NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that we currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Karr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations.
Solutions of the cylindrical nonlinear Maxwell equations.
Xiong, Hao; Si, Liu-Gang; Ding, Chunling; Lü, Xin-You; Yang, Xiaoxue; Wu, Ying
2012-01-01
Cylindrical nonlinear optics is a burgeoning research area which describes cylindrical electromagnetic wave propagation in nonlinear media. Finding new exact solutions for different types of nonlinearity and inhomogeneity to describe cylindrical electromagnetic wave propagation is of great interest and meaningful for theory and application. This paper gives exact solutions for the cylindrical nonlinear Maxwell equations and presents an interesting connection between the exact solutions for different cylindrical nonlinear Maxwell equations. We also provide some examples and discussion to show the application of the results we obtained. Our results provide the basis for solving complex systems of nonlinearity and inhomogeneity with simple systems.
Numerical Simulations of Self-Focused Pulses Using the Nonlinear Maxwell Equations
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Silberberg, Yaron; Kwak, Dochan (Technical Monitor)
1994-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that solves the full vector nonlinear Maxwell's equations exactly without the approximations that are currently made. Present methods solve a reduced scalar wave equation, namely the nonlinear Schrodinger equation, and neglect the optical carrier. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of 'light bullet' like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization, and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit modeling 2-D and 3-D optical soliton propagation, scattering, and switching directly from the full-vector Maxwell's equations. Abstract of a proposed paper for presentation at the meeting NONLINEAR OPTICS: Materials, Fundamentals, and Applications, Hyatt Regency Waikaloa, Waikaloa, Hawaii, July 24-29, 1994, Cosponsored by IEEE/Lasers and Electro-Optics Society and Optical Society of America
Self-accelerating self-trapped nonlinear beams of Maxwell's equations.
Kaminer, Ido; Nemirovsky, Jonathan; Segev, Mordechai
2012-08-13
We present shape-preserving self-accelerating beams of Maxwell's equations with optical nonlinearities. Such beams are exact solutions to Maxwell's equations with Kerr or saturable nonlinearity. The nonlinearity contributes to self-trapping and causes backscattering. Those effects, together with diffraction effects, work to maintain shape-preserving acceleration of the beam on a circular trajectory. The backscattered beam is found to be a key issue in the dynamics of such highly non-paraxial nonlinear beams. To study that, we develop two new techniques: projection operator separating the forward and backward waves, and reverse simulation. Finally, we discuss the possibility that such beams would reflect themselves through the nonlinear effect, to complete a 'U' shaped trajectory.
NASA Astrophysics Data System (ADS)
Rincón, Ángel; Panotopoulos, Grigoris
2018-01-01
We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.
NASA Technical Reports Server (NTRS)
Roberts, Dana Aaron; Abraham-Shrauner, Barbara
1987-01-01
The phase trajectories of particles in a plasma described by the one-dimensional Vlasov-Maxwell equations are determined qualitatively, analyzing exact general similarity solutions for the cases of temporally damped and growing (sinusoidal or localized) electric fields. The results of numerical integration in both untransformed and Lie-group point-transformed coordinates are presented in extensive graphs and characterized in detail. The implications of the present analysis for the stability of BGK equilibria are explored, and the existence of nonlinear solutions arbitrarily close to and significantly different from the BGK solutions is demonstrated.
NASA Astrophysics Data System (ADS)
Raju, Thokala Soloman; Pal, Ritu
2018-05-01
We derive the analytical rogue wave solutions for the generalized inhomogeneous nonlinear Schrödinger-Maxwell-Bloch (GINLS-MB) equation describing the pulse propagation in erbium-doped fibre system. Then by suitably choosing the inhomogeneous parameters, we delineate the tunneling properties of rogue waves through dispersion and nonlinearity barriers or wells. Finally, we demonstrate the propagating characteristics of optical solitons by considering their tunneling through periodic barriers by the proper choice of external potential.
A Nonlinear Gyrokinetic Vlasov-Maxwell System for High-frequency Simulation in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Liu, Pengfei; Zhang, Wenlu; Lin, Jingbo; Li, Ding; Dong, Chao
2016-10-01
A nonlinear gyrokinetic Vlasov equation is derived through the Lie-perturbation method to the Lagrangian and Hamiltonian systems in extanded phase space. The gyrokinetic Maxwell equations are derived in terms of the moments of gyrocenter phase-space distribution through the push-forward and pull-back representations, where the polarization and magnetization effects of gyrocenter are retained. The goal of this work is to construct a global nonlinear gyrokinetic vlasov-maxwell system for high-frequency simulation in toroidal geometry relevent for ion cyclotron range of frequencies (ICRF) waves heating and lower hybrid wave current driven (LHCD). Supported by National Special Research Program of China For ITER and National Natural Science Foundation of China.
Magnetic solutions in Einstein-massive gravity with linear and nonlinear fields
NASA Astrophysics Data System (ADS)
Hendi, Seyed Hossein; Panah, Behzad Eslam; Panahiyan, Shahram; Momennia, Mehrab
2018-06-01
The solutions of U(1) gauge-gravity coupling is one of the interesting models for analyzing the semi-classical nature of spacetime. In this regard, different well-known singular and nonsingular solutions have been taken into account. The paper at hand investigates the geometrical properties of the magnetic solutions by considering Maxwell and power Maxwell invariant (PMI) nonlinear electromagnetic fields in the context of massive gravity. These solutions are free of curvature singularity, but have a conic one which leads to presence of deficit/surplus angle. The emphasize is on modifications that these generalizations impose on deficit angle which determine the total geometrical structure of the solutions, hence, physical/gravitational properties. It will be shown that depending on the background spacetime [being anti de Sitter (AdS) or de Sitter (dS)], these generalizations present different effects and modify the total structure of the solutions differently.
(2 + 1)-dimensional dynamical black holes in Einstein-nonlinear Maxwell theory
NASA Astrophysics Data System (ADS)
Gurtug, O.; Mazharimousavi, S. Habib; Halilsoy, M.
2018-02-01
Radiative extensions of BTZ metric in 2 + 1 dimensions are found which are sourced by nonlinear Maxwell fields and a null current. This may be considered as generalization of the problem formulated long go by Vaidya and Bonnor. The mass and charge are functions of retarded/advanced null coordinate apt for decay/inflation. The new solutions are constructed through a Theorem that works remarkably well for any nonlinear electrodynamic model. Hawking temperature is analyzed for the case of the Born-Infeld electrodynamics.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Chai, Han-Peng
2018-02-01
Investigation in this paper is given to the reduced Maxwell-Bloch equations with variable coefficients, describing the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. We apply the Hirota method and symbolic computation to study such equations. With the help of the dependent variable transformations, we present the variable-coefficient-dependent bilinear forms. Then, we construct the one-, two- and N-soliton solutions in analytic forms for them. Supported by the National Natural Science Foundation of China under Grant Nos. 11772017, 11272023, 11471050, the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (IPOC: 2017ZZ05), and the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02
Asymptotically (A)dS dilaton black holes with nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Hajkhalili, S.; Sheykhi, A.
It is well known that with an appropriate combination of three Liouville-type dilaton potentials, one can construct charged dilaton black holes in an (anti)-de Sitter [(A)dS] spaces in the presence of linear Maxwell field. However, asymptotically (A)dS dilaton black holes coupled to nonlinear gauge field have not been found. In this paper, we construct, for the first time, three new classes of dilaton black hole solutions in the presence of three types of nonlinear electrodynamics, namely Born-Infeld (BI), Logarithmic (LN) and Exponential nonlinear (EN) electrodynamics. All these solutions are asymptotically (A)dS and in the linear regime reduce to the Einstein-Maxwell-dilaton (EMd) black holes in (A)dS spaces. We investigate physical properties and the causal structure, as well as asymptotic behavior of the obtained solutions, and show that depending on the values of the metric parameters, the singularity can be covered by various horizons. We also calculate conserved and thermodynamic quantities of the obtained solutions. Interestingly enough, we find that the coupling of dilaton field and nonlinear gauge field in the background of (A)dS spaces leads to a strange behavior for the electric field. We observe that the electric field is zero at singularity and increases smoothly until reaches a maximum value, then it decreases smoothly until goes to zero as r →∞. The maximum value of the electric field increases with increasing the nonlinear parameter β or decreasing the dilaton coupling α and is shifted to the singularity in the absence of either dilaton field (α = 0) or nonlinear gauge field (β →∞).
Exact axisymmetric solutions of the Maxwell equations in a nonlinear nondispersive medium.
Petrov, E Yu; Kudrin, A V
2010-05-14
The features of propagation of intense waves are of great interest for theory and experiment in electrodynamics and acoustics. The behavior of nonlinear waves in a bounded volume is of special importance and, at the same time, is an extremely complicated problem. It seems almost impossible to find a rigorous solution to such a problem even for any model of nonlinearity. We obtain the first exact solution of this type. We present a new method for deriving exact solutions of the Maxwell equations in a nonlinear medium without dispersion and give examples of the obtained solutions that describe propagation of cylindrical electromagnetic waves in a nonlinear nondispersive medium and free electromagnetic oscillations in a cylindrical cavity resonator filled with such a medium.
Formulation of the relativistic moment implicit particle-in-cell method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noguchi, Koichi; Tronci, Cesare; Zuccaro, Gianluca
2007-04-15
A new formulation is presented for the implicit moment method applied to the time-dependent relativistic Vlasov-Maxwell system. The new approach is based on a specific formulation of the implicit moment method that allows us to retain the same formalism that is valid in the classical case despite the formidable complication introduced by the nonlinear nature of the relativistic equations of motion. To demonstrate the validity of the new formulation, an implicit finite difference algorithm is developed to solve the Maxwell's equations and equations of motion. A number of benchmark problems are run: two stream instability, ion acoustic wave damping, Weibelmore » instability, and Poynting flux acceleration. The numerical results are all in agreement with analytical solutions.« less
NASA Astrophysics Data System (ADS)
Sajid, T.; Sagheer, M.; Hussain, S.; Bilal, M.
2018-03-01
The present article is about the study of Darcy-Forchheimer flow of Maxwell nanofluid over a linear stretching surface. Effects like variable thermal conductivity, activation energy, nonlinear thermal radiation is also incorporated for the analysis of heat and mass transfer. The governing nonlinear partial differential equations (PDEs) with convective boundary conditions are first converted into the nonlinear ordinary differential equations (ODEs) with the help of similarity transformation, and then the resulting nonlinear ODEs are solved with the help of shooting method and MATLAB built-in bvp4c solver. The impact of different physical parameters like Brownian motion, thermophoresis parameter, Reynolds number, magnetic parameter, nonlinear radiative heat flux, Prandtl number, Lewis number, reaction rate constant, activation energy and Biot number on Nusselt number, velocity, temperature and concentration profile has been discussed. It is viewed that both thermophoresis parameter and activation energy parameter has ascending effect on the concentration profile.
NASA Astrophysics Data System (ADS)
Wang, Lei; Zhu, Yu-Jie; Wang, Zi-Qi; Xu, Tao; Qi, Feng-Hua; Xue, Yu-Shan
2016-02-01
We study the nonlinear localized waves on constant backgrounds of the Hirota-Maxwell-Bloch (HMB) system arising from the erbium doped fibers. We derive the asymmetric breather, rogue wave (RW) and semirational solutions of the HMB system. We show that the breather and RW solutions can be converted into various soliton solutions. Under different conditions of parameters, we calculate the locus of the eigenvalues on the complex plane which converts the breathers or RWs into solitons. Based on the second-order solutions, we investigate the interactions among different types of nonlinear waves including the breathers, RWs and solitons.
Maxwell+TDDFT multiscale method for light propagation in thin-film semiconductor
NASA Astrophysics Data System (ADS)
Uemoto, Mitsuharu; Yabana, Kazuhiro
First-principles time-dependent density functional theory (TDDFT) has been a powerful tool to describe light-matter interactions and widely used to describe electronic excitations and linear and nonlinear optical properties of molecules and solids. We have been developing a novel multiscale modeling to describe a propagation of light pulse in a macroscopic medium combining TDDFT and Maxwell equations. In the method, the finite-difference time-domain (FDTD)-like electromagnetism (EM) calculation is carried out in a macroscopic grid. At each grid point, the time-dependent Kohn-Sham equation is solved in real time. In the presentation, we show applications of this method to the 1D/2D propagations of femtosecond laser pulses through a thin-film semiconductor. This work was supported in part by MEXT as a social and scientific priority issue (Creation of new functional devices and high-performance materials to support next-generation industries; CDMSI) to be tackled by using post-K computer.
Mechanic-Like Resonance in the Maxwell-Bloch Equations
ERIC Educational Resources Information Center
Meziane, Belkacem
2008-01-01
We show that, in their unstable regime of operation, the "Maxwell-Bloch" equations that describe light-matter interactions inside a bad-cavity-configured laser carry the same resonance properties as any externally driven mechanic or electric oscillator. This finding demonstrates that the nonlinearly coupled laser equations belong to the same…
Explicit formulation of second and third order optical nonlinearity in the FDTD framework
NASA Astrophysics Data System (ADS)
Varin, Charles; Emms, Rhys; Bart, Graeme; Fennel, Thomas; Brabec, Thomas
2018-01-01
The finite-difference time-domain (FDTD) method is a flexible and powerful technique for rigorously solving Maxwell's equations. However, three-dimensional optical nonlinearity in current commercial and research FDTD softwares requires solving iteratively an implicit form of Maxwell's equations over the entire numerical space and at each time step. Reaching numerical convergence demands significant computational resources and practical implementation often requires major modifications to the core FDTD engine. In this paper, we present an explicit method to include second and third order optical nonlinearity in the FDTD framework based on a nonlinear generalization of the Lorentz dispersion model. A formal derivation of the nonlinear Lorentz dispersion equation is equally provided, starting from the quantum mechanical equations describing nonlinear optics in the two-level approximation. With the proposed approach, numerical integration of optical nonlinearity and dispersion in FDTD is intuitive, transparent, and fully explicit. A strong-field formulation is also proposed, which opens an interesting avenue for FDTD-based modelling of the extreme nonlinear optics phenomena involved in laser filamentation and femtosecond micromachining of dielectrics.
Husakou, A; Herrmann, J
2006-11-13
We evaluate the possibility to focus scanning light beams below the diffraction limit by using the combination of a nonlinear material with a Kerr-type nonlinearity or two-photon absorption to create seed evanescent components of the beam and a negative-refraction material to enhance them. Superfocusing to spots with a FWHM in the range of 0.2 lambda is theoretically predicted both in the context of the effective-medium theory and by the direct numerical solution of Maxwell equations for an inhomogeneous pho-tonic crystal. The evolution of the transverse spectrum and the dependence of superfocusing on the parameters of the negative-refraction material are also studied. We show that the use of a Kerr-type nonlinear layer for the creation of seed evanescent components yields focused spots with a higher intensity compared with those obtained by the application of a saturable absorber.
Fierz bilinear formulation of the Maxwell-Dirac equations and symmetry reductions
NASA Astrophysics Data System (ADS)
Inglis, Shaun; Jarvis, Peter
2014-09-01
We study the Maxwell-Dirac equations in a manifestly gauge invariant presentation using only the spinor bilinear scalar and pseudoscalar densities, and the vector and pseudovector currents, together with their quadratic Fierz relations. The internally produced vector potential is expressed via algebraic manipulation of the Dirac equation, as a rational function of the Fierz bilinears and first derivatives (valid on the support of the scalar density), which allows a gauge invariant vector potential to be defined. This leads to a Fierz bilinear formulation of the Maxwell tensor and of the Maxwell-Dirac equations, without any reference to gauge dependent quantities. We show how demanding invariance of tensor fields under the action of a fixed (but arbitrary) Lie subgroup of the Poincaré group leads to symmetry reduced equations. The procedure is illustrated, and the reduced equations worked out explicitly for standard spherical and cylindrical cases, which are coupled third order nonlinear PDEs. Spherical symmetry necessitates the existence of magnetic monopoles, which do not affect the coupled Maxwell-Dirac system due to magnetic terms cancelling. In this paper we do not take up numerical computations. As a demonstration of the power of our approach, we also work out the symmetry reduced equations for two distinct classes of dimension 4 one-parameter families of Poincaré subgroups, one splitting and one non-splitting. The splitting class yields no solutions, whereas for the non-splitting class we find a family of formal exact solutions in closed form.
Electrostatic forces in the Poisson-Boltzmann systems
NASA Astrophysics Data System (ADS)
Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2013-09-01
Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
Graphene-clad tapered fiber: effective nonlinearity and propagation losses.
Gorbach, A V; Marini, A; Skryabin, D V
2013-12-15
We derive a pulse propagation equation for a graphene-clad optical fiber, treating the optical response of the graphene and nonlinearity of the dielectric fiber core as perturbations in asymptotic expansion of Maxwell equations. We analyze the effective nonlinear and attenuation coefficients due to the graphene layer. Based on the recent experimental measurements of the nonlinear graphene conductivity, we predict considerable enhancement of the effective nonlinearity for subwavelength fiber core diameters.
Anomalous transport from holography. Part I
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2016-11-01
We revisit the transport properties induced by the chiral anomaly in a charged plasma holographically dual to anomalous U(1) V ×U(1) A Maxwell theory in Schwarzschild-AdS5. Off-shell constitutive relations for vector and axial currents are derived using various approximations generalising most of known in the literature anomaly-induced phenomena and revealing some new ones. In a weak external field approximation, the constitutive relations have all-order derivatives resummed into six momenta-dependent transport co-efficient functions: the diffusion, the electric/magnetic conductivity, and three anomaly induced functions. The latter generalise the chiral magnetic and chiral separation effects. Nonlinear transport is studied assuming presence of constant background external fields. The chiral magnetic effect, including all order nonlinearity in magnetic field, is proven to be exact when the magnetic field is the only external field that is turned on. Non-linear corrections to the constitutive relations due to electric and axial external fields are computed.
Maxwell's equal area law for black holes in power Maxwell invariant
NASA Astrophysics Data System (ADS)
Li, Huai-Fan; Guo, Xiong-ying; Zhao, Hui-Hua; Zhao, Ren
2017-08-01
In this paper, we consider the phase transition of black hole in power Maxwell invariant by means of Maxwell's equal area law. First, we review and study the analogy of nonlinear charged black hole solutions with the Van der Waals gas-liquid system in the extended phase space, and obtain isothermal P- v diagram. Then, using the Maxwell's equal area law we study the phase transition of AdS black hole with different temperatures. Finally, we extend the method to the black hole in the canonical (grand canonical) ensemble in which charge (potential) is fixed at infinity. Interestingly, we find the phase transition occurs in the both ensembles. We also study the effect of the parameters of the black hole on the two-phase coexistence. The results show that the black hole may go through a small-large phase transition similar to those of usual non-gravity thermodynamic systems.
NASA Astrophysics Data System (ADS)
Crutcher, Sihon H.; Osei, Albert; Biswas, Anjan
2012-06-01
Maxwell's equations for a metallic and nonlinear Kerr interface waveguide at the nanoscale can be approximated to a (1+1) D Nonlinear Schrodinger type model equation (NLSE) with appropriate assumptions and approximations. Theoretically, without losses or perturbations spatial plasmon solitons profiles are easily produced. However, with losses, the amplitude or beam profile is no longer stationary and adiabatic parameters have to be considered to understand propagation. For this model, adiabatic parameters are calculated considering losses resulting in linear differential coupled integral equations with constant definite integral coefficients not dependent on the transverse and longitudinal coordinates. Furthermore, by considering another configuration, a waveguide that is an M-NL-M (metal-nonlinear Kerr-metal) that tapers, the tapering can balance the loss experienced at a non-tapered metal/nonlinear Kerr interface causing attenuation of the beam profile, so these spatial plasmon solitons can be produced. In this paper taking into consideration the (1+1)D NLSE model for a tapered waveguide, we derive a one soliton solution based on He's Semi-Inverse Variational Principle (HPV).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gartling, D.K.
The theoretical and numerical background for the finite element computer program, TORO II, is presented in detail. TORO II is designed for the multi-dimensional analysis of nonlinear, electromagnetic field problems described by the quasi-static form of Maxwell`s equations. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in TORO II are also outlined. Instructions for the use of the code are documented in SAND96-0903; examples of problems analyzed with the code are also provided in the user`s manual. 24 refs., 8 figs.
Time-Dependent Testing Evaluation and Modeling for Rubber Stopper Seal Performance.
Zeng, Qingyu; Zhao, Xia
2018-01-01
Sufficient rubber stopper sealing performance throughout the entire sealed product life cycle is essential for maintaining container closure integrity in the parenteral packaging industry. However, prior publications have lacked systematic considerations for the time-dependent influence on sealing performance that results from the viscoelastic characteristics of the rubber stoppers. In this paper, we report results of an effort to study these effects by applying both compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. By employing both testing evaluations and modeling calculations, an in-depth understanding of the time-dependent effects on rubber stopper sealing force was developed. Both testing and modeling data show good consistency, demonstrating that the sealing force decays exponentially over time and eventually levels off because of the viscoelastic nature of the rubber stoppers. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. The modeling fit with capability to handle actual testing data can be employed as a tool to calculate the compression stress relaxation and residual seal force throughout the entire sealed product life cycle. In addition to being time-dependent, stress relaxation is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the parenteral packaging industry for practically and proactively considering, designing, setting up, controlling, and managing stopper sealing performance throughout the entire sealed product life cycle. LAY ABSTRACT: Historical publications in the parenteral packaging industry have lacked systematic considerations for the time-dependent influence on the sealing performance that results from effects of viscoelastic characteristic of the rubber stoppers. This study applied compression stress relaxation testing and residual seal force testing for time-dependent experimental data collection. These experiments were followed by modeling fit calculations based on the Maxwell-Wiechert theory modified with the Kohlrausch-Williams-Watts stretched exponential function, resulting in a nonlinear, time-dependent sealing force model. Experimental and modeling data show good consistency, demonstrating that sealing force decays exponentially over time and eventually levels off. The nonlinearity of stress relaxation derives from the viscoelastic characteristics of the rubber stoppers coupled with the large stopper compression deformation into restrained geometry conditions. In addition to being time-dependent stress relaxation, it is also experimentally shown to be temperature-dependent. The present work provides a new, integrated methodology framework and some fresh insights to the industry for practically and proactively considering, designing, setting up, controlling, and managing of the stopper sealing performance throughout the entire sealed product life cycle. © PDA, Inc. 2018.
Non-linear duality invariant partially massless models?
Cherney, D.; Deser, S.; Waldron, A.; ...
2015-12-15
We present manifestly duality invariant, non-linear, equations of motion for maximal depth, partially massless higher spins. These are based on a first order, Maxwell-like formulation of the known partially massless systems. Lastly, our models mimic Dirac–Born–Infeld theory but it is unclear whether they are Lagrangian.
Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.
Herdeiro, Carlos A R; Radu, Eugen
2016-11-25
We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.
Dual Solutions for Nonlinear Flow Using Lie Group Analysis
Awais, Muhammad; Hayat, Tasawar; Irum, Sania; Saleem, Salman
2015-01-01
`The aim of this analysis is to investigate the existence of the dual solutions for magnetohydrodynamic (MHD) flow of an upper-convected Maxwell (UCM) fluid over a porous shrinking wall. We have employed the Lie group analysis for the simplification of the nonlinear differential system and computed the absolute invariants explicitly. An efficient numerical technique namely the shooting method has been employed for the constructions of solutions. Dual solutions are computed for velocity profile of an upper-convected Maxwell (UCM) fluid flow. Plots reflecting the impact of dual solutions for the variations of Deborah number, Hartman number, wall mass transfer are presented and analyzed. Streamlines are also plotted for the wall mass transfer effects when suction and blowing situations are considered. PMID:26575996
Revisiting the phase transition of AdS-Maxwell-power-Yang-Mills black holes via AdS/CFT tools
NASA Astrophysics Data System (ADS)
El Moumni, H.
2018-01-01
In the present work we investigate the Van der Waals-like phase transition of AdS black hole solution in the Einstein-Maxwell-power-Yang-Mills gravity (EMPYM) via different approaches. After reconsidering this phase structure in the entropy-thermal plane, we recall the nonlocal observables such as holographic entanglement entropy and two point correlation function to show that the both observables exhibit a Van der Waals-like behavior as the case of the thermal entropy. By checking the Maxwell's equal area law and calculating the critical exponent for different values of charge C and nonlinearity parameter q we confirm that the first and the second order phases persist in the holographic framework. Also the validity of the Maxwell law is governed by the proximity to the critical point.
Nonlinear propagation of light in Dirac matter.
Eliasson, Bengt; Shukla, P K
2011-09-01
The nonlinear interaction between intense laser light and a quantum plasma is modeled by a collective Dirac equation coupled with the Maxwell equations. The model is used to study the nonlinear propagation of relativistically intense laser light in a quantum plasma including the electron spin-1/2 effect. The relativistic effects due to the high-intensity laser light lead, in general, to a downshift of the laser frequency, similar to a classical plasma where the relativistic mass increase leads to self-induced transparency of laser light and other associated effects. The electron spin-1/2 effects lead to a frequency upshift or downshift of the electromagnetic (EM) wave, depending on the spin state of the plasma and the polarization of the EM wave. For laboratory solid density plasmas, the spin-1/2 effects on the propagation of light are small, but they may be significant in superdense plasma in the core of white dwarf stars. We also discuss extensions of the model to include kinetic effects of a distribution of the electrons on the nonlinear propagation of EM waves in a quantum plasma.
Anomalous transport from holography: part II
NASA Astrophysics Data System (ADS)
Bu, Yanyan; Lublinsky, Michael; Sharon, Amir
2017-03-01
This is a second study of chiral anomaly-induced transport within a holographic model consisting of anomalous U(1)_V× U(1)_A Maxwell theory in Schwarzschild-AdS_5 spacetime. In the first part, chiral magnetic/separation effects (CME/CSE) are considered in the presence of a static spatially inhomogeneous external magnetic field. Gradient corrections to CME/CSE are analytically evaluated up to third order in the derivative expansion. Some of the third order gradient corrections lead to an anomaly-induced negative B^2-correction to the diffusion constant. We also find modifications to the chiral magnetic wave nonlinear in B. In the second part, we focus on the experimentally interesting case of the axial chemical potential being induced dynamically by a constant magnetic and time-dependent electric fields. Constitutive relations for the vector/axial currents are computed employing two different approximations: (a) derivative expansion (up to third order) but fully nonlinear in the external fields, and (b) weak electric field limit but resuming all orders in the derivative expansion. A non-vanishing nonlinear axial current (CSE) is found in the first case. The dependence on magnetic field and frequency of linear transport coefficient functions is explored in the second.
Transient Postseismic Relaxation With Burger's Body Viscoelasticity
NASA Astrophysics Data System (ADS)
Hetland, E. A.; Hager, B. H.; O'Connell, R. J.
2002-12-01
Typical models used to investigate postseismic deformation are composed of an elastic layer over a Maxwell viscoelastic region. Geodetic observations made after a number of large earthquakes show a rapid exponential decay in postseismic velocity immediately after the rupture, followed by a more slowly decaying (or constant) velocity at a later time. Models of a Maxwell viscoelastic interior predict a single exponential postseismic velocity relaxation. To account for observed rapid, short-term relaxation decay, surprisingly low viscosities in the lower-crust or upper-mantle have been proposed. To model the difference in short and long time decay rates, the Maxwell element is sometimes modified to have a non-linear rheology, which results in a lower effective viscosity immediately after the rupture, evolving to a higher effective viscosity as the co-seismic stresses relax. Incorporation of models of after-slip in the lower crust on a down-dip extension of the fault have also had some success at modeling the above observations. When real rocks are subjected to a sudden change in stress or strain, e.g., that caused by an earthquake, they exhibit a transient response. The transient deformation is typically accommodated by grain boundary sliding and the longer-time deformation is accommodated by motion of dislocations. Both a short-term transient response and long-term steady creep are exhibited by a Burger's body, a Maxwell element (a spring in series with a viscous dash-pot) in series with a Voigt element (a spring in parallel with a viscous dash-pot). Typically the (transient) viscosity of the Voigt element is 10 - 100 times less than the (steady) viscosity of the Maxwell element. Thus, with a Burger's body, stress relaxation is a superposition of two exponential decays. For a model composed of an elastic layer over a viscoelastic region, the coseismic changes in stress (and strain) depend only on the elastic moduli, and are independent of the description of the viscous component of the rheology. In a Burger's body model of viscoelasticity, if the viscosity of the Voigt element is much less than that of the Maxwell element, the initial relaxation time is given by the decay time τ = η {Voigt}}/G{ {Maxwell}. Whereas, for a Maxwell rheology, the initial relaxation time is given by τ = η {Maxwell}}/G{ {Maxwell}. For both models, the initial spatial distribution of stresses is the same, which results in identical initial spatial distribution of velocities. Thus it is easy to mistake the transient response of a Burger's body for that of a Maxwell rheology with unrealistically low viscosity. Only later in the seismic cycle do the spatial patterns of velocity differ for the two rheologies.
QED multi-dimensional vacuum polarization finite-difference solver
NASA Astrophysics Data System (ADS)
Carneiro, Pedro; Grismayer, Thomas; Silva, Luís; Fonseca, Ricardo
2015-11-01
The Extreme Light Infrastructure (ELI) is expected to deliver peak intensities of 1023 - 1024 W/cm2 allowing to probe nonlinear Quantum Electrodynamics (QED) phenomena in an unprecedented regime. Within the framework of QED, the second order process of photon-photon scattering leads to a set of extended Maxwell's equations [W. Heisenberg and H. Euler, Z. Physik 98, 714] effectively creating nonlinear polarization and magnetization terms that account for the nonlinear response of the vacuum. To model this in a self-consistent way, we present a multi dimensional generalized Maxwell equation finite difference solver with significantly enhanced dispersive properties, which was implemented in the OSIRIS particle-in-cell code [R.A. Fonseca et al. LNCS 2331, pp. 342-351, 2002]. We present a detailed numerical analysis of this electromagnetic solver. As an illustration of the properties of the solver, we explore several examples in extreme conditions. We confirm the theoretical prediction of vacuum birefringence of a pulse propagating in the presence of an intense static background field [arXiv:1301.4918 [quant-ph
NASA Astrophysics Data System (ADS)
Wang, Lei; Li, Xiao; Zhang, Lu Lu; Li, Min; Qi, Feng-Hua
2015-09-01
Under investigation in this paper is a amplifier nonlinear Schrödinger Maxwell-Bloch (NLS-MB) system which describes the propagation of optical pulses in an inhomogeneous erbium doped fiber. Nonautonomous breather and rogue wave (RW) solutions of the amplifier NLS-MB system are constructed via the modified Darboux transformation with the inhomogeneous parameters. By suitably choosing the dispersion coefficient function, several types of inhomogeneous nonlinear waves are obtained in: (1) periodically fluctuating dispersion profile; (2) exponentially increasing (or decreasing) dispersion profile; and (3) linearly decreasing (increasing) dispersion profile. The nonautonomous characteristics of the breathers and RWs are graphically investigated, including the breather accelerating and decelerating motions, boomerang breather, breather compression, breather evolution, periodic RW, boomerang RW and stationary RW. Such novel patterns as the periodic breathers and rogue-wave fission of the amplifier NLS-MB system are exhibited by properly adjusting the group velocity dispersion function and interaction parameter between silica and doped atoms.
A Spectral Algorithm for Solving the Relativistic Vlasov-Maxwell Equations
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2001-01-01
A spectral method algorithm is developed for the numerical solution of the full six-dimensional Vlasov-Maxwell system of equations. Here, the focus is on the electron distribution function, with positive ions providing a constant background. The algorithm consists of a Jacobi polynomial-spherical harmonic formulation in velocity space and a trigonometric formulation in position space. A transform procedure is used to evaluate nonlinear terms. The algorithm is suitable for performing moderate resolution simulations on currently available supercomputers for both scientific and engineering applications.
Earthquake Cycle Simulations with Rate-and-State Friction and Linear and Nonlinear Viscoelasticity
NASA Astrophysics Data System (ADS)
Allison, K. L.; Dunham, E. M.
2016-12-01
We have implemented a parallel code that simultaneously models both rate-and-state friction on a strike-slip fault and off-fault viscoelastic deformation throughout the earthquake cycle in 2D. Because we allow fault slip to evolve with a rate-and-state friction law and do not impose the depth of the brittle-to-ductile transition, we are able to address: the physical processes limiting the depth of large ruptures (with hazard implications); the degree of strain localization with depth; the relative partitioning of fault slip and viscous deformation in the brittle-to-ductile transition zone; and the relative contributions of afterslip and viscous flow to postseismic surface deformation. The method uses a discretization that accommodates variable off-fault material properties, depth-dependent frictional properties, and linear and nonlinear viscoelastic rheologies. All phases of the earthquake cycle are modeled, allowing the model to spontaneously generate earthquakes, and to capture afterslip and postseismic viscous flow. We compare the effects of a linear Maxwell rheology, often used in geodetic models, with those of a nonlinear power law rheology, which laboratory data indicates more accurately represents the lower crust and upper mantle. The viscosity of the Maxwell rheology is set by power law rheological parameters with an assumed a geotherm and strain rate, producing a viscosity that exponentially decays with depth and is constant in time. In contrast, the power law rheology will evolve an effective viscosity that is a function of the temperature profile and the stress state, and therefore varies both spatially and temporally. We will also integrate the energy equation for the thermomechanical problem, capturing frictional heat generation on the fault and off-fault viscous shear heating, and allowing these in turn to alter the effective viscosity.
Plasmon resonance enhancement of nonlinear properties of amino acids
NASA Astrophysics Data System (ADS)
de Araujo, Renato E.; Rativa, Diego; Gomes, Anderson S. L.
2007-02-01
Here we analyze the influence of 9 nm (mean diameter) silver particles on the nonlinear properties of intrinsic cell molecules. A novel high sensitivity thermal managed eclipse Z-scan technique with a femtosecond laser system was used to analyze the nonlinear susceptibility of water solution of fluorescent and non-fluorescent amino acids (Tryptophan, Tyrosine, Phenylalanine, Proline and Histidine) with different concentration of silver nanoparticles. The generalized Maxwell Garnett model is used to explain the behavior of the measured nonlinear refractive index with the change of the nanoparticles concentration in the sample.
Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.
2015-12-24
simulation of the electromagnetic- plasma interaction and the high-power microwave breakdown in air. Under the high pressure and high frequency condition of...the high-power air breakdown, the physical phenomenon is described using a nonlinearly coupled full-wave Maxwell and fluid plasma system. This...Challenges ........................................................................... 3 3.1.1 Plasma Fluid Model
Fully electromagnetic nonlinear gyrokinetic equations for tokamak edge turbulence
NASA Astrophysics Data System (ADS)
Hahm, T. S.; Wang, Lu; Madsen, J.
2009-02-01
An energy conserving set of the fully electromagnetic nonlinear gyrokinetic Vlasov equation and Maxwell's equations, which is applicable to both L-mode turbulence with large amplitude and H-mode turbulence in the presence of high E ×B shear has been derived. The phase-space action variational Lie perturbation method ensures the preservation of the conservation laws of the underlying Vlasov-Maxwell system. Generalized ordering takes ρi≪ρθi˜LE˜Lp≪R [here ρi is the thermal ion Larmor radius and ρθi=B /(Bθρi)], as typically observed in the tokamak H-mode edge, with LE and Lp being the radial electric field and pressure gradient lengths. k⊥ρi˜1 is assumed for generality, and the relative fluctuation amplitudes eδϕ /Ti˜δB/B are kept up to the second order. Extending the electrostatic theory in the presence of high E ×B shear [Hahm, Phys. Plasmas 3, 4658 (1996)], contributions of electromagnetic fluctuations to the particle charge density and current are explicitly evaluated via pullback transformation from the gyrocenter distribution function in the gyrokinetic Maxwell's equation.
Macroscopic response in active nonlinear photonic crystals.
Alagappan, Gandhi; John, Sajeev; Li, Er Ping
2013-09-15
We derive macroscopic equations of motion for the slowly varying electric field amplitude in three-dimensional active nonlinear optical nanostructures. We show that the microscopic Maxwell equations and polarization dynamics can be simplified to a macroscopic one-dimensional problem in the direction of group velocity. For a three-level active material, we derive the steady-state equations for normal mode frequency, threshold pumping, nonlinear Bloch mode amplitude, and lasing in photonic crystals. Our analytical results accurately recapture the results of exact numerical methods.
NASA Astrophysics Data System (ADS)
Sun, Wen-Rong; Wang, Lei; Xie, Xi-Yang
2018-06-01
Vector breather-to-soliton transitions for the higher-order nonlinear Schrödinger-Maxwell-Bloch (NLS-MB) system with sextic terms are investigated. The Lax pair and Darboux transformation (DT) of such system are constructed. With the DT, analytic vector breather solutions up to the second order are obtained. With appropriate choices of the spectra parameters, vector breather-to-soliton transitions happen. Interaction mechanisms of vector nonlinear waves (breather-soliton or soliton-soliton interactions) are displayed.
Laser produced nanocavities in silica and sapphire: a parametric study
NASA Astrophysics Data System (ADS)
Hallo, L.; Bourgeade, A.; Travaillé, G.; Tikhonchuk, V. T.; Nkonga, B.; Breil, J.
2008-05-01
We present a model, that describes a sub-micron cavity formation in a transparent dielectric under a tight focusing of a ultra-short laser pulse. The model solves the full set of Maxwell's equations in the three-dimensional geometry along with non-linear propagation phenomenons. This allows us to initialize hydrodynamic simulations of the sub-micron cavity formation. Cavity characteristics, which depend on 3D energy release and non linear effects, have been investigated and compared with experimental results. For this work, we want to deeply acknowledge the numerical support provided by the CEA Centre de Calcul Recherche et Technologie, whose help guaranteed the achievement of this study.
Nonlinear magnetoacoustic wave propagation with chemical reactions
NASA Astrophysics Data System (ADS)
Margulies, Timothy Scott
2002-11-01
The magnetoacoustic problem with an application to sound wave propagation through electrically conducting fluids such as the ocean in the Earth's magnetic field, liquid metals, or plasmas has been addressed taking into account several simultaneous chemical reactions. Using continuum balance equations for the total mass, linear momentum, energy; as well as Maxwell's electrodynamic equations, a nonlinear beam equation has been developed to generalize the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation for a fluid with linear viscosity but nonlinear and diffraction effects. Thermodynamic parameters are used and not tailored to only an adiabatic fluid case. The chemical kinetic equations build on a relaxing media approach presented, for example, by K. Naugolnukh and L. Ostrovsky [Nonlinear Wave Processes in Acoustics (Cambridge Univ. Press, Cambridge, 1998)] for a linearized single reaction and thermodynamic pressure equation of state. Approximations for large and small relaxation times and for magnetohydrodynamic parameters [Korsunskii, Sov. Phys. Acoust. 36 (1990)] are examined. Additionally, Cattaneo's equation for heat conduction and its generalization for a memory process rather than a Fourier's law are taken into account. It was introduced for the heat flux depends on the temperature gradient at an earlier time to generate heat pulses of finite speed.
Topologically nontrivial black holes in Lovelock-Born-Infeld gravity
NASA Astrophysics Data System (ADS)
Farhangkhah, N.
2018-04-01
We present the black hole solutions possessing horizon with nonconstant-curvature and additional scalar restrictions on the base manifold in Lovelock gravity coupled to Born-Infeld (BI) nonlinear electrodynamics. The asymptotic and near origin behavior of the metric is presented and we analyze different behaviors of the singularity. We find that, in contrast to the case of black hole solutions of BI-Lovelock gravity with constant curvature horizon and Maxwell-Lovelock gravity with non constant horizon which have only timelike singularities, spacelike, and timelike singularities may exist for BI-Lovelock black holes with nonconstant curvature horizon. By calculating the thermodynamic quantities, we study the effects of nonlinear electrodynamics via the Born-Infeld action. Stability analysis shows that black holes with positive sectional curvature, κ , possess an intermediate unstable phase and large and small black holes are stable. We see that while Ricci flat Lovelock-Born-Infeld black holes having exotic horizons are stable in the presence of Maxwell field or either Born Infeld field with large born Infeld parameter β , unstable phase appears for smaller values of β , and therefore nonlinearity brings in the instability.
Periodic and rational solutions of the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Wei, Jiao; Wang, Xin; Geng, Xianguo
2018-06-01
We investigate the reduced Maxwell-Bloch (RMB) equations which describe the propagation of short optical pulses in dielectric materials with resonant non-degenerate transitions. The general Nth-order periodic solutions are provided by means of the Darboux transformation. The Nth-order degenerate periodic and Nth-order rational solutions containing several free parameters with compact determinant representations are derived from two different limiting cases of the obtained general periodic solutions, respectively. Explicit expressions of these solutions from first to second order are presented. Typical nonlinear wave patterns for the four components of the RMB equations such as single-peak, double-peak-double-dip, double-peak and single-dip structures in the second-order rational solutions are shown. This kind of the rational solutions correspond to rogue waves in the reduced Maxwell-Bloch equations.
One-dimensional Vlasov-Maxwell equilibrium for the force-free Harris sheet.
Harrison, Michael G; Neukirch, Thomas
2009-04-03
In this Letter, the first nonlinear force-free Vlasov-Maxwell equilibrium is presented. One component of the equilibrium magnetic field has the same spatial structure as the Harris sheet, but whereas the Harris sheet is kept in force balance by pressure gradients, in the force-free solution presented here force balance is maintained by magnetic shear. Magnetic pressure, plasma pressure and plasma density are constant. The method used to find the equilibrium is based on the analogy of the one-dimensional Vlasov-Maxwell equilibrium problem to the motion of a pseudoparticle in a two-dimensional conservative potential. The force-free solution can be generalized to a complete family of equilibria that describe the transition between the purely pressure-balanced Harris sheet to the force-free Harris sheet.
Thermodynamics of charged black holes with a nonlinear electrodynamics source
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonzalez, Hernan A.; Hassaiene, Mokhtar; Martinez, Cristian
2009-11-15
We study the thermodynamical properties of electrically charged black hole solutions of a nonlinear electrodynamics theory defined by a power p of the Maxwell invariant, which is coupled to Einstein gravity in four and higher spacetime dimensions. Depending on the range of the parameter p, these solutions present different asymptotic behaviors. We compute the Euclidean action with the appropriate boundary term in the grand canonical ensemble. The thermodynamical quantities are identified and, in particular, the mass and the charge are shown to be finite for all classes of solutions. Interestingly, a generalized Smarr formula is derived and it is shownmore » that this latter encodes perfectly the different asymptotic behaviors of the black hole solutions. The local stability is analyzed by computing the heat capacity and the electrical permittivity and we find that a set of small black holes is locally stable. In contrast to the standard Reissner-Nordstroem solution, there is a first-order phase transition between a class of these nonlinear charged black holes and the Minkowski spacetime.« less
NASA Astrophysics Data System (ADS)
Toshmatov, Bobir; Stuchlík, Zdeněk; Schee, Jan; Ahmedov, Bobomurat
2018-04-01
The electromagnetic (EM) perturbations of the black hole solutions in general relativity coupled to nonlinear electrodynamics (NED) are studied for both electrically and magnetically charged black holes, assuming that the EM perturbations do not alter the spacetime geometry. It is shown that the effective potentials of the electrically and magnetically charged black holes related to test perturbative NED EM fields are related to the effective metric governing the photon motion, contrary to the effective potential of the linear electrodynamic (Maxwell) field that is related to the spacetime metric. Consequently, corresponding quasinormal (QN) frequencies differ as well. As a special case, we study new family of the NED black hole solutions which tend in the weak field limit to the Maxwell field, giving the Reissner-Nordström (RN) black hole solution. We compare the NED Maxwellian black hole QN spectra with the RN black hole QN spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Guangye; Chacon, Luis; Knoll, Dana Alan
2015-07-31
A multi-rate PIC formulation was developed that employs large timesteps for slow field evolution, and small (adaptive) timesteps for particle orbit integrations. Implementation is based on a JFNK solver with nonlinear elimination and moment preconditioning. The approach is free of numerical instabilities (ω peΔt >>1, and Δx >> λ D), and requires many fewer dofs (vs. explicit PIC) for comparable accuracy in challenging problems. Significant gains (vs. conventional explicit PIC) may be possible for large scale simulations. The paper is organized as follows: Vlasov-Maxwell Particle-in-cell (PIC) methods for plasmas; Explicit, semi-implicit, and implicit time integrations; Implicit PIC formulation (Jacobian-Free Newton-Krylovmore » (JFNK) with nonlinear elimination allows different treatments of disparate scales, discrete conservation properties (energy, charge, canonical momentum, etc.)); Some numerical examples; and Summary.« less
Boundary states at reflective moving boundaries
NASA Astrophysics Data System (ADS)
Acosta Minoli, Cesar A.; Kopriva, David A.
2012-06-01
We derive and evaluate boundary states for Maxwell's equations, the linear, and the nonlinear Euler gas-dynamics equations to compute wave reflection from moving boundaries. In this study we use a Discontinuous Galerkin Spectral Element method (DGSEM) with Arbitrary Lagrangian-Eulerian (ALE) mapping for the spatial approximation, but the boundary states can be used with other methods, like finite volume schemes. We present four studies using Maxwell's equations, one for the linear Euler equations, and one more for the nonlinear Euler equations. These are: reflection of light from a plane mirror moving at constant velocity, reflection of light from a moving cylinder, reflection of light from a vibrating mirror, reflection of sound from a plane wall and dipole sound generation by an oscillating cylinder in an inviscid flow. The studies show that the boundary states preserve spectral convergence in the solution and in derived quantities like divergence and vorticity.
Unified theory of nonlinear electrodynamics and gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Torres-Gomez, Alexander; Krasnov, Kirill; Scarinci, Carlos
2011-01-15
We describe a class of unified theories of electromagnetism and gravity. The Lagrangian is of the BF type, with a potential for the B field, the gauge group is U(2) (complexified). Given a choice of the potential function the theory is a deformation of (complex) general relativity and electromagnetism, and describes just two propagating polarizations of the graviton and two of the photon. When gravity is switched off the theory becomes the usual nonlinear electrodynamics with a general structure function. The Einstein-Maxwell theory can be recovered by sending some of the parameters of the defining potential to zero, but formore » any generic choice of the potential the theory is indistinguishable from Einstein-Maxwell at low energies. A real theory is obtained by imposing suitable reality conditions. We also study the spherically-symmetric solution and show how the usual Reissner-Nordstrom solution is recovered.« less
Maxwell boundary condition and velocity dependent accommodation coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Struchtrup, Henning, E-mail: struchtr@uvic.ca
2013-11-15
A modification of Maxwell's boundary condition for the Boltzmann equation is developed that allows to incorporate velocity dependent accommodation coefficients into the microscopic description. As a first example, it is suggested to consider the wall-particle interaction as a thermally activated process with three parameters. A simplified averaging procedure leads to jump and slip boundary conditions for hydrodynamics. Coefficients for velocity slip, temperature jump, and thermal transpiration flow are identified and compared with those resulting from the original Maxwell model and the Cercignani-Lampis model. An extension of the model leads to temperature dependent slip and jump coefficients.
Inflation and acceleration of the universe by nonlinear magnetic monopole fields
NASA Astrophysics Data System (ADS)
Övgün, A.
2017-02-01
Despite impressive phenomenological success, cosmological models are incomplete without an understanding of what happened at the big bang singularity. Maxwell electrodynamics, considered as a source of the classical Einstein field equations, leads to the singular isotropic Friedmann solutions. In the context of Friedmann-Robertson-Walker (FRW) spacetime, we show that singular behavior does not occur for a class of nonlinear generalizations of the electromagnetic theory for strong fields. A new mathematical model is proposed for which the analytical nonsingular extension of FRW solutions is obtained by using the nonlinear magnetic monopole fields.
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-15
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
Numerical study of surface plasmon enhanced nonlinear absorption and refraction.
Kohlgraf-Owens, Dana C; Kik, Pieter G
2008-07-07
Maxwell Garnett effective medium theory is used to study the influence of silver nanoparticle induced field enhancement on the nonlinear response of a Kerr-type nonlinear host. We show that the composite nonlinear absorption coefficient, beta(c), can be enhanced relative to the host nonlinear absorption coefficient near the surface plasmon resonance of silver nanoparticles. This enhancement is not due to a resonant enhancement of the host nonlinear absorption, but rather due to a phase shifted enhancement of the host nonlinear refractive response. The enhancement occurs at the expense of introducing linear absorption, alpha(c), which leads to an overall reduced figure of merit beta(c)/alpha(c) for nonlinear absorption. For thin (< 1 microm) composites, the use of surface plasmons is found to result in an increased nonlinear absorption response compared to that of the host material.
NASA Astrophysics Data System (ADS)
Zhou, H. W.; Yi, H. Y.; Mishnaevsky, L.; Wang, R.; Duan, Z. Q.; Chen, Q.
2017-05-01
A modeling approach to time-dependent property of Glass Fiber Reinforced Polymers (GFRP) composites is of special interest for quantitative description of long-term behavior. An electronic creep machine is employed to investigate the time-dependent deformation of four specimens of dog-bond-shaped GFRP composites at various stress level. A negative exponent function based on structural changes is introduced to describe the damage evolution of material properties in the process of creep test. Accordingly, a new creep constitutive equation, referred to fractional derivative Maxwell model, is suggested to characterize the time-dependent behavior of GFRP composites by replacing Newtonian dashpot with the Abel dashpot in the classical Maxwell model. The analytic solution for the fractional derivative Maxwell model is given and the relative parameters are determined. The results estimated by the fractional derivative Maxwell model proposed in the paper are in a good agreement with the experimental data. It is shown that the new creep constitutive model proposed in the paper needs few parameters to represent various time-dependent behaviors.
Quantitative verification of ab initio self-consistent laser theory.
Ge, Li; Tandy, Robert J; Stone, A D; Türeci, Hakan E
2008-10-13
We generalize and test the recent "ab initio" self-consistent (AISC) time-independent semiclassical laser theory. This self-consistent formalism generates all the stationary lasing properties in the multimode regime (frequencies, thresholds, internal and external fields, output power and emission pattern) from simple inputs: the dielectric function of the passive cavity, the atomic transition frequency, and the transverse relaxation time of the lasing transition.We find that the theory gives excellent quantitative agreement with full time-dependent simulations of the Maxwell-Bloch equations after it has been generalized to drop the slowly-varying envelope approximation. The theory is infinite order in the non-linear hole-burning interaction; the widely used third order approximation is shown to fail badly.
Quasi-local conserved charges in the Einstein-Maxwell theory
NASA Astrophysics Data System (ADS)
Setare, M. R.; Adami, H.
2017-05-01
In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ
NASA Astrophysics Data System (ADS)
Tutcuoglu, A.; Majidi, C.
2014-12-01
Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.
NASA Astrophysics Data System (ADS)
Chai, Jun; Tian, Bo; Sun, Wen-Rong; Liu, De-Yin
2018-01-01
Under investigation in this paper is the reduced Maxwell-Bloch equations with variable coefficients, which describe the propagation of the intense ultra-short optical pulses through an inhomogeneous two-level dielectric medium. Hirota method and symbolic computation are applied to solve such equations. By introducing the dependent variable transformations, we give the bilinear forms, vector one-, two- and N-soliton solutions in analytic forms. The types of the vector solitons are analyzed: Only the bright-single-hump solitons can be observed in q and r1 , the soliton in r2 is the bright-double-hump soliton, and there exist three types of solitons in r3 , including the dark-single-hump soliton, dark-double-hump soliton and dark-like-bright soliton, with q as the inhomogeneous electric field, r1 and r2 as the real and imaginary parts of the polarization of the two-level medium, and r3 as the population difference between the ground and excited states. Figures are presented to show the vector soliton solutions. Different types of the interactions between the vector two solitons are presented. In each component, only the overtaking elastic interaction can be observed.
Electromagnetic nonlinear gyrokinetics with polarization drift
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duthoit, F.-X.; Hahm, T. S., E-mail: tshahm@snu.ac.kr; Wang, Lu
2014-08-15
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen,more » Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.« less
Electromagnetic nonlinear gyrokinetics with polarization drift
NASA Astrophysics Data System (ADS)
Duthoit, F.-X.; Hahm, T. S.; Wang, Lu
2014-08-01
A set of new nonlinear electromagnetic gyrokinetic Vlasov equation with polarization drift and gyrokinetic Maxwell equations is systematically derived by using the Lie-transform perturbation method in toroidal geometry. For the first time, we recover the drift-kinetic expression for parallel acceleration [R. M. Kulsrud, in Basic Plasma Physics, edited by A. A. Galeev and R. N. Sudan (North-Holland, Amsterdam, 1983)] from the nonlinear gyrokinetic equations, thereby bridging a gap between the two formulations. This formalism should be useful in addressing nonlinear ion Compton scattering of intermediate-mode-number toroidal Alfvén eigenmodes for which the polarization current nonlinearity [T. S. Hahm and L. Chen, Phys. Rev. Lett. 74, 266 (1995)] and the usual finite Larmor radius effects should compete.
Modulation of kinetic Alfvén waves in an intermediate low-beta magnetoplasma
NASA Astrophysics Data System (ADS)
Chatterjee, Debjani; Misra, A. P.
