethyl-6-benzyl-2,5-diketopiperazine, are weak inhibitors with Ki's greater than 1 mM.

  5. [Left-ventricular function and physical exertion tolerance in patients with myocardial infarction with isolated lesion of the coronary arteries].

    PubMed

    Golikov, A P; Levshunov, S P; Belozerov, G E

    1989-01-01

    Myocardial infarction area and left-ventricular myocardial contractility, determined by sectoral scanning, and exercise tolerance were assessed in 47 myocardial infarction patients with isolated coronary arterial lesions. The area under myocardial infarction was shown to be dependent on the site of the atherosclerotic process rather than the degree of stenosis in patients with isolated coronary arterial lesions. A relationship was established between the incidence of complications developing in the acute phase of infarction and the degree of stenosis. The disease was complicated more frequently in patients with coronary arterial occlusion as compared to those with severe coronary-arterial stenosis. High stress tolerance, irrespective of the site of myocardial infarction, is an evidence of great functional potentials in this category of patients.

  6. Angiotensin II prevents hypoxic pulmonary hypertension and vascular changes in rat

    SciTech Connect

    Rabinovitch, M.; Mullen, M.; Rosenberg, H.C.; Maruyama, K.; O'Brodovich, H.; Olley, P.M. )

    1988-03-01

    Angiotensin II, a vasoconstrictor, has been previously demonstrated to produce a secondary vasodilatation due to release of prostaglandins. Because of this effect, the authors investigated whether infusion of exogenous angiotensin II via miniosmopumps in rats during a 1-wk exposure to chronic hypobaric hypoxia might prevent pulmonary hypertension, right ventricular hypertrophy, and vascular changes. They instrumented the rats with indwelling cardiovascular catheters and compared the hemodynamic and structural response in animals given angiotensin II, indomethacin in addition to angiotensin II (to block prostaglandin production), or saline with or without indomethacin. They then determine whether angiotensin II infusion also prevents acute hypoxic pulmonary vasoconstriction. They observed that exogenous angiotensin II infusion abolished the rise in pulmonary artery pressure, the right ventricular hypertrophy, and the vascular changes induced during chronic hypoxia in control saline-infused rats with or without indomethacin. The protective effects of angiotensin II was lost when indomethacin was given to block prostaglandin synthesis. During acute hypoxia, both antiotensin II and prostacyclin infusion similarly prevented the rise in pulmonary artery pressure observed in saline-infused rats and in rats given indomethacin or saralasin in addition to angiotensin II. Thus exogenous angiotensin II infusion prevents chronic hypoxic pulmonary hypertension, associated right ventricular hypertrophy, and vascular changes and blocks acute hypoxic pulmonary hypertension, and this is likely related to its ability to release vasodilator prostaglandins.

  7. Different cross-talk sites between the renin-angiotensin and the kallikrein-kinin systems.

    PubMed

    Su, Jin Bo

    2014-12-01

    Targeting the renin-angiotensin system (RAS) constitutes a major advance in the treatment of cardiovascular diseases. Evidence indicates that angiotensin-converting enzyme inhibitors and angiotensin AT1 receptor blockers act on both the RAS and the kallikrein-kinin system (KKS). In addition to the interaction between the RAS and KKS at the level of angiotensin-converting enzyme catalyzing both angiotensin II generation and bradykinin degradation, the RAS and KKS also interact at other levels: 1) prolylcarboxypeptidase, an angiotensin II inactivating enzyme and a prekallikrein activator; 2) kallikrein, a kinin-generating and prorenin-activating enzyme; 3) angiotensin-(1-7) exerts kininlike effects and potentiates the effects of bradykinin; and 4) the angiotensin AT1 receptor forms heterodimers with the bradykinin B2 receptor. Moreover, angiotensin II enhances B1 and B2 receptor expression via transcriptional mechanisms. These cross-talks explain why both the RAS and KKS are up-regulated in some circumstances, whereas in other circumstances both systems change in the opposite manner, expressed as an activated RAS and a depressed KKS. As the cross-talks between the RAS and the KKS play an important role in response to different stimuli, taking these cross-talks between the two systems into account may help in the development of drugs targeting the two systems. PMID:23386283

