Florin, E; Dafsari, H S; Reck, C; Barbe, M T; Pauls, K A M; Maarouf, M; Sturm, V; Fink, G R; Timmermann, L
2013-06-14
Investigations of local field potentials of the subthalamic nucleus of patients with Parkinson's disease have provided evidence for pathologically exaggerated oscillatory beta-band activity (13-30 Hz) which is amenable to physiological modulation by, e.g., voluntary movement. Previous functional magnetic resonance imaging studies in healthy controls have provided evidence for an increase of subthalamic nucleus blood-oxygenation-level-dependant signal in incremental force generation tasks. However, the modulation of neuronal activity by force generation and its relationship to peripheral feedback remain to be elucidated. We hypothesised that beta-band activity in the subthalamic nucleus is modulated by incremental force generation. Subthalamic nucleus local field potentials were recorded intraoperatively in 13 patients with Parkinson's disease (37 recording sites) during rest and five incremental isometric force generation conditions of the arm with applied loads of 0-400 g (in 100-g increments). Repeated measures analysis of variance (ANOVA) revealed a modulation of local field potential (LFP) power in the upper beta-band (in 24-30 Hz; F(₃.₀₄₂)=4.693, p=0.036) and the gamma-band (in 70-76 Hz; F(₄)=4.116, p=0.036). Granger-causality was computed with the squared partial directed coherence and showed no significant modulation during incremental isometric force generation. Our findings indicate that the upper beta- and gamma-band power of subthalamic nucleus local field potentials are modulated by the physiological task of force generation in patients with Parkinson's disease. This modulation seems to be not an effect of a modulation of peripheral feedback. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
Local vs. volume conductance activity of field potentials in the human subthalamic nucleus
Marmor, Odeya; Valsky, Dan; Joshua, Mati; Bick, Atira S; Arkadir, David; Tamir, Idit; Bergman, Hagai; Israel, Zvi
2017-01-01
Subthalamic nucleus field potentials have attracted growing research and clinical interest over the last few decades. However, it is unclear whether subthalamic field potentials represent locally generated neuronal subthreshold activity or volume conductance of the organized neuronal activity generated in the cortex. This study aimed at understanding of the physiological origin of subthalamic field potentials and determining the most accurate method for recording them. We compared different methods of recordings in the human subthalamic nucleus: spikes (300–9,000 Hz) and field potentials (3–100 Hz) recorded by monopolar micro- and macroelectrodes, as well as by differential-bipolar macroelectrodes. The recordings were done outside and inside the subthalamic nucleus during electrophysiological navigation for deep brain stimulation procedures (150 electrode trajectories) in 41 Parkinson’s disease patients. We modeled the signal and estimated the contribution of nearby/independent vs. remote/common activity in each recording configuration and area. Monopolar micro- and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity. However, bipolar macroelectrode recordings inside the subthalamic nucleus can detect locally generated potentials. These results are confirmed by high correspondence between the model predictions and actual correlation of neuronal activity recorded by electrode pairs. Differential bipolar macroelectrode subthalamic field potentials can overcome volume conductance effects and reflect locally generated neuronal activity. Bipolar macroelectrode local field potential recordings might be used as a biological marker of normal and pathological brain functions for future electrophysiological studies and navigation systems as well as for closed-loop deep brain stimulation paradigms. NEW & NOTEWORTHY Our results integrate a new method for human subthalamic recordings with a development of an advanced mathematical model. We found that while monopolar microelectrode and macroelectrode recordings detect field potentials that are considerably affected by common (probably cortical) activity, bipolar macroelectrode recordings inside the subthalamic nucleus (STN) detect locally generated potentials that are significantly different than those recorded outside the STN. Differential bipolar subthalamic field potentials can be used in navigation and closed-loop deep brain stimulation paradigms. PMID:28202569
Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir; Brown, Peter
2016-05-01
Chronic dopamine depletion in Parkinson's disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson's disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus-cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Oswal, Ashwini; Beudel, Martijn; Zrinzo, Ludvic; Limousin, Patricia; Hariz, Marwan; Foltynie, Tom; Litvak, Vladimir
2016-01-01
Abstract Chronic dopamine depletion in Parkinson’s disease leads to progressive motor and cognitive impairment, which is associated with the emergence of characteristic patterns of synchronous oscillatory activity within cortico-basal-ganglia circuits. Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease, but its influence on synchronous activity in cortico-basal-ganglia loops remains to be fully characterized. Here, we demonstrate that deep brain stimulation selectively suppresses certain spatially and spectrally segregated resting state subthalamic nucleus–cortical networks. To this end we used a validated and novel approach for performing simultaneous recordings of the subthalamic nucleus and cortex using magnetoencephalography (during concurrent subthalamic nucleus deep brain stimulation). Our results highlight that clinically effective subthalamic nucleus deep brain stimulation suppresses synchrony locally within the subthalamic nucleus in the low beta oscillatory range and furthermore that the degree of this suppression correlates with clinical motor improvement. Moreover, deep brain stimulation relatively selectively suppressed synchronization of activity between the subthalamic nucleus and mesial premotor regions, including the supplementary motor areas. These mesial premotor regions were predominantly coupled to the subthalamic nucleus in the high beta frequency range, but the degree of deep brain stimulation-associated suppression in their coupling to the subthalamic nucleus was not found to correlate with motor improvement. Beta band coupling between the subthalamic nucleus and lateral motor areas was not influenced by deep brain stimulation. Motor cortical coupling with subthalamic nucleus predominantly involved driving of the subthalamic nucleus, with those drives in the higher beta frequency band having much shorter net delays to subthalamic nucleus than those in the lower beta band. These observations raise the possibility that cortical connectivity with the subthalamic nucleus in the high and low beta bands may reflect coupling mediated predominantly by the hyperdirect and indirect pathways to subthalamic nucleus, respectively, and that subthalamic nucleus deep brain stimulation predominantly suppresses the former. Yet only the change in strength of local subthalamic nucleus oscillations correlates with the degree of improvement during deep brain stimulation, compatible with the current view that a strengthened hyperdirect pathway is a prerequisite for locally generated beta activity but that it is the severity of the latter that may determine or index motor impairment. PMID:27017189
Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea
2017-01-01
Abstract Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson’s disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. PMID:28040671
Voon, Valerie; Droux, Fabien; Morris, Laurel; Chabardes, Stephan; Bougerol, Thierry; David, Olivier; Krack, Paul; Polosan, Mircea
2017-02-01
Why do we make hasty decisions for short-term gain? Rapid decision-making with limited accumulation of evidence and delay discounting are forms of decisional impulsivity. The subthalamic nucleus is implicated in inhibitory function but its role in decisional impulsivity is less well-understood. Here we assess decisional impulsivity in subjects with obsessive compulsive disorder who have undergone deep brain stimulation of the limbic and associative subthalamic nucleus. We show that stimulation of the subthalamic nucleus is causally implicated in increasing decisional impulsivity with less accumulation of evidence during probabilistic uncertainty and in enhancing delay discounting. Subthalamic stimulation shifts evidence accumulation in subjects with obsessive-compulsive disorder towards a functional less cautious style closer to that of healthy controls emphasizing its adaptive nature. Thus, subjects with obsessive compulsive disorder on subthalamic stimulation may be less likely to check for evidence (e.g. checking that the stove is on) with no difference in subjective confidence (or doubt). In a separate study, we replicate in humans (154 healthy controls) using resting state functional connectivity, tracing studies conducted in non-human primates dissociating limbic, associative and motor frontal hyper-direct connectivity with anterior and posterior subregions of the subthalamic nucleus. We show lateralization of functional connectivity of bilateral ventral striatum to right anterior ventromedial subthalamic nucleus consistent with previous observations of lateralization of emotionally evoked activity to right ventral subthalamic nucleus. We use a multi-echo sequence with independent components analysis, which has been shown to have enhanced signal-to-noise ratio, thus optimizing visualization of small subcortical structures. These findings in healthy controls converge with the effective contacts in obsessive compulsive disorder patients localized within the anterior and ventral subthalamic nucleus. We further show that evidence accumulation is associated with anterior associative-limbic subthalamic nucleus and right dorsolateral prefrontal functional connectivity in healthy controls, a region implicated in decision-making under uncertainty. Together, our findings highlight specificity of the anterior associative-limbic subthalamic nucleus in decisional impulsivity. Given increasing interest in the potential for subthalamic stimulation in psychiatric disorders and the neuropsychiatric symptoms of Parkinson's disease, these findings have clinical implications for behavioural symptoms and cognitive effects as a function of localization of subthalamic stimulation. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Activation of the subthalamic region during emotional processing in Parkinson disease.
Kühn, A A; Hariz, M I; Silberstein, P; Tisch, S; Kupsch, A; Schneider, G-H; Limousin-Dowsey, P; Yarrow, K; Brown, P
2005-09-13
To elucidate the involvement of the human subthalamic nucleus (STN) region in the processing or transmission of emotional information. Local field potentials (LFPs) were recorded from this region in 10 patients with Parkinson disease (PD) undergoing bilateral implantation of the STN for high-frequency stimulation. LFP recordings were made while patients viewed pleasant and unpleasant emotionally arousing and neutral pictures. A significant decrease (event-related desynchronization [ERD]) in the local alpha power (8 to 12 Hz) was found for all stimulus categories starting at about 0.5 seconds after stimulus presentation. However, 1 to 2 seconds poststimulus, the ERD was larger in trials of pleasant (mean ERD: 21.6 +/- 2.8%; p < 0.009) and unpleasant (mean ERD: 15.0 +/- 4.2%; p = 0.018) stimuli compared with neutral stimuli (mean ERD: 4.4 +/- 4.2%). The delayed modulation of alpha activity recorded from the area of the subthalamic nucleus in PD may reflect the processing or transmission of information related to emotional stimuli. "Limbic" activation in the region of the subthalamic nucleus may explain why high-frequency stimulation of the subthalamic nucleus alters affect in some patients with PD.
Neumann, Wolf-Julian; Degen, Katharina; Schneider, Gerd-Helge; Brücke, Christof; Huebl, Julius; Brown, Peter; Kühn, Andrea A.
2016-01-01
Objective Beta band oscillations in the subthalamic nucleus (STN) have been proposed as a pathophysiological signature in patients with Parkinson’s disease (PD). The aim of this study was to investigate the potential association between oscillatory activity in the STN and symptom severity in PD. Methods Subthalamic local field potentials were recorded from 63 PD patients in a dopaminergic OFF state. Power-spectra were analyzed for the frequency range from 5 to 95 Hz and correlated with individual UPDRS-III motor scores in the OFF state. Results A correlation between total UPDRS-III scores and 8 to 35 Hz activity was revealed across all patients (ρ = 0.44, P <.0001). When correlating each frequency bin, a narrow range from 10 to 15 Hz remained significant for the correlation (false discovery rate corrected P <.05). Conclusion Our results show a correlation between local STN 8 to 35 Hz power and impairment in PD, further supporting the role of subthalamic oscillatory activity as a potential biomarker for PD. PMID:27548068
Pathological gambling in Parkinson's disease: subthalamic oscillations during economics decisions.
Rosa, Manuela; Fumagalli, Manuela; Giannicola, Gaia; Marceglia, Sara; Lucchiari, Claudio; Servello, Domenico; Franzini, Angelo; Pacchetti, Claudio; Romito, Luigi; Albanese, Alberto; Porta, Mauro; Pravettoni, Gabriella; Priori, Alberto
2013-10-01
Pathological gambling develops in up to 8% of patients with Parkinson's disease. Although the pathophysiology of gambling remains unclear, several findings argue for a dysfunction in the basal ganglia circuits. To clarify the role of the subthalamic nucleus in pathological gambling, we studied its activity during economics decisions. We analyzed local field potentials recorded from deep brain stimulation electrodes in the subthalamic nucleus while parkinsonian patients with (n = 8) and without (n = 9) pathological gambling engaged in an economics decision-making task comprising conflictual trials (involving possible risk-taking) and non conflictual trials. In all parkinsonian patients, subthalamic low frequencies (2-12 Hz) increased during economics decisions. Whereas, in patients without gambling, low-frequency oscillations exhibited a similar pattern during conflictual and non conflictual stimuli, in those with gambling, low-frequency activity increased significantly more during conflictual than during non conflictual stimuli. The specific low-frequency oscillatory pattern recorded in patients with Parkinson's disease who gamble could reflect a subthalamic dysfunction that makes their decisional threshold highly sensitive to risky options. When parkinsonian patients process stimuli related to an economics task, low-frequency subthalamic activity increases. This task-related change suggests that the cognitive-affective system that drives economics decisional processes includes the subthalamic nucleus. The specific subthalamic neuronal activity during conflictual decisions in patients with pathological gambling supports the idea that the subthalamic nucleus is involved in behavioral strategies and in the pathophysiology of gambling. Copyright © 2013 Movement Disorder Society.
Brain networks modulated by subthalamic nucleus deep brain stimulation.
Accolla, Ettore A; Herrojo Ruiz, Maria; Horn, Andreas; Schneider, Gerd-Helge; Schmitz-Hübsch, Tanja; Draganski, Bogdan; Kühn, Andrea A
2016-09-01
Deep brain stimulation of the subthalamic nucleus is an established treatment for the motor symptoms of Parkinson's disease. Given the frequent occurrence of stimulation-induced affective and cognitive adverse effects, a better understanding about the role of the subthalamic nucleus in non-motor functions is needed. The main goal of this study is to characterize anatomical circuits modulated by subthalamic deep brain stimulation, and infer about the inner organization of the nucleus in terms of motor and non-motor areas. Given its small size and anatomical intersubject variability, functional organization of the subthalamic nucleus is difficult to investigate in vivo with current methods. Here, we used local field potential recordings obtained from 10 patients with Parkinson's disease to identify a subthalamic area with an analogous electrophysiological signature, namely a predominant beta oscillatory activity. The spatial accuracy was improved by identifying a single contact per macroelectrode for its vicinity to the electrophysiological source of the beta oscillation. We then conducted whole brain probabilistic tractography seeding from the previously identified contacts, and further described connectivity modifications along the macroelectrode's main axis. The designated subthalamic 'beta' area projected predominantly to motor and premotor cortical regions additional to connections to limbic and associative areas. More ventral subthalamic areas showed predominant connectivity to medial temporal regions including amygdala and hippocampus. We interpret our findings as evidence for the convergence of different functional circuits within subthalamic nucleus' portions deemed to be appropriate as deep brain stimulation target to treat motor symptoms in Parkinson's disease. Potential clinical implications of our study are illustrated by an index case where deep brain stimulation of estimated predominant non-motor subthalamic nucleus induced hypomanic behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Sidorina, V V; Gerasimova, Yu A; Kuleshova, E P; Merzhanova, G Kh
2015-01-01
During our experiments on cats was investigated the subthalamic neuron activity at different types of behavior in case of reinforcement choice depending on its value and availability. In chronic experiences the multiunit activity in subthalamic nucleus (STN) and orbitofrontal cortex (FC) has been recorded. Multiunit activity was analyzed over frequency and network properties of spikes. It was shown, that STN neurons reaction to different reinforcements and conditional stimulus at short- or long-delay reactions was represented by increasing or decreasing of frequency of single neurons. However the same STN neu- rons responded with increasing of frequency of single neuron during expectation of mix-bread-meat and decreasing--during the meat expectation. It has been revealed, that the number of STN interneuron interactions was authentic more at impulsive behavior than at self-control choice of behavior. The number of interactions between FC and STN neurons within intervals of 0-30 Ms was authentic more at display impulsive than during self-control behavior. These results suppose that FC and STN neurons participate in integration of reinforcement estimation; and distinctions in a choice of behavior are defined by the local and distributed interneuron interactions of STN and FC.
SUBTHALAMIC NUCLEUS NEURONS DIFFERENTIALLY ENCODE EARLY AND LATE ASPECTS OF SPEECH PRODUCTION.
Lipski, W J; Alhourani, A; Pirnia, T; Jones, P W; Dastolfo-Hromack, C; Helou, L B; Crammond, D J; Shaiman, S; Dickey, M W; Holt, L L; Turner, R S; Fiez, J A; Richardson, R M
2018-05-22
Basal ganglia-thalamocortical loops mediate all motor behavior, yet little detail is known about the role of basal ganglia nuclei in speech production. Using intracranial recording during deep brain stimulation surgery in humans with Parkinson's disease, we tested the hypothesis that the firing rate of subthalamic nucleus neurons is modulated in sync with motor execution aspects of speech. Nearly half of seventy-nine unit recordings exhibited firing rate modulation, during a syllable reading task across twelve subjects (male and female). Trial-to-trial timing of changes in subthalamic neuronal activity, relative to cue onset versus production onset, revealed that locking to cue presentation was associated more with units that decreased firing rate, while locking to speech onset was associated more with units that increased firing rate. These unique data indicate that subthalamic activity is dynamic during the production of speech, reflecting temporally-dependent inhibition and excitation of separate populations of subthalamic neurons. SIGNIFICANCE STATEMENT The basal ganglia are widely assumed to participate in speech production, yet no prior studies have reported detailed examination of speech-related activity in basal ganglia nuclei. Using microelectrode recordings from the subthalamic nucleus during a single syllable reading task, in awake humans undergoing deep brain stimulation implantation surgery, we show that the firing rate of subthalamic nucleus neurons is modulated in response to motor execution aspects of speech. These results are the first to establish a role for subthalamic nucleus neurons in encoding of aspects of speech production, and they lay the groundwork for launching a modern subfield to explore basal ganglia function in human speech. Copyright © 2018 the authors.
Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter
2015-06-01
Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance-related pathological circuit interactions. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Baumann-Vogel, Heide; Imbach, Lukas L; Sürücü, Oguzkan; Stieglitz, Lennart; Waldvogel, Daniel; Baumann, Christian R; Werth, Esther
2017-05-01
This prospective observational study was designed to systematically examine the effect of subthalamic deep brain stimulation (DBS) on subjective and objective sleep-wake parameters in Parkinson patients. In 50 consecutive Parkinson patients undergoing subthalamic DBS, we assessed motor symptoms, medication, the position of DBS electrodes within the subthalamic nucleus (STN), subjective sleep-wake parameters, 2-week actigraphy, video-polysomnography studies, and sleep electroencepahalogram frequency and dynamics analyses before and 6 months after surgery. Subthalamic DBS improved not only motor symptoms and reduced daily intake of dopaminergic agents but also enhanced subjective sleep quality and reduced sleepiness (Epworth Sleepiness Scale: -2.1 ± 3.8, p < .001). Actigraphy recordings revealed longer bedtimes (+1:06 ± 0:51 hours, p < .001) without shifting of circadian timing. Upon polysomnography, we observed an increase in sleep efficiency (+5.2 ± 17.6%, p = .005) and deep sleep (+11.2 ± 32.2 min, p = .017) and increased accumulation of slow-wave activity over the night (+41.0 ± 80.0%, p = .005). Rapid eye movement sleep features were refractory to subthalamic DBS, and the dynamics of sleep as assessed by state space analyses did not normalize. Increased sleep efficiency was associated with active electrode contact localization more distant from the ventral margin of the left subthalamic nucleus. Subthalamic DBS deepens and consolidates nocturnal sleep and improves daytime wakefulness in Parkinson patients, but several outcomes suggest that it does not normalize sleep. It remains elusive whether modulated activity in the STN directly contributes to changes in sleep-wake behavior, but dorsal positioning of electrodes within the STN is linked to improved sleep-wake outcomes. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Distinct roles of dopamine and subthalamic nucleus in learning and probabilistic decision making.
Coulthard, Elizabeth J; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K; Murphy, Gillian; Keeley, Sophie; Whone, Alan L
2012-12-01
Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making predict that learning individual stimulus-response associations and rapid combination of information from multiple stimuli are dependent on different components of basal ganglia circuitry. In particular, learning and retention of memory, required for optimal response choice, are significantly reliant on dopamine, whereas integrating information probabilistically is critically dependent upon functioning of the glutamatergic subthalamic nucleus (computing the 'normalization term' in Bayes' theorem). Here, we test these theories by investigating 22 patients with Parkinson's disease either treated with deep brain stimulation to the subthalamic nucleus and dopaminergic therapy or managed with dopaminergic therapy alone. We use computerized tasks that probe three cognitive functions-information acquisition (learning), memory over a delay and information integration when multiple pieces of sequentially presented information have to be combined. Patients performed the tasks ON or OFF deep brain stimulation and/or ON or OFF dopaminergic therapy. Consistent with the computational theories, we show that stopping dopaminergic therapy impairs memory for probabilistic information over a delay, whereas deep brain stimulation to the region of the subthalamic nucleus disrupts decision making when multiple pieces of acquired information must be combined. Furthermore, we found that when participants needed to update their decision on the basis of the last piece of information presented in the decision-making task, patients with deep brain stimulation of the subthalamic nucleus region did not slow down appropriately to revise their plan, a pattern of behaviour that mirrors the impulsivity described clinically in some patients with subthalamic nucleus deep brain stimulation. Thus, we demonstrate distinct mechanisms for two important facets of human decision making: first, a role for dopamine in memory consolidation, and second, the critical importance of the subthalamic nucleus in successful decision making when multiple pieces of information must be combined.
Neumann, Wolf-Julian; Bock, Antje; Horn, Andreas; Huebl, Julius; Siegert, Sandy; Schneider, Gerd-Helge; Krauss, Joachim K
2018-01-01
Gamma synchronization increases during movement and scales with kinematic parameters. Here, disease-specific characteristics of this synchronization and the dopamine-dependence of its scaling in Parkinson’s disease are investigated. In 16 patients undergoing deep brain stimulation surgery, movements of different velocities revealed that subthalamic gamma power peaked in the sensorimotor part of the subthalamic nucleus, correlated positively with maximal velocity and negatively with symptom severity. These effects relied on movement-related bursts of transient synchrony in the gamma band. The gamma burst rate highly correlated with averaged power, increased gradually with larger movements and correlated with symptom severity. In the dopamine-depleted state, gamma power and burst rate significantly decreased, particularly when peak velocity was slower than ON medication. Burst amplitude and duration were unaffected by the medication state. We propose that insufficient recruitment of fast gamma bursts during movement may underlie bradykinesia as one of the cardinal symptoms in Parkinson’s disease. PMID:29388913
Intra-operative characterisation of subthalamic oscillations in Parkinson’s disease
Geng, Xinyi; Xu, Xin; Horn, Andreas; Li, Ningfei; Ling, Zhipei; Brown, Peter; Wang, Shouyan
2018-01-01
Objective This study aims to use the activities recorded directly from the deep brain stimulation (DBS) electrode to address the focality and distinct nature of the local field potential (LFP) activities of different frequency. Methods Pre-operative and intra-operative magnetic resonance imaging (MRI) were acquired from patients with Parkinson’s disease (PD) who underwent DBS in the subthalamic nucleus and intra-operative LFP recording at rest and during cued movements. Images were reconstructed and 3-D visualized using Lead-DBS® toolbox to determine the coordinates of contact. The resting spectral power and movement-related power modulation of LFP oscillations were estimated. Results Both subthalamic LFP activity recorded at rest and its modulation by movement had focal maxima in the alpha, beta and gamma bands. The spatial distribution of alpha band activity and its modulation was significantly different to that in the beta band. Moreover, there were significant differences in the scale and timing of movement related modulation across the frequency bands. Conclusion Subthalamic LFP activities within specific frequency bands can be distinguished by spatial topography and pattern of movement related modulation. Significance Assessment of the frequency, focality and pattern of movement related modulation of subthalamic LFPs reveals a heterogeneity of neural population activity in this region. This could potentially be leveraged to finesse intra-operative targeting and post-operative contact selection. PMID:29567582
Processing of emotional information in the human subthalamic nucleus.
Buot, Anne; Welter, Marie-Laure; Karachi, Carine; Pochon, Jean-Baptiste; Bardinet, Eric; Yelnik, Jérôme; Mallet, Luc
2013-12-01
The subthalamic nucleus (STN) is an efficient target for treating patients with Parkinson's disease as well as patients with obsessive-compulsive disorder (OCD) using high frequency stimulation (HFS). In both Parkinson's disease and OCD patients, STN-HFS can trigger abnormal behaviours, such as hypomania and impulsivity. To investigate if this structure processes emotional information, and whether it depends on motor demands, we recorded subthalamic local field potentials in 16 patients with Parkinson's disease using deep brain stimulation electrodes. Recordings were made with and without dopaminergic treatment while patients performed an emotional categorisation paradigm in which the response varied according to stimulus valence (pleasant, unpleasant and neutral) and to the instruction given (motor, non-motor and passive). Pleasant, unpleasant and neutral stimuli evoked an event related potential (ERP). Without dopamine medication, ERP amplitudes were significantly larger for unpleasant compared with neutral pictures, whatever the response triggered by the stimuli; and the magnitude of this effect was maximal in the ventral part of the STN. No significant difference in ERP amplitude was observed for pleasant pictures. With dopamine medication, ERP amplitudes were significantly increased for pleasant compared with neutral pictures whatever the response triggered by the stimuli, while ERP amplitudes to unpleasant pictures were not modified. These results demonstrate that the ventral part of the STN processes the emotional valence of stimuli independently of the motor context and that dopamine enhances processing of pleasant information. These findings confirm the specific involvement of the STN in emotional processes in human, which may underlie the behavioural changes observed in patients with deep brain stimulation.
Neuronal inhibition and synaptic plasticity of basal ganglia neurons in Parkinson's disease
Milosevic, Luka; Kalia, Suneil K; Hodaie, Mojgan; Lozano, Andres M; Fasano, Alfonso; Popovic, Milos R; Hutchison, William D
2018-01-01
Abstract Deep brain stimulation of the subthalamic nucleus is an effective treatment for Parkinson’s disease symptoms. The therapeutic benefits of deep brain stimulation are frequency-dependent, but the underlying physiological mechanisms remain unclear. To advance deep brain stimulation therapy an understanding of fundamental mechanisms is critical. The objectives of this study were to (i) compare the frequency-dependent effects on cell firing in subthalamic nucleus and substantia nigra pars reticulata; (ii) quantify frequency-dependent effects on short-term plasticity in substantia nigra pars reticulata; and (iii) investigate effects of continuous long-train high frequency stimulation (comparable to conventional deep brain stimulation) on synaptic plasticity. Two closely spaced (600 µm) microelectrodes were advanced into the subthalamic nucleus (n = 27) and substantia nigra pars reticulata (n = 14) of 22 patients undergoing deep brain stimulation surgery for Parkinson’s disease. Cell firing and evoked field potentials were recorded with one microelectrode during stimulation trains from the adjacent microelectrode across a range of frequencies (1–100 Hz, 100 µA, 0.3 ms, 50–60 pulses). Subthalamic firing attenuated with ≥20 Hz (P < 0.01) stimulation (silenced at 100 Hz), while substantia nigra pars reticulata decreased with ≥3 Hz (P < 0.05) (silenced at 50 Hz). Substantia nigra pars reticulata also exhibited a more prominent increase in transient silent period following stimulation. Patients with longer silent periods after 100 Hz stimulation in the subthalamic nucleus tended to have better clinical outcome after deep brain stimulation. At ≥30 Hz the first evoked field potential of the stimulation train in substantia nigra pars reticulata was potentiated (P < 0.05); however, the average amplitude of the subsequent potentials was rapidly attenuated (P < 0.01). This is suggestive of synaptic facilitation followed by rapid depression. Paired pulse ratios calculated at the beginning of the train revealed that 20 Hz (P < 0.05) was the minimum frequency required to induce synaptic depression. Lastly, the average amplitude of evoked field potentials during 1 Hz pulses showed significant inhibitory synaptic potentiation after long-train high frequency stimulation (P < 0.001) and these increases were coupled with increased durations of neuronal inhibition (P < 0.01). The subthalamic nucleus exhibited a higher frequency threshold for stimulation-induced inhibition than the substantia nigra pars reticulata likely due to differing ratios of GABA:glutamate terminals on the soma and/or the nature of their GABAergic inputs (pallidal versus striatal). We suggest that enhancement of inhibitory synaptic plasticity, and frequency-dependent potentiation and depression are putative mechanisms of deep brain stimulation. Furthermore, we foresee that future closed-loop deep brain stimulation systems (with more frequent off stimulation periods) may benefit from inhibitory synaptic potentiation that occurs after high frequency stimulation. PMID:29236966
Hell, Franz; Taylor, Paul C J; Mehrkens, Jan H; Bötzel, Kai
2018-05-01
Inhibitory control is an important executive function that is necessary to suppress premature actions and to block interference from irrelevant stimuli. Current experimental studies and models highlight proactive and reactive mechanisms and claim several cortical and subcortical structures to be involved in response inhibition. However, the involved structures, network mechanisms and the behavioral relevance of the underlying neural activity remain debated. We report cortical EEG and invasive subthalamic local field potential recordings from a fully implanted sensing neurostimulator in Parkinson's patients during a stimulus- and response conflict task with and without deep brain stimulation (DBS). DBS made reaction times faster overall while leaving the effects of conflict intact: this lack of any effect on conflict may have been inherent to our task encouraging a high level of proactive inhibition. Drift diffusion modelling hints that DBS influences decision thresholds and drift rates are modulated by stimulus conflict. Both cortical EEG and subthalamic (STN) LFP oscillations reflected reaction times (RT). With these results, we provide a different interpretation of previously conflict-related oscillations in the STN and suggest that the STN implements a general task-specific decision threshold. The timecourse and topography of subthalamic-cortical oscillatory connectivity suggest the involvement of motor, frontal midline and posterior regions in a larger network with complementary functionality, oscillatory mechanisms and structures. While beta oscillations are functionally associated with motor cortical-subthalamic connectivity, low frequency oscillations reveal a subthalamic-frontal-posterior network. With our results, we suggest that proactive as well as reactive mechanisms and structures are involved in implementing a task-related dynamic inhibitory signal. We propose that motor and executive control networks with complementary oscillatory mechanisms are tonically active, react to stimuli and release inhibition at the response when uncertainty is resolved and return to their default state afterwards. Copyright © 2018 Elsevier Inc. All rights reserved.
Subthalamic nucleus activity optimizes maximal effort motor responses in Parkinson's disease.
Anzak, Anam; Tan, Huiling; Pogosyan, Alek; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter
2012-09-01
The neural substrates that enable individuals to achieve their fastest and strongest motor responses have long been enigmatic. Importantly, characterization of such activities may inform novel therapeutic strategies for patients with hypokinetic disorders, such as Parkinson's disease. Here, we ask whether the basal ganglia may play an important role, not only in the attainment of maximal motor responses under standard conditions but also in the setting of the performance enhancements known to be engendered by delivery of intense stimuli. To this end, we recorded local field potentials from deep brain stimulation electrodes implanted bilaterally in the subthalamic nuclei of 10 patients with Parkinson's disease, as they executed their fastest and strongest handgrips in response to a visual cue, which was accompanied by a brief 96-dB auditory tone on random trials. We identified a striking correlation between both theta/alpha (5-12 Hz) and high-gamma/high-frequency (55-375 Hz) subthalamic nucleus activity and force measures, which explained close to 70% of interindividual variance in maximal motor responses to the visual cue alone, when patients were ON their usual dopaminergic medication. Loud auditory stimuli were found to enhance reaction time and peak rate of development of force still further, independent of whether patients were ON or OFF l-DOPA, and were associated with increases in subthalamic nucleus power over a broad gamma range. However, the contribution of this broad gamma activity to the performance enhancements observed was only modest (≤13%). The results implicate frequency-specific subthalamic nucleus activities as substantial factors in optimizing an individual's peak motor responses at maximal effort of will, but much less so in the performance increments engendered by intense auditory stimuli.
Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl
2014-01-01
Depleted of dopamine, the dynamics of the parkinsonian brain impact on both ‘action’ and ‘resting’ motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the ‘effective’ connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network—disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses. PMID:24566670
Kahan, Joshua; Urner, Maren; Moran, Rosalyn; Flandin, Guillaume; Marreiros, Andre; Mancini, Laura; White, Mark; Thornton, John; Yousry, Tarek; Zrinzo, Ludvic; Hariz, Marwan; Limousin, Patricia; Friston, Karl; Foltynie, Tom
2014-04-01
Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network-disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.
Deffains, Marc; Iskhakova, Liliya; Katabi, Shiran; Haber, Suzanne N; Israel, Zvi; Bergman, Hagai
2016-01-01
The striatum and the subthalamic nucleus (STN) constitute the input stage of the basal ganglia (BG) network and together innervate BG downstream structures using GABA and glutamate, respectively. Comparison of the neuronal activity in BG input and downstream structures reveals that subthalamic, not striatal, activity fluctuations correlate with modulations in the increase/decrease discharge balance of BG downstream neurons during temporal discounting classical condition task. After induction of parkinsonism with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), abnormal low beta (8-15 Hz) spiking and local field potential (LFP) oscillations resonate across the BG network. Nevertheless, LFP beta oscillations entrain spiking activity of STN, striatal cholinergic interneurons and BG downstream structures, but do not entrain spiking activity of striatal projection neurons. Our results highlight the pivotal role of STN divergent projections in BG physiology and pathophysiology and may explain why STN is such an effective site for invasive treatment of advanced Parkinson's disease and other BG-related disorders. DOI: http://dx.doi.org/10.7554/eLife.16443.001 PMID:27552049
Quinn, Emma J; Blumenfeld, Zack; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren A; Trager, Megan H; Hill, Bruce C; Kilbane, Camilla; Henderson, Jaimie M; Brontë-Stewart, Helen
2015-11-01
Investigations into the effect of deep brain stimulation (DBS) on subthalamic (STN) beta (13-30 Hz) oscillations have been performed in the perioperative period with the subject tethered to equipment. Using an embedded sensing neurostimulator, this study investigated whether beta power was similar in different resting postures and during forward walking in freely moving subjects with Parkinson's disease (PD) and whether STN DBS attenuated beta power in a voltage-dependent manner. Subthalamic local field potentials were recorded from the DBS lead, using a sensing neurostimulator (Activa(®) PC+S, Medtronic, Inc., Food and Drug Administration- Investigational Device Exemption (IDE)-, institutional review board-approved) from 15 PD subjects (30 STNs) off medication during lying, sitting, and standing, during forward walking, and during randomized periods of 140 Hz DBS at 0 V, 1 V, and 2.5/3 V. Continuous video, limb angular velocity, and forearm electromyography recordings were synchronized with neural recordings. Data were parsed to avoid any movement or electrical artifact during resting states. Beta power was similar during lying, sitting, and standing (P = 0.077, n = 28) and during forward walking compared with the averaged resting state (P = 0.466, n = 24), although akinetic rigid PD subjects tended to exhibit decreased beta power when walking. Deep brain stimulation at 3 V and at 1 V attenuated beta power compared with 0 V (P < 0.003, n = 14), and this was voltage dependent (P < 0.001). Beta power was conserved during resting and forward walking states and was attenuated in a voltage-dependent manner during 140-Hz DBS. Phenotype may be an important consideration if this is used for closed-loop DBS. © 2015 International Parkinson and Movement Disorder Society.
Subthalamic stimulation differentially modulates declarative and nondeclarative memory.
Hälbig, Thomas D; Gruber, Doreen; Kopp, Ute A; Scherer, Peter; Schneider, Gerd-Helge; Trottenberg, Thomas; Arnold, Guy; Kupsch, Andreas
2004-03-01
Declarative memory has been reported to rely on the medial temporal lobe system, whereas non-declarative memory depends on basal ganglia structures. We investigated the functional role of the subthalamic nucleus (STN), a structure closely connected with the basal ganglia for both types of memory. Via deep brain high frequency stimulation (DBS) we manipulated neural activity of the STN in humans. We found that DBS-STN differentially modulated memory performance: declarative memory was impaired, whereas non-declarative memory was improved in the presence of STN-DBS indicating a specific role of the STN in the activation of memory systems. Copyright 2004 Lippincott Williams & Wilkins
Personality, dopamine, and Parkinson's disease: Insights from subthalamic stimulation.
Lhommée, Eugénie; Boyer, François; Wack, Maxime; Pélissier, Pierre; Klinger, Hélène; Schmitt, Emmanuelle; Bichon, Amélie; Fraix, Valérie; Chabardès, Stéphan; Mertens, Patrick; Castrioto, Anna; Kistner, Andrea; Broussolle, Emmanuel; Thobois, Stéphane; Krack, Paul
2017-08-01
Subthalamic stimulation improves the motor and neuropsychiatric symptoms of Parkinson's disease. However, the impact of this treatment on impulse control and personality is the subject of heavy debate. The objective of this study was to investigate personality changes after subthalamic stimulation. Using Cloninger's biosocial model, we assessed personality in 73 Parkinson's disease patients before and 12 months after subthalamic stimulation accompanied by a drastic reduction in dopaminergic medication. Changes in psychobehavioral symptoms were measured using a battery of validated clinical scales (apathy, depression, anxiety, hyperemotionality, mania, psychosis, punding, and impulse control behaviors). One year after surgery, the harm avoidance personality domain total score increased compared with the baseline (+2.8; 34 patients; P < 0.001), as did 3 of its 4 subdomains: anticipatory worry (+0.7; 10 patients; P = 0.005), shyness (+0.6; 7 patients; P = 0.03), and fatigability (+1.1; 10 patients; P = 0.0014). Evolution of the shyness personality trait correlated with the decrease in dopaminergic medication. Total scores in the other personality domains remained unchanged, except for extravagance, a subdomain of novelty seeking, and persistence, a subdomain of reward dependence, which both decreased following surgery (-0.3; 7 patients; and -0.6; 9 patients; P = 0.03 and P = 0.0019, respectively). Although apathy increased, other psychobehavioral symptoms, including impulse control behaviors and neuropsychiatric nonmotor fluctuations, improved. Depression and anhedonia remained stable. Scores in hypodopaminergia and neuropsychiatric nonmotor OFF correlated with harm avoidance. Scores in hyperdopaminergia and neuropsychiatric nonmotor ON correlated with novelty seeking. When subthalamic stimulation is applied in Parkinson's disease, significant changes in personality traits are observed, which may be related to postoperative tapering of dopaminergic treatment. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Snellings, André; Sagher, Oren; Anderson, David J.; Aldridge, J. Wayne
2016-01-01
Object A wavelet-based measure was developed to quantitatively assess neural background activity taken during surgical neurophysiological recordings to localize the boundaries of the subthalamic nucleus during target localization for deep brain stimulator implant surgery. Methods Neural electrophysiological data was recorded from 14 patients (20 tracks, n = 275 individual recording sites) with dopamine-sensitive idiopathic Parkinson’s disease during the target localization portion of deep brain stimulator implant surgery. During intraoperative recording the STN was identified based upon audio and visual monitoring of neural firing patterns, kinesthetic tests, and comparisons between neural behavior and known characteristics of the target nucleus. The quantitative wavelet-based measure was applied off-line using MATLAB software to measure the magnitude of the neural background activity, and the results of this analysis were compared to the intraoperative conclusions. Wavelet-derived estimates were compared to power spectral density measures. Results The wavelet-derived background levels were significantly higher in regions encompassed by the clinically estimated boundaries of the STN than in surrounding regions (STN: 225 ± 61 μV vs. ventral to STN: 112 ± 32 μV, and dorsal to STN: 136 ± 66 μV). In every track, the absolute maximum magnitude was found within the clinically identified STN. The wavelet-derived background levels provided a more consistent index with less variability than power spectral density. Conclusions The wavelet-derived background activity assessor can be calculated quickly, requires no spike sorting, and can be reliably used to identify the STN with very little subjective interpretation required. This method may facilitate rapid intraoperative identification of subthalamic nucleus borders. PMID:19344225
Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre
2016-06-01
Adaptive behaviour entails the capacity to select actions as a function of their energy cost and expected value and the disruption of this faculty is now viewed as a possible cause of the symptoms of Parkinson's disease. Indirect evidence points to the involvement of the subthalamic nucleus-the most common target for deep brain stimulation in Parkinson's disease-in cost-benefit computation. However, this putative function appears at odds with the current view that the subthalamic nucleus is important for adjusting behaviour to conflict. Here we tested these contrasting hypotheses by recording the neuronal activity of the subthalamic nucleus of patients with Parkinson's disease during an effort-based decision task. Local field potentials were recorded from the subthalamic nucleus of 12 patients with advanced Parkinson's disease (mean age 63.8 years ± 6.8; mean disease duration 9.4 years ± 2.5) both OFF and ON levodopa while they had to decide whether to engage in an effort task based on the level of effort required and the value of the reward promised in return. The data were analysed using generalized linear mixed models and cluster-based permutation methods. Behaviourally, the probability of trial acceptance increased with the reward value and decreased with the required effort level. Dopamine replacement therapy increased the rate of acceptance for efforts associated with low rewards. When recording the subthalamic nucleus activity, we found a clear neural response to both reward and effort cues in the 1-10 Hz range. In addition these responses were informative of the subjective value of reward and level of effort rather than their actual quantities, such that they were predictive of the participant's decisions. OFF levodopa, this link with acceptance was weakened. Finally, we found that these responses did not index conflict, as they did not vary as a function of the distance from indifference in the acceptance decision. These findings show that low-frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson's disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Zénon, Alexandre; Duclos, Yann; Carron, Romain; Witjas, Tatiana; Baunez, Christelle; Régis, Jean; Azulay, Jean-Philippe; Brown, Peter; Eusebio, Alexandre
2016-01-01
Adaptive behaviour entails the capacity to select actions as a function of their energy cost and expected value and the disruption of this faculty is now viewed as a possible cause of the symptoms of Parkinson’s disease. Indirect evidence points to the involvement of the subthalamic nucleus—the most common target for deep brain stimulation in Parkinson’s disease—in cost-benefit computation. However, this putative function appears at odds with the current view that the subthalamic nucleus is important for adjusting behaviour to conflict. Here we tested these contrasting hypotheses by recording the neuronal activity of the subthalamic nucleus of patients with Parkinson’s disease during an effort-based decision task. Local field potentials were recorded from the subthalamic nucleus of 12 patients with advanced Parkinson’s disease (mean age 63.8 years ± 6.8; mean disease duration 9.4 years ± 2.5) both OFF and ON levodopa while they had to decide whether to engage in an effort task based on the level of effort required and the value of the reward promised in return. The data were analysed using generalized linear mixed models and cluster-based permutation methods. Behaviourally, the probability of trial acceptance increased with the reward value and decreased with the required effort level. Dopamine replacement therapy increased the rate of acceptance for efforts associated with low rewards. When recording the subthalamic nucleus activity, we found a clear neural response to both reward and effort cues in the 1–10 Hz range. In addition these responses were informative of the subjective value of reward and level of effort rather than their actual quantities, such that they were predictive of the participant’s decisions. OFF levodopa, this link with acceptance was weakened. Finally, we found that these responses did not index conflict, as they did not vary as a function of the distance from indifference in the acceptance decision. These findings show that low-frequency neuronal activity in the subthalamic nucleus may encode the information required to make cost-benefit comparisons, rather than signal conflict. The link between these neural responses and behaviour was stronger under dopamine replacement therapy. Our findings are consistent with the view that Parkinson’s disease symptoms may be caused by a disruption of the processes involved in balancing the value of actions with their associated effort cost. PMID:27190012
Weiss, Daniel; Walach, Margarete; Meisner, Christoph; Fritz, Melanie; Scholten, Marlieke; Breit, Sorin; Plewnia, Christian; Bender, Benjamin; Gharabaghi, Alireza; Wächter, Tobias; Krüger, Rejko
2013-07-01
Gait and balance disturbances typically emerge in advanced Parkinson's disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata improves axial symptoms compared with standard subthalamic nucleus stimulation. Twelve patients were enrolled in this 2 × 2 cross-over double-blind randomized controlled clinical trial and both the safety and efficacy of combined subthalamic nucleus and substantia nigra pars reticulata stimulation were evaluated compared with standard subthalamic nucleus stimulation. The primary outcome measure was the change of a broad-scaled cumulative axial Unified Parkinson's Disease Rating Scale score (Scale II items 13-15, Scale III items 27-31) at '3-week follow-up'. Secondary outcome measures specifically addressed freezing of gait, balance, quality of life, non-motor symptoms and neuropsychiatric symptoms. For the primary outcome measure no statistically significant improvement was observed for combined subthalamic nucleus and substantia nigra pars reticulata stimulation at the '3-week follow-up'. The secondary endpoints, however, revealed that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata might specifically improve freezing of gait, whereas balance impairment remained unchanged. The combined stimulation of subthalamic nucleus and substantia nigra pars reticulata was safe, and of note, no clinically relevant neuropsychiatric adverse effect was observed. Patients treated with subthalamic nucleus and substantia nigra pars reticulata stimulation revealed no 'global' effect on axial motor domains. However, this study opens the perspective that concomittant stimulation of the substantia nigra pars reticulata possibly improves otherwise resistant freezing of gait and, therefore, highly warrants a subsequent phase III randomized controlled trial.
Decoding gripping force based on local field potentials recorded from subthalamic nucleus in humans
Tan, Huiling; Pogosyan, Alek; Ashkan, Keyoumars; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Brown, Peter
2016-01-01
The basal ganglia are known to be involved in the planning, execution and control of gripping force and movement vigour. Here we aim to define the nature of the basal ganglia control signal for force and to decode gripping force based on local field potential (LFP) activities recorded from the subthalamic nucleus (STN) in patients with deep brain stimulation (DBS) electrodes. We found that STN LFP activities in the gamma (55–90 Hz) and beta (13–30m Hz) bands were most informative about gripping force, and that a first order dynamic linear model with these STN LFP features as inputs can be used to decode the temporal profile of gripping force. Our results enhance the understanding of how the basal ganglia control gripping force, and also suggest that deep brain LFPs could potentially be used to decode movement parameters related to force and movement vigour for the development of advanced human-machine interfaces. DOI: http://dx.doi.org/10.7554/eLife.19089.001 PMID:27855780
Differential effects of deep brain stimulation on verbal fluency.
Ehlen, Felicitas; Schoenecker, Thomas; Kühn, Andrea A; Klostermann, Fabian
2014-07-01
We aimed at gaining insights into principles of subcortical lexical processing. Therefore, effects of deep brain stimulation (DBS) in different target structures on verbal fluency (VF) were tested. VF was assessed with active vs. inactivated DBS in 13 and 14 patients with DBS in the vicinity of the thalamic ventral intermediate nucleus (VIM) and, respectively, of the subthalamic nucleus (STN). Results were correlated to electrode localizations in postoperative MRI, and compared to those of 12 age-matched healthy controls. Patients' VF performance was generally below normal. However, while activation of DBS in the vicinity of VIM provoked marked VF decline, it induced subtle phonemic VF enhancement in the vicinity of STN. The effects correlated with electrode localizations in left hemispheric stimulation sites. The results show distinct dependencies of VF on DBS in the vicinity of VIM vs. STN. Particular risks for deterioration occur in patients with relatively ventromedial thalamic electrodes. Copyright © 2014 Elsevier Inc. All rights reserved.
Walach, Margarete; Meisner, Christoph; Fritz, Melanie; Scholten, Marlieke; Breit, Sorin; Plewnia, Christian; Bender, Benjamin; Gharabaghi, Alireza; Wächter, Tobias
2013-01-01
Gait and balance disturbances typically emerge in advanced Parkinson’s disease with generally limited response to dopaminergic medication and subthalamic nucleus deep brain stimulation. Therefore, advanced programming with interleaved pulses was put forward to introduce concomittant nigral stimulation on caudal contacts of a subthalamic lead. Here, we hypothesized that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata improves axial symptoms compared with standard subthalamic nucleus stimulation. Twelve patients were enrolled in this 2 × 2 cross-over double-blind randomized controlled clinical trial and both the safety and efficacy of combined subthalamic nucleus and substantia nigra pars reticulata stimulation were evaluated compared with standard subthalamic nucleus stimulation. The primary outcome measure was the change of a broad-scaled cumulative axial Unified Parkinson’s Disease Rating Scale score (Scale II items 13–15, Scale III items 27–31) at ‘3-week follow-up’. Secondary outcome measures specifically addressed freezing of gait, balance, quality of life, non-motor symptoms and neuropsychiatric symptoms. For the primary outcome measure no statistically significant improvement was observed for combined subthalamic nucleus and substantia nigra pars reticulata stimulation at the ‘3-week follow-up’. The secondary endpoints, however, revealed that the combined stimulation of subthalamic nucleus and substantia nigra pars reticulata might specifically improve freezing of gait, whereas balance impairment remained unchanged. The combined stimulation of subthalamic nucleus and substantia nigra pars reticulata was safe, and of note, no clinically relevant neuropsychiatric adverse effect was observed. Patients treated with subthalamic nucleus and substantia nigra pars reticulata stimulation revealed no ‘global’ effect on axial motor domains. However, this study opens the perspective that concomittant stimulation of the substantia nigra pars reticulata possibly improves otherwise resistant freezing of gait and, therefore, highly warrants a subsequent phase III randomized controlled trial. PMID:23757762
Phase matters: A role for the subthalamic network during gait.
Arnulfo, Gabriele; Pozzi, Nicolò Gabriele; Palmisano, Chiara; Leporini, Alice; Canessa, Andrea; Brumberg, Joachim; Pezzoli, Gianni; Matthies, Cordula; Volkmann, Jens; Isaias, Ioannis Ugo
2018-01-01
The role of the subthalamic nucleus in human locomotion is unclear although relevant, given the troublesome management of gait disturbances with subthalamic deep brain stimulation in patients with Parkinson's disease. We investigated the subthalamic activity and inter-hemispheric connectivity during walking in eight freely-moving subjects with Parkinson's disease and bilateral deep brain stimulation. In particular, we compared the subthalamic power spectral densities and coherence, amplitude cross-correlation and phase locking value between resting state, upright standing, and steady forward walking. We observed a phase locking value drop in the β-frequency band (≈13-35Hz) during walking with respect to resting and standing. This modulation was not accompanied by specific changes in subthalamic power spectral densities, which was not related to gait phases or to striatal dopamine loss measured with [123I]N-ω-fluoropropyl-2β-carbomethoxy-3β-(4-iodophenyl)nortropane and single-photon computed tomography. We speculate that the subthalamic inter-hemispheric desynchronization in the β-frequency band reflects the information processing of each body side separately, which may support linear walking. This study also suggests that in some cases (i.e. gait) the brain signal, which could allow feedback-controlled stimulation, might derive from network activity.
7T MRI subthalamic nucleus atlas for use with 3T MRI.
Milchenko, Mikhail; Norris, Scott A; Poston, Kathleen; Campbell, Meghan C; Ushe, Mwiza; Perlmutter, Joel S; Snyder, Abraham Z
2018-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in most patients with Parkinson disease (PD), yet may produce untoward effects. Investigation of DBS effects requires accurate localization of the STN, which can be difficult to identify on magnetic resonance images collected with clinically available 3T scanners. The goal of this study is to develop a high-quality STN atlas that can be applied to standard 3T images. We created a high-definition STN atlas derived from seven older participants imaged at 7T. This atlas was nonlinearly registered to a standard template representing 56 patients with PD imaged at 3T. This process required development of methodology for nonlinear multimodal image registration. We demonstrate mm-scale STN localization accuracy by comparison of our 3T atlas with a publicly available 7T atlas. We also demonstrate less agreement with an earlier histological atlas. STN localization error in the 56 patients imaged at 3T was less than 1 mm on average. Our methodology enables accurate STN localization in individuals imaged at 3T. The STN atlas and underlying 3T average template in MNI space are freely available to the research community. The image registration methodology developed in the course of this work may be generally applicable to other datasets.
Huebl, Julius; Spitzer, Bernhard; Brücke, Christof; Schönecker, Thomas; Kupsch, Andreas; Alesch, François; Schneider, Gerd-Helge; Kühn, Andrea A
2014-11-01
Dopaminergic denervation in Parkinson's disease (PD) leads to motor deficits but also depression, lack of motivation and apathy. These symptoms can be reversed by dopaminergic treatment, which may even lead to an increased hedonic tone in some patients with PD. Here, we tested the effects of dopamine on emotional processing as indexed by changes in local field potential (LFP) activity of the subthalamic nucleus (STN) in 28 PD patients undergoing deep brain stimulation. LFP activity from the STN was recorded after the administration of levodopa (ON group) or after overnight withdrawal of medication (OFF group) during presentation of an emotional picture-viewing task. Neutral and emotionally arousing pleasant and unpleasant stimuli were chosen from the International Affective Picture System. We found a double dissociation of the alpha band response depending on dopamine state and stimulus valence: dopamine enhanced the processing of pleasant stimuli, while activation during unpleasant stimuli was reduced, as indexed by the degree of desynchronization in the alpha frequency band. This pattern was reversed in the OFF state and more pronounced in the subgroup of non-depressed PD patients. Further, we found an early gamma band increase with unpleasant stimuli that occurred when ON but not OFF medication and was correlated with stimulus arousal. The late STN alpha band decrease is thought to represent active processing of sensory information. Our findings support the idea that dopamine enhances approach-related processes during late stimulus evaluation in PD. The early gamma band response may represent local encoding of increased attention, which varies as a function of stimulus arousal. Copyright © 2014 Elsevier Ltd. All rights reserved.
Péron, J; Dondaine, T
2012-01-01
The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys
Mathai, Abraham; Ma, Yuxian; Paré, Jean-Francois; Villalba, Rosa M.; Wichmann, Thomas
2015-01-01
The striatum and the subthalamic nucleus are the main entry points for cortical information to the basal ganglia. Parkinson’s disease affects not only the function, but also the morphological integrity of some of these inputs and their synaptic targets in the basal ganglia. Significant morphological changes in the cortico-striatal system have already been recognized in patients with Parkinson’s disease and in animal models of the disease. To find out whether the primate cortico-subthalamic system is also subject to functionally relevant morphological alterations in parkinsonism, we used a combination of light and electron microscopy anatomical approaches and in vivo electrophysiological methods in monkeys rendered parkinsonian following chronic exposure to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the light microscopic level, the density of vesicular glutamate transporter 1-positive (i.e. cortico-subthalamic) profiles in the dorsolateral part of the subthalamic nucleus (i.e. its sensorimotor territory) was 26.1% lower in MPTP-treated parkinsonian monkeys than in controls. These results were confirmed by electron microscopy studies showing that the number of vesicular glutamate transporter 1-positive terminals and of axon terminals forming asymmetric synapses in the dorsolateral subthalamic nucleus was reduced by 55.1% and 27.9%, respectively, compared with controls. These anatomical findings were in line with in vivo electrophysiology data showing a 60% reduction in the proportion of pallidal neurons that responded to electrical stimulation of the cortico-subthalamic system in parkinsonian monkeys. These findings provide strong evidence for a partial loss of the hyperdirect cortico-subthalamic projection in MPTP-treated parkinsonian monkeys. PMID:25681412
Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned
2013-03-01
The function of synchronous oscillatory activity at beta band (15-30Hz) frequencies within the basal ganglia is unclear. Here we sought support for the hypothesis that beta activity has a global function within the basal ganglia and is not directly involved in the coding of specific biomechanical parameters of movement. We recorded local field potential activity from the subthalamic nuclei of 11 patients with Parkinson's disease during a synchronized tapping task at three different externally cued rates. Beta activity was suppressed during tapping, reaching a minimum that differed little across the different tapping rates despite an increase in velocity of finger movements. Thus beta power suppression was independent of specific motor parameters. Moreover, although beta oscillations remained suppressed during all tapping rates, periods of resynchronization between taps were markedly attenuated during high rate tapping. As such, a beta rebound above baseline between taps at the lower rates was absent at the high rate. Our results demonstrate that beta desynchronization in the region of the subthalamic nucleus is independent of motor parameters and that the beta resynchronization is differentially modulated by rate of finger tapping, These findings implicate consistent beta suppression in the facilitation of continuous movement sequences. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Reduced cortical innervation of the subthalamic nucleus in MPTP-treated parkinsonian monkeys.
Mathai, Abraham; Ma, Yuxian; Paré, Jean-Francois; Villalba, Rosa M; Wichmann, Thomas; Smith, Yoland
2015-04-01
The striatum and the subthalamic nucleus are the main entry points for cortical information to the basal ganglia. Parkinson's disease affects not only the function, but also the morphological integrity of some of these inputs and their synaptic targets in the basal ganglia. Significant morphological changes in the cortico-striatal system have already been recognized in patients with Parkinson's disease and in animal models of the disease. To find out whether the primate cortico-subthalamic system is also subject to functionally relevant morphological alterations in parkinsonism, we used a combination of light and electron microscopy anatomical approaches and in vivo electrophysiological methods in monkeys rendered parkinsonian following chronic exposure to low doses of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). At the light microscopic level, the density of vesicular glutamate transporter 1-positive (i.e. cortico-subthalamic) profiles in the dorsolateral part of the subthalamic nucleus (i.e. its sensorimotor territory) was 26.1% lower in MPTP-treated parkinsonian monkeys than in controls. These results were confirmed by electron microscopy studies showing that the number of vesicular glutamate transporter 1-positive terminals and of axon terminals forming asymmetric synapses in the dorsolateral subthalamic nucleus was reduced by 55.1% and 27.9%, respectively, compared with controls. These anatomical findings were in line with in vivo electrophysiology data showing a 60% reduction in the proportion of pallidal neurons that responded to electrical stimulation of the cortico-subthalamic system in parkinsonian monkeys. These findings provide strong evidence for a partial loss of the hyperdirect cortico-subthalamic projection in MPTP-treated parkinsonian monkeys. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction.
Kelai, Sabah; Maussion, Gilles; Noble, Florence; Boni, Claudette; Ramoz, Nicolas; Moalic, Jean-Marie; Peuchmaur, Michel; Gorwood, Philip; Simonneau, Michel
2008-05-07
Dysfunctions affecting the connections of basal ganglia lead to major neurological and psychiatric disorders. We investigated levels of mRNA for three neurexins (Nrxn) and three neuroligins (Nlgn) in the globus pallidus, subthalamic nucleus, and substantia nigra, in control conditions and after short-term exposure to cocaine. The expression of Nrxn2beta and Nlgn3 in the substantia nigra and Nlgn1 in the subthalamic nucleus depended on genetic background. The development of short-term cocaine appetence induced an increase in Nrxn3beta expression in the globus pallidus. Human NRXN3 has recently been linked to several addictions. Thus, NRXN3 adhesion molecules may play an important role in the synaptic plasticity of neurons involved in the indirect pathways of basal ganglia, in which they regulate reward-related learning.
Localization of beta and high-frequency oscillations within the subthalamic nucleus region.
van Wijk, B C M; Pogosyan, A; Hariz, M I; Akram, H; Foltynie, T; Limousin, P; Horn, A; Ewert, S; Brown, P; Litvak, V
2017-01-01
Parkinsonian bradykinesia and rigidity are typically associated with excessive beta band oscillations in the subthalamic nucleus. Recently another spectral peak has been identified that might be implicated in the pathophysiology of the disease: high-frequency oscillations (HFO) within the 150-400 Hz range. Beta-HFO phase-amplitude coupling (PAC) has been found to correlate with severity of motor impairment. However, the neuronal origin of HFO and its usefulness as a potential target for deep brain stimulation remain to be established. For example, it is unclear whether HFO arise from the same neural populations as beta oscillations. We intraoperatively recorded local field potentials from the subthalamic nucleus while advancing DBS electrodes in 2 mm steps from 4 mm above the surgical target point until 2 mm below, resulting in 4 recording sites. Data from 26 nuclei from 14 patients were analysed. For each trajectory, we identified the recording site with the largest spectral peak in the beta range (13-30 Hz), and the largest peak in the HFO range separately. In addition, we identified the recording site with the largest beta-HFO PAC. Recording sites with largest beta power and largest HFO power coincided in 50% of cases. In the other 50%, HFO was more likely to be detected at a more superior recording site in the target area. PAC followed more closely the site with largest HFO (45%) than beta power (27%). HFO are likely to arise from spatially close, but slightly more superior neural populations than beta oscillations. Further work is necessary to determine whether the different activities can help fine-tune deep brain stimulation targeting.
NASA Astrophysics Data System (ADS)
Deng, Xinyi; Eskandar, Emad N.; Eden, Uri T.
2013-12-01
Understanding the role of rhythmic dynamics in normal and diseased brain function is an important area of research in neural electrophysiology. Identifying and tracking changes in rhythms associated with spike trains present an additional challenge, because standard approaches for continuous-valued neural recordings—such as local field potential, magnetoencephalography, and electroencephalography data—require assumptions that do not typically hold for point process data. Additionally, subtle changes in the history dependent structure of a spike train have been shown to lead to robust changes in rhythmic firing patterns. Here, we propose a point process modeling framework to characterize the rhythmic spiking dynamics in spike trains, test for statistically significant changes to those dynamics, and track the temporal evolution of such changes. We first construct a two-state point process model incorporating spiking history and develop a likelihood ratio test to detect changes in the firing structure. We then apply adaptive state-space filters and smoothers to track these changes through time. We illustrate our approach with a simulation study as well as with experimental data recorded in the subthalamic nucleus of Parkinson's patients performing an arm movement task. Our analyses show that during the arm movement task, neurons underwent a complex pattern of modulation of spiking intensity characterized initially by a release of inhibitory control at 20-40 ms after a spike, followed by a decrease in excitatory influence at 40-60 ms after a spike.
Marceglia, Sara; Fumagalli, Manuela; Priori, Alberto
2011-01-01
The behavioral implications of deep brain stimulation (DBS) observed in Parkinson's disease patients provided evidence for a possible nonexclusively motor role of the subthalamic nucleus (STN) in basal ganglia circuitry. Basal ganglia pathophysiology can be studied directly by the analysis of neural rhythms measured in local field potentials recorded through DBS electrodes. Recent studies demonstrated that specific oscillations in the STN are involved in cognitive and behavioral information processing: action representation is mediated through β oscillations (13-35 Hz); cognitive information related to decision-making processes is mediated through the low-frequency oscillation (5-12 Hz); and limbic and emotional information is mediated through the α oscillation (8-12 Hz). These results revealed an important involvement of STN in decisional processes, cognitive functions, emotion control and conflict that could explain the post-DBS occurrence of behavioral disturbances.