2018-05-01
We study the amplitude modulation of nonlinear kinetic Alfvén waves (KAWs) in an intermediate low-beta magnetoplasma. Starting from a set of fluid equations coupled to the Maxwell's equations, we derive a coupled set of nonlinear partial differential equations (PDEs) which govern the evolution of KAW envelopes in the plasma. The modulational instability (MI) of such KAW envelopes is then studied by a nonlinear Schrödinger equation derived from the coupled PDEs. It is shown that the KAWs can evolve into bright envelope solitons or can undergo damping depending on whether the characteristic ratio ( α ) of the Alfvén to ion-acoustic speeds remains above or below a critical value. The parameter α is also found to shift the MI domains around the k x k z plane, where k x ( k z ) is the KAW number perpendicular (parallel) to the external magnetic field. The growth rate of MI, as well as the frequency shift and the energy transfer rate, are obtained and analyzed. The results can be useful for understanding the existence and formation of bright and dark envelope solitons, or damping of KAW envelopes in space plasmas, e.g., interplanetary space, solar winds, etc.
Ultra-low loss Si3N4 waveguides with low nonlinearity and high power handling capability.
Tien, Ming-Chun; Bauters, Jared F; Heck, Martijn J R; Blumenthal, Daniel J; Bowers, John E
2010-11-08
We investigate the nonlinearity of ultra-low loss Si3N4-core and SiO2-cladding rectangular waveguides. The nonlinearity is modeled using Maxwell's wave equation with a small amount of refractive index perturbation. Effective n2 is used to describe the third-order nonlinearity, which is linearly proportional to the optical intensity. The effective n2 measured using continuous-wave self-phase modulation shows agreement with the theoretical calculation. The waveguide with 2.8-μm wide and 80-nm thick Si3N4 core has low loss and high power handling capability, with an effective n2 of about 9×10(-16) cm2/W.
The free-electron laser - Maxwell's equations driven by single-particle currents
NASA Technical Reports Server (NTRS)
Colson, W. B.; Ride, S. K.
1980-01-01
It is shown that if single particle currents are coupled to Maxwell's equations, the resulting set of self-consistent nonlinear equations describes the evolution of the electron beam and the amplitude and phase of the free-electron-laser field. The formulation is based on the slowly varying amplitude and phase approximation, and the distinction between microscopic and macroscopic scales, which distinguishes the microscopic bunching from the macroscopic pulse propagation. The capabilities of this new theoretical approach become apparent when its predictions for the ultrashort pulse free-electron laser are compared to experimental data; the optical pulse evolution, determined simply and accurately, agrees well with observations.
The electric field standing wave effect in infrared transflection spectroscopy
NASA Astrophysics Data System (ADS)
Mayerhöfer, Thomas G.; Popp, Jürgen
2018-02-01
We show that an electric field standing wave effect is responsible for the oscillations and the non-linear dependence of the absorbance on the layer thickness in thin layers on a reflective surface. This effect is connected to the occurrence of interference inside these layers. Consequently, the absorptance undergoes a maximum electric field intensity enhancement at spectral positions close to those where corresponding non-absorbing layers on a metal show minima in the reflectance. The effect leads to changes of peak maxima ratios with layer thickness and shows the same periodicity as oscillations in the peak positions. These peculiarities are fully based on and described by Maxwell's equations but cannot be understood and described if the strongly simplifying model centered on reflectance absorbance is employed.
Coherent control of ultrafast optical four-wave mixing with two-color {omega}-3{omega} laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serrat, Carles
2005-08-15
A theoretical investigation on the coherent control of optical transient four-wave mixing interactions in two-level systems with two intense few-cycle propagating laser pulses of central angular frequencies {omega} and 3{omega} is reported. By numerically solving the full Maxwell-Bloch equations beyond the slowly varying envelope and rotating-wave approximations in the time domain, the nonlinear coupling to the optical field at frequency 5{omega} is found to depend critically on the initial relative phase {phi} of the propagating pulses: the coupling is enhanced when the pulses interfere constructively in the center ({phi}=0), while it is nearly suppressed when they are out of phasemore » ({phi}={pi})« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haber, Eldad
2014-03-17
The focus of research was: Developing adaptive mesh for the solution of Maxwell's equations; Developing a parallel framework for time dependent inverse Maxwell's equations; Developing multilevel methods for optimization problems with inequality constraints; A new inversion code for inverse Maxwell's equations in the 0th frequency (DC resistivity); A new inversion code for inverse Maxwell's equations in low frequency regime. Although the research concentrated on electromagnetic forward and in- verse problems the results of the research was applied to the problem of image registration.
NASA Astrophysics Data System (ADS)
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Construction of Three Dimensional Solutions for the Maxwell Equations
NASA Technical Reports Server (NTRS)
Yefet, A.; Turkel, E.
1998-01-01
We consider numerical solutions for the three dimensional time dependent Maxwell equations. We construct a fourth order accurate compact implicit scheme and compare it to the Yee scheme for free space in a box.
Localization of intense electromagnetic waves in a relativistically hot plasma.
Shukla, P K; Eliasson, B
2005-02-18
We consider nonlinear interactions between intense short electromagnetic waves (EMWs) and a relativistically hot electron plasma that supports relativistic electron holes (REHs). It is shown that such EMW-REH interactions are governed by a coupled nonlinear system of equations composed of a nonlinear Schro dinger equation describing the dynamics of the EMWs and the Poisson-relativistic Vlasov system describing the dynamics of driven REHs. The present nonlinear system of equations admits both a linearly trapped discrete number of eigenmodes of the EMWs in a quasistationary REH and a modification of the REH by large-amplitude trapped EMWs. Computer simulations of the relativistic Vlasov and Maxwell-Poisson system of equations show complex interactions between REHs loaded with localized EMWs.
NASA Astrophysics Data System (ADS)
Champagne, Benoı̂t; Mennucci, Benedetta; Cossi, Maurizio; Cammi, Roberto; Tomasi, Jacopo
1998-11-01
The solvent effects upon the longitudinal polarizability ( αL) and second hyperpolarizability ( γL) of small all-trans polyacetylene (PA) chains ranging from C 2H 4 to C 10H 12 have been evaluated at the time-dependent Hartree-Fock (TDHF) level within the framework of the polarizable continuum model. The solvent effects, which correspond to the solvent-induced modifications of the solute properties, result in large increases of the linear and nonlinear responses even for solvents with low dielectric constants. When the dielectric constant is increased, the αL values tend to saturate at values 30%-40% larger than in vacuo, whereas for γL it ranges from 100% to 400% depending upon the nonlinear optical process and the length of the PA chain. These solvent-induced αL and γL enhancements can partially be accounted for by the corresponding decrease of the energy of the lowest optically-allowed electronic excitation. The geometrical parameters of the ground state of the PA chains are almost unaffected by the solvent. This shows that the solvent effects are mainly of electronic nature. In addition, the local field factors, which relate the macroscopic or Maxwell field to the field experienced by the solute, tend towards unity with increasing chain length for the longitudinal PA axis.
A Generalization of the Einstein-Maxwell Equations
NASA Astrophysics Data System (ADS)
Cotton, Fredrick
2016-03-01
The proposed modifications of the Einstein-Maxwell equations include: (1) the addition of a scalar term to the electromagnetic side of the equation rather than to the gravitational side, (2) the introduction of a 4-dimensional, nonlinear electromagnetic constitutive tensor and (3) the addition of curvature terms arising from the non-metric components of a general symmetric connection. The scalar term is defined by the condition that a spherically symmetric particle be force-free and mathematically well-behaved everywhere. The constitutive tensor introduces two auxiliary fields which describe the particle structure. The additional curvature terms couple both to particle solutions and to electromagnetic and gravitational wave solutions. http://sites.google.com/site/fwcotton/em-30.pdf
NASA Astrophysics Data System (ADS)
Shaikhova, G.; Ozat, N.; Yesmakhanova, K.; Bekova, G.
2018-02-01
In this work, we present Lax pair for two-dimensional complex modified Korteweg-de Vries and Maxwell-Bloch (cmKdV-MB) system with the time-dependent coefficient. Dark and bright soliton solutions for the cmKdV-MB system with variable coefficient are received by Darboux transformation. Moreover, the determinant representation of the one-fold and two-fold Darboux transformation for the cmKdV-MB system with time-dependent coefficient is presented.
Computational Modeling of Ultrafast Pulse Propagation in Nonlinear Optical Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Agrawal, Govind P.; Kwak, Dochan (Technical Monitor)
1996-01-01
There is an emerging technology of photonic (or optoelectronic) integrated circuits (PICs or OEICs). In PICs, optical and electronic components are grown together on the same chip. rib build such devices and subsystems, one needs to model the entire chip. Accurate computer modeling of electromagnetic wave propagation in semiconductors is necessary for the successful development of PICs. More specifically, these computer codes would enable the modeling of such devices, including their subsystems, such as semiconductor lasers and semiconductor amplifiers in which there is femtosecond pulse propagation. Here, the computer simulations are made by solving the full vector, nonlinear, Maxwell's equations, coupled with the semiconductor Bloch equations, without any approximations. The carrier is retained in the description of the optical pulse, (i.e. the envelope approximation is not made in the Maxwell's equations), and the rotating wave approximation is not made in the Bloch equations. These coupled equations are solved to simulate the propagation of femtosecond optical pulses in semiconductor materials. The simulations describe the dynamics of the optical pulses, as well as the interband and intraband.
Burnett-Cattaneo continuum theory for shock waves.
Holian, Brad Lee; Mareschal, Michel; Ravelo, Ramon
2011-02-01
We model strong shock-wave propagation, both in the ideal gas and in the dense Lennard-Jones fluid, using a refinement of earlier work, which accounts for the cold compression in the early stages of the shock rise by a nonlinear, Burnett-like, strain-rate dependence of the thermal conductivity, and relaxation of kinetic-temperature components on the hot, compressed side of the shock front. The relaxation of the disequilibrium among the three components of the kinetic temperature, namely, the difference between the component in the direction of a planar shock wave and those in the transverse directions, particularly in the region near the shock front, is accomplished at a much more quantitative level by a rigorous application of the Cattaneo-Maxwell relaxation equation to a reference solution, namely, the steady shock-wave solution of linear Navier-Stokes-Fourier theory, along with the nonlinear Burnett heat-flux term. Our new continuum theory is in nearly quantitative agreement with nonequilibrium molecular-dynamics simulations under strong shock-wave conditions, using relaxation parameters obtained from the reference solution. ©2011 American Physical Society
`Un-Darkening' the Cosmos: New laws of physics for an expanding universe
NASA Astrophysics Data System (ADS)
George, William
2017-11-01
Dark matter is believed to exist because Newton's Laws are inconsistent with the visible matter in galaxies. Dark energy is necessary to explain the universe expansion. (also available from www.turbulence-online.com) suggested that the equations themselves might be in error because they implicitly assume that time is measured in linear increments. This presentation couples the possible non-linearity of time with an expanding universe. Maxwell's equations for an expanding universe with constant speed of light are shown to be invariant only if time itself is non-linear. Both linear and exponential expansion rates are considered. A linearly expanding universe corresponds to logarithmic time, while exponential expansion corresponds to exponentially varying time. Revised Newton's laws using either leads to different definitions of mass and kinetic energy, both of which appear time-dependent if expressed in linear time. And provide the possibility of explaining the astronomical observations without either dark matter or dark energy. We would have never noticed the differences on earth, since the leading term in both expansions is linear in δ /to where to is the current age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritboon, Atirach, E-mail: atirach.3.14@gmail.com; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai 90112; Daengngam, Chalongrat, E-mail: chalongrat.d@psu.ac.th
2016-08-15
Biakynicki-Birula introduced a photon wave function similar to the matter wave function that satisfies the Schrödinger equation. Its second quantization form can be applied to investigate nonlinear optics at nearly full quantum level. In this paper, we applied the photon wave function formalism to analyze both linear optical processes in the well-known Mach–Zehnder interferometer and nonlinear optical processes for sum-frequency generation in dispersive and lossless medium. Results by photon wave function formalism agree with the well-established Maxwell treatments and existing experimental verifications.
NASA Astrophysics Data System (ADS)
Vardanyan, Aleksandr O.; Oganesyan, David L.
2008-11-01
The results of a theoretical study of the formation of a supercontinuum produced due to the interaction of femtosecond laser pulses with an isotropic nonlinear medium are presented. The system of nonlinear Maxwell's equations was numerically integrated in time by the finite-difference method. The interaction of mutually orthogonal linearly-polarised 1.98-μm, 30-fs, 30-nJ pulses propagating along the normal to the 110 plane in a 1-mm-long GaAs crystal was considered. In the nonlinear part of the polarisation medium, the inertialless second-order nonlinear susceptibility was taken into account. The formation process of a terahertz pulse obtained due to the supercontinuum filtration was studied.
Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, A.C.; Ray, D.
1987-12-01
Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.
NASA Astrophysics Data System (ADS)
Pereira, Jonas P.; Coelho, Jaziel G.; de Lima, Rafael C. R.
2018-05-01
Magnetars are neutron stars presenting bursts and outbursts of X- and soft-gamma rays that can be understood with the presence of very large magnetic fields. In this setting, nonlinear electrodynamics should be taken into account for a more accurate description of such compact systems. We study that in the context of ideal magnetohydrodynamics and make a realization of our analysis to the case of the well known Born-Infeld (BI) electromagnetism in order to come up with some of its astrophysical consequences. We focus here on toroidal magnetic fields as motivated by already known magnetars with low dipolar magnetic fields and their expected relevance in highly magnetized stars. We show that BI electrodynamics leads to larger toroidal magnetic fields when compared to Maxwell's electrodynamics. Hence, one should expect higher production of gravitational waves (GWs) and even more energetic giant flares from nonlinear stars. Given current constraints on BI's scale field, giant flare energetics and magnetic fields in magnetars, we also find that the maximum magnitude of magnetar ellipticities should be 10^{-6}-10^{-5}. Besides, BI electrodynamics may lead to a maximum increase of order 10-20% of the GW energy radiated from a magnetar when compared to Maxwell's, while much larger percentages may arise for other physically motivated scenarios. Thus, nonlinear theories of the electromagnetism might also be probed in the near future with the improvement of GW detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong QIn, Ronald Davidson
2011-07-18
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in a uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are non-commutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation, and reduces beam pulsation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin Hong; Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026; Davidson, Ronald C.
2011-05-15
The Courant-Snyder (CS) theory and the Kapchinskij-Vladimirskij (KV) distribution for high-intensity beams in an uncoupled focusing lattice are generalized to the case of coupled transverse dynamics. The envelope function is generalized to an envelope matrix, and the envelope equation becomes a matrix envelope equation with matrix operations that are noncommutative. In an uncoupled lattice, the KV distribution function, first analyzed in 1959, is the only known exact solution of the nonlinear Vlasov-Maxwell equations for high-intensity beams including self-fields in a self-consistent manner. The KV solution is generalized to high-intensity beams in a coupled transverse lattice using the generalized CS invariant.more » This solution projects to a rotating, pulsating elliptical beam in transverse configuration space. The fully self-consistent solution reduces the nonlinear Vlasov-Maxwell equations to a nonlinear matrix ordinary differential equation for the envelope matrix, which determines the geometry of the pulsating and rotating beam ellipse. These results provide us with a new theoretical tool to investigate the dynamics of high-intensity beams in a coupled transverse lattice. A strongly coupled lattice, a so-called N-rolling lattice, is studied as an example. It is found that strong coupling does not deteriorate the beam quality. Instead, the coupling induces beam rotation and reduces beam pulsation.« less
Metal-coated magnetic nanoparticles in an optically active medium: A nonreciprocal metamaterial
NASA Astrophysics Data System (ADS)
Christofi, Aristi; Stefanou, Nikolaos
2018-03-01
We report on the optical response of a nonreciprocal bianisotropic metamaterial, consisting of spherical, metal-coated magnetic nanoparticles embedded in an optically active medium, thus combining gyrotropy, plasmonic resonances, and chirality in a versatile design. The corresponding effective medium is deduced by an appropriate two-step generalized Maxwell-Garnett homogenization scheme. The associated photonic band structure and transmission spectra are obtained through a six-vector formulation of Maxwell equations, which provides an efficient framework for general bianisotropic structures going beyond existing approaches that involve cumbersome nonlinear eigenvalue problems. Our results, analyzed and discussed in the light of group theory, provide evidence that the proposed metamaterial exhibits some remarkable frequency-tunable properties, such as strong, plasmon-enhanced nonreciprocal polarization azimuth rotation and magnetochiral dichroism.
Middle atmosphere electrical energy coupling
NASA Technical Reports Server (NTRS)
Hale, L. C.
1989-01-01
The middle atmosphere (MA) has long been known as an absorber of radio waves, and as a region of nonlinear interactions among waves. The region of highest transverse conductivity near the top of the MA provides a common return for global thunderstorm, auroral Birkeland, and ionospheric dynamo currents, with possibilities for coupling among them. Their associated fields and other transverse fields map to lower altitudes depending on scale size. Evidence now exists for motion-driven aerosol generators, and for charge trapped at the base of magnetic field lines, both capable of producing large MA electric fields. Ionospheric Maxwell currents (curl H) parallel to the magnetic field appear to map to lower altitudes, with rapidly time-varying components appearing as displacement currents in the stratosphere. Lightning couples a (primarily ELF and ULF) current transient to the ionosphere and magnetosphere whose wave shape is largely dependent on the MA conductivity profile. Electrical energy is of direct significance mainly in the upper MA, but electrodynamic transport of minor constituents such as smoke particles or CN may be important at other altitudes.
Intrinsic and extrinsic relaxation of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics: Effect of sintering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J. Y.; Zhao, X. T.; Li, S. T.
2010-11-15
The effect of sintering process on the electrical properties of CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramic dielectrics were investigated in this paper. It was found that grain size is affected by sintering and the nonlinear current-voltage (I-V) property will decrease with the increased sintering time. Also, the frequency and temperature dependences of dielectric permittivity and loss in the ranges of 10{sup -1}-10{sup 7} Hz and 130-270 K were studied. Two relaxation processes with activation energy of 0.51 eV and 0.10 eV, respectively, were found in the frequency dependence of tan {delta} and Cole-Cole planes, which can be interpreted in termsmore » of insulating grain boundaries and semiconducting grains. It was suggested that grain boundary Maxwell-Wagner relaxation and ionization of oxygen vacancy V{sub O}{sup ++}, proposed as extrinsic and intrinsic relaxations, are responsible for the dielectric behaviors of CCTO ceramics.« less
NASA Astrophysics Data System (ADS)
Zeng, Hao; Xie, Zhimin; Gu, Jianping; Sun, Huiyu
2018-03-01
A new thermomechanical network transition constitutive model is proposed in the study to describe the viscoelastic behavior of shape memory polymers (SMPs). Based on the microstructure of semi-crystalline SMPs, a new simplified transformation equation is proposed to describe the transform of transient networks. And the generalized fractional Maxwell model is introduced in the paper to estimate the temperature-dependent storage modulus. In addition, a neo-KAHR theory with multiple discrete relaxation processes is put forward to study the structural relaxation of the nonlinear thermal strain in cooling/heating processes. The evolution equations of the time- and temperature-dependent stress and strain response are developed. In the model, the thermodynamical and mechanical characteristics of SMPs in the typical thermomechanical cycle are described clearly and the irreversible deformation is studied in detail. Finally, the typical thermomechanical cycles are simulated using the present constitutive model, and the simulation results agree well with the experimental results.
A Problem and Its Solution Involving Maxwell's Equations and an Inhomogeneous Medium.
ERIC Educational Resources Information Center
Williamson, W., Jr.
1980-01-01
Maxwell's equation are solved for an inhomogeneous medium which has a coordinate-dependent dielectric function. The problem and its solutions are given in a format which should make it useful as an intermediate or advanced level problem in an electrodynamics course. (Author/SK)
Apar-T: code, validation, and physical interpretation of particle-in-cell results
NASA Astrophysics Data System (ADS)
Melzani, Mickaël; Winisdoerffer, Christophe; Walder, Rolf; Folini, Doris; Favre, Jean M.; Krastanov, Stefan; Messmer, Peter
2013-10-01
We present the parallel particle-in-cell (PIC) code Apar-T and, more importantly, address the fundamental question of the relations between the PIC model, the Vlasov-Maxwell theory, and real plasmas. First, we present four validation tests: spectra from simulations of thermal plasmas, linear growth rates of the relativistic tearing instability and of the filamentation instability, and nonlinear filamentation merging phase. For the filamentation instability we show that the effective growth rates measured on the total energy can differ by more than 50% from the linear cold predictions and from the fastest modes of the simulation. We link these discrepancies to the superparticle number per cell and to the level of field fluctuations. Second, we detail a new method for initial loading of Maxwell-Jüttner particle distributions with relativistic bulk velocity and relativistic temperature, and explain why the traditional method with individual particle boosting fails. The formulation of the relativistic Harris equilibrium is generalized to arbitrary temperature and mass ratios. Both are required for the tearing instability setup. Third, we turn to the key point of this paper and scrutinize the question of what description of (weakly coupled) physical plasmas is obtained by PIC models. These models rely on two building blocks: coarse-graining, i.e., grouping of the order of p ~ 1010 real particles into a single computer superparticle, and field storage on a grid with its subsequent finite superparticle size. We introduce the notion of coarse-graining dependent quantities, i.e., quantities depending on p. They derive from the PIC plasma parameter ΛPIC, which we show to behave as ΛPIC ∝ 1/p. We explore two important implications. One is that PIC collision- and fluctuation-induced thermalization times are expected to scale with the number of superparticles per grid cell, and thus to be a factor p ~ 1010 smaller than in real plasmas, a fact that we confirm with simulations. The other is that the level of electric field fluctuations scales as 1/ΛPIC ∝ p. We provide a corresponding exact expression, taking into account the finite superparticle size. We confirm both expectations with simulations. Fourth, we compare the Vlasov-Maxwell theory, often used for code benchmarking, to the PIC model. The former describes a phase-space fluid with Λ = + ∞ and no correlations, while the PIC plasma features a small Λ and a high level of correlations when compared to a real plasma. These differences have to be kept in mind when interpreting and validating PIC results against the Vlasov-Maxwell theory and when modeling real physical plasmas.
Electromagnetic fields with vanishing quantum corrections
NASA Astrophysics Data System (ADS)
Ortaggio, Marcello; Pravda, Vojtěch
2018-04-01
We show that a large class of null electromagnetic fields are immune to any modifications of Maxwell's equations in the form of arbitrary powers and derivatives of the field strength. These are thus exact solutions to virtually any generalized classical electrodynamics containing both non-linear terms and higher derivatives, including, e.g., non-linear electrodynamics as well as QED- and string-motivated effective theories. This result holds not only in a flat or (anti-)de Sitter background, but also in a larger subset of Kundt spacetimes, which allow for the presence of aligned gravitational waves and pure radiation.
Bekenstein inequalities and nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Peñafiel, M. L.; Falciano, F. T.
2017-12-01
Bekenstein and Mayo proposed a generalized bound for the entropy, which implies some inequalities between the charge, energy, angular momentum, and size of the macroscopic system. Dain has shown that Maxwell's electrodynamics satisfies all three inequalities. We investigate the validity of these relations in the context of nonlinear electrodynamics and show that Born-Infeld electrodynamics satisfies all of them. However, contrary to the linear theory, there is no rigidity statement in Born-Infeld. We study the physical meaning and the relationship between these inequalities, and in particular, we analyze the connection between the energy-angular momentum inequality and causality.
New aspect of critical nonlinearly charged black hole
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Taghadomi, Z. S.; Corda, C.
2018-04-01
The motion of a point charged particle moving in the background of the critical power Maxwell charged AdS black holes in a probe approximation is studied. The extended phase space, where the cosmological constant appears as a pressure, is regarded and the effective potential is investigated. At last, the mass-to-charge ratio and the large q limit are studied.
NASA Astrophysics Data System (ADS)
Sravanthi, C. S.; Gorla, R. S. R.
2018-02-01
The aim of this paper is to study the effects of chemical reaction and heat source/sink on a steady MHD (magnetohydrodynamic) two-dimensional mixed convective boundary layer flow of a Maxwell nanofluid over a porous exponentially stretching sheet in the presence of suction/blowing. Convective boundary conditions of temperature and nanoparticle concentration are employed in the formulation. Similarity transformations are used to convert the governing partial differential equations into non-linear ordinary differential equations. The resulting non-linear system has been solved analytically using an efficient technique, namely: the homotopy analysis method (HAM). Expressions for velocity, temperature and nanoparticle concentration fields are developed in series form. Convergence of the constructed solution is verified. A comparison is made with the available results in the literature and our results are in very good agreement with the known results. The obtained results are presented through graphs for several sets of values of the parameters and salient features of the solutions are analyzed. Numerical values of the local skin-friction, Nusselt number and nanoparticle Sherwood number are computed and analyzed.
Holographic conductivity of holographic superconductors with higher-order corrections
NASA Astrophysics Data System (ADS)
Sheykhi, Ahmad; Ghazanfari, Afsoon; Dehyadegari, Amin
2018-02-01
We analytically and numerically disclose the effects of the higher-order correction terms in the gravity and in the gauge field on the properties of s-wave holographic superconductors. On the gravity side, we consider the higher curvature Gauss-Bonnet corrections and on the gauge field side, we add a quadratic correction term to the Maxwell Lagrangian. We show that, for this system, one can still obtain an analytical relation between the critical temperature and the charge density. We also calculate the critical exponent and the condensation value both analytically and numerically. We use a variational method, based on the Sturm-Liouville eigenvalue problem for our analytical study, as well as a numerical shooting method in order to compare with our analytical results. For a fixed value of the Gauss-Bonnet parameter, we observe that the critical temperature decreases with increasing the nonlinearity of the gauge field. This implies that the nonlinear correction term to the Maxwell electrodynamics makes the condensation harder. We also study the holographic conductivity of the system and disclose the effects of the Gauss-Bonnet and nonlinear parameters α and b on the superconducting gap. We observe that, for various values of α and b, the real part of the conductivity is proportional to the frequency per temperature, ω /T, as the frequency is large enough. Besides, the conductivity has a minimum in the imaginary part which is shifted toward greater frequency with decreasing temperature.
FDTD method and models in optical education
NASA Astrophysics Data System (ADS)
Lin, Xiaogang; Wan, Nan; Weng, Lingdong; Zhu, Hao; Du, Jihe
2017-08-01
In this paper, finite-difference time-domain (FDTD) method has been proposed as a pedagogical way in optical education. Meanwhile, FDTD solutions, a simulation software based on the FDTD algorithm, has been presented as a new tool which helps abecedarians to build optical models and to analyze optical problems. The core of FDTD algorithm is that the time-dependent Maxwell's equations are discretized to the space and time partial derivatives, and then, to simulate the response of the interaction between the electronic pulse and the ideal conductor or semiconductor. Because the solving of electromagnetic field is in time domain, the memory usage is reduced and the simulation consequence on broadband can be obtained easily. Thus, promoting FDTD algorithm in optical education is available and efficient. FDTD enables us to design, analyze and test modern passive and nonlinear photonic components (such as bio-particles, nanoparticle and so on) for wave propagation, scattering, reflection, diffraction, polarization and nonlinear phenomena. The different FDTD models can help teachers and students solve almost all of the optical problems in optical education. Additionally, the GUI of FDTD solutions is so friendly to abecedarians that learners can master it quickly.
Relativistic laser-plasma interactions in the quantum regime.
Eliasson, Bengt; Shukla, P K
2011-04-01
We consider nonlinear interactions between a relativistically strong laser beam and a plasma in the quantum regime. The collective behavior of electrons is modeled by a Klein-Gordon equation, which is nonlinearly coupled with the electromagnetic wave through the Maxwell and Poisson equations. This allows us to study nonlinear interactions between arbitrarily large-amplitude electromagnetic waves and a quantum plasma. We have used our system of nonlinear equations to study theoretically the parametric instabilities involving stimulated Raman scattering and modulational instabilities. A model for quasi-steady-state propagating electromagnetic wave packets is also derived, and which shows possibility of localized solitary structures in a quantum plasma. Numerical simulations demonstrate collapse and acceleration of electrons in the nonlinear stage of the modulational instability, as well as possibility of the wake-field acceleration of electrons to relativistic speeds by short laser pulses at nanometer length scales. Our study is relevant for understanding the localization of intense electromagnetic pulses in a quantum plasma with extremely high electron densities and relatively low temperature.
Magnetically charged regular black hole in a model of nonlinear electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Meng-Sen, E-mail: mengsenma@gmail.com
2015-11-15
We obtain a magnetically charged regular black hole in general relativity. The source to the Einstein field equations is nonlinear electrodynamic field in a physically reasonable model of nonlinear electrodynamics (NED). “Physically” here means the NED model is constructed on the basis of three conditions: the Maxwell asymptotic in the weak electromagnetic field limit; the presence of vacuum birefringence phenomenon; and satisfying the weak energy condition (WEC). In addition, we analyze the thermodynamic properties of the regular black hole in two ways. According to the usual black hole thermodynamics, we calculate the heat capacity at constant charge, from which wemore » know the smaller black hole is more stable. We also employ the horizon thermodynamics to discuss the thermodynamic quantities, especially the heat capacity at constant pressure.« less
Linear and Nonlinear Analysis of Magnetic Bearing Bandwidth Due to Eddy Current Limitations
NASA Technical Reports Server (NTRS)
Kenny, Andrew; Palazzolo, Alan
2000-01-01
Finite element analysis was used to study the bandwidth of alloy hyperco50a and silicon iron laminated rotors and stators in magnetic bearings. A three dimensional model was made of a heteropolar bearing in which all the flux circulated in the plane of the rotor and stator laminate. A three dimensional model of a plate similar to the region of a pole near the gap was also studied with a very fine mesh. Nonlinear time transient solutions for the net flux carried by the plate were compared to steady state time harmonic solutions. Both linear and quasi-nonlinear steady state time harmonic solutions were calculated and compared. The finite element solutions for power loss and flux bandwidth were compared to those determined from classical analytical solutions to Maxwell's equations.
Singularity-free solutions for anisotropic charged fluids with Chaplygin equation of state
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahaman, Farook; Ray, Saibal; Jafry, Abdul Kayum
2010-11-15
We extend the Krori-Barua analysis of the static, spherically symmetric, Einstein-Maxwell field equations and consider charged fluid sources with anisotropic stresses. The inclusion of a new variable (tangential pressure) allows the use of a nonlinear, Chaplygin-type equation of state with coefficients fixed by the matching conditions at the boundary of the source. Some physical features are briefly discussed.
Maxwell-Wagner relaxation in electrical imaging.
Korjenevsky, A V
2005-04-01
The electric field tomography (EFT) method exploits interaction of high-frequency electric field with an inhomogeneous conductive medium without contact with the electrodes. The interaction is accompanied by a high-frequency redistribution of free charges inside the medium and leads to small and regular phase shifts of the field in the area surrounding an object. Such a kind of phenomenon is referred to as the Maxwell-Wagner relaxation. Measuring the perturbations of the field using the set of electrodes placed around the object enables us to reconstruct the internal structure of the medium, generally the spatial distribution of a nonlinear combination of permittivity and resistivity. In the case of biomedical applications the result of measurements is determined mainly by the resistivity of the tissues. Three-dimensional simulation based on the finite element method has demonstrated the feasibility of the technique.
The general Lie group and similarity solutions for the one-dimensional Vlasov-Maxwell equations
NASA Technical Reports Server (NTRS)
Roberts, D.
1985-01-01
The general Lie point transformation group and the associated reduced differential equations and similarity forms for the solutions are derived here for the coupled (nonlinear) Vlasov-Maxwell equations in one spatial dimension. The case of one species in a background is shown to admit a larger group than the multispecies case. Previous exact solutions are shown to be special cases of the above solutions, and many of the new solutions are found to constrain the form of the distribution function much more than, for example, the BGK solutions do. The individual generators of the Lie group are used to find the possible subgroups. Finally, a simple physical argument is given to show that the asymptotic solution for a one-species, one-dimensional plasma is one of the general similarity solutions.
Propagation of an ultra-short, intense laser in a relativistic fluid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ritchie, A.B.; Decker, C.D.
1997-12-31
A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlapmore » with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.« less
Quantum singularities in (2+1) dimensional matter coupled black hole spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unver, O.; Gurtug, O.
2010-10-15
Quantum singularities considered in the 3D Banados-Teitelboim-Zanelli (BTZ) spacetime by Pitelli and Letelier [Phys. Rev. D 77, 124030 (2008)] is extended to charged BTZ and 3D Einstein-Maxwell-dilaton gravity spacetimes. The occurrence of naked singularities in the Einstein-Maxwell extension of the BTZ spacetime both in linear and nonlinear electrodynamics as well as in the Einstein-Maxwell-dilaton gravity spacetimes are analyzed with the quantum test fields obeying the Klein-Gordon and Dirac equations. We show that with the inclusion of the matter fields, the conical geometry near r=0 is removed and restricted classes of solutions are admitted for the Klein-Gordon and Dirac equations. Hence,more » the classical central singularity at r=0 turns out to be quantum mechanically singular for quantum particles obeying the Klein-Gordon equation but nonsingular for fermions obeying the Dirac equation. Explicit calculations reveal that the occurrence of the timelike naked singularities in the considered spacetimes does not violate the cosmic censorship hypothesis as far as the Dirac fields are concerned. The role of horizons that clothes the singularity in the black hole cases is replaced by repulsive potential barrier against the propagation of Dirac fields.« less
Geometric Implications of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2015-03-01
Maxwell's synthesis of the varied results of the accumulated knowledge of electricity and magnetism, based largely on the searching insights of Faraday, still provide new issues to explore. A case in point is a well recognized anomaly in the Maxwell equations: The laws of electricity and magnetism require two 3-vector and two scalar equations, but only six dependent variables are available to be their solutions, the 3-vectors E and B. This leaves an apparent redundancy of two degrees of freedom (J. Rosen, AJP 48, 1071 (1980); Jiang, Wu, Povinelli, J. Comp. Phys. 125, 104 (1996)). The observed self-consistency of the eight equations suggests that they contain additional information. This can be sought as a previously unnoticed constraint connecting the space and time variables, r and t. This constraint can be identified. It distorts the otherwise Euclidean 3-space of r with the extremely slight, time dependent curvature k (t) =Rcurv-2 (t) of the 3-space of a hypersphere whose radius has the time dependence dRcurv / dt = +/- c nonrelativistically, or dRcurvLor / dt = +/- ic relativistically. The time dependence is exactly that of the Hubble expansion. Implications of this identification will be explored.
NASA Astrophysics Data System (ADS)
Mustafa, M.; Mushtaq, A.; Hayat, T.; Alsaedi, A.
2018-04-01
Mathematical model for Maxwell fluid flow in rotating frame induced by an isothermal stretching wall is explored numerically. Scale analysis based boundary layer approximations are applied to simplify the conservation relations which are later converted to similar forms via appropriate substitutions. A numerical approach is utilized to derive similarity solutions for broad range of Deborah number. The results predict that velocity distributions are inversely proportional to the stress relaxation time. This outcome is different from that observed for the elastic parameter of second grade fluid. Unlike non-rotating frame, the solution curves are oscillatory decaying functions of similarity variable. As angular velocity enlarges, temperature rises and significant drop in the heat transfer coefficient occurs. We note that the wall slope of temperature has an asymptotically decaying profile against the wall to ambient ratio parameter. From the qualitative view point, temperature ratio parameter and radiation parameter have similar effect on the thermal boundary layer. Furthermore, radiation parameter has a definite role in improving the cooling process of the stretching boundary. A comparative study of current numerical computations and those from the existing studies is also presented in a limiting case. To our knowledge, the phenomenon of non-linear radiation in rotating viscoelastic flow due to linearly stretched plate is just modeled here.
Performance and limitations of p-version finite element method for problems containing singularities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
In this paper, the authors investigate the performance of p-version Least Squares Finite Element Formulation (LSFEF) for a hyperbolic system of equations describing a one-dimensional radial flow of an upper-convected Maxwell fluid. This problem has r{sup 2} singularity in stress and r{sup {minus}1} singularity in velocity at r = 0. By carefully controlling the inner radius r{sub j}, Deborah number DE and Reynolds number Re, this problem can be used to simulate the following four classes of problems: (a) smooth linear problems, (b) smooth non-linear problems, (c) singular linear problems and (d) singular non-linear problems. They demonstrate that in casesmore » (a) and (b) the p-version method, in particular p-version LSFEF is meritorious. However, for cases (c) and (d) p-version LSFEF, even with extreme mesh refinement and very high p-levels, either produces wrong solutions, or results in the failure of the iterative solution procedure. Even though in the numerical studies they have considered p-version LSFEF for the radial flow of the upper-convected Maxwell fluid, the findings and conclusions are equally valid for other smooth and singular problems as well, regardless of the formulation strategy chosen and element approximation functions employed.« less
NASA Technical Reports Server (NTRS)
Kim, H.; Crawford, F. W.
1977-01-01
It is pointed out that the conventional iterative analysis of nonlinear plasma wave phenomena, which involves a direct use of Maxwell's equations and the equations describing the particle dynamics, leads to formidable theoretical and algebraic complexities, especially for warm plasmas. As an effective alternative, the Lagrangian method may be applied. It is shown how this method may be used in the microscopic description of small-signal wave propagation and in the study of nonlinear wave interactions. The linear theory is developed for an infinite, homogeneous, collisionless, warm magnetoplasma. A summary is presented of a perturbation expansion scheme described by Galloway and Kim (1971), and Lagrangians to third order in perturbation are considered. Attention is given to the averaged-Lagrangian density, the action-transfer and coupled-mode equations, and the general solution of the coupled-mode equations.
NASA Astrophysics Data System (ADS)
Carnio, Brett N.; Elliott, Janet A. W.
2014-08-01
The number of Maxwell-Boltzmann particles that hit a flat wall in infinite space per unit area per unit time is a well-known result. As new applications are arising in micro and nanotechnologies there are a number of situations in which a rarefied gas interacts with either a flat or curved surface in a small confined geometry. Thus, it is necessary to prove that the Maxwell-Boltzmann collision frequency result holds even if a container's dimensions are on the order of nanometers and also that this result is valid for both a finite container with flat walls (a rectangular container) and a finite container with a curved wall (a cylindrical container). An analytical proof confirms that the Maxwell-Boltzmann collision frequencies for either a finite rectangular container or a finite cylindrical container are both equal to the well-known result obtained for a flat wall in infinite space. A major aspect of this paper is the introduction of a mathematical technique to solve the arising infinite sum of integrals whose integrands depend on the Maxwell-Boltzmann velocity distribution.
Nonlinear tuning techniques of plasmonic nano-filters
NASA Astrophysics Data System (ADS)
Kotb, Rehab; Ismail, Yehea; Swillam, Mohamed A.
2015-02-01
In this paper, a fitting model to the propagation constant and the losses of Metal-Insulator-Metal (MIM) plasmonic waveguide is proposed. Using this model, the modal characteristics of MIM plasmonic waveguide can be solved directly without solving Maxwell's equations from scratch. As a consequence, the simulation time and the computational cost that are needed to predict the response of different plasmonic structures can be reduced significantly. This fitting model is used to develop a closed form model that describes the behavior of a plasmonic nano-filter. Easy and accurate mechanisms to tune the filter are investigated and analyzed. The filter tunability is based on using a nonlinear dielectric material with Pockels or Kerr effect. The tunability is achieved by applying an external voltage or through controlling the input light intensity. The proposed nano-filter supports both red and blue shift in the resonance response depending on the type of the used non-linear material. A new approach to control the input light intensity by applying an external voltage to a previous stage is investigated. Therefore, the filter tunability to a stage that has Kerr material can be achieved by applying voltage to a previous stage that has Pockels material. Using this method, the Kerr effect can be achieved electrically instead of varying the intensity of the input source. This technique enhances the ability of the device integration for on-chip applications. Tuning the resonance wavelength with high accuracy, minimum insertion loss and high quality factor is obtained using these approaches.
NASA Astrophysics Data System (ADS)
Chun, Sehun
2017-07-01
Applying the method of moving frames to Maxwell's equations yields two important advancements for scientific computing. The first is the use of upwind flux for anisotropic materials in Maxwell's equations, especially in the context of discontinuous Galerkin (DG) methods. Upwind flux has been available only to isotropic material, because of the difficulty of satisfying the Rankine-Hugoniot conditions in anisotropic media. The second is to solve numerically Maxwell's equations on curved surfaces without the metric tensor and composite meshes. For numerical validation, spectral convergences are displayed for both two-dimensional anisotropic media and isotropic spheres. In the first application, invisible two-dimensional metamaterial cloaks are simulated with a relatively coarse mesh by both the lossless Drude model and the piecewisely-parametered layered model. In the second application, extremely low frequency propagation on various surfaces such as spheres, irregular surfaces, and non-convex surfaces is demonstrated.
NASA Astrophysics Data System (ADS)
Hendi, S. H.; Panahiyan, S.
2014-12-01
Motivated by the string corrections on the gravity and electrodynamics sides, we consider a quadratic Maxwell invariant term as a correction of the Maxwell Lagrangian to obtain exact solutions of higher dimensional topological black holes in Gauss-Bonnet gravity. We first investigate the asymptotically flat solutions and obtain conserved and thermodynamic quantities which satisfy the first law of thermodynamics. We also analyze thermodynamic stability of the solutions by calculating the heat capacity and the Hessian matrix. Then, we focus on horizon-flat solutions with an anti-de Sitter (AdS) asymptote and produce a rotating spacetime with a suitable transformation. In addition, we calculate the conserved and thermodynamic quantities for asymptotically AdS black branes which satisfy the first law of thermodynamics. Finally, we perform thermodynamic instability criterion to investigate the effects of nonlinear electrodynamics in canonical and grand canonical ensembles.
Resonant optical pulses on a continuous-wave background in two-level active media
NASA Astrophysics Data System (ADS)
Li, Sitai; Biondini, Gino; Kovačič, Gregor; Gabitov, Ildar
2018-01-01
We present exact N-soliton optical pulses riding on a continuous-wave (c.w.) beam that propagate through and interact with a two-level active optical medium. Their representation is derived via an appropriate generalization of the inverse scattering transform for the corresponding Maxwell-Bloch equations. We describe the single-soliton solutions in detail and classify them into several distinct families. In addition to the analogues of traveling-wave soliton pulses that arise in the absence of a c.w. beam, we obtain breather-like structures, periodic pulse-trains and rogue-wave-type (i.e., rational) pulses, whose existence is directly due to the presence of the c.w. beam. These soliton solutions are the analogues for Maxwell-Bloch systems of the four classical solution types of the focusing nonlinear Schrödinger equation with non-zero background, although the physical behavior of the corresponding solutions is quite different.
1/f Noise Inside a Faraday Cage
NASA Astrophysics Data System (ADS)
Handel, Peter H.; George, Thomas F.
2009-04-01
We show that quantum 1/f noise does not have a lower frequency limit given by the lowest free electromagnetic field mode in a Faraday cage, even in an ideal cage. Indeed, quantum 1/f noise comes from the infrared-divergent coupling of the field with the charges, in their joint nonlinear system, where the charges cause the field that reacts back on the charges, and so on. This low-frequency limitation is thus not applicable for the nonlinear system of matter and field in interaction. Indeed, this nonlinear system is governed by Newton's laws, Maxwell's equations, in general also by the diffusion equations for particles and heat, or reaction kinetics given by quantum matrix elements. Nevertheless, all the other quantities can be eliminated in principle, resulting in highly nonlinear integro-differential equations for the electromagnetic field only, which no longer yield a fundamental frequency. Alternatively, we may describe this through the presence of an infinite system of subharmonics. We show how this was proven early in the classical and quantum domains, adding new insight.
Edge localized mode rotation and the nonlinear dynamics of filaments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morales, J. A.; Bécoulet, M.; Garbet, X.
2016-04-15
Edge Localized Modes (ELMs) rotating precursors were reported few milliseconds before an ELM crash in several tokamak experiments. Also, the reversal of the filaments rotation at the ELM crash is commonly observed. In this article, we present a mathematical model that reproduces the rotation of the ELM precursors as well as the reversal of the filaments rotation at the ELM crash. Linear ballooning theory is used to establish a formula estimating the rotation velocity of ELM precursors. The linear study together with nonlinear magnetohydrodynamic simulations give an explanation to the rotations observed experimentally. Unstable ballooning modes, localized at the pedestal,more » grow and rotate in the electron diamagnetic direction in the laboratory reference frame. Approaching the ELM crash, this rotation decreases corresponding to the moment when the magnetic reconnection occurs. During the highly nonlinear ELM crash, the ELM filaments are cut from the main plasma due to the strong sheared mean flow that is nonlinearly generated via the Maxwell stress tensor.« less
NASA Astrophysics Data System (ADS)
Kang, Shuo; Yan, Hao; Dong, Lijing; Li, Changchun
2018-03-01
This paper addresses the force tracking problem of electro-hydraulic load simulator under the influence of nonlinear friction and uncertain disturbance. A nonlinear system model combined with the improved generalized Maxwell-slip (GMS) friction model is firstly derived to describe the characteristics of load simulator system more accurately. Then, by using particle swarm optimization (PSO) algorithm combined with the system hysteresis characteristic analysis, the GMS friction parameters are identified. To compensate for nonlinear friction and uncertain disturbance, a finite-time adaptive sliding mode control method is proposed based on the accurate system model. This controller has the ability to ensure that the system state moves along the nonlinear sliding surface to steady state in a short time as well as good dynamic properties under the influence of parametric uncertainties and disturbance, which further improves the force loading accuracy and rapidity. At the end of this work, simulation and experimental results are employed to demonstrate the effectiveness of the proposed sliding mode control strategy.
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
Competing Visions of Aerospace Power: A Language for the 21st Century.
1997-02-21
Power and the Ground War in Vietnam (Maxwell Air Force Base, Alabama: Air University Press, January 1988; Richard J. Overy, "Air Power and the... Richard the Lionhearted. These warriors studied carefully all five books of the De re militari, but they particularly valued the 26 chapters on...measure, or even to express in precise terms.ඇ 62 Beyerchen, "Clausewitz, Nonlinearity, and War," 63. Quoted in Andrew G. B. Vallance , "The
Large-deformation electrohydrodynamics of an elastic capsule in a DC electric field
NASA Astrophysics Data System (ADS)
Das, Sudip; Thaokar, Rochish M.
2018-04-01
The dynamics of a spherical elastic capsule, containing a Newtonian fluid bounded by an elastic membrane and immersed in another Newtonian fluid, in a uniform DC electric field is investigated. Discontinuity of electrical properties such as conductivities of the internal and external fluid media as well as capacitance and conductance of the membrane lead to a net interfacial Maxwell stress which can cause the deformation of such an elastic capsule. We investigate this problem considering well established membrane laws for a thin elastic membrane, with fully resolved hydrodynamics in the Stokes flow limit and describe the electrostatics using the capacitor model. In the limit of small deformation, the analytical theory predicts the dynamics fairly satisfactorily. Large deformations at high capillary number though necessitate a numerical approach (Boundary element method in the present case) to solve this highly non-linear problem. Akin to vesicles, at intermediate times, highly nonlinear biconcave shapes along with squaring and hexagon like shapes are observed when the outer medium is more conducting. The study identifies the essentiality of parameters such as high membrane capacitance, low membrane conductance, low hydrodynamic time scales and high capillary number for observation of these shape transitions. The transition is due to large compressive Maxwell stress at the poles at intermediate times. Thus such shape transition can be seen in spherical globules admitting electrical capacitance, possibly, irrespective of the nature of the interfacial restoring force.
A fractional model with parallel fractional Maxwell elements for amorphous thermoplastics
NASA Astrophysics Data System (ADS)
Lei, Dong; Liang, Yingjie; Xiao, Rui
2018-01-01
We develop a fractional model to describe the thermomechanical behavior of amorphous thermoplastics. The fractional model is composed of two parallel fractional Maxwell elements. The first fractional Maxwell model is used to describe the glass transition, while the second component is aimed at describing the viscous flow. We further derive the analytical solutions for the stress relaxation modulus and complex modulus through Laplace transform. We then demonstrate the model is able to describe the master curves of the stress relaxation modulus, storage modulus and loss modulus, which all show two distinct transition regions. The obtained parameters show that the modulus of the two fractional Maxwell elements differs in 2-3 orders of magnitude, while the relaxation time differs in 7-9 orders of magnitude. Finally, we apply the model to describe the stress response of constant strain rate tests. The model, together with the parameters obtained from fitting the master curve of stress relaxation modulus, can accurately predict the temperature and strain rate dependent stress response.
A Full-Maxwell Approach for Large-Angle Polar Wander of Viscoelastic Bodies
NASA Astrophysics Data System (ADS)
Hu, H.; van der Wal, W.; Vermeersen, L. L. A.
2017-12-01
For large-angle long-term true polar wander (TPW) there are currently two types of nonlinear methods which give approximated solutions: those assuming that the rotational axis coincides with the axis of maximum moment of inertia (MoI), which simplifies the Liouville equation, and those based on the quasi-fluid approximation, which approximates the Love number. Recent studies show that both can have a significant bias for certain models. Therefore, we still lack an (semi)analytical method which can give exact solutions for large-angle TPW for a model based on Maxwell rheology. This paper provides a method which analytically solves the MoI equation and adopts an extended iterative procedure introduced in Hu et al. (2017) to obtain a time-dependent solution. The new method can be used to simulate the effect of a remnant bulge or models in different hydrostatic states. We show the effect of the viscosity of the lithosphere on long-term, large-angle TPW. We also simulate models without hydrostatic equilibrium and show that the choice of the initial stress-free shape for the elastic (or highly viscous) lithosphere of a given model is as important as its thickness for obtaining a correct TPW behavior. The initial shape of the lithosphere can be an alternative explanation to mantle convection for the difference between the observed and model predicted flattening. Finally, it is concluded that based on the quasi-fluid approximation, TPW speed on Earth and Mars is underestimated, while the speed of the rotational axis approaching the end position on Venus is overestimated.
Towards a Unified Field Theory for Classical Electrodynamics
NASA Astrophysics Data System (ADS)
Benci, Vieri; Fortunato, Donato
2004-09-01
In this paper we introduce a model which describes the relation of matter and the electromagnetic field from a unitarian standpoint in the spirit of ideas of Born and Infeld. In this model, based on a semilinear perturbation of Maxwell equations, the particles are finite-energy solitary waves due to the presence of the nonlinearity. In this respect the matter and the electromagnetic field have the same nature. Finite energy means that particles have finite mass and this makes electrodynamics consistent with the special relativity. We analyze the invariants of the motion of the semilinear Maxwell equations (SME) and their static solutions. In the magnetostatic case (i.e., when the electric field E = 0 and the magnetic field H does not depend on time) SME are reduced to the semilinear equation where ∇× denotes the curloperator, f‧ is the gradient of a strictly convex smooth function f:R3→R and A:R3→R3 is the gauge potential related to the magnetic field H (H = ∇× A). Due to the presence of the curl operator, (1) is a strongly degenerate elliptic equation. Moreover, physical considerations impel f to be flat at zero (f‧‧(0)=0) and this fact leads us to study the problem in a functional setting related to the Orlicz space Lp+Lq. The existence of a nontrivial finite- energy solution of (1) is proved under suitable growth conditions on f. The proof is carried out by using a suitable variational framework related to the Hodge splitting of the vector field A.
NASA Astrophysics Data System (ADS)
Mahanthesh, B.; Gireesha, B. J.; Athira, P. R.
Impact of induced magnetic field over a flat porous plate by utilizing incompressible water-copper nanoliquid is examined analytically. Flow is supposed to be laminar, steady and two-dimensional. The plate is subjected to a regular free stream velocity as well as suction velocity. Flow formulation is developed by considering Maxwell-Garnetts (MG) and Brinkman models of nanoliquid. Impacts of thermal radiation, viscous dissipation, temperature dependent heat source/sink and first order chemical reaction are also retained. The subjected non-linear problems are non-dimensionalized and analytic solutions are presented via series expansion method. The graphs are plotted to analyze the influence of pertinent parameters on flow, magnetism, heat and mass transfer fields as well as friction factor, current density, Nusselt and Sherwood numbers. It is found that friction factor at the plate is more for larger magnetic Prandtl number. Also the rate of heat transfer decayed with increasing nanoparticles volume fraction and the strength of magnetism.
NASA Astrophysics Data System (ADS)
Zheng, Jiajia; Li, Yancheng; Li, Zhaochun; Wang, Jiong
2015-10-01
This paper presents multi-physics modeling of an MR absorber considering the magnetic hysteresis to capture the nonlinear relationship between the applied current and the generated force under impact loading. The magnetic field, temperature field, and fluid dynamics are represented by the Maxwell equations, conjugate heat transfer equations, and Navier-Stokes equations. These fields are coupled through the apparent viscosity and the magnetic force, both of which in turn depend on the magnetic flux density and the temperature. Based on a parametric study, an inverse Jiles-Atherton hysteresis model is used and implemented for the magnetic field simulation. The temperature rise of the MR fluid in the annular gap caused by core loss (i.e. eddy current loss and hysteresis loss) and fluid motion is computed to investigate the current-force behavior. A group of impulsive tests was performed for the manufactured MR absorber with step exciting currents. The numerical and experimental results showed good agreement, which validates the effectiveness of the proposed multi-physics FEA model.