  8. Effects of angiotensin I of the American bullfrog Rana catesbeiana on amphibian tissues.

    PubMed

    Coviello, A; Soria, M O; Proto, M C; Peral de Bruno, M; Berman, D M; Khosla, M C; Bumpus, F M

    1993-01-01

    1. The effect of bullfrog angiotensin I [Asp1, Val5, Asn9] angiotensin I, (AT I) on short-circuit current (SCC) on isolated toad skin and aorta contractility was examined. 2. AT I increased SCC in toad skin, the effect was partially inhibited by angiotensin-converting enzyme inhibitor (ACEI) teprotide. 3. AT I induced contractile responses in isolated rings of toad aorta. This effect was partially inhibited by captopril and completely blocked by the peptide antagonist [Sar1, Ile8] angiotensin II. 4. Present results indicate that this homologue AT I would act in amphibian tissues by conversion to AT II.

  9. Cardiac angiotensin-(1-12) expression and systemic hypertension in rats expressing the human angiotensinogen gene.

    PubMed

    Ferrario, Carlos M; VonCannon, Jessica; Jiao, Yan; Ahmad, Sarfaraz; Bader, Michael; Dell'Italia, Louis J; Groban, Leanne; Varagic, Jasmina

    2016-04-15

    Angiotensin-(1-12) [ANG-(1-12)] is processed into ANG II by chymase in rodent and human heart tissue. Differences in the amino acid sequence of rat and human ANG-(1-12) render the human angiotensinogen (hAGT) protein refractory to cleavage by renin. We used transgenic rats harboring the hAGT gene [TGR(hAGT)L1623] to assess the non-renin-dependent effects of increased hAGT expression on heart function and arterial pressure. Compared with Sprague-Dawley (SD) control rats (n= 11), male homozygous TGR(hAGT)L1623 (n= 9) demonstrated sustained daytime and nighttime hypertension associated with no changes in heart rate but increased heart rate lability. Increased heart weight/tibial length ratio and echocardiographic indexes of cardiac hypertrophy were associated with modest reduction of systolic function in hAGT rats. Robust human ANG-(1-12) immunofluorescence within myocytes of TGR(hAGT)L1623 rats was associated with a fourfold increase in cardiac ANG II content. Chymase enzymatic activity, using the rat or human ANG-(1-12) as a substrate, was not different in the cardiac tissue of SD and hAGT rats. Since both cardiac angiotensin-converting enzyme (ACE) and ACE2 activities were not different among the two strains, the changes in cardiac structure and function, blood pressure, and left ventricular ANG II content might be a product of an increased cardiac expression of ANG II generated through a non-renin-dependent mechanism. The data also underscore the existence in the rat of alternate enzymes capable of acting on hAGT protein. Homozygous transgenic rats expressing the hAGT gene represent a novel tool to investigate the contribution of human relevant renin-independent cardiac ANG II formation and function. PMID:26873967

  10. Use of Angiotensin Receptor Blockers In Cardiovascular Protection

    PubMed Central

    Munger, Mark A.

    2011-01-01

    Objective To differentiate angiotensin II receptor blockers (ARBs) by vascular effects and outcomes in trials on cardio-protective endpoints. Data Sources MEDLINE searches were conducted from January 2003 to March 2009 using the following search terms: renin–angiotensin–aldosterone system (RAAS) blockade or inhibition; angiotensin II receptor blocker (ARBs); cardio-protection; vascular protection; end-organ protection; candesartan; eprosartan, irbesartan; losartan; olmesartan; telmisartan; and valsartan. Ongoing and recruiting clinical trials were identified via Clinicaltrials.gov (July 2008). Study Selection and Data Abstraction Pertinent basic science research and clinical trials with cardiovascular endpoints and information from reviews, American Heart Association 2009 statistics, and The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure guidelines were included in this review. Data Synthesis ARBs differ in their vascular protective pleiotropic effects and pharmacokinetic properties, which may contribute to their pharmacological protection to reduce cardiovascular morbidity and mortality, independently of their blood pressure (BP)–lowering effects. Conclusion Emerging data show that ARBs are effective in hypertension, left ventricular hypertrophy, postmyocardial infarction, and heart failure. To what extent their pleiotropic effects, independent of BP lowering, contribute to these outcomes will be the focus of research in the coming years. Well-designed, comparative-effectiveness studies are needed to clinically differentiate this class of agents. The future will be marked by multifunctional ARBs that will pharmacologically do more than antagonize the angiotensin type I (AT1) receptor. PMID:21386934