Danish, Shabbar F; Baltuch, Gordon H; Jaggi, Jurg L; Wong, Stephen
2008-04-01
Microelectrode recording during deep brain stimulation surgery is a useful adjunct for subthalamic nucleus (STN) localization. We hypothesize that information in the nonspike background activity can help identify STN boundaries. We present results from a novel quantitative analysis that accomplishes this goal. Thirteen consecutive microelectrode recordings were retrospectively analyzed. Spikes were removed from the recordings with an automated algorithm. The remaining "despiked" signals were converted via root mean square amplitude and curve length calculations into "feature profile" time series. Subthalamic nucleus boundaries determined by inspection, based on sustained deviations from baseline for each feature profile, were compared against those determined intraoperatively by the clinical neurophysiologist. Feature profile activity within STN exhibited a sustained rise in 10 of 13 tracks (77%). The sensitivity of STN entry was 60% and 90% for curve length and root mean square amplitude, respectively, when agreement within 0.5 mm of the neurophysiologist's prediction was used. Sensitivities were 70% and 100% for 1 mm accuracy. Exit point sensitivities were 80% and 90% for both features within 0.5 mm and 1.0 mm, respectively. Reproducible activity patterns in deep brain stimulation microelectrode recordings can allow accurate identification of STN boundaries. Quantitative analyses of this type may provide useful adjunctive information for electrode placement in deep brain stimulation surgery.
Nrxn3 upregulation in the globus pallidus of mice developing cocaine addiction
Kelai, Sabah; Maussion, Gilles; Noble, Florence; Boni, Claudette; Ramoz, Nicolas; Moalic, Jean-Marie; Peuchmaur, Michel; Gorwood, Philip; Simonneau, Michel
2008-01-01
Dysfunctions affecting the connections of basal ganglia lead to major neurological and psychiatric disorders. We investigated levels of mRNA for three neurexins (Nrxn) and three neuroligins (Nlgn) in the globus pallidus, subthalamic nucleus, and substantia nigra, in control conditions and after short-term exposure to cocaine. The expression of Nrxn2β and Nlgn3 in the substantia nigra and Nlgn1in the subthalamic nucleus depended on genetic background. The development of short-term cocaine appetence induced an increase in Nrxn3β expression in the globus pallidus. Human NRXN3 has recently been linked to several addictions. Thus, NRXN3 adhesion molecules may play an important role in the synaptic plasticity of neurons involved in the indirect pathways of basal ganglia, in which they regulate reward-related learning. PMID:18418251
Clinical Phenotype Predicts Early Staged Bilateral Deep Brain Stimulation in Parkinson’s Disease
Sung, Victor W.; Watts, Ray L.; Schrandt, Christian J.; Guthrie, Stephanie; Wang, Deli; Amara, Amy W.; Guthrie, Barton L.; Walker, Harrison C.
2014-01-01
Object While many centers place bilateral DBS systems simultaneously, unilateral STN DBS followed by a staged contralateral procedure has emerged as a treatment option for many patients. However little is known about whether the preoperative phenotype predicts when staged placement of a DBS electrode in the opposite subthalamic nucleus will be required. We aimed to determine whether preoperative clinical phenotype predicts early staged placement of a second subthalamic deep brain stimulation (DBS) electrode in patients who undergo unilateral subthalamic DBS for Parkinson's disease (PD). Methods Eighty-two consecutive patients with advanced PD underwent unilateral subthalamic DBS contralateral to the most affected hemibody and had at least 2 years of follow-up. Multivariate logistic regression determined preoperative characteristics that predicted staged placement of a second electrode in the opposite subthalamic nucleus. Preoperative measurements included aspects of the Unified Parkinson Disease Rating Scale (UPDRS), motor asymmetry index, and body weight. Results At 2 years follow-up, 28 of the 82 patients (34%) had undergone staged placement of a contralateral electrode while the remainder chose to continue with unilateral stimulation. Statistically significant improvements in UPDRS total and part 3 scores were retained at the end of the 2 year follow-up period in both subsets of patients. Multivariate logistic regression showed that the most important predictors for early staged placement of a second subthalamic stimulator were low asymmetry index (odds ratio 13.4; 95% confidence interval 2.8, 64.9), high tremor subscore (OR 7.2; CI 1.5, 35.0), and low body weight (OR 5.5; CI 1.4, 22.3). Conclusions This single center study provides evidence that elements of the preoperative PD phenotype predict whether patients will require early staged bilateral subthalamic DBS. These data may aid in the management of patients with advanced PD who undergo subthalamic DBS. PMID:24074493
Lhommée, Eugénie; Wojtecki, Lars; Czernecki, Virginie; Witt, Karsten; Maier, Franziska; Tonder, Lisa; Timmermann, Lars; Hälbig, Thomas D; Pineau, Fanny; Durif, Franck; Witjas, Tatiana; Pinsker, Marcus; Mehdorn, Maximilian; Sixel-Döring, Friederike; Kupsch, Andreas; Krüger, Rejko; Elben, Saskia; Chabardès, Stephan; Thobois, Stéphane; Brefel-Courbon, Christine; Ory-Magne, Fabienne; Regis, Jean-Marie; Maltête, David; Sauvaget, Anne; Rau, Jörn; Schnitzler, Alfons; Schüpbach, Michael; Schade-Brittinger, Carmen; Deuschl, Gunther; Houeto, Jean-Luc; Krack, Paul
2018-03-01
Although subthalamic stimulation is a recognised treatment for motor complications in Parkinson's disease, reports on behavioural outcomes are controversial, which represents a major challenge when counselling candidates for subthalamic stimulation. We aimed to assess changes in behaviour in patients with Parkinson's disease receiving combined treatment with subthalamic stimulation and medical therapy over a 2-year follow-up period as compared with the behavioural evolution under medical therapy alone. We did a parallel, open-label study (EARLYSTIM) at 17 surgical centres in France (n=8) and Germany (n=9). We recruited patients with Parkinson's disease who were disabled by early motor complications. Participants were randomly allocated (1:1) to either medical therapy alone or bilateral subthalamic stimulation plus medical therapy. The primary outcome was mean change in quality of life from baseline to 2 years. A secondary analysis was also done to assess behavioural outcomes. We used the Ardouin Scale of Behavior in Parkinson's Disease to assess changes in behaviour between baseline and 2-year follow-up. Apathy was also measured using the Starkstein Apathy Scale, and depression was assessed with the Beck Depression Inventory. The secondary analysis was done in all patients recruited. We used a generalised estimating equations (GEE) regression model for individual items and mixed model regression for subscores of the Ardouin scale and the apathy and depression scales. This trial is registered with ClinicalTrials.gov, number NCT00354133. The primary analysis has been reported elsewhere; this report presents the secondary analysis only. Between July, 2006, and November, 2009, 251 participants were recruited, of whom 127 were allocated medical therapy alone and 124 were assigned bilateral subthalamic stimulation plus medical therapy. At 2-year follow-up, the levodopa-equivalent dose was reduced by 39% (-363·3 mg/day [SE 41·8]) in individuals allocated bilateral subthalamic stimulation plus medical therapy and was increased by 21% (245·8 mg/day [40·4]) in those assigned medical therapy alone (p<0·0001). Neuropsychiatric fluctuations decreased with bilateral subthalamic stimulation plus medical therapy during 2-year follow-up (mean change -0·65 points [SE 0·15]) and did not change with medical therapy alone (-0·02 points [0·15]); the between-group difference in change from baseline was significant (p=0·0028). At 2 years, the Ardouin scale subscore for hyperdopaminergic behavioural disorders had decreased with bilateral subthalamic stimulation plus medical therapy (mean change -1·26 points [SE 0·35]) and had increased with medical therapy alone (1·12 points [0·35]); the between-group difference was significant (p<0·0001). Mean change from baseline at 2 years in the Ardouin scale subscore for hypodopaminergic behavioural disorders, the Starkstein Apathy Scale score, and the Beck Depression Inventory score did not differ between treatment groups. Antidepressants were stopped in 12 patients assigned bilateral subthalamic stimulation plus medical therapy versus four patients allocated medical therapy alone. Neuroleptics were started in nine patients assigned medical therapy alone versus one patient allocated bilateral subthalamic stimulation plus medical therapy. During the 2-year follow-up, two individuals assigned bilateral subthalamic stimulation plus medical therapy and one patient allocated medical therapy alone died by suicide. In a large cohort with Parkinson's disease and early motor complications, better overall behavioural outcomes were noted with bilateral subthalamic stimulation plus medical therapy compared with medical therapy alone. The presence of hyperdopaminergic behaviours and neuropsychiatric fluctuations can be judged additional arguments in favour of subthalamic stimulation if surgery is considered for disabling motor complications. German Federal Ministry of Education and Research, French Programme Hospitalier de Recherche Clinique National, and Medtronic. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ibañez-Sandoval, Osvaldo; Hernández, Adán; Florán, Benjamin; Galarraga, Elvira; Tapia, Dagoberto; Valdiosera, Rene; Erlij, David; Aceves, Jorge; Bargas, José
2006-03-01
The effects of activating dopaminergic D1 and D2 class receptors of the subthalamic projections that innervate the pars reticulata of the subtantia nigra (SNr) were explored in slices of the rat brain using the whole cell patch-clamp technique. Excitatory postsynaptic currents (EPSCs) that could be blocked by 6-cyano-7-nitroquinoxalene-2,3-dione and D-(-)-2-amino-5-phosphonopentanoic acid were evoked onto reticulata GABAergic projection neurons by local field stimulation inside the subthalamic nucleus in the presence of bicuculline. Bath application of (RS)-2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine hydrochloride (SKF-38393), a dopaminergic D1-class receptor agonist, increased evoked EPSCs by approximately 30% whereas the D2-class receptor agonist, trans-(-)-4aR-4,4a,5,6,7,8,8a,9-octahydro-5-propyl-1H-pyrazolo(3,4-g)quinoline (quinpirole), reduced EPSCs by approximately 25%. These apparently opposing actions were blocked by the specific D1- and D2-class receptor antagonists: R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-benzazepinehydrochloride (SCH 23390) and S-(-)-5-amino-sulfonyl-N-[(1-ethyl-2-pyrrolidinyl)-methyl]-2-methoxybenzamide (sulpiride), respectively. Both effects were accompanied by changes in the paired-pulse ratio, indicative of a presynaptic site of action. The presynaptic location of dopamine receptors at the subthalamonigral projections was confirmed by mean-variance analysis. The effects of both SKF-38393 and quinpirole could be observed on terminals contacting the same postsynaptic neuron. Sulpiride and SCH 23390 enhanced and reduced the evoked EPSC, respectively, suggesting a constitutive receptor activation probably arising from endogenous dopamine. These data suggest that dopamine presynaptically modulates the subthalamic projection that targets GABAergic neurons of the SNr. Implications of this modulation for basal ganglia function are discussed.
To move or not to move: subthalamic deep brain stimulation effects on implicit motor simulation.
Tomasino, Barbara; Marin, Dario; Eleopra, Roberto; Rinaldo, Sara; Cristian, Lettieri; Marco, Mucchiut; Enrico, Belgrado; Zanier, Monica; Budai, Riccardo; Mondani, Massimo; D'Auria, Stanislao; Skrap, Miran; Fabbro, Franco
2014-07-29
We explored implicit motor simulation processes in Parkinson's Disease (PD) patients with ON-OFF subthalamic deep brain stimulation (DBS) of the sub-thalamic nucleus (STN). Participants made lexical decisions about hand action-related verbs, abstract verbs, and pseudowords presented either within a positive (e.g., "Do …") or a negative (e.g., "Don't …") sentence context. Healthy controls showed significantly slower responses for hand-action verbs (vs. abstract verbs) in the negative (vs. positive) context, which suggests that negative contexts may suppress motor simulation or preparation processes. The STN-DBS improves cortical motor functions, thus patients are expected to perform at the same level as unimpaired subjects in the ON condition. By contrast, the 50% reduced DBS is expected to result in a reduced activation for motor information, which in turn might cause a reduced, if not absent, context modulation. PD patients exhibited the same pattern as controls when their DBS was at 100% ON; however, reducing the DBS to 50% had a deleterious outcome on the positive faster than negative context effect, suggesting that the altered inhibition mechanism in PD could be responsible for the missed effect. In addition, our results confirm the view that implicit motor simulation mechanisms behind action-related verb processing are flexible and context-dependent. Copyright © 2014 Elsevier B.V. All rights reserved.
Chenji, Gaurav; Wright, Melissa L; Chou, Kelvin L; Seidler, Rachael D; Patil, Parag G
2017-05-01
Gait impairment in Parkinson's disease reduces mobility and increases fall risk, particularly during cognitive multi-tasking. Studies suggest that bilateral subthalamic deep brain stimulation, a common surgical therapy, degrades motor performance under cognitive dual-task conditions, compared to unilateral stimulation. To measure the impact of bilateral versus unilateral subthalamic deep brain stimulation on walking kinematics with and without cognitive dual-tasking. Gait kinematics of seventeen patients with advanced Parkinson's disease who had undergone bilateral subthalamic deep brain stimulation were examined off medication under three stimulation states (bilateral, unilateral left, unilateral right) with and without a cognitive challenge, using an instrumented walkway system. Consistent with earlier studies, gait performance declined for all six measured parameters under cognitive dual-task conditions, independent of stimulation state. However, bilateral stimulation produced greater improvements in step length and double-limb support time than unilateral stimulation, and achieved similar performance for other gait parameters. Contrary to expectations from earlier studies of dual-task motor performance, bilateral subthalamic deep brain stimulation may assist in maintaining temporal and spatial gait performance under cognitive dual-task conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
West, Timothy; Farmer, Simon; Berthouze, Luc; Jha, Ashwani; Beudel, Martijn; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
In this paper we investigated the dopaminergic modulation of neuronal interactions occurring in the subthalamic nucleus (STN) during Parkinson's disease (PD). We utilized linear measures of local and long range synchrony such as power and coherence, as well as Detrended Fluctuation Analysis for Phase Synchrony (DFA-PS)- a recently developed non-linear method that computes the extent of long tailed autocorrelations present in the phase interactions between two coupled signals. Through analysis of local field potentials (LFPs) taken from the STN we seek to determine changes in the neurodynamics that may underpin the pathophysiology of PD in a group of 12 patients who had undergone surgery for deep brain stimulation. We demonstrate up modulation of alpha-theta (5-12 Hz) band power in response to L-DOPA treatment, whilst low beta band power (15-20 Hz) band-power is suppressed. We also find evidence for significant local connectivity within the region surrounding STN although there was evidence for its modulation via administration of L-DOPA. Further to this we present evidence for a positive correlation between the phase ordering of bilateral STN interactions and the severity of bradykinetic and rigidity symptoms in PD. Although, the ability of non-linear measures to predict clinical state did not exceed standard measures such as beta power, these measures may help identify the connections which play a role in pathological dynamics.
NASA Astrophysics Data System (ADS)
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-09-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought.
Seymour, Ben; Barbe, Michael; Dayan, Peter; Shiner, Tamara; Dolan, Ray; Fink, Gereon R.
2016-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus in Parkinson’s disease is known to cause a subtle but important adverse impact on behaviour, with impulsivity its most widely reported manifestation. However, precisely which computational components of the decision process are modulated is not fully understood. Here we probe a number of distinct subprocesses, including temporal discount, outcome utility, instrumental learning rate, instrumental outcome sensitivity, reward-loss trade-offs, and perseveration. We tested 22 Parkinson’s Disease patients both on and off subthalamic nucleus deep brain stimulation (STN-DBS), while they performed an instrumental learning task involving financial rewards and losses, and an inter-temporal choice task for financial rewards. We found that instrumental learning performance was significantly worse following stimulation, due to modulation of instrumental outcome sensitivity. Specifically, patients became less sensitive to decision values for both rewards and losses, but without any change to the learning rate or reward-loss trade-offs. However, we found no evidence that DBS modulated different components of temporal impulsivity. In conclusion, our results implicate the subthalamic nucleus in a modulation of outcome value in experience-based learning and decision-making in Parkinson’s disease, suggesting a more pervasive role of the subthalamic nucleus in the control of human decision-making than previously thought. PMID:27624437
Differential impact of thalamic versus subthalamic deep brain stimulation on lexical processing.
Krugel, Lea K; Ehlen, Felicitas; Tiedt, Hannes O; Kühn, Andrea A; Klostermann, Fabian
2014-10-01
Roles of subcortical structures in language processing are vague, but, interestingly, basal ganglia and thalamic Deep Brain Stimulation can go along with reduced lexical capacities. To deepen the understanding of this impact, we assessed word processing as a function of thalamic versus subthalamic Deep Brain Stimulation. Ten essential tremor patients treated with thalamic and 14 Parkinson׳s disease patients with subthalamic Deep Brain Stimulation performed an acoustic Lexical Decision Task ON and OFF stimulation. Combined analysis of task performance and event-related potentials allowed the determination of processing speed, priming effects, and N400 as neurophysiological correlate of lexical stimulus processing. 12 age-matched healthy participants acted as control subjects. Thalamic Deep Brain Stimulation prolonged word decisions and reduced N400 potentials. No comparable ON-OFF effects were present in patients with subthalamic Deep Brain Stimulation. In the latter group of patients with Parkinson' disease, N400 amplitudes were, however, abnormally low, whether under active or inactive Deep Brain Stimulation. In conclusion, performance speed and N400 appear to be influenced by state functions, modulated by thalamic, but not subthalamic Deep Brain Stimulation, compatible with concepts of thalamo-cortical engagement in word processing. Clinically, these findings specify cognitive sequels of Deep Brain Stimulation in a target-specific way. Copyright © 2014 Elsevier Ltd. All rights reserved.
Subthalamic nucleus phase–amplitude coupling correlates with motor impairment in Parkinson’s disease
van Wijk, Bernadette C.M.; Beudel, Martijn; Jha, Ashwani; Oswal, Ashwini; Foltynie, Tom; Hariz, Marwan I.; Limousin, Patricia; Zrinzo, Ludvic; Aziz, Tipu Z.; Green, Alexander L.; Brown, Peter; Litvak, Vladimir
2016-01-01
Objective High-amplitude beta band oscillations within the subthalamic nucleus are frequently associated with Parkinson’s disease but it is unclear how they might lead to motor impairments. Here we investigate a likely pathological coupling between the phase of beta band oscillations and the amplitude of high-frequency oscillations around 300 Hz. Methods We analysed an extensive data set comprising resting-state recordings obtained from deep brain stimulation electrodes in 33 patients before and/or after taking dopaminergic medication. We correlated mean values of spectral power and phase–amplitude coupling with severity of hemibody bradykinesia/rigidity. In addition, we used simultaneously recorded magnetoencephalography to look at functional interactions between the subthalamic nucleus and ipsilateral motor cortex. Results Beta band power and phase–amplitude coupling within the subthalamic nucleus correlated positively with severity of motor impairment. This effect was more pronounced within the low-beta range, whilst coherence between subthalamic nucleus and motor cortex was dominant in the high-beta range. Conclusions We speculate that the beta band might impede pro-kinetic high-frequency activity patterns when phase–amplitude coupling is prominent. Furthermore, results provide evidence for a functional subdivision of the beta band into low and high frequencies. Significance Our findings contribute to the interpretation of oscillatory activity within the cortico-basal ganglia circuit. PMID:26971483
Effects of deep brain stimulation of the subthalamic nucleus on perceptual decision making.
Zaehle, Tino; Wagenbreth, Caroline; Voges, Jürgen; Heinze, Hans-Jochen; Galazky, Imke
2017-02-20
When faced with difficult decisions, people prefer to stay with the default. This status quo bias often leads to suboptimal choice behavior. Neurophysiological evidence suggests a pivot role of the Subthalamic Nucleus (STN) for overcoming such status quo bias in difficult decisions, but causal evidence is lacking. The present study investigated whether subthalamic deep brain stimulation (DBS) in patients with Parkinson's disease (PD) influences the status quo bias. Eighteen PD patients treated with STN-DBS performed a difficult perceptual decision task incorporating intrinsic status quo option. Patients were tested with (ON) and without (OFF) active STN stimulation. Our results show that DBS of the STN affected perceptual decision making in PD patients depending on the difficulty of decision. STN-DBS improved difficult perceptual decisions due to a selective increase in accuracy (hit rate) that was independent of response bias (no effect on false alarm rate). Furthermore, STN-DBS impacted status quo bias as a function of baseline impulsivity. In impulsive patients, STN-DBS increased the default bias, whereas in less impulsive PD patients, DBS of the STN reduced the status quo bias. In line with our hypothesis, STN-DBS selectively affected the tendency to stick with the default option on difficult decisions, and promoted increased decision accuracy. Moreover, we demonstrate the impact of baseline cognitive abilities on DBS-related performance changes in PD patients. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease.
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-03-15
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13-20 Hz) and the high-beta rhythm (20-35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms.
Dopamine-dependent non-linear correlation between subthalamic rhythms in Parkinson's disease
Marceglia, S; Foffani, G; Bianchi, A M; Baselli, G; Tamma, F; Egidi, M; Priori, A
2006-01-01
The basic information architecture in the basal ganglia circuit is under debate. Whereas anatomical studies quantify extensive convergence/divergence patterns in the circuit, suggesting an information sharing scheme, neurophysiological studies report an absence of linear correlation between single neurones in normal animals, suggesting a segregated parallel processing scheme. In 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys and in parkinsonian patients single neurones become linearly correlated, thus leading to a loss of segregation between neurones. Here we propose a possible integrative solution to this debate, by extending the concept of functional segregation from the cellular level to the network level. To this end, we recorded local field potentials (LFPs) from electrodes implanted for deep brain stimulation (DBS) in the subthalamic nucleus (STN) of parkinsonian patients. By applying bispectral analysis, we found that in the absence of dopamine stimulation STN LFP rhythms became non-linearly correlated, thus leading to a loss of segregation between rhythms. Non-linear correlation was particularly consistent between the low-beta rhythm (13–20 Hz) and the high-beta rhythm (20–35 Hz). Levodopa administration significantly decreased these non-linear correlations, therefore increasing segregation between rhythms. These results suggest that the extensive convergence/divergence in the basal ganglia circuit is physiologically necessary to sustain LFP rhythms distributed in large ensembles of neurones, but is not sufficient to induce correlated firing between neurone pairs. Conversely, loss of dopamine generates pathological linear correlation between neurone pairs, alters the patterns within LFP rhythms, and induces non-linear correlation between LFP rhythms operating at different frequencies. The pathophysiology of information processing in the human basal ganglia therefore involves not only activities of individual rhythms, but also interactions between rhythms. PMID:16410285
Bicycling suppresses abnormal beta synchrony in the Parkinsonian basal ganglia.
Storzer, Lena; Butz, Markus; Hirschmann, Jan; Abbasi, Omid; Gratkowski, Maciej; Saupe, Dietmar; Vesper, Jan; Dalal, Sarang S; Schnitzler, Alfons
2017-10-01
Freezing of gait is a poorly understood symptom of Parkinson disease, and can severely disrupt the locomotion of affected patients. However, bicycling ability remains surprisingly unaffected in most patients suffering from freezing, suggesting functional differences in the motor network. The purpose of this study was to characterize and contrast the oscillatory dynamics underlying bicycling and walking in the basal ganglia. We present the first local field potential recordings directly comparing bicycling and walking in Parkinson disease patients with electrodes implanted in the subthalamic nuclei for deep brain stimulation. Low (13-22Hz) and high (23-35Hz) beta power changes were analyzed in 22 subthalamic nuclei from 13 Parkinson disease patients (57.5 ± 5.9 years old, 4 female). The study group consisted of 5 patients with and 8 patients without freezing of gait. In patients without freezing of gait, both bicycling and walking led to a suppression of subthalamic beta power (13-35Hz), and this suppression was stronger for bicycling. Freezers showed a similar pattern in general. Superimposed on this pattern, however, we observed a movement-induced, narrowband power increase around 18Hz, which was evident even in the absence of freezing. These results indicate that bicycling facilitates overall suppression of beta power. Furthermore, movement leads to exaggerated synchronization in the low beta band specifically within the basal ganglia of patients susceptible to freezing. Abnormal ∼18Hz oscillations are implicated in the pathophysiology of freezing of gait, and suppressing them may form a key strategy in developing potential therapies. Ann Neurol 2017;82:592-601. © 2017 American Neurological Association.
Tractography patterns of subthalamic nucleus deep brain stimulation.
Vanegas-Arroyave, Nora; Lauro, Peter M; Huang, Ling; Hallett, Mark; Horovitz, Silvina G; Zaghloul, Kareem A; Lungu, Codrin
2016-04-01
Deep brain stimulation therapy is an effective symptomatic treatment for Parkinson's disease, yet the precise mechanisms responsible for its therapeutic effects remain unclear. Although the targets of deep brain stimulation are grey matter structures, axonal modulation is known to play an important role in deep brain stimulation's therapeutic mechanism. Several white matter structures in proximity to the subthalamic nucleus have been implicated in the clinical benefits of deep brain stimulation for Parkinson's disease. We assessed the connectivity patterns that characterize clinically beneficial electrodes in Parkinson's disease patients, after deep brain stimulation of the subthalamic nucleus. We evaluated 22 patients with Parkinson's disease (11 females, age 57 ± 9.1 years, disease duration 13.3 ± 6.3 years) who received bilateral deep brain stimulation of the subthalamic nucleus at the National Institutes of Health. During an initial electrode screening session, one month after deep brain stimulation implantation, the clinical benefits of each contact were determined. The electrode was localized by coregistering preoperative magnetic resonance imaging and postoperative computer tomography images and the volume of tissue activated was estimated from stimulation voltage and impedance. Brain connectivity for the volume of tissue activated of deep brain stimulation contacts was assessed using probabilistic tractography with diffusion-tensor data. Areas most frequently connected to clinically effective contacts included the thalamus, substantia nigra, brainstem and superior frontal gyrus. A series of discriminant analyses demonstrated that the strength of connectivity to the superior frontal gyrus and the thalamus were positively associated with clinical effectiveness. The connectivity patterns observed in our study suggest that the modulation of white matter tracts directed to the superior frontal gyrus and the thalamus is associated with favourable clinical outcomes and may contribute to the therapeutic effects of deep brain stimulation. Our method can be further developed to reliably identify effective deep brain stimulation contacts and aid in the programming process. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Spieles-Engemann, A. L.; Behbehani, M. M.; Collier, T. J.; Wohlgenant, S. L.; Steece-Collier, K.; Paumier, K.; Daley, B. F.; Gombash, S.; Madhavan, L.; Mandybur, G. T.; Lipton, J.W.; Terpstra, B.T.; Sortwell, C.E.
2010-01-01
Deep brain stimulation of the subthalamic nucleus (STN-DBS) is efficacious in treating the motor symptoms of Parkinson’s disease (PD). However, the impact of STN-DBS on the progression of PD is unknown. Previous preclinical studies have demonstrated that STN-DBS can attenuate the degeneration of a relatively intact nigrostriatal system from dopamine (DA)-depleting neurotoxins. The present study examined whether STN-DBS can provide neuroprotection in the face of prior significant nigral DA neuron loss similar to PD patients at the time of diagnosis. STN-DBS between two and four weeks after intrastriatal 6-hydroxydopamine (6-OHDA) provided significant sparing of DA neurons in the SN of rats. This effect was not due to inadvertent lesioning of the STN and was dependent upon proper electrode placement. Since STN-DBS appears to have significant neuroprotective properties, initiation of STN-DBS earlier in the course of PD may provide added neuroprotective benefits in addition to its ability to provide symptomatic relief. PMID:20307668
Cognitive functioning after subthalamic nucleotomy for refractory Parkinson's disease
McCarter, R.; Walton, N.; Rowan, A.; Gill, S.; Palomo, M.
2000-01-01
OBJECTIVE—To evaluate whether subthalamic nucleotomy produces adverse cognitive effects in patients with Parkinson's disease. METHOD—Twelve patients with Parkinson's disease underwent stereotactic surgery to the subthalamic nucleus. Presurgical and postsurgical neuropsychological assessment of attention, memory, executive function, language, and verbal intellect were undertaken with a battery of tests designed to minimise potential contamination of cognitive effects by motor symptoms. RESULTS—There was no statistically significant difference in the cognitive tests results after operation for the group as a whole. Reliable change indexes were generated for the cognitive tests. Reliable change postoperatively was found on specific tests of verbal memory, attention, and planning. Left sided operations were associated with greater incidence of deterioration postsurgery. CONCLUSIONS—Preliminary data on the first reported cognitive changes after subthalamic nucleotomy suggested few adverse cognitive effects of the surgery although discrete neuropsychological changes were seen in some patients. These effects were consistent with current theories on the cognitive functions of the basal ganglia. PMID:10864605
Subthalamic Neural Activity Patterns Anticipate Economic Risk Decisions in Gambling
Rosa, M.; Carpaneto, J.; Priori, A.
2018-01-01
Abstract Economic decision-making is disrupted in individuals with gambling disorder, an addictive behavior observed in Parkinson’s disease (PD) patients receiving dopaminergic therapy. The subthalamic nucleus (STN) is involved in the inhibition of impulsive behaviors; however, its role in impulse control disorders and addiction is still unclear. Here, we recorded STN local field potentials (LFPs) in PD patients with and without gambling disorder during an economic decision-making task. Reaction times analysis showed that for all patients, the decision whether to risk preceded task onset. We compared then for both groups the STN LFP preceding high- and low-risk economic decisions. We found that risk avoidance in gamblers correlated with larger STN LFP low-frequency (<12-Hz) fluctuations preceding task onset. In particular, the amplitude of low-frequency LFP fluctuations carried significant information about future decisions. Decisions of patients not affected by gambling disorder were instead not correlated with pretask STN LFP. Our results suggest that STN activity preceding task onset affects risk decisions by preemptively inhibiting attraction to high but unlikely rewards in favor of a long-term payoff. PMID:29445770
Fischer, Petra; Pogosyan, Alek; Herz, Damian M; Cheeran, Binith; Green, Alexander L; Fitzgerald, James; Aziz, Tipu Z; Hyam, Jonathan; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter; Tan, Huiling
2017-01-01
Gamma activity in the subthalamic nucleus (STN) is widely viewed as a pro-kinetic rhythm. Here we test the hypothesis that rather than being specifically linked to movement execution, gamma activity reflects dynamic processing in this nucleus. We investigated the role of gamma during fast stopping and recorded scalp electroencephalogram and local field potentials from deep brain stimulation electrodes in 9 Parkinson’s disease patients. Patients interrupted finger tapping (paced by a metronome) in response to a stop-signal sound, which was timed such that successful stopping would occur only in ~50% of all trials. STN gamma (60–90 Hz) increased most strongly when the tap was successfully stopped, whereas phase-based connectivity between the contralateral STN and motor cortex decreased. Beta or theta power seemed less directly related to stopping. In summary, STN gamma activity may support flexible motor control as it did not only increase during movement execution but also during rapid action-stopping. DOI: http://dx.doi.org/10.7554/eLife.23947.001 PMID:28742498
2011-01-01
Stuttering is a speech disorder with disruption of verbal fluency which is occasionally present in patients with Parkinson's disease (PD). Long-term medical management of PD is frequently complicated by fluctuating motor functions and dyskinesias. High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment of motor fluctuations and is the most common surgical procedure in PD. Here we report the re-occurrence and aggravation of stuttering following STN-DBS in two male patients treated for advanced PD. In both patients the speech fluency improved considerably when the neurostimulator was turned off, indicating that stuttering aggravation was related to neurostimulation of the STN itself, its afferent or efferent projections and/or to structures localized in the immediate proximity. This report supports previous studies demonstrating that lesions of the basal ganglia-thalamocortical motor circuit, including the STN, is involved in the development of stuttering. In advanced PD STN-DBS is generally an effective and safe treatment. However, patients with PD and stuttering should be informed about the risk of aggravated symptoms following surgical therapy. PMID:21477305
Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A.