NASA Astrophysics Data System (ADS)
Van de Moortel, Maxime
2018-05-01
We show non-linear stability and instability results in spherical symmetry for the interior of a charged black hole—approaching a sub-extremal Reissner-Nordström background fast enough—in presence of a massive and charged scalar field, motivated by the strong cosmic censorship conjecture in that setting: 1. Stability We prove that spherically symmetric characteristic initial data to the Einstein-Maxwell-Klein-Gordon equations approaching a Reissner-Nordström background with a sufficiently decaying polynomial decay rate on the event horizon gives rise to a space-time possessing a Cauchy horizon in a neighbourhood of time-like infinity. Moreover, if the decay is even stronger, we prove that the space-time metric admits a continuous extension to the Cauchy horizon. This generalizes the celebrated stability result of Dafermos for Einstein-Maxwell-real-scalar-field in spherical symmetry. 2. Instability We prove that for the class of space-times considered in the stability part, whose scalar field in addition obeys a polynomial averaged- L 2 (consistent) lower bound on the event horizon, the scalar field obeys an integrated lower bound transversally to the Cauchy horizon. As a consequence we prove that the non-degenerate energy is infinite on any null surface crossing the Cauchy horizon and the curvature of a geodesic vector field blows up at the Cauchy horizon near time-like infinity. This generalizes an instability result due to Luk and Oh for Einstein-Maxwell-real-scalar-field in spherical symmetry. This instability of the black hole interior can also be viewed as a step towards the resolution of the C 2 strong cosmic censorship conjecture for one-ended asymptotically flat initial data.
Li, Fei; Yu, Peicheng; Xu, Xinlu; ...
2017-01-12
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
NASA Astrophysics Data System (ADS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.
2017-05-01
In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Yu, Peicheng; Xu, Xinlu
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
Frequency dependence and passive drains in fish-eye lenses
NASA Astrophysics Data System (ADS)
Quevedo-Teruel, O.; Mitchell-Thomas, R. C.; Hao, Y.
2012-11-01
The Maxwell fish eye lens has previously been reported as being capable of the much sought after phenomenon of subwavelength imaging. The inclusion of a drain in this system is considered crucial to the imaging ability, although its role is the topic of much debate. This paper provides a numerical investigation into a practical implementation of a drain in such systems, and analyzes the strong frequency dependence of both the Maxwell fish eye lens and an alternative, the Miñano lens. The imaging capability of these types of lens is questioned, and it is supported by simulations involving various configurations of drain arrays. Finally, a discussion of the near-field and evanescent wave contribution is given.
NASA Astrophysics Data System (ADS)
Qin, Hong; Davidson, Ronald C.; Lee, W. Wei-Li
1999-11-01
The Beam Equilibrium Stability and Transport (BEST) code, a 3D multispecies nonlinear perturbative particle simulation code, has been developed to study collective effects in intense charged particle beams described self-consistently by the Vlasov-Maxwell equations. A Darwin model is adopted for transverse electromagnetic effects. As a 3D multispecies perturbative particle simulation code, it provides several unique capabilities. Since the simulation particles are used to simulate only the perturbed distribution function and self-fields, the simulation noise is reduced significantly. The perturbative approach also enables the code to investigate different physics effects separately, as well as simultaneously. The code can be easily switched between linear and nonlinear operation, and used to study both linear stability properties and nonlinear beam dynamics. These features, combined with 3D and multispecies capabilities, provides an effective tool to investigate the electron-ion two-stream instability, periodically focused solutions in alternating focusing fields, and many other important problems in nonlinear beam dynamics and accelerator physics. Applications to the two-stream instability are presented.
Modeling Piezoelectric Stack Actuators for Control of Micromanipulation
NASA Technical Reports Server (NTRS)
Goldfarb, Michael; Celanovic, Nikola
1997-01-01
A nonlinear lumped-parameter model of a piezoelectric stack actuator has been developed to describe actuator behavior for purposes of control system analysis and design, and, in particular, for microrobotic applications requiring accurate position and/or force control. In formulating this model, the authors propose a generalized Maxwell resistive capacitor as a lumped-parameter causal representation of rate-independent hysteresis. Model formulation is validated by comparing results of numerical simulations to experimental data. Validation is followed by a discussion of model implications for purposes of actuator control.
Self-consistent Maxwell-Bloch model of quantum-dot photonic-crystal-cavity lasers
NASA Astrophysics Data System (ADS)
Cartar, William; Mørk, Jesper; Hughes, Stephen
2017-08-01
We present a powerful computational approach to simulate the threshold behavior of photonic-crystal quantum-dot (QD) lasers. Using a finite-difference time-domain (FDTD) technique, Maxwell-Bloch equations representing a system of thousands of statistically independent and randomly positioned two-level emitters are solved numerically. Phenomenological pure dephasing and incoherent pumping is added to the optical Bloch equations to allow for a dynamical lasing regime, but the cavity-mediated radiative dynamics and gain coupling of each QD dipole (artificial atom) is contained self-consistently within the model. These Maxwell-Bloch equations are implemented by using Lumerical's flexible material plug-in tool, which allows a user to define additional equations of motion for the nonlinear polarization. We implement the gain ensemble within triangular-lattice photonic-crystal cavities of various length N (where N refers to the number of missing holes), and investigate the cavity mode characteristics and the threshold regime as a function of cavity length. We develop effective two-dimensional model simulations which are derived after studying the full three-dimensional passive material structures by matching the cavity quality factors and resonance properties. We also demonstrate how to obtain the correct point-dipole radiative decay rate from Fermi's golden rule, which is captured naturally by the FDTD method. Our numerical simulations predict that the pump threshold plateaus around cavity lengths greater than N =9 , which we identify as a consequence of the complex spatial dynamics and gain coupling from the inhomogeneous QD ensemble. This behavior is not expected from simple rate-equation analysis commonly adopted in the literature, but is in qualitative agreement with recent experiments. Single-mode to multimode lasing is also observed, depending on the spectral peak frequency of the QD ensemble. Using a statistical modal analysis of the average decay rates, we also show how the average radiative decay rate decreases as a function of cavity size. In addition, we investigate the role of structural disorder on both the passive cavity and active lasers, where the latter show a general increase in the pump threshold for cavity lengths greater than N =7 , and a reduction in the nominal cavity mode volume for increasing amounts of disorder.
Multiphysics modeling of non-linear laser-matter interactions for optically active semiconductors
NASA Astrophysics Data System (ADS)
Kraczek, Brent; Kanp, Jaroslaw
Development of photonic devices for sensors and communications devices has been significantly enhanced by computational modeling. We present a new computational method for modelling laser propagation in optically-active semiconductors within the paraxial wave approximation (PWA). Light propagation is modeled using the Streamline-upwind/Petrov-Galerkin finite element method (FEM). Material response enters through the non-linear polarization, which serves as the right-hand side of the FEM calculation. Maxwell's equations for classical light propagation within the PWA can be written solely in terms of the electric field, producing a wave equation that is a form of the advection-diffusion-reaction equations (ADREs). This allows adaptation of the computational machinery developed for solving ADREs in fluid dynamics to light-propagation modeling. The non-linear polarization is incorporated using a flexible framework to enable the use of multiple methods for carrier-carrier interactions (e.g. relaxation-time-based or Monte Carlo) to enter through the non-linear polarization, as appropriate to the material type. We demonstrate using a simple carrier-carrier model approximating the response of GaN. Supported by ARL Materials Enterprise.
General eigenstates of Maxwell's equations in a two-constituent composite medium
NASA Astrophysics Data System (ADS)
Bergman, David J.; Farhi, Asaf
2016-11-01
Eigenstates of Maxwell's equations in the quasistatic regime were used recently to calculate the response of a Veselago Lens1 to the field produced by a time dependent point electric charge.2, 3 More recently, this approach was extended to calculate the non-quasistatic response of such a lens. This necessitated a calculation of the eigenstates of the full Maxwell equations in a flat slab structure where the electric permittivity ɛ1 of the slab differs from the electric permittivity ɛ2 of its surroundings while the magnetic permeability is equal to 1 everywhere.4 These eigenstates were used to calculate the response of a Veselago Lens to an oscillating point electric dipole source of electromagnetic (EM) waves. A result of these calculations was that, although images with subwavelength resolution are achievable, as first predicted by John Pendry,5 those images appear not at the points predicted by geometric optics. They appear, instead, at points which lie upon the slab surfaces. This is strongly connected to the fact that when ɛ1/ɛ2 = -1 a strong singularity occurs in Maxwell's equations: This value of ɛ1/ɛ2 is a mathemetical accumulation point for the EM eigenvalues.6 Unfortunately, many physicists are unaware of this crucial mathematical property of Maxwell's equations. In this article we describe how the non-quasistatic eigenstates of Maxwell's equations in a composite microstructure can be calculated for general two-constituent microstructures, where both ɛ and μ have different values in the two constituents.
Power of an optical Maxwell's demon in the presence of photon-number correlations
NASA Astrophysics Data System (ADS)
Shu, Angeline; Dai, Jibo; Scarani, Valerio
2017-02-01
We study how correlations affect the performance of the simulator of a Maxwell's demon demonstrated in a recent optical experiment [M. D. Vidrighin, O. Dahlsten, M. Barbieri, M. S. Kim, V. Vedral, and I. A. Walmsley, Phys. Rev. Lett. 116, 050401 (2016), 10.1103/PhysRevLett.116.050401]. The power of the demon is found to be enhanced or hindered, depending on the nature of the correlation, in close analogy to the situation faced by a thermal demon.
Shear free, twisting Einstein-Maxwell metrics in the Newman-Penrose formalism
NASA Technical Reports Server (NTRS)
Lind, R. W.
1972-01-01
The problem of finding algebraically special solutions to the vacuum Einstein-Maxwell equations was investigated using a spin coefficient formalism. The general case in which the degenerate null vectors are not hypersurface orthogonal is reduced to a problem of solving five coupled differential equations that are no longer dependent on the affine parameter along the degenerate null directions. It is shown that the most general regular, shear-free, nonradiating solution to these equations is the Kerr-Newman metric.
SL(2,R) duality-symmetric action for electromagnetic theory with electric and magnetic sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Choonkyu, E-mail: cklee@phya.snu.ac.kr; School of Physics, Korea Institute for Advanced Study, Seoul 130-722; Min, Hyunsoo, E-mail: hsmin@dirac.uos.ac.kr
2013-12-15
For the SL(2,R) duality-invariant generalization of Maxwell electrodynamics in the presence of both electric and magnetic sources, we formulate a local, manifestly duality-symmetric, Zwanziger-type action by introducing a pair of four-potentials A{sup μ} and B{sup μ} in a judicious way. On the two potentials A{sup μ} and B{sup μ} the SL(2,R) duality transformation acts in a simple linear manner. In quantum theory including charged source fields, this action can be recast as a SL(2,Z)-invariant action. Also given is a Zwanziger-type action for SL(2,R) duality-invariant Born–Infeld electrodynamics which can be important for D-brane dynamics in string theory. -- Highlights: •We formulatemore » a local, manifestly duality-symmetric, Zwanziger-type action. •Maxwell electrodynamics is generalized to include dilaton and axion fields. •SL(2,R) symmetry is manifest. •We formulate a local, manifestly duality-symmetric, nonlinear Born–Infeld action with SL(2,R) symmetry.« less
On a model of electromagnetic field propagation in ferroelectric media
NASA Astrophysics Data System (ADS)
Picard, Rainer
2007-04-01
The Maxwell system in an anisotropic, inhomogeneous medium with non-linear memory effect produced by a Maxwell type system for the polarization is investigated under low regularity assumptions on data and domain. The particular form of memory in the system is motivated by a model for electromagnetic wave propagation in ferromagnetic materials suggested by Greenberg, MacCamy and Coffman [J.M. Greenberg, R.C. MacCamy, C.V. Coffman, On the long-time behavior of ferroelectric systems, Phys. D 134 (1999) 362-383]. To avoid unnecessary regularity requirements the problem is approached as a system of space-time operator equation in the framework of extrapolation spaces (Sobolev lattices), a theoretical framework developed in [R. Picard, Evolution equations as space-time operator equations, Math. Anal. Appl. 173 (2) (1993) 436-458; R. Picard, Evolution equations as operator equations in lattices of Hilbert spaces, Glasnik Mat. 35 (2000) 111-136]. A solution theory for a large class of ferromagnetic materials confined to an arbitrary open set (with suitably generalized boundary conditions) is obtained.
Chiral Maxwell demon in a quantum Hall system with a localized impurity
NASA Astrophysics Data System (ADS)
Rosselló, Guillem; López, Rosa; Platero, Gloria
2017-08-01
We investigate the role of chirality on the performance of a Maxwell demon implemented in a quantum Hall bar with a localized impurity. Within a stochastic thermodynamics description, we investigate the ability of such a demon to drive a current against a bias. We show that the ability of the demon to perform is directly related to its ability to extract information from the system. The key features of the proposed Maxwell demon are the topological properties of the quantum Hall system. The asymmetry of the electronic interactions felt at the localized state when the magnetic field is reversed joined to the fact that we consider energy-dependent (and asymmetric) tunneling barriers that connect such state with the Hall edge modes allow the demon to properly work.
Double-black-hole solutions of the Einstein-Maxwell-dilaton theory in five dimensions
NASA Astrophysics Data System (ADS)
Stelea, Cristian
2018-01-01
We describe a solution-generating technique that maps a static charged solution of the Einstein-Maxwell theory in four (or five) dimensions to a five-dimensional solution of the Einstein-Maxwell-Dilaton theory. As examples of this technique first we show how to construct the dilatonic version of the Reissner-Nordström solution in five dimensions and then we consider the more general case of the double black hole solutions and describe some of their properties. We found that in the general case the value of the conical singularities in between the black holes is affected by the dilaton's coupling constant to the gauge field and only in the particular case when all charges are proportional to the masses this dependence cancels out.
Nedea, S V; van Steenhoven, A A; Markvoort, A J; Spijker, P; Giordano, D
2014-05-01
The influence of gas-surface interactions of a dilute gas confined between two parallel walls on the heat flux predictions is investigated using a combined Monte Carlo (MC) and molecular dynamics (MD) approach. The accommodation coefficients are computed from the temperature of incident and reflected molecules in molecular dynamics and used as effective coefficients in Maxwell-like boundary conditions in Monte Carlo simulations. Hydrophobic and hydrophilic wall interactions are studied, and the effect of the gas-surface interaction potential on the heat flux and other characteristic parameters like density and temperature is shown. The heat flux dependence on the accommodation coefficient is shown for different fluid-wall mass ratios. We find that the accommodation coefficient is increasing considerably when the mass ratio is decreased. An effective map of the heat flux depending on the accommodation coefficient is given and we show that MC heat flux predictions using Maxwell boundary conditions based on the accommodation coefficient give good results when compared to pure molecular dynamics heat predictions. The accommodation coefficients computed for a dilute gas for different gas-wall interaction parameters and mass ratios are transferred to compute the heat flux predictions for a dense gas. Comparison of the heat fluxes derived using explicit MD, MC with Maxwell-like boundary conditions based on the accommodation coefficients, and pure Maxwell boundary conditions are discussed. A map of the heat flux dependence on the accommodation coefficients for a dense gas, and the effective accommodation coefficients for different gas-wall interactions are given. In the end, this approach is applied to study the gas-surface interactions of argon and xenon molecules on a platinum surface. The derived accommodation coefficients are compared with values of experimental results.
Optical Peregrine rogue waves of self-induced transparency in a resonant erbium-doped fiber.
Chen, Shihua; Ye, Yanlin; Baronio, Fabio; Liu, Yi; Cai, Xian-Ming; Grelu, Philippe
2017-11-27
The resonant interaction of an optical field with two-level doping ions in a cryogenic optical fiber is investigated within the framework of nonlinear Schrödinger and Maxwell-Bloch equations. We present explicit fundamental rational rogue wave solutions in the context of self-induced transparency for the coupled optical and matter waves. It is exhibited that the optical wave component always features a typical Peregrine-like structure, while the matter waves involve more complicated yet spatiotemporally balanced amplitude distribution. The existence and stability of these rogue waves is then confirmed by numerical simulations, and they are shown to be excited amid the onset of modulation instability. These solutions can also be extended, using the same analytical framework, to include higher-order dispersive and nonlinear effects, highlighting their universality.
van Kempen, Thomas H S; Donders, Wouter P; van de Vosse, Frans N; Peters, Gerrit W M
2016-04-01
The mechanical properties determine to a large extent the functioning of a blood clot. These properties depend on the composition of the clot and have been related to many diseases. However, the various involved components and their complex interactions make it difficult at this stage to fully understand and predict properties as a function of the components. Therefore, in this study, a constitutive model is developed that describes the viscoelastic behavior of blood clots with various compositions. Hereto, clots are formed from whole blood, platelet-rich plasma and platelet-poor plasma to study the influence of red blood cells, platelets and fibrin, respectively. Rheological experiments are performed to probe the mechanical behavior of the clots during their formation. The nonlinear viscoelastic behavior of the mature clots is characterized using a large amplitude oscillatory shear deformation. The model is based on a generalized Maxwell model that accurately describes the results for the different rheological experiments by making the moduli and viscosities a function of time and the past and current deformation. Using the same model with different parameter values enables a description of clots with different compositions. A sensitivity analysis is applied to study the influence of parameter variations on the model output. The relative simplicity and flexibility make the model suitable for numerical simulations of blood clots and other materials showing similar behavior.
Role of nonlinear refraction in the generation of terahertz field pulses by light fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su
2013-07-15
The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less
Nonlinear ionic transport through microstructured solid electrolytes: homogenization estimates
NASA Astrophysics Data System (ADS)
Curto Sillamoni, Ignacio J.; Idiart, Martín I.
2016-10-01
We consider the transport of multiple ionic species by diffusion and migration through microstructured solid electrolytes in the presence of strong electric fields. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is heuristically deduced from a multi-scale convergence analysis of the relevant field equations. The resulting homogenized response involves an effective dissipation potential per species. Each potential is mathematically akin to that of a standard nonlinear heterogeneous conductor. A ‘linear-comparison’ homogenization technique is then used to generate estimates for these nonlinear potentials in terms of available estimates for corresponding linear conductors. By way of example, use is made of the Maxwell-Garnett and effective-medium linear approximations to generate estimates for two-phase systems with power-law dissipation. Explicit formulas are given for some limiting cases. In the case of threshold-type behavior, the estimates exhibit non-analytical dilute limits and seem to be consistent with fields localized in low energy paths.
NASA Astrophysics Data System (ADS)
Baidillah, Marlin R.; Takei, Masahiro
2017-06-01
A nonlinear normalization model which is called exponential model for electrical capacitance tomography (ECT) with external electrodes under gap permittivity conditions has been developed. The exponential model normalization is proposed based on the inherently nonlinear relationship characteristic between the mixture permittivity and the measured capacitance due to the gap permittivity of inner wall. The parameters of exponential equation are derived by using an exponential fitting curve based on the simulation and a scaling function is added to adjust the experiment system condition. The exponential model normalization was applied to two dimensional low and high contrast dielectric distribution phantoms by using simulation and experimental studies. The proposed normalization model has been compared with other normalization models i.e. Parallel, Series, Maxwell and Böttcher models. Based on the comparison of image reconstruction results, the exponential model is reliable to predict the nonlinear normalization of measured capacitance in term of low and high contrast dielectric distribution.
NASA Technical Reports Server (NTRS)
Hasanyan, Davresh; Librescu, Liviu; Qin, Zhanming; Ambur, Damodar R.
2006-01-01
A fully coupled magneto-thermo-elastokinetic model of laminated composite, finitely electroconductive plates incorporating geometrical nonlinearities and subjected to a combination of magnetic and thermal fields, as well as carrying an electrical current is developed, In this context. the first-order transversely shearable plate theory in conjunction with von-Karman geometrically nonlinear strain concept is adopted. Related to the distribution of electric and magnetic field disturbances within the plate, the assumptions proposed by Ambartsumyan and his collaborators are adopted. Based on the electromagnetic equations (i.e. the ones by Faraday, Ampere, Ohm, Maxwell and Lorentz), the modified Fourier's law of heat conduction and on the elastokinetic field equations, the 3-D coupled problem is reduced to an equivalent 2- D one. The theory developed herein provides a foundation for the investigation, both analytical and numerical, of the interacting effects among the magnetic, thermal and elastic fields in multi-layered thin plates made of anisotropic materials.
NASA Astrophysics Data System (ADS)
Hayata, K.; Yanagawa, K.; Koshiba, M.
1990-12-01
A mode field analysis is presented of the second-harmonic electromagnetic wave that radiates from a nonlinear core bounded by a dielectric cladding. With this analysis the ultimate performance of the organic crystal-cored single-mode optical fiber waveguide as a guided-wave frequency doubler is evaluated through the solution of nonlinear parametric equations derived from Maxwell's equations under some assumptions. As a phase-matching scheme, a Cerenkov approach is considered because of advantages in actual device applications, in which the phase matching is achievable between the fundamental guided LP01 mode and the second-harmonic radiation (leaky) mode. Calculated results for organic cores made of benzil, 4-(N,N-dimethyl-amino)-3-acetamidonitrobenzen, 2-methyl-4-nitroaniline, and 4'-nitrobenzilidene-3-acetoamino-4-metxianiline provide useful data for designing an efficient fiber-optic wavelength converter utilizing nonlinear parametric processes. A detailed comparison is made between results for infinite and finite cladding thicknesses.
NASA Astrophysics Data System (ADS)
Chen, G.; Chacón, L.
2014-10-01
A recent proof-of-principle study proposes a nonlinear electrostatic implicit particle-in-cell (PIC) algorithm in one dimension (Chen et al., 2011). The algorithm employs a kinetically enslaved Jacobian-free Newton-Krylov (JFNK) method, and conserves energy and charge to numerical round-off. In this study, we generalize the method to electromagnetic simulations in 1D using the Darwin approximation to Maxwell's equations, which avoids radiative noise issues by ordering out the light wave. An implicit, orbit-averaged, time-space-centered finite difference scheme is employed in both the 1D Darwin field equations (in potential form) and the 1D-3V particle orbit equations to produce a discrete system that remains exactly charge- and energy-conserving. Furthermore, enabled by the implicit Darwin equations, exact conservation of the canonical momentum per particle in any ignorable direction is enforced via a suitable scattering rule for the magnetic field. We have developed a simple preconditioner that targets electrostatic waves and skin currents, and allows us to employ time steps O(√{mi /me } c /veT) larger than the explicit CFL. Several 1D numerical experiments demonstrate the accuracy, performance, and conservation properties of the algorithm. In particular, the scheme is shown to be second-order accurate, and CPU speedups of more than three orders of magnitude vs. an explicit Vlasov-Maxwell solver are demonstrated in the "cold" plasma regime (where kλD ≪ 1).
NASA Astrophysics Data System (ADS)
Juno, J.; Hakim, A.; TenBarge, J.; Dorland, W.
2015-12-01
We present for the first time results for the turbulence dissipation challenge, with specific focus on the linear wave portion of the challenge, using a variety of continuum kinetic models: hybrid Vlasov-Maxwell, gyrokinetic, and full Vlasov-Maxwell. As one of the goals of the wave problem as it is outlined is to identify how well various models capture linear physics, we compare our results to linear Vlasov and gyrokinetic theory. Preliminary gyrokinetic results match linear theory extremely well due to the geometry of the problem, which eliminates the dominant nonlinearity. With the non-reduced models, we explore how the subdominant nonlinearities manifest and affect the evolution of the turbulence and the energy budget. We also take advantage of employing continuum methods to study the dynamics of the distribution function, with particular emphasis on the full Vlasov results where a basic collision operator has been implemented. As the community prepares for the next stage of the turbulence dissipation challenge, where we hope to do large 3D simulations to inform the next generation of observational missions such as THOR (Turbulence Heating ObserveR), we argue for the consideration of hybrid Vlasov and full Vlasov as candidate models for these critical simulations. With the use of modern numerical algorithms, we demonstrate the competitiveness of our code with traditional particle-in-cell algorithms, with a clear plan for continued improvements and optimizations to further strengthen the code's viability as an option for the next stage of the challenge.
Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems
NASA Astrophysics Data System (ADS)
Sandwell, David; Smith-Konter, Bridget
2018-05-01
We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.
A Maxwell Demon Model Connecting Information and Thermodynamics
NASA Astrophysics Data System (ADS)
Peng, Pei-Yan; Duan, Chang-Kui
2016-08-01
In the past decade several theoretical Maxwell's demon models have been proposed exhibiting effects such as refrigerating, doing work at the cost of information, and some experiments have been done to realise these effects. Here we propose a model with a two level demon, information represented by a sequence of bits, and two heat reservoirs. Which reservoir the demon interact with depends on the bit. If information is pure, one reservoir will be refrigerated, on the other hand, information can be erased if temperature difference is large. Genuine examples of such a system are discussed.
On a remarkable electromagnetic field in the Einstein Universe
NASA Astrophysics Data System (ADS)
Kopiński, Jarosław; Natário, José
2017-06-01
We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.
NASA Astrophysics Data System (ADS)
Shah, S.; Hussain, S.; Sagheer, M.
2018-06-01
This article explores the problem of two-dimensional, laminar, steady and boundary layer stagnation point slip flow over a Riga plate. The incompressible upper-convected Maxwell fluid has been considered as a rheological fluid model. The heat transfer characteristics are investigated with generalized Fourier's law. The fluid thermal conductivity is assumed to be temperature dependent in this study. A system of partial differential equations governing the flow of an upper-convected Maxwell fluid, heat and mass transfer using generalized Fourier's law is developed. The main objective of the article is to inspect the impacts of pertinent physical parameters such as the stretching ratio parameter (0 ⩽ A ⩽ 0.3) , Deborah number (0 ⩽ β ⩽ 0.6) , thermal relaxation parameter (0 ⩽ γ ⩽ 0.5) , wall thickness parameter (0.1 ⩽ α ⩽ 3.5) , slip parameter (0 ⩽ R ⩽ 1.5) , thermal conductivity parameter (0.1 ⩽ δ ⩽ 1.0) and modified Hartmann number (0 ⩽ Q ⩽ 3) on the velocity and temperature profiles. Suitable local similarity transformations have been used to get a system of non-linear ODEs from the governing PDEs. The numerical solutions for the dimensionless velocity and temperature distributions have been achieved by employing an effective numerical method called the shooting method. It is seen that the velocity profile shows the reduction in the velocity for the higher values of viscoelastic parameter and the thermal relaxation parameter. In addition, to enhance the reliability at the maximum level of the obtained numerical results by shooting method, a MATLAB built-in solver bvp4c has also been utilized.
Nonlinear gyrokinetics: a powerful tool for the description of microturbulence in magnetized plasmas
NASA Astrophysics Data System (ADS)
Krommes, John A.
2010-12-01
Gyrokinetics is the description of low-frequency dynamics in magnetized plasmas. In magnetic-confinement fusion, it provides the most fundamental basis for numerical simulations of microturbulence; there are astrophysical applications as well. In this tutorial, a sketch of the derivation of the novel dynamical system comprising the nonlinear gyrokinetic (GK) equation (GKE) and the coupled electrostatic GK Poisson equation will be given by using modern Lagrangian and Lie perturbation methods. No background in plasma physics is required in order to appreciate the logical development. The GKE describes the evolution of an ensemble of gyrocenters moving in a weakly inhomogeneous background magnetic field and in the presence of electromagnetic perturbations with wavelength of the order of the ion gyroradius. Gyrocenters move with effective drifts, which may be obtained by an averaging procedure that systematically, order by order, removes gyrophase dependence. To that end, the use of the Lagrangian differential one-form as well as the content and advantages of Lie perturbation theory will be explained. The electromagnetic fields follow via Maxwell's equations from the charge and current density of the particles. Particle and gyrocenter densities differ by an important polarization effect. That is calculated formally by a 'pull-back' (a concept from differential geometry) of the gyrocenter distribution to the laboratory coordinate system. A natural truncation then leads to the closed GK dynamical system. Important properties such as GK energy conservation and fluctuation noise will be mentioned briefly, as will the possibility (and difficulties) of deriving nonlinear gyrofluid equations suitable for rapid numerical solution—although it is probably best to directly simulate the GKE. By the end of the tutorial, students should appreciate the GKE as an extremely powerful tool and will be prepared for later lectures describing its applications to physical problems.
Stationary Black Holes: Uniqueness and Beyond.
Heusler, Markus
1998-01-01
The spectrum of known black hole solutions to the stationary Einstein equations has increased in an unexpected way during the last decade. In particular, it has turned out that not all black hole equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black hole space-times ceases to exist in self-gravitating non-linear field theories. This text aims to review some of the recent developments and to discuss them in the light of the uniqueness theorem for the Einstein-Maxwell system.
Stationary Black Holes: Uniqueness and Beyond.
Chruściel, Piotr T; Costa, João Lopes; Heusler, Markus
2012-01-01
The spectrum of known black-hole solutions to the stationary Einstein equations has been steadily increasing, sometimes in unexpected ways. In particular, it has turned out that not all black-hole-equilibrium configurations are characterized by their mass, angular momentum and global charges. Moreover, the high degree of symmetry displayed by vacuum and electro-vacuum black-hole spacetimes ceases to exist in self-gravitating non-linear field theories. This text aims to review some developments in the subject and to discuss them in light of the uniqueness theorem for the Einstein-Maxwell system.
Mirror instability near the threshold: Hybrid simulations
NASA Astrophysics Data System (ADS)
Hellinger, P.; Trávníček, P.; Passot, T.; Sulem, P.; Kuznetsov, E. A.; Califano, F.
2007-12-01
Nonlinear behavior of the mirror instability near the threshold is investigated using 1-D hybrid simulations. The simulations demonstrate the presence of an early phase where quasi-linear effects dominate [ Shapiro and Shevchenko, 1964]. The quasi-linear diffusion is however not the main saturation mechanism. A second phase is observed where the mirror mode is linearly stable (the stability is evaluated using the instantaneous ion distribution function) but where the instability nevertheless continues to develop, leading to nonlinear coherent structures in the form of magnetic humps. This regime is well modeled by a nonlinear equation for the magnetic field evolution, derived from a reductive perturbative expansion of the Vlasov-Maxwell equations [ Kuznetsov et al., 2007] with a phenomenological term which represents local variations of the ion Larmor radius. In contrast with previous models where saturation is due to the cooling of a population of trapped particles, the resulting equation correctly reproduces the development of magnetic humps from an initial noise. References Kuznetsov, E., T. Passot and P. L. Sulem (2007), Dynamical model for nonlinear mirror modes near threshold, Phys. Rev. Lett., 98, 235003. Shapiro, V. D., and V. I. Shevchenko (1964), Sov. JETP, 18, 1109.
Holographic anisotropic background with confinement-deconfinement phase transition
NASA Astrophysics Data System (ADS)
Aref'eva, Irina; Rannu, Kristina
2018-05-01
We present new anisotropic black brane solutions in 5D Einstein-dilaton-two-Maxwell system. The anisotropic background is specified by an arbitrary dynamical exponent ν, a nontrivial warp factor, a non-zero dilaton field, a non-zero time component of the first Maxwell field and a non-zero longitudinal magnetic component of the second Maxwell field. The blackening function supports the Van der Waals-like phase transition between small and large black holes for a suitable first Maxwell field charge. The isotropic case corresponding to ν = 1 and zero magnetic field reproduces previously known solutions. We investigate the anisotropy influence on the thermodynamic properties of our background, in particular, on the small/large black holes phase transition diagram. We discuss applications of the model to the bottom-up holographic QCD. The RG flow interpolates between the UV section with two suppressed transversal coordinates and the IR section with the suppressed time and longitudinal coordinates due to anisotropic character of our solution. We study the temporal Wilson loops, extended in longitudinal and transversal directions, by calculating the minimal surfaces of the corresponding probing open string world-sheet in anisotropic backgrounds with various temperatures and chemical potentials. We find that dynamical wall locations depend on the orientation of the quark pairs, that gives a crossover transition line between confinement/deconfinement phases in the dual gauge theory. Instability of the background leads to the appearance of the critical points ( μ ϑ,b , T ϑ,b ) depending on the orientation ϑ of quark-antiquark pairs in respect to the heavy ions collision line.
NASA Astrophysics Data System (ADS)
Sarkar, Amit; Kundu, Prabir Kumar
2017-12-01
This specific article unfolds the efficacy of Cattaneo-Christov heat flux on the heat and mass transport of Maxwell nanofluid flow over a stretched sheet with changeable thickness. Homogeneous/heterogeneous reactions in the fluid are additionally considered. The Cattaneo-Christov heat flux model is initiated in the energy equation. Appropriate similarity transformations are taken up to form a system of nonlinear ODEs. The impact of related parameters on the nanoparticle concentration and temperature is inspected through tables and diagrams. It is renowned that temperature distribution increases for lower values of the thermal relaxation parameter. The rate of mass transfer is enhanced for increasing in the heterogeneous reaction parameter but the reverse tendency is ensued for the homogeneous reaction parameter. On the other side, the rate of heat transfer is getting enhanced for the Cattaneo-Christov model compared to the classical Fourier's model for some flow factors. Thus the implication of the current study is to delve its unique effort towards the generalized version of traditional Fourier's law at nano level.
Power law inflation with electromagnetism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xianghui; Isenberg, James, E-mail: isenberg@uoregon.edu
2013-07-15
We generalize Ringström’s global future causal stability results (Ringström 2009) [11] for certain expanding cosmological solutions of the Einstein-scalar field equations to solutions of the Einstein–Maxwell-scalar field system. In particular, after noting that the power law inflationary spacetimes (M{sup n+1},g{sup -hat}, ϕ{sup -hat}) considered by Ringström (2009) in [11] are solutions of the Einstein–Maxwell-scalar field system (with exponential potential) as well as of the Einstein-scalar field system (with the same exponential potential), we consider (nonlinear) perturbations of initial data sets of these spacetimes which include electromagnetic perturbations as well as gravitational and scalar perturbations. We show that if (as inmore » Ringström (2009) [11]) we focus on pairs of relatively scaled open sets U{sub R{sub 0}}⊂U{sub 4R{sub 0}} on an initial slice of (M{sup n+1},g{sup -hat}), and if we choose a set of perturbed data which on U{sub 4R{sub 0}} is sufficiently close to that of (M{sup n+1},g{sup -hat},ϕ{sup -hat}, A{sup -hat} = 0), then in the maximal globally hyperbolic spacetime development (M{sup n+1},g,ϕ,A) of this data via the Einstein–Maxwell-scalar field equations, all causal geodesics emanating from U{sub R{sub 0}} are future complete (just as in (M{sup n+1},g{sup -hat})). We also verify that, in a certain sense, the future asymptotic behavior of the fields in the spacetime developments of the perturbed data sets does not differ significantly from the future asymptotic behavior of (M{sup n+1},g{sup -hat}, ϕ{sup -hat}, A{sup -hat} = 0). -- Highlights: •We prove stability of expanding solutions of the Einstein–Maxwell-scalar field equations. •All nearby solutions are geodesically complete. •The topology of the initial slice is irrelevant to our stability results.« less
On the motion of hairy black holes in Einstein-Maxwell-dilaton theories
NASA Astrophysics Data System (ADS)
Julié, Félix-Louis
2018-01-01
Starting from the static, spherically symmetric black hole solutions in massless Einstein-Maxwell-dilaton (EMD) theories, we build a "skeleton" action, that is, we phenomenologically replace black holes by an appropriate effective point particle action, which is well suited to the formal treatment of the many-body problem in EMD theories. We find that, depending crucially on the value of their scalar cosmological environment, black holes can undergo steep "scalarization" transitions, inducing large deviations to the general relativistic two-body dynamics, as shown, for example, when computing the first post-Keplerian Lagrangian of EMD theories.
Sakiadis flow of Maxwell fluid considering magnetic field and convective boundary conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustafa, M., E-mail: meraj-mm@hotmail.com; Khan, Junaid Ahmad; Hayat, T.
2015-02-15
In this paper we address the flow of Maxwell fluid due to constantly moving flat radiative surface with convective condition. The flow is under the influence of non-uniform transverse magnetic field. The velocity and temperature distributions have been evaluated numerically by shooting approach. The solution depends on various interesting parameters including local Deborah number De, magnetic field parameter M, Prandtl number Pr and Biot number Bi. We found that variation in velocity with an increase in local Deborah number De is non-monotonic. However temperature is a decreasing function of local Deborah number De.
Exploring Divisibility and Summability of 'Photon' Wave Packets in Nonlinear Optical Phenomena
NASA Technical Reports Server (NTRS)
Prasad, Narasimha; Roychoudhuri, Chandrasekhar
2009-01-01
Formulations for second and higher harmonic frequency up and down conversions, as well as multi photon processes directly assume summability and divisibility of photons. Quantum mechanical (QM) interpretations are completely congruent with these assumptions. However, for linear optical phenomena (interference, diffraction, refraction, material dispersion, spectral dispersion, etc.), we have a profound dichotomy. Most optical engineers innovate and analyze all optical instruments by propagating pure classical electromagnetic (EM) fields using Maxwell s equations and gives only lip-service to the concept "indivisible light quanta". Further, irrespective of linearity or nonlinearity of the phenomena, the final results are always registered through some photo-electric or photo-chemical effects. This is mathematically well modeled by a quadratic action (energy absorption) relation. Since QM does not preclude divisibility or summability of photons in nonlinear & multi-photon effects, it cannot have any foundational reason against these same possibilities in linear optical phenomena. It implies that we must carefully revisit the fundamental roots behind all light-matter interaction processes and understand the common origin of "graininess" and "discreteness" of light energy.
Modelling of Asphalt Concrete Stiffness in the Linear Viscoelastic Region
NASA Astrophysics Data System (ADS)
Mazurek, Grzegorz; Iwański, Marek
2017-10-01
Stiffness modulus is a fundamental parameter used in the modelling of the viscoelastic behaviour of bituminous mixtures. On the basis of the master curve in the linear viscoelasticity range, the mechanical properties of asphalt concrete at different loading times and temperatures can be predicted. This paper discusses the construction of master curves under rheological mathematical models i.e. the sigmoidal function model (MEPDG), the fractional model, and Bahia and co-workers’ model in comparison to the results from mechanistic rheological models i.e. the generalized Huet-Sayegh model, the generalized Maxwell model and the Burgers model. For the purposes of this analysis, the reference asphalt concrete mix (denoted as AC16W) intended for the binder coarse layer and for traffic category KR3 (5×105
Field quantization and squeezed states generation in resonators with time-dependent parameters
NASA Technical Reports Server (NTRS)
Dodonov, V. V.; Klimov, A. B.; Nikonov, D. E.
1992-01-01
The problem of electromagnetic field quantization is usually considered in textbooks under the assumption that the field occupies some empty box. The case when a nonuniform time-dependent dielectric medium is confined in some space region with time-dependent boundaries is studied. The basis of the subsequent consideration is the system of Maxwell's equations in linear passive time-dependent dielectric and magnetic medium without sources.
NASA Astrophysics Data System (ADS)
Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.
2018-01-01
Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.
NASA Astrophysics Data System (ADS)
Afeyan, Bedros; Larson, David; Shadwick, Bradley; Sydora, Richard
2017-10-01
We compare various ways of solving the Vlasov-Poisson and Vlasov-Maxwell equations on rather demanding nonlinear kinetic phenomena associated with KEEN and KEEPN waves. KEEN stands for Kinetic, Electrostatic, Electron Nonlinear, and KEEPN, for electron-positron or pair plasmas analogs. Because these self-organized phase space structures are not steady-state, or single mode, or fluid or low order moment equation limited, typical techniques with low resolution or too much noise will distort the answer too much, too soon, and fail. This will be shown via Penrose criteria triggers for instability at the formation stage as well as particle orbit statistics in fully formed KEEN waves and KEEN-KEEN and KEEN-EPW interacting states. We will argue that PASTEL is a viable alternative to traditional methods with reasonable chances of success in higher dimensions. Work supported by a Grant from AFOSR PEEP.
James Clerk Maxwell: Life and science
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2016-07-01
Maxwell's life and science are presented with an account of the progression of Maxwell's research on electromagnetic theory. This is appropriate for the International Year of Light and Light-based Technologies, 2015. Maxwell's own confidence in his 1865 electromagnetic theory of light is examined, along with some of the difficulties he faced and the difficulties faced by some of his followers. Maxwell's interest in radiation pressure and electromagnetic stress is addressed, as well as subsequent developments. Some of Maxwell's other contributions to physics are discussed with an emphasis on the kinetic and molecular theory of gases. Maxwell's theistic perspective on science is illustrated, accompanied by examples of perspectives on Maxwell and his science provided by his peers and accounts of his interactions with those peers. Appendices examine the peer review of Maxwell's 1865 electromagnetic theory paper and the naming of the Maxwell Garnett effective media approximation and provide various supplemental perspectives. From Maxwell's publications and correspondence there is evidence he had a high regard for Michael Faraday. Examples of Maxwell's contributions to electromagnetic terminology are noted.
Nonlinear Delta-f Simulations of Collective Effects in Intense Charged Particle Beams
NASA Astrophysics Data System (ADS)
Qin, Hong
2002-11-01
A nonlinear delta-f particle simulation method based on the Vlasov-Maxwell equations has been recently developed to study collective processes in high-intensity beams, where space-charge and magnetic self-field effects play a critical role in determining the nonlinear beam dynamics. Implemented in the Beam Equilibrium, Stability and Transport (BEST) code, the nonlinear delta-f method provides a low-noise and self-consistent tool for simulating collective interactions and nonlinear dynamics of high-intensity beams in modern and next- generation accelerators and storage rings, such as the Spallation Neutron Source, and heavy ion fusion drivers. Simulation results for the electron-proton two-stream instability in the Proton Storage Ring (PSR) experiment at Los Alamos National Laboratory agree well with experimental observations. Large-scale parallel simulations have also been carried out for the ion-electron two-stream instability in the very high-intensity heavy ion beams envisioned for heavy ion fusion applications. In both cases, the simulation results indicate that the dominant two-stream instability has a dipole-mode (hose-like) structure and can be stabilized by a modest axial momentum spread of the beam particles of less than 0.25collective processes in high-intensity beams, such as anisotropy-driven instabilities, collective eigenmode excitations for perturbations about stable beam equilibria, and the Darwin model for fully electromagnetic perturbations will also be discussed.
Spacetimes dressed with stealth electromagnetic fields
NASA Astrophysics Data System (ADS)
Smolić, Ivica
2018-04-01
Stealth field configurations by definition have a vanishing energy-momentum tensor, and thus do not contribute to the gravitational field equations. While only trivial fields can be stealth in Maxwell's electrodynamics, nontrivial stealth fields appear in some nonlinear models of electromagnetism. We find the necessary and sufficient conditions for the electromagnetic fields to be stealth and analyze which models admit such configurations. Furthermore, we present some concrete exact solutions, featuring a class of black holes dressed with the stealth electromagnetic hair, closely related to force-free solutions. Stealth hair does not alter the generalized Smarr formula, but may contribute to the Komar charges.
Exact Solutions in Three-Dimensional Gravity
NASA Astrophysics Data System (ADS)
García-Díaz, Alberto A.
2017-09-01
Preface; 1. Introduction; 2. Point particles; 3. Dust solutions; 4. AdS cyclic symmetric stationary solutions; 5. Perfect fluid static stars; 6. Static perfect fluid stars with Λ; 7. Hydrodynamic equilibrium; 8. Stationary perfect fluid with Λ; 9. Friedmann–Robertson–Walker cosmologies; 10. Dilaton-inflaton FRW cosmologies; 11. Einstein–Maxwell solutions; 12. Nonlinear electrodynamics black hole; 13. Dilaton minimally coupled to gravity; 14. Dilaton non-minimally coupled to gravity; 15. Low energy 2+1 string gravity; 16. Topologically massive gravity; 17. Bianchi type spacetimes in TMG; 18. Petrov type N wave metrics; 19. Kundt spacetimes in TMG; 20. Cotton tensor in Riemannian spacetimes; References; Index.
Langmuir wave phase-mixing in warm electron-positron-dusty plasmas
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Maity, Chandan
2018-04-01
An analytical study on nonlinear evolution of Langmuir waves in warm electron-positron-dusty plasmas is presented. The massive dust grains of either positively or negatively charged are assumed to form a fixed charge neutralizing background. A perturbative analysis of the fluid-Maxwell's equations confirms that the excited Langmuir waves phase-mix and eventually break, even at arbitrarily low amplitudes. It is shown that the nature of the dust-charge as well as the amount of dust grains can significantly influence the Langmuir wave phase-mixing process. The phase-mixing time is also found to increase with the temperature.
Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case
NASA Astrophysics Data System (ADS)
Fernández Tío, Julián M.; Dotti, Gustavo
2017-06-01
Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.
NASA Astrophysics Data System (ADS)
Zhang, Yue; Zhu, Lianhua; Wang, Ruijie; Guo, Zhaoli
2018-05-01
Recently a discrete unified gas kinetic scheme (DUGKS) in a finite-volume formulation based on the Boltzmann model equation has been developed for gas flows in all flow regimes. The original DUGKS is designed for flows of single-species gases. In this work, we extend the DUGKS to flows of binary gas mixtures of Maxwell molecules based on the Andries-Aoki-Perthame kinetic model [P. Andries et al., J. Stat. Phys. 106, 993 (2002), 10.1023/A:1014033703134. A particular feature of the method is that the flux at each cell interface is evaluated based on the characteristic solution of the kinetic equation itself; thus the numerical dissipation is low in comparison with that using direct reconstruction. Furthermore, the implicit treatment of the collision term enables the time step to be free from the restriction of the relaxation time. Unlike the DUGKS for single-species flows, a nonlinear system must be solved to determine the interaction parameters appearing in the equilibrium distribution function, which can be obtained analytically for Maxwell molecules. Several tests are performed to validate the scheme, including the shock structure problem under different Mach numbers and molar concentrations, the channel flow driven by a small gradient of pressure, temperature, or concentration, the plane Couette flow, and the shear driven cavity flow under different mass ratios and molar concentrations. The results are compared with those from other reliable numerical methods. The results show that the proposed scheme is an effective and reliable method for binary gas mixtures in all flow regimes.
Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization
Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek
2015-01-01
The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G’ and G” and shear creep compliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process. PMID:26599756
Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
NASA Astrophysics Data System (ADS)
Huang, Li-Li; Qiao, Zhi-Jun; Chen, Yong
2018-02-01
Based on nonlocal symmetry method, localized excitations and interactional solutions are investigated for the reduced Maxwell-Bloch equations. The nonlocal symmetries of the reduced Maxwell-Bloch equations are obtained by the truncated Painleve expansion approach and the Mobious invariant property. The nonlocal symmetries are localized to a prolonged system by introducing suitable auxiliary dependent variables. The extended system can be closed and a novel Lie point symmetry system is constructed. By solving the initial value problems, a new type of finite symmetry transformations is obtained to derive periodic waves, Ma breathers and breathers travelling on the background of periodic line waves. Then rich exact interactional solutions are derived between solitary waves and other waves including cnoidal waves, rational waves, Painleve waves, and periodic waves through similarity reductions. In particular, several new types of localized excitations including rogue waves are found, which stem from the arbitrary function generated in the process of similarity reduction. By computer numerical simulation, the dynamics of these localized excitations and interactional solutions are discussed, which exhibit meaningful structures.
NASA Astrophysics Data System (ADS)
Zhukov, Vladimir P.; Bulgakova, Nadezhda M.
2017-05-01
Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.
First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pincha)
NASA Astrophysics Data System (ADS)
King, J. R.; Sovinec, C. R.; Mirnov, V. V.
2012-05-01
Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius (ρs) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from ∇B and poloidal curvature represented in the Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant ρs values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.
First-order finite-Larmor-radius fluid modeling of tearing and relaxation in a plasma pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Tech-X Corporation, 5621 Arapahoe Ave., Suite A Boulder, Colorado 80303; Sovinec, C. R.
Drift and Hall effects on magnetic tearing, island evolution, and relaxation in pinch configurations are investigated using a non-reduced first-order finite-Larmor-radius (FLR) fluid model with the nonideal magnetohydrodynamics (MHD) with rotation, open discussion (NIMROD) code [C.R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)]. An unexpected result with a uniform pressure profile is a drift effect that reduces the growth rate when the ion sound gyroradius ({rho}{sub s}) is smaller than the tearing-layer width. This drift is present only with warm-ion FLR modeling, and analytics show that it arises from {nabla}B and poloidal curvature represented in themore » Braginskii gyroviscous stress. Nonlinear single-helicity computations with experimentally relevant {rho}{sub s} values show that the warm-ion gyroviscous effects reduce saturated-island widths. Computations with multiple nonlinearly interacting tearing fluctuations find that m = 1 core-resonant-fluctuation amplitudes are reduced by a factor of two relative to single-fluid modeling by the warm-ion effects. These reduced core-resonant-fluctuation amplitudes compare favorably to edge coil measurements in the Madison Symmetric Torus (MST) reversed-field pinch [R. N. Dexter et al., Fusion Technol. 19, 131 (1991)]. The computations demonstrate that fluctuations induce both MHD- and Hall-dynamo emfs during relaxation events. The presence of a Hall-dynamo emf implies a fluctuation-induced Maxwell stress, and the simulation results show net transport of parallel momentum. The computed magnitude of force densities from the Maxwell and competing Reynolds stresses, and changes in the parallel flow profile, are qualitatively and semi-quantitatively similar to measurements during relaxation in MST.« less
Development and Application of Compatible Discretizations of Maxwell's Equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
White, D; Koning, J; Rieben, R
We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less
Explicit high-order non-canonical symplectic particle-in-cell algorithms for Vlasov-Maxwell systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Jianyuan; Qin, Hong; Liu, Jian
2015-11-01
Explicit high-order non-canonical symplectic particle-in-cell algorithms for classical particle-field systems governed by the Vlasov-Maxwell equations are developed. The algorithms conserve a discrete non-canonical symplectic structure derived from the Lagrangian of the particle-field system, which is naturally discrete in particles. The electromagnetic field is spatially discretized using the method of discrete exterior calculus with high-order interpolating differential forms for a cubic grid. The resulting time-domain Lagrangian assumes a non-canonical symplectic structure. It is also gauge invariant and conserves charge. The system is then solved using a structure-preserving splitting method discovered by He et al. [preprint arXiv: 1505.06076 (2015)], which produces fivemore » exactly soluble sub-systems, and high-order structure-preserving algorithms follow by combinations. The explicit, high-order, and conservative nature of the algorithms is especially suitable for long-term simulations of particle-field systems with extremely large number of degrees of freedom on massively parallel supercomputers. The algorithms have been tested and verified by the two physics problems, i.e., the nonlinear Landau damping and the electron Bernstein wave. (C) 2015 AIP Publishing LLC.« less
NASA Astrophysics Data System (ADS)
Kodjo, Apedovi
The aim of this thesis is to contribute to the non-destructive characterization of concrete materials damaged by alkali-silica reaction (ASR). For this purpose, some nonlinear characterization techniques have been developed, as well as a nonlinear resonance test device. In order to optimize the sensitivity of the test device, the excitation module and signal processing have been improved. The nonlinear tests were conducted on seven samples of concrete damaged by ASR, three samples of concrete damaged by heat, three concrete samples damaged mechanically and three sound concrete samples. Since, nonlinear behaviour of the material is often attribute to its micro-defects hysteretic behaviour, it was shown at first that concrete damaged by ASR exhibits an hysteresis behaviour. To conduct this study, an acoustoelastic test was set, and then nonlinear resonance test device was used for characterizing sound concrete and concrete damaged by ASR. It was shown that the nonlinear technique can be used for characterizing the material without knowing its initial state, and also for detecting early damage in the reactive material. Studies were also carried out on the effect of moisture regarding the nonlinear parameters; they allowed understanding the low values of nonlinear parameters measured on concrete samples that were kept in high moisture conditions. In order to find a specific characteristic of damage caused by ASR, the viscosity of ASR gel was used. An approach, based on static creep analysis, performed on the material, while applying the nonlinear resonance technique. The spring-damping model of Maxwell was used for the interpretation of the results. Then, the creep time was analysed on samples damaged by ASR. It appears that the ASR gel increases the creep time. Finally, the limitations of the nonlinear resonance technique for in situ application have been explained and a new applicable nonlinear technique was initiated. This technique use an external source such as a mass for making non-linearity behaviour in the material, while an ultrasound wave is investigating the medium. Keywords. Concrete, Alkali-silica reaction, Nonlinear acoustics, Nonlinearity, Hysteresis, Damage diagnostics.
NASA Astrophysics Data System (ADS)
Khanal, U.
2006-07-01
Maxwell and Dirac fields in Friedmann Robertson Walker (FRW) spacetime are investigated using the Newman Penrose method. The variables are all separable, with the angular dependence given by spin-weighted spherical harmonics. All the radial parts reduce to the barrier penetration problem, with mostly repulsive potentials representing the centrifugal energies. Both the helicity states of the photon field see the same potential, but that of the Dirac field see different ones; one component even sees attractive potential in the open universe. The massless fields have the usual exponential time dependences; that of the massive Dirac field is coupled to the evolution of the cosmic scale factor a. The case of the radiation-filled flat universe is solved in terms of the Whittaker function. A formal series solution, valid in any FRW universe, is also presented. The energy density of the Maxwell field is explicitly shown to scale as a-4. The co-moving particle number density of the massless Dirac field is found to be conserved, but that of the massive one is not. Particles flow out of certain regions, and into others, creating regions that are depleted of certain linear and angular momenta states, and others with excess. Such a current of charged particles would constitute an electric current that could generate a cosmic magnetic field. In contrast, the energy density of these massive particles still scales as a-4.