  11. Renin-angiotensin system in the kidney: What is new?

    PubMed Central

    Ferrão, Fernanda M; Lara, Lucienne S; Lowe, Jennifer

    2014-01-01

    The renin-angiotensin system (RAS) has been known for more than a century as a cascade that regulates body fluid balance and blood pressure. Angiotensin II(Ang II) has many functions in different tissues; however it is on the kidney that this peptide exerts its main functions. New enzymes, alternative routes for Ang IIformation or even active Ang II-derived peptides have now been described acting on Ang II AT1 or AT2 receptors, or in receptors which have recently been cloned, such as Mas and AT4. Another interesting observation was that old members of the RAS, such as angiotensin converting enzyme (ACE), renin and prorenin, well known by its enzymatic activity, can also activate intracellular signaling pathways, acting as an outside-in signal transduction molecule or on the renin/(Pro)renin receptor. Moreover, the endocrine RAS, now is also known to have paracrine, autocrine and intracrine action on different tissues, expressing necessary components for local Ang II formation. This in situ formation, especially in the kidney, increases Ang II levels to regulate blood pressure and renal functions. These discoveries, such as the ACE2/Ang-(1-7)/Mas axis and its antangonistic effect rather than classical deleterious Ang II effects, improves the development of new drugs for treating hypertension and cardiovascular diseases. PMID:25332897

  12. [Myocardial infarction caused by exertion].

    PubMed

    Bernard, F; Weber, S

    1997-01-01

    Myocardial infarction is the main cause of sudden death during physical exercise, particularly in subjects over 40 and may even occur in high-performance young athletes. Sports and physical activity have a beneficial effect in preventing cardiovascular diseases, but certain rules of prudence must be followed to avoid the risk of a severe coronary event. Myocardial infarction always occurs in particularly susceptible subjects with several risk factors, predominantly smoking, hypercholesterolemia, family history of atherosclerosis. Dietary factors, either before, during or after the exercise, are always found. Distribution of coronary lesions differs with age. Before 40 years, the coronary network is normal in 40% of the cases. The infarction is partially explained by platelet hyperaggregahility and coronary spasms at exercise or in the post-exercise period.

  13. Myocardialization of the cardiac outflow tract

    NASA Technical Reports Server (NTRS)

    van den Hoff, M. J.; Moorman, A. F.; Ruijter, J. M.; Lamers, W. H.; Bennington, R. W.; Markwald, R. R.; Wessels, A.

    1999-01-01

    During development, the single-circuited cardiac tube transforms into a double-circuited four-chambered heart by a complex process of remodeling, differential growth, and septation. In this process the endocardial cushion tissues of the atrioventricular junction and outflow tract (OFT) play a crucial role as they contribute to the mesenchymal components of the developing septa and valves in the developing heart. After fusion, the endocardial ridges in the proximal portion of the OFT initially form a mesenchymal outlet septum. In the adult heart, however, this outlet septum is basically a muscular structure. Hence, the mesenchyme of the proximal outlet septum has to be replaced by cardiomyocytes. We have dubbed this process "myocardialization." Our immunohistochemical analysis of staged chicken hearts demonstrates that myocardialization takes place by ingrowth of existing myocardium into the mesenchymal outlet septum. Compared to other events in cardiac septation, it is a relatively late process, being initialized around stage H/H28 and being basically completed around stage H/H38. To unravel the molecular mechanisms that are responsible for the induction and regulation of myocardialization, an in vitro culture system in which myocardialization could be mimicked and manipulated was developed. Using this in vitro myocardialization assay it was observed that under the standard culture conditions (i) whole OFT explants from stage H/H20 and younger did not spontaneously myocardialize the collagen matrix, (ii) explants from stage H/H21 and older spontaneously formed extensive myocardial networks, (iii) the myocardium of the OFT could be induced to myocardialize and was therefore "myocardialization-competent" at all stages tested (H/H16-30), (iv) myocardialization was induced by factors produced by, most likely, the nonmyocardial component of the outflow tract, (v) at none of the embryonic stages analyzed was ventricular myocardium myocardialization-competent, and finally