2017-01-01
Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. PMID:26494798
Beck, Anne; Wüstenberg, Torsten; Genauck, Alexander; Wrase, Jana; Schlagenhauf, Florian; Smolka, Michael N; Mann, Karl; Heinz, Andreas
2012-08-01
In alcohol-dependent patients, brain atrophy and functional brain activation elicited by alcohol-associated stimuli may predict relapse. However, to date, the interaction between both factors has not been studied. To determine whether results from structural and functional magnetic resonance imaging are associated with relapse in detoxified alcohol-dependent patients. A cue-reactivity functional magnetic resonance experiment with alcohol-associated and neutral stimuli. After a follow-up period of 3 months, the group of 46 detoxified alcohol-dependent patients was subdivided into 16 abstainers and 30 relapsers. Faculty for Clinical Medicine Mannheim at the University of Heidelberg, Germany. A total of 46 detoxified alcohol-dependent patients and 46 age- and sex-matched healthy control subjects Local gray matter volume, local stimulus-related functional magnetic resonance imaging activation, joint analyses of structural and functional data with Biological Parametric Mapping, and connectivity analyses adopting the psychophysiological interaction approach. Subsequent relapsers showed pronounced atrophy in the bilateral orbitofrontal cortex and in the right medial prefrontal and anterior cingulate cortex, compared with healthy controls and patients who remained abstinent. The local gray matter volume-corrected brain response elicited by alcohol-associated vs neutral stimuli in the left medial prefrontal cortex was enhanced for subsequent relapsers, whereas abstainers displayed an increased neural response in the midbrain (the ventral tegmental area extending into the subthalamic nucleus) and ventral striatum. For alcohol-associated vs neutral stimuli in abstainers compared with relapsers, the analyses of the psychophysiological interaction showed a stronger functional connectivity between the midbrain and the left amygdala and between the midbrain and the left orbitofrontal cortex. Subsequent relapsers displayed increased brain atrophy in brain areas associated with error monitoring and behavioral control. Correcting for gray matter reductions, we found that, in these patients, alcohol-related cues elicited increased activation in brain areas associated with attentional bias toward these cues and that, in patients who remained abstinent, increased activation and connectivity were observed in brain areas associated with processing of salient or aversive stimuli.
Gorniak, Stacey L.; McIntyre, Cameron C.; Alberts, Jay L.
2013-01-01
Objective Studies of bimanual actions similar to activities of daily living (ADLs) are currently lacking in evaluating fine motor control in Parkinson’s disease patients implanted with bilateral subthalamic deep brain stimulators. We investigated basic time and force characteristics of a bimanual task that resembles performance of ADLs in a group of bilateral subthalamic deep brain stimulation (DBS) patients. Methods Patients were evaluated in three different DBS parameter conditions off stimulation, on clinically derived stimulation parameters, and on settings derived from a patient-specific computational model. Model-based parameters were computed as a means to minimize spread of current to non-motor regions of the subthalamic nucleus via Cicerone Deep Brain Stimulation software. Patients were evaluated off parkinsonian medications in each stimulation condition. Results The data indicate that DBS parameter state does not affect most aspects of fine motor control in ADL-like tasks; however, features such as increased grip force and grip symmetry varied with the stimulation state. In the absence of DBS parameters, patients exhibited significant grip force asymmetry. Overall UPDRS-III and UPDRS-III scores associated with hand function were lower while patients were experiencing clinically-derived or model-based parameters, as compared to the off-stimulation condition. Conclusion While bilateral subthalamic DBS has been shown to alleviate gross motor dysfunction, our results indicate that DBS may not provide the same magnitude of benefit to fine motor coordination. PMID:24244388
Ridderinkhof, K. Richard; Elias, William J.; Frysinger, Robert C.; Bashore, Theodore R.; Downs, Kara E.; van Wouwe, Nelleke C.; van den Wildenberg, Wery P. M.
2010-01-01
Past studies show beneficial as well as detrimental effects of subthalamic nucleus deep-brain stimulation on impulsive behaviour. We address this paradox by investigating individuals with Parkinson’s disease treated with subthalamic nucleus stimulation (n = 17) and healthy controls without Parkinson’s disease (n = 17) on performance in a Simon task. In this reaction time task, conflict between premature response impulses and goal-directed action selection is manipulated. We applied distributional analytic methods to separate the strength of the initial response impulse from the proficiency of inhibitory control engaged subsequently to suppress the impulse. Patients with Parkinson’s disease were tested when stimulation was either turned on or off. Mean conflict interference effects did not differ between controls and patients, or within patients when stimulation was on versus off. In contrast, distributional analyses revealed two dissociable effects of subthalamic nucleus stimulation. Fast response errors indicated that stimulation increased impulsive, premature responding in high conflict situations. Later in the reaction process, however, stimulation improved the proficiency with which inhibitory control was engaged to suppress these impulses selectively, thereby facilitating selection of the correct action. This temporal dissociation supports a conceptual framework for resolving past paradoxical findings and further highlights that dynamic aspects of impulse and inhibitory control underlying goal-directed behaviour rely in part on neural circuitry inclusive of the subthalamic nucleus. PMID:20861152
Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G
2018-06-01
Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.
Subthalamic Nucleus Deep Brain Stimulation Changes Velopharyngeal Control in Parkinson's Disease
ERIC Educational Resources Information Center
Hammer, Michael J.; Barlow, Steven M.; Lyons, Kelly E.; Pahwa, Rajesh
2011-01-01
Purpose: Adequate velopharyngeal control is essential for speech, but may be impaired in Parkinson's disease (PD). Bilateral subthalamic nucleus deep brain stimulation (STN DBS) improves limb function in PD, but the effects on velopharyngeal control remain unknown. We tested whether STN DBS would change aerodynamic measures of velopharyngeal…
Chaturvedi, Ashutosh; Foutz, Thomas J.; McIntyre, Cameron C.
2012-01-01
Deep brain stimulation (DBS) has steadily evolved into an established surgical therapy for numerous neurological disorders, most notably Parkinson’s disease (PD). Traditional DBS technology relies on voltage-controlled stimulation with a single source; however, recent engineering advances are providing current-controlled devices with multiple independent sources. These new stimulators deliver constant current to the brain tissue, irrespective of impedance changes that occur around the electrode, and enable more specific steering of current towards targeted regions of interest. In this study, we examined the impact of current steering between multiple electrode contacts to directly activate three distinct neural populations in the subthalamic region commonly stimulated for the treatment of PD: projection neurons of the subthalamic nucleus (STN), globus pallidus internus (GPi) fibers of the lenticular fasiculus, and internal capsule (IC) fibers of passage. We used three-dimensional finite element electric field models, along with detailed multi-compartment cable models of the three neural populations to determine their activations using a wide range of stimulation parameter settings. Our results indicate that selective activation of neural populations largely depends on the location of the active electrode(s). Greater activation of the GPi and STN populations (without activating any side-effect related IC fibers) was achieved by current steering with multiple independent sources, compared to a single current source. Despite this potential advantage, it remains to be seen if these theoretical predictions result in a measurable clinical effect that outweighs the added complexity of the expanded stimulation parameter search space generated by the more flexible technology. PMID:22277548
Speed effects of deep brain stimulation for Parkinson's disease.
Klostermann, Fabian; Wahl, Michael; Marzinzik, Frank; Vesper, Jan; Sommer, Werner; Curio, Gabriel
2010-12-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) accelerates reaction time (RT) in patients with Parkinson's disease (PD), particularly in tasks in which decisions on the response side have to be made. This might indicate that DBS speeds up both motor and nonmotor operations. Therefore, we studied the extent to which modifications of different processing streams could explain changes of RT under subthalamic DBS. Ten PD patients on-DBS and off-DBS and 10 healthy subjects performed a choice-response task (CRT), requiring either right or left finger button presses. At the same time, EEG recordings were performed, so that RTs could be assessed together with lateralized readiness potentials (LRP), indicative of movement preparation. Additionally, an oddball task (OT) was run, in which right finger responses to target stimuli were recorded along with cognitive P300 responses. Generally, PD patients off-DBS had longer RTs than controls. Subthalamic DBS accelerated RT only in CRT. This could largely be explained by analog shortenings of LRP. No DBS-dependent changes were identified in OT, neither on the level of RT nor on the level of P300 latencies. It follows that RT accelerations under DBS of the STN are predominantly due to effects on the timing of motor instead of nonmotor processes. This starting point explains why DBS gains of response speed are low in tasks in which reactions are initiated from an advanced level of movement preparation (as in OT), and high whenever motor responses have to be raised from scratch (as in CRT). © 2010 Movement Disorder Society.
Subthalamic Nucleus Stimulation and Dysarthria in Parkinson's Disease: A PET Study
ERIC Educational Resources Information Center
Pinto, Serge; Thobois, Stephane; Costes, Nicolas; Le Bars, Didier; Benabid, Alim-Louis; Broussolle, Emmanuel; Pollak, Pierre; Gentil, Michele
2004-01-01
In Parkinson's disease, functional imaging studies during limb motor tasks reveal cerebral activation abnormalities that can be reversed by subthalamic nucleus (STN) stimulation. The effect of STN stimulation on parkinsonian dysarthria has not, however, been investigated using PET. The aim of the present study was to evaluate the effect of STN…
Tai, Chun-Hwei; Yang, Ya-Chin; Pan, Ming-Kai; Huang, Chen-Syuan; Kuo, Chung-Chin
2011-01-01
An increase in neuronal burst activities in the subthalamic nucleus (STN) is a well-documented electrophysiological feature of Parkinson disease (PD). However, the causal relationship between subthalamic bursts and PD symptoms and the ionic mechanisms underlying the bursts remain to be established. Here, we have shown that T-type Ca2+ channels are necessary for subthalamic burst firing and that pharmacological blockade of T-type Ca2+ channels reduces motor deficits in a rat model of PD. Ni2+, mibefradil, NNC 55-0396, and efonidipine, which inhibited T-type Ca2+ currents in acutely dissociated STN neurons, but not Cd2+ and nifedipine, which preferentially inhibited L-type or the other non–T-type Ca2+ currents, effectively diminished burst activity in STN slices. Topical administration of inhibitors of T-type Ca2+ channels decreased in vivo STN burst activity and dramatically reduced the locomotor deficits in a rat model of PD. Cd2+ and nifedipine showed no such electrophysiological and behavioral effects. While low-frequency deep brain stimulation (DBS) has been considered ineffective in PD, we found that lengthening the duration of the low-frequency depolarizing pulse effectively improved behavioral measures of locomotion in the rat model of PD, presumably by decreasing the availability of T-type Ca2+ channels. We therefore conclude that modulation of subthalamic T-type Ca2+ currents and consequent burst discharges may provide new strategies for the treatment of PD. PMID:21737877
Preparing hearts and minds: cardiac slowing and a cortical inhibitory network.
Jennings, J R; van der Molen, M W; Tanase, C
2009-11-01
Preparing for a cued, speeded response induces a set of physiological changes. A review of the psychophysiology of preparation suggested that inhibition of action was an important process among the constellation of changes constituting attentive preparation. The current experiment combined event-related functional magnetic resonance imaging and cardiac inter-beat interval measures in an experiment that compared preparing for a response, watching stimuli without responding, and responding in the absence of preparation. Ten college-aged participants were tested in an initial psychophysiological experiment followed by two scanning sessions during which reverse spiral imaging was performed concurrent with inter-beat interval measurement. Two analytic approaches were used to confirm blood oxygenation level dependent responses during preparation, and these converged to show inferior prefrontal and related subthalamic nuclei activity in the context of other known changes related to brain attentional networks. Subthalamic nuclei changes were related to the depth of preparatory cardiac deceleration. This pattern of findings suggests that preparation involves the activation of a complex inhibitory neural network implicating brain and autonomic nervous systems.
Pogosyan, Alek; Ashkan, Keyoumars; Cheeran, Binith; FitzGerald, James J.; Green, Alexander L.; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter
2015-01-01
Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response. PMID:25878267
Generation and evaluation of an ultra-high-field atlas with applications in DBS planning
NASA Astrophysics Data System (ADS)
Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.
2016-03-01
Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.
Cao, Chunyan; Li, Dianyou; Jiang, Tianxiao; Ince, Nuri Firat; Zhan, Shikun; Zhang, Jing; Sha, Zhiyi; Sun, Bomin
2015-04-01
In this study, we investigate the modification to cortical oscillations of patients with Parkinson disease (PD) by subthalamic deep brain stimulation (STN-DBS). Spontaneous cortical oscillations of patients with PD were recorded with magnetoencephalography during on and off subthalamic nucleus deep brain stimulation states. Several features such as average frequency, average power, and relative subband power in regions of interest were extracted in the frequency domain, and these features were correlated with Unified Parkinson Disease Rating Scale III evaluation. The same features were also investigated in patients with PD without surgery and healthy controls. Patients with Parkinson disease without surgery compared with healthy controls had a significantly lower average frequency and an increased average power in 1 to 48 Hz range in whole cortex. Higher relative power in theta and simultaneous decrease in beta and gamma over temporal and occipital were also observed in patients with PD. The Unified Parkinson Disease Rating Scale III rigidity score correlated with the average frequency and with the relative power of beta and gamma in frontal areas. During subthalamic nucleus deep brain stimulation, the average frequency increased significantly when stimulation was on compared with off state. In addition, the relative power dropped in delta, whereas it rose in beta over the whole cortex. Through the course of stimulation, the Unified Parkinson Disease Rating Scale III rigidity and tremor scores correlated with the relative power of alpha over left parietal. Subthalamic nucleus deep brain stimulation improves the symptoms of PD by suppressing the synchronization of alpha rhythm in somatomotor region.
ERIC Educational Resources Information Center
Spielman, Jennifer; Mahler, Leslie; Halpern, Angela; Gilley, Phllip; Klepitskaya, Olga; Ramig, Lorraine
2011-01-01
Purpose: Intensive voice therapy (LSVT[R]LOUD) can effectively manage voice and speech symptoms associated with idiopathic Parkinson disease (PD). This small-group study evaluated voice and speech in individuals with and without deep brain stimulation of the subthalamic nucleus (STN-DBS) before and after LSVT LOUD, to determine whether outcomes…
ERIC Educational Resources Information Center
Silveri, Maria Caterina; Ciccarelli, Nicoletta; Baldonero, Eleonora; Piano, Carla; Zinno, Massimiliano; Soleti, Francesco; Bentivoglio, Anna Rita; Albanese, Alberto; Daniele, Antonio
2012-01-01
An impairment for verbs has been described in patients with Parkinson's disease (PD), suggesting that a disruption of frontal-subcortical circuits may result in dysfunction of the neural systems involved in action-verb processing. A previous study suggested that deep brain stimulation (DBS) of the subthalamic nucleus (STN) during verb generation…
Ramirez-Zamora, Adolfo; Smith, Heather; Youn, Youngwon; Durphy, Jennifer; Shin, Damian S; Pilitsis, Julie G
2016-07-15
There is limited evidence regarding the precise location and connections of thermoregulatory centers in humans. We present two patients managed with subthalamic nucleus (STN) Deep Brain Stimulation (DBS) for motor fluctuations in PD that developed reproducible hyperhidrosis with high frequency DBS. To describe the clinical features and analyze the location of the electrodes leading to autonomic activation in both patients. We retrospectively assessed the anatomical localization, electrode programming settings and effects of unilateral STN DBS leading to hyperhidrosis. Unilateral stimulation of anterior and medially located contacts within the STN and zona incerta (Zi) caused bilateral, consistent, reproducible, and reversible sweating in our patients. Adequate control of motor symptoms without autonomic side effects was accomplished with alternative programming settings. Stimulation of the medial Zi and medial and anterior STN causes hyperhidrosis in a pattern similar to that described in primates and rats. We speculate that central autonomic fibers originating in the lateral hypothalamic area project laterally to the ventral/medial Zi and then to brainstem nuclei following an medial and posterior trajectory in relationship to STN. Copyright © 2016 Elsevier B.V. All rights reserved.
Sidtis, John J; Tagliati, Michele; Alterman, Ron; Sidtis, Diana; Dhawan, Vijay; Eidelberg, David
2012-01-01
Chronic, high-frequency electrical stimulation of the subthalamic nuclei (STNs) has become an effective and widely used therapy in Parkinson's disease (PD), but the therapeutic mechanism is not understood. Stimulation of the STN is believed to reorganize neurophysiological activity patterns within the basal ganglia, whereas local field effects extending to tracts adjacent to the STN are viewed as sources of nontherapeutic side effects. This study is part of a larger project investigating the effects of STN stimulation on speech and regional cerebral blood flow (CBF) in human subjects with PD. While generating measures of global CBF (gCBF) to normalize regional CBF values for a subsequent combined analysis of regional CBF and speech data, we observed a third effect of this therapy: a gCBF increase. This effect was present across three estimates of gCBF ranging from values based on the highest activity voxels to those based on all voxels. The magnitude of the gCBF increase was related to the subject's duration of PD. It is not clear whether this CBF effect has a therapeutic role, but the impact of deep brain stimulation on cerebrovascular control warrants study from neuroscience, pathophysiological, and therapeutic perspectives.
Dafsari, Haidar Salimi; Weiß, Luisa; Silverdale, Monty; Rizos, Alexandra; Reddy, Prashanth; Ashkan, Keyoumars; Evans, Julian; Reker, Paul; Petry-Schmelzer, Jan Niklas; Samuel, Michael; Visser-Vandewalle, Veerle; Antonini, Angelo; Martinez-Martin, Pablo; Ray-Chaudhuri, K; Timmermann, Lars
2018-02-24
Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in advanced Parkinson's disease (PD). However, considerable inter-individual variability has been observed for QoL outcome. We hypothesized that demographic and preoperative NMS characteristics can predict postoperative QoL outcome. In this ongoing, prospective, multicenter study (Cologne, Manchester, London) including 88 patients, we collected the following scales preoperatively and on follow-up 6 months postoperatively: PDQuestionnaire-8 (PDQ-8), NMSScale (NMSS), NMSQuestionnaire (NMSQ), Scales for Outcomes in PD (SCOPA)-motor examination, -complications, and -activities of daily living, levodopa equivalent daily dose. We dichotomized patients into "QoL responders"/"non-responders" and screened for factors associated with QoL improvement with (1) Spearman-correlations between baseline test scores and QoL improvement, (2) step-wise linear regressions with baseline test scores as independent and QoL improvement as dependent variables, (3) logistic regressions using aforementioned "responders/non-responders" as dependent variable. All outcomes improved significantly on follow-up. However, approximately 44% of patients were categorized as "QoL non-responders". Spearman-correlations, linear and logistic regression analyses were significant for NMSS and NMSQ but not for SCOPA-motor examination. Post-hoc, we identified specific NMS (flat moods, difficulties experiencing pleasure, pain, bladder voiding) as significant contributors to QoL outcome. Our results provide evidence that QoL improvement after STN-DBS depends on preoperative NMS characteristics. These findings are important in the advising and selection of individuals for DBS therapy. Future studies investigating motor and non-motor PD clusters may enable stratifying QoL outcomes and help predict patients' individual prospects of benefiting from DBS. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J.; Limousin, Patricia
2011-01-01
Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using…
ERIC Educational Resources Information Center
Knowles, Thea; Adams, Scott; Abeyesekera, Anita; Mancinelli, Cynthia; Gilmore, Greydon; Jog, Mandar
2018-01-01
Purpose: The settings of 3 electrical stimulation parameters were adjusted in 12 speakers with Parkinson's disease (PD) with deep brain stimulation of the subthalamic nucleus (STN-DBS) to examine their effects on vowel acoustics and speech intelligibility. Method: Participants were tested under permutations of low, mid, and high STN-DBS frequency,…
ERIC Educational Resources Information Center
Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; van Doorn, Jan
2013-01-01
Purpose: The purpose of the present study was to examine the effect of deep brain stimulation (DBS) of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) pitch characteristics of connected speech in patients with Parkinson's disease (PD). Method: The authors evaluated 16 patients preoperatively and 12 months after DBS surgery. Eight…
ERIC Educational Resources Information Center
Karlsson, Fredrik; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik; van Doorn, Jan
2014-01-01
Purpose: The present study aimed at comparing the effects of deep brain stimulation (DBS) treatment of the subthalamic nucleus (STN) and the caudal zona incerta (cZi) on the proficiency in achieving oral closure and release during plosive production of people with Parkinson's disease. Method: Nineteen patients participated preoperatively and…
Chan, Anne Y Y; Yeung, Jonas H M; Mok, Vincent C T; Ip, Vincent H L; Wong, Adrian; Kuo, S H; Chan, Danny T M; Zhu, X L; Wong, Edith; Lau, Claire K Y; Wong, Rosanna K M; Tang, Venus; Lau, Christine; Poon, W S
2014-12-01
To present the result and experience of subthalamic nucleus deep brain stimulation for Parkinson's disease. Case series. Prince of Wales Hospital, Hong Kong. A cohort of patients with Parkinson's disease received subthalamic nucleus deep brain stimulation from September 1998 to January 2010. Patient assessment data before and after the operation were collected prospectively. Forty-one patients (21 male and 20 female) with Parkinson's disease underwent bilateral subthalamic nucleus deep brain stimulation and were followed up for a median interval of 12 months. For the whole group, the mean improvements of Unified Parkinson's Disease Rating Scale (UPDRS) parts II and III were 32.5% and 31.5%, respectively (P<0.001). Throughout the years, a multidisciplinary team was gradually built. The deep brain stimulation protocol evolved and was substantiated by updated patient selection criteria and outcome assessment, integrated imaging and neurophysiological targeting, refinement of surgical technique as well as the accumulation of experience in deep brain stimulation programming. Most of the structural improvement occurred before mid-2005. Patients receiving the operation before June 2005 (19 cases) and after (22 cases) were compared; the improvements in UPDRS part III were 13.2% and 55.2%, respectively (P<0.001). There were three operative complications (one lead migration, one cerebral haematoma, and one infection) in the group operated on before 2005. There was no operative mortality. The functional state of Parkinson's disease patients with motor disabilities refractory to best medical treatment improved significantly after subthalamic nucleus deep brain stimulation. A dedicated multidisciplinary team building, refined protocol for patient selection and assessment, improvement of targeting methods, meticulous surgical technique, and experience in programming are the key factors contributing to the improved outcome.
Mollion, Hélène; Dominey, Peter Ford; Broussolle, Emmanuel; Ventre-Dominey, Jocelyne
2011-09-01
Although the treatment of Parkinson's disease via subthalamic stimulation yields remarkable improvements in motor symptoms, its effects on memory function are less clear. In this context, we previously demonstrated dissociable effects of levodopa therapy on parkinsonian performance in spatial and nonspatial visual working memory. Here we used the same protocol with an additional, purely motor task to investigate visual memory and motor performance in 2 groups of patients with Parkinson's disease with or without subthalamic stimulation. In each stimulation condition, subjects performed a simple motor task and 3 successive cognitive tasks: 1 conditional color-response association task and 2 visual (spatial and nonspatial) working memory tasks. The Parkinson's groups were compared with a control group of age-matched healthy subjects. Our principal results demonstrated that (1) in the motor task, stimulated patients were significantly improved with respect to nonstimulated patients and did not differ significantly from healthy controls, and (2) in the cognitive tasks, stimulated patients were significantly improved with respect to nonstimulated patients, but both remained significantly impaired when compared with healthy controls. These results demonstrate selective effects of subthalamic stimulation on parkinsonian disorders of motor and visual memory functions, with clear motor improvement for stimulated patients and a partial improvement for their visual memory processing. Copyright © 2011 Movement Disorder Society.
Mallet, Luc; Schüpbach, Michael; N'Diaye, Karim; Remy, Philippe; Bardinet, Eric; Czernecki, Virginie; Welter, Marie-Laure; Pelissolo, Antoine; Ruberg, Merle; Agid, Yves; Yelnik, Jérôme
2007-01-01
Two parkinsonian patients who experienced transient hypomanic states when the subthalamic nucleus (STN) was stimulated during postoperative adjustment of the electrical parameters for antiparkinsonian therapy agreed to have the mood disorder reproduced, in conjunction with motor, cognitive, and behavioral evaluations and concomitant functional neuroimaging. During the experiment, STN stimulation again induced a hypomanic state concomitant with activation of cortical and thalamic regions known to process limbic and associative information. This observation suggests that the STN plays a role in the control of a complex behavior that includes emotional as well as cognitive and motor components. The localization of the four contacts of the quadripolar electrode was determined precisely with an interactive brain atlas. The results showed that (i) the hypomanic state was caused only by stimulation through one contact localized in the anteromedial STN; (ii) both this contact and the contact immediately dorsal to it improved the parkinsonian motor state; (iii) the most dorsal and ventral contacts, located at the boundaries of the STN, neither induced the behavioral disorder nor improved motor performance. Detailed analysis of these data led us to consider a model in which the three functional modalities, emotional, cognitive, and motor, are not processed in a segregated manner but can be subtly combined in the small volume of the STN. This nucleus would thus serve as a nexus that integrates the motor, cognitive, and emotional components of behavior and might consequently be an effective target for the treatment of behavioral disorders that combine emotional, cognitive, and motor impairment. PMID:17556546
Zavala, Baltazar; Pogosyan, Alek; Ashkan, Keyoumars; Zrinzo, Ludvic; Foltynie, Thomas; Limousin, Patricia; Brown, Peter
2014-01-01
Monitoring and evaluating movement errors to guide subsequent movements is a critical feature of normal motor control. Previously, we showed that the postmovement increase in electroencephalographic (EEG) beta power over the sensorimotor cortex reflects neural processes that evaluate motor errors consistent with Bayesian inference (Tan et al., 2014). Whether such neural processes are limited to this cortical region or involve the basal ganglia is unclear. Here, we recorded EEG over the cortex and local field potential (LFP) activity in the subthalamic nucleus (STN) from electrodes implanted in patients with Parkinson's disease, while they moved a joystick-controlled cursor to visual targets displayed on a computer screen. After movement offsets, we found increased beta activity in both local STN LFP and sensorimotor cortical EEG and in the coupling between the two, which was affected by both error magnitude and its contextual saliency. The postmovement increase in the coupling between STN and cortex was dominated by information flow from sensorimotor cortex to STN. However, an information drive appeared from STN to sensorimotor cortex in the first phase of the adaptation, when a constant rotation was applied between joystick inputs and cursor outputs. The strength of the STN to cortex drive correlated with the degree of adaption achieved across subjects. These results suggest that oscillatory activity in the beta band may dynamically couple the sensorimotor cortex and basal ganglia after movements. In particular, beta activity driven from the STN to cortex indicates task-relevant movement errors, information that may be important in modifying subsequent motor responses. PMID:25505327
Local Fields in Human Subthalamic Nucleus Track the Lead-up to Impulsive Choices.
Pearson, John M; Hickey, Patrick T; Lad, Shivanand P; Platt, Michael L; Turner, Dennis A
2017-01-01
The ability to adaptively minimize not only motor but cognitive symptoms of neurological diseases, such as Parkinson's Disease (PD) and obsessive-compulsive disorder (OCD), is a primary goal of next-generation deep brain stimulation (DBS) devices. On the basis of studies demonstrating a link between beta-band synchronization and severity of motor symptoms in PD, the minimization of beta band activity has been proposed as a potential training target for closed-loop DBS. At present, no comparable signal is known for the impulsive side effects of PD, though multiple studies have implicated theta band activity within the subthalamic nucleus (STN), the site of DBS treatment, in processes of conflict monitoring and countermanding. Here, we address this challenge by recording from multiple independent channels within the STN in a self-paced decision task to test whether these signals carry information sufficient to predict stopping behavior on a trial-by-trial basis. As in previous studies, we found that local field potentials (LFPs) exhibited modulations preceding self-initiated movements, with power ramping across multiple frequencies during the deliberation period. In addition, signals showed phasic changes in power around the time of decision. However, a prospective model that attempted to use these signals to predict decision times showed effects of risk level did not improve with the addition of LFPs as regressors. These findings suggest information tracking the lead-up to impulsive choices is distributed across multiple frequency scales in STN, though current techniques may not possess sufficient signal-to-noise ratios to predict-and thus curb-impulsive behavior on a moment-to-moment basis.
Lipski, Witold J; Wozny, Thomas A; Alhourani, Ahmad; Kondylis, Efstathios D; Turner, Robert S; Crammond, Donald J; Richardson, Robert Mark
2017-09-01
Coupled oscillatory activity recorded between sensorimotor regions of the basal ganglia-thalamocortical loop is thought to reflect information transfer relevant to movement. A neuronal firing-rate model of basal ganglia-thalamocortical circuitry, however, has dominated thinking about basal ganglia function for the past three decades, without knowledge of the relationship between basal ganglia single neuron firing and cortical population activity during movement itself. We recorded activity from 34 subthalamic nucleus (STN) neurons, simultaneously with cortical local field potentials and motor output, in 11 subjects with Parkinson's disease (PD) undergoing awake deep brain stimulator lead placement. STN firing demonstrated phase synchronization to both low- and high-beta-frequency cortical oscillations, and to the amplitude envelope of gamma oscillations, in motor cortex. We found that during movement, the magnitude of this synchronization was dynamically modulated in a phase-frequency-specific manner. Importantly, we found that phase synchronization was not correlated with changes in neuronal firing rate. Furthermore, we found that these relationships were not exclusive to motor cortex, because STN firing also demonstrated phase synchronization to both premotor and sensory cortex. The data indicate that models of basal ganglia function ultimately will need to account for the activity of populations of STN neurons that are bound in distinct functional networks with both motor and sensory cortices and code for movement parameters independent of changes in firing rate. NEW & NOTEWORTHY Current models of basal ganglia-thalamocortical networks do not adequately explain simple motor functions, let alone dysfunction in movement disorders. Our findings provide data that inform models of human basal ganglia function by demonstrating how movement is encoded by networks of subthalamic nucleus (STN) neurons via dynamic phase synchronization with cortex. The data also demonstrate, for the first time in humans, a mechanism through which the premotor and sensory cortices are functionally connected to the STN. Copyright © 2017 the American Physiological Society.