Charged anisotropic matter with linear or nonlinear equation of state
NASA Astrophysics Data System (ADS)
Varela, Victor; Rahaman, Farook; Ray, Saibal; Chakraborty, Koushik; Kalam, Mehedi
2010-08-01
Ivanov pointed out substantial analytical difficulties associated with self-gravitating, static, isotropic fluid spheres when pressure explicitly depends on matter density. Simplifications achieved with the introduction of electric charge were noticed as well. We deal with self-gravitating, charged, anisotropic fluids and get even more flexibility in solving the Einstein-Maxwell equations. In order to discuss analytical solutions we extend Krori and Barua’s method to include pressure anisotropy and linear or nonlinear equations of state. The field equations are reduced to a system of three algebraic equations for the anisotropic pressures as well as matter and electrostatic energy densities. Attention is paid to compact sources characterized by positive matter density and positive radial pressure. Arising solutions satisfy the energy conditions of general relativity. Spheres with vanishing net charge contain fluid elements with unbounded proper charge density located at the fluid-vacuum interface. Notably the electric force acting on these fluid elements is finite, although the acting electric field is zero. Net charges can be huge (1019C) and maximum electric field intensities are very large (1023-1024statvolt/cm) even in the case of zero net charge. Inward-directed fluid forces caused by pressure anisotropy may allow equilibrium configurations with larger net charges and electric field intensities than those found in studies of charged isotropic fluids. Links of these results with charged strange quark stars as well as models of dark matter including massive charged particles are highlighted. The van der Waals equation of state leading to matter densities constrained by cubic polynomial equations is briefly considered. The fundamental question of stability is left open.
A systematic approach to numerical dispersion in Maxwell solvers
NASA Astrophysics Data System (ADS)
Blinne, Alexander; Schinkel, David; Kuschel, Stephan; Elkina, Nina; Rykovanov, Sergey G.; Zepf, Matt
2018-03-01
The finite-difference time-domain (FDTD) method is a well established method for solving the time evolution of Maxwell's equations. Unfortunately the scheme introduces numerical dispersion and therefore phase and group velocities which deviate from the correct values. The solution to Maxwell's equations in more than one dimension results in non-physical predictions such as numerical dispersion or numerical Cherenkov radiation emitted by a relativistic electron beam propagating in vacuum. Improved solvers, which keep the staggered Yee-type grid for electric and magnetic fields, generally modify the spatial derivative operator in the Maxwell-Faraday equation by increasing the computational stencil. These modified solvers can be characterized by different sets of coefficients, leading to different dispersion properties. In this work we introduce a norm function to rewrite the choice of coefficients into a minimization problem. We solve this problem numerically and show that the minimization procedure leads to phase and group velocities that are considerably closer to c as compared to schemes with manually set coefficients available in the literature. Depending on a specific problem at hand (e.g. electron beam propagation in plasma, high-order harmonic generation from plasma surfaces, etc.), the norm function can be chosen accordingly, for example, to minimize the numerical dispersion in a certain given propagation direction. Particle-in-cell simulations of an electron beam propagating in vacuum using our solver are provided.
DEM simulation of the granular Maxwell's Demon under zero gravity
NASA Astrophysics Data System (ADS)
Wang, Wenguang; Zhou, Zhigang; Zong, Jin; Hou, Meiying
2017-06-01
In this work, granular segregation in a two-compartment cell (Maxwell's Demon) under zero gravity is studied numerically by DEM simulation for comparison with the experimental observation in satellite SJ-10. The effect of three parameters: the total number of particlesN, the excitation strengthΓ, and the position of the window coupling the two compartments, on the segregationɛ and the waiting timeτ are investigated. In the simulation, non-zero segregation under zero gravity is obtained, and the segregation ɛ is found independent of the excitation strengthΓ. The waiting time τ, however, depends strongly onΓ. For higher acceleration Γ, |ɛi| reaches steady state valueɛ faster.
Neutrino Astrophysics in Slowly Rotating Spacetimes Permeated by Nonlinear Electrodynamics Fields
NASA Astrophysics Data System (ADS)
Mosquera Cuesta, Herman J.
2017-02-01
Many theoretical and astrophysical arguments involve consideration of the effects of super strong electromagnetic fields and the rotation during the late stages of core-collapse supernovae. In what follows, we solve Einstein field equations that are minimally coupled to an arbitrary (current-free) Born-Infeld nonlinear Lagrangian L(F,G) of electrodynamics (NLED) in the slow rotation regime a ≪ r+ (outer horizon size), up to first order in a/r. We cross-check the physical properties of such NLED spacetime w.r.t. against the Maxwell one. A study case on both neutrino flavor ({ν }e\\to {ν }μ ,{ν }τ ) oscillations and flavor+helicity (spin) flip ({ν }e\\to {\\overline{ν }}μ ,τ ) gyroscopic precession proves that in the spacetime of a slowly rotating nonlinear charged black hole (RNCBH), the neutrino dynamics translates into a positive enhancement of the r-process (reduction of the electron fraction Ye < 0.5). Consequently, it guarantees successful hyperluminous core-collapse supernova explosions due to the enlargement of the number and amount of decaying nuclide species. This posits that, as far as the whole luminosity is concerned, hypernovae will be a proof of the formation of astrophysical RNCBH.
NASA Astrophysics Data System (ADS)
Moeferdt, Matthias; Kiel, Thomas; Sproll, Tobias; Intravaia, Francesco; Busch, Kurt
2018-02-01
A combined analytical and numerical study of the modes in two distinct plasmonic nanowire systems is presented. The computations are based on a discontinuous Galerkin time-domain approach, and a fully nonlinear and nonlocal hydrodynamic Drude model for the metal is utilized. In the linear regime, these computations demonstrate the strong influence of nonlocality on the field distributions as well as on the scattering and absorption spectra. Based on these results, second-harmonic-generation efficiencies are computed over a frequency range that covers all relevant modes of the linear spectra. In order to interpret the physical mechanisms that lead to corresponding field distributions, the associated linear quasielectrostatic problem is solved analytically via conformal transformation techniques. This provides an intuitive classification of the linear excitations of the systems that is then applied to the full Maxwell case. Based on this classification, group theory facilitates the determination of the selection rules for the efficient excitation of modes in both the linear and nonlinear regimes. This leads to significantly enhanced second-harmonic generation via judiciously exploiting the system symmetries. These results regarding the mode structure and second-harmonic generation are of direct relevance to other nanoantenna systems.
Hyperbolicity of the Nonlinear Models of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Serre, Denis
. We consider the class of nonlinear models of electromagnetism that has been described by Coleman & Dill [7]. A model is completely determined by its energy density W(B,D). Viewing the electromagnetic field (B,D) as a 3×2 matrix, we show that polyconvexity of W implies the local well-posedness of the Cauchy problem within smooth functions of class Hs with s>1+d/2. The method follows that designed by Dafermos in his book [9] in the context of nonlinear elasticity. We use the fact that B×D is a (vectorial, non-convex) entropy, and we enlarge the system from 6 to 9 equations. The resulting system admits an entropy (actually the energy) that is convex. Since the energy conservation law does not derive from the system of conservation laws itself (Faraday's and Ampère's laws), but also needs the compatibility relations divB=divD=0 (the latter may be relaxed in order to take into account electric charges), the energy density is not an entropy in the classical sense. Thus the system cannot be symmetrized, strictly speaking. However, we show that the structure is close enough to symmetrizability, so that the standard estimates still hold true.
Simulation of ferromagnetic nanomaterial flow of Maxwell fluid
NASA Astrophysics Data System (ADS)
Hayat, T.; Ahmad, Salman; Khan, M. Ijaz; Alsaedi, A.
2018-03-01
Ferromagnetic flow of rate type liquid over a stretched surface is addressed in this article. Heat and mass transport are investigated with Brownian movement and thermophoresis effects. Magnetic dipole is also taken into consideration. Procedure of similarity transformation is employed. The obtained nonlinear expressions have been tackled numerically by means of Shooting method. Graphical results are shown and analyzed for the impact of different variables. Temperature and concentration gradients are numerically computed in Tables 1 and 2. The results described here demonstrate that ferromagnetic variable boosts the thermal field. It is noticed that velocity and concentration profiles are higher when elastic and thermophoresis variables are enhanced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kemp, B. A., E-mail: bkemp@astate.edu; Nikolayev, I.; Sheppard, C. J.
2016-04-14
Like-charges repel, and opposite charges attract. This fundamental tenet is a result of Coulomb's law. However, the electrostatic interactions between dielectric particles remain topical due to observations of like-charged particle attraction and the self-assembly of colloidal systems. Here, we show, using both an approximate description and an exact solution of Maxwell's equations, that nonlinear charged particle forces result even for linear material systems and can be responsible for anomalous electrostatic interactions such as like-charged particle attraction and oppositely charged particle repulsion. Furthermore, these electrostatic interactions and the deformation of such particles have fundamental implications for our understanding of macroscopic electrodynamics.
2015-09-01
Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to any penalty for failing to comply with a...other hand, had posited the law of energy conservation in 1853. By the end of the decade, physicists such as Helmholtz, Thomson, Rankine, and Maxwell...forces are applied to a body, which, in turn, establishes resultant internal forces in the body. If the consti- tutive laws governing the body are
NASA Astrophysics Data System (ADS)
Dansereau, V.; Got, J. L.
2017-12-01
Before a volcanic eruption, the pressurization of the volcanic edifice by a magma reservoir induces earthquakes and damage in the edifice; damage lowers the strength of the edifice and decreases its elastic properties. Anelastic deformations cumulate and lead to rupture and eruption. These deformations translate into surface displacements, measurable via GPS or InSAR (e.g., Kilauea, southern flank, or Piton de la Fournaise, eastern flank).Attempts to represent these processes are usually based on a linear-elastic rheology. More recently, linear elastic-perfectly plastic or elastic-brittle damage approaches were used to explain the time evolution of the surface displacements in basaltic volcanoes before an eruption. However these models are non-linear elastic, and can not account for the anelastic deformation that occurs during the pre-eruptive process. Therefore, they can not be used to represent the complete eruptive cycle, comprising loading and unloading phases. Here we present a new rheological approach for modelling the eruptive cycle called Maxwell-Elasto-Brittle, which incorporates a viscous-like relaxation of the stresses in an elastic-brittle damage framework. This mechanism allows accounting for the anelastic deformations that cumulate and lead to rupture and eruption. The inclusion of healing processes in this model is another step towards a complete spatio-temporal representation of the eruptive cycle. Plane-strain Maxwell-EB modelling of the deformation of a magma reservoir and volcanic edifice will be presented. The model represents the propagation of damage towards the surface and the progressive localization of the deformation along faults under the pressurization of the magma reservoir. This model allows a complete spatio-temporal representation of the rupture process. We will also discuss how available seismicity records and time series of surface displacements could be used jointly to constrain the model.
Nonlinear dynamics of attractive magnetic bearings
NASA Technical Reports Server (NTRS)
Hebbale, K. V.; Taylor, D. L.
1987-01-01
The nonlinear dynamics of a ferromagnetic shaft suspended by the force of attraction of 1, 2, or 4 independent electromagnets is presented. Each model includes a state variable feedback controller which has been designed using the pole placement method. The constitutive relationships for the magnets are derived analytically from magnetic circuit theory, and the effects of induced eddy currents due to the rotation of the journal are included using Maxwell's field relations. A rotor suspended by four electro-magnets with closed loop feedback is shown to have nine equilibrium points within the bearing clearance space. As the rotor spin speed increases, the system is shown to pass through a Hopf bifurcation (a flutter instability). Using center manifold theory, this bifurcation can be shown to be of the subcritical type, indicating an unstable limit cycle below the critical speed. The bearing is very sensitive to initial conditions, and the equilibrium position is easily upset by transient excitation. The results are confirmed by numerical simulation.
NASA Astrophysics Data System (ADS)
Hamedi, H. R.; Ruseckas, J.; Juzeliūnas, G.
2017-09-01
We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N-type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell-Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system.
Topological Maxwell Metal Bands in a Superconducting Qutrit
NASA Astrophysics Data System (ADS)
Tan, Xinsheng; Zhang, Dan-Wei; Liu, Qiang; Xue, Guangming; Yu, Hai-Feng; Zhu, Yan-Qing; Yan, Hui; Zhu, Shi-Liang; Yu, Yang
2018-03-01
We experimentally explore the topological Maxwell metal bands by mapping the momentum space of condensed-matter models to the tunable parameter space of superconducting quantum circuits. An exotic band structure that is effectively described by the spin-1 Maxwell equations is imaged. Threefold degenerate points dubbed Maxwell points are observed in the Maxwell metal bands. Moreover, we engineer and observe the topological phase transition from the topological Maxwell metal to a trivial insulator, and report the first experiment to measure the Chern numbers that are higher than one.
Traveling-Wave Tube Amplifier Model to Predict High-Order Modulation Intersymbol Interference
NASA Technical Reports Server (NTRS)
Kory, Carol L.; Andro, Monty; Williams, W. D. (Technical Monitor)
2001-01-01
Demands for increased data rates in satellite communications necessitate higher order modulation schemes, larger system bandwidth, and minimum distortion of the modulated signal as it is passed through the traveling wave tube amplifier (TWTA). One type of distortion that the TWTA contributes to is intersymbol interference (ISI), and this becomes particularly disruptive with wide-band, complex modulation schemes. It is suspected that in addition to the dispersion of the TWT, frequency dependent reflections due to mismatches within the TWT are a significant contributor to ISI. To experimentally investigate the effect of these mismatches within the physical TWT on ISI would be prohibitively expensive, as it would require manufacturing numerous amplifiers in addition to the acquisition of the required digital hardware. In an attempt to develop a more accurate model to correlate IS1 with the TWTA and the operational signal, a fully three-dimensional (3D), time-dependent, TWT interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA (solution of Maxwell's equations by the Finite-Integration-Algorithm). The model includes a user defined slow-wave circuit with a spatially tapered region of loss to implement a sever, and spatially varied geometry (such as helical pitch) to implement a phase velocity taper. The model also includes user defined input/output coupling and an electron beam contained by solenoidal, electrostatic, or periodic permanent magnet (PPM) focusing allowing standard or novel TWTs to be investigated. This model comprehensively takes into account the effects of frequency dependent nonlinear distortions (MAM and AMPM); gain ripple due to frequency dependent reflections at the input/output coupling, severs, and mismatches from dynamic pitch variations; drive induced oscillations; harmonic generation; intermodulation products; and backward waves.
Maxwell and creation: Acceptance, criticism, and his anonymous publication
NASA Astrophysics Data System (ADS)
Marston, Philip L.
2007-08-01
Although James Clerk Maxwell's religious views and discussions on atoms having the properties of ``manufactured articles'' have been discussed, some aspects of the responses by his contemporaries to his remarks on creation have been neglected. Various responses quoted here include a book from 1878 by ``Physicus'' (George John Romanes) attributing ``arrogance'' to Maxwell for his inferences. Relevant aspects of the evolution of the perspective of Romanes are noted. A response by B. F. Westcott indicated that Maxwell was the author of a related anonymous publication concerned with what eventually became known as the heat death of the universe. In his teaching to theology students, Westcott, a friend of Maxwell, emphasized Maxwell's reasoning based on the dissipation of energy. There are similarities between Maxwell's perspective on creation and Biblical commentaries by fellow Eranus Club members Westcott and J. B. Lightfoot. Interest in Maxwell's remarks extended into the twentieth century. The principal Baptist chapel attended by Maxwell and his wife when in London in the 1860s is identified and some relevant attributes of the chapel and of its pastor are described.
First-principles simulation for strong and ultra-short laser pulse propagation in dielectrics
NASA Astrophysics Data System (ADS)
Yabana, K.
2016-05-01
We develop a computational approach for interaction between strong laser pulse and dielectrics based on time-dependent density functional theory (TDDFT). In this approach, a key ingredient is a solver to simulate electron dynamics in a unit cell of solids under a time-varying electric field that is a time-dependent extension of the static band calculation. This calculation can be regarded as a constitutive relation, providing macroscopic electric current for a given electric field applied to the medium. Combining the solver with Maxwell equations for electromagnetic fields of the laser pulse, we describe propagation of laser pulses in dielectrics without any empirical parameters. An important output from the coupled Maxwell+TDDFT simulation is the energy transfer from the laser pulse to electrons in the medium. We have found an abrupt increase of the energy transfer at certain laser intensity close to damage threshold. We also estimate damage threshold by comparing the transferred energy with melting and cohesive energies. It shows reasonable agreement with measurements.
Salehi, Ali; Zhao, Jin; Cabelka, Tim D; Larson, Ronald G
2016-02-28
We propose a new transport model of drug release from hydrophilic polymeric matrices, based on Stefan-Maxwell flux laws for multicomponent transport. Polymer stress is incorporated in the total mixing free energy, which contributes directly to the diffusion driving force while leading to time-dependent boundary conditions at the tablet interface. Given that hydrated matrix tablets are dense multicomponent systems, extended Stefan-Maxwell (ESM) flux laws are adopted to ensure consistency with the Onsager reciprocity principle and the Gibbs-Duhem thermodynamic constraint. The ESM flux law for any given component takes into account the friction exerted by all other species and is invariant with respect to reference velocity, thus satisfying Galilean translational invariance. Our model demonstrates that penetrant-induced plasticization of polymer chains partially or even entirely offsets the steady decline of chemical potential gradients at the tablet-medium interface that drive drug release. Utilizing a Flory-Huggins thermodynamic model, a modified form of the upper convected Maxwell constitutive equation for polymer stress and a Fujita-type dependence of mutual diffusivities on composition, depending on parameters, Fickian, anomalous or case II drug transport arises naturally from the model, which are characterized by quasi-power-law release profiles with exponents ranging from 0.5 to 1, respectively. A necessary requirement for non-Fickian release in our model is that the matrix stress relaxation time is comparable to the time scale for water diffusion. Mutual diffusivities and their composition dependence are the most decisive factors in controlling drug release characteristics in our model. Regression of the experimental polymer dissolution and drug release profiles in a system of Theophylline/cellulose (K15M) demonstrate that API-water mutual diffusivity in the presence of excipient cannot generally be taken as a constant. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Maynard, M.-A.; Bouchez, R.; Lugani, J.; Bretenaker, F.; Goldfarb, F.; Brion, E.
2015-11-01
We report measurements of the time-dependent phases of the leak and retrieved pulses obtained in electromagnetically-induced-transparency storage experiments with metastable helium vapor at room temperature. In particular, we investigate the influence of the optical detuning at two-photon resonance and provide numerical simulations of the full dynamical Maxwell-Bloch equations, which allow us to account for the experimental results.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
ERIC Educational Resources Information Center
Tweney, Ryan D.
2011-01-01
James Clerk Maxwell "translated" Michael Faraday's experimentally-based field theory into the mathematical representation now known as "Maxwell's Equations." Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other…
Fresnel's laws, ceteris paribus.
Wright, Aaron Sidney
2017-08-01
This article is about structural realism, historical continuity, laws of nature, and ceteris paribus clauses. Fresnel's Laws of optics support Structural Realism because they are a scientific structure that has survived theory change. However, the history of Fresnel's Laws which has been depicted in debates over realism since the 1980s is badly distorted. Specifically, claims that J. C. Maxwell or his followers believed in an ontologically-subsistent electromagnetic field, and gave up the aether, before Einstein's annus mirabilis in 1905 are indefensible. Related claims that Maxwell himself did not believe in a luminiferous aether are also indefensible. This paper corrects the record. In order to trace Fresnel's Laws across significant ontological changes, they must be followed past Einstein into modern physics and nonlinear optics. I develop the philosophical implications of a more accurate history, and analyze Fresnel's Laws' historical trajectory in terms of dynamic ceteris paribus clauses. Structuralists have not embraced ceteris paribus laws, but they continue to point to Fresnel's Laws to resist anti-realist arguments from theory change. Fresnel's Laws fit the standard definition of a ceteris paribus law as a law applicable only in particular circumstances. Realists who appeal to the historical continuity of Fresnel's Laws to combat anti-realists must incorporate ceteris paribus laws into their metaphysics. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamical black holes in low-energy string theory
NASA Astrophysics Data System (ADS)
Aniceto, Pedro; Rocha, Jorge V.
2017-05-01
We investigate time-dependent spherically symmetric solutions of the four-dimensional Einstein-Maxwell-axion-dilaton system, with the dilaton coupling that occurs in low-energy effective heterotic string theory. A class of dilaton-electrovacuum radiating solutions with a trivial axion, previously found by Güven and Yörük, is re-derived in a simpler manner and its causal structure is clarified. It is shown that such dynamical spacetimes featuring apparent horizons do not possess a regular light-like past null infinity or future null infinity, depending on whether they are radiating or accreting. These solutions are then extended in two ways. First we consider a Vaidya-like generalisation, which introduces a null dust source. Such spacetimes are used to test the status of cosmic censorship in the context of low-energy string theory. We prove that — within this family of solutions — regular black holes cannot evolve into naked singularities by accreting null dust, unless standard energy conditions are violated. Secondly, we employ S-duality to derive new time-dependent dyon solutions with a nontrivial axion turned on. Although they share the same causal structure as their Einstein-Maxwell-dilaton counterparts, these solutions possess both electric and magnetic charges.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM; Correction... affiliated with the human remains may contact the Maxwell Museum of Anthropology. Repatriation of the human..., Maxwell Museum of Anthropology, MSC01 1050, University of New Mexico, Albuquerque, NM 87131-0001...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-26
... Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM AGENCY... affiliated with the human remains may contact the Maxwell Museum of Anthropology. Repatriation of the human..., Maxwell Museum of Anthropology, MSC01 1050, University of New Mexico, Albuquerque, NM 87131-0001...
21 CFR 886.1435 - Maxwell spot.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Maxwell spot. 886.1435 Section 886.1435 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES OPHTHALMIC DEVICES Diagnostic Devices § 886.1435 Maxwell spot. (a) Identification. A Maxwell spot is an AC...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-09-13
...: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Maxwell Museum of Anthropology, University of New Mexico has... contact the Maxwell Museum of Anthropology, University of New Mexico. Repatriation of the human remains to...
Blackbody emission from light interacting with an effective moving dispersive medium.
Petev, M; Westerberg, N; Moss, D; Rubino, E; Rimoldi, C; Cacciatori, S L; Belgiorno, F; Faccio, D
2013-07-26
Intense laser pulses excite a nonlinear polarization response that may create an effective flowing medium and, under appropriate conditions, a blocking horizon for light. Here, we analyze in detail the interaction of light with such laser-induced flowing media, fully accounting for the medium dispersion properties. An analytical model based on a first Born approximation is found to be in excellent agreement with numerical simulations based on Maxwell's equations and shows that when a blocking horizon is formed, the stimulated medium scatters light with a blackbody emission spectrum. Based on these results, diamond is proposed as a promising candidate medium for future studies of Hawking emission from artificial, dispersive horizons.
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-04-01
Two kinds of quantum electrodynamic radiative corrections to electromagnetic interactions and their influence on the properties of highly dense quantum plasmas are considered. Linear radiative correction to the Coulomb interaction is considered. Its contribution in the spectrum of the Langmuir waves is presented. The second kind of radiative corrections are related to the nonlinearity of the Maxwell equations for the strong electromagnetic field. Their contribution in the spectrum of transverse waves of magnetized plasmas is briefly discussed. At the consideration of the Langmuir wave spectrum, we included the effect of different distributions of the spin-up and spin-down electrons revealing in the Fermi pressure shift.
Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators
NASA Astrophysics Data System (ADS)
Manimala, James Mathew
Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation in locally dissipative AM with various damped oscillator microstructures was studied using mechanical lattice models. The presence of damping was represented by a complex effective-mass. Analytical transmissibilities and numerical verifications were obtained for Kelvin-Voigt-type, Maxwell-type and Zener-type oscillators. Although peak attenuation at resonance is diminished, broadband attenuation was found to be achievable without increasing mass ratio, obviating the bandgap width limitations of locally resonant AM. Static and frequency-dependent measures of optimal damping that maximize the attenuation characteristics were established. A transitional value for the excitation frequency was identified within the locally resonant bandgap, above which there always exists an optimal amount of damping that renders the attenuation for the dissipative AM greater than that for the locally resonant case. AM with nonlinear stiffnesses were also investigated. For a base-excited two degree of freedom system consisting of a master structure and a Duffing-type oscillator, approximate transmissibility was derived, verified using simulations and compared to its equivalent damped model. Analytical solutions for dispersion curve shifts in nonlinear chains with linear resonators and in linear chains with nonlinear oscillators were obtained using perturbation analysis and first order approximations for cubic hardening and softening cases. Amplitude-activated alterations in bandgap width and the possibility of phenomena such as branch curling and overtaking were observed. Device implications of nonlinear AM as amplitude-dependent filters and direction-biased waveguides were examined using simulations.
Ge, Hao; Qian, Hong
2011-01-01
A theory for an non-equilibrium phase transition in a driven biochemical network is presented. The theory is based on the chemical master equation (CME) formulation of mesoscopic biochemical reactions and the mathematical method of large deviations. The large deviations theory provides an analytical tool connecting the macroscopic multi-stability of an open chemical system with the multi-scale dynamics of its mesoscopic counterpart. It shows a corresponding non-equilibrium phase transition among multiple stochastic attractors. As an example, in the canonical phosphorylation–dephosphorylation system with feedback that exhibits bistability, we show that the non-equilibrium steady-state (NESS) phase transition has all the characteristics of classic equilibrium phase transition: Maxwell construction, a discontinuous first-derivative of the ‘free energy function’, Lee–Yang's zero for a generating function and a critical point that matches the cusp in nonlinear bifurcation theory. To the biochemical system, the mathematical analysis suggests three distinct timescales and needed levels of description. They are (i) molecular signalling, (ii) biochemical network nonlinear dynamics, and (iii) cellular evolution. For finite mesoscopic systems such as a cell, motions associated with (i) and (iii) are stochastic while that with (ii) is deterministic. Both (ii) and (iii) are emergent properties of a dynamic biochemical network. PMID:20466813
NASA Astrophysics Data System (ADS)
Wu, Y.; Xu, Z.; Li, Z. H.; Tang, C. X.
2012-07-01
In intermediate cavities of a relativistic klystron amplifier (RKA) driven by intense relativistic electron beam, the equivalent circuit model, which is widely adopted to investigate the interaction between bunched beam and the intermediate cavity in a conventional klystron design, is invalid due to the high gap voltage and the nonlinear beam loading in a RKA. According to Maxwell equations and Lorentz equation, the self-consistent equations for beam-wave interaction in the intermediate cavity are introduced to study the nonlinear interaction between bunched beam and the intermediate cavity in a RKA. Based on the equations, the effects of modulation depth and modulation frequency of the beam on the gap voltage amplitude and its phase are obtained. It is shown that the gap voltage is significantly lower than that estimated by the equivalent circuit model when the beam modulation is high. And the bandwidth becomes wider as the beam modulation depth increases. An S-band high gain relativistic klystron amplifier is designed based on the result. And the corresponding experiment is carried out on the linear transformer driver accelerator. The peak output power has achieved 1.2 GW with an efficiency of 28.6% and a gain of 46 dB in the corresponding experiment.
Theory and observation of electromagnetic ion cyclotron triggered emissions in the magnetosphere
NASA Astrophysics Data System (ADS)
Omura, Yoshiharu; Pickett, Jolene; Grison, Benjamin; Santolik, Ondrej; Dandouras, Iannis; Engebretson, Mark; Décréau, Pierrette M. E.; Masson, Arnaud
2010-07-01
We develop a nonlinear wave growth theory of electromagnetic ion cyclotron (EMIC) triggered emissions observed in the inner magnetosphere. We first derive the basic wave equations from Maxwell's equations and the momentum equations for the electrons and ions. We then obtain equations that describe the nonlinear dynamics of resonant protons interacting with an EMIC wave. The frequency sweep rate of the wave plays an important role in forming the resonant current that controls the wave growth. Assuming an optimum condition for the maximum growth rate as an absolute instability at the magnetic equator and a self-sustaining growth condition for the wave propagating from the magnetic equator, we obtain a set of ordinary differential equations that describe the nonlinear evolution of a rising tone emission generated at the magnetic equator. Using the physical parameters inferred from the wave, particle, and magnetic field data measured by the Cluster spacecraft, we determine the dispersion relation for the EMIC waves. Integrating the differential equations numerically, we obtain a solution for the time variation of the amplitude and frequency of a rising tone emission at the equator. Assuming saturation of the wave amplitude, as is found in the observations, we find good agreement between the numerical solutions and the wave spectrum of the EMIC triggered emissions.
Viewpoint: Exorcizing Maxwell’s demon
Deffner, Sebastian
2015-12-01
Here, physicists have been haunted by the idea of Maxwell's demon for almost 150 years. The beast, conjured in a thought experiment by James Clerk Maxwell, sorts particles in a gas according to their speeds, thus transferring heat from the colder, evenly mixed gas to the region containing the hotter, high-speed particles. At first sight, the demon appears to violate the second law of thermodynamics. But the paradox can be resolved by realizing that work must be performed on the demon for it to do its job properly. This description isn’t entirely satisfying, however, as it introduces an external—not necessarilymore » physical—entity to do work on the demon. Jukka Pekola and colleagues of Aalto University in Finland [1] have now exorcised such nonphysical beings by realizing a nanodevice equivalent to a Maxwell's demon (Fig. 1), but one whose operation doesn’t depend on an external entity. This so-called autonomous device, also known as an information machine, is completely self-contained. So far, autonomous demons have been a purely theoretical concept; this new experimental system provides a way to test formulations of fundamental axioms of thermodynamics and descriptions of information processing.« less
NASA Astrophysics Data System (ADS)
Mainardi, Francesco; Masina, Enrico; Spada, Giorgio
2018-02-01
We present a new rheological model depending on a real parameter ν \\in [0,1], which reduces to the Maxwell body for ν =0 and to the Becker body for ν =1. The corresponding creep law is expressed in an integral form in which the exponential function of the Becker model is replaced and generalized by a Mittag-Leffler function of order ν . Then the corresponding non-dimensional creep function and its rate are studied as functions of time for different values of ν in order to visualize the transition from the classical Maxwell body to the Becker body. Based on the hereditary theory of linear viscoelasticity, we also approximate the relaxation function by solving numerically a Volterra integral equation of the second kind. In turn, the relaxation function is shown versus time for different values of ν to visualize again the transition from the classical Maxwell body to the Becker body. Furthermore, we provide a full characterization of the new model by computing, in addition to the creep and relaxation functions, the so-called specific dissipation Q^{-1} as a function of frequency, which is of particular relevance for geophysical applications.
Experiments on Maxwell's fish-eye dynamics in elastic plates
NASA Astrophysics Data System (ADS)
Lefebvre, Gautier; Dubois, Marc; Beauvais, Romain; Achaoui, Younes; Ing, Ros Kiri; Guenneau, Sébastien; Sebbah, Patrick
2015-01-01
We experimentally demonstrate that a Duraluminium thin plate with a thickness profile varying radially in a piecewise constant fashion as h ( r ) = h ( 0 ) ( 1 + (r / R max ) 2 ) 2 , with h(0) = 0.5 mm, h(Rmax) = 2 mm, and Rmax = 10 cm, behaves in many ways as Maxwell's fish-eye lens in optics. Its imaging properties for a Gaussian pulse with central frequencies 30 kHz and 60 kHz are very similar to those predicted by ray trajectories (great circles) on a virtual sphere (rays emanating from the North pole meet at the South pole). However, the refocusing time depends on the carrier frequency as a direct consequence of the dispersive nature of flexural waves in thin plates. Importantly, experimental results are in good agreement with finite-difference-time-domain simulations.
Maxwell-Wagner effect in hexagonal BaTiO3 single crystals grown by containerless processing
NASA Astrophysics Data System (ADS)
Yu, Jianding; Paradis, Paul-François; Ishikawa, Takehiko; Yoda, Shinichi
2004-10-01
Oxygen-deficient hexagonal BaTiO3 single crystals, with dielectric constant ε '˜105 and loss component tan δ ˜0.13 at room temperature and a linear temperature dependence of ε' in the range 70-100K, was analyzed by impedance spectroscopy analysis. Two capacitors, bulk and interfacial boundary layer, were observed, and the colossal dielectric constant was mainly dominated by the interfacial boundary layers due to Maxwell-Wagner effect. After annealing the oxygen-deficient hexagonal BaTiO3 at 663K, the ε ' and tanδ became, respectively, 2×104 and 0.07 at room temperature. This work showed an important technological implication as annealing at lower temperatures would help to obtain materials with tailored dielectric properties.
DAGON: a 3D Maxwell-Bloch code
NASA Astrophysics Data System (ADS)
Oliva, Eduardo; Cotelo, Manuel; Escudero, Juan Carlos; González-Fernández, Agustín.; Sanchís, Alberto; Vera, Javier; Vicéns, Sergio; Velarde, Pedro
2017-05-01
The amplification of UV radiation and high order harmonics (HOH) in plasmas is a subject of raising interest due to its different potential applications in several fields like environment and security (detection at distance), biology, materials science and industry (3D imaging) and atomic and plasma physics (pump-probe experiments). In order to develop these sources, it is necessary to properly understand the amplification process. Being the plasma an inhomogeneous medium which changes with time, it is desirable to have a full time-dependent 3D description of the interaction of UV and XUV radiation with plasmas. For these reasons, at the Instituto de Fusíon Nuclear we have developed DAGON, a 3D Maxwell-Bloch code capable of studying the full spationtemporal structure of the amplification process abovementioned.
Black holes in an expanding universe.
Gibbons, Gary W; Maeda, Kei-ichi
2010-04-02
An exact solution representing black holes in an expanding universe is found. The black holes are maximally charged and the universe is expanding with arbitrary equation of state (P = w rho with -1 < or = for all w < or = 1). It is an exact solution of the Einstein-scalar-Maxwell system, in which we have two Maxwell-type U(1) fields coupled to the scalar field. The potential of the scalar field is an exponential. We find a regular horizon, which depends on one parameter [the ratio of the energy density of U(1) fields to that of the scalar field]. The horizon is static because of the balance on the horizon between gravitational attractive force and U(1) repulsive force acting on the scalar field. We also calculate the black hole temperature.
Direct and indirect determination of electrocaloric effect in Na0.5Bi0.5TiO3
NASA Astrophysics Data System (ADS)
Birks, E.; Dunce, M.; Peräntie, J.; Hagberg, J.; Sternberg, A.
2017-06-01
Direct and indirect studies of the electrocaloric effect were carried out in poled and depoled Na0.5Bi0.5TiO3. For this purpose, polarization and electrocaloric effect temperature change measurements were made at different electric field pulses as a function of temperature. The applicability of the widely used indirect electrocaloric effect determination method, using the Maxwell relation, was critically analyzed with respect to the reliable direct measurements. Quantitative differences were observed between the results obtained by both approaches in the case of the poled Na0.5Bi0.5TiO3 sample. These differences can be explained by the temperature-dependent concentration of domains oriented in the direction of the applied electric field. Whereas in depoled Na0.5Bi0.5TiO3, which is characterized by the electric field dependence of polar nanoregions embedded in a nonpolar matrix, the Maxwell relation is not applicable at all, as it is indicated by the obtained results. Possible mechanisms which could be responsible for the electrocaloric effect in the relaxor state were considered. The results of this study are used to evaluate the numerous results obtained and published by other authors, using the Maxwell relation to indirectly determine the electrocaloric effect. The reason for the negative values of the electrocaloric effect, obtained in such a way and widely discussed in the literature in the case of Na0.5Bi0.5TiO3, has been explained in this study.
Emergent pseudospin-1 Maxwell fermions with a threefold degeneracy in optical lattices
NASA Astrophysics Data System (ADS)
Zhu, Yan-Qing; Zhang, Dan-Wei; Yan, Hui; Xing, Ding-Yu; Zhu, Shi-Liang
2017-09-01
The discovery of relativistic spin-1/2 fermions such as Dirac and Weyl fermions in condensed-matter or artificial systems opens a new era in modern physics. An interesting but rarely explored question is whether other relativistic spinal excitations could be realized with artificial systems. Here, we construct two- and three-dimensional tight-binding models realizable with cold fermionic atoms in optical lattices, where the low energy excitations are effectively described by the spin-1 Maxwell equations in the Hamiltonian form. These relativistic (linear dispersion) excitations with unconventional integer pseudospin, beyond the Dirac-Weyl-Majorana fermions, are an exotic kind of fermions named as Maxwell fermions. We demonstrate that the systems have rich topological features. For instance, the threefold degenerate points called Maxwell points may have quantized Berry phases and anomalous quantum Hall effects with spin-momentum locking may appear in topological Maxwell insulators in the two-dimensional lattices. In three dimensions, Maxwell points may have nontrivial monopole charges of ±2 with two Fermi arcs connecting them, and the merging of the Maxwell points leads to topological phase transitions. Finally, we propose realistic schemes for realizing the model Hamiltonians and detecting the topological properties of the emergent Maxwell quasiparticles in optical lattices.
Representing the Electromagnetic Field: How Maxwell's Mathematics Empowered Faraday's Field Theory
NASA Astrophysics Data System (ADS)
Tweney, Ryan D.
2011-07-01
James Clerk Maxwell `translated' Michael Faraday's experimentally-based field theory into the mathematical representation now known as `Maxwell's Equations.' Working with a variety of mathematical representations and physical models Maxwell extended the reach of Faraday's theory and brought it into consistency with other results in the physics of electricity and magnetism. Examination of Maxwell's procedures opens many issues about the role of mathematical representation in physics and the learning background required for its success. Specifically, Maxwell's training in `Cambridge University' mathematical physics emphasized the use of analogous equations across fields of physics and the repeated solving of extremely difficult problems in physics. Such training develops an array of overlearned mathematical representations supported by highly sophisticated cognitive mechanisms for the retrieval of relevant information from long term memory. For Maxwell, mathematics constituted a new form of representation in physics, enhancing the formal derivational and calculational role of mathematics and opening a cognitive means for the conduct of `experiments in the mind' and for sophisticated representations of theory.
Mathematical modelling of convective processes in a weld pool under electric arc surfacing
NASA Astrophysics Data System (ADS)
Sarychev, V. D.; Granovskii, A. Yu; Nevskii, S. A.; Konovalov, S. V.
2017-01-01
The authors develop the mathematical model of convective processes in a molten pool under electric arc surfacing with flux-cored wire. The model is based on the ideas of how convective flows appear due to temperature gradient and action of electromagnetic forces. Influence of alloying elements in the molten metal was modeled as a non-linear dependence of surface tension upon temperature. Surface tension and its temperature coefficient were calculated according to the electron density functional method with consideration to asymmetric electron distribution at the interface “molten metal / shielding gas”. Simultaneous solution of Navier-Stokes and Maxwell equations according to finite elements method with consideration to the moving heat source at the interface showed that there is a multi-vortex structure in the molten metal. This structure gives rise to a downward heat flux which, at the stage of heating, moves from the centre of the pool and stirs it full width. At the cooling stage this flux moves towards the centre of the pool and a single vortex is formed near the symmetry centre. This flux penetration is ∼ 10 mm. Formation of the downward heat flux is determined by sign reversal of the temperature coefficient of surface tension due to the presence of alloying elements.
Applications of Nonlinear Control Using the State-Dependent Riccati Equation.
1995-12-01
method, and do not address noise rejection or robustness issues. xi Applications of Nonlinear Control Using the State-Dependent Riccati Equation I...construct a stabilizing nonlinear feedback controller. This method will be referred to as nonlinear quadratic regulation (NQR). The original intention...involves nding a state-dependent coe- cient (SDC) linear structure for which a stabilizing nonlinear feedback controller can be constructed. The
Testing Theoretical Models of Magnetic Damping Using an Air Track
ERIC Educational Resources Information Center
Vidaurre, Ana; Riera, Jaime; Monsoriu, Juan A.; Gimenez, Marcos H.
2008-01-01
Magnetic braking is a long-established application of Lenz's law. A rigorous analysis of the laws governing this problem involves solving Maxwell's equations in a time-dependent situation. Approximate models have been developed to describe different experimental results related to this phenomenon. In this paper we present a new method for the…
NASA Astrophysics Data System (ADS)
Chilcott, Terry; Guo, Chuan; Coster, Hans
2013-04-01
Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.
Nonlinear evolution dynamics of holographic superconductor model with scalar self-interaction
NASA Astrophysics Data System (ADS)
Li, Ran; Zi, Tieguang; Zhang, Hongbao
2018-04-01
We investigate the holographic superconductor model that is described by the Einstein-Maxwell theory with the self-interaction term λ |Ψ |4 of complex scalar field in asymptotic anti-de Sitter (AdS) spacetime. Below critical temperature Tc, the planar Reissner-Nordström-AdS black hole is unstable due to the near-horizon scalar condensation instability. We study the full nonlinear development of this instability by numerically solving the gravitational dynamics in the asymptotic AdS spacetime, and observe a dynamical process from the perturbed Reissner-Nordström-AdS black hole to a hairy black hole when the initial black hole temperature T
MPI parallelization of Vlasov codes for the simulation of nonlinear laser-plasma interactions
NASA Astrophysics Data System (ADS)
Savchenko, V.; Won, K.; Afeyan, B.; Decyk, V.; Albrecht-Marc, M.; Ghizzo, A.; Bertrand, P.
2003-10-01
The simulation of optical mixing driven KEEN waves [1] and electron plasma waves [1] in laser-produced plasmas require nonlinear kinetic models and massive parallelization. We use Massage Passing Interface (MPI) libraries and Appleseed [2] to solve the Vlasov Poisson system of equations on an 8 node dual processor MAC G4 cluster. We use the semi-Lagrangian time splitting method [3]. It requires only row-column exchanges in the global data redistribution, minimizing the total number of communications between processors. Recurrent communication patterns for 2D FFTs involves global transposition. In the Vlasov-Maxwell case, we use splitting into two 1D spatial advections and a 2D momentum advection [4]. Discretized momentum advection equations have a double loop structure with the outer index being assigned to different processors. We adhere to a code structure with separate routines for calculations and data management for parallel computations. [1] B. Afeyan et al., IFSA 2003 Conference Proceedings, Monterey, CA [2] V. K. Decyk, Computers in Physics, 7, 418 (1993) [3] Sonnendrucker et al., JCP 149, 201 (1998) [4] Begue et al., JCP 151, 458 (1999)
Maxwell Air Force Base Maxwell Air Force Base Join the Air Force Home News AF News Commentaries Services SAPR FOIA Retiree Activities Office Centennial Search Maxwell Air Force Base: Home > Units Site
Homoclinic snaking in the discrete Swift-Hohenberg equation
NASA Astrophysics Data System (ADS)
Kusdiantara, R.; Susanto, H.
2017-12-01
We consider the discrete Swift-Hohenberg equation with cubic and quintic nonlinearity, obtained from discretizing the spatial derivatives of the Swift-Hohenberg equation using central finite differences. We investigate the discretization effect on the bifurcation behavior, where we identify three regions of the coupling parameter, i.e., strong, weak, and intermediate coupling. Within the regions, the discrete Swift-Hohenberg equation behaves either similarly or differently from the continuum limit. In the intermediate coupling region, multiple Maxwell points can occur for the periodic solutions and may cause irregular snaking and isolas. Numerical continuation is used to obtain and analyze localized and periodic solutions for each case. Theoretical analysis for the snaking and stability of the corresponding solutions is provided in the weak coupling region.
Directed electromagnetic wave propagation in 1D metamaterial: Projecting operators method
NASA Astrophysics Data System (ADS)
Ampilogov, Dmitrii; Leble, Sergey
2016-07-01
We consider a boundary problem for 1D electrodynamics modeling of a pulse propagation in a metamaterial medium. We build and apply projecting operators to a Maxwell system in time domain that allows to split the linear propagation problem to directed waves for a material relations with general dispersion. Matrix elements of the projectors act as convolution integral operators. For a weak nonlinearity we generalize the linear results still for arbitrary dispersion and derive the system of interacting right/left waves with combined (hybrid) amplitudes. The result is specified for the popular metamaterial model with Drude formula for both permittivity and permeability coefficients. We also discuss and investigate stationary solutions of the system related to some boundary regimes.
Environmental Assessment: Military Family Housing Privatization Maxwell Air Force Base
2005-06-01
Ray L. Raton Mildred J . Worthy February 9, 2005 Lt. Colonel David W. Maninez Deputy Commander, 42nd MSG 50 South LeMay Plaza (Bldg 804) Maxwell ...Environmental Assessment Military Family Housing Privatization Maxwell Air Force Base United States Air Force Air Education and Training Command... Maxwell Air Force Base, Alabama June 2005 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the collection of
By design: James Clerk Maxwell and the evangelical unification of science.
Stanley, Matthew
2012-03-01
James Clerk Maxwell's electromagnetic theory famously unified many of the Victorian laws of physics. This essay argues that Maxwell saw a deep theological significance in the unification of physical laws. He postulated a variation on the design argument that focused on the unity of phenomena rather than Paley's emphasis on complexity. This argument of Maxwell's is shown to be connected to his particular evangelical religious views. His evangelical perspective provided encouragement for him to pursue a unified physics that supplemented his other philosophical, technical and social influences. Maxwell's version of the argument from design is also contrasted with modern 'intelligent-design' theory.
Algorithm for lens calculations in the geometrized Maxwell theory
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Sevastianov, Leonid A.; Gevorkyan, Migran N.; Demidova, Anastasia V.
2018-04-01
Nowadays the geometric approach in optics is often used to find out media parameters based on propagation paths of the rays because in this case it is a direct problem. However inverse problem in the framework of geometrized optics is usually not given attention. The aim of this work is to demonstrate the work of the proposed the algorithm in the framework of geometrized approach to optics for solving the problem of finding the propagation path of the electromagnetic radiation depending on environmental parameters. The methods of differential geometry are used for effective metrics construction for isotropic and anisotropic media. For effective metric space ray trajectories are obtained in the form of geodesic curves. The introduced algorithm is applied to well-known objects, Maxwell and Luneburg lenses. The similarity of results obtained by classical and geometric approach is demonstrated.
Spherical space Bessel-Legendre-Fourier localized modes solver for electromagnetic waves.
Alzahrani, Mohammed A; Gauthier, Robert C
2015-10-05
Maxwell's vector wave equations are solved for dielectric configurations that match the symmetry of a spherical computational domain. The electric or magnetic field components and the inverse of the dielectric profile are series expansion defined using basis functions composed of the lowest order spherical Bessel function, polar angle single index dependant Legendre polynomials and azimuthal complex exponential (BLF). The series expressions and non-traditional form of the basis functions result in an eigenvalue matrix formulation of Maxwell's equations that are relatively compact and accurately solvable on a desktop PC. The BLF matrix returns the frequencies and field profiles for steady states modes. The key steps leading to the matrix populating expressions are provided. The validity of the numerical technique is confirmed by comparing the results of computations to those published using complementary techniques.
Maxwell's contrived analogy: An early version of the methodology of modeling
NASA Astrophysics Data System (ADS)
Hon, Giora; Goldstein, Bernard R.
2012-11-01
The term "analogy" stands for a variety of methodological practices all related in one way or another to the idea of proportionality. We claim that in his first substantial contribution to electromagnetism James Clerk Maxwell developed a methodology of analogy which was completely new at the time or, to borrow John North's expression, Maxwell's methodology was a "newly contrived analogue". In his initial response to Michael Faraday's experimental researches in electromagnetism, Maxwell did not seek an analogy with some physical system in a domain different from electromagnetism as advocated by William Thomson; rather, he constructed an entirely artificial one to suit his needs. Following North, we claim that the modification which Maxwell introduced to the methodology of analogy has not been properly appreciated. In view of our examination of the evidence, we argue that Maxwell gave a new meaning to analogy; in fact, it comes close to modeling in current usage.
Pseudo spectral collocation with Maxwell polynomials for kinetic equations with energy diffusion
NASA Astrophysics Data System (ADS)
Sánchez-Vizuet, Tonatiuh; Cerfon, Antoine J.
2018-02-01
We study the approximation and stability properties of a recently popularized discretization strategy for the speed variable in kinetic equations, based on pseudo-spectral collocation on a grid defined by the zeros of a non-standard family of orthogonal polynomials called Maxwell polynomials. Taking a one-dimensional equation describing energy diffusion due to Fokker-Planck collisions with a Maxwell-Boltzmann background distribution as the test bench for the performance of the scheme, we find that Maxwell based discretizations outperform other commonly used schemes in most situations, often by orders of magnitude. This provides a strong motivation for their use in high-dimensional gyrokinetic simulations. However, we also show that Maxwell based schemes are subject to a non-modal time stepping instability in their most straightforward implementation, so that special care must be given to the discrete representation of the linear operators in order to benefit from the advantages provided by Maxwell polynomials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, K.K.; Surana, K.S.
1996-10-01
This paper presents a new and general procedure for designing hierarchical and non-hierarchical special elements called {lambda} elements for one dimensional singular problems where the strength of the singularity is unknown. The {lambda} element formulations presented here permit correct numerical simulation of linear as well as non-linear singular problems without a priori knowledge of the strength of the singularity. A procedure is also presented for determining the exact strength of the singularity using the converged solution. It is shown that in special instances, the general formulation of {lambda} elements can also be made hierarchical. The {lambda} elements presented here aremore » of type C{sup 0} and provide C{sup 0} inter-element continuity with p-version elements. One dimensional steady state radial flow of an upper convected Maxwell fluid is considered as a sample problem. Since in this case {lambda}{sub i} are known, this problem provides a good example for investigating the performance of the formulation proposed here. Least squares approach (or Least Squares Finite Element Formulation: LSFEF) is used to construct the integral form (error functional I) from the differential equations. Numerical studies are presented for radially inward flow of an upper convected Maxwell fluid with inner radius r{sub i} = .1 and .01 etc. and Deborah number De = 2.« less
Nonlinear and quantum optics near nanoparticles
NASA Astrophysics Data System (ADS)
Dhayal, Suman
We study the behavior of electric fields in and around dielectric and metal nanoparticles, and prepare the ground for their applications to a variety of systems viz. photovoltaics, imaging and detection techniques, and molecular spectroscopy. We exploit the property of nanoparticles being able to focus the radiation field into small regions and study some of the interesting nonlinear, and quantum coherence and interference phenomena near them. The traditional approach to study the nonlinear light-matter interactions involves the use of the slowly varying amplitude approximation (SVAA) as it simplifies the theoretical analysis. However, SVVA cannot be used for systems which are of the order of the wavelength of the light. We use the exact solutions of the Maxwell's equations to obtain the fields created due to metal and dielectric nanoparticles, and study nonlinear and quantum optical phenomena near these nanoparticles. We begin with the theoretical description of the electromagnetic fields created due to the nonlinear wavemixing process, namely, second-order nonlinearity in an nonlinear sphere. The phase-matching condition has been revisited in such particles and we found that it is not satisfied in the sphere. We have suggested a way to obtain optimal conditions for any type and size of material medium. We have also studied the modifications of the electromagnetic fields in a collection of nanoparticles due to strong near field nonlinear interactions using the generalized Mie theory for the case of many particles applicable in photovoltaics (PV). We also consider quantum coherence phenomena such as modification of dark states, stimulated Raman adiabatic passage (STIRAP), optical pumping in 4-level atoms near nanoparticles by using rotating wave approximation to describe the Hamiltonian of the atomic system. We also considered the behavior of atomic and the averaged atomic polarization in 7-level atoms near nanoparticles. This could be used as a prototype to study any n-level atomic system experimentally in the presence of ensembles of quantum emitters. In the last chapter, we suggested a variant of a pulse-shaping technique applicable in stimulated Raman spectroscopy (SRS) for detection of atoms and molecules in multiscattering media. We used discrete-dipole approximation to obtain the fields created by the nanoparticles.
NASA Astrophysics Data System (ADS)
Senthil Kumar, V.; Kavitha, L.; Gopi, D.
2017-11-01
We investigate the nonlinear spin dynamics of a spin polarized current driven anisotropic ferromagnetic nanowire with Dzyaloshinskii-Moriya interaction (DMI) under the influence of electromagnetic wave (EMW) propagating along the axis of the nanowire. The magnetization dynamics and electromagnetic wave propagation in the ferromagnetic nanowire with weak anti-symmetric interaction is governed by a coupled vector Landau-Lifshitz-Gilbert and Maxwell's equations. These coupled nonlinear vector equations are recasted into the extended derivative nonlinear Schrödinger (EDNLS) equation in the framework of reductive perturbation method. As it is well known, the modulational instability is a precursor for the emergence of localized envelope structures of various kinds, we compute the instability criteria for the weak ferromagnetic nanowire through linear stability analysis. Further, we invoke the homogeneous balance method to construct kink and anti-solitonic like electromagnetic (EM) soliton profiles for the EDNLS equation. We also explore the appreciable effect of the anti-symmetric weak interaction on the magnetization components of the propagating EM soliton. We find that the combination of spin-polarized current and the anti-symmetric DMI have a profound effect on the propagating EMW in a weak ferromagnetic nanowire. Thus, the anti-symmetric DMI in a spin polarized current driven ferromagnetic nanowire supports the lossless propagation of EM solitons, which may have potential applications in magnetic data storage devices.