  14. Tombstoning ST-Elevation Myocardial Infarction

    PubMed Central

    Balci, Bahattin

    2009-01-01

    Tombstoning ST elevation myocardial infarction can be described as a STEMI characterized by tombstoning ST-segment elevation. This myocardial infarction is associated with extensive myocardial damage, reduced left ventricle function, serious hospital complications and poor prognosis. Tombstoning ECG pattern is a notion beyond morphological difference and is associated with more serious clinical results. Despite the presence of a few reports on tombstoning ST elevation, there is no report which reviews STEMI demonstrating this electrocardiographic pattern. PMID:21037844

  15. Echocardiographic assessment of myocardial strain.

    PubMed

    Gorcsan, John; Tanaka, Hidekazu

    2011-09-27

    Echocardiographic strain imaging, also known as deformation imaging, has been developed as a means to objectively quantify regional myocardial function. First introduced as post-processing of tissue Doppler imaging velocity converted to strain and strain rate, strain imaging has more recently also been derived from digital speckle tracking analysis. Strain imaging has been used to gain greater understanding into the pathophysiology of cardiac ischemia and infarction, primary diseases of the myocardium, and the effects of valvular disease on myocardial function, and to advance our understanding of diastolic function. Strain imaging has also been used to quantify abnormalities in the timing of mechanical activation for heart failure patients undergoing cardiac resynchronization pacing therapy. Further advances, such as 3-dimensional speckle tracking strain imaging, have emerged to provide even greater insight. Strain imaging has become established as a robust research tool and has great potential to play many roles in routine clinical practice to advance the care of the cardiovascular patient. This perspective reviews the physiology of myocardial strain, the technical features of strain imaging using tissue Doppler imaging and speckle tracking, their strengths and weaknesses, and the state-of-the-art present and potential future clinical applications.

  16. Myocardial Infarction in the Elderly

    PubMed Central

    Carro, Amelia; Kaski, Juan Carlos

    2011-01-01

    Advances in pharmacological treatment and effective early myocardial revascularization have –in recent years- led to improved clinical outcomes in patients with acute myocardial infarction (AMI). However, it has been suggested that compared to younger subjects, elderly AMI patients are less likely to receive evidence-based treatment, including myocardial revascularization therapy. Several reasons have been postulated to explain this trend, including uncertainty regarding the true benefits of the interventions commonly used in this setting as well as increased risk mainly associated with comorbidities. The diagnosis, management, and post-hospitalization care of elderly patients presenting with an acute coronary syndrome pose many difficulties at present. A complex interplay of variables such as comorbidities, functional and socioeconomic status, side effects associated with multiple drug administration, and individual biologic variability, all contribute to creating a complex clinical scenario. In this complex setting, clinicians are often required to extrapolate evidence-based results obtained in cardiovascular trials from which older patients are often, implicitly or explicitly, excluded. This article reviews current recommendations regarding management of AMI in the elderly. PMID:22396870

  17. Cocaine, a risk factor for myocardial infarction.

    PubMed

    Galasko, G I

    1997-06-01

    Cocaine usage goes back thousands of years, to the times of the Incas. Over the past 20 years, its use has increased dramatically, especially in America, and adverse cardiovascular reactions to the drug have begun to be reported. The first report of myocardial infarction temporally related to the recreational use of cocaine appeared in 1982. Since then, myocardial infarction has become recognized as the drug's most common cardiovascular consequence, with over 250 cases now documented in the literature. This review discusses the history of cocaine use, its pharmacology, the possible pathological mechanisms underlying the pathogenesis of myocardial ischaemia and infarction, and current ideas on the management of cocaine-induced myocardial infarction.