Grant, Peadar F; Lowery, Madeleine M
2013-07-01
A new model of deep brain stimulation (DBS) is presented that integrates volume conduction effects with a neural model of pathological beta-band oscillations in the cortico-basal ganglia network. The model is used to test the clinical hypothesis that closed-loop control of the amplitude of DBS may be possible, based on the average rectified value of beta-band oscillations in the local field potential. Simulation of closed-loop high-frequency DBS was shown to yield energy savings, with the magnitude of the energy saved dependent on the strength of coupling between the subthalamic nucleus and the remainder of the cortico-basal ganglia network. When closed-loop DBS was applied to a strongly coupled cortico-basal ganglia network, the stimulation energy delivered over a 480 s period was reduced by up to 42%. Greater energy reductions were observed for weakly coupled networks, as the stimulation amplitude reduced to zero once the initial desynchronization had occurred. The results provide support for the application of closed-loop high-frequency DBS based on electrophysiological biomarkers.
Ramirez-Zamora, Adolfo; Smith, Heather; Kumar, Vignessh; Prusik, Julia; Phookan, Sujoy; Pilitsis, Julie G
2016-01-01
Although thalamic deep brain stimulation (DBS) has been established as an effective therapy for refractory tremor in Parkinson's disease and essential tremor, reports investigating the efficacy of posterior subthalamic area (PSA) DBS for severe, debilitating tremors continue to emerge. However, questions regarding the optimal anatomical target, surgical approach, programming paradigms and effectiveness compared to other targets remain. In this report, we aimed to review the current literature to assess different stereotactic techniques, anatomical considerations, adverse effects and stimulation settings in PSA DBS. A comprehensive literature review was performed searching for articles discussing tremors and PSA stimulation. We performed a quantitative analysis comparing different DBS tremor targets. Tremor improvement is consistently documented in most reports with an average reduction in tremor of 79% depending on the specific tremor syndrome. Tremor benefit in patients with multiple sclerosis (MS) tremor was significantly higher than for other stimulation targets. Transient paresthesias, imbalance, dizziness and dysarthria are the most common side effects with PSA DBS. PSA DBS is an effective and safe treatment for tremor control and should be considered in patients with refractory tremors with associated cerebellar or dystonic features, proximal tremors and MS tremor. © 2016 S. Karger AG, Basel.
Subthalamic nucleus deep brain stimulation improves deglutition in Parkinson's disease.
Ciucci, Michelle R; Barkmeier-Kraemer, Julie M; Sherman, Scott J
2008-04-15
Relatively little is known about the role of the basal ganglia in human deglutition. Deep brain stimulation (DBS) affords us a model for examining deglutition in humans with known impairment of the basal ganglia. The purpose of this study was to examine the effects of subthalamic nuclei (STN) DBS on the oral and pharyngeal stages of deglutition in individuals with Parkinson's Disease (PD). It was hypothesized that DBS would be associated with improved deglutition. Within participant, comparisons were made between DBS in the ON and OFF conditions using the dependent variables: pharyngeal transit time, maximal hyoid bone excursion, oral total composite score, and pharyngeal total composite score. Significant improvement occurred for the pharyngeal composite score and pharyngeal transit time in the DBS ON condition compared with DBS OFF. Stimulation of the STN may excite thalamocortical or brainstem targets to sufficiently overcome the bradykinesia/hypokinesia associated with PD and return some pharyngeal stage motor patterns to performance levels approximating those of "normal" deglutition. However, the degree of hyoid bone excursion and oral stage measures did not improve, suggesting that these motor acts may be under the control of different sensorimotor pathways within the basal ganglia. 2007 Movement Disorder Society
Weiss, Daniel; Klotz, Rosa; Govindan, Rathinaswamy B; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko; Gharabaghi, Alireza
2015-03-01
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson's disease. Here, we set out to address the motor network activity and synchronization in Parkinson's disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson's disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with 'stimulation on' compared to 'stimulation off' on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With 'stimulation on', interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to 'stimulation off'. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with 'stimulation on' compared to 'stimulation off' could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Klotz, Rosa; Govindan, Rathinaswamy B.; Scholten, Marlieke; Naros, Georgios; Ramos-Murguialday, Ander; Bunjes, Friedemann; Meisner, Christoph; Plewnia, Christian; Krüger, Rejko
2015-01-01
Dynamic modulations of large-scale network activity and synchronization are inherent to a broad spectrum of cognitive processes and are disturbed in neuropsychiatric conditions including Parkinson’s disease. Here, we set out to address the motor network activity and synchronization in Parkinson’s disease and its modulation with subthalamic stimulation. To this end, 20 patients with idiopathic Parkinson’s disease with subthalamic nucleus stimulation were analysed on externally cued right hand finger movements with 1.5-s interstimulus interval. Simultaneous recordings were obtained from electromyography on antagonistic muscles (right flexor digitorum and extensor digitorum) together with 64-channel electroencephalography. Time-frequency event-related spectral perturbations were assessed to determine cortical and muscular activity. Next, cross-spectra in the time-frequency domain were analysed to explore the cortico-cortical synchronization. The time-frequency modulations enabled us to select a time-frequency range relevant for motor processing. On these time-frequency windows, we developed an extension of the phase synchronization index to quantify the global cortico-cortical synchronization and to obtain topographic differentiations of distinct electrode sites with respect to their contributions to the global phase synchronization index. The spectral measures were used to predict clinical and reaction time outcome using regression analysis. We found that movement-related desynchronization of cortical activity in the upper alpha and beta range was significantly facilitated with ‘stimulation on’ compared to ‘stimulation off’ on electrodes over the bilateral parietal, sensorimotor, premotor, supplementary-motor, and prefrontal areas, including the bilateral inferior prefrontal areas. These spectral modulations enabled us to predict both clinical and reaction time improvement from subthalamic stimulation. With ‘stimulation on’, interhemispheric cortico-cortical coherence in the beta band was significantly attenuated over the bilateral sensorimotor areas. Similarly, the global cortico-cortical phase synchronization was attenuated, and the topographic differentiation revealed stronger desynchronization over the (ipsilateral) right-hemispheric prefrontal, premotor and sensorimotor areas compared to ‘stimulation off’. We further demonstrated that the cortico-cortical phase synchronization was largely dominated by genuine neuronal coupling. The clinical improvement with ‘stimulation on’ compared to ‘stimulation off’ could be predicted from this cortical decoupling with multiple regressions, and the reduction of synchronization over the right prefrontal area showed a linear univariate correlation with clinical improvement. Our study demonstrates wide-spread activity and synchronization modulations of the cortical motor network, and highlights subthalamic stimulation as a network-modulating therapy. Accordingly, subthalamic stimulation may release bilateral cortical computational resources by facilitating movement-related desynchronization. Moreover, the subthalamic nucleus is critical to balance inhibitory and facilitatory cortical players within the motor program. PMID:25558877
Modulation of human time processing by subthalamic deep brain stimulation.
Wojtecki, Lars; Elben, Saskia; Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons
2011-01-01
Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥ 130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥ 130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds.
Modulation of Human Time Processing by Subthalamic Deep Brain Stimulation
Timmermann, Lars; Reck, Christiane; Maarouf, Mohammad; Jörgens, Silke; Ploner, Markus; Südmeyer, Martin; Groiss, Stefan Jun; Sturm, Volker; Niedeggen, Michael; Schnitzler, Alfons
2011-01-01
Timing in the range of seconds referred to as interval timing is crucial for cognitive operations and conscious time processing. According to recent models of interval timing basal ganglia (BG) oscillatory loops are involved in time interval recognition. Parkinsońs disease (PD) is a typical disease of the basal ganglia that shows distortions in interval timing. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a powerful treatment of PD which modulates motor and cognitive functions depending on stimulation frequency by affecting subcortical-cortical oscillatory loops. Thus, for the understanding of BG-involvement in interval timing it is of interest whether STN-DBS can modulate timing in a frequency dependent manner by interference with oscillatory time recognition processes. We examined production and reproduction of 5 and 15 second intervals and millisecond timing in a double blind, randomised, within-subject repeated-measures design of 12 PD-patients applying no, 10-Hz- and ≥130-Hz-STN-DBS compared to healthy controls. We found under(re-)production of the 15-second interval and a significant enhancement of this under(re-)production by 10-Hz-stimulation compared to no stimulation, ≥130-Hz-STN-DBS and controls. Milliseconds timing was not affected. We provide first evidence for a frequency-specific modulatory effect of STN-DBS on interval timing. Our results corroborate the involvement of BG in general and of the STN in particular in the cognitive representation of time intervals in the range of multiple seconds. PMID:21931767
Zavala, Baltazar; Damera, Srikanth; Dong, Jian Wilson; Lungu, Codrin; Brown, Peter; Zaghloul, Kareem A
2017-01-01
Recent evidence has suggested that prefrontal cortical structures may inhibit impulsive actions during conflict through activation of the subthalamic nucleus (STN). Consistent with this hypothesis, deep brain stimulation to the STN has been associated with altered prefrontal cortical activity and impaired response inhibition. The interactions between oscillatory activity in the STN and its presumably antikinetic neuronal spiking, however, remain poorly understood. Here, we simultaneously recorded intraoperative local field potential and spiking activity from the human STN as participants performed a sensorimotor action selection task involving conflict. We identified several STN neuronal response types that exhibited different temporal dynamics during the task. Some neurons showed early, cue-related firing rate increases that remained elevated longer during high conflict trials, whereas other neurons showed late, movement-related firing rate increases. Notably, the high conflict trials were associated with an entrainment of individual neurons by theta- and beta-band oscillations, both of which have been observed in cortical structures involved in response inhibition. Our data suggest that frequency-specific activity in the beta and theta bands influence STN firing to inhibit impulsivity during conflict. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan
2015-01-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson's disease (PD). However, some aspects of executive control are impaired with STN DBS. We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing.
Dafsari, Haidar Salimi; Petry-Schmelzer, Jan Niklas; Ray-Chaudhuri, K; Ashkan, Keyoumars; Weis, Luca; Dembek, Till A; Samuel, Michael; Rizos, Alexandra; Silverdale, Monty; Barbe, Michael T; Fink, Gereon R; Evans, Julian; Martinez-Martin, Pablo; Antonini, Angelo; Visser-Vandewalle, Veerle; Timmermann, Lars
2018-03-16
Subthalamic nucleus (STN) deep brain stimulation (DBS) improves quality of life (QoL), motor, and non-motor symptoms (NMS) in Parkinson's disease (PD). Few studies have investigated the influence of the location of neurostimulation on NMS. To investigate the impact of active contact location on NMS in STN-DBS in PD. In this prospective, open-label, multicenter study including 50 PD patients undergoing bilateral STN-DBS, we collected NMSScale (NMSS), NMSQuestionnaire (NMSQ), Hospital Anxiety and Depression Scale (anxiety/depression, HADS-A/-D), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD-motor examination, motor complications, activities of daily living (ADL), and levodopa equivalent daily dose (LEDD) preoperatively and at 6 months follow-up. Changes were analyzed with Wilcoxon signed-rank/t-test and Bonferroni-correction for multiple comparisons. Although the STN was targeted visually, we employed an atlas-based approach to explore the relationship between active contact locations and DBS outcomes. Based on fused MRI/CT-images, we identified Cartesian coordinates of active contacts with patient-specific Mai-atlas standardization. We computed linear mixed-effects models with x-/y-/z-coordinates as independent, hemispheres as within-subject, and test change scores as dependent variables. NMSS, NMSQ, PDQ-8, motor examination, complications, and LEDD significantly improved at follow-up. Linear mixed-effect models showed that NMS and QoL improvement significantly depended on more medial (HADS-D, NMSS), anterior (HADS-D, NMSQ, PDQ-8), and ventral (HADS-A/-D, NMSS, PDQ-8) neurostimulation. ADL improved more in posterior, LEDD in lateral neurostimulation locations. No relationship was observed for motor examination and complications scores. Our study provides evidence that more anterior, medial, and ventral STN-DBS is significantly related to more beneficial non-motor outcomes. Copyright © 2018. Published by Elsevier Inc.
Williams, Isobel Anne; Wilkinson, Leonora; Limousin, Patricia; Jahanshahi, Marjan
2015-01-01
Background: Deep brain stimulation of the subthalamic nucleus (STN DBS) ameliorates the motor symptoms of Parkinson’s disease (PD). However, some aspects of executive control are impaired with STN DBS. Objective: We tested the prediction that (i) STN DBS interferes with switching from automatic to controlled processing during fast-paced random number generation (RNG) (ii) STN DBS-induced cognitive control changes are load-dependent. Methods: Fifteen PD patients with bilateral STN DBS performed paced-RNG, under three levels of cognitive load synchronised with a pacing stimulus presented at 1, 0.5 and 0.33 Hz (faster rates require greater cognitive control), with DBS on or off. Measures of output randomness were calculated. Countscore 1 (CS1) indicates habitual counting in steps of one (CS1). Countscore 2 (CS2) indicates a more controlled strategy of counting in twos. Results: The fastest rate was associated with an increased CS1 score with STN DBS on compared to off. At the slowest rate, patients had higher CS2 scores with DBS off than on, such that the differences between CS1 and CS2 scores disappeared. Conclusions: We provide evidence for a load-dependent effect of STN DBS on paced RNG in PD. Patients could switch to more controlled RNG strategies during conditions of low cognitive load at slower rates only when the STN stimulators were off, but when STN stimulation was on, they engaged in more automatic habitual counting under increased cognitive load. These findings are consistent with the proposal that the STN implements a switch signal from the medial frontal cortex which enables a shift from automatic to controlled processing. PMID:25720447
Sixel-Döring, F; Trenkwalder, C; Kappus, C; Hellwig, D
2006-08-01
Deep brain stimulation of the subthalamic nucleus is an important treatment option for advanced stages of idiopathic Parkinson's disease, leading to significant improvement of motor symptoms in suited patients. Hardware-related complications such as technical malfunction, skin erosion, and infections however cause patient discomfort and additional expense. The patient presented here suffered a putrid infection of the impulse generator site following only local dental treatment of apical parodontitis. Therefore, prophylactic systemic antibiotic treatment is recommended for patients with implanted deep brain stimulation devices in case of operations, dental procedures, or infectious disease.
Effects of dopaminergic and subthalamic stimulation on musical performance.
van Vugt, Floris T; Schüpbach, Michael; Altenmüller, Eckart; Bardinet, Eric; Yelnik, Jérôme; Hälbig, Thomas D
2013-05-01
Although subthalamic-deep brain stimulation (STN-DBS) is an efficient treatment for Parkinson's disease (PD), its effects on fine motor functions are not clear. We present the case of a professional violinist with PD treated with STN-DBS. DBS improved musical articulation, intonation and emotional expression and worsened timing relative to a timekeeper (metronome). The same effects were found for dopaminergic treatment. These results suggest that STN-DBS, mimicking the effects of dopaminergic stimulation, improves fine-tuned motor behaviour whilst impairing timing precision.
Pinto, Serge; Ferraye, Murielle; Espesser, Robert; Fraix, Valérie; Maillet, Audrey; Guirchoum, Jennifer; Layani-Zemour, Deborah; Ghio, Alain; Chabardès, Stéphan; Pollak, Pierre; Debû, Bettina
2014-10-01
Improvement of gait disorders following pedunculopontine nucleus area stimulation in patients with Parkinson's disease has previously been reported and led us to propose this surgical treatment to patients who progressively developed severe gait disorders and freezing despite optimal dopaminergic drug treatment and subthalamic nucleus stimulation. The outcome of our prospective study on the first six patients was somewhat mitigated, as freezing of gait and falls related to freezing were improved by low frequency electrical stimulation of the pedunculopontine nucleus area in some, but not all, patients. Here, we report the speech data prospectively collected in these patients with Parkinson's disease. Indeed, because subthalamic nucleus surgery may lead to speech impairment and a worsening of dysarthria in some patients with Parkinson's disease, we felt it was important to precisely examine any possible modulations of speech for a novel target for deep brain stimulation. Our results suggested a trend towards speech degradation related to the pedunculopontine nucleus area surgery (off stimulation) for aero-phonatory control (maximum phonation time), phono-articulatory coordination (oral diadochokinesis) and speech intelligibility. Possibly, the observed speech degradation may also be linked to the clinical characteristics of the group of patients. The influence of pedunculopontine nucleus area stimulation per se was more complex, depending on the nature of the task: it had a deleterious effect on maximum phonation time and oral diadochokinesis, and mixed effects on speech intelligibility. Whereas levodopa intake and subthalamic nucleus stimulation alone had no and positive effects on speech dimensions, respectively, a negative interaction between the two treatments was observed both before and after pedunculopontine nucleus area surgery. This combination effect did not seem to be modulated by pedunculopontine nucleus area stimulation. Although limited in our group of patients, speech impairment following pedunculopontine nucleus area stimulation is a possible outcome that should be considered before undertaking such surgery. Deleterious effects could be dependent on electrode insertion in this brainstem structure, more than on current spread to nearby structures involved in speech control. The effect of deep brain stimulation on speech in patients with Parkinson's disease remains a challenging and exploratory research area. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Chuang, Chi-Fen; Wu, Chen-Wei; Weng, Ying; Hu, Pei-San; Yeh, Shin-Rung; Chang, Yen-Chung
2018-04-30
Deep brain stimulation (DBS) is widely used to treat advanced Parkinson’s disease (PD). Here, we investigated how DBS applied on the subthalamic nucleus (STN) influenced the neural activity in the motor cortex. Rats, which had the midbrain dopaminergic neurons partially depleted unilaterally, called the hemi-Parkinsonian rats, were used as a study model. c-Fos expression in the neurons was used as an indicator of neural activity. Application of high-frequency stimulation (HFS) upon the STN was used to mimic the DBS treatment. The motor cortices in the two hemispheres of hemi-Parkinsonian rats were found to contain unequal densities of c-Fos-positive (Fos+) cells, and STN-HFS rectified this bilateral imbalance. In addition, STN-HFS led to the intense c-Fos expression in a group of motor cortical neurons which exhibited biochemical and anatomical characteristics resembling those of the pyramidal tract (PT) neurons sending efferent projections to the STN. The number of PT neurons expressing high levels of c-Fos was significantly reduced by local application of the antagonists of non-N-methyl-D-aspartate (non-NMDA) glutamate receptors, gammaaminobutyric acid A (GABAA) receptors and dopamine receptors in the upper layers of the motor cortex. The results indicate that the coincident activations of synapses and dopamine receptors in the motor cortex during STN-HFS trigger the intense expression of c-Fos of the PT neurons. The implications of the results on the cellular mechanism underlying the therapeutic effects of STN-DBS on the movement disorders of PD are also discussed.
Long, Lauren L.; Podurgiel, Samantha J.; Haque, Aileen F.; Errante, Emily L.; Chrobak, James J.; Salamone, John D.
2016-01-01
Tremulous jaw movements (TJMs) are rapid vertical deflections of the lower jaw that resemble chewing but are not directed at any particular stimulus. In rodents, TJMs are induced by neurochemical conditions that parallel those seen in human Parkinsonism, including neurotoxic or pharmacological depletion of striatal dopamine (DA), DA antagonism, and cholinomimetic administration. Moreover, TJMs in rodents can be attenuated by antiparkinsonian agents, including levodopa (L-DOPA), DA agonists, muscarinic antagonists, and adenosine A2A antagonists. In human Parkinsonian patients, exaggerated physiological synchrony is seen in the beta frequency band in various parts of the cortical/basal ganglia/thalamic circuitry, and activity in the tremor frequency range (3–7 Hz) also has been recorded. The present studies were undertaken to determine if tremor-related local field potential (LFP) activity could be recorded from motor cortex (M1) or subthalamic nucleus (STN) during the TJMs induced by the muscarinic agonist pilocarpine, which is a well-known tremorogenic agent. Pilocarpine induced a robust TJM response that was marked by rhythmic electromyographic (EMG) activity in the temporalis muscle. Compared to periods with no tremor activity, TJM epochs were characterized by increased LFP activity in the tremor frequency range in both neocortex and STN. Tremor activity was not associated with increased synchrony in the beta frequency band. These studies identified tremor-related LFP activity in parts of the cortical/basal ganglia circuitry that are involved in the pathophysiology of Parkinsonism. This research may ultimately lead to identification of the oscillatory neural mechanisms involved in the generation of tremulous activity, and promote development of novel treatments for tremor disorders. PMID:27378874
Snellings, André; Sagher, Oren; Anderson, David J; Aldridge, J Wayne
2009-10-01
The authors developed a wavelet-based measure for quantitative assessment of neural background activity during intraoperative neurophysiological recordings so that the boundaries of the subthalamic nucleus (STN) can be more easily localized for electrode implantation. Neural electrophysiological data were recorded in 14 patients (20 tracks and 275 individual recording sites) with dopamine-sensitive idiopathic Parkinson disease during the target localization portion of deep brain stimulator implantation surgery. During intraoperative recording, the STN was identified based on audio and visual monitoring of neural firing patterns, kinesthetic tests, and comparisons between neural behavior and the known characteristics of the target nucleus. The quantitative wavelet-based measure was applied offline using commercially available software to measure the magnitude of the neural background activity, and the results of this analysis were compared with the intraoperative conclusions. Wavelet-derived estimates were also compared with power spectral density measurements. The wavelet-derived background levels were significantly higher in regions encompassed by the clinically estimated boundaries of the STN than in the surrounding regions (STN, 225 +/- 61 microV; ventral to the STN, 112 +/- 32 microV; and dorsal to the STN, 136 +/- 66 microV). In every track, the absolute maximum magnitude was found within the clinically identified STN. The wavelet-derived background levels provided a more consistent index with less variability than measurements with power spectral density. Wavelet-derived background activity can be calculated quickly, does not require spike sorting, and can be used to identify the STN reliably with very little subjective interpretation required. This method may facilitate the rapid intraoperative identification of STN borders.
Singh, Jyotsna; Singh, Phool; Malik, Vikas
2017-01-01
Parkinson disease alters the information patterns in movement related pathways in brain. Experimental results performed on rats show that the activity patterns changes from single spike activity to mixed burst mode in Parkinson disease. However the cause of this change in activity pattern is not yet completely understood. Subthalamic nucleus is one of the main nuclei involved in the origin of motor dysfunction in Parkinson disease. In this paper, a single compartment conductance based model is considered which focuses on subthalamic nucleus and synaptic input from globus pallidus (external). This model shows highly nonlinear behavior with respect to various intrinsic parameters. Behavior of model has been presented with the help of activity patterns generated in healthy and Parkinson condition. These patterns have been compared by calculating their correlation coefficient for different values of intrinsic parameters. Results display that the activity patterns are very sensitive to various intrinsic parameters and calcium shows some promising results which provide insights into the motor dysfunction.
Angelov, Svilen D; Koenen, Sven; Jakobi, Jurij; Heissler, Hans E; Alam, Mesbah; Schwabe, Kerstin; Barcikowski, Stephan; Krauss, Joachim K
2016-01-12
Electrodes for neural stimulation and recording are used for the treatment of neurological disorders. Their features critically depend on impedance and interaction with brain tissue. The effect of surface modification on electrode impedance was examined in vitro and in vivo after intracranial implantation in rats. Electrodes coated by electrophoretic deposition with platinum nanoparticles (NP; <10 and 50 nm) as well as uncoated references were implanted into the rat's subthalamic nucleus. After postoperative recovery, rats were electrostimulated for 3 weeks. Impedance was measured before implantation, after recovery and then weekly during stimulation. Finally, local field potential was recorded and tissue-to-implant reaction was immunohistochemically studied. Coating with NP significantly increased electrode's impedance in vitro. Postoperatively, the impedance of all electrodes was temporarily further increased. This effect was lowest for the electrodes coated with particles <10 nm, which also showed the most stable impedance dynamics during stimulation for 3 weeks and the lowest total power of local field potential during neuronal activity recording. Histological analysis revealed that NP-coating did not affect glial reactions or neural cell-count. Coating with NP <10 nm may improve electrode's impedance stability without affecting biocompatibility. Increased impedance after NP-coating may improve neural recording due to better signal-to-noise ratio.
Ryu, Sang Baek; Bae, Eun Kyung; Kim, Jinhyung; Hwang, Yong Sup; Im, Changkyun; Chang, Jin Woo; Shin, Hyung-Cheul
2013-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been widely used as a treatment for the movement disturbances caused by Parkinson's disease (PD). Despite successful application of DBS, its mechanism of therapeutic effect is not clearly understood. Because PD results from the degeneration of dopamine neurons that affect the basal ganglia (BG) network, investigation of neuronal responses of BG neurons during STN DBS can provide informative insights for the understanding of the mechanism of therapeutic effect. However, it is difficult to observe neuronal activity during DBS because of large stimulation artifacts. Here, we report the observation of neuronal activities of the globus pallidus (GP) in normal and PD model rats during electrical stimulation of the STN. A custom artifact removal technique was devised to enable monitoring of neural activity during stimulation. We investigated how GP neurons responded to STN stimulation at various stimulation frequencies (10, 50, 90 and 130 Hz). It was observed that activities of GP neurons were modulated by stimulation frequency of the STN and significantly inhibited by high frequency stimulation above 50 Hz. These findings suggest that GP neuronal activity is effectively modulated by STN stimulation and strongly dependent on the frequency of stimulation. PMID:23946689
Coenen, Volker A; Prescher, Andreas; Schmidt, Thorsten; Picozzi, Piero; Gielen, Frans L H
2008-11-01
The most frequently used target for DBS in advanced Parkinson Disease (PD) is the sensorimotor subthalamic nucleus (STN), anatomically referred to as dorso-lateral STN [3]. Ambiguities arise, regarding the true meaning of this description in the STN. Does "dorsal" indicate posterior or superior? At its best, this definition assigns two directions in space to a three-dimensional structure. This paper evaluates the ambiguity and describes the sensorimotor part of the STN in stereotactic space.
Allert, Niels; Kelm, Daniela; Spottke, Annika; Coenen, Volker A
2011-09-01
In the selection of Parkinson patients for deep brain stimulation (DBS) of the subthalamic nucleus (STN) a risk-benefit-analysis is performed regarding symptoms that commonly improve and symptoms that may deteriorate. Speech is among the symptoms that may deteriorate. In contrast, the differential effects of STN-DBS on swallowing are less clear. Here, we present a Parkinson patient with dysphagia from concomitant oculo-pharyngeal muscle dystrophy successfully treated by STN-DBS. The role of dysphagia in evaluating Parkinson patients for STN-DBS is discussed.
Stridor and dysphagia associated with subthalamic nucleus stimulation in Parkinson disease.
Fagbami, Oluwakemi Y; Donato, Anthony A
2011-11-01
Refractory symptoms in Parkinson disease show good response to deep brain stimulation (DBS). This procedure improves United Parkinson's Disease Rating Scale scores and reduces dyskinesias, whereas speech and swallowing dysfunction typically do not improve and may even worsen. Rarely, DBS can cause idiosyncratic dystonias of muscle groups, including those of the neck and throat. The authors describe a patient experiencing stridor and dysphagia with confirmed pulmonary restriction and aspiration following subthalamic nucleus deep brain stimulator adjustment, with a resolution of symptoms and signs when the stimulator was switched off.
Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation.
Chandran, Arjun S; Bynevelt, Michael; Lind, Christopher R P
2016-01-01
The subthalamic nucleus (STN) is one of the most important stereotactic targets in neurosurgery, and its accurate imaging is crucial. With improving MRI sequences there is impetus for direct targeting of the STN. High-quality, distortion-free images are paramount. Image reconstruction techniques appear to show the greatest promise in balancing the issue of geometrical distortion and STN edge detection. Existing spin echo- and susceptibility-based MRI sequences are compared with new image reconstruction methods. Quantitative susceptibility mapping is the most promising technique for stereotactic imaging of the STN.
Tiedt, Hannes O; Ehlen, Felicitas; Krugel, Lea K; Horn, Andreas; Kühn, Andrea A; Klostermann, Fabian
2017-01-01
Subcortical functions for language capacities are poorly defined, but may be investigated in the context of deep brain stimulation. Here, we studied event-related potentials recorded from electrodes in the subthalamic nucleus (STN) and the thalamic ventral intermediate nucleus (VIM) together with surface-EEG. Participants completed a lexical decision task (LDT), which required the differentiation of acoustically presented words from pseudo-words by button press. Target stimuli were preceded by prime-words. In recordings from VIM, a slow potential shift apparent at the lower electrode contacts persisted during target stimulus presentation (equally for words and pseudo-words). In contrast, recordings from STN electrodes showed a short local activation on prime-words but not target-stimuli. In both depth-recording regions, further components related to contralateral motor responses to target words were evident. On scalp level, mid-central activations on (pseudo)lexical stimuli were obtained, in line with the expression of N400 potentials. The prolonged activity recorded from VIM, exclusively accompanying the relevant LDT phase, is in line with the idea of thalamic "selective engagement" for supporting the realization of the behavioral focus demanded by the task. In contrast, the phasic prime related activity rather indicates "procedural" STN functions, for example, for trial sequencing or readiness inhibition of prepared target reactions. Hum Brain Mapp 38:370-383, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Hirschmann, J; Schoffelen, J M; Schnitzler, A; van Gerven, M A J
2017-10-01
To investigate the possibility of tremor detection based on deep brain activity. We re-analyzed recordings of local field potentials (LFPs) from the subthalamic nucleus in 10 PD patients (12 body sides) with spontaneously fluctuating rest tremor. Power in several frequency bands was estimated and used as input to Hidden Markov Models (HMMs) which classified short data segments as either tremor-free rest or rest tremor. HMMs were compared to direct threshold application to individual power features. Applying a threshold directly to band-limited power was insufficient for tremor detection (mean area under the curve [AUC] of receiver operating characteristic: 0.64, STD: 0.19). Multi-feature HMMs, in contrast, allowed for accurate detection (mean AUC: 0.82, STD: 0.15), using four power features obtained from a single contact pair. Within-patient training yielded better accuracy than across-patient training (0.84vs. 0.78, p=0.03), yet tremor could often be detected accurately with either approach. High frequency oscillations (>200Hz) were the best performing individual feature. LFP-based markers of tremor are robust enough to allow for accurate tremor detection in short data segments, provided that appropriate statistical models are used. LFP-based markers of tremor could be useful control signals for closed-loop deep brain stimulation. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Welter, M-L; Burbaud, P; Fernandez-Vidal, S; Bardinet, E; Coste, J; Piallat, B; Borg, M; Besnard, S; Sauleau, P; Devaux, B; Pidoux, B; Chaynes, P; Tézenas du Montcel, S; Bastian, A; Langbour, N; Teillant, A; Haynes, W; Yelnik, J; Karachi, C; Mallet, L
2011-05-03
Functional and connectivity changes in corticostriatal systems have been reported in the brains of patients with obsessive-compulsive disorder (OCD); however, the relationship between basal ganglia activity and OCD severity has never been adequately established. We recently showed that deep brain stimulation of the subthalamic nucleus (STN), a central basal ganglia nucleus, improves OCD. Here, single-unit subthalamic neuronal activity was analysed in 12 OCD patients, in relation to the severity of obsessions and compulsions and response to STN stimulation, and compared with that obtained in 12 patients with Parkinson's disease (PD). STN neurons in OCD patients had lower discharge frequency than those in PD patients, with a similar proportion of burst-type activity (69 vs 67%). Oscillatory activity was present in 46 and 68% of neurons in OCD and PD patients, respectively, predominantly in the low-frequency band (1-8 Hz). In OCD patients, the bursty and oscillatory subthalamic neuronal activity was mainly located in the associative-limbic part. Both OCD severity and clinical improvement following STN stimulation were related to the STN neuronal activity. In patients with the most severe OCD, STN neurons exhibited bursts with shorter duration and interburst interval, but higher intraburst frequency, and more oscillations in the low-frequency bands. In patients with best clinical outcome with STN stimulation, STN neurons displayed higher mean discharge, burst and intraburst frequencies, and lower interburst interval. These findings are consistent with the hypothesis of a dysfunction in the associative-limbic subdivision of the basal ganglia circuitry in OCD's pathophysiology.