Coexistence of a self-induced transparency soliton and a Bragg soliton.
Tseng, Hong-Yih; Chi, Sien
2002-11-01
We theoretically show that a self-induced transparency (SIT) soliton and a Bragg soliton can coexist in a nonlinear photonic band gap (PBG) medium doped uniformly with inhomogeneous-broadening two-level atoms. The Maxwell-Bloch equations for the pulse propagating through such a uniformly doped PBG structure are derived first and further reduced to an effective nonlinear Schrödinger equation. This model describes an equivalent physical mechanism for a Bragg-soliton propagation resulting from the effective quadratic dispersion balancing with the effective third-order nonlinearity. Because the resonant atoms are taken into account, the original band gap can be shifted both by the dopants and the instantaneous nonlinearity response originating from an intense optical pulse. As a result, even if a SIT soliton with its central frequency deep inside the original forbidden band, it still can propagate through the resonant PBG medium as long as this SIT soliton satisfies the effective Bragg-soliton propagation. An approximate soliton solution describing such coexistence is found. We also show that the pulse width and group velocity of this soliton solution can be uniquely determined for given material parameters, atomic transition frequency, and input central frequency of the soliton. The numerical examples of the SIT soliton in a one-dimensional As2S3-based PBG structure doped uniformly with Lorentzian line-shape resonant atoms are shown. It is found that a SIT soliton with approximately 100-ps width in such a resonant PBG structure can travel with the velocity being two orders of magnitude slower than the light speed in an unprocessed host medium.
How to Obtain the Covariant Form of Maxwell's Equations from the Continuity Equation
ERIC Educational Resources Information Center
Heras, Jose A.
2009-01-01
The covariant Maxwell equations are derived from the continuity equation for the electric charge. This result provides an axiomatic approach to Maxwell's equations in which charge conservation is emphasized as the fundamental axiom underlying these equations.
Computational Modeling of Semiconductor Dynamics at Femtosecond Time Scales
NASA Technical Reports Server (NTRS)
Agrawal, Govind P.; Goorjian, Peter M.
1998-01-01
The main objective of the Joint-Research Interchange NCC2-5149 was to develop computer codes for accurate simulation of femtosecond pulse propagation in semiconductor lasers and semiconductor amplifiers [I]. The code should take into account all relevant processes such as the interband and intraband carrier relaxation mechanisms and the many-body effects arising from the Coulomb interaction among charge carriers [2]. This objective was fully accomplished. We made use of a previously developed algorithm developed at NASA Ames [3]-[5]. The new algorithm was tested on several problems of practical importance. One such problem was related to the amplification of femtosecond optical pulses in semiconductors. These results were presented in several international conferences over a period of three years. With the help of a postdoctoral fellow, we also investigated the origin of instabilities that can lead to the formation of femtosecond pulses in different kinds of lasers. We analyzed the occurrence of absolute instabilities in lasers that contain a dispersive host material with third-order nonlinearities. Starting from the Maxwell-Bloch equations, we derived general multimode equations to distinguish between convective and absolute instabilities. We find that both self-phase modulation and intensity-dependent absorption can dramatically affect the absolute stability of such lasers. In particular, the self-pulsing threshold (the so-called second laser threshold) can occur at few times the first laser threshold even in good-cavity lasers for which no self-pulsing occurs in the absence of intensity-dependent absorption. These results were presented in an international conference and published in the form of two papers.
Geometrical optimization of sensors for eddy currents nondestructive testing and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thollon, F.; Burais, N.
1995-05-01
Design of Non Destructive Testing (NDT) and Non Destructive Evaluation (NDE) sensors is possible by solving Maxwell`s relations with FEM or BIM. But the large number of geometrical and electrical parameters of sensor and tested material implies many results that don`t give necessarily a well adapted sensor. The authors have used a genetic algorithm for automatic optimization. After having tested this algorithm with analytical solution of Maxwell`s relations for cladding thickness measurement, the method has been implemented in finite element package.
Characterization of thunderstorm induced Maxwell current densities in the middle atmosphere
NASA Technical Reports Server (NTRS)
Baginski, Michael Edward
1989-01-01
Middle atmospheric transient Maxwell current densities generated by lightning induced charge perturbations are investigated via a simulation of Maxwell's equations. A time domain finite element analysis is employed for the simulations. The atmosphere is modeled as a region contained within a right circular cylinder with a height of 110 km and radius of 80 km. A composite conductivity profile based on measured data is used when charge perturbations are centered about the vertical axis at altitudes of 6 and 10 km. The simulations indicate that the temporal structure of the Maxwell current density is relatively insensitive to altitude variation within the region considered. It is also shown that the electric field and Maxwell current density are not generally aligned.
NASA Astrophysics Data System (ADS)
Baig, Mohammad Saad; Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2016-05-01
NaF-ZrF4 is used as a waste incinerator and as a coolant in Generation IV reactors.Structural and dynamical properties of molten NaF-ZrF4 system were studied along with Onsagercoefficients and Maxwell-Stefan (MS) Diffusivities applying Green-Kubo formalism and molecular dynamics (MD) simulations. The zirconium ions are found to be 8 fold coordinated with fluoride ions for all temperatures and concentrations. All the diffusive flux correlations show back-scattering. Even though the MS diffusivities are expected to depend very lightly on the composition because of decoupling of thermodynamic factor, the diffusivity ĐNa-F shows interesting behavior with the increase in concentration of ZrF4. This is because of network formation in NaF-ZrF4. Positive entropy constraints have been plotted to authenticate negative diffusivities observed.
NASA Astrophysics Data System (ADS)
Zeitoun, Ph.; Oliva, E.; Fajardo, M.; Cheriaux, G.; Le, T. T. T.; Li, L.; Pitman, M.; Ros, D.; Sebban, S.; Velarde, P.
2012-07-01
By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of μJ. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings for maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.
NASA Astrophysics Data System (ADS)
Popov, Vladislav; Lavrinenko, Andrei V.; Novitsky, Andrey
2018-03-01
In this paper, we elaborate on the operator effective medium approximation developed recently in Popov et al. [Phys. Rev. B 94, 085428 (2016), 10.1103/PhysRevB.94.085428] to get insight into the surface polariton excitation at the interface of a multilayer hyperbolic metamaterial (HMM). In particular, we find that HMMs with bilayer unit cells support the TE- and TM-polarized surface waves beyond the Maxwell Garnett approximation due to the spatial dispersion interpreted as effective magnetoelectric coupling. The latter is also responsible for the dependence of surface wave propagation on the order of layers in the unit cell. Elimination of the magnetoelectric coupling in three-layer unit cells complying with inversion symmetry restores the qualitative regularity of the Maxwell Garnett approximation, as well as strongly suppresses the influence of the order of layers in the unit cell.
A nonequilibrium model for a moderate pressure hydrogen microwave discharge plasma
NASA Technical Reports Server (NTRS)
Scott, Carl D.
1993-01-01
This document describes a simple nonequilibrium energy exchange and chemical reaction model to be used in a computational fluid dynamics calculation for a hydrogen plasma excited by microwaves. The model takes into account the exchange between the electrons and excited states of molecular and atomic hydrogen. Specifically, electron-translation, electron-vibration, translation-vibration, ionization, and dissociation are included. The model assumes three temperatures, translational/rotational, vibrational, and electron, each describing a Boltzmann distribution for its respective energy mode. The energy from the microwave source is coupled to the energy equation via a source term that depends on an effective electric field which must be calculated outside the present model. This electric field must be found by coupling the results of the fluid dynamics and kinetics solution with a solution to Maxwell's equations that includes the effects of the plasma permittivity. The solution to Maxwell's equations is not within the scope of this present paper.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeitoun, Ph.; Oliva, E.; Fajardo, M.
2012-07-09
By seeding amplifying plasmas pumped with the so-called Transient collisionnal excitation scheme, the amplified pulse seems to be limited to an energy of several 10's of {mu}J. Aiming to attain several mJ, we study the seeding of plasma pumped by long laser pulse. Thanks to our time-dependent Maxwell-Bloch code, we demonstrate that direct seeding with femtosecond pulse is inefficient. We also study the amplification of pulse train with the drawback of re-synchronizing the pulses. We proposed and studied the amplification of high harmonic seed stretched by a grating pair, amplified finally compressed. We consider off-axis diffraction on the gratings formore » maximizing their efficiency. Considering the phase deformation induced by the amplification and the spectral narrowing the final pulse is 230 fs in duration and 5 mJ.« less
NASA Astrophysics Data System (ADS)
Costa, João L.; Girão, Pedro M.; Natário, José; Silva, Jorge Drumond
2018-03-01
In this paper we study the spherically symmetric characteristic initial data problem for the Einstein-Maxwell-scalar field system with a positive cosmological constant in the interior of a black hole, assuming an exponential Price law along the event horizon. More precisely, we construct open sets of characteristic data which, on the outgoing initial null hypersurface (taken to be the event horizon), converges exponentially to a reference Reissner-Nördstrom black hole at infinity. We prove the stability of the radius function at the Cauchy horizon, and show that, depending on the decay rate of the initial data, mass inflation may or may not occur. In the latter case, we find that the solution can be extended across the Cauchy horizon with continuous metric and Christoffel symbols in {L^2_{loc}} , thus violating the Christodoulou-Chruściel version of strong cosmic censorship.
Nonlinear Hysteretic Torsional Waves
NASA Astrophysics Data System (ADS)
Cabaret, J.; Béquin, P.; Theocharis, G.; Andreev, V.; Gusev, V. E.; Tournat, V.
2015-07-01
We theoretically study and experimentally report the propagation of nonlinear hysteretic torsional pulses in a vertical granular chain made of cm-scale, self-hanged magnetic beads. As predicted by contact mechanics, the torsional coupling between two beads is found to be nonlinear hysteretic. This results in a nonlinear pulse distortion essentially different from the distortion predicted by classical nonlinearities and in a complex dynamic response depending on the history of the wave particle angular velocity. Both are consistent with the predictions of purely hysteretic nonlinear elasticity and the Preisach-Mayergoyz hysteresis model, providing the opportunity to study the phenomenon of nonlinear dynamic hysteresis in the absence of other types of material nonlinearities. The proposed configuration reveals a plethora of interesting phenomena including giant amplitude-dependent attenuation, short-term memory, as well as dispersive properties. Thus, it could find interesting applications in nonlinear wave control devices such as strong amplitude-dependent filters.
Particle-in-cell simulations of collisionless magnetic reconnection with a non-uniform guide field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, F., E-mail: fw237@st-andrews.ac.uk; Neukirch, T., E-mail: tn3@st-andrews.ac.uk; Harrison, M. G.
Results are presented of a first study of collisionless magnetic reconnection starting from a recently found exact nonlinear force-free Vlasov–Maxwell equilibrium. The initial state has a Harris sheet magnetic field profile in one direction and a non-uniform guide field in a second direction, resulting in a spatially constant magnetic field strength as well as a constant initial plasma density and plasma pressure. It is found that the reconnection process initially resembles guide field reconnection, but that a gradual transition to anti-parallel reconnection happens as the system evolves. The time evolution of a number of plasma parameters is investigated, and themore » results are compared with simulations starting from a Harris sheet equilibrium and a Harris sheet plus constant guide field equilibrium.« less
Chapman, T.; Winjum, B. J.; Brunner, S.; ...
2015-09-01
The saturation of stimulated Brillouin scattering (SBS) by the decay to turbulence of the ion acoustic wave (IAW) that participates in the three-wave SBS interaction is demonstrated using a quasi-noiseless one-dimensional numerical solution to the Vlasov-Maxwell system of equations. This simulation technique permits careful examination of the decay process and its role in the complex evolution of SBS. Here, the IAW decay process is shown to be an effective SBS saturation mechanism. In our example, the instantaneous plasma reflectivity saturates at ~30% and drops to ~0% as a direct consequence of IAW decay. A contrasting example where the reflectivity ismore » controlled by dephasing due to the nonlinear frequency of the IAW is also discussed.« less
Thermodynamics of viscoelastic rate-type fluids with stress diffusion
NASA Astrophysics Data System (ADS)
Málek, Josef; Průša, Vít; Skřivan, Tomáš; Süli, Endre
2018-02-01
We propose thermodynamically consistent models for viscoelastic fluids with a stress diffusion term. In particular, we derive variants of compressible/incompressible Maxwell/Oldroyd-B models with a stress diffusion term in the evolution equation for the extra stress tensor. It is shown that the stress diffusion term can be interpreted either as a consequence of a nonlocal energy storage mechanism or as a consequence of a nonlocal entropy production mechanism, while different interpretations of the stress diffusion mechanism lead to different evolution equations for the temperature. The benefits of the knowledge of the thermodynamical background of the derived models are documented in the study of nonlinear stability of equilibrium rest states. The derived models open up the possibility to study fully coupled thermomechanical problems involving viscoelastic rate-type fluids with stress diffusion.
Poincaré analysis of wave motion in ultrarelativistic electron-ion plasmas.
Lehmann, G; Spatschek, K H
2011-03-01
Based on a relativistic Maxwell-fluid description, the existence of ultrarelativistic laser-induced periodic waves in an electron-ion plasma is investigated. Within a one-dimensional propagation geometry nonlinear coupling of the electromagnetic and electrostatic components occurs that makes the fourth-order problem nonintegrable. A Hamiltonian description is derived, and the manifolds of periodic solutions are studied by Poincaré section plots. The influence of ion motion is investigated in different intensity regimes. For ultrarelativistic laser intensities the phase-space structures change significantly compared to the weakly relativistic case. Ion motion becomes very important such that finally electron-ion plasmas in the far-ultrarelativistic regime behave similarly to electron-positron plasmas. The characteristic new types of periodic solutions of the system are identified and discussed.
Comment on "Construction of regular black holes in general relativity"
NASA Astrophysics Data System (ADS)
Bronnikov, Kirill A.
2017-12-01
We claim that the paper by Zhong-Ying Fan and Xiaobao Wang on nonlinear electrodynamics coupled to general relativity [Phys. Rev. D 94,124027 (2016)], although correct in general, in some respects repeats previously obtained results without giving proper references. There is also an important point missing in this paper, which is necessary for understanding the physics of the system: in solutions with an electric charge, a regular center requires a non-Maxwell behavior of Lagrangian function L (f ) , (f =Fμ νFμ ν) at small f . Therefore, in all electric regular black hole solutions with a Reissner-Nordström asymptotic, the Lagrangian L (f ) is different in different parts of space, and the electromagnetic field behaves in a singular way at surfaces where L (f ) suffers branching.
Maxwell's inductions from Faraday's induction law
NASA Astrophysics Data System (ADS)
Redžić, D. V.
2018-03-01
In article 598 of his Treatise on Electricity and Magnetism (Maxwell 1891 A Treatise on Electricity and Magnetism (Oxford: Clarendon)), Maxwell gives a seminal analysis of Faraday's law of electromagnetic induction. We present a detailed account of the analysis, attempting to reconstruct the missing steps, and discuss some related matters.
Maxwell Equations and the Redundant Gauge Degree of Freedom
ERIC Educational Resources Information Center
Wong, Chun Wa
2009-01-01
On transformation to the Fourier space (k,[omega]), the partial differential Maxwell equations simplify to algebraic equations, and the Helmholtz theorem of vector calculus reduces to vector algebraic projections. Maxwell equations and their solutions can then be separated readily into longitudinal and transverse components relative to the…
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Anthropology and San Diego Museum of Man professional staff in consultation with representatives of the Pueblo... Inventory Completion: Maxwell Museum of Anthropology, University of New Mexico, Albuquerque, NM AGENCY: National Park Service, Interior. ACTION: Notice. SUMMARY: The Maxwell Museum of Anthropology has completed...
James Clerk Maxwell, a precursor of system identification and control science
NASA Astrophysics Data System (ADS)
Bittanti, Sergio
2015-12-01
One hundred and fifty years ago James Clerk Maxwell published his celebrated paper 'Dynamical theory of electromagnetic field', where the interaction between electricity and magnetism eventually found an explanation. However, Maxwell was also a precursor of model identification and control ideas. Indeed, with the paper 'On Governors' of 1869, he introduced the concept of feedback control system; and moreover, with his essay on Saturn's rings of 1856 he set the basic principle of system identification. This paper is a tutorial exposition having the aim to enlighten these latter aspects of Maxwell's work.
Maxwell's color statistics: from reduction of visible errors to reduction to invisible molecules.
Cat, Jordi
2014-12-01
This paper presents a cross-disciplinary and multi-disciplinary account of Maxwell's introduction of statistical models of molecules for the composition of gases. The account focuses on Maxwell's deployment of statistical models of data in his contemporaneous color researches as established in Cambridge mathematical physics, especially by Maxwell's seniors and mentors. The paper also argues that the cross-disciplinary, or cross-domain, transfer of resources from the natural and social sciences took place in both directions and relied on the complex intra-disciplinary, or intra-domain, dynamics of Maxwell's researches in natural sciences, in color theory, physical astronomy, electromagnetism and dynamical theory of gases, as well as involving a variety of types of communicating and mediating media, from material objects to concepts, techniques and institutions.
Falconer, Isobel
In 1877 James Clerk Maxwell and his student Donald MacAlister refined Henry Cavendish's 1773 null experiment demonstrating the absence of electricity inside a charged conductor. This null result was a mathematical prediction of the inverse square law of electrostatics, and both Cavendish and Maxwell took the experiment as verifying the law. However, Maxwell had already expressed absolute conviction in the law, based on results of Michael Faraday's. So, what was the value to him of repeating Cavendish's experiment? After assessing whether the law was as secure as he claimed, this paper explores its central importance to the electrical programme that Maxwell was pursuing. It traces the historical and conceptual re-orderings through which Maxwell established the law by constructing a tradition of null tests and asserting the superior accuracy of the method. Maxwell drew on his developing 'doctrine of method' to identify Cavendish's experiment as a member of a wider class of null methods. By doing so, he appealed to the null practices of telegraph engineers, diverted attention from the flawed logic of the method, and sought to localise issues around the mapping of numbers onto instrumental indications, on the grounds that 'no actual measurement … was required'. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Model for Europa's Tidal Response Based after Laboratory Measurements
NASA Astrophysics Data System (ADS)
Castillo, J. C.; McCarthy, C.; Choukroun, M.; Rambaux, N.
2009-12-01
We explore the application of the Andrade model to the modeling of Europa’s tidal response at the orbital period and for different librations. Previous models have generally assumed that the satellite behaves as a Maxwell body. However, at the frequencies exciting Europa’s tides and librations, material anelasticity tends to dominate the satellite’s response for a wide range of temperatures, a feature that is not accounted for by the Maxwell model. Many experimental studies on the anelasticity of rocks, ice, and hydrates, suggest that the Andrade model usually provides a good fit to the dissipation spectra obtained for a wide range of frequencies, encompassing the tidal frequencies of most icy satellites. These data indicate that, at Europa’s orbital frequency, the Maxwell model overestimates water ice attenuation at temperature warmer than ~240 K, while it tends to significantly underestimate it at lower temperatures. Based on the available data we suggest an educated extrapolation of available data to Europa’s conditions. We compute the tidal response of a model of Europa differentiated in a rocky core and a water-rich shell. We assume various degrees of stratification of the core involving hydrated and anhydrous silicates, as well as an iron core. The water-rich shell of Europa is assumed to be fully frozen, or to have preserved a deep liquid layer. In both cases we consider a range of thermal structures, based on existing models. These structures take into account the presence of non-ice materials, especially hydrated salts. This new approach yields a greater tidal response (amplitude and phase lag) than previously expected. This is due to the fact that a greater volume of material dissipates tidal energy in comparison to models assuming a Maxwell body. Another feature of interest is that the tidal stress expected in Europa is at about the threshold between a linear and non-linear mechanical response of water ice as a function of stress. Increased stress at a time when Europa’s eccentricity was greater than its current value is likely to have resulted in significant dissipation increase. We will assess how this new approach affects our understanding of Europa, and we will quantify the tidal response of this satellite and the amount of tidal heating available to its evolution. Acknowledgements: Part of this work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. Government sponsorship acknowledged. Part of the experimental work was conducted at Brown University, funded by NASA. MC is supported by a NASA Postdoctoral Fellowship, administered by Oak Ridge Associated Universities.
Nazarov, V E; Kolpakov, A B; Radostin, A V
2012-07-01
The results of experimental and theoretical studies of low-frequency nonlinear acoustics phenomena (amplitude-dependent loss, resonance frequency shifts, and a generation of second and third harmonics) in a magnesite rod resonator are presented. Acceleration and velocity oscillograms of vibrations of the free boundary of the resonator caused by harmonic excitations were measured and analyzed. A theoretical description of the observed amplitude dependences was carried out within the framework of the phenomenological state equations that contain either of the two types of hysteretic nonlinearity (elastic and inelastic). The type of hysteresis and parameters of acoustic nonlinearity of magnesite were established from comparing the experimental measurements with the theoretical dependences. The values of the parameters were anomalously high even when compared to those of other strongly nonlinear polycrystalline materials such as granite, marble, limestone, sandstone, etc.
Hydrodynamic flow in the vicinity of a nanopore induced by an applied voltage
Mao, Mao; Ghosal, Sandip; Hu, Guohui
2013-01-01
Continuum simulation is employed to study ion transport and fluid flow through a nanopore in a solid-state membrane under an applied potential drop. Results show the existence of concentration polarization layers on the surfaces of the membrane. The nonuniformity of the ionic distribution gives rise to an electric pressure that drives vortical motion in the fluid. There is also a net hydrodynamic flow through the nanopore due to an asymmetry induced by the membrane surface charge. The qualitative behavior is similar to that observed in a previous study using molecular dynamic simulations. The current–voltage characteristics show some nonlinear features but are not greatly affected by the hydrodynamic flow in the parameter regime studied. In the limit of thin Debye layers, the electric resistance of the system can be characterized using an equivalent circuit with lumped parameters. Generation of vorticity can be understood qualitatively from elementary considerations of the Maxwell stresses. However, the flow strength is a strongly nonlinear function of the applied field. Combination of electrophoretic and hydrodynamic effects can lead to ion selectivity in terms of valences and this could have some practical applications in separations. PMID:23689946
Fixation, transient landscape, and diffusion dilemma in stochastic evolutionary game dynamics
NASA Astrophysics Data System (ADS)
Zhou, Da; Qian, Hong
2011-09-01
Agent-based stochastic models for finite populations have recently received much attention in the game theory of evolutionary dynamics. Both the ultimate fixation and the pre-fixation transient behavior are important to a full understanding of the dynamics. In this paper, we study the transient dynamics of the well-mixed Moran process through constructing a landscape function. It is shown that the landscape playing a central theoretical “device” that integrates several lines of inquiries: the stable behavior of the replicator dynamics, the long-time fixation, and continuous diffusion approximation associated with asymptotically large population. Several issues relating to the transient dynamics are discussed: (i) multiple time scales phenomenon associated with intra- and inter-attractoral dynamics; (ii) discontinuous transition in stochastically stationary process akin to Maxwell construction in equilibrium statistical physics; and (iii) the dilemma diffusion approximation facing as a continuous approximation of the discrete evolutionary dynamics. It is found that rare events with exponentially small probabilities, corresponding to the uphill movements and barrier crossing in the landscape with multiple wells that are made possible by strong nonlinear dynamics, plays an important role in understanding the origin of the complexity in evolutionary, nonlinear biological systems.
Symmetry, stability, and computation of degenerate lasing modes
NASA Astrophysics Data System (ADS)
Liu, David; Zhen, Bo; Ge, Li; Hernandez, Felipe; Pick, Adi; Burkhardt, Stephan; Liertzer, Matthias; Rotter, Stefan; Johnson, Steven G.
2017-02-01
We present a general method to obtain the stable lasing solutions for the steady-state ab initio lasing theory (SALT) for the case of a degenerate symmetric laser in two dimensions (2D). We find that under most regimes (with one pathological exception), the stable solutions are clockwise and counterclockwise circulating modes, generalizing previously known results of ring lasers to all 2D rotational symmetry groups. Our method uses a combination of semianalytical solutions close to lasing threshold and numerical solvers to track the lasing modes far above threshold. Near threshold, we find closed-form expressions for both circulating modes and other types of lasing solutions as well as for their linearized Maxwell-Bloch eigenvalues, providing a simple way to determine their stability without having to do a full nonlinear numerical calculation. Above threshold, we show that a key feature of the circulating mode is its "chiral" intensity pattern, which arises from spontaneous symmetry breaking of mirror symmetry, and whose symmetry group requires that the degeneracy persists even when nonlinear effects become important. Finally, we introduce a numerical technique to solve the degenerate SALT equations far above threshold even when spatial discretization artificially breaks the degeneracy.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-02
... Intent to Repatriate Cultural Items: Maxwell Museum of Anthropology, University of New Mexico... Anthropology, in consultation with the Pueblo of Santa Ana, New Mexico, has determined that a collection of... cultural affiliation with the cultural items should contact the Maxwell Museum of Anthropology at the...
NASA Astrophysics Data System (ADS)
Kuzmin, R. N.; Savenkova, N. P.; Shobukhov, A. V.; Kalmykov, A. V.
2018-03-01
The paper deals with investigation of the MHD-stability dependence on the depth of the anode immersion in the process of aluminium electrolysis. The proposed 3D three-phase mathematical model is based on the Navier-Stokes and Maxwell equation systems. This model makes it possible to simulate the distributions of the main physical fields both in horizontal and vertical planes. The suggested approach also allows to study the dynamics of the border between aluminium and electrolyte and the shape of the back oxidation zone.
NASA Astrophysics Data System (ADS)
Huang, Chen-Guang; Yong, Hua-Dong; Zhou, You-He
2017-11-01
During the regular operation of a maglev system, the superconducting levitation body may move away from the working position due to the external disturbance and the curved part of the guideway. Based on the A - V formulation of magnetoquasistatic Maxwell's equations, in this paper, a two-dimensional numerical model is applied to study the influence of movement direction on a typical maglev system consisting of an infinitely long high-temperature superconductor and a guideway of two infinitely long parallel permanent magnets with opposite horizontal magnetization. After the highly nonlinear current-voltage characteristic of the superconductor is taken into account, the levitation performance change and the energy dissipation induced by the relative movement of the superconductor and the guideway are discussed. The results show that the levitation force, guidance force and power loss are strongly dependent on the movement direction and speed of the superconductor when it moves away from the working position. If the superconductor moves periodically through the working position, these three physical quantities will change periodically with time. Interestingly, the power loss drastically increases during the first cycle, and after the first cycle it starts to decrease and finally tends to a dynamic steady state. Moreover, an increase in the tilt angle of movement direction will improve the maximum levitation force and, simultaneously, enhance the energy dissipation of the maglev system.
An Information Theory Approach to Nonlinear, Nonequilibrium Thermodynamics
NASA Astrophysics Data System (ADS)
Rogers, David M.; Beck, Thomas L.; Rempe, Susan B.
2011-10-01
Using the problem of ion channel thermodynamics as an example, we illustrate the idea of building up complex thermodynamic models by successively adding physical information. We present a new formulation of information algebra that generalizes methods of both information theory and statistical mechanics. From this foundation we derive a theory for ion channel kinetics, identifying a nonequilibrium `process' free energy functional in addition to the well-known integrated work functionals. The Gibbs-Maxwell relation for the free energy functional is a Green-Kubo relation, applicable arbitrarily far from equilibrium, that captures the effect of non-local and time-dependent behavior from transient thermal and mechanical driving forces. Comparing the physical significance of the Lagrange multipliers to the canonical ensemble suggests definitions of nonequilibrium ensembles at constant capacitance or inductance in addition to constant resistance. Our result is that statistical mechanical descriptions derived from a few primitive algebraic operations on information can be used to create experimentally-relevant and computable models. By construction, these models may use information from more detailed atomistic simulations. Two surprising consequences to be explored in further work are that (in)distinguishability factors are automatically predicted from the problem formulation and that a direct analogue of the second law for thermodynamic entropy production is found by considering information loss in stochastic processes. The information loss identifies a novel contribution from the instantaneous information entropy that ensures non-negative loss.
Yao, Yu-Qin; Li, Ji; Han, Wei; Wang, Deng-Shan; Liu, Wu-Ming
2016-01-01
The intrinsic nonlinearity is the most remarkable characteristic of the Bose-Einstein condensates (BECs) systems. Many studies have been done on atomic BECs with time- and space- modulated nonlinearities, while there is few work considering the atomic-molecular BECs with space-modulated nonlinearities. Here, we obtain two kinds of Jacobi elliptic solutions and a family of rational solutions of the atomic-molecular BECs with trapping potential and space-modulated nonlinearity and consider the effect of three-body interaction on the localized matter wave solutions. The topological properties of the localized nonlinear matter wave for no coupling are analysed: the parity of nonlinear matter wave functions depends only on the principal quantum number n, and the numbers of the density packets for each quantum state depend on both the principal quantum number n and the secondary quantum number l. When the coupling is not zero, the localized nonlinear matter waves given by the rational function, their topological properties are independent of the principal quantum number n, only depend on the secondary quantum number l. The Raman detuning and the chemical potential can change the number and the shape of the density packets. The stability of the Jacobi elliptic solutions depends on the principal quantum number n, while the stability of the rational solutions depends on the chemical potential and Raman detuning. PMID:27403634
Magnetic monopoles, Galilean invariance, and Maxwell's equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, F.S.
1992-02-01
Maxwell's equations have space reserved for magnetic monopoles. Whether or not they exist in our part of the universe, monopoles provide a useful didactic tool to help us recognize relations among Maxwell's equations less easily apparent in the approach followed by many introductory textbooks, wherein Coulomb's law, Biot and Savart's law, Ampere's law, Faraday's law, Maxwell's displacement current, etc., are introduced independently, as demanded by experiment.'' Instead a conceptual path that deduces all of Maxwell's equations from the near-minimal set of assumptions: (a) Inertial frames exist, in which Newton's laws hold, to a first approximation; (b) the laws of electrodynamicsmore » are Galilean invariant---i.e., they have the same form in every inertial frame, to a first approximation; (c) magnetic poles (as well as the usual electric charges) exist; (d) the complete Lorentz force on an electric charge is known; (e) the force on a monopole at rest is known; (f) the Coulomb-like field produced by a resting electric charge and by a resting monopole are known. Everything else is deduced. History is followed in the assumption that Newtonian mechanics have been discovered, but not special relativity. (Only particle velocities {ital v}{much lt}{ital c} are considered.) This ends up with Maxwell's equations (Maxwell did not need special relativity, so why should we,) but facing Einstein's paradox, the solution of which is encapsulated in the Einstein velocity-addition formula.« less
Gras, Laure-Lise; Laporte, Sébastien; Viot, Philippe; Mitton, David
2014-10-01
In models developed for impact biomechanics, muscles are usually represented with one-dimensional elements having active and passive properties. The passive properties of muscles are most often obtained from experiments performed on animal muscles, because limited data on human muscle are available. The aim of this study is thus to characterize the passive response of a human muscle in tension. Tensile tests at different strain rates (0.0045, 0.045, and 0.45 s⁻¹) were performed on 10 extensor carpi ulnaris muscles. A model composed of a nonlinear element defined with an exponential law in parallel with one or two Maxwell elements and considering basic geometrical features was proposed. The experimental results were used to identify the parameters of the model. The results for the first- and second-order model were similar. For the first-order model, the mean parameters of the exponential law are as follows: Young's modulus E (6.8 MPa) and curvature parameter α (31.6). The Maxwell element mean values are as follows: viscosity parameter η (1.2 MPa s) and relaxation time τ (0.25 s). Our results provide new data on a human muscle tested in vitro and a simple model with basic geometrical features that represent its behavior in tension under three different strain rates. This approach could be used to assess the behavior of other human muscles. © IMechE 2014.
The Covariant Formulation of Maxwell's Equations Expressed in a Form Independent of Specific Units
ERIC Educational Resources Information Center
Heras, Jose A.; Baez, G.
2009-01-01
The covariant formulation of Maxwell's equations can be expressed in a form independent of the usual systems of units by introducing the constants alpha, beta and gamma into these equations. Maxwell's equations involving these constants are then specialized to the most commonly used systems of units: Gaussian, SI and Heaviside-Lorentz by giving…
Nonlinear Dynamics of Electroelastic Dielectric Elastomers
2018-01-30
research will significantly advance the basic science and fundamental understanding of how rate- dependent material response couples to large, nonlinear...experimental studies of constrained dielectric elastomer films, a transition in the surface instability mechanism depending on the elastocapillary number...fundamental understanding of how rate- dependent material response couples to large, nonlinear material deformation under applied electrostatic loading to
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surfce deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus, northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structural fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength, and inferred amplitude of mapped structures are small, (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implication of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a ``deformation-from-below'' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Structural history of Maxwell Montes, Venus: Implications for Venusian mountain belt formation
NASA Astrophysics Data System (ADS)
Keep, Myra; Hansen, Vicki L.
1994-12-01
Models for Venusian mountain belt formation are important for understanding planetary geodynamic mechanisms. A range of data sets at various scales must be considered in geodynamic modelling. Long wavelength data, such as gravity and geoid to topography ratios, need constraints from smaller-scale observations of the surface. Pre-Magellan images of the Venusian surface were not of high enough resolution to observe details of surface deformation. High-resolution Magellan images of Maxwell Montes and the other deformation belts allow us to determine the nature of surface deformation. With these images we can begin to understand the constraints that surface deformation places on planetary dynamic models. Maxwell Montes and three other deformation belts (Akna, Freyja, and Danu montes) surround the highland plateau Lakshmi Planum in Venus' northern hemisphere. Maxwell, the highest of these belts, stands 11 km above mean planetary radius. We present a detailed structural and kinematic study of Maxwell Montes. Key observations include (1) dominant structure fabrics are broadly distributed and show little change in spacing relative to elevation changes of several kilometers; (2) the spacing, wavelength and inferred amplitude of mapped structures are small; (3) interpreted extensional structures occur only in areas of steep slope, with no extension at the highest topographic levels; and (4) deformation terminates abruptly at the base of steep slopes. One implications of these observations is that topography is independent of thin-skinned, broadly distributed, Maxwell deformation. Maxwell is apparently stable, with no observed extensional collapse. We propose a 'deformation-from-below' model for Maxwell, in which the crust deforms passively over structurally imbricated and thickened lower crust. This model may have implications for the other deformation belts.
Great moments in kinetic theory: 150 years of Maxwell’s (other) equations
NASA Astrophysics Data System (ADS)
Robson, Robert E.; Mehrling, Timon J.; Osterhoff, Jens
2017-11-01
In 1867, just two years after laying the foundations of electromagnetism, J. Clerk Maxwell presented a fundamental paper on kinetic gas theory, in which he described the evolution of the gas in terms of certain ‘moments’ of its velocity distribution function. This inspired Ludwig Boltzmann to formulate his famous kinetic equation, from which followed the H-theorem and the connection with entropy. On the occasion of the 150th anniversary of publication of Maxwell's paper, we review the Maxwell-Boltzmann formalism and discuss how its generality and adaptability enable it to play a key role in describing the behaviour of a variety of systems of current interest, in both gaseous and condensed matter, and in modern-day physics and technologies which Maxwell and Boltzmann could not possibly have foreseen. In particular, we illustrate the relevance and applicability of Maxwell's formalism to the dynamic field of plasma-wakefield acceleration.
Maxwellians and the Remaking of Maxwell's Equations
NASA Astrophysics Data System (ADS)
Hunt, Bruce
2012-02-01
Although James Clerk Maxwell first formulated his theory of the electromagnetic field in the early 1860s, it went through important changes before it gained general acceptance in the 1890s. Those changes were largely the work of a group of younger physicists, the Maxwellians, led by G. F. FitzGerald in Ireland, Oliver Lodge and Oliver Heaviside in England, and Heinrich Hertz in Germany. Together, they extended, refined, tested, and confirmed Maxwell's theory, and recast it into the set of four vector equations known ever since as ``Maxwell's equations.'' By tracing how the Maxwellians remade and disseminated Maxwell's theory between the late 1870s and the mid-1890s, we can gain a clearer understanding not just of how the electromagnetic field was understood at the end of the 19th century, but of the collaborative nature of work at the frontiers of physics.
Modelling nonlinear viscoelastic behaviours of loudspeaker suspensions-like structures
NASA Astrophysics Data System (ADS)
Maillou, Balbine; Lotton, Pierrick; Novak, Antonin; Simon, Laurent
2018-03-01
Mechanical properties of an electrodynamic loudspeaker are mainly determined by its suspensions (surround and spider) that behave nonlinearly and typically exhibit frequency dependent viscoelastic properties such as creep effect. The paper aims at characterizing the mechanical behaviour of electrodynamic loudspeaker suspensions at low frequencies using nonlinear identification techniques developed in recent years. A Generalized Hammerstein based model can take into account both frequency dependency and nonlinear properties. As shown in the paper, the model generalizes existing nonlinear or viscoelastic models commonly used for loudspeaker modelling. It is further experimentally shown that a possible input-dependent law may play a key role in suspension characterization.
Defense.gov - Special Report - Travels With Gates
Force Base, Ala. Story» Warfighter Care at Center of 2010 Budget Considerations MAXWELL AIR FORCE BASE , Ala., April 15, 2009  Defense Secretary Robert M. Gates met at Maxwell Air Force Base, Ala., with the U.S. Air Force Air War College on Maxwell Air Force Base, Ala., listen to Defense Secretary Robert
James Clerk Maxwell and the Kinetic Theory of Gases: A Review Based on Recent Historical Studies
ERIC Educational Resources Information Center
Brush, Stephen G.
1971-01-01
Maxwell's four major papers and some shorter publications relating to kinetic theory and statistical mechanics are discussed in the light of subsequent research. Reviews Maxwell's ideas on such topics as velocity, distribution law, the theory of heat conduction, the mechanism of the radiometer effect, the ergodic hypothesis, and his views on the…
Handapangoda, Chintha C; Premaratne, Malin; Paganin, David M; Hendahewa, Priyantha R D S
2008-10-27
A novel algorithm for mapping the photon transport equation (PTE) to Maxwell's equations is presented. Owing to its accuracy, wave propagation through biological tissue is modeled using the PTE. The mapping of the PTE to Maxwell's equations is required to model wave propagation through foreign structures implanted in biological tissue for sensing and characterization of tissue properties. The PTE solves for only the magnitude of the intensity but Maxwell's equations require the phase information as well. However, it is possible to construct the phase information approximately by solving the transport of intensity equation (TIE) using the full multigrid algorithm.
Non-axisymmetric Flows and Transport in the Edge of MST
NASA Astrophysics Data System (ADS)
Miller, Matthew Charles
Magnetic reconnection occurs in plasmas all throughout the universe and is responsible for spectacular and perplexing phenomena. In the Madison Symmetric Torus (MST) reversed field pinch (RFP), reconnection occurs as quasi-periodic bursts of tearing instabilities (saw-teeth), which give rise to a number of processes that affect the RFP's global behavior and confinement. This work examines the structure of turbulent plasma flow in the edge region and its role in affecting momentum and particle transport through the use of several insertable probes and novel ensemble techniques. Very few measurements exist of tearing mode flow structures. The flow structure has now been measured for m = 0 modes and is in good agreement with theoretical expectations for nonlinear resistive MHD calculated for the RFP using DEBS and NIMROD. The flows are predicted and measured to be different than the classical Sweet-Parker picture with symmetric inward flows. The flow fluctuations have a profound effect on momentum transport, which is trans- ported rapidly at the crash. This work advances the understanding of this process by measuring the Reynolds stress associated with turbulent flow. Combined with measurements of the Maxwell stress, a new picture for magnetic self-organization in the RFP via two-fluid physics has emerged. The Reynolds and Maxwell stresses are measured to be an order of magnitude larger than the rate of change in inertia but oppositely directed such that they almost cancel. Two-fluid effects are significant because of the relationship be- tween the Maxwell stress and the Hall dynamo, a term only existing in two-fluid theories. This relationship inextricably couples the momentum dynamics with the current dynamics. Indeed, the parallel momentum profile exhibits a relaxation at the crash akin to the relaxation seen in the parallel current density profile. Tearing modes also drive particle transport. Fluctuation-induced particle flux is resolved through a crash by measuring it directly as < neur>. The flux increases dramatically during a crash and is non-axisymmetric. Between crashes, the transport from tearing is small, which agrees with previous measurements that identified electrostatic transport as dominant at that time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitt, Nikolai; Technische Universitaet Darmstadt, Institut fuer Theorie Elektromagnetischer Felder; Scheid, Claire
2016-07-01
The interaction of light with metallic nanostructures is increasingly attracting interest because of numerous potential applications. Sub-wavelength metallic structures, when illuminated with a frequency close to the plasma frequency of the metal, present resonances that cause extreme local field enhancements. Exploiting the latter in applications of interest requires a detailed knowledge about the occurring fields which can actually not be obtained analytically. For the latter mentioned reason, numerical tools are thus an absolute necessity. The insight they provide is very often the only way to get a deep enough understanding of the very rich physics at play. For the numericalmore » modeling of light-structure interaction on the nanoscale, the choice of an appropriate material model is a crucial point. Approaches that are adopted in a first instance are based on local (i.e. with no interaction between electrons) dispersive models, e.g. Drude or Drude–Lorentz models. From the mathematical point of view, when a time-domain modeling is considered, these models lead to an additional system of ordinary differential equations coupled to Maxwell's equations. However, recent experiments have shown that the repulsive interaction between electrons inside the metal makes the response of metals intrinsically non-local and that this effect cannot generally be overlooked. Technological achievements have enabled the consideration of metallic structures in a regime where such non-localities have a significant influence on the structures' optical response. This leads to an additional, in general non-linear, system of partial differential equations which is, when coupled to Maxwell's equations, significantly more difficult to treat. Nevertheless, dealing with a linearized non-local dispersion model already opens the route to numerous practical applications of plasmonics. In this work, we present a Discontinuous Galerkin Time-Domain (DGTD) method able to solve the system of Maxwell's equations coupled to a linearized non-local dispersion model relevant to plasmonics. While the method is presented in the general 3D case, numerical results are given for 2D simulation settings.« less
NASA Astrophysics Data System (ADS)
Iwamoto, Mitsumasa; Manaka, Takaaki; Taguchi, Dai
2015-09-01
The probing and modeling of carrier motions in materials as well as in electronic devices is a fundamental research subject in science and electronics. According to the Maxwell electromagnetic field theory, carriers are a source of electric field. Therefore, by probing the dielectric polarization caused by the electric field arising from moving carriers and dipoles, we can find a way to visualize the carrier motions in materials and in devices. The techniques used here are an electrical Maxwell-displacement current (MDC) measurement and a novel optical method based on the electric field induced optical second harmonic generation (EFISHG) measurement. The MDC measurement probes changes of induced charge on electrodes, while the EFISHG probes nonlinear polarization induced in organic active layers due to the coupling of electron clouds of molecules and electro-magnetic waves of an incident laser beam in the presence of a DC field caused by electrons and holes. Both measurements allow us to probe dynamical carrier motions in solids through the detection of dielectric polarization phenomena originated from dipolar motions and electron transport. In this topical review, on the basis of Maxwell’s electro-magnetism theory of 1873, which stems from Faraday’s idea, the concept for probing electron and hole transport in solids by using the EFISHG is discussed in comparison with the conventional time of flight (TOF) measurement. We then visualize carrier transit in organic devices, i.e. organic field effect transistors, organic light emitting diodes, organic solar cells, and others. We also show that visualizing an EFISHG microscopic image is a novel way for characterizing anisotropic carrier transport in organic thin films. We also discuss the concept of the detection of rotational dipolar motions in monolayers by means of the MDC measurement, which is capable of probing the change of dielectric spontaneous polarization formed by dipoles in organic monolayers. Finally we conclude that the ideas and experiments on EFISHG and MDC lead to a novel way of analyzing dynamical motions of electrons, holes, and dipoles in solids, and thus are available in organic electronic device application.
Nonpolynomial Lagrangian approach to regular black holes
NASA Astrophysics Data System (ADS)
Colléaux, Aimeric; Chinaglia, Stefano; Zerbini, Sergio
We present a review on Lagrangian models admitting spherically symmetric regular black holes (RBHs), and cosmological bounce solutions. Nonlinear electrodynamics, nonpolynomial gravity, and fluid approaches are explained in details. They consist respectively in a gauge invariant generalization of the Maxwell-Lagrangian, in modifications of the Einstein-Hilbert action via nonpolynomial curvature invariants, and finally in the reconstruction of density profiles able to cure the central singularity of black holes. The nonpolynomial gravity curvature invariants have the special property to be second-order and polynomial in the metric field, in spherically symmetric spacetimes. Along the way, other models and results are discussed, and some general properties that RBHs should satisfy are mentioned. A covariant Sakharov criterion for the absence of singularities in dynamical spherically symmetric spacetimes is also proposed and checked for some examples of such regular metric fields.
NASA Astrophysics Data System (ADS)
Wu, Erheng; Cao, Qing; You, Jun; Liu, Chengpu
2017-06-01
The ultrafast dynamics in the few-cycle laser seeding of quantum cascade laser (QCL) is numerically investigated via the exact solution of the full-wave Maxwell-Bloch equations. It is found that, with or without taking permanent dipole moment (PDM) into account, the QCL emission is quite different: beyond the fundamental frequency band, additional high and low bands occur for that with PDM, which forms an ultra-broad quasi-comb. The origin for this is closely related to the generation of second order harmonic and direct-current components as a result of PDM breaking down the parity symmetry. Moreover, the carrier-envelope-phase (CEP) of laser seed is locked to the QCL output, no matter with or without PDM, and this phase controlled QCL maybe has more wide and convenient applications in related fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qin, Hong; Liu, Jian; Xiao, Jianyuan
Particle-in-cell (PIC) simulation is the most important numerical tool in plasma physics. However, its long-term accuracy has not been established. To overcome this difficulty, we developed a canonical symplectic PIC method for the Vlasov-Maxwell system by discretising its canonical Poisson bracket. A fast local algorithm to solve the symplectic implicit time advance is discovered without root searching or global matrix inversion, enabling applications of the proposed method to very large-scale plasma simulations with many, e.g. 10(9), degrees of freedom. The long-term accuracy and fidelity of the algorithm enables us to numerically confirm Mouhot and Villani's theory and conjecture on nonlinearmore » Landau damping over several orders of magnitude using the PIC method, and to calculate the nonlinear evolution of the reflectivity during the mode conversion process from extraordinary waves to Bernstein waves.« less
NASA Astrophysics Data System (ADS)
Sadovnikov, A. V.; Odintsov, S. A.; Beginin, E. N.; Sheshukova, S. E.; Sharaevskii, Yu. P.; Nikitov, S. A.
2017-10-01
We demonstrate that the nonlinear spin-wave transport in two laterally parallel magnetic stripes exhibit the intensity-dependent power exchange between the adjacent spin-wave channels. By the means of Brillouin light scattering technique, we investigate collective nonlinear spin-wave dynamics in the presence of magnetodipolar coupling. The nonlinear intensity-dependent effect reveals itself in the spin-wave mode transformation and differential nonlinear spin-wave phase shift in each adjacent magnetic stripe. The proposed analytical theory, based on the coupled Ginzburg-Landau equations, predicts the geometry design involving the reduction of power requirement to the all-magnonic switching. A very good agreement between calculation and experiment was found. In addition, a micromagnetic and finite-element approach has been independently used to study the nonlinear behavior of spin waves in adjacent stripes and the nonlinear transformation of spatial profiles of spin-wave modes. Our results show that the proposed spin-wave coupling mechanism provides the basis for nonlinear magnonic circuits and opens the perspectives for all-magnonic computing architecture.
A Leap-Frog Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations in Metamaterials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, J., Waters, J. W., Machorro, E. A.
2012-06-01
Numerical simulation of metamaterials play a very important role in the design of invisibility cloak, and sub-wavelength imaging. In this paper, we propose a leap-frog discontinuous Galerkin method to solve the time-dependent Maxwell’s equations in metamaterials. Conditional stability and error estimates are proved for the scheme. The proposed algorithm is implemented and numerical results supporting the analysis are provided.
Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space
NASA Astrophysics Data System (ADS)
Crisford, Toby; Santos, Jorge E.
2017-05-01
We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.
Violating the Weak Cosmic Censorship Conjecture in Four-Dimensional Anti-de Sitter Space.
Crisford, Toby; Santos, Jorge E
2017-05-05
We consider time-dependent solutions of the Einstein-Maxwell equations using anti-de Sitter (AdS) boundary conditions, and provide the first counterexample to the weak cosmic censorship conjecture in four spacetime dimensions. Our counterexample is entirely formulated in the Poincaré patch of AdS. We claim that our results have important consequences for quantum gravity, most notably to the weak gravity conjecture.
Preparing for the Unthinkable: DOD Support to Foreign Consequence Management
2010-05-03
Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air University, 2001), 23. 17 Department of Defense Consequence Management...States Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster ” (research paper, Maxwell Air Force Base, AL: Air...Government Response to an Overseas Chemical, Biological, Radiological, or Nuclear Disaster .” Research paper, Maxwell Air Force Base, AL: Air University
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca
Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less
Modeling Thermal Transport and Surface Deformation on Europa using Realistic Rheologies
NASA Astrophysics Data System (ADS)
Linneman, D.; Lavier, L.; Becker, T. W.; Soderlund, K. M.
2017-12-01
Most existing studies of Europa's icy shell model the ice as a Maxwell visco-elastic solid or viscous fluid. However, these approaches do not allow for modeling of localized deformation of the brittle part of the ice shell, which is important for understanding the satellite's evolution and unique geology. Here, we model the shell as a visco-elasto-plastic material, with a brittle Mohr-Coulomb elasto-plastic layer on top of a convective Maxwell viscoelastic layer, to investigate how thermal transport processes relate to the observed deformation and topography on Europa's surface. We use Fast Lagrangian Analysis of Continua (FLAC) code, which employs an explicit time-stepping algorithm to simulate deformation processes in Europa's icy shell. Heat transfer drives surface deformation within the icy shell through convection and tidal dissipation due to its elliptical orbit around Jupiter. We first analyze the visco-elastic behavior of a convecting ice layer and the parameters that govern this behavior. The regime of deformation depends on the magnitude of the stress (diffusion creep at low stresses, grain-size-sensitive creep at intermediate stresses, dislocation creep at high stresses), so we calculate effective viscosity each time step using the constitutive stress-strain equation and a combined flow law that accounts for all types of deformation. Tidal dissipation rate is calculated as a function of the temperature-dependent Maxwell relaxation time and the square of the second invariant of the strain rate averaged over each orbital period. After we initiate convection in the viscoelastic layer by instituting an initial temperature perturbation, we then add an elastoplastic layer on top of the convecting layer and analyze how the brittle ice reacts to stresses from below and any resulting topography. We also take into account shear heating along fractures in the brittle layer. We vary factors such as total shell thickness and minimum viscosity, as these parameters are not well constrained, and determine how this affects the thickness and deformation of the brittle layer.
NASA Astrophysics Data System (ADS)
Farokhi, Hamed; Païdoussis, Michael P.; Misra, Arun K.
2018-04-01
The present study examines the nonlinear behaviour of a cantilevered carbon nanotube (CNT) resonator and its mass detection sensitivity, employing a new nonlinear electrostatic load model. More specifically, a 3D finite element model is developed in order to obtain the electrostatic load distribution on cantilevered CNT resonators. A new nonlinear electrostatic load model is then proposed accounting for the end effects due to finite length. Additionally, a new nonlinear size-dependent continuum model is developed for the cantilevered CNT resonator, employing the modified couple stress theory (to account for size-effects) together with the Kelvin-Voigt model (to account for nonlinear damping); the size-dependent model takes into account all sources of nonlinearity, i.e. geometrical and inertial nonlinearities as well as nonlinearities associated with damping, small-scale, and electrostatic load. The nonlinear equation of motion of the cantilevered CNT resonator is obtained based on the new models developed for the CNT resonator and the electrostatic load. The Galerkin method is then applied to the nonlinear equation of motion, resulting in a set of nonlinear ordinary differential equations, consisting of geometrical, inertial, electrical, damping, and size-dependent nonlinear terms. This high-dimensional nonlinear discretized model is solved numerically utilizing the pseudo-arclength continuation technique. The nonlinear static and dynamic responses of the system are examined for various cases, investigating the effect of DC and AC voltages, length-scale parameter, nonlinear damping, and electrostatic load. Moreover, the mass detection sensitivity of the system is examined for possible application of the CNT resonator as a nanosensor.
NASA Astrophysics Data System (ADS)
Chakraborty, Brahmananda; Ramaniah, Lavanya M.
2015-06-01
Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied the dynamic correlation, Onsager coeeficients and Maxwell-Stefan (MS) Diffusivities of molten salt LiF-BeF2, which is used as coolant in high temperature reactor. All the diffusive flux correlations show back-scattering or cage dynamics which becomes pronouced at higher temperature. Although the MS diffusivities are expected to depend very lightly on the composition due to decoupling of thermodynamic factor, the diffusivity ĐLi-F and ĐBe-F decreases sharply for higher concentration of LiF and BeF2 respectively. Interestingly, all three MS diffusivities have highest magnitude for eutectic mixture at 1000K (except ĐBe-F at lower LiF mole fraction) which is desirable from coolant point of view. Although the diffusivity for positive-positive ion pair is negative it is not in violation of the second law of thermodynamics as it satisfies the non-negative entropic constraints.