  18. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question.

  19. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis

    PubMed Central

    Vilas-Boas, Walkíria Wingester; Ribeiro-Oliveira Jr, Antônio; Pereira, Regina Maria; da Cunha Ribeiro, Renata; Almeida, Jerusa; Nadu, Ana Paula; Simões e Silva, Ana Cristina; dos Santos, Robson Augusto Souza

    2009-01-01

    AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes. METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) I, Ang II, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components. RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P < 0.05). In contrast, Ang II was significantly reduced in MLD. Ang-(1-7)/Ang II ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang II levels were lower and Ang-(1-7)/Ang II ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ± 0.04, P < 0.02), whereas the peripheral circulating Ang II/Ang I ratio was elevated in comparison to splanchnic levels (0.18 ± 0.02 vs 0.13 ± 0.02, P < 0.04). Ang-(1-7)/Ang II ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70). CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang II may play a role in the hemodynamic changes of human cirrhosis. PMID:19469002

  20. Perioperative management of patients treated with angiotensin-converting enzyme inhibitors and angiotensin II receptor blockers: a quality improvement audit.

    PubMed

    Vijay, A; Grover, A; Coulson, T G; Myles, P S

    2016-05-01

    Previous studies have shown that patients continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery are more likely to have significant intraoperative hypotension, higher rates of postoperative acute kidney injury, and lower incidences of postoperative atrial fibrillation. However, many of these studies were prone to bias and confounding, and questions remain over the validity of these outcomes. This observational, before-and-after quality improvement audit aimed to assess the effect of withholding these medications on the morning of surgery. We recruited 323 participants, with 83 (26%) having their preoperative angiotensin-converting enzyme inhibitor (ACEi) or angiotensin II receptor blocker (ARB) withheld on the day of surgery. There were only very small Spearman rank-order correlations between time since last dose of these medications (rho -0.12, P=0.057) and intraoperative and recovery room intravenous fluid administration (rho -0.11, P=0.042). There was no statistically significant difference between the continued or withheld groups in vasopressor (metaraminol use 3.5 [1.5-8.3] mg versus 3.5 [1.5-8.5] mg, P=0.67) or intravenous fluid administration (1000 ml [800-1500] ml versus 1000 [800-1500] ml, P=0.096), nor rates of postoperative acute kidney injury (13% vs 18%, P=0.25) or atrial fibrillation (15% versus 18%, P=0.71). This audit found no significant differences in measured outcomes between the continued or withheld ACEi/ARB groups. This finding should be interpreted with caution due to the possibility of confounding and an insufficient sample size. However, as the finding is in contrast to many previous studies, future prospective randomised clinical trials are required to answer this important question. PMID:27246933

  1. Angiotensin II type I and prostaglandin F2α receptors cooperatively modulate signaling in vascular smooth muscle cells.

    PubMed

    Goupil, Eugénie; Fillion, Dany; Clément, Stéphanie; Luo, Xiaoyan; Devost, Dominic; Sleno, Rory; Pétrin, Darlaine; Saragovi, H Uri; Thorin, Éric; Laporte, Stéphane A; Hébert, Terence E

    2015-01-30

    The angiotensin II type I (AT1R) and the prostaglandin F2α (PGF2α) F prostanoid (FP) receptors are both potent regulators of blood pressure. Physiological interplay between AT1R and FP has been described. Abdominal aortic ring contraction experiments revealed that PGF2α-dependent activation of FP potentiated angiotensin II-induced contraction, whereas FP antagonists had the opposite effect. Similarly, PGF2α-mediated vasoconstriction was symmetrically regulated by co-treatment with AT1R agonist and antagonist. The underlying canonical Gαq signaling via production of inositol phosphates mediated by each receptor was also regulated by antagonists for the other receptor. However, binding to their respective agonists, regulation of receptor-mediated MAPK activation and vascular smooth muscle cell growth were differentially or asymmetrically regulated depending on how each of the two receptors were occupied by either agonist or antagonist. Physical interactions between these receptors have never been reported, and here we show that AT1R and FP form heterodimeric complexes in both HEK 293 and vascular smooth muscle cells. These findings imply that formation of the AT1R/FP dimer creates a novel allosteric signaling unit that shows symmetrical and asymmetrical signaling behavior, depending on the outcome measured. AT1R/FP dimers may thus be important in the regulation of blood pressure.