Chou, Kelvin L; Taylor, Jennifer L; Patil, Parag G
2013-11-01
The Movement Disorders Society revision of the Unified Parkinson Disease Rating Scale (MDS-UPDRS) improves upon the original UPDRS by adding more non-motor items, making it a more robust tool to evaluate the severity of motor and non-motor symptoms of Parkinson disease. Previous studies on deep brain stimulation have not used the MDS-UPDRS. To determine if the MDS-UPDRS could detect improvement in both motor and non-motor symptoms after bilateral subthalamic nucleus deep brain stimulation for Parkinson disease. We compared scores on the entire MDS-UPDRS prior to surgery (baseline) and approximately six months following the initial programming visit in twenty subjects (12M/8F) with Parkinson disease undergoing bilateral subthalamic nucleus deep brain stimulation. STN DBS significantly improved the scores for every section of the MDS-UPDRS at the 6 month follow-up. Part I improved by 3.1 points (22%), Part II by 5.3 points (29%), Part III by 13.1 points (29%) with stimulation alone, and Part IV by 7.1 points (74%). Individual non-motor items in Part I that improved significantly were constipation, light-headedness, and fatigue. Both motor and non-motor symptoms, as assessed by the MDS-UPDRS, improve with bilateral subthalamic nucleus stimulation six months after the stimulator is turned on. We recommend that the MDS-UPDRS be utilized in future deep brain stimulation studies because of the advantage of detecting change in non-motor symptoms. Copyright © 2013 Elsevier Ltd. All rights reserved.
Schneider, Frank; Habel, Ute; Volkmann, Jens; Regel, Sabine; Kornischka, Jürgen; Sturm, Volker; Freund, Hans-Joachim
2003-03-01
High-frequency electrical stimulation of the subthalamic nucleus is a new and highly effective therapy for complications of long-term levodopa therapy and motor symptoms in advanced Parkinson disease (PD). Clinical observations indicate additional influence on emotional behavior. Electrical stimulation of deep brain nuclei with pulse rates above 100 Hz provokes a reversible, lesioning-like effect. Here, the effect of deep brain stimulation of the subthalamic nucleus on emotional, cognitive, and motor performance in patients with PD (n = 12) was examined. The results were compared with the effects of a suprathreshold dose of levodopa intended to transiently restore striatal dopamine deficiency. Patients were tested during medication off/stimulation off (STIM OFF), medication off/stimulation on (STIM ON), and during the best motor state after taking levodopa without deep brain stimulation (MED). More positive self-reported mood and an enhanced mood induction effect as well as improvement in emotional memory during STIM ON were observed, while during STIM OFF, patients revealed reduced emotional performance. Comparable effects were revealed by STIM ON and MED. Cognitive performance was not affected by the different conditions and treatments. Deep brain stimulation of the subthalamic nucleus selectively enhanced affective processing and subjective well-being and seemed to be antidepressive. Levodopa and deep brain stimulation had similar effects on emotion. This finding may provide new clues about the neurobiologic bases of emotion and mood disorders, and it illustrates the important role of the basal ganglia and the dopaminergic system in emotional processing in addition to the well-known motor and cognitive functions.
Chhatbar, Pratik Y; Kautz, Steven A; Takacs, Istvan; Rowland, Nathan C; Revuelta, Gonzalo J; George, Mark S; Bikson, Marom; Feng, Wuwei
2018-03-13
Transcranial direct current stimulation (tDCS) is a promising brain modulation technique for several disease conditions. With this technique, some portion of the current penetrates through the scalp to the cortex and modulates cortical excitability, but a recent human cadaver study questions the amount. This insufficient intracerebral penetration of currents may partially explain the inconsistent and mixed results in tDCS studies to date. Experimental validation of a transcranial alternating current stimulation-generated electric field (EF) in vivo has been performed on the cortical (using electrocorticography, ECoG, electrodes), subcortical (using stereo electroencephalography, SEEG, electrodes) and deeper thalamic/subthalamic levels (using DBS electrodes). However, tDCS-generated EF measurements have never been attempted. We aimed to demonstrate that tDCS generates biologically relevant EF as deep as the subthalamic level in vivo. Patients with movement disorders who have implanted deep brain stimulation (DBS) electrodes serve as a natural experimental model for thalamic/subthalamic recordings of tDCS-generated EF. We measured voltage changes from DBS electrodes and body resistance from tDCS electrodes in three subjects while applying direct current to the scalp at 2 mA and 4 mA over two tDCS montages. Voltage changes at the level of deep nuclei changed proportionally with the level of applied current and varied with different tDCS montages. Our findings suggest that scalp-applied tDCS generates biologically relevant EF. Incorporation of these experimental results may improve finite element analysis (FEA)-based models. Copyright © 2018 Elsevier Inc. All rights reserved.
Camalier, Corrie R; Wang, Alice Y; McIntosh, Lindsey G; Park, Sohee; Neimat, Joseph S
2017-03-01
Computational and theoretical accounts hypothesize the basal ganglia play a supramodal "gating" role in the maintenance of working memory representations, especially in preservation from distractor interference. There are currently two major limitations to this account. The first is that supporting experiments have focused exclusively on the visuospatial domain, leaving questions as to whether such "gating" is domain-specific. The second is that current evidence relies on correlational measures, as it is extremely difficult to causally and reversibly manipulate subcortical structures in humans. To address these shortcomings, we examined non-spatial, auditory working memory performance during reversible modulation of the basal ganglia, an approach afforded by deep brain stimulation of the subthalamic nucleus. We found that subthalamic nucleus stimulation impaired auditory working memory performance, specifically in the group tested in the presence of distractors, even though the distractors were predictable and completely irrelevant to the encoding of the task stimuli. This study provides key causal evidence that the basal ganglia act as a supramodal filter in working memory processes, further adding to our growing understanding of their role in cognition. Copyright © 2017 Elsevier Ltd. All rights reserved.
Pulse duration settings in subthalamic stimulation for Parkinson's disease
Steigerwald, Frank; Timmermann, Lars; Kühn, Andrea; Schnitzler, Alfons; Reich, Martin M.; Kirsch, Anna Dalal; Barbe, Michael Thomas; Visser‐Vandewalle, Veerle; Hübl, Julius; van Riesen, Christoph; Groiss, Stefan Jun; Moldovan, Alexia‐Sabine; Lin, Sherry; Carcieri, Stephen; Manola, Ljubomir
2017-01-01
ABSTRACT Background Stimulation parameters in deep brain stimulation (DBS) of the subthalamic nucleus for Parkinson's disease (PD) are rarely tested in double‐blind conditions. Evidence‐based recommendations on optimal stimulator settings are needed. Results from the CUSTOM‐DBS study are reported, comparing 2 pulse durations. Methods A total of 15 patients were programmed using a pulse width of 30 µs (test) or 60 µs (control). Efficacy and side‐effect thresholds and unified PD rating scale (UPDRS) III were measured in meds‐off (primary outcome). The therapeutic window was the difference between patients’ efficacy and side effect thresholds. Results The therapeutic window was significantly larger at 30 µs than 60 µs (P = ·0009) and the efficacy (UPDRS III score) was noninferior (P = .00008). Interpretation Subthalamic neurostimulation at 30 µs versus 60 µs pulse width is equally effective on PD motor signs, is more energy efficient, and has less likelihood of stimulation‐related side effects. © 2017 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society. PMID:29165837
Guridi, Jorge; Marigil, Miguel; Becerra, Victoria; Parras, Olga
Subthalamic nucleus hyperactivity in Parkinson's disease may be a very early phenomenon. Its start is not well known, and it may occur during the pre-symptomatic disease stage. Glutamatergic hyperactivity may be neurotoxic over the substantia nigra compacta dopaminergic neurons. If this occurred, the excitatory neurotransmitter, glutamate, should affect the neurons that maintain a high turnover as a compensatory mechanism. Would a subthalamic nucleus lesion decrease this hyperactivity and thus be considered as a neuroprotective mechanism for dopaminergic neurons? The authors hypothesise about the possibility to perform surgery on a subthalamic nucleus lesion at a very early stage in order to avoid the neurotoxic glutamatergic effect over the dopaminergic neurons, and therefore be considered as a neuroprotective surgery able to alter the progress of the disease during early motor symptoms. In this regard, magnetic resonance-guided focused ultrasound techniques open a new window in the stereotactic armamentarium. Copyright © 2016 Sociedad Española de Neurocirugía. Publicado por Elsevier España, S.L.U. All rights reserved.
Non-stationary discharge patterns in motor cortex under subthalamic nucleus deep brain stimulation.
Santaniello, Sabato; Montgomery, Erwin B; Gale, John T; Sarma, Sridevi V
2012-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) directly modulates the basal ganglia (BG), but how such stimulation impacts the cortex upstream is largely unknown. There is evidence of cortical activation in 6-hydroxydopamine (OHDA)-lesioned rodents and facilitation of motor evoked potentials in Parkinson's disease (PD) patients, but the impact of the DBS settings on the cortical activity in normal vs. Parkinsonian conditions is still debated. We use point process models to analyze non-stationary activation patterns and inter-neuronal dependencies in the motor and sensory cortices of two non-human primates during STN DBS. These features are enhanced after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), which causes a consistent PD-like motor impairment, while high-frequency (HF) DBS (i.e., ≥100 Hz) strongly reduces the short-term patterns (period: 3-7 ms) both before and after MPTP treatment, and elicits a short-latency post-stimulus activation. Low-frequency DBS (i.e., ≤50 Hz), instead, has negligible effects on the non-stationary features. Finally, by using tools from the information theory [i.e., receiver operating characteristic (ROC) curve and information rate (IR)], we show that the predictive power of these models is dependent on the DBS settings, i.e., the probability of spiking of the cortical neurons (which is captured by the point process models) is significantly conditioned on the timely delivery of the DBS input. This dependency increases with the DBS frequency and is significantly larger for high- vs. low-frequency DBS. Overall, the selective suppression of non-stationary features and the increased modulation of the spike probability suggest that HF STN DBS enhances the neuronal activation in motor and sensory cortices, presumably because of reinforcement mechanisms, which perhaps involve the overlap between feedback antidromic and feed-forward orthodromic responses along the BG-thalamo-cortical loop.
Mermillod, Martial; Mondillon, Laurie; Rieu, Isabelle; Devaux, Damien; Chambres, Patrick; Auxiette, Catherine; Dalens, Hélène; Coulangeon, Louise Marie; Jalenques, Isabelle; Durif, Franck
2014-01-01
Deep brain stimulation of the subthalamic nuclei (STN-DBS) is an effective treatment for the most severe forms of Parkinson's disease (PD) and is intended to suppress these patients' motor symptoms. However, be it in association with Dopamine Replacement Therapy (DRT) or not, STN-DBS may in some cases induce addictive or emotional disorders. In the current study, we suggest that PD patients suffer from emotional deficits that have not been revealed in previous studies because in those experiments the stimuli were displayed for a time long enough to allow patients to have recourse to perceptual strategies in order to recognize the emotional facial expressions (EFE). The aim of the current article is to demonstrate the existence of emotional disorders in PD by using a rapid presentation of the visual stimuli (200-ms display time) which curtails their perceptual analysis, and to determine whether STN-DBS, either associated or not associated with DRT, has an impact on the recognition of emotions. The results show that EFE recognition performance depends on both STN-DBS ('on' vs. 'off') and medication ('on' vs. 'off'), but also that these variables have an interactive influence on EFE recognition performance. Moreover, we also reveal how these EFE impairments depend on different spatial frequencies perceptual channels (related to different cortical vs. subcortical neural structures). The effect of PD without therapy seems to be particularly acute for LSF emotional faces, possibly due to a subcortical dysfunction. However, our results indicate that the joint action of STN-DBS and DRT could also disrupt recognition of emotional expressions at the level of occipito-temporal cortical areas (processing HSF visual information) inducing broad global impairment of EFE at the level of HSF visual channels.
Ardouin, C; Pillon, B; Peiffer, E; Bejjani, P; Limousin, P; Damier, P; Arnulf, I; Benabid, A L; Agid, Y; Pollak, P
1999-08-01
There is a renewal of interest in surgical approaches including lesions and deep brain stimulation directed at motor subcorticofrontal loops. Bilateral lesioning presents a far greater risk of adverse effects, especially cognitive impairment. Furthermore, the main advantages of the stimulation procedure over lesioning are adaptability and reversibility of effects. The aim of this study was to assess the influence of bilateral stimulation of the subthalamic nucleus or internal globus pallidus on memory and executive functions in Parkinson's disease. Sixty-two patients were assessed before and after 3 to 6 months of chronic bilateral stimulation of the subthalamic nucleus (n = 49) or internal globus pallidus (n = 13). The neuropsychological tests used were the Mattis Dementia Rating Scale, the Grober and Buschke Verbal Learning Test, the Wisconsin Card Sorting Test, category and literal fluency, graphic and motor series, the Stroop Test, and the Trail Making Test. Mood was evaluated by the Beck Depression Inventory. Only 4 of 25 cognitive variables were affected by deep brain stimulation. Under stimulation, performance improved for Parts A and B of the Trail Making Test, but there was a deterioration in literal and total lexical fluency. There was also a mild but significant improvement in mood. It may therefore be concluded that stimulation of the subthalamic nucleus or internal globus pallidus does not change the overall cognitive performance in Parkinson's disease and does not greatly affect the functioning of subcorticofrontal loops involved in cognition in humans. This relative absence of cognitive impairment in bilateral deep brain stimulation is likely because of the accurate positioning of the electrodes, allowing the effects of stimulation to be confined to sensorimotor circuits.
Pavón-Fuentes, N; Macías-González, R; Blanco-Lezcano, L; Alvarez-González, L; Martínez-Martí, L; Castillo-Díaz, L; De La Cuétara Bernal, K; Díaz, C; Lorigados-Pedre, L; Coro, Y; García-Varona, A Y; Rosillo, J C; Díaz, E
The main strategy followed in neural transplants as a method of treatment for Parkinson s disease, both experimental and clinical, has been to introduce foetal mesencephalic cells into the target area: the striatum. However, when the dopaminergic cells in the substantia nigra degenerate, not only is the dopaminergic innervation of the striatum affected but also other nuclei: globus pallidus, substantia nigra, substantia nigra pars reticulata and subthalamic nucleus. A series of data from pharmacological and physiological studies offer strong evidence that the dopamine released in these nuclei may play an important role in regulating the output nuclei of the basal ganglia. To evaluate the effect of transplanting foetal mesencephalic cells on the behaviour of 6 OH DA rats when introduced into the striatum and the subthalamic nucleus. 6 OH DA was used to induce lesions in the substantia nigra of rats, which were divided into several experimental groups. The rotating activity induced by D amphetamine (5 mg/kg, intraperitoneally) and apomorphine (0.05 mg/kg, subcutaneously) was evaluated before and three months after the transplant in all the experimental groups, except in the control group of healthy rats. The hemiparkinsonian rats received a total of 350,000 foetal ventral mesencephalic cells, which were implanted within small deposits in the striatum (8) and in the subthalamic nucleus (4). Rotation induced by both drugs was significantly lower (p= 0.05) in animals that had had dopaminergic cells transplanted into the striatum body. No significant improvement in this behaviour was to be found when transplants were limited to just the subthalamus or, simultaneously, also to the striatum. A significant increase in rotating behaviour induced by apomorphine was observed in the group which received a transplant in just the subthalamus.
Deep brain stimulation reveals emotional impact processing in ventromedial prefrontal cortex.
Gjedde, Albert; Geday, Jacob
2009-12-07
We tested the hypothesis that modulation of monoaminergic tone with deep-brain stimulation (DBS) of subthalamic nucleus would reveal a site of reactivity in the ventromedial prefrontal cortex that we previously identified by modulating serotonergic and noradrenergic mechanisms by blocking serotonin-noradrenaline reuptake sites. We tested the hypothesis in patients with Parkinson's disease in whom we had measured the changes of blood flow everywhere in the brain associated with the deep brain stimulation of the subthalamic nucleus. We determined the emotional reactivity of the patients as the average impact of emotive images rated by the patients off the DBS. We then searched for sites in the brain that had significant correlation of the changes of blood flow with the emotional impact rated by the patients. The results indicate a significant link between the emotional impact when patients are not stimulated and the change of blood flow associated with the DBS. In subjects with a low emotional impact, activity measured as blood flow rose when the electrode was turned on, while in subjects of high impact, the activity at this site in the ventromedial prefrontal cortex declined when the electrode was turned on. We conclude that changes of neurotransmission in the ventromedial prefrontal cortex had an effect on the tissue that depends on changes of monoamine concentration interacting with specific combinations of inhibitory and excitatory monoamine receptors.
Targeting the subthalamic nucleus in a preclinical model of alcohol use disorder.
Pelloux, Yann; Baunez, Christelle
2017-07-01
The subthalamic nucleus (STN) has only recently been considered to have a role in reward processing. In rats, inactivation of the STN by lesion or high-frequency stimulation (HFS) decreases motivation for cocaine but increases motivation for sucrose. For ethanol, the effect of STN lesion depends on the individual's baseline intake; decreasing motivation for ethanol in rats with lower ethanol intake, while increasing motivation for ethanol in rats with higher-but still limited-ethanol intake. However, the involvement of the STN in behaviour more closely resembling some aspects of alcohol use disorder has not been assessed. This study aimed to determine the effect of STN lesions on the escalation of ethanol intake, subsequent increases in the motivation to "work" for ethanol and the choice of ethanol over a non-drug alternative. We found that STN lesion prevented increases in ethanol intake observed during intermittent ethanol access and after a long period of ethanol privation. STN lesion also decreased the motivation to work for ethanol after escalated intake. Surprisingly, STN lesion increased the choice of alcohol over saccharin. This was associated with a blunting of the hedonic responses to the taste of the reinforcement alternatives. These results evidence the involvement of the STN in different ethanol-motivated behaviours and therefore position the STN as an interesting target for the treatment of alcohol use disorders.
Jacob, Gitta A; Zvonik, Kerstin; Kamphausen, Susanne; Sebastian, Alexandra; Maier, Simon; Philipsen, Alexandra; Tebartz van Elst, Ludger; Lieb, Klaus; Tüscher, Oliver
2013-05-01
Both emotion regulation and impulsivity are core aspects of borderline personality disorder (BPD) pathology. Although both problems may be combined specifically in BPD, few studies to date have investigated the emotional modulation of impulsivity in BPD. Women with BPD and matched healthy controls performed go/no-go tasks after induction of anger, joy or a neutral mood by vocally presented short stories. Dependent variables were the behavioural results and functional magnetic resonance imaging data. We included 17 women with BPD and 18 controls in our study. No behavioural group differences were found. However, patients with BPD showed stronger activation of the left amygdala and weaker activation of the subgenual anterior cingulate during anger induction than controls. Inhibition in the go/no-go task after anger induction increased activity in the left inferior frontal cortex in controls, but not in women with BPD, who, in turn, showed increased activation in the subthalamic nucleus. Findings cannot be generalized to men, and 4 patients were taking antidepressant medication (selective serotonin reuptake inhibitors). In addition, no patient control group was investigated, thus we do not know whether findings are specific to BPD compared with other disorders. Our findings are consistent with the view that a disturbed amygdala-prefrontal network in patients with BPD is compensated by a subcortical loop involving the subthalamic nucleus, leading to normal behavioural inhibition in these patients.
Sarnthein, Johannes; Péus, Dominik; Baumann-Vogel, Heide; Baumann, Christian R; Sürücü, Oguzkan
2013-09-01
In patients with severe forms of Parkinson's disease (PD), deep brain stimulation (DBS) commonly targets the subthalamic nucleus (STN). Recently, the mean 3-D Morel-Atlas of the basal ganglia and the thalamus was introduced. It combines information contained in histological data from ten post-mortem brains. We were interested whether the Morel-Atlas is applicable for the visualization of stimulation sites. In a consecutive PD patient series, we documented preoperative MRI planning, intraoperative target adjustment based on electrophysiological and neurological testing, and perioperative CT target reconstruction. The localization of the DBS electrodes and the optimal stimulation sites were projected onto the Morel-Atlas. We included 20 patients (median age 62 years). The active contact had mean coordinates Xlat = ±12.1 mm, Yap = -1.8 mm, Zvert = -3.2 mm. There was a significant difference between the initially planned site and the coordinates of the postoperative active contact site (median 2.2 mm). The stimulation site was, on average, more anterior and more dorsal. The electrode contact used for optimal stimulation was found within the STN of the atlas in 38/40 (95 %) of implantations. The cluster of stimulation sites in individual patients-as deduced from preoperative MR, intraoperative electrophysiology and neurological testing-showed a high degree of congruence with the atlas. The mean 3D Morel Atlas is thus a useful tool for postoperative target visualization. This represents the first clinical evaluation of the recently created atlas.
So, Rosa Q; McConnell, George C; Grill, Warren M
2017-03-01
Methamphetamine-induced circling is used to quantify the behavioral effects of subthalamic nucleus (STN) deep brain stimulation (DBS) in hemiparkinsonian rats. We observed a frequency-dependent transient effect of DBS on circling, and quantified this effect to determine its neuronal basis. High frequency STN DBS (75-260Hz) resulted in transient circling contralateral to the lesion at the onset of stimulation, which was not sustained after the first several seconds of stimulation. Following the transient behavioral change, DBS resulted in a frequency-dependent steady-state reduction in pathological ipsilateral circling, but no change in overall movement. Recordings from single neurons in globus pallidus externa (GPe) and substantia nigra pars reticulata (SNr) revealed that high frequency, but not low frequency, STN DBS elicited transient changes in both firing rate and neuronal oscillatory power at the stimulation frequency in a subpopulation of GPe and SNr neurons. These transient changes were not sustained, and most neurons exhibited a different response during the steady-state phase of DBS. During the steady-state, DBS produced elevated neuronal oscillatory power at the stimulus frequency in a majority of GPe and SNr neurons, and the increase was more pronounced during high frequency DBS than during low frequency DBS. Changes in oscillatory power during both transient and steady-state DBS were highly correlated with changes in firing rates. These results suggest that distinct neural mechanisms were responsible for transient and sustained behavioral responses to STN DBS. The transient contralateral turning behavior following the onset of high frequency DBS was paralleled by transient changes in firing rate and oscillatory power in the GPe and SNr, while steady-state suppression of ipsilateral turning was paralleled by sustained increased synchronization of basal ganglia neurons to the stimulus pulses. Our analysis of distinct frequency-dependent transient and steady-state responses to DBS lays the foundation for future mechanistic studies of the immediate and persistent effects of DBS. Copyright © 2016 Elsevier B.V. All rights reserved.
Ekmekci, Hakan; Kaptan, Hulagu
2016-01-01
Camptocormia is known as "bent spine syndrome" and defined as a forward hyperflexion. The most common etiologic factor is related with the movement disorders, mainly in Parkinson's disease (PD). We present the case of a 51-year-old woman who has been followed with PD for the last 10 years, and also under the therapy for PD. An unappreciated correlation low back pain with camptocormia developed. She underwent deep brain stimulation (DBS) in the subthalamic nucleus bilaterally and improved her bending posture. The relationship between the DBS and camptocormia is discussed in this unique condition.
Rätsep, Tõnu; Asser, Toomas
2012-01-01
Disturbances of the autonomic nervous system are common in patients with Parkinson's disease (PD) but the effect of deep brain stimulation of the subthalamic nucleus on cerebrovascular reactivity is not entirely known. Seven patients in an advanced stage of the disease and seven healthy age-matched controls participated in the study, which took place after one night of drug withdrawal. Cerebral blood flow velocity was continuously monitored on both sides with transcranial Doppler ultrasound, and cerebrovascular reactivity (CR) was evaluated with the cold pressure test. The measurements were repeated and compared during the stimulation-on and -off phases. The PD patients had significantly higher CR values in the stimulation-on than -off conditions (15.1% ± 6.9 versus 9.4% ± 6.2; p = 0.03). CR values were higher in controls than in patients in the stimulation-off condition (20.4% ± 12.5 versus 9.4% ± 6.2; p = 0.007) without a significant difference with the stimulation-on phase. CR, evaluated by the response to the cold pressure test, is impaired in patients with advanced PD and improved by subthalamic nucleus. Copyright © 2012 Wiley Periodicals, Inc.
Physiological and harmonic components in neural and muscular coherence in Parkinsonian tremor.
Wang, Shouyan; Aziz, Tipu Z; Stein, John F; Bain, Peter G; Liu, Xuguang
2006-07-01
To differentiate physiological from harmonic components in coherence analysis of the tremor-related neural and muscular signals by comparing power, cross-power and coherence spectra. Influences of waveform, burst-width and additional noise on generating harmonic peaks in the power, cross-power and coherence spectra were studied using simulated signals. The local field potentials (LFPs) of the subthalamic nucleus (STN) and the EMGs of the contralateral forearm muscles in PD patients with rest tremor were analysed. (1) Waveform had significant effect on generating harmonics; (2) noise significantly decreased the coherence values in a frequency-dependent fashion; and (3) cross-spectrum showed high resistance to harmonics. Among six examples of paired LFP-EMG signals, significant coherence appeared at the tremor frequency only, both the tremor and double tremor frequencies and the double-tremor frequency only. In coherence analysis of neural and muscular signals, distortion in waveform generates significant harmonic peaks in the coherence spectra and the coherence values of both physiological and harmonic components are modulated by extra noise or non-tremor related activity. The physiological or harmonic nature of a coherence peak at the double tremor frequency may be differentiated when the coherence spectra are compared with the power and in particular the cross-power spectra.
Gronchi-Perrin, Aline; Viollier, Sarah; Ghika, Joseph; Combremont, Pierre; Villemure, Jean-Guy; Bogousslavsky, Julien; Burkhard, Pierre R; Vingerhoets, François
2006-09-01
We investigated the impact of subthalamic nucleus (STN) deep brain stimulation (DBS) on quality of life (QOL) in patients with advanced Parkinson's disease, as self-assessed before and after surgery by completing the Parkinson's Disease Questionnaire (PDQ39). In addition to this prospective evaluation, we asked patients postoperatively to evaluate their preoperative QOL. In the prospective assessment, results showed that patients perceived a general improvement of QOL after the STN DBS. However, when evaluated retrospectively, they tended to overestimate their preoperative functioning, therefore obscuring the improvement found prospectively. This observation highlights the impact of the method used on obtained results when assessing the effects of STN DBS. (c) 2006 Movement Disorder Society.
Deep brain stimulation mechanisms: beyond the concept of local functional inhibition.
Deniau, Jean-Michel; Degos, Bertrand; Bosch, Clémentine; Maurice, Nicolas
2010-10-01
Deep brain electrical stimulation has become a recognized therapy in the treatment of a variety of motor disorders and has potentially promising applications in a wide range of neurological diseases including neuropsychiatry. Behavioural observation that electrical high-frequency stimulation of a given brain area induces an effect similar to a lesion suggested a mechanism of functional inhibition. In vitro and in vivo experiments as well as per operative recordings in patients have revealed a variety of effects involving local changes of neuronal excitability as well as widespread effects throughout the connected network resulting from activation of axons, including antidromic activation. Here we review current data regarding the local and network activity changes induced by high-frequency stimulation of the subthalamic nucleus and discuss this in the context of motor restoration in Parkinson's disease. Stressing the important functional consequences of axonal activation in deep brain stimulation mechanisms, we highlight the importance of developing anatomical knowledge concerning the fibre connections of the putative therapeutic targets. © 2010 The Authors. European Journal of Neuroscience © 2010 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Cury, Rubens G; Galhardoni, Ricardo; Teixeira, Manoel J; Dos Santos Ghilardi, Maria G; Silva, Valquiria; Myczkowski, Martin L; Marcolin, Marco A; Barbosa, Egberto R; Fonoff, Erich T; Ciampi de Andrade, Daniel
2016-12-01
Subthalamic deep brain stimulation (STN-DBS) is used to treat refractory motor complications in Parkinson disease (PD), but its effects on nonmotor symptoms remain uncertain. Up to 80% of patients with PD may have pain relief after STN-DBS, but it is unknown whether its analgesic properties are related to potential effects on sensory thresholds or secondary to motor improvement. We have previously reported significant and long-lasting pain relief after DBS, which did not correlate with motor symptomatic control. Here we present secondary data exploring the effects of DBS on sensory thresholds in a controlled way and have explored the relationship between these changes and clinical pain and motor improvement after surgery. Thirty-seven patients were prospectively evaluated before STN-DBS and 12 months after the procedure compared with healthy controls. Compared with baseline, patients with PD showed lower thermal and mechanical detection and higher cold pain thresholds after surgery. There were no changes in heat and mechanical pain thresholds. Compared with baseline values in healthy controls, patients with PD had higher thermal and mechanical detection thresholds, which decreased after surgery toward normalization. These sensory changes had no correlation with motor or clinical pain improvement after surgery. These data confirm the existence of sensory abnormalities in PD and suggest that STN-DBS mainly influenced the detection thresholds rather than painful sensations. However, these changes may depend on the specific effects of DBS on somatosensory loops with no correlation to motor or clinical pain improvement.
Zhang, Xiaona
2018-01-01
Bilateral deep brain stimulation of subthalamic nucleus (STN-DBS) has proven effective in improving motor symptoms in Parkinson's disease (PD) patients. However, psychiatric changes after surgery are controversial. In this study, we specifically analyzed apathy following bilateral STN-DBS in PD patients using a meta-analysis. Relevant articles utilized for this study were obtained through literature search on PubMed, ScienceDirect, and Embase databases. The articles included were those contained both pre- and postsurgery apathy data acquired using the Starkstein Apathy Scale or Apathy Evaluation Scale with patient follow-up of at least three months. A total of 9 out of 86 articles were included in our study through this strict screening process. Standardized mean difference (SMD), that is, Cohen's d, with a 95% confidence interval (CI) was calculated to show the change. We found a significant difference between the presurgery stage and the postsurgery stage scores (SMD = 0.35, 95% CI: 0.17∼0.52, P < 0.001). STN-DBS seems to relatively worsen the condition of apathy, which may result from both the surgery target (subthalamic nucleus) and the reduction of dopaminergic medication. Further studies should focus on the exact mechanisms of possible postoperative apathy in the future.
Sensory contribution to vocal emotion deficit in Parkinson's disease after subthalamic stimulation.