From Maxwell's Electrodynamics to Relativity, a Geometric Journey
NASA Astrophysics Data System (ADS)
Smith, Felix T.
2015-05-01
Since Poincaré and Minkowski recognized ict as a fourth coordinate in a four-space associated with the Lorentz transformation, the occurrence of that imaginary participant in the relativistic four-vector has been a mystery of relativistic dynamics. A reexamination of Maxwell's equations (ME) shows that one of their necessary implications is to bring to light a constraint that distorts the 3-space of our experience from strict Euclidean zero curvature by a time-varying, spatially isotropic term creating a minute curvature Kcurv(t) and therefore a radius of curvature rcurv(t) =Kcurv- 1 / 2 (t). In the light of Michelson-Morley and the Lorentz transformation, this radius must be imaginary, and the geometric curvature K must be negative. From the time dependence of the ME the rate of change of the curvature radius is shown to be drcurv / dt = ic , agreeing exactly with the Hubble expansion. The imaginary magnitude is the radius of curvature; the time itself is not imaginary. Minkowski's space-time is unjustified. Important consequences for the foundations of special relativity follow.
Self-Similar Apical Sharpening of an Ideal Perfecting Conducting Fluid Subject to Maxwell Stresses
NASA Astrophysics Data System (ADS)
Zhou, Chengzhe; Troian, Sandra M.
2016-11-01
We examine the apical behavior of an ideal, perfectly conducting incompressible fluid surrounded by vacuum in circumstances where the capillary, Maxwell and inertial forces contribute to formation of a liquid cone. A previous model based on potential flow describes a family of self-similar solutions with conic cusps whose interior angles approach the Taylor cone angle. These solutions were obtained by matching powers of the leading order terms in the velocity and electric field potential to the asymptotic form dictated by a stationary cone shape. In re-examining this earlier work, we have found a more important, neglected leading order term in the velocity and field potentials, which satisfies the governing, interfacial and far-field conditions as well. This term allows for the development of additional self-similar, sharpening apical shapes, including time reversed solutions for conic tip recoil after fluid ejection. We outline the boundary-element technique for solving the exact similarity solutions, which have parametric dependence on the far-field conditions, and discuss consequences of our findings.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity
NASA Astrophysics Data System (ADS)
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Linking the fractional derivative and the Lomnitz creep law to non-Newtonian time-varying viscosity.
Pandey, Vikash; Holm, Sverre
2016-09-01
Many of the most interesting complex media are non-Newtonian and exhibit time-dependent behavior of thixotropy and rheopecty. They may also have temporal responses described by power laws. The material behavior is represented by the relaxation modulus and the creep compliance. On the one hand, it is shown that in the special case of a Maxwell model characterized by a linearly time-varying viscosity, the medium's relaxation modulus is a power law which is similar to that of a fractional derivative element often called a springpot. On the other hand, the creep compliance of the time-varying Maxwell model is identified as Lomnitz's logarithmic creep law, making this possibly its first direct derivation. In this way both fractional derivatives and Lomnitz's creep law are linked to time-varying viscosity. A mechanism which yields fractional viscoelasticity and logarithmic creep behavior has therefore been found. Further, as a result of this linking, the curve-fitting parameters involved in the fractional viscoelastic modeling, and the Lomnitz law gain physical interpretation.
Capsize of polarization in dilute photonic crystals.
Gevorkian, Zhyrair; Hakhoumian, Arsen; Gasparian, Vladimir; Cuevas, Emilio
2017-11-29
We investigate, experimentally and theoretically, polarization rotation effects in dilute photonic crystals with transverse permittivity inhomogeneity perpendicular to the traveling direction of waves. A capsize, namely a drastic change of polarization to the perpendicular direction is observed in a one-dimensional photonic crystal in the frequency range 10 ÷ 140 GHz. To gain more insights into the rotational mechanism, we have developed a theoretical model of dilute photonic crystal, based on Maxwell's equations with a spatially dependent two dimensional inhomogeneous dielectric permittivity. We show that the polarization's rotation can be explained by an optical splitting parameter appearing naturally in Maxwell's equations for magnetic or electric fields components. This parameter is an optical analogous of Rashba like spin-orbit interaction parameter present in quantum waves, introduces a correction to the band structure of the two-dimensional Bloch states, creates the dynamical phase shift between the waves propagating in the orthogonal directions and finally leads to capsizing of the initial polarization. Excellent agreement between theory and experiment is found.
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
NASA Astrophysics Data System (ADS)
Ge, Xian-Hui; Tian, Yu; Wu, Shang-Yu; Wu, Shao-Feng
2017-08-01
We derive new black hole solutions in Einstein-Maxwell-axion-dilaton theory with a hyperscaling violation exponent. We then examine the corresponding anomalous transport exhibited by cuprate strange metals in the normal phase of high-temperature superconductors via gauge-gravity duality. Linear-temperature-dependence resistivity and quadratic-temperature-dependence inverse Hall angle can be achieved. In the high-temperature regime, the heat conductivity and Hall Lorenz ratio are proportional to the temperature. The Nernst signal first increases as temperature goes up, but it then decreases with increasing temperature in the high-temperature regime.
Studies of Coherent Synchrotron Radiation with the Discontinuous Galerkin Method
NASA Astrophysics Data System (ADS)
Bizzozero, David A.
In this thesis, we present methods for integrating Maxwell's equations in Frenet-Serret coordinates in several settings using discontinuous Galerkin (DG) finite element method codes in 1D, 2D, and 3D. We apply these routines to the study of coherent synchrotron radiation, an important topic in accelerator physics. We build upon the published computational work of T. Agoh and D. Zhou in solving Maxwell's equations in the frequency-domain using a paraxial approximation which reduces Maxwell's equations to a Schrodinger-like system. We also evolve Maxwell's equations in the time-domain using a Fourier series decomposition with 2D DG motivated by an experiment performed at the Canadian Light Source. A comparison between theory and experiment has been published (Phys. Rev. Lett. 114, 204801 (2015)). Lastly, we devise a novel approach to integrating Maxwell's equations with 3D DG using a Galilean transformation and demonstrate proof-of-concept. In the above studies, we examine the accuracy, efficiency, and convergence of DG.
Shock waves: The Maxwell-Cattaneo case.
Uribe, F J
2016-03-01
Several continuum theories for shock waves give rise to a set of differential equations in which the analysis of the underlying vector field can be done using the tools of the theory of dynamical systems. We illustrate the importance of the divergences associated with the vector field by considering the ideas by Maxwell and Cattaneo and apply them to study shock waves in dilute gases. By comparing the predictions of the Maxwell-Cattaneo equations with shock wave experiments we are lead to the following conclusions: (a) For low compressions (low Mach numbers: M) the results from the Maxwell-Cattaneo equations provide profiles that are in fair agreement with the experiments, (b) as the Mach number is increased we find a range of Mach numbers (1.27 ≈ M(1) < M < M(2) ≈ 1.90) such that numerical shock wave solutions to the Maxwell-Cattaneo equations cannot be found, and (c) for greater Mach numbers (M>M_{2}) shock wave solutions can be found though they differ significantly from experiments.
NASA Astrophysics Data System (ADS)
Shenker, Orly R.
2004-09-01
In 1867, James Clerk Maxwell proposed a perpetuum mobile of the second kind, that is, a counter example for the Second Law of thermodynamics, which came to be known as "Maxwell's Demon." Unlike any other perpetual motion machine, this one escaped attempts by the best scientists and philosophers to show that the Second Law or its statistical mechanical counterparts are universal after all. "Maxwell's demon lives on. After more than 130 years of uncertain life and at least two pronouncements of death, this fanciful character seems more vibrant than ever." These words of Harvey Leff and Andrew Rex (1990), which open their introduction to Maxwell's Demon 2: Entropy, Classical and Quantum Information, Computing (hereafter MD2) are very true: the Demon is as challenging and as intriguing as ever, and forces us to think and rethink about the foundations of thermodynamics and of statistical mechanics.
Shapes, spectra and new methods in nonlinear spatial optics
NASA Astrophysics Data System (ADS)
Sun, Can
For a myriad of optical applications, the quality of the light source is poor and the beam is inherently spatially partially-coherent. For this broad class of systems, wave dynamics depends not only on the wave intensity, but also on its distribution of spatial frequencies. Unfortunately, this entire spectrum of problems has often been overlooked - for reasons of theoretical ease or experimental difficulties. Here, we remedy this by demonstrating a novel experimental setup which, for the first time, allows arbitrarily modulation of the spatial spectra of light to obtain any distribution of interest. Using modulation instability as an example, we isolate the effect of different spectral shapes and observe distinct beam dynamics. Next, we turn to a thermodynamic description of the long-term evolution of statistical fields. For quantum systems, a major consequence is Bose-Einstein Condensation. However, recent theoretical studies have suggested that quantum mechanics is not necessary for the condensation process: classical waves with random phases can also self-organize into a coherent state. Starting from a random ensemble, nonlinear interactions can lead to a turbulent energy cascade towards longer spatial scales. In complete analogy with the kinetics of a gas system, there is a statistical dynamics of waves in which particle velocities map to wavepacket k-vectors while collisions are mimicked by four-wave mixing. As with collisions, each wave interaction is formally reversible, yet entropy principles mandate that the ensemble evolves towards an equilibrium state of maximum disorder. The result is an equipartition of energy, in the form of a Rayleigh-Jeans spectrum, with information about the condensation process recorded in small-scale fluctuations. Here, we give the first experimental observation of the condensation of classical waves in any media. Using classical light in a self-defocusing photorefractive, we observe all aspects of the condensation process, including the population of a coherent state, spectral redistribution towards the Rayleigh-Jeans spectrum, and formal reversibility of the interactions. The latter is proved experimentally by introducing a digital "Maxwell's Demon" to reverse (phase-conjugate) the momentum of each wavepacket and recover the original "thermal cloud". The results integrate digital and physical methods of nonlinear processing, confirm fundamental ideas in wave turbulence, and greatly extend the range of Bose-Einstein theory.
NASA Astrophysics Data System (ADS)
Cremaschini, Claudio; Tessarotto, Massimo
2011-11-01
A largely unsolved theoretical issue in controlled fusion research is the consistent kinetic treatment of slowly-time varying plasma states occurring in collisionless and magnetized axisymmetric plasmas. The phenomenology may include finite pressure anisotropies as well as strong toroidal and poloidal differential rotation, characteristic of Tokamak plasmas. Despite the fact that physical phenomena occurring in fusion plasmas depend fundamentally on the microscopic particle phase-space dynamics, their consistent kinetic treatment remains still essentially unchallenged to date. The goal of this paper is to address the problem within the framework of Vlasov-Maxwell description. The gyrokinetic treatment of charged particles dynamics is adopted for the construction of asymptotic solutions for the quasi-stationary species kinetic distribution functions. These are expressed in terms of the particle exact and adiabatic invariants. The theory relies on a perturbative approach, which permits to construct asymptotic analytical solutions of the Vlasov-Maxwell system. In this way, both diamagnetic and energy corrections are included consistently into the theory. In particular, by imposing suitable kinetic constraints, the existence of generalized bi-Maxwellian asymptotic kinetic equilibria is pointed out. The theory applies for toroidal rotation velocity of the order of the ion thermal speed. These solutions satisfy identically also the constraints imposed by the Maxwell equations, i.e., quasi-neutrality and Ampere's law. As a result, it is shown that, in the presence of nonuniform fluid and EM fields, these kinetic equilibria can sustain simultaneously toroidal differential rotation, quasi-stationary finite poloidal flows and temperature anisotropy.
Enhanced Management Consulting.
1983-07-01
HD-AI33 278 ENHANCED MANAGEMENT CONSULTING(U) LEADERSHIP AND 1/i MANAGEMENT DEVELOPMENT CENTER MAXWELL AFB RL V L KRPINOS JUL 83 LMDC-TR-83-2...83 12 035 Maxwell Air Force Base, Alabama 36112 LMDC-TR-83-2 Technical Reports prepared by the Leadership and Management Development Center (LMDC...Directorate of Research and Analysis AREA 6 WORK UNIT NUMBERS Leadership and Management Development Center (AU) Maxwell Air Force Base, Alabama 36112 II
No static bubbling spacetimes in higher dimensional Einstein–Maxwell theory
NASA Astrophysics Data System (ADS)
Kunduri, Hari K.; Lucietti, James
2018-03-01
We prove that any asymptotically flat static spacetime in higher dimensional Einstein–Maxwell theory must have no magnetic field. This implies that there are no static soliton spacetimes and completes the classification of static non-extremal black holes in this theory. In particular, these results establish that there are no asymptotically flat static spacetimes with non-trivial topology, with or without a black hole, in Einstein–Maxwell theory.
Shah, A A; Xing, W W; Triantafyllidis, V
2017-04-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach.
Xing, W. W.; Triantafyllidis, V.
2017-01-01
In this paper, we develop reduced-order models for dynamic, parameter-dependent, linear and nonlinear partial differential equations using proper orthogonal decomposition (POD). The main challenges are to accurately and efficiently approximate the POD bases for new parameter values and, in the case of nonlinear problems, to efficiently handle the nonlinear terms. We use a Bayesian nonlinear regression approach to learn the snapshots of the solutions and the nonlinearities for new parameter values. Computational efficiency is ensured by using manifold learning to perform the emulation in a low-dimensional space. The accuracy of the method is demonstrated on a linear and a nonlinear example, with comparisons with a global basis approach. PMID:28484327
Testing for nonlinear dependence in financial markets.
Dore, Mohammed; Matilla-Garcia, Mariano; Marin, Manuel Ruiz
2011-07-01
This article addresses the question of improving the detection of nonlinear dependence by means of recently developed nonparametric tests. To this end a generalized version of BDS test and a new test based on symbolic dynamics are used on realizations from a well-known artificial market for which the dynamic equation governing the market is known. Comparisons with other tests for detecting nonlinearity are also provided. We show that the test based on symbolic dynamics outperforms other tests with the advantage that it depends only on one free parameter, namely the embedding dimension. This does not hold for other tests for nonlinearity.
NASA Astrophysics Data System (ADS)
Pollitz, F. F.
2014-12-01
I re-examine the lower crust and mantle relaxation following two large events in the Mojave Desert: the 1992 M7.3 Landers and 1999 M7.1 Hector Mine, California, earthquakes. More than a decade of GPS time series from regional sites out to 250 km from the ruptures are used to constrain models of postseismic relaxation. Crustal motions in the Mojave Desert region are elevated for several years following each event, with perturbations from a pre-Landers background of order mm to cm per year. I consider afterslip and relaxation of the ductile lower crust and mantle to explain these motions. To account for broad scale relaxation, the Burgers body model is employed, involving Kelvin (transient) viscosity and rigidity and Maxwell (steady state) viscosity and rigidity. I use the code VISCO2.5D to perform 2.5D modeling of the postseismic relaxation (3D quasi-static motions computed on 2D, laterally heterogeneous viscoelastic structures; Pollitz, 2014 GJI). Joint afterslip / postseismic relaxation modeling of continuous GPS time series up to 10.46 years following the Hector Mine earthquake (i.e. up to the time of the 2010 M7.2 El Mayor-Cucapah earthquake) reveals that a northwest-trending `southwest domain' that envelopes the San Andreas fault system and western Mojave Desert has ~4 times larger Maxwell mantle viscosity than the adjacent `northeast domain' that extends inland and envelopes the Landers and Hector Mine rupture areas in the central Mojave Desert. This pattern is counter to that expected from regional heat flow, which is higher in the northeast domain, but it is explicable by means of a non-linear rheology that includes dependence on both strain rate and water concentration. I infer that the southwest domain mantle has a relatively low steady-state viscosity because of its high strain rate and water content. The relatively low mantle water content of the northeast domain is interpreted to result from the continual extraction of water through igneous and volcanic activity over the past ~20 Myr. The inference of Maxwellian viscosities is possible because the material relaxation times involved (5 years and 20 years for the SW and NE domains, respectively) are to a large extent spanned by the decade of available post-Hector Mine observations.
Impact of topographic mask models on scanner matching solutions
NASA Astrophysics Data System (ADS)
Tyminski, Jacek K.; Pomplun, Jan; Renwick, Stephen P.
2014-03-01
Of keen interest to the IC industry are advanced computational lithography applications such as Optical Proximity Correction of IC layouts (OPC), scanner matching by optical proximity effect matching (OPEM), and Source Optimization (SO) and Source-Mask Optimization (SMO) used as advanced reticle enhancement techniques. The success of these tasks is strongly dependent on the integrity of the lithographic simulators used in computational lithography (CL) optimizers. Lithographic mask models used by these simulators are key drivers impacting the accuracy of the image predications, and as a consequence, determine the validity of these CL solutions. Much of the CL work involves Kirchhoff mask models, a.k.a. thin masks approximation, simplifying the treatment of the mask near-field images. On the other hand, imaging models for hyper-NA scanner require that the interactions of the illumination fields with the mask topography be rigorously accounted for, by numerically solving Maxwell's Equations. The simulators used to predict the image formation in the hyper-NA scanners must rigorously treat the masks topography and its interaction with the scanner illuminators. Such imaging models come at a high computational cost and pose challenging accuracy vs. compute time tradeoffs. Additional complication comes from the fact that the performance metrics used in computational lithography tasks show highly non-linear response to the optimization parameters. Finally, the number of patterns used for tasks such as OPC, OPEM, SO, or SMO range from tens to hundreds. These requirements determine the complexity and the workload of the lithography optimization tasks. The tools to build rigorous imaging optimizers based on first-principles governing imaging in scanners are available, but the quantifiable benefits they might provide are not very well understood. To quantify the performance of OPE matching solutions, we have compared the results of various imaging optimization trials obtained with Kirchhoff mask models to those obtained with rigorous models involving solutions of Maxwell's Equations. In both sets of trials, we used sets of large numbers of patterns, with specifications representative of CL tasks commonly encountered in hyper-NA imaging. In this report we present OPEM solutions based on various mask models and discuss the models' impact on hyper- NA scanner matching accuracy. We draw conclusions on the accuracy of results obtained with thin mask models vs. the topographic OPEM solutions. We present various examples representative of the scanner image matching for patterns representative of the current generation of IC designs.
NASA Astrophysics Data System (ADS)
Böhringer, Klaus; Hess, Ortwin
The spatio-temporal dynamics of novel semiconductor lasers is discussed on the basis of a space- and momentum-dependent full time-domain approach. To this means the space-, time-, and momentum-dependent Full-Time Domain Maxwell Semiconductor Bloch equations, derived and discussed in our preceding paper I [K. Böhringer, O. Hess, A full time-domain approach to spatio-temporal dynamics of semiconductor lasers. I. Theoretical formulation], are solved by direct numerical integration. Focussing on the device physics of novel semiconductor lasers that profit, in particular, from recent advances in nanoscience and nanotechnology, we discuss the examples of photonic band edge surface emitting lasers (PBE-SEL) and semiconductor disc lasers (SDLs). It is demonstrated that photonic crystal effects can be obtained for finite crystal structures, and leading to a significant improvement in laser performance such as reduced lasing thresholds. In SDLs, a modern device concept designed to increase the power output of surface-emitters in combination with near-diffraction-limited beam quality, we explore the complex interplay between the intracavity optical fields and the quantum well gain material in SDL structures. Our simulations reveal the dynamical balance between carrier generation due to pumping into high energy states, momentum relaxation of carriers, and stimulated recombination from states near the band edge. Our full time-domain approach is shown to also be an excellent framework for the modelling of the interaction of high-intensity femtosecond and picosecond pulses with semiconductor nanostructures. It is demonstrated that group velocity dispersion, dynamical gain saturation and fast self-phase modulation (SPM) are the main causes for the induced changes and asymmetries in the amplified pulse shape and spectrum of an ultrashort high-intensity pulse. We attest that the time constants of the intraband scattering processes are critical to gain recovery. Moreover, we present new insight into the physics of nonlinear coherent pulse propagation phenomena in active (semiconductor) gain media. Our numerical full time-domain simulations are shown to generally agree well with analytical predictions, while in the case of optical pulses with large pulse areas or few-cycle pulses they reveal the limits of analytic approaches. Finally, it is demonstrated that coherent ultrafast nonlinear propagation effects become less distinctive if we apply a realistic model of the quantum well semiconductor gain material, consider characteristic loss channels and take into account de-phasing processes and homogeneous broadening.
Axially Symmetric Brans-Dicke-Maxwell Solutions
NASA Astrophysics Data System (ADS)
Chatterjee, S.
1981-05-01
Following a method of John and Goswami new solutions of coupled Brans-Dicke-Maxwell theory are generated from Zipoy's solutions in oblate and prolate spheroidal coordinates for source-free gravitational field. All these solutions become Euclidean at infinity. The asymptotic behavior and the singularity of the solutions are discussed and a comparative study made with the corresponding Einstein-Maxwell solutions. The possibility of a very large red shift from the boundary of the spheroids is also discussed.
Unity of Command and Interdiction
1994-07-01
8217RobWt F. Fuftff Idea, Cancept, Doctrine: Basic Thinking i The United States Air Force. vol. 1 1O7-IMO W( Maxwell AFB, Ala.: Air University Press, 1989...Futrell, Ideas, Concepts, Doctrine: Basic Thinking in the United States Air Force, vol. 2, 1961-1984 ( Maxwell AFB, Ala.: Air University Press, 1989...in Vietnam and Why. Maxwell AFB, Ala: Air University Press, 1991. Warden, Col John A. HI. The Air Campaign - Planning For Combat. Washington, D.C
Symplectic partitioned Runge-Kutta scheme for Maxwell's equations
NASA Astrophysics Data System (ADS)
Huang, Zhi-Xiang; Wu, Xian-Liang
Using the symplectic partitioned Runge-Kutta (PRK) method, we construct a new scheme for approximating the solution to infinite dimensional nonseparable Hamiltonian systems of Maxwell's equations for the first time. The scheme is obtained by discretizing the Maxwell's equations in the time direction based on symplectic PRK method, and then evaluating the equation in the spatial direction with a suitable finite difference approximation. Several numerical examples are presented to verify the efficiency of the scheme.
The Software Crisis and a Senior Leaders Awareness Course.
1987-04-01
Interlibrary Loan Service (AUL/LDEX, Maxwell AFB, Alabama, 36112) or the Defense Technical Information Center. Request must include the author’s name...X E A’ ~ ~o’S Submitted to the faculty in partial mlinmnt of requirements for graduation. AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY MAXWELL AFB...currently assigned to Air Command and Staff College, Maxwell AFB, Alabama and attends the graduate program at Troy State University. Montgomery. Major Taylor
Nonlinear photoacoustic spectroscopy of hemoglobin
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.; Xia, Jun; Wang, Lihong V.
2015-01-01
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography. PMID:26045627
Nonlinear photoacoustic spectroscopy of hemoglobin.
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P; Xia, Jun; Wang, Lihong V
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics, such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.
NASA Astrophysics Data System (ADS)
Porfiri, Maurizio; Sharghi, Hesam; Zhang, Peng
2018-01-01
Ionic polymer metal composites (IPMCs) are a new class of active materials that are gaining traction as soft actuators in medical and industrial applications. IPMCs can undergo large deformations under modest voltage inputs, in dry and wet environments. Past studies have demonstrated that physical and geometric properties of all the IPMC constituents (ionomer, electrodes, and counterions) may all influence the time scales of the transient response and severity of the back-relaxation. In this study, we present a detailed mathematical model to investigate how the finite size of the counterions and the presence of metal particles in the vicinity of the electrodes modulate IPMC actuation. We build on previous work by our group on thermodynamically consistent modeling of IPMC mechanics and electrochemistry, which attributes IPMC actuation to the interplay between Maxwell stress and osmotic forces. To gain insight into the role of physical and geometric parameters, the resulting nonlinear partial differential equations are solved semianalytically using the method of matched asymptotic expansions, for the initial transient and the steady-state. A numerical solution in COMSOL Multiphysics® is developed to verify semianalytical findings and further explore IPMC actuation. Our model can successfully predict the entire response of IPMCs, from the initial bending toward the anode to the steady-state toward the cathode. We find that the steric effect can abolish the back-relaxation of IPMCs by restraining the counterions' concentration near the electrodes. We also find that increasing the thickness of the ionomer-metal composite layers may enhance IPMC actuation through increased osmotic forces and Maxwell stress.
Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity
NASA Astrophysics Data System (ADS)
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Herdeiro, Carlos; Font, José A.; Montero, Pedro J.
2016-08-01
In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical relativity simulations, solving the full Einstein-Maxwell-Klein-Gordon equations, of superradiantly unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field trigger this instability. The system's evolution was followed into the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field charge, the mass, and the position of the cavity's boundary (mirror). We also investigate the "explosive" nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that the "explosions" can be interpreted as the decay into the BH of modes that exit the superradiant regime.
NASA Astrophysics Data System (ADS)
Liu, Rong; Chen, Xue; Ding, Zijing
2018-01-01
We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.
State-Dependent Riccati Equation Regulation of Systems with State and Control Nonlinearities
NASA Technical Reports Server (NTRS)
Beeler, Scott C.; Cox, David E. (Technical Monitor)
2004-01-01
The state-dependent Riccati equations (SDRE) is the basis of a technique for suboptimal feedback control of a nonlinear quadratic regulator (NQR) problem. It is an extension of the Riccati equation used for feedback control of linear problems, with the addition of nonlinearities in the state dynamics of the system resulting in a state-dependent gain matrix as the solution of the equation. In this paper several variations on the SDRE-based method will be considered for the feedback control problem with control nonlinearities. The control nonlinearities may result in complications in the numerical implementation of the control, which the different versions of the SDRE method must try to overcome. The control methods will be applied to three test problems and their resulting performance analyzed.
Combatant Commands Informational Series: USCENTCOM, USSOUTHCOM, USSPACECOM
1995-05-01
Command and Staff College at Maxwell AFB in Montgomery, AL. Following ACSC she is assigned to 24 J -5 (Plans and Policy directorate), USTRANSCOM at...Command and Staff College Air University Maxwell AFB, Al. 36112 jflXGQ"®^1^’ Disclaimer The views expressed in this academic research paper are...Space Directory 1989-90. Alexandria, VA: Jane’s Information Group, 1990. London, John R, Ill, LEO On The Cheap. 1992-1993. Maxwell AFB AL: Air
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
2017-08-14
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian.
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J
2017-08-01
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this paper, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. The general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.
Three-wave scattering in magnetized plasmas: From cold fluid to quantized Lagrangian
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Yuan; Qin, Hong; Fisch, Nathaniel J.
Large amplitude waves in magnetized plasmas, generated either by external pumps or internal instabilities, can scatter via three-wave interactions. While three-wave scattering is well known in collimated geometry, what happens when waves propagate at angles with one another in magnetized plasmas remains largely unknown, mainly due to the analytical difficulty of this problem. In this study, we overcome this analytical difficulty and find a convenient formula for three-wave coupling coefficient in cold, uniform, magnetized, and collisionless plasmas in the most general geometry. This is achieved by systematically solving the fluid-Maxwell model to second order using a multiscale perturbative expansion. Themore » general formula for the coupling coefficient becomes transparent when we reformulate it as the scattering matrix element of a quantized Lagrangian. Using the quantized Lagrangian, it is possible to bypass the perturbative solution and directly obtain the nonlinear coupling coefficient from the linear response of the plasma. To illustrate how to evaluate the cold coupling coefficient, we give a set of examples where the participating waves are either quasitransverse or quasilongitudinal. In these examples, we determine the angular dependence of three-wave scattering, and demonstrate that backscattering is not necessarily the strongest scattering channel in magnetized plasmas, in contrast to what happens in unmagnetized plasmas. Finally, our approach gives a more complete picture, beyond the simple collimated geometry, of how injected waves can decay in magnetic confinement devices, as well as how lasers can be scattered in magnetized plasma targets.« less
Time-dependent behavior of passive skeletal muscle
NASA Astrophysics Data System (ADS)
Ahamed, T.; Rubin, M. B.; Trimmer, B. A.; Dorfmann, L.
2016-03-01
An isotropic three-dimensional nonlinear viscoelastic model is developed to simulate the time-dependent behavior of passive skeletal muscle. The development of the model is stimulated by experimental data that characterize the response during simple uniaxial stress cyclic loading and unloading. Of particular interest is the rate-dependent response, the recovery of muscle properties from the preconditioned to the unconditioned state and stress relaxation at constant stretch during loading and unloading. The model considers the material to be a composite of a nonlinear hyperelastic component in parallel with a nonlinear dissipative component. The strain energy and the corresponding stress measures are separated additively into hyperelastic and dissipative parts. In contrast to standard nonlinear inelastic models, here the dissipative component is modeled using an evolution equation that combines rate-independent and rate-dependent responses smoothly with no finite elastic range. Large deformation evolution equations for the distortional deformations in the elastic and in the dissipative component are presented. A robust, strongly objective numerical integration algorithm is used to model rate-dependent and rate-independent inelastic responses. The constitutive formulation is specialized to simulate the experimental data. The nonlinear viscoelastic model accurately represents the time-dependent passive response of skeletal muscle.
The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations
NASA Astrophysics Data System (ADS)
Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.
2018-04-01
The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.
Bennett, Kochise; Mukamel, Shaul
2014-01-28
The semi-classical theory of radiation-matter coupling misses local-field effects that may alter the pulse time-ordering and cascading that leads to the generation of new signals. These are then introduced macroscopically by solving Maxwell's equations. This procedure is convenient and intuitive but ad hoc. We show that both effects emerge naturally by including coupling to quantum modes of the radiation field that are initially in the vacuum state to second order. This approach is systematic and suggests a more general class of corrections that only arise in a QED framework. In the semi-classical theory, which only includes classical field modes, the susceptibility of a collection of N non-interacting molecules is additive and scales as N. Second-order coupling to a vacuum mode generates an effective retarded interaction that leads to cascading and local field effects both of which scale as N(2).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rostampooran, Shabnam; Dorranian, Davoud, E-mail: doran@srbiau.ac.ir
A system of nonlinear one-dimensional equations of the electron hydrodynamics with Maxwell's equations was developed to describe electromagnetic (EM) solitons in plasma with nonthermal electrons. Equation of vector potential was derived in relativistic regime by implementing the multiple scales technique, and their solitonic answers were introduced. The allowed regions for bright and dark electromagnetic solitons were discussed in detail. Roles of number density of nonthermal electrons, temperature of electrons, and frequency of fast participate of vector potential on the Sagdeev potential and properties of EM soliton were investigated. Results show that with increasing the number of nonthermal electrons, the amplitudemore » of vector potential of bright solitons increases. By increasing the number of nonthermal electrons, dark EM solitons may be changed to bright solitons. Increasing the energy of nonthermal electrons leads to generation of high amplitude solitons.« less
Famous optician: James Clerk Maxwell
NASA Astrophysics Data System (ADS)
Haidar, Riad
2018-04-01
Mainly known for his unifying theory of electricity, magnetism and induction, James Clerk Maxwell also concluded that light was an electromagnetic wave, and was responsible for the first true colour photograph.
Large eddy simulations of compressible magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the subsonic (sonic Mach number M s ≈ 0.2) to the highly supersonic (M s ≈ 20) regime, and against other SGS closures. The latter include established closures of eddy-viscosity and scale-similarity type. In all tests and over the entire parameter space, we find that the proposed closures are (significantly) closer to the reference data than the other closures. In the a posteriori tests, we perform large eddy simulations of decaying, supersonic MHD turbulence with initial M s ≈ 3. We implemented closures of all types, i.e. of eddy-viscosity, scale-similarity and nonlinear type, as an SGS model and evaluated their performance in comparison to simulations without a model (and at higher resolution). We find that the models need to be calculated on a scale larger than the grid scale, e.g. by an explicit filter, to have an influence on the dynamics at all. Furthermore, we show that only the proposed nonlinear closure improves higher-order statistics.
Nonlinear photoacoustic spectroscopy of hemoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danielli, Amos; Maslov, Konstantin; Favazza, Christopher P.
2015-05-18
As light intensity increases in photoacoustic imaging, the saturation of optical absorption and the temperature dependence of the thermal expansion coefficient result in a measurable nonlinear dependence of the photoacoustic (PA) signal on the excitation pulse fluence. Here, under controlled conditions, we investigate the intensity-dependent photoacoustic signals from oxygenated and deoxygenated hemoglobin at varied optical wavelengths and molecular concentrations. The wavelength and concentration dependencies of the nonlinear PA spectrum are found to be significantly greater in oxygenated hemoglobin than in deoxygenated hemoglobin. These effects are further influenced by the hemoglobin concentration. These nonlinear phenomena provide insights into applications of photoacoustics,more » such as measurements of average inter-molecular distances on a nm scale or with a tuned selection of wavelengths, a more accurate quantitative PA tomography.« less
Euclideanization of Maxwell-Chern-Simons theory
NASA Astrophysics Data System (ADS)
Bowman, Daniel Alan
We quantize the theory of electromagnetism in 2 + 1-spacetime dimensions with the addition of the topological Chern-Simons term using an indefinite metric formalism. In the process, we also quantize the Proca and pure Maxwell theories, which are shown to be related to the Maxwell-Chern-Simons theory. Next, we Euclideanize these three theories, obtaining path space formulae and investigating Osterwalder-Schrader positivity in each case. Finally, we obtain a characterization of those Euclidean states that correspond to physical states in the relativistic theories.
Maxwell's demons realized in electronic circuits
NASA Astrophysics Data System (ADS)
Koski, Jonne V.; Pekola, Jukka P.
2016-12-01
We review recent progress in making the former gedanken experiments of Maxwell's demon [1] into real experiments in a lab. In particular, we focus on realizations based on single-electron tunneling in electronic circuits. We first present how stochastic thermodynamics can be investigated in these circuits. Next we review recent experiments on an electron-based Szilard engine. Finally, we report on experiments on single-electron tunneling-based cooling, overviewing the recent realization of a Coulomb gap refrigerator, as well as an autonomous Maxwell's demon.
North to Alaska: The Geostrategic Importance of the Last Frontier
2012-06-01
Alaskan and Round- the -World Flights-December 1919,” Mitchell L / C Box 7, AFHRA, Maxwell AFB AL. 7 Mitchell, The Strategic Key to the World, 3. 8 Cloe...Army Air Corps Record in Flying the Mail,” MICFILM 43796, IRIS #01102971, Foulois L / C Box 14, in the Murray Green Papers, AFHRA, Maxwell AFB AL...Coverage,” MICFILM 43796, IRIS #01102971, L / C Box 262, in the Murray Green Papers, AFHRA, Maxwell AFB AL. 72 “Alaskan Flight: Arnold’s Report
Maxwell-Higgs vortices with internal structure
NASA Astrophysics Data System (ADS)
Bazeia, D.; Marques, M. A.; Menezes, R.
2018-05-01
Vortices are considered in relativistic Maxwell-Higgs systems in interaction with a neutral scalar field. The gauge field interacts with the neutral field via the presence of generalized permeability, and the charged and neutral scalar fields interact in a way dictated by the presence of first order differential equations that solve the equations of motion. The neutral field may be seen as the source field of the vortex, and we study some possibilities, which modify the standard Maxwell-Higgs solution and include internal structure to the vortex.
Theory of Dielectric Elastomers
2010-10-25
partly in the air and partly in a dielectric liquid . The applied voltage causes the liquid to rise to a height h. The height results from the...balance of the Maxwell stress and the weight of the liquid . The Maxwell stress parallel to the electrodes in the air is 2/2Eaa , where a is the...permittivity of the air. The Maxwell stress parallel to the electrodes in the liquid is 2/2Ell , where l is the permittivity of the liquid
NASA Astrophysics Data System (ADS)
Sivapalan, M.; Jothityangkoon, C.; Menabde, M.
2002-02-01
Two uses of the terms ``linearity'' and ``nonlinearity'' appear in recent literature. The first definition of nonlinearity is with respect to the dynamical property such as the rainfall-runoff response of a catchment, and nonlinearity in this sense refers to a nonlinear dependence of the storm response on the magnitude of the rainfall inputs [Minshall, 1960; Wang et al., 1981]. The second definition of nonlinearity [Huang and Willgoose, 1993; Goodrich et al., 1997] is with respect to the dependence of a catchment statistical property, such as the mean annual flood, on the area of the catchment. They are both linked to important and interconnected hydrologic concepts, and furthermore, the change of nonlinearity with area (scale) has been an important motivation for hydrologic research. While both definitions are correct mathematically, they refer to hydrologically different concepts. In this paper we show that nonlinearity in the dynamical sense and that in the statistical sense can exist independently of each other (i.e., can be unrelated). If not carefully distinguished, the existence of these two definitions can lead to a catchment's response being described as being both linear and nonlinear at the same time. We therefore recommend separating these definitions by reserving the term ``nonlinearity'' for the classical, dynamical definition with respect to rainfall inputs, while adopting the term ``scaling relationship'' for the dependence of a catchment hydrological property on catchment area.
Venus - Lakshmi Planum and Maxwell Montes
1996-03-07
This full resolution radar image from NASA Magellan spacecraft is centered along the eastern edge of Lakshmi Planum and the western edge of Maxwell Montes. http://photojournal.jpl.nasa.gov/catalog/PIA00241
The origin of spurious solutions in computational electromagnetics
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Wu, Jie; Povinelli, L. A.
1995-01-01
The origin of spurious solutions in computational electromagnetics, which violate the divergence equations, is deeply rooted in a misconception about the first-order Maxwell's equations and in an incorrect derivation and use of the curl-curl equations. The divergence equations must be always included in the first-order Maxwell's equations to maintain the ellipticity of the system in the space domain and to guarantee the uniqueness of the solution and/or the accuracy of the numerical solutions. The div-curl method and the least-squares method provide rigorous derivation of the equivalent second-order Maxwell's equations and their boundary conditions. The node-based least-squares finite element method (LSFEM) is recommended for solving the first-order full Maxwell equations directly. Examples of the numerical solutions by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is free of spurious solutions.
Vincenti, H.; Vay, J. -L.
2015-11-22
Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less
NASA Astrophysics Data System (ADS)
van der Wal, W.; Wu, P.; Sideris, M.; Wang, H.
2009-05-01
GRACE satellite data offer homogeneous coverage of the area covered by the former Laurentide ice sheet. The secular gravity rate estimated from the GRACE data can therefore be used to constrain the ice loading history in Laurentide and, to a lesser extent, the mantle rheology in a GIA model. The objective of this presentation is to find a best fitting global ice model and use it to study how the ice model can be modified to fit a composite rheology, in which creep rates from a linear and non-linear rheology are added. This is useful because all the ice models constructed from GIA assume that mantle rheology is linear, but creep experiments on rocks show that nonlinear rheology may be the dominant mechanism in some parts of the mantle. We use CSR release 4 solutions from August 2002 to October 2008 with continental water storage effects removed by the GLDAS model and filtering with a destriping and Gaussian filter. The GIA model is a radially symmetric incompressible Maxwell Earth, with varying upper and lower mantle viscosity. Gravity rate misfit values are computed for with a range of viscosity values with the ICE-3G, ICE-4G and ICE-5G models. The best fit is shown for models with ICE-3G and ICE-4G, and the ICE-4G model is selected for computations with a so-called composite rheology. For the composite rheology, the Coupled Laplace Finite-Element Method is used to compute the GIA response of a spherical self-gravitating incompressible Maxwell Earth. The pre-stress exponent (A) derived from a uni- axial stress experiment is varied between 3.3 x 10-34/10-35/10-36 Pa-3s-1, the Newtonian viscosity η is varied between 1 and 3 x 1021 Pa-s, and the stress exponent is taken to be 3. Composite rheology in general results in geoid rates that are too small compared to GRACE observations. Therefore, simple modifications of the ICE-4G history are investigated by scaling ice heights or delaying glaciation. It is found that a delay in glaciation is a better way to adjust ice models for composite rheology as it increases geoid rates and improves sea level fit at some sites.
X-ray plane-wave diffraction effects in a crystal with third-order nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balyan, M. K., E-mail: mbalyan@ysu.am
The two-wave dynamical diffraction in the Laue geometry has been theoretically considered for a plane X-ray wave in a crystal with a third-order nonlinear response to the external field. An analytical solution to the problem stated is found for certain diffraction conditions. A nonlinear pendulum effect is analyzed. The nonlinear extinction length is found to depend on the incident-wave intensity. A pendulum effect of a new type is revealed: the intensities of the transmitted and diffracted waves periodically depend on the incidentwave intensity at a fixed crystal thickness. The rocking curves and Borrmann nonlinear effect are numerically calculated.
Vincenti, M A; de Ceglia, D; Scalora, Michael
2016-08-01
We investigate nonlinear absorption in films of epsilon-near-zero materials. The combination of large local electric fields at the fundamental frequency and material losses at the harmonic frequencies induce unusual intensity-dependent phenomena. We predict that the second-order nonlinearity of a low-damping, epsilon-near-zero slab produces an optical limiting effect that mimics a two-photon absorption process. Anomalous absorption profiles that depend on low permittivity values at the pump frequency are also predicted for third-order nonlinearities. These findings suggest new opportunities for all-optical light control and novel ways to design reconfigurable and tunable nonlinear devices.
Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.
2011-01-01
Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661
NASA Technical Reports Server (NTRS)
Stepinski, Tomasz F.; Reyes-Ruiz, Mauricio; Vanhala, Harri A. T.
1993-01-01
A hydromagnetic dynamo provides the best mechanism for contemporaneously producing magnetic fields in a turbulent solar nebula. We investigate the solar nebula in the framework of a steady-state accretion disk model and establish the criteria for a viable nebular dynamo. We have found that typically a magnetic gap exists in the nebula, the region where the degree of ionization is too small for the magnetic field to couple to the gas. The location and width of this gap depend on the particular model; the supposition is that gaps cover different parts of the nebula at different evolutionary stages. We have found, from several dynamical constraints, that the generated magnetic field is likely to saturate at a strength equal to equipartition with the kinetic energy of turbulence. Maxwell stress arising from a large-scale magnetic field may significantly influence nebular structure, and Maxwell stress due to small-scale fields can actually dominate other stresses in the inner parts of the nebula. We also argue that the bulk of nebular gas, within the scale height from the midplane, is stable against Balbus-Hawley instability.
Hammond, Andrew P; Corwin, Eric I
2017-10-01
A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.
Hydrodynamics with conserved current via AdS/CFT correspondence in the Maxwell-Gauss-Bonnet gravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Yapeng; Sun Peng; Zhang Jianhui
2011-06-15
Using the AdS/CFT correspondence, we study the hydrodynamics with conserved current from the dual Maxwell-Gauss-Bonnet gravity. After constructing the perturbative solution to the first order based on the boosted black brane solution in the bulk Maxwell-Gauss-Bonnet gravity, we extract the stress tensor and conserved current of the dual conformal fluid on its boundary, and also find the effect of the Gauss-Bonnet term on the dual conformal fluid. Our results show that the Gauss-Bonnet term can affect the parameters such as the shear viscosity {eta}, entropy density s, thermal conductivity {kappa} and electrical conductivity {sigma}. However, it does not affect themore » so-called Wiedemann-Franz law which relates {kappa} to {sigma}, while it affects the ratio {eta}/s. In addition, another interesting result is that {eta}/s can also be affected by the bulk Maxwell field in our case, which is consistent with some previous results predicted through the Kubo formula. Moreover, the anomalous magnetic and vortical effects by adding the Chern-Simons term are also considered in our case in the Maxwell-Gauss-Bonnet gravity.« less
NASA Astrophysics Data System (ADS)
He, Ling-Yun; Chen, Shu-Peng
2011-01-01
Nonlinear dependency between characteristic financial and commodity market quantities (variables) is crucially important, especially between trading volume and market price. Studies on nonlinear dependency between price and volume can provide practical insights into market trading characteristics, as well as the theoretical understanding of market dynamics. Actually, nonlinear dependency and its underlying dynamical mechanisms between price and volume can help researchers and technical analysts in understanding the market dynamics by integrating the market variables, instead of investigating them in the current literature. Therefore, for investigating nonlinear dependency of price-volume relationships in agricultural commodity futures markets in China and the US, we perform a new statistical test to detect cross-correlations and apply a new methodology called Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), which is an efficient algorithm to analyze two spatially or temporally correlated time series. We discuss theoretically the relationship between the bivariate cross-correlation exponent and the generalized Hurst exponents for time series of respective variables. We also perform an empirical study and find that there exists a power-law cross-correlation between them, and that multifractal features are significant in all the analyzed agricultural commodity futures markets.
77 FR 74492 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-14
... 20405, (202) 501-0084; HHS: Ms. Theresa M. Rita, Chief, Real Property Branch, Department of Health and... Maxwell AFB Maxwell AL Landholding Agency: Air Force Property Number: 18201240021 Status: Underutilized...
NASA Astrophysics Data System (ADS)
Simanovskii, Ilya; Viviani, Antonio; Dubois, Frank; Queeckers, Patrick
2018-01-01
Nonlinear convective flows developed under the joint action of buoyant and thermocapillary effects in a laterally heated two-layer system filling the closed cavity, have been investigated. The influence of a temperature-dependent interfacial heat release/consumption on nonlinear steady and oscillatory regimes, has been studied. It is shown that sufficiently strong temperature dependence of interfacial heat sinks and heat sources can change the sequence of bifurcations and lead to the development of specific oscillatory regimes in the system.
Amplitude-dependent topological edge states in nonlinear phononic lattices
NASA Astrophysics Data System (ADS)
Pal, Raj Kumar; Vila, Javier; Leamy, Michael; Ruzzene, Massimo
2018-03-01
This work investigates the effect of nonlinearities on topologically protected edge states in one- and two-dimensional phononic lattices. We first show that localized modes arise at the interface between two spring-mass chains that are inverted copies of each other. Explicit expressions derived for the frequencies of the localized modes guide the study of the effect of cubic nonlinearities on the resonant characteristics of the interface, which are shown to be described by a Duffing-like equation. Nonlinearities produce amplitude-dependent frequency shifts, which in the case of a softening nonlinearity cause the localized mode to migrate to the bulk spectrum. The case of a hexagonal lattice implementing a phononic analog of a crystal exhibiting the quantum spin Hall effect is also investigated in the presence of weakly nonlinear cubic springs. An asymptotic analysis provides estimates of the amplitude dependence of the localized modes, while numerical simulations illustrate how the lattice response transitions from bulk-to-edge mode-dominated by varying the excitation amplitude. In contrast with the interface mode of the first example studies, this occurs both for hardening and softening springs. The results of this study provide a theoretical framework for the investigation of nonlinear effects that induce and control topologically protected wave modes through nonlinear interactions and amplitude tuning.
Wind-tunnel tests of a Clark Y wing with 'Maxwell' leading-edge slots
NASA Technical Reports Server (NTRS)
Gauvain, William E
1937-01-01
Aerodynamic force tests of a Clark Y wing equipped with "Maxwell" type leading-edge slots were conducted in the N.A.C.A. 7- by 10-foot tunnel to ascertain the aerodynamic characteristics, which involved the determination of the best slot-gap opening, the effects of slat width, and the effect of a trailing-edge flap. The Maxwell wing with a wide-chord slat (0.30 c(sub w)) and with a 0.211 c(sub w) split flap deflected 60 degrees had a C(sub L sub max) of 2.53 or about twice that of the plain wing. The wing with the wide slat also had, in general, improved aerodynamic characteristics over those of the Maxwell wing with slat, and had about the same aerodynamic characteristics as a Handley Page slotted wing with approximately the same size of slat.
Realization of Quantum Maxwell’s Demon with Solid-State Spins*
NASA Astrophysics Data System (ADS)
Wang, W.-B.; Chang, X.-Y.; Wang, F.; Hou, P.-Y.; Huang, Y.-Y.; Zhang, W.-G.; Ouyang, X.-L.; Huang, X.-Z.; Zhang, Z.-Y.; Wang, H.-Y.; He, L.; Duan, L.-M.
2018-04-01
Resolution of the century-long paradox on Maxwell's demon reveals a deep connection between information theory and thermodynamics. Although initially introduced as a thought experiment, Maxwell's demon can now be implemented in several physical systems, leading to intriguing test of information-thermodynamic relations. Here, we report experimental realization of a quantum version of Maxwell's demon using solid state spins where the information acquiring and feedback operations by the demon are achieved through conditional quantum gates. A unique feature of this implementation is that the demon can start in a quantum superposition state or in an entangled state with an ancilla observer. Through quantum state tomography, we measure the entropy in the system, demon, and the ancilla, showing the influence of coherence and entanglement on the result. A quantum implementation of Maxwell's demon adds more controllability to this paradoxical thermal machine and may find applications in quantum thermodynamics involving microscopic systems.
Power generator driven by Maxwell's demon
NASA Astrophysics Data System (ADS)
Chida, Kensaku; Desai, Samarth; Nishiguchi, Katsuhiko; Fujiwara, Akira
2017-05-01
Maxwell's demon is an imaginary entity that reduces the entropy of a system and generates free energy in the system. About 150 years after its proposal, theoretical studies explained the physical validity of Maxwell's demon in the context of information thermodynamics, and there have been successful experimental demonstrations of energy generation by the demon. The demon's next task is to convert the generated free energy to work that acts on the surroundings. Here, we demonstrate that Maxwell's demon can generate and output electric current and power with individual randomly moving electrons in small transistors. Real-time monitoring of electron motion shows that two transistors functioning as gates that control an electron's trajectory so that an electron moves directionally. A numerical calculation reveals that power generation is increased by miniaturizing the room in which the electrons are partitioned. These results suggest that evolving transistor-miniaturization technology can increase the demon's power output.
Unification of force and substance.
Wilczek, Frank
2016-08-28
Maxwell's mature presentation of his equations emphasized the unity of electromagnetism and mechanics, subsuming both as 'dynamical systems'. That intuition of unity has proved both fruitful, as a source of pregnant concepts, and broadly inspiring. A deep aspect of Maxwell's work is its use of redundant potentials, and the associated requirement of gauge symmetry. Those concepts have become central to our present understanding of fundamental physics, but they can appear to be rather formal and esoteric. Here I discuss two things: the physical significance of gauge invariance, in broad terms; and some tantalizing prospects for further unification, building on that concept, that are visible on the horizon today. If those prospects are realized, Maxwell's vision of the unity of field and substance will be brought to a new level.This article is part of the themed issue 'Unifying physics and technology in light of Maxwell's equations'. © 2016 The Author(s).
Time-Domain Computation Of Electromagnetic Fields In MMICs
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1995-01-01
Maxwell's equations solved on three-dimensional, conformed orthogonal grids by finite-difference techniques. Method of computing frequency-dependent electrical parameters of monolithic microwave integrated circuit (MMIC) involves time-domain computation of propagation of electromagnetic field in response to excitation by single pulse at input terminal, followed by computation of Fourier transforms to obtain frequency-domain response from time-domain response. Parameters computed include electric and magnetic fields, voltages, currents, impedances, scattering parameters, and effective dielectric constants. Powerful and efficient means for analyzing performance of even complicated MMIC.
Superconductor in a weak static gravitational field
NASA Astrophysics Data System (ADS)
Ummarino, Giovanni Alberto; Gallerati, Antonio
2017-08-01
We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T_ {c} superconductor with a classical low-T_ {c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field.
Nonlinear effects of climate and density in the dynamics of a fluctuating population of reindeer.
Tyler, Nicholas J C; Forchhammer, Mads C; Øritsland, Nils Are
2008-06-01
Nonlinear and irregular population dynamics may arise as a result of phase dependence and coexistence of multiple attractors. Here we explore effects of climate and density in the dynamics of a highly fluctuating population of wild reindeer (Rangifer tarandus platyrhynchus) on Svalbard observed over a period of 29 years. Time series analyses revealed that density dependence and the effects of local climate (measured as the degree of ablation [melting] of snow during winter) on numbers were both highly nonlinear: direct negative density dependence was found when the population was growing (Rt > 0) and during phases of the North Atlantic Oscillation (NAO) characterized by winters with generally high (1979-1995) and low (1996-2007) indices, respectively. A growth-phase-dependent model explained the dynamics of the population best and revealed the influence of density-independent processes on numbers that a linear autoregressive model missed altogether. In particular, the abundance of reindeer was enhanced by ablation during phases of growth (Rt > 0), an observation that contrasts with the view that periods of mild weather in winter are normally deleterious for reindeer owing to icing of the snowpack. Analyses of vital rates corroborated the nonlinearity described in the population time series and showed that both starvation mortality in winter and fecundity were nonlinearly related to fluctuations in density and the level of ablation. The erratic pattern of growth of the population of reindeer in Adventdalen seems, therefore, to result from a combination of the effects of nonlinear density dependence, strong density-dependent mortality, and variable density independence related to ablation in winter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu
Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In ordermore » to understand if we can represent the MRI turbulent stress with the viscous {alpha} prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective {alpha} within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant {alpha}-viscosity to model gaps in protoplanetary disks.« less
NASA Astrophysics Data System (ADS)
Patel, M.; De Jager, G.; Nkosi, Z.; Wyngaard, A.; Govender, K.