  2. Angiotensin type 2 receptor stimulation ameliorates left ventricular fibrosis and dysfunction via regulation of tissue inhibitor of matrix metalloproteinase 1/matrix metalloproteinase 9 axis and transforming growth factor β1 in the rat heart.

    PubMed

    Lauer, Dilyara; Slavic, Svetlana; Sommerfeld, Manuela; Thöne-Reineke, Christa; Sharkovska, Yuliya; Hallberg, Anders; Dahlöf, Bjorn; Kintscher, Ulrich; Unger, Thomas; Steckelings, Ulrike Muscha; Kaschina, Elena

    2014-03-01

    Left ventricular (LV) remodeling is the main reason for the development of progressive cardiac dysfunction after myocardial infarction (MI). This study investigated whether stimulation of the angiotensin type 2 receptor is able to ameliorate post-MI cardiac remodeling and what the underlying mechanisms may be. MI was induced in Wistar rats by permanent ligation of the left coronary artery. Treatment with the angiotensin type 2 receptor agonist compound 21 (0.03 mg/kg) was started 6 hours post-MI and continued for 6 weeks. Hemodynamic parameters were measured by echocardiography and intracardiac catheter. Effects on proteolysis were studied in heart tissue and primary cardiac fibroblasts. Compound 21 significantly improved systolic and diastolic functions, resulting in improved ejection fraction (71.2±4.7% versus 53.4±7.0%; P<0.001), fractional shortening (P<0.05), LV internal dimension in systole (P<0.05), LV end-diastolic pressure (16.9±1.2 versus 22.1±1.4 mm Hg; P<0.05), ratio of early (E) to late (A) ventricular filling velocities, and maximum and minimum rate of LV pressure rise (P<0.05). Compound 21 improved arterial stiffness parameters and reduced collagen content in peri-infarct myocardium. Tissue inhibitor of matrix metalloproteinase 1 was strongly upregulated, whereas matrix metalloproteinases 2 and 9 and transforming growth factor β1 were diminished in LV of treated animals. In cardiac fibroblasts, compound 21 initially induced tissue inhibitor of matrix metalloproteinase 1 expression followed by attenuated matrix metalloproteinase 9 and transforming growth factor β1 secretion. In conclusion, angiotensin type 2 receptor stimulation improves cardiac function and prevents cardiac remodeling in the late stage after MI, suggesting that angiotensin type 2 receptor agonists may be considered a future pharmacological approach for the improvement of post-MI cardiac dysfunction.

  3. Angiotensin II type 2 receptor- and acetylcholine-mediated relaxation: essential contribution of female sex hormones and chromosomes.

    PubMed

    Pessôa, Bruno Sevá; Slump, Denise E; Ibrahimi, Khatera; Grefhorst, Aldo; van Veghel, Richard; Garrelds, Ingrid M; Roks, Anton J M; Kushner, Steven A; Danser, A H Jan; van Esch, Joep H M

    2015-08-01

    Angiotensin-induced vasodilation, involving type 2 receptor (AT2R)-induced generation of nitric oxide (NO; by endothelial NO synthase) and endothelium-derived hyperpolarizing factors, may be limited to women. To distinguish the contribution of female sex hormones and chromosomes to AT2R function and endothelium-derived hyperpolarizing factor-mediated vasodilation, we made use of the four-core genotype model, where the testis-determining Sry gene has been deleted (Y(-)) from the Y chromosome, allowing XY(-) mice to develop a female gonadal phenotype. Simultaneously, by incorporating the Sry gene onto an autosome, XY(-)Sry and XXSry transgenic mice develop into gonadal male mice. Four-core genotype mice underwent a sham or gonadectomy (GDX) operation, and after 8 weeks, iliac arteries were collected to assess vascular function. XY(-)Sry male mice responded more strongly to angiotensin than XX female mice, and the AT2R antagonist PD123319 revealed that this was because of a dilator AT2R-mediated effect occurring exclusively in XX female mice. The latter could not be demonstrated in XXSry male and XY(-) female mice nor in XX female mice after GDX, suggesting that it depends on both sex hormones and chromosomes. Indeed, treating C57bl/6 GDX male mice with estrogen could not restore angiotensin-mediated, AT2R-dependent relaxation. To block acetylcholine-induced relaxation of iliac arteries obtained from four-core genotype XX mice, both endothelial NO synthase and endothelium-derived hyperpolarizing factor inhibition were required, whereas in four-core genotype XY animals, endothelial NO synthase inhibition alone was sufficient. These findings were independent of gonadal sex and unaltered after GDX. In conclusion, AT2R-induced relaxation requires both estrogen and the XX chromosome sex complement, whereas only the latter is required for endothelium-derived hyperpolarizing factors. PMID:26056343

  4. Cognitive enhancing effect of angiotensin-converting enzyme inhibitors and angiotensin receptor blockers on learning and memory

    PubMed Central

    Nade, V. S.; Kawale, L. A.; Valte, K. D.; Shendye, N. V.

    2015-01-01

    Objective: The present study was designed to investigate cognitive enhancing property of angiotensin-converting enzymes inhibitors (ACEI) and angiotensin receptor blockers (ARBs) in rats. Materials and Methods: The elevated plus maze (EPM), passive avoidance test (PAT), and water maze test (WMT) were used to assess cognitive enhancing activity in young and aged rats. Ramipril (10 mg/kg, p.o.), perindopril (10 mg/kg, i.p), losartan (20 mg/kg, i.p), and valsartan (20 mg/kg, p.o) were administered to assess their effect on learning and memory. Scopolamine (1 mg/kg, i.p) was used to impair cognitive function. Piracetam (200 mg/kg, i.p) was used as reference drug. Results: All the treatments significantly attenuated amnesia induced by aging and scopolamine. In EPM, aged and scopolamine-treated rats showed an increase in transfer latency (TL) whereas, ACEI and ARBs showed a significant decrease in TL. Treatment with ACEI and ARBs significantly increased step down latencies and decreased latency to reach the platform in target quadrant in young, aged and scopolamine-treated animals in PAT and WMT, respectively. The treatments inhibited acetylcholinesterase (AChE) enzyme in the brain. Similarly, all the treatments attenuated scopolamine-induced lipid peroxidation and normalize antioxidant enzymes. Conclusion: The results suggest that the cognitive enhancing effect of ACEI and ARBs may be due to inhibition of AChE or by regulation of antioxidant system or increase in formation of angiotensin IV. PMID:26069362

  5. Coronary arterial BK channel dysfunction exacerbates ischemia/reperfusion-induced myocardial injury in diabetic mice.

    PubMed

    Lu, Tong; Jiang, Bin; Wang, Xiao-Li; Lee, Hon-Chi

    2016-09-01

    The large conductance Ca(2+)-activated K(+) (BK) channels, abundantly expressed in coronary artery smooth muscle cells (SMCs), play a pivotal role in regulating coronary circulation. A large body of evidence indicates that coronary arterial BK channel function is diminished in both type 1 and type 2 diabetes. However, the consequence of coronary BK channel dysfunction in diabetes is not clear. We hypothesized that impaired coronary BK channel function exacerbates myocardial ischemia/reperfusion (I/R) injury in streptozotocin-induced diabetic mice. Combining patch-clamp techniques and cellular biological approaches, we found that diabetes facilitated the colocalization of angiotensin II (Ang II) type 1 receptors and BK channel α-subunits (BK-α), but not BK channel β1-subunits (BK-β1), in the caveolae of coronary SMCs. This caveolar compartmentation in vascular SMCs not only enhanced Ang II-mediated inhibition of BK-α but also produced a physical disassociation between BK-α and BK-β1, leading to increased infarct size in diabetic hearts. Most importantly, genetic ablation of caveolae integrity or pharmacological activation of coronary BK channels protected the cardiac function of diabetic mice from experimental I/R injury in both in vivo and ex vivo preparations. Our results demonstrate a vascular ionic mechanism underlying the poor outcome of myocardial injury in diabetes. Hence, activation of coronary BK channels may serve as a therapeutic target for cardiovascular complications of diabetes. PMID:27574914