2017-10-01
In this paper we report on the study of two and multi-level atoms interacting with multiple laser beams. The semi-classical approach is used to describe the system in which the atoms are treated quantum mechanically via the density matrix operator, while the laser beams are treated classically using Maxwells equations. We present results of a two level atom interacting with single and multiple laser beams and demonstrate Rabi oscillations between the levels. The effects of laser modulation on the dynamics of the atom (atomic populations and coherences) are examined by solving the optical Bloch equations. Plots of the density matrix elements as a function of time are presented for various parameters such as laser intensity, detuning, modulation etc. In addition, phase-space plots and Fourier analysis of the density matrix elements are provided. The atomic polarization, estimated from the coherence terms of the density matrix elements, is used in the numerical solution of Maxwells equations to determine the behaviour of the laser beams as they propagate through the atomic ensemble. The effects of saturation and hole-burning are demonstrated in the case of two counter propagating beams with one being a strong beam and the other being very weak. The above work is extended to include four-wave mixing in four level atoms in a diamond configuration. Two co-propagating beams of different wavelengths drive the atoms from a ground state |1〉 to an excited state |3〉 via an intermediate state |2〉. The atoms then move back to the ground state via another intermediate state |4〉, resulting in the generation of two additional correlated photon beams. The characteristics of these additional photons are studied.
Hybrid immersed interface-immersed boundary methods for AC dielectrophoresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hossan, Mohammad Robiul; Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034-5209; Dillon, Robert
2014-08-01
Dielectrophoresis, a nonlinear electrokinetic transport mechanism, has become popular in many engineering applications including manipulation, characterization and actuation of biomaterials, particles and biological cells. In this paper, we present a hybrid immersed interface–immersed boundary method to study AC dielectrophoresis where an algorithm is developed to solve the complex Poisson equation using a real variable formulation. An immersed interface method is employed to obtain the AC electric field in a fluid media with suspended particles and an immersed boundary method is used for the fluid equations and particle transport. The convergence of the proposed algorithm as well as validation of themore » hybrid scheme with experimental results is presented. In this paper, the Maxwell stress tensor is used to calculate the dielectrophoretic force acting on particles by considering the physical effect of particles in the computational domain. Thus, this study eliminates the approximations used in point dipole methods for calculating dielectrophoretic force. A comparative study between Maxwell stress tensor and point dipole methods for computing dielectrophoretic forces are presented. The hybrid method is used to investigate the physics of dielectrophoresis in microfluidic devices using an AC electric field. The numerical results show that with proper design and appropriate selection of applied potential and frequency, global electric field minima can be obtained to facilitate multiple particle trapping by exploiting the mechanism of negative dielectrophoresis. Our numerical results also show that electrically neutral particles form a chain parallel to the applied electric field irrespective of their initial orientation when an AC electric field is applied. This proposed hybrid numerical scheme will help to better understand dielectrophoresis and to design and optimize microfluidic devices.« less
Nonlinear analysis of bonded joints with thermal effects
NASA Technical Reports Server (NTRS)
Humphreys, E. A.; Herakovich, C. T.
1977-01-01
Nonlinear results are presented for adhesive bonded joints. It is shown that adhesive nonlinearities are only significant in the predicted adhesive shear stresses. Adherend nonlinearities and temperature dependent properties are shown to have little effect upon the adhesive stress predictions under mechanical and thermal loadings.
NASA Astrophysics Data System (ADS)
Wong, See-Cheuk
We inhabit an environment of electromagnetic (EM) waves. The waves within the EM spectrum---whether light, radio, or microwaves---all obey the same physical laws. A band in the spectrum is designated to the microwave frequencies (30MHz--300GHz), at which radar systems operate. The precise modeling of the scattered EM-ields about a target, as well as the numerical prediction of the radar return is the crux of the computational electromagnetics (CEM) problems. The signature or return from a target observed by radar is commonly provided in the form of radar cross section (RCS). Incidentally, the efforts in the reduction of such return forms the basis of stealth aircraft design. The object of this dissertation is to extend Discontinuous Galerkin (DG) method to solve numerically the Maxwell equations for scatterings from perfect electric conductor (PEC) objects. The governing equations are derived by writing the Maxwell equations in conservation-law form for scattered field quantities. The transverse magnetic (TM) and the transverse electric (TE) waveforms of the Maxwell equations are considered. A finite-element scheme is developed with proper representations for the electric and magnetic fluxes at a cell interface to account for variations in properties, in both space and time. A characteristic sub-path integration process, known as the "Riemann solver" is involved. An explicit Runge-Kutta Discontinuous Galerkin (RKDG) upwind scheme, which is fourth-order accurate in time and second-order in space, is employed to solve the TM and TE equations. Arbitrary cross-sectioned bodies are modeled, around which computational grids using random triangulation are generated. The RKDG method, in its development stage, was constructed and studied for solving hyperbolic conservation equations numerically. It was later extended to multidimensional nonlinear systems of conservation laws. The algorithms are described, including the formulations and treatments to the numerical fluxes, degrees of freedom, boundary conditions, and other implementation issues. The computational solution amounts to a near-field solution in form of contour plot and one extending from the scatterer to a far-field boundary located a few wavelengths away. Near-field to far-field transformation utilizing the Green's function is performed to obtain the bistatic radar cross section information. Results are presented for scatterings from a series of two-dimensional objects, including circular and square cylinders, ogive and NACA airfoils. Also, scatterings from more complex geometries such as cylindrical and rectangular cavitations are simulated. Exact solutions for selected cases are compared to the computational results and demonstrate excellent accuracy and efficiency in the RKDG calculations. In the whole, its ease and flexibility to incorporate the characteristic-based schemes for the flux integrals between cell interfaces, and the compact formulation allowing direct application to the boundary elements without modification are some of the admired features of the DG method.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-05-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
NASA Astrophysics Data System (ADS)
Gireesha, B. J.; Kumar, P. B. Sampath; Mahanthesh, B.; Shehzad, S. A.; Abbasi, F. M.
2018-02-01
The nonlinear convective flow of kerosene-Alumina nanoliquid subjected to an exponential space dependent heat source and temperature dependent viscosity is investigated here. This study is focuses on augmentation of heat transport rate in liquid propellant rocket engine. The kerosene-Alumina nanoliquid is considered as the regenerative coolant. Aspects of radiation and viscous dissipation are also covered. Relevant nonlinear system is solved numerically via RK based shooting scheme. Diverse flow fields are computed and examined for distinct governing variables. We figured out that the nanoliquid's temperature increased due to space dependent heat source and radiation aspects. The heat transfer rate is higher in case of changeable viscosity than constant viscosity.
Skeletal muscle tensile strain dependence: hyperviscoelastic nonlinearity
Wheatley, Benjamin B; Morrow, Duane A; Odegard, Gregory M; Kaufman, Kenton R; Donahue, Tammy L Haut
2015-01-01
Introduction Computational modeling of skeletal muscle requires characterization at the tissue level. While most skeletal muscle studies focus on hyperelasticity, the goal of this study was to examine and model the nonlinear behavior of both time-independent and time-dependent properties of skeletal muscle as a function of strain. Materials and Methods Nine tibialis anterior muscles from New Zealand White rabbits were subject to five consecutive stress relaxation cycles of roughly 3% strain. Individual relaxation steps were fit with a three-term linear Prony series. Prony series coefficients and relaxation ratio were assessed for strain dependence using a general linear statistical model. A fully nonlinear constitutive model was employed to capture the strain dependence of both the viscoelastic and instantaneous components. Results Instantaneous modulus (p<0.0005) and mid-range relaxation (p<0.0005) increased significantly with strain level, while relaxation at longer time periods decreased with strain (p<0.0005). Time constants and overall relaxation ratio did not change with strain level (p>0.1). Additionally, the fully nonlinear hyperviscoelastic constitutive model provided an excellent fit to experimental data, while other models which included linear components failed to capture muscle function as accurately. Conclusions Material properties of skeletal muscle are strain-dependent at the tissue level. This strain dependence can be included in computational models of skeletal muscle performance with a fully nonlinear hyperviscoelastic model. PMID:26409235
Continuum Vlasov Simulation in Four Phase-space Dimensions
NASA Astrophysics Data System (ADS)
Cohen, B. I.; Banks, J. W.; Berger, R. L.; Hittinger, J. A.; Brunner, S.
2010-11-01
In the VALHALLA project, we are developing scalable algorithms for the continuum solution of the Vlasov-Maxwell equations in two spatial and two velocity dimensions. We use fourth-order temporal and spatial discretizations of the conservative form of the equations and a finite-volume representation to enable adaptive mesh refinement and nonlinear oscillation control [1]. The code has been implemented with and without adaptive mesh refinement, and with electromagnetic and electrostatic field solvers. A goal is to study the efficacy of continuum Vlasov simulations in four phase-space dimensions for laser-plasma interactions. We have verified the code in examples such as the two-stream instability, the weak beam-plasma instability, Landau damping, electron plasma waves with electron trapping and nonlinear frequency shifts [2]^ extended from 1D to 2D propagation, and light wave propagation.^ We will report progress on code development, computational methods, and physics applications. This work was performed under the auspices of the U.S. DOE by LLNL under contract no. DE-AC52-07NA27344. This work was funded by the Lab. Dir. Res. and Dev. Prog. at LLNL under project tracking code 08-ERD-031. [1] J.W. Banks and J.A.F. Hittinger, to appear in IEEE Trans. Plas. Sci. (Sept., 2010). [2] G.J. Morales and T.M. O'Neil, Phys. Rev. Lett. 28,417 (1972); R. L. Dewar, Phys. Fluids 15,712 (1972).
Perturbed soliton excitations of Rao-dust Alfvén waves in magnetized dusty plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, L., E-mail: louiskavitha@yahoo.co.in; The Abdus Salam International Centre for Theoretical Physics, Trieste; Lavanya, C.
We investigate the propagation dynamics of the perturbed soliton excitations in a three component fully ionized dusty magnetoplasma consisting of electrons, ions, and heavy charged dust particulates. We derive the governing equation of motion for the two dimensional Rao-dust magnetohydrodynamic (R-D-MHD) wave by employing the inertialess electron equation of motion, inertial ion equation of motion, the continuity equations in a plasma with immobile charged dust grains, together with the Maxwell's equations, by assuming quasi neutrality and neglecting the displacement current in Ampere's law. Furthermore, we assume the massive dust particles are practically immobile since we are interested in timescales muchmore » shorter than the dusty plasma period, thereby neglecting any damping of the modes due to the grain charge fluctuations. We invoke the reductive perturbation method to represent the governing dynamics by a perturbed cubic nonlinear Schrödinger (pCNLS) equation. We solve the pCNLS, along the lines of Kodama-Ablowitz multiple scale nonlinear perturbation technique and explored the R-D-MHD waves as solitary wave excitations in a magnetized dusty plasma. Since Alfvén waves play an important role in energy transport in driving field-aligned currents, particle acceleration and heating, solar flares, and the solar wind, this representation of R-D-MHD waves as soliton excitations may have extensive applications to study the lower part of the earth's ionosphere.« less
Well-posedness of the plasma-vacuum interface problem
NASA Astrophysics Data System (ADS)
Secchi, Paolo; Trakhinin, Yuri
2014-01-01
We consider the free-boundary problem for the plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the pre-Maxwell dynamics for the magnetic field. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. The plasma-vacuum system is not isolated from the outside world, because of a given surface current on the fixed boundary that forces oscillations. Under a suitable stability condition satisfied at each point of the initial interface, stating that the magnetic fields on either side of the interface are not collinear, we show the existence and uniqueness of the solution to the nonlinear plasma-vacuum interface problem in suitable anisotropic Sobolev spaces. The proof is based on the results proved in the companion paper (Secchi and Trakhinin 2013 Interfaces Free Boundaries 15 323-57), about the well-posedness of the homogeneous linearized problem and the proof of a basic a priori energy estimate. The proof of the resolution of the nonlinear problem given in the present paper follows from the analysis of the elliptic system for the vacuum magnetic field, a suitable tame estimate in Sobolev spaces for the full linearized equations, and a Nash-Moser iteration.
NASA Astrophysics Data System (ADS)
Jia; Lu
2016-01-01
The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.
What Do Observations of Postseismic Deformation Tell us About the Rheology of the Lithoshpere?
NASA Astrophysics Data System (ADS)
Fialko, Y.
2006-12-01
Geodetic observations in epicentral areas of large shallow earthquakes reveal transient displacements that typically have the same sense as the coseismic ones, but are about an order of magnitude smaller. A number of different mechanisms has been proposed to explain the observed time-dependent deformation, including afterslip on a deep extension of the seismic rupture, viscous-like response of a substrate below the brittle-ductile transition (e.g., the lower crust or upper mantle), and re-distribution of pore fluids in the upper crust. Distinguishing the relative contributions of these relaxation mechanisms is important before one can make robust inferences about the effective rheology of the upper part of the continental lithosphere. Either the bulk visco-elastic relaxation or afterslip is required to explain large horizontal displacements observed in the aftermath of large strike-slip earthquakes. Both temporal and spatial signatures of postseismic deformation were used to demonstrate that simple linear Maxwell rheologies are not adequate. For non-linear (e.g., powerlaw) rheologies, the surface deformation field may be indistinguishable from that due to afterslip at the early stages of relaxation, when the deformation is localized in high stress areas on the downdip continuation of the earthquake fault. However, at later stages of relaxation visco-elastic models predict appreciable changes in the displacement pattern. In particular, vertical velocities may change sign after viscous flow in the ductile substrate becomes more diffuse. Thus afterslip and non-linear visco-elastic models can be in principle distinguished given a sufficiently long observation period. Fluid flow and poro-elastic effects are incapable of explaining the observed horizontal deformation, but may substantially contribute to vertical postseismic motions, further complicating a discrimination between afterslip and visco-elastic relaxation. I will present space geodetic measurements of postseismic deformation due to several large earthquakes in California and Asia, and discuss implications from these measurements for the crust and upper mantle rheology. The main conclusion is that the deformation patterns are not consistent between different events, suggesting either various contributions from different relaxation mechanisms, or significant variations in crustal rheologies.
If Maxwell had worked between Ampère and Faraday: An historical fable with a pedagogical moral
NASA Astrophysics Data System (ADS)
Jammer, Max; Stachel, John
1980-01-01
If one drops the Faraday induction term from Maxwell's equations, they become exactly Galilei invariant. This suggests that if Maxwell had worked between Ampère and Faraday, he could have developed this Galilei-invariant electromagnetic theory so that Faraday's discovery would have confronted physicists with the dilemma: give up the Galileian relativity principle for electromagnetism (ether hypothesis), or modify it (special relativity). This suggests a new pedagogical approach to electromagnetic theory, in which the displacement current and the Galileian relativity principle are introduced before the induction term is discussed.
NASA Astrophysics Data System (ADS)
Wang, Zhong-Yue
2014-06-01
Einstein utilized Lorentz invariance from Maxwell's equations to modify mechanical laws and establish the special theory of relativity. Similarly, we may have a different theory if there exists another covariance of Maxwell's equations. In this paper, we find such a new transformation where Maxwell's equations are still unchanged. Consequently, Veselago's metamaterial and other systems have negative phase velocities without double negative permittivity and permeability can be described by a unified theory. People are interested in the application of metamaterials and negative phase velocities but do not appreciate the magnitude and significance to the spacetime conception of modern physics and philosophy.
NASA Astrophysics Data System (ADS)
Ravera, Lucrezia
2018-03-01
The purpose of this paper is to show that the so-called Maxwell superalgebra in four dimensions, which naturally involves the presence of a nilpotent fermionic generator, can be interpreted as a hidden superalgebra underlying N=1, {D}=4 supergravity extended to include a 2-form gauge potential associated to a 2-index antisymmetric tensor. In this scenario, the theory is appropriately discussed in the context of Free Differential Algebras (an extension of the Maurer-Cartan equations to involve higher-degree differential forms). The study is then extended to the Free Differential Algebra describing D = 11 supergravity, showing that, also in this case, there exists a super-Maxwell algebra underlying the theory. The same extra spinors dual to the nilpotent fermionic generators whose presence is crucial for writing a supersymmetric extension of the Maxwell algebras, both in the D = 4 and in the D = 11 case, turn out to be fundamental ingredients also to reproduce the D = 4 and D = 11 Free Differential Algebras on ordinary superspace, whose basis is given by the supervielbein. The analysis of the gauge structure of the supersymmetric Free Differential Algebras is carried on taking into account the gauge transformations from the hidden supergroup-manifold associated with the Maxwell superalgebras.
NASA Astrophysics Data System (ADS)
Miao, Yan-Gang; Xu, Zhen-Ming
2017-06-01
We investigate the P{-}V criticality and the Maxwell equal area law for a five-dimensional spherically symmetric AdS black hole with a scalar hair in the absence of and in the presence of a Maxwell field, respectively. Especially in the charged case, we give the exact P{-}V critical values. More importantly, we analyze the validity and invalidity of the Maxwell equal area law for the AdS hairy black hole in the scenarios without and with charges, respectively. Within the scope of validity of the Maxwell equal area law, we point out that there exists a representative van der Waals-type oscillation in the P{-}V diagram. This oscillating part, which indicates the phase transition from a small black hole to a large one, can be replaced by an isobar. The small and large black holes have the same Gibbs free energy. We also give the distribution of the critical points in the parameter space both without and with charges, and we obtain for the uncharged case the fitting formula of the co-existence curve. Meanwhile, the latent heat is calculated, which gives the energy released or absorbed between the small and large black hole phases in the isothermal-isobaric procedure.
Tidal dissipation in a homogeneous spherical body. II. Three examples: Mercury, Io, and Kepler-10 b
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makarov, Valeri V.; Efroimsky, Michael, E-mail: vvm@usno.navy.mil, E-mail: michael.efroimsky@usno.navy.mil
In Efroimsky and Makarov (Paper I), we derived from the first principles a formula for the tidal heating rate in a homogeneous sphere, compared it with the previously used formulae, and noted the differences. Now we present case studies: Mercury, Kepler-10 b, and a triaxial Io. A sharp frequency dependence of k {sub 2}/Q near spin-orbit resonances yields a sharp dependence of k {sub 2}/Q (and, therefore, of tidal heating) upon the spin rate. Thereby physical libration plays a major role in tidal heating of synchronously rotating planets. The magnitude of libration in the spin rate being defined by themore » planet's triaxiality, the latter becomes a factor determining the dissipation rate. Other parameters equal, a strongly triaxial synchronized body generates more heat than a similar body of a more symmetrical shape. After an initially triaxial object melts and loses its triaxiality, dissipation becomes less intensive; the body can solidify, with the tidal bulge becoming a new figure with triaxiality lower than the original. We derive approximate expressions for the dissipation rate in a Maxwell planet with the Maxwell time longer than the inverse tidal frequency. The expressions derived pertain to the 1:1 and 3:2 resonances and a nonresonant case; so they are applicable to most close-in super-Earths detected. In these planets, the heating outside synchronism is weakly dependent on the eccentricity and obliquity, provided both these parameters's values are moderate. According to our calculation, Kepler-10 b could hardly survive the intensive tidal heating without being synchronized, circularized, and reshaped through a complete or partial melt-down.« less
A solar cycle dependence of nonlinearity in magnetospheric activity
NASA Astrophysics Data System (ADS)
Johnson, Jay R.; Wing, Simon
2005-04-01
The nonlinear dependencies inherent to the historical Kp data stream (1932-2003) are examined using mutual information and cumulant-based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original Kp data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maxima. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solar minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to 1 week. Because the solar wind driver variables, VBs, and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics, suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.
Analytical Time-Domain Solution of Plane Wave Propagation Across a Viscoelastic Rock Joint
NASA Astrophysics Data System (ADS)
Zou, Yang; Li, Jianchun; Laloui, Lyesse; Zhao, Jian
2017-10-01
The effects of viscoelastic filled rock joints on wave propagation are of great significance in rock engineering. The solutions in time domain for plane longitudinal ( P-) and transverse ( S-) waves propagation across a viscoelastic rock joint are derived based on Maxwell and Kelvin models which are, respectively, applied to describe the viscoelastic deformational behaviour of the rock joint and incorporated into the displacement discontinuity model (DDM). The proposed solutions are verified by comparing with the previous studies on harmonic waves, which are simulated by sinusoidal incident P- and S-waves. Comparison between the predicted transmitted waves and the experimental data for P-wave propagation across a joint filled with clay is conducted. The Maxwell is found to be more appropriate to describe the filled joint. The parametric studies show that wave propagation is affected by many factors, such as the stiffness and the viscosity of joints, the incident angle and the duration of incident waves. Furthermore, the dependences of the transmission and reflection coefficients on the specific joint stiffness and viscosity are different for the joints with Maxwell and Kelvin behaviours. The alternation of the reflected and transmitted waveforms is discussed, and the application scope of this study is demonstrated by an illustration of the effects of the joint thickness. The solutions are also extended for multiple parallel joints with the virtual wave source method and the time-domain recursive method. For an incident wave with arbitrary waveform, it is convenient to adopt the present approach to directly calculate wave propagation across a viscoelastic rock joint without additional mathematical methods such as the Fourier and inverse Fourier transforms.
Substituent Dependence of Third-Order Optical Nonlinearity in Chalcone Derivatives
NASA Astrophysics Data System (ADS)
Kiran, Anthony John; Satheesh Rai, Nooji; Chandrasekharan, Keloth; Kalluraya, Balakrishna; Rotermund, Fabian
2008-08-01
The third-order nonlinear optical properties of derivatives of dibenzylideneacetone were investigated using the single beam z-scan technique at 532 nm. A strong dependence of third-order optical nonlinearity on electron donor and acceptor type of substituents was observed. An enhancement in χ(3)-value of one order of magnitude was achieved upon the substitution of strong electron donors compared to that of the molecule substituted with an electron acceptor. The magnitude of nonlinear refractive index of these chalcones is as high as of 10-11 esu. Their nonlinear optical coefficients are larger than those of widely used thiophene oligomers and trans-1-[p-(p-dimethylaminobenzyl-azo)-benzyl]-2-(N-methyl-4-pyridinium)-ethene iodide (DABA-PEI) organic compounds.
NASA Astrophysics Data System (ADS)
Banerjee, N.; Aziz, A.; Ali, M.; Robinson, J. W. A.; Hickey, B. J.; Blamire, M. G.
2010-12-01
The recent discovery of nonlinear current-dependent magnetoresistance in dual spin valve devices [A. Aziz, O. P. Wessely, M. Ali, D. M. Edwards, C. H. Marrows, B. J. Hickey, and M. G. Blamire, Phys. Rev. Lett. 103, 237203 (2009)10.1103/PhysRevLett.103.237203] opens up the possibility for distinct physics which extends the standard model of giant magnetoresistance. When the outer ferromagnetic layers of a dual spin valve are antiparallel, the resulting accumulation of spin in the middle ferromagnetic layer strongly modifies its bulk and interfacial spin asymmetry and resistance. Here, we report experimental evidence of the role of bulk spin accumulation in this nonlinear effect and show that interfacial spin accumulation alone cannot account for the observed dependence of the effect on the thickness of the middle ferromagnetic layer. It is also shown that spin torque acting on the middle ferromagnetic layer combined with the nonlinear effect might be useful in understanding the dynamical features associated with the nonlinear behavior.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-03
... South LaSalle Street, Chicago, Illinois 60690-1414: 1. Robert John Dentel, Victor, Iowa, and Mary P...; First State Bank of Colfax, Colfax, Iowa; Maxwell State Bank, Maxwell, Iowa; Pocahontas State Bank...
Nonlinear spectral singularities for confined nonlinearities.
Mostafazadeh, Ali
2013-06-28
We introduce a notion of spectral singularity that applies for a general class of nonlinear Schrödinger operators involving a confined nonlinearity. The presence of the nonlinearity does not break the parity-reflection symmetry of spectral singularities but makes them amplitude dependent. Nonlinear spectral singularities are, therefore, associated with a resonance effect that produces amplified waves with a specific amplitude-wavelength profile. We explore the consequences of this phenomenon for a complex δ-function potential that is subject to a general confined nonlinearity.
NASA Astrophysics Data System (ADS)
Mahmood, Asif; Aziz, Asim; Jamshed, Wasim; Hussain, Sajid
Solar energy is the cleanest, renewable and most abundant source of energy available on earth. The main use of solar energy is to heat and cool buildings, heat water and to generate electricity. There are two types of solar energy collection system, the photovoltaic systems and the solar thermal collectors. The efficiency of any solar thermal system depend on the thermophysical properties of the operating fluids and the geometry/length of the system in which fluid is flowing. In the present research a simplified mathematical model for the solar thermal collectors is considered in the form of non-uniform unsteady stretching surface. The flow is induced by a non-uniform stretching of the porous sheet and the uniform magnetic field is applied in the transverse direction to the flow. The non-Newtonian Maxwell fluid model is utilized for the working fluid along with slip boundary conditions. Moreover the high temperature effect of thermal radiation and temperature dependent thermal conductivity are also included in the present model. The mathematical formulation is carried out through a boundary layer approach and the numerical computations are carried out for cu-water and TiO2 -water nanofluids. Results are presented for the velocity and temperature profiles as well as the skin friction coefficient and Nusselt number and the discussion is concluded on the effect of various governing parameters on the motion, temperature variation, velocity gradient and the rate of heat transfer at the boundary.
Nonlinear system theory: another look at dependence.
Wu, Wei Biao
2005-10-04
Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms.
A finite nonlinear hyper-viscoelastic model for soft biological tissues.
Panda, Satish Kumar; Buist, Martin Lindsay
2018-03-01
Soft tissues exhibit highly nonlinear rate and time-dependent stress-strain behaviour. Strain and strain rate dependencies are often modelled using a hyperelastic model and a discrete (standard linear solid) or continuous spectrum (quasi-linear) viscoelastic model, respectively. However, these models are unable to properly capture the materials characteristics because hyperelastic models are unsuited for time-dependent events, whereas the common viscoelastic models are insufficient for the nonlinear and finite strain viscoelastic tissue responses. The convolution integral based models can demonstrate a finite viscoelastic response; however, their derivations are not consistent with the laws of thermodynamics. The aim of this work was to develop a three-dimensional finite hyper-viscoelastic model for soft tissues using a thermodynamically consistent approach. In addition, a nonlinear function, dependent on strain and strain rate, was adopted to capture the nonlinear variation of viscosity during a loading process. To demonstrate the efficacy and versatility of this approach, the model was used to recreate the experimental results performed on different types of soft tissues. In all the cases, the simulation results were well matched (R 2 ⩾0.99) with the experimental data. Copyright © 2018 Elsevier Ltd. All rights reserved.
A biphasic approach for the study of lift generation in soft porous media
NASA Astrophysics Data System (ADS)
Wu, Qianhong; Santhanam, Sridhar; Nathan, Rungun; Wang, Qiuyun
2017-04-01
Lift generation in highly compressible porous media under rapid compression continues to be an important topic in porous media flow. Although significant progress has been made, how to model different lifting forces during the compression process remains unclear. This is mainly because the input parameters of the existing theoretical studies, including the Darcy permeability of the porous media and the viscous damping coefficient of its solid phase, were manually adjusted so as to match the experimental data. In the current paper, we report a biphasic approach to experimentally and theoretically treat this limitation. Synthetic fibrous porous materials, whose permeability were precisely measured, were subsequently exposed to sudden impacts using a porous-walled cylinder-piston apparatus. The obtained time-dependent compression of the porous media, along with the permeability data, was applied in two different theoretical models to predict the pore pressure generation, a plug flow model and a consolidation model [Q. Wu et al., J. Fluid Mech. 542, 281 (2005a)]. Comparison between the theory and the experiments on the pore pressure distribution proved the validity of the consolidation model. Furthermore, a viscoelastic model, containing a nonlinear spring in conjunction with a linear viscoelastic generalized Maxwell mechanical module, was developed to characterize the solid phase lifting force. The model matched the experimental data very well. The paper presented herein, as one of the series studies on this topic, provides an important biphasic approach to characterize different forces that contribute to the lift generation in a soft porous medium under rapid compression.
NASA Astrophysics Data System (ADS)
Moore, Keegan J.; Bunyan, Jonathan; Tawfick, Sameh; Gendelman, Oleg V.; Li, Shuangbao; Leamy, Michael; Vakakis, Alexander F.
2018-01-01
In linear time-invariant dynamical and acoustical systems, reciprocity holds by the Onsager-Casimir principle of microscopic reversibility, and this can be broken only by odd external biases, nonlinearities, or time-dependent properties. A concept is proposed in this work for breaking dynamic reciprocity based on irreversible nonlinear energy transfers from large to small scales in a system with nonlinear hierarchical internal structure, asymmetry, and intentional strong stiffness nonlinearity. The resulting nonreciprocal large-to-small scale energy transfers mimic analogous nonlinear energy transfer cascades that occur in nature (e.g., in turbulent flows), and are caused by the strong frequency-energy dependence of the essentially nonlinear small-scale components of the system considered. The theoretical part of this work is mainly based on action-angle transformations, followed by direct numerical simulations of the resulting system of nonlinear coupled oscillators. The experimental part considers a system with two scales—a linear large-scale oscillator coupled to a small scale by a nonlinear spring—and validates the theoretical findings demonstrating nonreciprocal large-to-small scale energy transfer. The proposed study promotes a paradigm for designing nonreciprocal acoustic materials harnessing strong nonlinearity, which in a future application will be implemented in designing lattices incorporating nonlinear hierarchical internal structures, asymmetry, and scale mixing.
75 FR 38845 - Notice of Information Collection
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... Brenda J. Maxwell, Office of the Chief Information Officer, Mail Suite 2S71, National Aeronautics and... directed to Brenda J. Maxwell, Office of the Chief Information Officer, NASA Headquarters, 300 E Street, SW... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-073)] Notice of Information Collection...
A comparison of Fick and Maxwell-Stefan diffusion formulations in PEMFC gas diffusion layers
NASA Astrophysics Data System (ADS)
Lindstrom, Michael; Wetton, Brian
2017-01-01
This paper explores the mathematical formulations of Fick and Maxwell-Stefan diffusion in the context of polymer electrolyte membrane fuel cell cathode gas diffusion layers. The simple Fick law with a diagonal diffusion matrix is an approximation of Maxwell-Stefan. Formulations of diffusion combined with mass-averaged Darcy flow are considered for three component gases. For this application, the formulations can be compared computationally in a simple, one dimensional setting. Despite the models' seemingly different structure, it is observed that the predictions of the formulations are very similar on the cathode when air is used as oxidant. The two formulations give quite different results when the Nitrogen in the air oxidant is replaced by helium (this is often done as a diagnostic for fuel cells designs). The two formulations also give quite different results for the anode with a dilute Hydrogen stream. These results give direction to when Maxwell-Stefan diffusion, which is more complicated to implement computationally in many codes, should be used in fuel cell simulations.
Observation of distorted Maxwell-Boltzmann distribution of epithermal ions in LHD
NASA Astrophysics Data System (ADS)
Ida, K.; Kobayashi, T.; Yoshinuma, M.; Akiyama, T.; Tokuzawa, T.; Tsuchiya, H.; Itoh, K.; LHD Experiment Group
2017-12-01
A distorted Maxwell-Boltzmann distribution of epithermal ions is observed associated with the collapse of energetic ions triggered by the tongue shaped deformation. The tongue shaped deformation is characterized by the plasma displacement localized in the toroidal, poloidal, and radial directions at the non-rational magnetic flux surface in toroidal plasma. Moment analysis of the ion velocity distribution measured with charge exchange spectroscopy is studied in order to investigate the impact of tongue event on ion distribution. A clear non-zero skewness (3rd moment) and kurtosis (4th moment -3) of ion velocity distribution in the epithermal region (within three times of thermal velocity) is observed after the tongue event. This observation indicates the clear evidence of the distortion of ion velocity distribution from Maxwell-Boltzmann distribution. This distortion from Maxwell-Boltzmann distribution is observed in one-third of plasma minor radius region near the plasma edge and disappears in the ion-ion collision time scale.
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity [PowerPoint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayes, Randall L.; Pacini, Benjamin Robert; Roettgen, Dan
2016-01-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less
A Modal Model to Simulate Typical Structural Dynamic Nonlinearity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pacini, Benjamin Robert; Mayes, Randall L.; Roettgen, Daniel R
2015-10-01
Some initial investigations have been published which simulate nonlinear response with almost traditional modal models: instead of connecting the modal mass to ground through the traditional spring and damper, a nonlinear Iwan element was added. This assumes that the mode shapes do not change with amplitude and there are no interactions between modal degrees of freedom. This work expands on these previous studies. An impact experiment is performed on a structure which exhibits typical structural dynamic nonlinear response, i.e. weak frequency dependence and strong damping dependence on the amplitude of vibration. Use of low level modal test results in combinationmore » with high level impacts are processed using various combinations of modal filtering, the Hilbert Transform and band-pass filtering to develop response data that are then fit with various nonlinear elements to create a nonlinear pseudo-modal model. Simulations of forced response are compared with high level experimental data for various nonlinear element assumptions.« less
Nonlinear Road Pricing : [Summary
DOT National Transportation Integrated Search
2012-01-01
Nonlinear pricing is an unfamiliar term for a familiar idea. Linear pricing charges all consumers the same price for the same quantity of goods or services; in nonlinear schemes, the price varies, depending, for example, on quantity purchased or a co...
NASA Astrophysics Data System (ADS)
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This third part extends the theory of Generalized Poisson-Kac (GPK) processes to nonlinear stochastic models and to a continuum of states. Nonlinearity is treated in two ways: (i) as a dependence of the parameters (intensity of the stochastic velocity, transition rates) of the stochastic perturbation on the state variable, similarly to the case of nonlinear Langevin equations, and (ii) as the dependence of the stochastic microdynamic equations of motion on the statistical description of the process itself (nonlinear Fokker-Planck-Kac models). Several numerical and physical examples illustrate the theory. Gathering nonlinearity and a continuum of states, GPK theory provides a stochastic derivation of the nonlinear Boltzmann equation, furnishing a positive answer to the Kac’s program in kinetic theory. The transition from stochastic microdynamics to transport theory within the framework of the GPK paradigm is also addressed.
Nonlinear effective permittivity of field grading composite dielectrics
NASA Astrophysics Data System (ADS)
Yang, Xiao; Zhao, Xiaolei; Li, Qi; Hu, Jun; He, Jinliang
2018-02-01
Field grading composite dielectrics with good nonlinear electrical properties can function as smart materials for electrical field control in a high-voltage apparatus. Besides the well-documented nonlinear conducting behavior, the field-dependent effective permittivity of field grading composites were also reported; however, in-depth research on the mechanism and influencing factors of this nonlinear permittivity are absent. This paper theoretically discusses the origin of the nonlinear effective permittivity, and the mechanism is illustrated through the waveform analysis of the nonlinear response of ZnO microvaristor/silicone rubber composites under a pure AC field. The field-dependent effective permittivity and loss property of the ZnO composites are measured by a dielectric spectrometer in both DC and AC fields under different frequencies. Through comparison of measurement results and theoretical models, the influence of the filler concentration, frequency, and time domain characteristics of the applied field on the nonlinear permittivity of the field grading composites are well explained. This paper provides insight into the nonlinear permittivity of field grading composites, and will be helpful for further tuning the performance of field grading composites.
Population response to climate change: linear vs. non-linear modeling approaches.
Ellis, Alicia M; Post, Eric
2004-03-31
Research on the ecological consequences of global climate change has elicited a growing interest in the use of time series analysis to investigate population dynamics in a changing climate. Here, we compare linear and non-linear models describing the contribution of climate to the density fluctuations of the population of wolves on Isle Royale, Michigan from 1959 to 1999. The non-linear self excitatory threshold autoregressive (SETAR) model revealed that, due to differences in the strength and nature of density dependence, relatively small and large populations may be differentially affected by future changes in climate. Both linear and non-linear models predict a decrease in the population of wolves with predicted changes in climate. Because specific predictions differed between linear and non-linear models, our study highlights the importance of using non-linear methods that allow the detection of non-linearity in the strength and nature of density dependence. Failure to adopt a non-linear approach to modelling population response to climate change, either exclusively or in addition to linear approaches, may compromise efforts to quantify ecological consequences of future warming.
NASA Astrophysics Data System (ADS)
Wang, Shuang; Liu, Tiegen; Jiang, Junfeng; Liu, Kun; Yin, Jinde; Wu, Fan; Zhao, Bofu; Xue, Lei; Mei, Yunqiao; Wu, Zhenhai
2013-12-01
We present an effective method to compensate the spatial-frequency nonlinearity for polarized low-coherence interferometer with location-dependent dispersion element. Through the use of location-dependent dispersive characteristics, the method establishes the exact relationship between wave number and discrete Fourier transform (DFT) serial number. The jump errors in traditional absolute phase algorithm are also avoided with nonlinearity compensation. We carried out experiments with an optical fiber Fabry-Perot (F-P) pressure sensing system to verify the effectiveness. The demodulated error is less than 0.139kPa in the range of 170kPa when using our nonlinearity compensation process in the demodulation.
NASA Astrophysics Data System (ADS)
Ansari, R.; Faraji Oskouie, M.; Gholami, R.
2016-01-01
In recent decades, mathematical modeling and engineering applications of fractional-order calculus have been extensively utilized to provide efficient simulation tools in the field of solid mechanics. In this paper, a nonlinear fractional nonlocal Euler-Bernoulli beam model is established using the concept of fractional derivative and nonlocal elasticity theory to investigate the size-dependent geometrically nonlinear free vibration of fractional viscoelastic nanobeams. The non-classical fractional integro-differential Euler-Bernoulli beam model contains the nonlocal parameter, viscoelasticity coefficient and order of the fractional derivative to interpret the size effect, viscoelastic material and fractional behavior in the nanoscale fractional viscoelastic structures, respectively. In the solution procedure, the Galerkin method is employed to reduce the fractional integro-partial differential governing equation to a fractional ordinary differential equation in the time domain. Afterwards, the predictor-corrector method is used to solve the nonlinear fractional time-dependent equation. Finally, the influences of nonlocal parameter, order of fractional derivative and viscoelasticity coefficient on the nonlinear time response of fractional viscoelastic nanobeams are discussed in detail. Moreover, comparisons are made between the time responses of linear and nonlinear models.
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Sharma, Ranjan
2018-05-01
In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.
Extracting Work from Quantum Measurement in Maxwell's Demon Engines
NASA Astrophysics Data System (ADS)
Elouard, Cyril; Herrera-Martí, David; Huard, Benjamin; Auffèves, Alexia
2017-06-01
The essence of both classical and quantum engines is to extract useful energy (work) from stochastic energy sources, e.g., thermal baths. In Maxwell's demon engines, work extraction is assisted by a feedback control based on measurements performed by a demon, whose memory is erased at some nonzero energy cost. Here we propose a new type of quantum Maxwell's demon engine where work is directly extracted from the measurement channel, such that no heat bath is required. We show that in the Zeno regime of frequent measurements, memory erasure costs eventually vanish. Our findings provide a new paradigm to analyze quantum heat engines and work extraction in the quantum world.
Oblique Impact Ejecta Flow Fields: An Application of Maxwells Z Model
NASA Technical Reports Server (NTRS)
Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.
2001-01-01
Oblique impact flow fields show an evolution from asymmetric to symmetric ejecta flow. This evolution can be put into the simple analytical description of the evolving flow field origin using the Maxwell Z Model. Additional information is contained in the original extended abstract.
Evaluation of confidence intervals for a steady-state leaky aquifer model
Christensen, S.; Cooley, R.L.
1999-01-01
The fact that dependent variables of groundwater models are generally nonlinear functions of model parameters is shown to be a potentially significant factor in calculating accurate confidence intervals for both model parameters and functions of the parameters, such as the values of dependent variables calculated by the model. The Lagrangian method of Vecchia and Cooley [Vecchia, A.V. and Cooley, R.L., Water Resources Research, 1987, 23(7), 1237-1250] was used to calculate nonlinear Scheffe-type confidence intervals for the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear) widths was not correct. Results show that nonlinear effects can cause the nonlinear intervals to be asymmetric and either larger or smaller than the linear approximations. Prior information on transmissivities helps reduce the size of the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.The fact that dependent variables of groundwater models are generally nonlinear functions of model parameters is shown to be a potentially significant factor in calculating accurate confidence intervals for both model parameters and functions of the parameters, such as the values of dependent variables calculated by the model. The Lagrangian method of Vecchia and Cooley was used to calculate nonlinear Scheffe-type confidence intervals for the parameters and the simulated heads of a steady-state groundwater flow model covering 450 km2 of a leaky aquifer. The nonlinear confidence intervals are compared to corresponding linear intervals. As suggested by the significant nonlinearity of the regression model, linear confidence intervals are often not accurate. The commonly made assumption that widths of linear confidence intervals always underestimate the actual (nonlinear) widths was not correct. Results show that nonlinear effects can cause the nonlinear intervals to be asymmetric and either larger or smaller than the linear approximations. Prior information on transmissivities helps reduce the size of the confidence intervals, with the most notable effects occurring for the parameters on which there is prior information and for head values in parameter zones for which there is prior information on the parameters.
Liang, Tengfei; Li, Qi; Ye, Wenjing
2013-07-01
A systematic study on the performance of two empirical gas-wall interaction models, the Maxwell model and the Cercignani-Lampis (CL) model, in the entire Knudsen range is conducted. The models are evaluated by examining the accuracy of key macroscopic quantities such as temperature, density, and pressure, in three benchmark thermal problems, namely the Fourier thermal problem, the Knudsen force problem, and the thermal transpiration problem. The reference solutions are obtained from a validated hybrid DSMC-MD algorithm developed in-house. It has been found that while both models predict temperature and density reasonably well in the Fourier thermal problem, the pressure profile obtained from Maxwell model exhibits a trend that opposes that from the reference solution. As a consequence, the Maxwell model is unable to predict the orientation change of the Knudsen force acting on a cold cylinder embedded in a hot cylindrical enclosure at a certain Knudsen number. In the simulation of the thermal transpiration coefficient, although all three models overestimate the coefficient, the coefficient obtained from CL model is the closest to the reference solution. The Maxwell model performs the worst. The cause of the overestimated coefficient is investigated and its link to the overly constrained correlation between the tangential momentum accommodation coefficient and the tangential energy accommodation coefficient inherent in the models is pointed out. Directions for further improvement of models are suggested.
Reply to Comment on ``Maxwell, Electromagnetism, and Fluid Flow in Resistive Media''
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
2004-04-01
Glenn Brown takes issue with my statement, ``It is hoped that Maxwell's contribution to the foundations of fluids in porous media will receive due attention, and that his novel approach will lead to new insights.'' He considers that, because Maxwell did not explicitly develop his theory for fluid flow in porous media, his ideas should not be treated as a contribution in that area. Brown contends that doing so is a disservice to Darcy, and is revisionist. Brown and I differ in the way we perceive science. He looks at the material I have presented from an ideological perspective of upholding Darcy's position in history. On the other hand, I do not question Darcy's valid contribution. Rather, I presented some of Maxwell's fascinating ideas that are relevant to the study of fluid flow in porous media, published in the same year Darcy published his seminal work. I have shown that the relevance of Maxwell's ideas to flow in porous media has gone unnoticed in the literature. Scientists are fallible human beings, and important ideas and thoughts are occasionally overlooked. When, on a rare occasion, we chance upon such an oversight, it is part of our scientific enterprise to bring the finding to the attention of the scientific community. It is up to the community to judge the historical significance of the new information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vincenti, H.; Vay, J. -L.
Due to discretization effects and truncation to finite domains, many electromagnetic simulations present non-physical modifications of Maxwell's equations in space that may generate spurious signals affecting the overall accuracy of the result. Such modifications for instance occur when Perfectly Matched Layers (PMLs) are used at simulation domain boundaries to simulate open media. Another example is the use of arbitrary order Maxwell solver with domain decomposition technique that may under some condition involve stencil truncations at subdomain boundaries, resulting in small spurious errors that do eventually build up. In each case, a careful evaluation of the characteristics and magnitude of themore » errors resulting from these approximations, and their impact at any frequency and angle, requires detailed analytical and numerical studies. To this end, we present a general analytical approach that enables the evaluation of numerical discretization errors of fully three-dimensional arbitrary order finite-difference Maxwell solver, with arbitrary modification of the local stencil in the simulation domain. The analytical model is validated against simulations of domain decomposition technique and PMLs, when these are used with very high-order Maxwell solver, as well as in the infinite order limit of pseudo-spectral solvers. Results confirm that the new analytical approach enables exact predictions in each case. It also confirms that the domain decomposition technique can be used with very high-order Maxwell solver and a reasonably low number of guard cells with negligible effects on the whole accuracy of the simulation.« less
Gradient Dynamics and Entropy Production Maximization
NASA Astrophysics Data System (ADS)
Janečka, Adam; Pavelka, Michal
2018-01-01
We compare two methods for modeling dissipative processes, namely gradient dynamics and entropy production maximization. Both methods require similar physical inputs-how energy (or entropy) is stored and how it is dissipated. Gradient dynamics describes irreversible evolution by means of dissipation potential and entropy, it automatically satisfies Onsager reciprocal relations as well as their nonlinear generalization (Maxwell-Onsager relations), and it has statistical interpretation. Entropy production maximization is based on knowledge of free energy (or another thermodynamic potential) and entropy production. It also leads to the linear Onsager reciprocal relations and it has proven successful in thermodynamics of complex materials. Both methods are thermodynamically sound as they ensure approach to equilibrium, and we compare them and discuss their advantages and shortcomings. In particular, conditions under which the two approaches coincide and are capable of providing the same constitutive relations are identified. Besides, a commonly used but not often mentioned step in the entropy production maximization is pinpointed and the condition of incompressibility is incorporated into gradient dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shah, S., E-mail: sajidshah313@yahoo.com; Hussain, S.; Sagheer, M.
2016-08-15
Present study examines the numerical analysis of MHD flow of Maxwell fluid with thermal radiation and Joule heating by considering the recently developed Cattaneo-Christov heat flux model which explains the time relaxation characteristics for the heat flux. The objective is to analyze the governing parameters such as viscoelastic fluid parameter, Magnetic parameter, Eckert and Prandtl number’s impact on the velocity and temperature profiles through graphs and tables. Suitable similarity transformations have been used to reduce the formulated PDEs into a system of coupled non-linear ODEs. Shooting technique has been invoked for finding the numerical solutions of the dimensionless velocity andmore » temperature profiles. Additionally, the MATLAB built-in routine bvp4c has also been used to verify and strengthen the results obtained by shooting method. From some special cases of the present work, a comparison with the previously published results has been presented.« less
Mechanical Autonomous Stochastic Heat Engine
NASA Astrophysics Data System (ADS)
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
Mechanical Autonomous Stochastic Heat Engine.
Serra-Garcia, Marc; Foehr, André; Molerón, Miguel; Lydon, Joseph; Chong, Christopher; Daraio, Chiara
2016-07-01
Stochastic heat engines are devices that generate work from random thermal motion using a small number of highly fluctuating degrees of freedom. Proposals for such devices have existed for more than a century and include the Maxwell demon and the Feynman ratchet. Only recently have they been demonstrated experimentally, using, e.g., thermal cycles implemented in optical traps. However, recent experimental demonstrations of classical stochastic heat engines are nonautonomous, since they require an external control system that prescribes a heating and cooling cycle and consume more energy than they produce. We present a heat engine consisting of three coupled mechanical resonators (two ribbons and a cantilever) subject to a stochastic drive. The engine uses geometric nonlinearities in the resonating ribbons to autonomously convert a random excitation into a low-entropy, nonpassive oscillation of the cantilever. The engine presents the anomalous heat transport property of negative thermal conductivity, consisting in the ability to passively transfer energy from a cold reservoir to a hot reservoir.
James Clerk Maxwell Prize Address: High Intensity Laser Propagation and Interactions
NASA Astrophysics Data System (ADS)
Sprangle, Phillip
2013-10-01
High intensity laser radiation sources cover a wide range of parameters, e.g., peak powers from tera to peta watts, pulse lengths from pico to femto seconds, repetition rates ranging from kilo to mega hertz and average powers of many tens of watts. This talk will cover, among other things, some of the unique physical processes which result when high intensity laser radiation interacts with gases and plasmas. One of the interesting topics to be discussed is the propagation of these laser pulses in a turbulent atmosphere which results in a multitude of coupled linear and nonlinear processes including filamentation and scintillation. Phase conjugation techniques to reduce the effects of atmospheric turbulence (scintillation) will be described. This talk will also discuss a range of potential applications of these high intensity lasers, including: electron acceleration in spatially periodic and tapered plasma channels, detection of radioactive material using electromagnetic signatures, atmospheric lasing of N2 molecules, as well as incoherent and coherent x-ray generation mechanisms. Research supported by NRL, ONR and UMD.
Electromechanical modelling for piezoelectric flextensional actuators
NASA Astrophysics Data System (ADS)
Liu, Jinghang; O'Connor, William J.; Ahearne, Eamonn; Byrne, Gerald
2014-02-01
The piezoelectric flextensional actuator investigated in this paper comprises three pre-stressed piezoceramic lead zirconate titanate (PZT) stacks and an external, flexure-hinged, mechanical amplifier configuration. An electromechanical model is used to relate the electrical and mechanical domains, comprising the PZT stacks and the flexure mechanism, with the dynamic characteristics of the latter represented by a multiple degree-of-freedom dynamic model. The Maxwell resistive capacitive model is used to describe the nonlinear relationship between charge and voltage within the PZT stacks. The actuator model parameters and the electromechanical couplings of the PZT stacks, which describe the energy transfer between the electrical and mechanical domains, are experimentally identified without disassembling the embedded piezoceramic stacks. To verify the electromechanical model, displacement and frequency experiments are performed. There was good agreement between modelled and experimental results, with less than 1.5% displacement error. This work outlines a general process by which other pre-stressed piezoelectric flextensional actuators can be characterized, modelled and identified in a non-destructive way.
NASA Astrophysics Data System (ADS)
Ahmad, Rida; Mustafa, M.; Hayat, T.; Alsaedi, A.
2016-06-01
Recent advancements in nanotechnology have led to the discovery of new generation coolants known as nanofluids. Nanofluids possess novel and unique characteristics which are fruitful in numerous cooling applications. Current work is undertaken to address the heat transfer in MHD three-dimensional flow of magnetic nanofluid (ferrofluid) over a bidirectional exponentially stretching sheet. The base fluid is considered as water which consists of magnetite-Fe3O4 nanoparticles. Exponentially varying surface temperature distribution is accounted. Problem formulation is presented through the Maxwell models for effective electrical conductivity and effective thermal conductivity of nanofluid. Similarity transformations give rise to a coupled non-linear differential system which is solved numerically. Appreciable growth in the convective heat transfer coefficient is observed when nanoparticle volume fraction is augmented. Temperature exponent parameter serves to enhance the heat transfer from the surface. Moreover the skin friction coefficient is directly proportional to both magnetic field strength and nanoparticle volume fraction.
Photonic confinement in laterally structured metal-organic microcavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mischok, Andreas, E-mail: andreas.mischok@iapp.de; Brückner, Robert; Sudzius, Markas
2014-08-04
We investigate the formation of optical modes in organic microcavities with an incorporated perforated silver layer. The metal leads to a formation of Tamm-plasmon-polaritons and thus separates the sample into metal-free or metal-containing areas, supporting different resonances. This mode splitting is exploited to confine photons in elliptic holes and triangular cuts, forming distinctive standing wave patterns showing the strong lateral confinement. A comparison with a Maxwell-Bloch based rate equation model clearly shows the nonlinear transition into the lasing regime. The concentration of the electric field density and inhibition of lateral loss channels in turn decreases the lasing threshold by upmore » to one order of magnitude, to 0.1 nJ. By spectroscopic investigation of such a triangular wedge, we observe the transition from the unperturbed cavity state to a strongly confined complex transversal mode. Such a structured silver layer can be utilized in future for charge carrier injection in an electrically driven organic solid state laser.« less
Explosion and Final State of an Unstable Reissner-Nordström Black Hole.
Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J; Font, José A; Herdeiro, Carlos
2016-04-08
A Reissner-Nordström black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field enclosed in a cavity, with a frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system-dubbed a charged BH bomb-into the nonlinear regime, solving the full Einstein-Maxwell-Klein-Gordon equations, in spherical symmetry. We show that (i) the process stops before all the charge is extracted from the BH, and (ii) the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For a low scalar field charge q, the final state is approached smoothly and monotonically. For large q, however, the energy extraction overshoots, and an explosive phenomenon, akin to a bosenova, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.