  6. Mechanical determinants of myocardial blood flow and its distribution.

    PubMed

    Archie, J P

    1975-07-01

    There are two mechanical determinants of coronary blood flow and its distribution: resistance and pressure gradient. Resistance is determined by blood viscosity and the anatomy and geometry of the coronary vascular bed. The coronary vascular pressure gradient is the difference between aortic root pressure and intramyocardial pressure. A number of factors such as coronary atherosclerosis, ventricular hypertrophy, and myocardial edema may adversely affect the determinants of coronary flow before, during, or after cardiopulmonary bypass, thereby lowering or eliminating regional or local coronary reserve and promoting the likelihood of a myocardial ischemic injury. The subendocardial layers of the left ventricle appear to be more vulnerable, perhaps in part because they depend entirely on diastolic coronary flow.

  7. Angiotensin II stimulates phospholipases C and A/sub 2/ in cultured rat mesangial cells

    SciTech Connect

    Schlondorff, D.; DeCandido, S.; Satriano, J.A.

    1987-07-01

    Angiotensin II stimulates prostaglandin (PG) E/sub 2/ formation in mesangial cells cultured from rat renal glomeruli. The interactions between angiotensin II and PGE/sub 2/ are important in modulating glomerular function. The authors examined the mechanism for stimulation of PGE/sub 2/ production in mesangial cells using the putative diacylglycerol-lipase inhibitor RHC 80267 and trifluoperazine (TFP), an agent interfering with Ca/sup 2 +/-CaM-mediated processes. Although RHC 80267 inhibited diacylglycerol-lipase activity in mesangial cells, it did not influence PGE/sub 2/ production in response to either angiotensin II or A23187. TFP also decreased /sup 14/C release in response to either angiotensin II of A23187. In contrast, TFP (50 ..mu..M) inhibited basal PGE/sub 2/ production and stimulation by angiotensin II and A23187. TFP also decreased /sup 14/C release in response to angiotensin from cells prelabeled with (/sup 14/C)arachidonic acid, which was associated with inhibition of /sup 14/C loss from phosphatidylinositol. In cells prelabeled with /sup 32/P, orthophosphate angiotensin II caused a rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate. TFP enhanced formation of (/sup 3/H)inositol trisphosphate both under basal- and angiotensin II-stimulated conditions. Thus TFP did not inhibit phospholipase C activation by angiotensin. Angiotensin II caused marked increases in (/sup 32/P)lysophospholipids, indicating activation of also phospholipase A/sub 2/. Taken together, these results are consistent with stimulation of both phospholipase C and A/sub 2/ by angiotensin, the latter step responsible for the release of arachidonic acid and PGE/sub 2/ formation.

  8. Mammary renin-angiotensin system-regulating aminopeptidase activities are modified in rats with breast cancer.

    PubMed

    del Pilar Carrera, Maria; Ramírez-Expósito, Maria Jesus; Mayas, Maria Dolores; García, Maria Jesus; Martínez-Martos, Jose Manuel

    2010-12-01

    Angiotensin II in particular and/or the local renin-angiotensin system in general could have an important role in epithelial tissue growth and modelling; therefore, it is possible that it may be involved in breast cancer. In this sense, previous works of our group showed a predominating role of angiotensin II in tumoral tissue obtained from women with breast cancer. However, although classically angiotensin II has been considered the main effector peptide of the renin-angiotensin system cascade, several of its catabolism products such as angiotensin III and angiotensin IV also possess biological functions. These peptides are formed through the activity of several proteolytic regulatory enzymes of the aminopeptidase type, also called angiotensinases. The aim of this work was to analyse several specific angiotensinase activities involved in the renin-angiotensin system cascade in mammary tissue from control rats and from rats with mammary tumours induced by N-methyl-nitrosourea (NMU), which may reflect the functional status of their target peptide