A Solar Cycle Dependence of Nonlinearity in Magnetospheric Activity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jay R; Wing, Simon
2005-03-08
The nonlinear dependencies inherent to the historical K(sub)p data stream (1932-2003) are examined using mutual information and cumulant based cost as discriminating statistics. The discriminating statistics are compared with surrogate data streams that are constructed using the corrected amplitude adjustment Fourier transform (CAAFT) method and capture the linear properties of the original K(sub)p data. Differences are regularly seen in the discriminating statistics a few years prior to solar minima, while no differences are apparent at the time of solar maximum. These results suggest that the dynamics of the magnetosphere tend to be more linear at solar maximum than at solarmore » minimum. The strong nonlinear dependencies tend to peak on a timescale around 40-50 hours and are statistically significant up to one week. Because the solar wind driver variables, VB(sub)s and dynamical pressure exhibit a much shorter decorrelation time for nonlinearities, the results seem to indicate that the nonlinearity is related to internal magnetospheric dynamics. Moreover, the timescales for the nonlinearity seem to be on the same order as that for storm/ring current relaxation. We suggest that the strong solar wind driving that occurs around solar maximum dominates the magnetospheric dynamics suppressing the internal magnetospheric nonlinearity. On the other hand, in the descending phase of the solar cycle just prior to solar minimum, when magnetospheric activity is weaker, the dynamics exhibit a significant nonlinear internal magnetospheric response that may be related to increased solar wind speed.« less
Quantitative Rheological Model Selection
NASA Astrophysics Data System (ADS)
Freund, Jonathan; Ewoldt, Randy
2014-11-01
The more parameters in a rheological the better it will reproduce available data, though this does not mean that it is necessarily a better justified model. Good fits are only part of model selection. We employ a Bayesian inference approach that quantifies model suitability by balancing closeness to data against both the number of model parameters and their a priori uncertainty. The penalty depends upon prior-to-calibration expectation of the viable range of values that model parameters might take, which we discuss as an essential aspect of the selection criterion. Models that are physically grounded are usually accompanied by tighter physical constraints on their respective parameters. The analysis reflects a basic principle: models grounded in physics can be expected to enjoy greater generality and perform better away from where they are calibrated. In contrast, purely empirical models can provide comparable fits, but the model selection framework penalizes their a priori uncertainty. We demonstrate the approach by selecting the best-justified number of modes in a Multi-mode Maxwell description of PVA-Borax. We also quantify relative merits of the Maxwell model relative to powerlaw fits and purely empirical fits for PVA-Borax, a viscoelastic liquid, and gluten.
Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.
Combe, Nicole A; Donaldson, D James
2017-09-28
We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.
Electromagnetism on anisotropic fractal media
NASA Astrophysics Data System (ADS)
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
The origin of the energy-momentum conservation law
NASA Astrophysics Data System (ADS)
Chubykalo, Andrew E.; Espinoza, Augusto; Kosyakov, B. P.
2017-09-01
The interplay between the action-reaction principle and the energy-momentum conservation law is revealed by the examples of the Maxwell-Lorentz and Yang-Mills-Wong theories, and general relativity. These two statements are shown to be equivalent in the sense that both hold or fail together. Their mutual agreement is demonstrated most clearly in the self-interaction problem by taking account of the rearrangement of degrees of freedom appearing in the action of the Maxwell-Lorentz and Yang-Mills-Wong theories. The failure of energy-momentum conservation in general relativity is attributed to the fact that this theory allows solutions having nontrivial topologies. The total energy and momentum of a system with nontrivial topological content prove to be ambiguous, coordinatization-dependent quantities. For example, the energy of a Schwarzschild black hole may take any positive value greater than, or equal to, the mass of the body whose collapse is responsible for forming this black hole. We draw the analogy to the paradoxial Banach-Tarski theorem; the measure becomes a poorly defined concept if initial three-dimensional bounded sets are rearranged in topologically nontrivial ways through the action of free non-Abelian isometry groups.
Storming a Citadel: Mathematical Theory and Experimental Practice
NASA Astrophysics Data System (ADS)
Sichau, Christian
2006-09-01
Based upon a comparison of the viscosity experiments of James Clerk Maxwell (1831 1879) and Oskar Emil Meyer (1834 1909) in the 1860s, I argue that mathematical theory plays a significant role in both aspects of experimental practice, the design and construction of an experimental apparatus and the transformation of the observed experimental data into the value of a physical quantity. I argue further that Maxwell’s and Meyer’s evaluation of each other’s theoretical and experimental work depended significantly on the mathematical tools they employed in their theories.
Plasmonic modes and extinction properties of a random nanocomposite cylinder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
We study the properties of surface plasmon-polariton waves of a random metal-dielectric nanocomposite cylinder, consisting of bulk metal embedded with dielectric nanoparticles. We use the Maxwell-Garnett formulation to model the effective dielectric function of the composite medium and show that there exist two surface mode bands. We investigate the extinction properties of the system, and obtain the dependence of the extinction spectrum on the nanoparticles’ shape and concentration as well as the cylinder radius and the incidence angle for both TE and TM polarization.
Time's arrow: A numerical experiment
NASA Astrophysics Data System (ADS)
Fowles, G. Richard
1994-04-01
The dependence of time's arrow on initial conditions is illustrated by a numerical example in which plane waves produced by an initial pressure pulse are followed as they are multiply reflected at internal interfaces of a layered medium. Wave interactions at interfaces are shown to be analogous to the retarded and advanced waves of point sources. The model is linear and the calculation is exact and demonstrably time reversible; nevertheless the results show most of the features expected of a macroscopically irreversible system, including the approach to the Maxwell-Boltzmann distribution, ergodicity, and concomitant entropy increase.
Alfven waves associated with long cylindrical satellites
NASA Technical Reports Server (NTRS)
Venkataraman, N. S.; Gustafson, W. A.
1973-01-01
The Alfven wave excited by a long cylindrical satellite moving with a constant velocity at an angle relative to a uniform magnetic field has been calculated. Assuming a plasma with infinite conductivity, the linearized momentum equation and Maxwell's equations are applied to a cylindrical satellite carrying a variable current. The induced magnetic field is determined, and it is shown that the Alfven disturbance zone is of limited extent, depending on the satellite shape. The wave drag coefficient is calculated and shown to be small compared to the induction drag coefficient at all altitudes considered.
A non-asymptotic homogenization theory for periodic electromagnetic structures.
Tsukerman, Igor; Markel, Vadim A
2014-08-08
Homogenization of electromagnetic periodic composites is treated as a two-scale problem and solved by approximating the fields on both scales with eigenmodes that satisfy Maxwell's equations and boundary conditions as accurately as possible. Built into this homogenization methodology is an error indicator whose value characterizes the accuracy of homogenization. The proposed theory allows one to define not only bulk, but also position-dependent material parameters (e.g. in proximity to a physical boundary) and to quantify the trade-off between the accuracy of homogenization and its range of applicability to various illumination conditions.
An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field
NASA Technical Reports Server (NTRS)
Turyshev, S. G.
1995-01-01
The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.
77 FR 52218 - Amendment of Class E Airspace; Montgomery, AL, Correction
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-29
... airspace in the Montgomery, AL, area. The corrected coordinates for Maxwell AFB and Wetumpka Municipal... amendments. FOR FURTHER INFORMATION CONTACT: John Fornito, Operations Support Group, Eastern Service Center..., the FAA found that the geographic coordinates of Maxwell AFB and Wetumpka Municipal Airport need to be...
Simple Derivation of the Maxwell Stress Tensor and Electrostrictive Effects in Crystals
ERIC Educational Resources Information Center
Juretschke, H. J.
1977-01-01
Shows that local equilibrium and energy considerations in an elastic dielectric crystal lead to a simple derivation of the Maxwell stress tensor in anisotropic dielectric solids. The resulting equilibrium stress-strain relations are applied to determine the deformations of a charged parallel plate capacitor. (MLH)
Commentary: Mediation Analysis, Causal Process, and Cross-Sectional Data
ERIC Educational Resources Information Center
Shrout, Patrick E.
2011-01-01
Maxwell, Cole, and Mitchell (2011) extended the work of Maxwell and Cole (2007), which raised important questions about whether mediation analyses based on cross-sectional data can shed light on longitudinal mediation process. The latest article considers longitudinal processes that can only be partially explained by an intervening variable, and…
NASA Technical Reports Server (NTRS)
Hamilton, H. B.; Strangas, E.
1980-01-01
The time dependent solution of the magnetic field is introduced as a method for accounting for the variation, in time, of the machine parameters in predicting and analyzing the performance of the electrical machines. The method of time dependent finite element was used in combination with an also time dependent construction of a grid for the air gap region. The Maxwell stress tensor was used to calculate the airgap torque from the magnetic vector potential distribution. Incremental inductances were defined and calculated as functions of time, depending on eddy currents and saturation. The currents in all the machine circuits were calculated in the time domain based on these inductances, which were continuously updated. The method was applied to a chopper controlled DC series motor used for electric vehicle drive, and to a salient pole sychronous motor with damper bars. Simulation results were compared to experimentally obtained ones.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ganguly, Jayanta; Ghosh, Manas, E-mail: pcmg77@rediffmail.com
We investigate the profiles of diagonal components of frequency-dependent first nonlinear (β{sub xxx} and β{sub yyy}) optical response of repulsive impurity doped quantum dots. We have assumed a Gaussian function to represent the dopant impurity potential. This study primarily addresses the role of noise on the polarizability components. We have invoked Gaussian white noise consisting of additive and multiplicative characteristics (in Stratonovich sense). The doped system has been subjected to an oscillating electric field of given intensity, and the frequency-dependent first nonlinear polarizabilities are computed. The noise characteristics are manifested in an interesting way in the nonlinear polarizability components. Inmore » case of additive noise, the noise strength remains practically ineffective in influencing the optical responses. The situation completely changes with the replacement of additive noise by its multiplicative analog. The replacement enhances the nonlinear optical response dramatically and also causes their maximization at some typical value of noise strength that depends on oscillation frequency.« less
Nonlinear system theory: Another look at dependence
Wu, Wei Biao
2005-01-01
Based on the nonlinear system theory, we introduce previously undescribed dependence measures for stationary causal processes. Our physical and predictive dependence measures quantify the degree of dependence of outputs on inputs in physical systems. The proposed dependence measures provide a natural framework for a limit theory for stationary processes. In particular, under conditions with quite simple forms, we present limit theorems for partial sums, empirical processes, and kernel density estimates. The conditions are mild and easily verifiable because they are directly related to the data-generating mechanisms. PMID:16179388
How can the neutrino interact with the electromagnetic field?
NASA Astrophysics Data System (ADS)
Novello, M.; Ducap, C. E. L.
2018-01-01
Maxwell electrodynamics in the fixed Minkowski space-time background can be described in an equivalent way in a curved Riemannian geometry that depends on the electromagnetic field and that we call the electromagnetic metric (e-metric for short). After showing such geometric equivalence we investigate the possibility that new processes dependent on the e-metric are allowed. In particular, for very high values of the field, a direct coupling of uncharged particles to the electromagnetic field may appear. Supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), FAPERJ (Fundação do Amparo Pesquisa do Rio de Janeiro, FINEP (Financiadora de Estudos e Projetos) and Coordenação do Aperfeiçoamento do Pessoal do Ensino Superior (CAPES)
Nonlinear Feedback Controllers and Compensators: A State-Dependent Riccati Equation Approach
2003-01-01
Nonlinear Feedback Controllers and Compensators: A State-Dependent Riccati Equation Approach H. T. Banks∗ B. M. Lewis † H. T. Tran‡ Department of...Mathematics Center for Research in Scientific Computation North Carolina State University Raleigh, NC 27695 Abstract State-dependent Riccati equation ...estimating the solution of the Hamilton- Jacobi-Bellman (HJB) equation can be found in a comprehensive review article [5]. Each of these ∗htbanks
NASA Astrophysics Data System (ADS)
Sahmani, S.; Aghdam, M. M.
2018-03-01
A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.
Ramo, Nicole L.; Puttlitz, Christian M.
2018-01-01
Compelling evidence that many biological soft tissues display both strain- and time-dependent behavior has led to the development of fully non-linear viscoelastic modeling techniques to represent the tissue’s mechanical response under dynamic conditions. Since the current stress state of a viscoelastic material is dependent on all previous loading events, numerical analyses are complicated by the requirement of computing and storing the stress at each step throughout the load history. This requirement quickly becomes computationally expensive, and in some cases intractable, for finite element models. Therefore, we have developed a strain-dependent numerical integration approach for capturing non-linear viscoelasticity that enables calculation of the current stress from a strain-dependent history state variable stored from the preceding time step only, which improves both fitting efficiency and computational tractability. This methodology was validated based on its ability to recover non-linear viscoelastic coefficients from simulated stress-relaxation (six strain levels) and dynamic cyclic (three frequencies) experimental stress-strain data. The model successfully fit each data set with average errors in recovered coefficients of 0.3% for stress-relaxation fits and 0.1% for cyclic. The results support the use of the presented methodology to develop linear or non-linear viscoelastic models from stress-relaxation or cyclic experimental data of biological soft tissues. PMID:29293558
NASA Astrophysics Data System (ADS)
Ouari, Bachir; Titov, Serguey V.; El Mrabti, Halim; Kalmykov, Yuri P.
2013-02-01
The nonlinear ac susceptibility and dynamic magnetic hysteresis (DMH) of a single domain ferromagnetic particle with biaxial anisotropy subjected to both external ac and dc fields of arbitrary strength and orientation are treated via Brown's continuous diffusions model [W. F. Brown, Jr., Phys. Rev. 130, 1677 (1963)] of magnetization orientations. The DMH loops and nonlinear ac susceptibility strongly depend on the dc and ac field strengths, the polar angle between the easy axis of the particle, the external field vectors, temperature, and damping. In contrast to uniaxial particles, the nonlinear ac stationary response and DMH strongly depend on the azimuthal direction of the ac field and the biaxiality parameter Δ.
Martín-Hernández, G; Mastinu, P F; Praena, J; Dzysiuk, N; Capote Noy, R; Pignatari, M
2012-08-01
The need of neutron capture cross section measurements for astrophysics motivates present work, where calculations to generate stellar neutron spectra at different temperatures are performed. The accelerator-based (7)Li(p,n)(7)Be reaction is used. Shaping the proton beam energy and the sample covering a specific solid angle, neutron activation for measuring stellar-averaged capture cross section can be done. High-quality Maxwell-Boltzmann neutron spectra are predicted. Assuming a general behavior of the neutron capture cross section a weighted fit of the spectrum to Maxwell-Boltzmann distributions is successfully introduced. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Joseph, Rose M.; Hagness, Susan C.; Taflove, Allen
1991-01-01
The initial results for femtosecond pulse propagation and scattering interactions for a Lorentz medium obtained by a direct time integration of Maxwell's equations are reported. The computational approach provides reflection coefficients accurate to better than 6 parts in 10,000 over the frequency range of dc to 3 x 10 to the 16th Hz for a single 0.2-fs Gaussian pulse incident upon a Lorentz-medium half-space. New results for Sommerfeld and Brillouin precursors are shown and compared with previous analyses. The present approach is robust and permits 2D and 3D electromagnetic pulse propagation directly from the full-vector Maxwell's equations.
Maxwell's second- and third-order equations of transfer for non-Maxwellian gases
NASA Technical Reports Server (NTRS)
Baganoff, D.
1992-01-01
Condensed algebraic forms for Maxwell's second- and third-order equations of transfer are developed for the case of molecules described by either elastic hard spheres, inverse-power potentials, or by Bird's variable hard-sphere model. These hardly reduced, yet exact, equations provide a new point of origin, when using the moment method, in seeking approximate solutions in the kinetic theory of gases for molecular models that are physically more realistic than that provided by the Maxwell model. An important by-product of the analysis when using these second- and third-order relations is that a clear mathematical connection develops between Bird's variable hard-sphere model and that for the inverse-power potential.
NASA Astrophysics Data System (ADS)
Pal, Suvajit; Ghosh, Manas
2014-07-01
We investigate the profiles of diagonal components of static and frequency-dependent third nonlinear (γxxxx and γyyyy) polarizability of repulsive impurity doped quantum dots. The dopant impurity potential takes a GAUSSIAN form. We have considered propagation of the dopant within an environment that damps the motion. The study focuses on role of damping strength on the diagonal components of both static and frequency-dependent third nonlinear polarizability of the doped system. The doped system is further exposed to an external electric field of given intensity. Damping subtly modulates the dot-impurity interaction and fabricates the polarizability components in a noticeable manner.
NASA Technical Reports Server (NTRS)
Clendaniel, Richard A.; Lasker, David M.; Minor, Lloyd B.; Shelhamer, M. J. (Principal Investigator)
2002-01-01
Previous work in squirrel monkeys has demonstrated the presence of linear and nonlinear components to the horizontal vestibuloocular reflex (VOR) evoked by high-acceleration rotations. The nonlinear component is seen as a rise in gain with increasing velocity of rotation at frequencies more than 2 Hz (a velocity-dependent gain enhancement). We have shown that there are greater changes in the nonlinear than linear component of the response after spectacle-induced adaptation. The present study was conducted to determine if the two components of the response share a common adaptive process. The gain of the VOR, in the dark, to sinusoidal stimuli at 4 Hz (peak velocities: 20-150 degrees /s) and 10 Hz (peak velocities: 20 and 100 degrees /s) was measured pre- and postadaptation. Adaptation was induced over 4 h with x0.45 minimizing spectacles. Sum-of-sines stimuli were used to induce adaptation, and the parameters of the stimuli were adjusted to invoke only the linear or both linear and nonlinear components of the response. Preadaptation, there was a velocity-dependent gain enhancement at 4 and 10 Hz. In postadaptation with the paradigms that only recruited the linear component, there was a decrease in gain and a persistent velocity-dependent gain enhancement (indicating adaptation of only the linear component). After adaptation with the paradigm designed to recruit both the linear and nonlinear components, there was a decrease in gain and no velocity-dependent gain enhancement (indicating adaptation of both components). There were comparable changes in the response to steps of acceleration. We interpret these results to indicate that separate processes drive the adaptation of the linear and nonlinear components of the response.
ERIC Educational Resources Information Center
Lee, Paul H.
2017-01-01
Purpose: Some confounders are nonlinearly associated with dependent variables, but they are often adjusted using a linear term. The purpose of this study was to examine the error of mis-specifying the nonlinear confounding effect. Methods: We carried out a simulation study to investigate the effect of adjusting for a nonlinear confounder in the…
Nonlinear fractional waves at elastic interfaces
NASA Astrophysics Data System (ADS)
Kappler, Julian; Shrivastava, Shamit; Schneider, Matthias F.; Netz, Roland R.
2017-11-01
We derive the nonlinear fractional surface wave equation that governs compression waves at an elastic interface that is coupled to a viscous bulk medium. The fractional character of the differential equation comes from the fact that the effective thickness of the bulk layer that is coupled to the interface is frequency dependent. The nonlinearity arises from the nonlinear dependence of the interface compressibility on the local compression, which is obtained from experimental measurements and reflects a phase transition at the interface. Numerical solutions of our nonlinear fractional theory reproduce several experimental key features of surface waves in phospholipid monolayers at the air-water interface without freely adjustable fitting parameters. In particular, the propagation distance of the surface wave abruptly increases at a threshold excitation amplitude. The wave velocity is found to be of the order of 40 cm/s in both experiments and theory and slightly increases as a function of the excitation amplitude. Nonlinear acoustic switching effects in membranes are thus shown to arise purely based on intrinsic membrane properties, namely, the presence of compressibility nonlinearities that accompany phase transitions at the interface.
77 FR 45238 - Amendment of Class E Airspace; Montgomery, AL
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-31
... and publication of conforming amendments. FOR FURTHER INFORMATION CONTACT: John Fornito, Operations....) Maxwell AFB (Lat. 32[deg]22'45''N., long. 86[deg]21'45''W.) Prattville-Grouby Field Airport (Lat. 32[deg..., and within a 7-mile radius of Maxwell AFB, and within a 7-mile radius of Prattville-Grouby [[Page...
Maxwell's electromagnetic theory and special relativity.
Hall, Graham
2008-05-28
This paper presents a brief history of electromagnetic theory from ancient times up to the work of Maxwell and the advent of Einstein's special theory of relativity. It is divided into five convenient periods and the intention is to describe these developments for the benefit of a lay scientific audience and with the minimum of technical detail.
Quantum discord and Maxwell's demons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zurek, Wojciech Hubert
2003-01-01
Quantum discord was proposed as an information-theoretic measure of the 'quantumness' of correlations. I show that discord determines the difference between the efficiency of quantum and classical Maxwell's demons - that is, entities that can or cannot measure nonlocal observables or carry out conditional quantum operations - in extracting work from collections of correlated quantum systems.
Measuring "c" with an LC Circuit
ERIC Educational Resources Information Center
Doran, Patrick; Hawk, William; Siegel, P. B.
2014-01-01
Maxwell's discovery of the relation between electricity, magnetism, and light was one of the most important ones in physics. With his added displacement current term, Maxwell showed that the equations of electricity and magnetism produced a radiation solution, electromagnetic (EM) radiation, that traveled with a speed of c=1/v(e0µ0). The…
A Modification to Maxwell's Needle Apparatus
ERIC Educational Resources Information Center
Soorya, Tribhuvan N.
2015-01-01
Maxwell's needle apparatus is used to determine the shear modulus (?) of the material of a wire of uniform cylindrical cross section. Conventionally, a single observation is taken for each observable, and the value of ? is calculated in a single shot. A modification to the above apparatus is made by varying one of the observables, namely the mass…
Radiation and Maxwell Stress Stabilization of Liquid Bridges
NASA Technical Reports Server (NTRS)
Marr-Lyon, M. J.; Thiessen, D. B.; Blonigen, F. J.; Marston, P. L.
1999-01-01
The use of both acoustic radiation stress and the Maxwell stress to stabilize liquid bridges is reported. Acoustic radiation stress arises from the time-averaged acoustic pressure at the surface of an object immersed in a sound field. Both passive and active acoustic stabilization schemes as well as an active electrostatic method are examined.
Comparing Teaching Approaches about Maxwell's Displacement Current
ERIC Educational Resources Information Center
Karam, Ricardo; Coimbra, Debora; Pietrocola, Maurício
2014-01-01
Due to its fundamental role for the consolidation of Maxwell's equations, the displacement current is one of the most important topics of any introductory course on electromagnetism. Moreover, this episode is widely used by historians and philosophers of science as a case study to investigate several issues (e.g. the theory-experiment…
Vlasov-Maxwell and Vlasov-Poisson equations as models of a one-dimensional electron plasma
NASA Technical Reports Server (NTRS)
Klimas, A. J.; Cooper, J.
1983-01-01
The Vlasov-Maxwell and Vlasov-Poisson systems of equations for a one-dimensional electron plasma are defined and discussed. A method for transforming a solution of one system which is periodic over a bounded or unbounded spatial interval to a similar solution of the other is constructed.
Quantum Behavior of an Autonomous Maxwell Demon
NASA Astrophysics Data System (ADS)
Chapman, Adrian; Miyake, Akimasa
2015-03-01
A Maxwell Demon is an agent that can exploit knowledge of a system's microstate to perform useful work. The second law of thermodynamics is only recovered upon taking into account the work required to irreversibly update the demon's memory, bringing information theoretic concepts into a thermodynamic framework. Recently, there has been interest in modeling a classical Maxwell demon as an autonomous physical system to study this information-work tradeoff explicitly. Motivated by the idea that states with non-local entanglement structure can be used as a computational resource, we ask whether these states have thermodynamic resource quality as well by generalizing a particular classical autonomous Maxwell demon to the quantum regime. We treat the full quantum description using a matrix product operator formalism, which allows us to handle quantum and classical correlations in a unified framework. Applying this, together with techniques from statistical mechanics, we are able to approximate nonlocal quantities such as the erasure performed on the demon's memory register when correlations are present. Finally, we examine how the demon may use these correlations as a resource to outperform its classical counterpart.
Caffeine and theobromine levels in selected Nigerian beverages.
Eteng, M U; Eyong, E U; Eka, O U; Umoh, I B; Ebong, P E; Ettarh, R R
1999-01-01
Caffeine and theobromine contents (mg/g) were determined in samples of selected Nigerian beverage products. The beverages were cocoa (Milo, Bournvita, Rosevita and Enervita), coffee (Nescafe, Bongo, and Maxwell House decaffeinated) and tea (Lipton). The theobromine contents of samples of Milo, Bournvita, Rosevita, Enervita, Nescafe, Bongo, Maxwell House decaffeinated coffee and Lipton were 62.10+/-5.21, 64.80+/-6.72, 82.80+/-4.43, 80.37+/-6.80, 27.00+/-4.31, 14.67+/-2.90, 23.46+/-3.13 and 12.60+/-1.52, respectively. The corresponding caffeine contents of these samples were 2.78+/-0.43 (Milo), 3.17+/-0.36 (Bournvita), 0.92+/-0.51 (Rosevita), 1.05+/-0.68 (Enervita), 93.66+/-8.91 (Nescafe), 6.47+/-2.42 (Bongo), 37.22+/-5.34 (Lipton), and 0.21+/-0.11 (Maxwell House decaffeinated coffee). Semi-processed cocoa beverages (Rosevita and Enervita) had significantly (p < 0.05) higher levels of theobromine compared with the finished cocoas (Milo and Bournvita). Similarly, Nescafe contained significantly (p < 0.05) higher levels of caffeine compared to Maxwell House (decaffeinated coffee) and Bongo. Levels of caffeine in Lipton tea were moderate.
NASA Astrophysics Data System (ADS)
Imran, M. A.; Riaz, M. B.; Shah, N. A.; Zafar, A. A.
2018-03-01
The aim of this article is to investigate the unsteady natural convection flow of Maxwell fluid with fractional derivative over an exponentially accelerated infinite vertical plate. Moreover, slip condition, radiation, MHD and Newtonian heating effects are also considered. A modern definition of fractional derivative operator recently introduced by Caputo and Fabrizio has been used to formulate the fractional model. Semi analytical solutions of the dimensionless problem are obtained by employing Stehfest's and Tzou's algorithms in order to find the inverse Laplace transforms for temperature and velocity fields. Temperature and rate of heat transfer for non-integer and integer order derivatives are computed and reduced to some known solutions from the literature. Finally, in order to get insight of the physical significance of the considered problem regarding velocity and Nusselt number, some graphical illustrations are made using Mathcad software. As a result, in comparison between Maxwell and viscous fluid (fractional and ordinary) we found that viscous (fractional and ordinary) fluids are swiftest than Maxwell (fractional and ordinary) fluids.
A rate insensitive linear viscoelastic model for soft tissues
Zhang, Wei; Chen, Henry Y.; Kassab, Ghassan S.
2012-01-01
It is well known that many biological soft tissues behave as viscoelastic materials with hysteresis curves being nearly independent of strain rate when loading frequency is varied over a large range. In this work, the rate insensitive feature of biological materials is taken into account by a generalized Maxwell model. To minimize the number of model parameters, it is assumed that the characteristic frequencies of Maxwell elements form a geometric series. As a result, the model is characterized by five material constants: μ0, τ, m, ρ and β, where μ0 is the relaxed elastic modulus, τ the characteristic relaxation time, m the number of Maxwell elements, ρ the gap between characteristic frequencies, and β = μ1/μ0 with μ1 being the elastic modulus of the Maxwell body that has relaxation time τ. The physical basis of the model is motivated by the microstructural architecture of typical soft tissues. The novel model shows excellent fit of relaxation data on the canine aorta and captures the salient features of vascular viscoelasticity with significantly fewer model parameters. PMID:17512585
NASA Astrophysics Data System (ADS)
Hou, Yawei; Zhu, Ping; Zou, Zhihui; Kim, Charlson C.; Hu, Zhaoqing; Wang, Zhengxiong
2016-10-01
The energetic-particle (EP) driven toroidal Alfvén eigenmodes (TAEs) in a circular-shaped large aspect ratio tokamak are studied using the hybrid kinetic-MHD model in the NIMROD code, where the EPs are advanced using the δf particle-in-cell (PIC) method and their kinetic effects are coupled to the bulk plasma through moment closures. Two initial distributions of EPs, Maxwell and slowing-down, are considered. The influence of EP parameters, including density, temperature and density gradient, on the frequency and the growth rate of TAEs are obtained and benchmarked with theory and gyrokinetic simulations for the Maxwell distribution with good agreement. When the density and temperature of EPs are above certain thresholds, the transition from TAE to energetic particle modes (EPM) occurs and the mode structure also changes. Comparisons between Maxwell and slowing-down distributions in terms of EP-driven TAEs and EPMs will also be presented and discussed. Supported by the National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002 and 2015GB101004, and the Natural Science Foundation of China Grant No. 11205194.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mizuta, Yo; Nagasawa, Minoru; Ohtani, Morimasa
2005-12-15
A numerical approach called Fourier direct method (FDM) is applied to nonlinear propagation of optical pulses with the central wavelength 800 nm, the width 2.67-12.00 fs, and the peak power 25-6870 kW in a fused-silica fiber. Bidirectional propagation, delayed Raman response, nonlinear dispersion (self-steepening, core dispersion), as well as correct linear dispersion are incorporated into 'bidirectional propagation equations' which are derived directly from Maxwell's equations. These equations are solved for forward and backward waves, instead of the electric-field envelope as in the nonlinear Schroedinger equation (NLSE). They are integrated as multidimensional simultaneous evolution equations evolved in space. We investigate, bothmore » theoretically and numerically, the validity and the limitation of assumptions and approximations used for deriving the NLSE. Also, the accuracy and the efficiency of the FDM are compared quantitatively with those of the finite-difference time-domain numerical approach. The time-domain size 500 fs and the number of grid points in time 2048 are chosen to investigate numerically intensity spectra, spectral phases, and temporal electric-field profiles up to the propagation distance 1.0 mm. On the intensity spectrum of a few-optical-cycle pulses, the self-steepening, core dispersion, and the delayed Raman response appear as dominant, middle, and slight effects, respectively. The delayed Raman response and the core dispersion reduce the effective nonlinearity. Correct linear dispersion is important since it affects the intensity spectrum sensitively. For the compression of femtosecond optical pulses by the complete phase compensation, the shortness and the pulse quality of compressed pulses are remarkably improved by the intense initial peak power rather than by the short initial pulse width or by the propagation distance longer than 0.1 mm. They will be compressed as short as 0.3 fs below the damage threshold of fused-silica fiber 6 MW. It is demonstrated that the carrier envelope phase (CEP) causes the difference on the temporal electric-field profile and the intensity spectrum for the initial peak power of the order of megawatts. At the propagation distance longer than the coherence length for third-order harmonics, the difference grows in the spectral components around the third-order and higher-order harmonics. The CEP can be a sensitive marker to monitor the evolution of nonlinear optical process by a few-optical-cycle electric-field wave-packet source.« less
Venus - Lakshmi Planum and Maxwell Montes
NASA Technical Reports Server (NTRS)
1990-01-01
This Magellan full resolution radar image is centered at 65 degrees north latitude, zero degrees east longitude, along the eastern edge of Lakshmi Planum and the western edge of Maxwell Montes. The plains of Lakshmi are made up of radar-dark, homogeneous, smooth lava flows. Located near the center of the image is a feature previously mapped as tessera made up of intersecting 1- to 2-km (0.6 to 1.2 miles) wide graven. The abrupt termination of dark plains against this feature indicates that it has been partially covered by lava. Additional blocks of tessera are located along the left hand edge of the image. A series of linear parallel troughs are located along the southern edge of the image. These features, 60- to 120-km (36- to 72- miles) long and 10- to 40- km (6- to 24- miles) wide are interpreted as graben. Located along the right hand part of the image is Maxwell Montes, the highest mountain on the planet, rising to an elevation of 11.5 km (7 miles) and is part of a series of mountain belts surrounding Lakshmi Planum. The western edge of Maxwell shown in this image rises sharply, 5.0 km (3.0 miles), above the adjacent plains in Lakshmi Planum. Maxwell is made up of parallel ridges 2- to 7-km (1.2- to 4.2 miles) apart and is interpreted to have formed by compressional tectonics. The image is 300 km (180 miles) wide.
Pupil movements to light and accommodative stimulation - A comparative study.
NASA Technical Reports Server (NTRS)
Semmlow, J.; Stark, L.
1973-01-01
Isolation and definition of specific response components in pupil reflexes through comparison of the dynamic features of light-induced and accommodation-induced pupil movements. A quantitative analysis of the behavior of the complex nonlinear pupil responses reveals the presence of two independent nonlinear characteristics: a range-dependent gain and a direction dependence or movement asymmetry. These nonlinear properties are attributed to motor processes because they are observable in pupil responses to both light and accommodation stimuli. The possible mechanisms and consequences of these pupil response characteristics are quantitatively defined and discussed.
The discovery of Maxwell's equations
NASA Astrophysics Data System (ADS)
Everitt, Francis
2012-02-01
In January 1865, Maxwell at age 34 wrote a letter to his cousin Charles Cay describing various doings, including his work on the viscosity of gases and a visit from two of the world's leading oculists to inspect the eyes of his dog ``Spice''. He added, ``I have also a paper afloat, with an electromagnetic theory of light, which, till I am convinced to the contrary, I hold to be great guns.'' That paper ``A Dynamical Theory of the Electromagnetic Field'' was his fourth on the subject. It was followed in 1868 by another, and then in 1873 by his massive two volume Treatise on Electricity and Magnetism. Even so, by the time of his death in 1879 as he was beginning a radically revised edition of the Treatise, much remained to be done. We celebrate here the 150^th anniversary of Maxwell's first astonished realization in 1862 of the link between electromagnetism and light. So revolutionary was this that 15 or more years went by before Lorentz, Poynting, FitzGerald, and others came to address it, sometimes with improvements, sometimes not. Not until 1888 did Hertz make the essential experimental discovery of radio waves. What is so remarkable about Maxwell's five papers is that each presents a complete view of the subject radically different from the one before. I shall say something about each, emphasizing in particular Maxwell's most unexpected idea, the displacement current, so vastly more interesting than the accounts of it found in textbooks today. Beyond lie other surprises. The concept of gauge invariance, and the role the vector potential would play in defining the canonical momentum of the electron, both go back to Maxwell. In 1872 came a paper ``On the Mathematical Classification of Physical Quantities'', which stands as an education in itself. Amid much else, there for the first time appears the distinction between axial and polar vectors and those new operational concepts related to quaternion theory: curl, divergence, and gradient.
Extensions of the Einstein-Schrodinger non-symmetric theory of gravity
NASA Astrophysics Data System (ADS)
Shifflett, James A.
We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.
Tidal effects in differentiated viscoelastic bodies: a numerical approach
NASA Astrophysics Data System (ADS)
Walterová, M.; Běhounková, M.
2017-09-01
The majority of confirmed terrestrial exoplanets orbits close to their host stars and their evolution was likely altered by tidal interaction. Nevertheless, due to their viscoelastic properties on the tidal frequencies, their response cannot be described exactly by standardly employed constant-lag models. We therefore introduce a tidal model based on the numerical evaluation of a continuum mechanics problem describing the deformation of viscoelastic (Maxwell or Andrade) planetary mantles subjected to external force. We apply the method on a model Earth-size planet orbiting a low-mass star and study the effect of the orbital eccentricity, the mantle viscosity and the chosen rheology on the tidal dissipation, the complex Love numbers and the tidal torque. The number of stable spin states (i.e., zero tidal torque) grows with increasing mantle viscosity, similarly to the analytical model of Correia et al. (Astron Astrophys 571:A50, 2014) for homogeneous bodies. This behavior is only slightly influenced by the rheology used. Similarly, the Love numbers do not distinctly depend on the considered rheological model. The increase in viscosity affects the amplitude of their variations. The tidal heating described by the Maxwell rheology attains local minima associated with low spin-orbit resonances, with depth and shape depending on both the eccentricity and the viscosity. For the Andrade rheology, the minima at low resonances are very shallow and the tidal heating for all viscosities resembles a "fluid limit." The tidal heating is the quantity influenced the most by the rheology, having thus possible impact on the internal thermal evolution.
Discrete Snaking: Multiple Cavity Solitons in Saturable Media
NASA Astrophysics Data System (ADS)
Yulin, A. V.; Champneys, A. R.
2010-01-01
A one-dimensional lattice equation is studied that models the light field in an optical system comprised of a periodic array of optical cavities pumped by a coherent light source. The model includes effects of linear detuning, linear and nonlinear dissipation, and saturable nonlinearity. A wide variety of different parameter regions are studied in which there is bistability between low-power and high-power spatially homogeneous steady states. By posing the steady problem as a time-reversible four-dimensional discrete map, it is shown that temporal stability of these states is a necessary condition for the existence of spatially localized modes. Numerical path-following is used to find both so-called bright solitons (whose core is at a higher intensity than the tails) and grey solitons (with nonzero lower intensity tails), whose temporal stability is also computed. Starting from the case of focusing nonlinearity in the continuum limit and with energy conservation, the effects of dissipation and spatial discreteness are studied both separately and in combination. The presence of Maxwell points, where heteroclinic connections exist between different homogeneous states, is found to lead to snaking bifurcation diagrams where the width of the soliton grows via a process of successive increase and decrease of a parameter representing the pump strength. These structures are found to cause parameter intervals where there are infinitely many distinct stable solitons, both bright and grey. Mechanisms are revealed by which the snakes can be created and destroyed as a second parameter is varied. In particular, the bright solitons reach the boundary of the bistability region where the homogeneous state in the soliton's tail undergoes a fold, whereupon the snake splits into many separate loops. More complex mechanisms underlie the morphogenesis of the grey soliton branches, for example, due to a fold of the homogeneous state that forms the core of the snaking soliton. Further snaking diagrams are found for both defocusing and purely dissipative nonlinearities, and yet further mechanisms are unraveled by which the snakes are created or destroyed as the two parameters vary.
Frequency dependent polarisation switching in h-ErMnO3
NASA Astrophysics Data System (ADS)
Ruff, Alexander; Li, Ziyu; Loidl, Alois; Schaab, Jakob; Fiebig, Manfred; Cano, Andres; Yan, Zewu; Bourret, Edith; Glaum, Julia; Meier, Dennis; Krohns, Stephan
2018-04-01
We report an electric-field poling study of the geometrically-driven improper ferroelectric h-ErMnO3. From a detailed dielectric analysis, we deduce the temperature and the frequency dependent range for which single-crystalline h-ErMnO3 exhibits purely intrinsic dielectric behaviour, i.e., free from the extrinsic so-called Maxwell-Wagner polarisations that arise, for example, from surface barrier layers. In this regime, ferroelectric hysteresis loops as a function of frequency, temperature, and applied electric fields are measured, revealing the theoretically predicted saturation polarisation on the order of 5-6 μC/cm2. Special emphasis is put on frequency dependent polarisation switching, which is explained in terms of domain-wall movement similar to proper ferroelectrics. Controlling the domain walls via electric fields brings us an important step closer to their utilization in domain-wall-based electronics.
Theoretical investigation of intensity-dependent optical nonlinearity in graphene-aided D-microfiber
NASA Astrophysics Data System (ADS)
Shah, Manoj Kumar; Lu, Rongguo; Zhang, Yali; Ye, Shengwei; Zhang, Shangjian; Liu, Yong
2018-01-01
We theoretically investigate the intensity-dependent optical nonlinearity in graphene-aided D-microfiber, by tuning the chemical potential of graphene and varying radial distance and radii of the D-microfiber. Utilizing an interplay between graphene and the enhanced evanescent field of a guided mode in the waveguide of interest, the net utility of nonlinear coefficient is harnessed up to a very high value of 106 W-1m-1. Importantly, which is ∼ two orders of magnitude larger than in PMMA-graphene-PMMA waveguide. The highly dispersive nature of the waveguide, D ∼ 103 ps/nm-km, and large nonlinear figure-of-merit, FOMNL ∼ 1.29, have raised the possibilities of utilizing slow light structures to operate devices at few watts power level with microscale length. These studies have opened one window towards the next-generation all fiber-optic graphene nonlinear optical devices.
Leonardi, Erminia; Angeli, Celestino
2010-01-14
The diffusion process in a multicomponent system can be formulated in a general form by the generalized Maxwell-Stefan equations. This formulation is able to describe the diffusion process in different systems, such as, for instance, bulk diffusion (in the gas, liquid, and solid phase) and diffusion in microporous materials (membranes, zeolites, nanotubes, etc.). The Maxwell-Stefan equations can be solved analytically (only in special cases) or by numerical approaches. Different numerical strategies have been previously presented, but the number of diffusing species is normally restricted, with only few exceptions, to three in bulk diffusion and to two in microporous systems, unless simplifications of the Maxwell-Stefan equations are considered. In the literature, a large effort has been devoted to the derivation of the analytic expression of the elements of the Fick-like diffusion matrix and therefore to the symbolic inversion of a square matrix with dimensions n x n (n being the number of independent components). This step, which can be easily performed for n = 2 and remains reasonable for n = 3, becomes rapidly very complex in problems with a large number of components. This paper addresses the problem of the numerical resolution of the Maxwell-Stefan equations in the transient regime for a one-dimensional system with a generic number of components, avoiding the definition of the analytic expression of the elements of the Fick-like diffusion matrix. To this aim, two approaches have been implemented in a computational code; the first is the simple finite difference second-order accurate in time Crank-Nicolson scheme for which the full mathematical derivation and the relevant final equations are reported. The second is based on the more accurate backward differentiation formulas, BDF, or Gear's method (Shampine, L. F. ; Gear, C. W. SIAM Rev. 1979, 21, 1.), as implemented in the Livermore solver for ordinary differential equations, LSODE (Hindmarsh, A. C. Serial Fortran Solvers for ODE Initial Value Problems, Technical Report; https://computation.llnl.gov/casc/odepack/odepack_ home.html (2006).). Both methods have been applied to a series of specific problems, such as bulk diffusion of acetone and methanol through stagnant air, uptake of two components on a microporous material in a model system, and permeation across a microporous membrane in model systems, both with the aim to validate the method and to add new information to the comprehension of the peculiar behavior of these systems. The approach is validated by comparison with different published results and with analytic expressions for the steady-state concentration profiles or fluxes in particular systems. The possibility to treat a generic number of components (the limitation being essentially the computational power) is also tested, and results are reported on the permeation of a five component mixture through a membrane in a model system. It is worth noticing that the algorithm here reported can be applied also to the Fick formulation of the diffusion problem with concentration-dependent diffusion coefficients.
NASA Astrophysics Data System (ADS)
Tufano, Saverio; Griffin, Michael J.
2013-01-01
The efficiency of a seat in reducing vibration depends on the characteristics of the vibration, the dynamic characteristics of the seat, and the dynamic characteristics of the person sitting on the seat. However, it is not known whether seat cushions influence the dynamic response of the human body, whether the human body influences the dynamic response of seat cushions, or the relative importance of human body nonlinearity and seat nonlinearity in causing nonlinearity in measures of seat transmissibility. This study was designed to investigate the nonlinearity of the coupled seat and human body systems and to compare the apparent mass of the human body supported on rigid and foam seats. A frequency domain model was used to identify the dynamic parameters of seat foams and investigate their dependence on the subject-sitting weight and hip breadth. With 15 subjects, the force and acceleration at the seat base and acceleration at the subject interface were measured during random vertical vibration excitation (0.25-25 Hz) at each of five vibration magnitudes, (0.25-1.6 ms-2 r.m.s.) with four seating conditions (rigid flat seat and three foam cushions). The measurements are presented in terms of the subject's apparent mass on the rigid and foam seat surfaces, and the transmissibility and dynamic stiffness of each of the foam cushions. Both the human body and the foams showed nonlinear softening behaviour, which resulted in nonlinear cushion transmissibility. The apparent masses of subjects sitting on the rigid seat and on foam cushions were similar, but with an apparent increase in damping when sitting on the foams. The foam dynamic stiffness showed complex correlations with characteristics of the human body, which differed between foams. The nonlinearities in cushion transmissibilities, expressed in terms of changes in resonance frequencies and moduli, were more dependent on human body nonlinearity than on cushion nonlinearity.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-12
... South LaSalle Street, Chicago, Illinois 60690-1414: 1. Robert John Dentel, Victor, Iowa, and Mary P. Howell, Ames, Iowa, individually; and the Robert John Dentel Family (Robert J. Dentel, Patricia A. Dentel... Bank, Corydon, Iowa; First State Bank of Colfax, Colfax, Iowa; Maxwell State Bank, Maxwell, Iowa...
Maxwell-Higgs equation on higher dimensional static curved spacetimes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mulyanto, E-mail: mulyanto37@gmail.com; Akbar, Fiki Taufik, E-mail: ftakbar@fi.itb.ac.id; Gunara, Bobby Eka, E-mail: bobby@fi.itb.ac.id
In this paper we consider a class of solutions of Maxwell-Higgs equation in higher dimensional static curved spacetimes called Schwarzchild de-Sitter spacetimes. We obtain the general form of the electric fields and magnetic fields in background Schwarzchild de-Sitter spacetimes. However, determining the interaction between photons with the Higgs scalar fields is needed further studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moradi, Afshin, E-mail: a.moradi@kut.ac.ir
We develop the Maxwell-Garnett theory for the effective medium approximation of composite materials with metallic nanoparticles by taking into account the quantum spatial dispersion effects in dielectric response of nanoparticles. We derive a quantum nonlocal generalization of the standard Maxwell-Garnett formula, by means the linearized quantum hydrodynamic theory in conjunction with the Poisson equation as well as the appropriate additional quantum boundary conditions.
Separation of variables in Maxwell equations in Plebański-Demiański spacetime
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Krtouš, Pavel; KubizÅák, David
2018-05-01
A new method for separating variables in the Maxwell equations in four- and higher-dimensional Kerr-(A)dS spacetimes proposed recently by Lunin is generalized to any off-shell metric that admits a principal Killing-Yano tensor. The key observation is that Lunin's ansatz for the vector potential can be formulated in a covariant form—in terms of the principal tensor. In particular, focusing on the four-dimensional case we demonstrate separability of Maxwell's equations in the Kerr-NUT-(A)dS and the Plebański-Demiański family of spacetimes. The new method of separation of variables is quite different from the standard approach based on the Newman-Penrose formalism.
NASA Astrophysics Data System (ADS)
Fan, Jishan; Li, Fucai; Nakamura, Gen
2018-06-01
In this paper we continue our study on the establishment of uniform estimates of strong solutions with respect to the Mach number and the dielectric constant to the full compressible Navier-Stokes-Maxwell system in a bounded domain Ω \\subset R^3. In Fan et al. (Kinet Relat Models 9:443-453, 2016), the uniform estimates have been obtained for large initial data in a short time interval. Here we shall show that the uniform estimates exist globally if the initial data are small. Based on these uniform estimates, we obtain the convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations for well-prepared initial data.
Classes of exact Einstein Maxwell solutions
NASA Astrophysics Data System (ADS)
Komathiraj, K.; Maharaj, S. D.
2007-12-01
We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.
NASA Astrophysics Data System (ADS)
Dmitriev, Mikhail G.; Makarov, Dmitry A.
2016-08-01
We carried out analysis of near optimality of one computationally effective nonlinear stabilizing control built for weakly nonlinear systems with coefficients depending on the state and the formal small parameter. First investigation of that problem was made in [M. G. Dmitriev, and D. A. Makarov, "The suboptimality of stabilizing regulator in a quasi-linear system with state-depended coefficients," in 2016 International Siberian Conference on Control and Communications (SIBCON) Proceedings, National Research University, Moscow, 2016]. In this paper, another optimal control and gain matrix representations were used and theoretical results analogous to cited work above were obtained. Also as in the cited work above the form of quality criterion on which this close-loop control is optimal was constructed.
Frequency, pressure and strain dependence of nonlinear elasticity in Berea Sandstone
Riviere, Jacques; Johnson, Paul Allan; Marone, Chris; ...
2016-04-14
Acoustoelasticity measurements in a sample of room dry Berea sandstone are conducted at various loading frequencies to explore the transition between the quasi-static ( f → 0) and dynamic (few kilohertz) nonlinear elastic response. We carry out these measurements at multiple confining pressures and perform a multivariate regression analysis to quantify the dependence of the harmonic content on strain amplitude, frequency, and pressure. The modulus softening (equivalent to the harmonic at 0f) increases by a factor 2–3 over 3 orders of magnitude increase in frequency. Harmonics at 2f, 4f, and 6f exhibit similar behaviors. In contrast, the harmonic at 1fmore » appears frequency independent. This result corroborates previous studies showing that the nonlinear elasticity of rocks can be described with a minimum of two physical mechanisms. This study provides quantitative data that describes the rate dependency of nonlinear elasticity. Furthermore, these findings can be used to improve theories relating the macroscopic elastic response to microstructural features.« less
Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin
2014-01-01
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.
Inferring Nonlinear Gene Regulatory Networks from Gene Expression Data Based on Distance Correlation
Guo, Xiaobo; Zhang, Ye; Hu, Wenhao; Tan, Haizhu; Wang, Xueqin
2014-01-01
Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs). It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC) has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI)-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC) curve and the precision-recall (PR) curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference. PMID:24551058
Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao
2016-01-01
Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product’s performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner’s ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters. PMID:27509499
Sun, Fuqiang; Liu, Le; Li, Xiaoyang; Liao, Haitao
2016-08-06
Accelerated degradation testing (ADT) is an efficient technique for evaluating the lifetime of a highly reliable product whose underlying failure process may be traced by the degradation of the product's performance parameters with time. However, most research on ADT mainly focuses on a single performance parameter. In reality, the performance of a modern product is usually characterized by multiple parameters, and the degradation paths are usually nonlinear. To address such problems, this paper develops a new s-dependent nonlinear ADT model for products with multiple performance parameters using a general Wiener process and copulas. The general Wiener process models the nonlinear ADT data, and the dependency among different degradation measures is analyzed using the copula method. An engineering case study on a tuner's ADT data is conducted to demonstrate the effectiveness of the proposed method. The results illustrate that the proposed method is quite effective in estimating the lifetime of a product with s-dependent performance parameters.
Transit-time and age distributions for nonlinear time-dependent compartmental systems.
Metzler, Holger; Müller, Markus; Sierra, Carlos A
2018-02-06
Many processes in nature are modeled using compartmental systems (reservoir/pool/box systems). Usually, they are expressed as a set of first-order differential equations describing the transfer of matter across a network of compartments. The concepts of age of matter in compartments and the time required for particles to transit the system are important diagnostics of these models with applications to a wide range of scientific questions. Until now, explicit formulas for transit-time and age distributions of nonlinear time-dependent compartmental systems were not available. We compute densities for these types of systems under the assumption of well-mixed compartments. Assuming that a solution of the nonlinear system is available at least numerically, we show how to construct a linear time-dependent system with the same solution trajectory. We demonstrate how to exploit this solution to compute transit-time and age distributions in dependence on given start values and initial age distributions. Furthermore, we derive equations for the time evolution of quantiles and moments of the age distributions. Our results generalize available density formulas for the linear time-independent case and mean-age formulas for the linear time-dependent case. As an example, we apply our formulas to a nonlinear and a linear version of a simple global carbon cycle model driven by a time-dependent input signal which represents fossil fuel additions. We derive time-dependent age distributions for all compartments and calculate the time it takes to remove fossil carbon in a business-as-usual scenario.
Spurious Solutions Of Nonlinear Differential Equations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1992-01-01
Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.
Nonlinear stability of the 1D Boltzmann equation in a periodic box
NASA Astrophysics Data System (ADS)
Wu, Kung-Chien
2018-05-01
We study the nonlinear stability of the Boltzmann equation in the 1D periodic box with size , where is the Knudsen number. The convergence rate is for small time region and exponential for large time region. Moreover, the exponential rate depends on the size of the domain (Knudsen number). This problem is highly nonlinear and hence we need more careful analysis to control the nonlinear term.
Nonlinear multilayers as optical limiters
NASA Astrophysics Data System (ADS)
Turner-Valle, Jennifer Anne
1998-10-01
In this work we present a non-iterative technique for computing the steady-state optical properties of nonlinear multilayers and we examine nonlinear multilayer designs for optical limiters. Optical limiters are filters with intensity-dependent transmission designed to curtail the transmission of incident light above a threshold irradiance value in order to protect optical sensors from damage due to intense light. Thin film multilayers composed of nonlinear materials exhibiting an intensity-dependent refractive index are used as the basis for optical limiter designs in order to enhance the nonlinear filter response by magnifying the electric field in the nonlinear materials through interference effects. The nonlinear multilayer designs considered in this work are based on linear optical interference filter designs which are selected for their spectral properties and electric field distributions. Quarter wave stacks and cavity filters are examined for their suitability as sensor protectors and their manufacturability. The underlying non-iterative technique used to calculate the optical response of these filters derives from recognizing that the multi-valued calculation of output irradiance as a function of incident irradiance may be turned into a single-valued calculation of incident irradiance as a function of output irradiance. Finally, the benefits and drawbacks of using nonlinear multilayer for optical limiting are examined and future research directions are proposed.
Measurement of attenuation coefficients of the fundamental and second harmonic waves in water
NASA Astrophysics Data System (ADS)
Zhang, Shuzeng; Jeong, Hyunjo; Cho, Sungjong; Li, Xiongbing
2016-02-01
Attenuation corrections in nonlinear acoustics play an important role in the study of nonlinear fluids, biomedical imaging, or solid material characterization. The measurement of attenuation coefficients in a nonlinear regime is not easy because they depend on the source pressure and requires accurate diffraction corrections. In this work, the attenuation coefficients of the fundamental and second harmonic waves which come from the absorption of water are measured in nonlinear ultrasonic experiments. Based on the quasilinear theory of the KZK equation, the nonlinear sound field equations are derived and the diffraction correction terms are extracted. The measured sound pressure amplitudes are adjusted first for diffraction corrections in order to reduce the impact on the measurement of attenuation coefficients from diffractions. The attenuation coefficients of the fundamental and second harmonics are calculated precisely from a nonlinear least squares curve-fitting process of the experiment data. The results show that attenuation coefficients in a nonlinear condition depend on both frequency and source pressure, which are much different from a linear regime. In a relatively lower drive pressure, the attenuation coefficients increase linearly with frequency. However, they present the characteristic of nonlinear growth in a high drive pressure. As the diffraction corrections are obtained based on the quasilinear theory, it is important to use an appropriate source pressure for accurate attenuation measurements.