Péron, Julie; Cekic, Sezen; Haegelen, Claire; Sauleau, Paul; Patel, Sona; Drapier, Dominique; Vérin, Marc; Grandjean, Didier
2015-02-01
Subthalamic nucleus (STN) deep brain stimulation in Parkinson's disease induces modifications in the recognition of emotion from voices (or emotional prosody). Nevertheless, the underlying mechanisms are still only poorly understood, and the role of acoustic features in these deficits has yet to be elucidated. Our aim was to identify the influence of acoustic features on changes in emotional prosody recognition following STN stimulation in Parkinson's disease. To this end, we analysed the performances of patients on vocal emotion recognition in pre-versus post-operative groups, as well as of matched controls, entering the acoustic features of the stimuli into our statistical models. Analyses revealed that the post-operative biased ratings on the Fear scale when patients listened to happy stimuli were correlated with loudness, while the biased ratings on the Sadness scale when they listened to happiness were correlated with fundamental frequency (F0). Furthermore, disturbed ratings on the Happiness scale when the post-operative patients listened to sadness were found to be correlated with F0. These results suggest that inadequate use of acoustic features following subthalamic stimulation has a significant impact on emotional prosody recognition in patients with Parkinson's disease, affecting the extraction and integration of acoustic cues during emotion perception. Copyright © 2014 Elsevier Ltd. All rights reserved.
Subthalamic hGAD65 Gene Therapy and Striatum TH Gene Transfer in a Parkinson’s Disease Rat Model
Zheng, Deyu; Jiang, Xiaohua; Zhao, Junpeng; Duan, Deyi; Zhao, Huanying; Xu, Qunyuan
2013-01-01
The aim of the present study is to detect a combination method to utilize gene therapy for the treatment of Parkinson’s disease (PD). Here, a PD rat model is used for the in vivo gene therapy of a recombinant adeno-associated virus (AAV2) containing a human glutamic acid decarboxylase 65 (rAAV2-hGAD65) gene delivered to the subthalamic nucleus (STN). This is combined with the ex vivo gene delivery of tyrosine hydroxylase (TH) by fibroblasts injected into the striatum. After the treatment, the rotation behavior was improved with the greatest efficacy in the combination group. The results of immunohistochemistry showed that hGAD65 gene delivery by AAV2 successfully led to phenotypic changes of neurons in STN. And the levels of glutamic acid and GABA in the internal segment of the globus pallidus (GPi) and substantia nigra pars reticulata (SNr) were obviously lower than the control groups. However, hGAD65 gene transfer did not effectively protect surviving dopaminergic neurons in the SNc and VTA. This study suggests that subthalamic hGAD65 gene therapy and combined with TH gene therapy can alleviate symptoms of the PD model rats, independent of the protection the DA neurons from death. PMID:23738148
Sensory contribution to vocal emotion deficit in Parkinson’s disease after subthalamic stimulation
Péron, Julie; Cekic, Sezen; Haegelen, Claire; Sauleau, Paul; Patel, Sona; Drapier, Dominique; Vérin, Marc; Grandjean, Didier
2016-01-01
Subthalamic nucleus (STN) deep brain stimulation in Parkinson’s disease induces modifications in the recognition of emotion from voices (or emotional prosody). Nevertheless, the underlying mechanisms are still only poorly understood, and the role of acoustic features in these deficits has yet to be elucidated. Our aim was to identify the influence of acoustic features on changes in emotional prosody recognition following STN stimulation in Parkinson’s disease. To this end, we analysed the performances of patients on vocal emotion recognition in pre-versus post-operative groups, as well as of matched controls, entering the acoustic features of the stimuli into our statistical models. Analyses revealed that the post-operative biased ratings on the Fear scale when patients listened to happy stimuli were correlated with loudness, while the biased ratings on the Sadness scale when they listened to happiness were correlated with fundamental frequency (F0). Furthermore, disturbed ratings on the Happiness scale when the post-operative patients listened to sadness were found to be correlated with F0. These results suggest that inadequate use of acoustic features following subthalamic stimulation has a significant impact on emotional prosody recognition in patients with Parkinson’s disease, affecting the extraction and integration of acoustic cues during emotion perception. PMID:25282055
Jech, Robert; Mueller, Karsten; Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9-15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4).In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation.
Urgošík, Dušan; Sieger, Tomáš; Holiga, Štefan; Růžička, Filip; Dušek, Petr; Havránková, Petra; Vymazal, Josef; Růžička, Evžen
2012-01-01
Electrode implantation into the subthalamic nucleus for deep brain stimulation in Parkinson's disease (PD) is associated with a temporary motor improvement occurring prior to neurostimulation. We studied this phenomenon by functional magnetic resonance imaging (fMRI) when considering the Unified Parkinson's Disease Rating Scale (UPDRS-III) and collateral oedema. Twelve patients with PD (age 55.9± (SD)6.8 years, PD duration 9–15 years) underwent bilateral electrode implantation into the subthalamic nucleus. The fMRI was carried out after an overnight withdrawal of levodopa (OFF condition): (i) before and (ii) within three days after surgery in absence of neurostimulation. The motor task involved visually triggered finger tapping. The OFF/UPDRS-III score dropped from 33.8±8.7 before to 23.3±4.8 after the surgery (p<0.001), correlating with the postoperative oedema score (p<0.05). During the motor task, bilateral activation of the thalamus and basal ganglia, motor cortex and insula were preoperatively higher than after surgery (p<0.001). The results became more enhanced after compensation for the oedema and UPDRS-III scores. In addition, the rigidity and axial symptoms score correlated inversely with activation of the putamen and globus pallidus (p<0.0001). One month later, the OFF/UPDRS-III score had returned to the preoperative level (35.8±7.0, p = 0.4). In conclusion, motor improvement induced by insertion of an inactive electrode into the subthalamic nucleus caused an acute microlesion which was at least partially related to the collateral oedema and associated with extensive impact on the motor network. This was postoperatively manifested as lowered movement-related activation at the cortical and subcortical levels and differed from the known effects of neurostimulation or levodopa. The motor system finally adapted to the microlesion within one month as suggested by loss of motor improvement and good efficacy of deep brain stimulation. PMID:23145068
Marin, C; Aguilar, E; Rodríguez-Oroz, M C; Bartoszyk, G D; Obeso, J A
2009-06-01
Dyskinesia affects the majority of levodopa-treated parkinsonian patients within 5-10 years of treatment with levodopa. Clinical and preclinical observations suggest that an increase in serotoninergic transmission can contribute to the appearance of dyskinesias. It is thus conceivable that a modulation of synaptic dopamine (DA) levels induced by the inhibition of serotonin (5-HT) release, as a consequence of 5-HT(1A) agonists administration, might alleviate dyskinesias. Since 5-HT(1A) receptors are expressed in the subthalamic nucleus (STN), the aim of the present study was to assess the effect of the intrasubthalamic administration of sarizotan, a compound with full 5-HT(1A) agonist properties, on levodopa-induced dyskinesias in the 6-hydroxydopamine (6-OHDA) model of parkinsonism. Male Sprague-Dawley rats received a unilateral 6-OHDA administration in the nigrostriatal pathway. A test of apomorphine was performed to evaluate dopamine depletion. One week later, a cannula was implanted in the STN. Animals were treated with levodopa (6 mg/kg, i.p., twice at day) for 22 consecutive days. On day 23, several doses (1 ng, 10 ng, or 1 microg) of sarizotan were administered through the cannula to the STN. The higher doses of sarizotan effectively attenuated all levodopa-induced dyskinesias including axial, limb, and orolingual subtypes. These results suggest that the STN is a target structure for the antidyskinetic action of sarizotan and indicate that drug-mediated modulation of STN activity may be an alternative option for the treatment of levodopa-induced dyskinesias in Parkinson's disease.
Zavala, Baltazar; Brittain, John-Stuart; Jenkinson, Ned; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Green, Alexander L; Aziz, Tipu; Zaghloul, Kareem; Brown, Peter
2013-09-11
The subthalamic nucleus (STN) is thought to play a central role in modulating responses during conflict. Computational models have suggested that the location of the STN in the basal ganglia, as well as its numerous connections to conflict-related cortical structures, allows it to be ideally situated to act as a global inhibitor during conflict. Additionally, recent behavioral experiments have shown that deep brain stimulation to the STN results in impulsivity during high-conflict situations. However, the precise mechanisms that mediate the "hold-your-horses" function of the STN remain unclear. We recorded from deep brain stimulation electrodes implanted bilaterally in the STN of 13 human subjects with Parkinson's disease while they performed a flanker task. The incongruent trials with the shortest reaction times showed no behavioral or electrophysiological differences from congruent trials, suggesting that the distracter stimuli were successfully ignored. In these trials, cue-locked STN theta band activity demonstrated phase alignment across trials and was followed by a periresponse increase in theta power. In contrast, incongruent trials with longer reaction times demonstrated a relative reduction in theta phase alignment followed by higher theta power. Theta phase alignment negatively correlated with subject reaction time, and theta power positively correlated with trial reaction time. Thus, when conflicting stimuli are not properly ignored, disruption of STN theta phase alignment may help operationalize the hold-your-horses role of the nucleus, whereas later increases in the amplitude of theta oscillations may help overcome this function.
Wong, Stephen; Hargreaves, Eric L; Baltuch, Gordon H; Jaggi, Jurg L; Danish, Shabbar F
2012-01-01
Microelectrode recording (MER) is necessary for precision localization of target structures such as the subthalamic nucleus during deep brain stimulation (DBS) surgery. Attempts to automate this process have produced quantitative temporal trends (feature activity vs. time) extracted from mobile MER data. Our goal was to evaluate computational methods of generating spatial profiles (feature activity vs. depth) from temporal trends that would decouple automated MER localization from the clinical procedure and enhance functional localization in DBS surgery. We evaluated two methods of interpolation (standard vs. kernel) that generated spatial profiles from temporal trends. We compared interpolated spatial profiles to true spatial profiles that were calculated with depth windows, using correlation coefficient analysis. Excellent approximation of true spatial profiles is achieved by interpolation. Kernel-interpolated spatial profiles produced superior correlation coefficient values at optimal kernel widths (r = 0.932-0.940) compared to standard interpolation (r = 0.891). The choice of kernel function and kernel width resulted in trade-offs in smoothing and resolution. Interpolation of feature activity to create spatial profiles from temporal trends is accurate and can standardize and facilitate MER functional localization of subcortical structures. The methods are computationally efficient, enhancing localization without imposing additional constraints on the MER clinical procedure during DBS surgery. Copyright © 2012 S. Karger AG, Basel.
Chattha, P K; Greene, P E; Ramdhani, Ritesh A
2015-01-01
Pseudobulbar affect is a common symptom in neurodegenerative diseases and can also result from lesions in cortical, subcortical and brainstem regions. In Parkinson's disease (PD), pseudobulbar affect (PBA) can occur as a wearing off phenomenon, manifested usually as crying without emotionality. In addition, subthalamic (STN) deep brain stimulation (DBS) has been reported to induce PBA in PD patients with no prior history of such episodes. We present a case of inappropriate laughter lacking mirth as a levodopa OFF phenomenon in a patient with PD, whose laughter also worsened with STN-DBS in his non-medicated state. Levodopa ameliorated his PBA both with and without stimulation. The case demonstrates pseudobulbar laughter as a levodopa OFF phenomenon that is also exacerbated by STN-DBS.
Quality of life outcome after subthalamic stimulation in Parkinson's disease depends on age.
Dafsari, Haidar S; Reker, Paul; Stalinski, Lisa; Silverdale, Monty; Rizos, Alexandra; Ashkan, Keyoumars; Barbe, Michael T; Fink, Gereon R; Evans, Julian; Steffen, Julia; Samuel, Michael; Dembek, Till A; Visser-Vandewalle, Veerle; Antonini, Angelo; Ray-Chaudhuri, K; Martinez-Martin, Pablo; Timmermann, Lars
2018-01-01
The purpose of this study was to investigate how quality of life outcome after bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) depends on age. In this prospective, open-label, multicenter study including 120 PD patients undergoing bilateral STN-DBS, we investigated the PDQuestionnaire-8 (PDQ-8), Unified PD Rating Scale-III, Scales for Outcomes in PD-motor examination, complications, activities of daily living, and levodopa equivalent daily dose preoperatively and at 5 months follow-up. Significant changes at follow-up were analyzed with Wilcoxon signed-rank test and Bonferroni correction for multiple comparisons. To explore the influence of age post hoc, the patients were classified into 3 age groups (≤59, 60-69, ≥70 years). Intragroup changes were analyzed with Wilcoxon signed-rank and intergroup differences with Kruskal-Wallis tests. The strength of clinical responses was evaluated using effect size. The PDQuestionnaire-8, Scales for Outcomes in PD-motor complications, activities of daily living, and levodopa equivalent daily dose significantly improved in the overall cohort and all age groups with no significant intergroup differences. However, PDQuestionnaire-8 effect sizes for age groups ≤59, 60 to 69, and ≥70 years, respectively, were strong, moderate, and small. Furthermore, PDQuestionnaire-8 domain analyses revealed that all domains except cognition and emotional well-being significantly improved in patients aged ≤59 years, whereas only communication, activities of daily living, and stigma improved in patients aged 60-69 years, and activities of daily living and stigma in patients aged ≥70 years. Although quality of life, motor complications, and activities of daily living significantly improved in all age groups after bilateral STN-DBS, the beneficial effect on overall quality of life was more pronounced and affected a wider range of quality of life domains in younger patients. © 2017 International Parkinson and Movement Disorder Society. © 2017 International Parkinson and Movement Disorder Society.
Facial dysmorphism in Leigh syndrome with SURF-1 mutation and COX deficiency.
Yüksel, Adnan; Seven, Mehmet; Cetincelik, Umran; Yeşil, Gözde; Köksal, Vedat
2006-06-01
Leigh syndrome is an inherited, progressive neurodegenerative disorder of infancy and childhood. Mutations in the nuclear SURF-1 gene are specifically associated with cytochrome C oxidase-deficient Leigh syndrome. This report describes two patients with similar facial features. One of them was a 2(1/2)-year-old male, and the other was a 3-year-old male with a mutation in SURF-1 gene and facial dysmorphism including frontal bossing, brachycephaly, hypertrichosis, lateral displacement of inner canthi, esotropia, maxillary hypoplasia, hypertrophic gums, irregularly placed teeth, upturned nostril, low-set big ears, and retrognathi. The first patient's magnetic resonance imaging at 15 months of age indicated mild symmetric T2 prolongation involving the subthalamic nuclei. His second magnetic resonance imaging at 2 years old revealed a symmetric T2 prolongation involving the subthalamic nuclei, substantia nigra, and medulla lesions. In the second child, at the age of 2 the first magnetic resonance imaging documented heavy brainstem and subthalamic nuclei involvement. A second magnetic resonance imaging, performed when he was 3 years old, revealed diffuse involvement of the substantia nigra and hyperintense lesions of the central tegmental tract in addition to previous lesions. Facial dysmorphism and magnetic resonance imaging findings, observed in these cases, can be specific findings in Leigh syndrome patients with cytochrome C oxidase deficiency. SURF-1 gene mutations must be particularly reviewed in such patients.
The impact of Parkinson's disease and subthalamic deep brain stimulation on reward processing.
Evens, Ricarda; Stankevich, Yuliya; Dshemuchadse, Maja; Storch, Alexander; Wolz, Martin; Reichmann, Heinz; Schlaepfer, Thomas E; Goschke, Thomas; Lueken, Ulrike
2015-08-01
Due to its position in cortico-subthalamic and cortico-striatal pathways, the subthalamic nucleus (STN) is considered to play a crucial role not only in motor, but also in cognitive and motivational functions. In the present study we aimed to characterize how different aspects of reward processing are affected by disease and deep brain stimulation of the STN (DBS-STN) in patients with idiopathic Parkinson's disease (PD). We compared 33 PD patients treated with DBS-STN under best medical treatment (DBS-on, medication-on) to 33 PD patients without DBS, but optimized pharmacological treatment and 34 age-matched healthy controls. We then investigated DBS-STN effects using a postoperative stimulation-on/ -off design. The task set included a delay discounting task, a task to assess changes in incentive salience attribution, and the Iowa Gambling Task. The presence of PD was associated with increased incentive salience attribution and devaluation of delayed rewards. Acute DBS-STN increased risky choices in the Iowa Gambling Task under DBS-on condition, but did not further affect incentive salience attribution or the evaluation of delayed rewards. Findings indicate that acute DBS-STN affects specific aspects of reward processing, including the weighting of gains and losses, while larger-scale effects of disease or medication are predominant in others reward-related functions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neuroprotection for the new millennium. Matchmaking pharmacology and technology
NASA Technical Reports Server (NTRS)
Andrews, R. J.
2001-01-01
A major theme of the 1990s in the pathophysiology of nervous system injury has been the multifactorial etiology of irreversible injury. Multiple causes imply multiple opportunities for therapeutic intervention--hence the abandonment of the "magic bullet" single pharmacologic agent for neuroprotection in favor of pharmacologic "cocktails". A second theme of the 1990s has been the progress in technology for neuroprotection, minimally- or non-invasive monitoring as well as treatment. Cardiac stenting has eliminated the need, in many cases, for open heart surgery; deep brain stimulation for Parkinson's disease has offered significant improvement in quality of life for many who had exhausted cocktail drug treatment for their disease. Deep brain stimulation of the subthalamic nucleus offers a novel treatment for Parkinson's disease where a technological advance may actually be an intervention with effects that are normally expected from pharmacologic agents. Rather than merely "jamming" the nervous system circuits involved in Parkinson's disease, deep brain stimulation of the subthalamic nucleus appears to improve the neurotransmitter imbalance that lies at the heart of Parkinson's disease. It may also slow the progression of the disease. Given the example of deep brain stimulation of the subthalamic nucleus for Parkinson's disease, in future one may expect other technological or "hardware" interventions to influence the programming or "software" of the nervous system's physiologic response in certain disease states.
Coenen, Volker Arnd; Rijntjes, Michel; Prokop, Thomas; Piroth, Tobias; Amtage, Florian; Urbach, Horst; Reinacher, Peter Christoph
2016-04-01
Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson's syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. Both patients showed immediate and sustained improvement of their tremor, bilaterally. The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients' symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach ( www.clinicaltrials.gov ; NCT02288468) is the focus of our ongoing research.
Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus.
Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D
2008-12-01
The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na(+) (Na(v)) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of approximately 5 m s(-1) and approximately 0.7 m s(-1), respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na(+)] ACSF or the selective Na(v) channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Na(v) channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABA(A) receptors regulates the axonal initiation of action potentials.
Autonomous initiation and propagation of action potentials in neurons of the subthalamic nucleus
Atherton, Jeremy F; Wokosin, David L; Ramanathan, Sankari; Bevan, Mark D
2008-01-01
The activity of the subthalamic nucleus (STN) is intimately related to movement and is generated, in part, by voltage-dependent Na+ (Nav) channels that drive autonomous firing. In order to determine the principles underlying the initiation and propagation of action potentials in STN neurons, 2-photon laser scanning microscopy was used to guide tight-seal whole-cell somatic and loose-seal cell-attached axonal/dendritic patch-clamp recordings and compartment-selective ion channel manipulation in rat brain slices. Action potentials were first detected in a region that corresponded most closely to the unmyelinated axon initial segment, as defined by Golgi and ankyrin G labelling. Following initiation, action potentials propagated reliably into axonal and somatodendritic compartments with conduction velocities of ∼5 m s−1 and ∼0.7 m s−1, respectively. Action potentials generated by neurons with axons truncated within or beyond the axon initial segment were not significantly different. However, axon initial segment and somatic but not dendritic or more distal axonal application of low [Na+] ACSF or the selective Nav channel blocker tetrodotoxin consistently depolarized action potential threshold. Finally, somatodendritic but not axonal application of GABA evoked large, rapid inhibitory currents in concordance with electron microscopic analyses, which revealed that the somatodendritic compartment was the principal target of putative inhibitory inputs. Together the data are consistent with the conclusions that in STN neurons the axon initial segment and soma express an excess of Nav channels for the generation of autonomous activity, while synaptic activation of somatodendritic GABAA receptors regulates the axonal initiation of action potentials. PMID:18832425
Subthalamic nucleus deep brain stimulation impacts language in early Parkinson's disease.
Phillips, Lara; Litcofsky, Kaitlyn A; Pelster, Michael; Gelfand, Matthew; Ullman, Michael T; Charles, P David
2012-01-01
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated.
Subthalamic Nucleus Deep Brain Stimulation Impacts Language in Early Parkinson's Disease
Phillips, Lara; Litcofsky, Kaitlyn A.; Pelster, Michael; Gelfand, Matthew
2012-01-01
Although deep brain stimulation (DBS) of the basal ganglia improves motor outcomes in Parkinson's disease (PD), its effects on cognition, including language, remain unclear. This study examined the impact of subthalamic nucleus (STN) DBS on two fundamental capacities of language, grammatical and lexical functions. These functions were tested with the production of regular and irregular past-tenses, which contrast aspects of grammatical (regulars) and lexical (irregulars) processing while controlling for multiple potentially confounding factors. Aspects of the motor system were tested by contrasting the naming of manipulated (motor) and non-manipulated (non-motor) objects. Performance was compared between healthy controls and early-stage PD patients treated with either DBS/medications or medications alone. Patients were assessed on and off treatment, with controls following a parallel testing schedule. STN-DBS improved naming of manipulated (motor) but not non-manipulated (non-motor) objects, as compared to both controls and patients with just medications, who did not differ from each other across assessment sessions. In contrast, STN-DBS led to worse performance at regulars (grammar) but not irregulars (lexicon), as compared to the other two subject groups, who again did not differ. The results suggest that STN-DBS negatively impacts language in early PD, but may be specific in depressing aspects of grammatical and not lexical processing. The finding that STN-DBS affects both motor and grammar (but not lexical) functions strengthens the view that both depend on basal ganglia circuitry, although the mechanisms for its differential impact on the two (improved motor, impaired grammar) remain to be elucidated. PMID:22880117
Li, Min; Zhou, Ming; Wen, Peng; Wang, Qiang; Yang, Yong; Xiao, Hu; Xie, Zhengyuan; Li, Xing; Wang, Ning; Wang, Jinyan; Luo, Fei; Chang, Jingyu; Zhang, Wangming
2016-08-01
Oscillatory activity has been well-studied in many structures within cortico-basal ganglia circuits, but it is not well understood within the pedunculopontine nucleus (PPN), which was recently introduced as a potential target for the treatment of gait and postural impairments in advanced stages of Parkinson's disease (PD). To investigate oscillatory activity in the PPN and its relationship with oscillatory activity in cortico-basal ganglia circuits, we simultaneously recorded local field potentials in the PPN, primary motor cortex (M1), and subthalamic nucleus (STN) of 6-hydroxydopamine (6-OHDA)-induced hemiparkinsonian rats during resting and walking. After analysis of power spectral density, coherence, and partial Granger causality, three major findings emerged: 1) after 6-OHDA lesions, beta band oscillations were enhanced in all three regions during walking; 2) the direction of information flow for beta oscillations among the three structures was STN→M1, STN→PPN, and PPN→M1; 3) after the treatment of levodopa, beta activity in the three regions was reduced significantly and the flow of beta band was also abrogated. Our results suggest that beta activity in the PPN is transmitted from the basal ganglia and probably comes from the STN, and the STN plays a dominant role in the network of causal interactions for beta activity. Thus, the STN may be a potential source of aberrant beta band oscillations in PD. Levodopa can inhibit beta activity in the PPN of parkinsonian rats but cannot relieve parkinsonian patients' axial symptoms clinically. Therefore, beta oscillations may not be the major cause of axial symptoms. Copyright © 2016 Elsevier Inc. All rights reserved.
Parkinsonian Rest Tremor Is Associated With Modulations of Subthalamic High-Frequency Oscillations.
Hirschmann, Jan; Butz, Markus; Hartmann, Christian J; Hoogenboom, Nienke; Özkurt, Tolga E; Vesper, Jan; Wojtecki, Lars; Schnitzler, Alfons
2016-10-01
High frequency oscillations (>200 Hz) have been observed in the basal ganglia of PD patients and were shown to be modulated by the administration of levodopa and voluntary movement. The objective of this study was to test whether the power of high-frequency oscillations in the STN is associated with spontaneous manifestation of parkinsonian rest tremor. The electromyogram of both forearms and local field potentials from the STN were recorded in 11 PD patients (10 men, age 58 [9.4] years, disease duration 9.2 [6.3] years). Patients were recorded at rest and while performing repetitive hand movements before and after levodopa intake. High-frequency oscillation power was compared across epochs containing rest tremor, tremor-free rest, or voluntary movement and related to the tremor cycle. We observed prominent slow (200-300 Hz) and fast (300-400 Hz) high-frequency oscillations. The ratio between slow and fast high-frequency oscillation power increased when tremor became manifest. This increase was consistent across nuclei (94%) and occurred in medication ON and OFF. The ratio outperformed other potential markers of tremor, such as power at individual tremor frequency, beta power, or low gamma power. For voluntary movement, we did not observe a significant difference when compared with rest or rest tremor. Finally, rhythmic modulations of high-frequency oscillation power occurred within the tremor cycle. Subthalamic high-frequency oscillation power is closely linked to the occurrence of parkinsonian rest tremor. The balance between slow and fast high-frequency oscillation power combines information on motor and medication state. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter
2013-01-01
Parkinson’s disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson’s disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = −4.4, p<0.001). There was significant coherence between the two sides in the beta range in 19 of the subjects. Coherence was selectively attenuated in the low beta range following levodopa (t22 = −2.7; p = 0.01). We also separately analysed amplitude co-modulation and phase synchronisation in the beta band and found significant amplitude co-modulation and phase locking values in 17 and 16 subjects respectively, off medication. There was a dissociable effect of levodopa on these measures, with a significant suppression only in low beta phase locking value (t22 = −2.8, p = 0.01) and not amplitude co-modulation. The absolute mean values of amplitude co-modulation (0.40±0.03) and phase synchronisation (0.29±0.02) off medication were, however, relatively low, suggesting that the two basal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei. PMID:24376574
Localization of Basal Ganglia and Thalamic Damage in Dyskinetic Cerebral Palsy.
Aravamuthan, Bhooma R; Waugh, Jeff L
2016-01-01
Dyskinetic cerebral palsy affects 15%-20% of patients with cerebral palsy. Basal ganglia injury is associated with dyskinetic cerebral palsy, but the patterns of injury within the basal ganglia predisposing to dyskinetic cerebral palsy are unknown, making treatment difficult. For example, deep brain stimulation of the globus pallidus interna improves dystonia in only 40% of patients with dyskinetic cerebral palsy. Basal ganglia injury heterogeneity may explain this variability. To investigate this, we conducted a qualitative systematic review of basal ganglia and thalamic damage in dyskinetic cerebral palsy. Reviews and articles primarily addressing genetic or toxic causes of cerebral palsy were excluded yielding 22 studies (304 subjects). Thirteen studies specified the involved basal ganglia nuclei (subthalamic nucleus, caudate, putamen, globus pallidus, or lentiform nuclei, comprised by the putamen and globus pallidus). Studies investigating the lentiform nuclei (without distinguishing between the putamen and globus pallidus) showed that all subjects (19 of 19) had lentiform nuclei damage. Studies simultaneously but independently investigating the putamen and globus pallidus also showed that all subjects (35 of 35) had lentiform nuclei damage (i.e., putamen or globus pallidus damage); this was followed in frequency by damage to the putamen alone (70 of 101, 69%), the subthalamic nucleus (17 of 25, 68%), the thalamus (88 of 142, 62%), the globus pallidus (7/35, 20%), and the caudate (6 of 47, 13%). Globus pallidus damage was almost always coincident with putaminal damage. Noting consistent involvement of the lentiform nuclei in dyskinetic cerebral palsy, these results could suggest two groups of patients with dyskinetic cerebral palsy: those with putamen-predominant damage and those with panlenticular damage involving both the putamen and the globus pallidus. Differentiating between these groups could help predict response to therapies such as deep brain stimulation. Copyright © 2016 Elsevier Inc. All rights reserved.
The role of cortical oscillations in a spiking neural network model of the basal ganglia.
Fountas, Zafeirios; Shanahan, Murray
2017-01-01
Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8-12Hz) and beta (13-30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus-globus pallidus loop. In contrast, gamma (30-90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders.
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth R; Penny, William D; Zrinzo, Ludvic; Hariz, Marwan I; Limousin, Patricia; Friston, Karl J; Brown, Peter
2010-05-01
Insight into how brain structures interact is critical for understanding the principles of functional brain architectures and may lead to better diagnosis and therapy for neuropsychiatric disorders. We recorded, simultaneously, magnetoencephalographic (MEG) signals and subcortical local field potentials (LFP) in a Parkinson's disease (PD) patient with bilateral deep brain stimulation (DBS) electrodes in the subthalamic nucleus (STN). These recordings offer a unique opportunity to characterize interactions between the subcortical structures and the neocortex. However, high-amplitude artefacts appeared in the MEG. These artefacts originated from the percutaneous extension wire, rather than from the actual DBS electrode and were locked to the heart beat. In this work, we show that MEG beamforming is capable of suppressing these artefacts and quantify the optimal regularization required. We demonstrate how beamforming makes it possible to localize cortical regions whose activity is coherent with the STN-LFP, extract artefact-free virtual electrode time-series from regions of interest and localize cortical areas exhibiting specific task-related power changes. This furnishes results that are consistent with previously reported results using artefact-free MEG data. Our findings demonstrate that physiologically meaningful information can be extracted from heavily contaminated MEG signals and pave the way for further analysis of combined MEG-LFP recordings in DBS patients. 2009 Elsevier Inc. All rights reserved.
Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter
2013-10-01
The basal ganglia may play an important role in the control of motor scaling or effort. Recently local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that local increases in the synchronisation of neurons in the gamma frequency band may correlate with force or effort. Whether this feature uniquely codes for effort and whether such a coding mechanism holds true over a range of efforts is unclear. Here we investigated the relationship between frequency-specific oscillatory activities in the subthalamic nucleus (STN) and manual grips made with different efforts. The latter were self-rated using the 10 level Borg scale ranging from 0 (no effort) to 10 (maximal effort). STN LFP activities were recorded in patients with Parkinson's Disease (PD) who had undergone functional surgery. Patients were studied while motor performance was improved by dopaminergic medication. In line with previous studies we observed power increase in the theta/alpha band (4-12 Hz), power suppression in the beta band (13-30 Hz) and power increase in the gamma band (55-90 Hz) and high frequency band (101-375 Hz) during voluntary grips. Beta suppression deepened, and then reached a floor level as effort increased. Conversely, gamma and high frequency power increases were enhanced during grips made with greater effort. Multiple regression models incorporating the four different spectral changes confirmed that the modulation of power in the beta band was the only independent predictor of effort during grips made with efforts rated <5. In contrast, increases in gamma band activity were the only independent predictor of effort during grips made with efforts ≥5. Accordingly, the difference between power changes in the gamma and beta bands correlated with effort across all effort levels. These findings suggest complementary roles for changes in beta and gamma band activities in the STN in motor effort coding. The latter function is thought to be impaired in untreated PD where task-related reactivity in these two bands is deficient. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Li, D; Zuo, C; Guan, Y; Zhao, Y; Shen, J; Zan, S; Sun, B
2006-01-01
The aim of the study was to evaluate the changes in regional cerebral metabolic rate of glucose (rCMRGlu) induced by bilateral subthalamic nucleurs (STN) stimulation in advanced Parkinson's disease (PD). 18F-Fluorodeoxyglucose (FDG) PET data obtained before and one month after stimulation were analyzed with statistical parametric mapping (SPM). As a result of clinically effective bilateral STN stimulation, rCMRGlu increased in lateral globus pallidus (GP), upper brain stem, dorsolateral prefrontal cortex (DLPFC) and posterior parietal-occipital cortex, and decreased in the orbital frontal cortex and parahippocampus gyrus (p < 0.001). We conclude that the alleviation of clinical symptoms in advanced PD by bilateral STN stimulation may be the result of activation of both ascending and descending pathways from STN and of restoration of the impaired higher-order cortex functions.
Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson's disease.
Pellaprat, Jean; Ory-Magne, Fabienne; Canivet, Cindy; Simonetta-Moreau, Marion; Lotterie, Jean-Albert; Radji, Fatai; Arbus, Christophe; Gerdelat, Angélique; Chaynes, Patrick; Brefel-Courbon, Christine
2014-06-01
In Parkinson's disease (PD), chronic pain is a common symptom which markedly affects the quality of life. Some physiological arguments proposed that Deep Brain Stimulation of the Subthalamic Nucleus (STN-DBS) could improve pain in PD. We investigated in 58 PD patients the effect of STN-DBS on pain using the short McGill Pain Questionnaire and other pain parameters such as the Bodily discomfort subscore of the Parkinson's disease Questionnaire 39 and the Unified Parkinson's Disease Rating Scale section II (UPDRS II) item 17. All pain scores were significantly improved 12 months after STN-DBS. This improvement was not correlated with motor improvement, depression scores or L-Dopa reduction. STN-DBS induced a substantial beneficial effect on pain in PD, independently of its motor effects and mood status of patients. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effect of bilateral subthalamic electrical stimulation in Parkinson's disease.
Broggi, G; Franzini, A; Ferroli, P; Servello, D; D'Incerti, L; Genitrini, S; Soliveri, P; Girotti, F; Caraceni, T
2001-08-01
Bilateral high frequency subthalamic stimulation has been reported to be effective in the treatment of Parkinson's disease and levodopa-induced dyskinesias. To analyze the results of this surgical procedure we critically reviewed 17 parkinsonian patients with advanced disease complicated by motor fluctuations and dyskinesias. Between January 1998 and June 1999 these 17 consecutive patients (age 48-68 years; illness duration 8-27 years) underwent bilateral stereotactically guided implantation of electrodes into the subthalamic nucleus in the Department of Neurosurgery of the Istituto Nazionale Neurologico "C. Besta." Parameters used for continuous high-frequency stimulation were: frequency 160 Hz, pulse width 90 microsec, mean amplitude 2.05 +/- 0.45 V. Parts II and III of the UPDRS were used to assess motor performance before and after operation by the neurologic team. The follow-up ranged between 6 and 18 months. At latest examination, mean UPDRS II and III scores had improved by 30% (on stimulation, off therapy) with mean 50% reduction in daily off time. Peak dyskinesias and early morning dystonias also improved in relation to therapy reduction. Side effects were persistent postoperative supranuclear oculomotor palsy and postural instability in one case, worsened off-medication hypophonia in three, and temporary nocturnal confusion episodes in three. Postoperative MRI revealed a clinically silent intracerebral haematoma in one case. One electrode required repositioning. Continuous high frequency STN stimulation is an effective treatment for advanced PD. A functionally useful and safe electrode placement can be performed without microrecording.
Gulberti, Alessandro; Zittel, Simone; Tudor Jones, Adam A.; Fickel, Ulrich; Münchau, Alexander; Köppen, Johannes A.; Gerloff, Christian; Westphal, Manfred; Buhmann, Carsten; Hamel, Wolfgang; Engel, Andreas K.
2014-01-01
Parkinson's disease (PD) is a heterogeneous disorder that leads to variable expression of several different motor symptoms. While changes in firing rate, pattern, and oscillation of basal ganglia neurons have been observed in PD patients and experimental animals, there is limited evidence linking them to specific motor symptoms. Here we examined this relationship using extracellular recordings of subthalamic nucleus neurons from 19 PD patients undergoing surgery for deep brain stimulation. For each patient, ≥10 single units and/or multi-units were recorded in the OFF medication state. We correlated the proportion of neurons displaying different activities with preoperative Unified Parkinson's Disease Rating Scale subscores (OFF medication). The mean spectral power at sub-beta frequencies and percentage of units oscillating at beta frequencies were positively correlated with the axial and limb rigidity scores, respectively. The percentage of units oscillating at gamma frequency was negatively correlated with the bradykinesia scores. The mean intraburst rate was positively correlated with both bradykinesia and axial scores, while the related ratio of interspike intervals below/above 10 ms was positively correlated with these symptoms and limb rigidity. None of the activity parameters correlated with tremor. The grand average of all the significantly correlated subthalamic nucleus activities accounted for >60% of the variance of the combined bradykinetic-rigid and axial scores. Our results demonstrate that the occurrence of alterations in the rate and pattern of basal ganglia neurons could partly underlie the variability in parkinsonian phenotype. PMID:24790198
Normalizing motor-related brain activity: subthalamic nucleus stimulation in Parkinson disease.
Grafton, S T; Turner, R S; Desmurget, M; Bakay, R; Delong, M; Vitek, J; Crutcher, M
2006-04-25
To test whether therapeutic unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson disease (PD) leads to normalization in the pattern of brain activation during movement execution and control of movement extent. Six patients with PD were imaged off medication by PET during performance of a visually guided tracking task with the DBS voltage programmed for therapeutic (effective) or subtherapeutic (ineffective) stimulation. Data from patients with PD during ineffective stimulation were compared with a group of 13 age-matched control subjects to identify sites with abnormal patterns of activation. Conjunction analysis was used to identify those areas in patients with PD where activity normalized when they were treated with effective stimulation. For movement execution, effective DBS caused an increase of activation in the supplementary motor area (SMA), superior parietal cortex, and cerebellum toward a more normal pattern. At rest, effective stimulation reduced overactivity of SMA. Therapeutic stimulation also induced reductions of movement related "overactivity" compared with healthy subjects in prefrontal, temporal lobe, and basal ganglia circuits, consistent with the notion that many areas are recruited to compensate for ineffective motor initiation. Normalization of activity related to the control of movement extent was associated with reductions of activity in primary motor cortex, SMA, and basal ganglia. Effective subthalamic nucleus stimulation leads to task-specific modifications with appropriate recruitment of motor areas as well as widespread, nonspecific reductions of compensatory or competing cortical activity.
Hamel, Wolfgang; Köppen, Johannes A; Alesch, François; Antonini, Angelo; Barcia, Juan A; Bergman, Hagai; Chabardes, Stephan; Contarino, Maria Fiorella; Cornu, Philippe; Demmel, Walter; Deuschl, Günther; Fasano, Alfonso; Kühn, Andrea A; Limousin, Patricia; McIntyre, Cameron C; Mehdorn, H Maximilian; Pilleri, Manuela; Pollak, Pierre; Rodríguez-Oroz, Maria C; Rumià, Jordi; Samuel, Michael; Timmermann, Lars; Valldeoriola, Francesc; Vesper, Jan; Visser-Vandewalle, Veerle; Volkmann, Jens; Lozano, Andres M
2017-03-01
Deep brain stimulation within or adjacent to the subthalamic nucleus (STN) represents the most common stereotactic procedure performed for Parkinson disease. Better STN imaging is often regarded as a requirement for improving stereotactic targeting. However, it is unclear whether there is consensus about the optimal target. To obtain an expert opinion on the site regarded optimal for "STN stimulation," movement disorder specialists were asked to indicate their preferred position for an active contact on hard copies of the Schaltenbrand and Wahren atlas depicting the STN in all 3 planes. This represented an idealized setting, and it mimicked optimal imaging for direct target definition in a perfectly delineated STN. The suggested targets were heterogeneous, although some clustering was observed in the dorsolateral STN and subthalamic area. In particular, in the anteroposterior direction, the intended targets differed to a great extent. Most of the indicated targets are thought to also result in concomitant stimulation of structures adjacent to the STN, including the zona incerta, fields of Forel, and internal capsule. This survey illustrates that most sites regarded as optimal for STN stimulation are close to each other, but there appears to be no uniform perception of the optimal anatomic target, possibly influencing surgical results. The anatomic sweet zone for STN stimulation needs further specification, as this information is likely to make magnetic resonance imaging-based target definition less variable when applied to individual patients. Copyright © 2016 Elsevier Inc. All rights reserved.
Long-term detection of Parkinsonian tremor activity from subthalamic nucleus local field potentials.
Houston, Brady; Blumenfeld, Zack; Quinn, Emma; Bronte-Stewart, Helen; Chizeck, Howard
2015-01-01
Current deep brain stimulation paradigms deliver continuous stimulation to deep brain structures to ameliorate the symptoms of Parkinson's disease. This continuous stimulation has undesirable side effects and decreases the lifespan of the unit's battery, necessitating earlier replacement. A closed-loop deep brain stimulator that uses brain signals to determine when to deliver stimulation based on the occurrence of symptoms could potentially address these drawbacks of current technology. Attempts to detect Parkinsonian tremor using brain signals recorded during the implantation procedure have been successful. However, the ability of these methods to accurately detect tremor over extended periods of time is unknown. Here we use local field potentials recorded during a deep brain stimulation clinical follow-up visit 1 month after initial programming to build a tremor detection algorithm and use this algorithm to detect tremor in subsequent visits up to 8 months later. Using this method, we detected the occurrence of tremor with accuracies between 68-93%. These results demonstrate the potential of tremor detection methods for efficacious closed-loop deep brain stimulation over extended periods of time.
Michmizos, Kostis P; Nikita, Konstantina S
2011-01-01
The crucial engagement of the subthalamic nucleus (STN) with the neurosurgical procedure of deep brain stimulation (DBS) that alleviates medically intractable Parkinsonian tremor augments the need to refine our current understanding of STN. To enhance the efficacy of DBS as a result of precise targeting, STN boundaries are accurately mapped using extracellular microelectrode recordings (MERs). We utilized the intranuclear MER to acquire the local field potential (LFP) and drive an Izhikevich model of an STN neuron. Using the model as the test bed for clinically acquired data, we demonstrated that stimulation of the STN neuron produces excitatory responses that tonically increase its average firing rate and alter the pattern of its neuronal activity. We also found that the spiking rhythm increases linearly with the increase of amplitude, frequency, and duration of the DBS pulse, inside the clinical range. Our results are in agreement with the current hypothesis that DBS increases the firing rate of STN and masks its pathological bursting firing pattern.
The nature of tremor circuits in parkinsonian and essential tremor
Cagnan, Hayriye; Little, Simon; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan; Cheeran, Binith; Fitzgerald, James; Green, Alexander L.; Aziz, Tipu
2014-01-01
Tremor is a cardinal feature of Parkinson’s disease and essential tremor, the two most common movement disorders. Yet, the mechanisms underlying tremor generation remain largely unknown. We hypothesized that driving deep brain stimulation electrodes at a frequency closely matching the patient’s own tremor frequency should interact with neural activity responsible for tremor, and that the effect of stimulation on tremor should reveal the role of different deep brain stimulation targets in tremor generation. Moreover, tremor responses to stimulation might reveal pathophysiological differences between parkinsonian and essential tremor circuits. Accordingly, we stimulated 15 patients with Parkinson’s disease with either thalamic or subthalamic electrodes (13 male and two female patients, age: 50–77 years) and 10 patients with essential tremor with thalamic electrodes (nine male and one female patients, age: 34–74 years). Stimulation at near-to tremor frequency entrained tremor in all three patient groups (ventrolateral thalamic stimulation in Parkinson’s disease, P = 0.0078, subthalamic stimulation in Parkinson’s disease, P = 0.0312; ventrolateral thalamic stimulation in essential tremor, P = 0.0137; two-tailed paired Wilcoxon signed-rank tests). However, only ventrolateral thalamic stimulation in essential tremor modulated postural tremor amplitude according to the timing of stimulation pulses with respect to the tremor cycle (e.g. P = 0.0002 for tremor amplification, two-tailed Wilcoxon rank sum test). Parkinsonian rest and essential postural tremor severity (i.e. tremor amplitude) differed in their relative tolerance to spontaneous changes in tremor frequency when stimulation was not applied. Specifically, the amplitude of parkinsonian rest tremor remained unchanged despite spontaneous changes in tremor frequency, whereas that of essential postural tremor reduced when tremor frequency departed from median values. Based on these results we conclude that parkinsonian rest tremor is driven by a neural network, which includes the subthalamic nucleus and ventrolateral thalamus and has broad frequency-amplitude tolerance. We propose that it is this tolerance to changes in tremor frequency that dictates that parkinsonian rest tremor may be significantly entrained by low frequency stimulation without stimulation timing-dependent amplitude modulation. In contrast, the circuit influenced by low frequency thalamic stimulation in essential tremor has a narrower frequency-amplitude tolerance so that tremor entrainment through extrinsic driving is necessarily accompanied by amplitude modulation. Such differences in parkinsonian rest and essential tremor will be important in selecting future strategies for closed loop deep brain stimulation for tremor control. PMID:25200741
Brandt, Jason; Rogerson, Mark; Al-Joudi, Haya; Reckess, Gila; Shpritz, Barnett; Umeh, Chizoba C.; Aljehani, Noha; Mills, Kelly; Mari, Zoltan
2014-01-01
Objective Concerns persist that deep brain stimulation (DBS) for Parkinson’s disease (PD) increases impulsivity and/or induces excessive reward-seeking. We report here the performance of PD patients with implanted subthalamic nucleus electrodes, with stimulation on and off, on three laboratory tasks of risk-taking and decision-making. They are compared to PD patients maintained on medication and normal control subjects. Methods and Results In the Game of Dice Task, a test of “risky” decision-making, PD patients with or without DBS made highest-risk bets more often, and ended up with less money, than normal controls. There was a trend for DBS stimulation to ameliorate this effect. Deal or No-Deal is an “ambiguous” decision-making task that assessed preference for risk (holding on to one’s briefcase) over a “sure thing” (accepting the banker’s offer). Here, DBS patients were more conservative with stimulation on than off. They accepted smaller offers from the banker and won less money in the DBS-on condition. Overall, the two PD groups won less money than healthy participants. The Framing Paradigm assessed willingness to gamble on a fixed (unambiguous) prize depending on whether the reward was “framed” as a loss or a gain. Nonsurgical PD patients tended to be more risk-averse than normal subjects, whereas DBS patients were more willing to gamble for gains as well as losses both on and off stimulation. Conclusions On “risky” decision-making tasks, DBS patients were more risk-taking than normal, but stimulation may temper this tendency. In contrast, in an “ambiguous risk” situation, DBS patients were more risk-averse (conservative) than normal, and this tendency was greatest with stimulation. PMID:25486385
Brandt, Jason; Rogerson, Mark; Al-Joudi, Haya; Reckess, Gila; Shpritz, Barnett; Umeh, Chizoba C; Aljehani, Noha; Mills, Kelly; Mari, Zoltan
2015-07-01
Concerns persist that deep brain stimulation (DBS) for Parkinson's disease (PD) increases impulsivity or induces excessive reward seeking. We report here the performance of PD patients with implanted subthalamic nucleus electrodes, with stimulation on and off, on 3 laboratory tasks of risk taking and decision making. They are compared with PD patients maintained on medication and healthy participants. In the Game of Dice Task, a test of "risky" decision making, PD patients with or without DBS made highest risk bets more often and ended up with less money than did healthy participants. There was a trend for DBS stimulation to ameliorate this effect. Deal or No-Deal is an "ambiguous" decision-making task that assessed preference for risk (holding on to one's briefcase) over a "sure thing" (accepting the banker's offer). Here, DBS patients were more conservative with stimulation on than with it off. They accepted smaller offers from the banker and won less money in the DBS-on condition. Overall, the 2 PD groups won less money than did healthy participants. The Framing Paradigm assessed willingness to gamble on a fixed (unambiguous) prize depending on whether the reward was "framed" as a loss or a gain. Nonsurgical PD patients tended to be more risk-averse than were healthy participants, whereas DBS patients were more willing to gamble for gains as well as losses both on and off stimulation. On risky decision-making tasks, DBS patients took more risks than did healthy participants, but stimulation may temper this tendency. In contrast, in an ambiguous-risk situation, DBS patients were more risk-averse (conservative) than were healthy participants, and this tendency was greatest with stimulation. (c) 2015 APA, all rights reserved).
Knight, Emily J.; Testini, Paola; Min, Hoon-Ki; Gibson, William S.; Gorny, Krzysztof R.; Favazza, Christopher P.; Felmlee, Joel P.; Kim, Inyong; Welker, Kirk M.; Clayton, Daniel A.; Klassen, Bryan T.; Chang, Su-youne; Lee, Kendall H.
2015-01-01
Objective To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with PD would affect the activity of both motor and non-motor networks, we applied intraoperative fMRI to patients receiving DBS. Patients and Methods Ten patients receiving STN DBS for PD underwent intraoperative 1.5T fMRI during high frequency stimulation delivered via an external pulse generator. The study was conducted between the dates of January 1, 2013 and September 30, 2014. Results We observed blood oxygen level dependent (BOLD) signal changes (FDR<.001) in the motor circuitry, including primary motor, premotor, and supplementary motor cortices, thalamus, pedunculopontine nucleus (PPN), and cerebellum, as well as in the limbic circuitry, including cingulate and insular cortices. Activation of the motor network was observed also after applying a Bonferroni correction (p<.001) to our dataset, suggesting that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. Conclusions These findings support the modulatory role of STN DBS on the activity of motor and non-motor networks, and suggest complex mechanisms at the basis of the efficacy of this treatment modality. Furthermore, these results suggest that, across subjects, BOLD changes in the motor circuitry are more consistent compared to those occurring in the non-motor network. With further studies combining the use of real time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning, but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. PMID:26046412
Motor behaviors in the sheep evoked by electrical stimulation of the subthalamic nucleus.
Lentz, Linnea; Zhao, Yan; Kelly, Matthew T; Schindeldecker, William; Goetz, Steven; Nelson, Dwight E; Raike, Robert S
2015-11-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is used to treat movement disorders, including advanced Parkinson's disease (PD). The pathogenesis of PD and the therapeutic mechanisms of DBS are not well understood. Large animal models are essential for investigating the mechanisms of PD and DBS. The purpose of this study was to develop a novel sheep model of STN DBS and quantify the stimulation-evoked motor behaviors. To do so, a large sample of animals was chronically-implanted with commercial DBS systems. Neuroimaging and histology revealed that the DBS leads were implanted accurately relative to the neurosurgical plan and also precisely relative to the STN. It was also possible to repeatedly conduct controlled evaluations of stimulation-evoked motor behavior in the awake-state. The evoked motor responses depended on the neuroanatomical location of the electrode contact selected for stimulation, as contacts proximal to the STN evoked movements at significantly lower voltages. Tissue stimulation modeling demonstrated that selecting any of the contacts stimulated the STN, whereas selecting the relatively distal contacts often also stimulated thalamus but only the distal-most contact stimulated internal capsule. The types of evoked motor behaviors were specific to the stimulation frequency, as low but not high frequencies consistently evoked movements resembling human tremor or dyskinesia. Electromyography confirmed that the muscle activity underlying the tremor-like movements in the sheep was consistent with human tremor. Overall, this work establishes that the sheep is a viable a large-animal platform for controlled testing of STN DBS with objective motor outcomes. Moreover, the results support the hypothesis that exaggerated low-frequency activity within individual nodes of the motor network can drive symptoms of human movement disorders, including tremor and dyskinesia. Copyright © 2015 Elsevier Inc. All rights reserved.
Beta burst dynamics in Parkinson's disease OFF and ON dopaminergic medication.
Tinkhauser, Gerd; Pogosyan, Alek; Tan, Huiling; Herz, Damian M; Kühn, Andrea A; Brown, Peter
2017-11-01
Exaggerated basal ganglia beta activity (13-35 Hz) is commonly found in patients with Parkinson's disease and can be suppressed by dopaminergic medication, with the degree of suppression being correlated with the improvement in motor symptoms. Importantly, beta activity is not continuously elevated, but fluctuates to give beta bursts. The percentage number of longer beta bursts in a given interval is positively correlated with clinical impairment in Parkinson's disease patients. Here we determine whether the characteristics of beta bursts are dependent on dopaminergic state. Local field potentials were recorded from the subthalamic nucleus of eight Parkinson's disease patients during temporary lead externalization during surgery for deep brain stimulation. The recordings took place with the patient quietly seated following overnight withdrawal of levodopa and after administration of levodopa. Beta bursts were defined by applying a common amplitude threshold and burst characteristics were compared between the two drug conditions. The amplitude of beta bursts, indicative of the degree of local neural synchronization, progressively increased with burst duration. Treatment with levodopa limited this evolution leading to a relative increase of shorter, lower amplitude bursts. Synchronization, however, was not limited to local neural populations during bursts, but also, when such bursts were cotemporaneous across the hemispheres, was evidenced by bilateral phase synchronization. The probability of beta bursts and the proportion of cotemporaneous bursts were reduced by levodopa. The percentage number of longer beta bursts in a given interval was positively related to motor impairment, while the opposite was true for the percentage number of short duration beta bursts. Importantly, the decrease in burst duration was also correlated with the motor improvement. In conclusion, we demonstrate that long duration beta bursts are associated with an increase in local and interhemispheric synchronization. This may compromise information coding capacity and thereby motor processing. Dopaminergic activity limits this uncontrolled beta synchronization by terminating long duration beta bursts, with positive consequences on network state and motor symptoms. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Batens, Katja; De Letter, Miet; Raedt, Robrecht; Duyck, Wouter; Vanhoutte, Sarah; Van Roost, Dirk; Santens, Patrick
2015-08-01
Asymmetric degeneration of dopaminergic neurons, are characteristic for Parkinson's disease (PD). Despite the lateralized representation of language, the correlation of asymmetric degeneration of nigrostriatal networks in PD with language performance has scarcely been examined. The laterality of dopamine depletion influences language deficits in PD and thus modulates the effects of subthalamic nucleus (STN) stimulation on language production. The spontaneous language production of patients with predominant dopamine depletion of the left (PD-left) and right (PD-right) hemisphere was compared in four stimulation conditions. PD-right made comparatively more verb inflection errors than PD-left. Bilateral STN stimulation improves spontaneous language production only for PD-left. The laterality of dopamine depletion influences spontaneous language production and the effect of STN stimulation on linguistic functions. However, it is probably only one of the many variables influencing the effect of STN stimulation on language production. Copyright © 2015 Elsevier Inc. All rights reserved.
Coenen, Volker A; Mädler, Burkhard; Schiffbauer, Hagen; Urbach, Horst; Allert, Niels
2011-04-01
Deep brain stimulation (DBS) has been proven to alleviate tremor of various origins. Distinct regions have been targeted. One explanation for good clinical tremor control might be the involvement of the dentatorubrothalamic tract (DRT) as has been suggested in superficial (thalamic) and inferior (posterior subthalamic) target regions. Beyond a correlation with atlas data and the postmortem evaluation of patients treated with lesion surgery, proof for the involvement of DRT in tremor reduction in the living, the scope of this work, is elusive. To report a case of unilateral refractory tremor in tremor-dominant Parkinson disease treated with thalamic DBS. Preoperative diffusion tensor imaging (DTI) was performed. Correlation with individual DBS electrode contact locations was obtained through postoperative fusion of helical computed tomography (CT) data with DTI fiber tracking. Tremor was alleviated effectively. An evaluation of the active electrode contact position revealed clear involvement of the DRT in tremor control. A closer evaluation of clinical effects and side effects revealed a highly detailed individual fiber map of the subthalamic region with DTI fiber tracking. This is the first time the involvement of the DRT in tremor reduction through DBS has been shown in the living. The combination of DTI with postoperative CT and the evaluation of the electrophysiological environment of distinct electrode contacts led to an individual detailed fiber map and might be extrapolated to refined DTI-based targeting strategies in the future. Data acquisition for a larger study group is the topic of our ongoing research.
Motion illusion – evidence towards human vestibulo-thalamic projections
Shaikh, Aasef G.; Straumann, Dominik; Palla, Antonella
2017-01-01
Introduction Contemporary studies speculated that cerebellar network responsible for motion perception projects to the cerebral cortex via vestibulo-thalamus. Here we sought for the physiological properties of vestibulo-thalamic pathway responsible for the motion perception. Methods Healthy subjects and the patient with focal vestibulo-thalamic lacunar stroke spun a hand-held rheostat to approximate the value of perceived angular velocity during whole-body passive earth-vertical axis rotations in yaw plane. Vestibulo-ocular reflex was simultaneously measured with high-resolution search coils (paradigm 1). In primates the vestibulo-thalamic projections remain medial and then dorsomedial to the subthalamus. Therefore the paradigm 2 assessed the effects of high-frequency subthalamic nucleus electrical stimulation through the medial and caudal deep brain stimulation electrode in five subjects with Parkinson’s disease. Results Paradigm 1 discovered directional mismatch of perceived rotation in a patient with vestiblo-thalamic lacune. There was no such mismatch in vestibulo-ocular reflex. Healthy subjects did not have such directional discrepancy of perceived motion. The results confirmed that perceived angular motion is relayed through the thalamus. Stimulation through medial and caudal-most electrode of subthalamic deep brain stimulator in paradigm 2 resulted in perception of rotational motion in the horizontal semicircular canal plane. One patient perceived riding a swing, a complex motion, possibly the combination of vertical canal and otolith derived signals representing pitch and fore-aft motion respectively. Conclusion The results examined physiological properties of the vestibulo-thalamic pathway that passes in proximity to the subthalamic nucleus conducting pure semicircular canal signals and convergent signals from the semicircular canals and the otoliths. PMID:28127679
Subthalamic nucleus long-range synchronization—an independent hallmark of human Parkinson's disease
Moshel, Shay; Shamir, Reuben R.; Raz, Aeyal; de Noriega, Fernando R.; Eitan, Renana; Bergman, Hagai; Israel, Zvi
2013-01-01
Beta-band synchronous oscillations in the dorsolateral region of the subthalamic nucleus (STN) of human patients with Parkinson's disease (PD) have been frequently reported. However, the correlation between STN oscillations and synchronization has not been thoroughly explored. The simultaneous recordings of 2390 multi-unit pairs recorded by two parallel microelectrodes (separated by fixed distance of 2 mm, n = 72 trajectories with two electrode tracks >4 mm STN span) in 57 PD patients undergoing STN deep brain stimulation surgery were analyzed. Automatic procedures were utilized to divide the STN into dorsolateral oscillatory and ventromedial non-oscillatory regions, and to quantify the intensity of STN oscillations and synchronicity. Finally, the synchronicity of simultaneously vs. non-simultaneously recorded pairs were compared using a shuffling procedure. Synchronization was observed predominately in the beta range and only between multi-unit pairs in the dorsolateral oscillatory region (n = 615). In paired recordings between sites in the dorsolateral and ventromedial (n = 548) and ventromedial-ventromedial region pairs (n = 1227), no synchronization was observed. Oscillation and synchronicity intensity decline along the STN dorsolateral-ventromedial axis suggesting a fuzzy border between the STN regions. Synchronization strength was significantly correlated to the oscillation power, but synchronization was no longer observed following shuffling. We conclude that STN long-range beta oscillatory synchronization is due to increased neuronal coupling in the Parkinsonian brain and does not merely reflect the outcome of oscillations at similar frequency. The neural synchronization in the dorsolateral (probably the motor domain) STN probably augments the pathological changes in firing rate and patterns of subthalamic neurons in PD patients. PMID:24312018
Volz, Steffen; Hattingen, Elke; Preibisch, Christine; Gasser, Thomas; Deichmann, Ralf
2009-05-01
T2-weighted gradient echo (GE) images yield good contrast of iron-rich structures like the subthalamic nuclei due to microscopic susceptibility induced field gradients, providing landmarks for the exact placement of deep brain stimulation electrodes in Parkinson's disease treatment. An additional advantage is the low radio frequency (RF) exposure of GE sequences. However, T2-weighted images are also sensitive to macroscopic field inhomogeneities, resulting in signal losses, in particular in orbitofrontal and temporal brain areas, limiting anatomical information from these areas. In this work, an image correction method for multi-echo GE data based on evaluation of phase information for field gradient mapping is presented and tested in vivo on a 3 Tesla whole body MR scanner. In a first step, theoretical signal losses are calculated from the gradient maps and a pixelwise image intensity correction is performed. In a second step, intensity corrected images acquired at different echo times TE are combined using optimized weighting factors: in areas not affected by macroscopic field inhomogeneities, data acquired at long TE are weighted more strongly to achieve the contrast required. For large field gradients, data acquired at short TE are favored to avoid signal losses. When compared to the original data sets acquired at different TE and the respective intensity corrected data sets, the resulting combined data sets feature reduced signal losses in areas with major field gradients, while intensity profiles and a contrast-to-noise (CNR) analysis between subthalamic nucleus, red nucleus and the surrounding white matter demonstrate good contrast in deep brain areas.
Accurate CT-MR image registration for deep brain stimulation: a multi-observer evaluation study
NASA Astrophysics Data System (ADS)
Rühaak, Jan; Derksen, Alexander; Heldmann, Stefan; Hallmann, Marc; Meine, Hans
2015-03-01
Since the first clinical interventions in the late 1980s, Deep Brain Stimulation (DBS) of the subthalamic nucleus has evolved into a very effective treatment option for patients with severe Parkinson's disease. DBS entails the implantation of an electrode that performs high frequency stimulations to a target area deep inside the brain. A very accurate placement of the electrode is a prerequisite for positive therapy outcome. The assessment of the intervention result is of central importance in DBS treatment and involves the registration of pre- and postinterventional scans. In this paper, we present an image processing pipeline for highly accurate registration of postoperative CT to preoperative MR. Our method consists of two steps: a fully automatic pre-alignment using a detection of the skull tip in the CT based on fuzzy connectedness, and an intensity-based rigid registration. The registration uses the Normalized Gradient Fields distance measure in a multilevel Gauss-Newton optimization framework and focuses on a region around the subthalamic nucleus in the MR. The accuracy of our method was extensively evaluated on 20 DBS datasets from clinical routine and compared with manual expert registrations. For each dataset, three independent registrations were available, thus allowing to relate algorithmic with expert performance. Our method achieved an average registration error of 0.95mm in the target region around the subthalamic nucleus as compared to an inter-observer variability of 1.12 mm. Together with the short registration time of about five seconds on average, our method forms a very attractive package that can be considered ready for clinical use.
Aulická, Stefania Rusnáková; Jurák, Pavel; Chládek, Jan; Daniel, Pavel; Halámek, Josef; Baláž, Marek; Bočková, Martina; Chrastina, Jan; Rektor, Ivan
2014-10-01
We studied the appearance of broadband oscillatory changes (ranging 2-45 Hz) induced by a cognitive task with two levels of complexity. The event-related de/synchronizations (ERD/S) in the subthalamic nucleus (STN) and in the anterior cingulate cortex (ACC) were evaluated in an executive function test. Four epilepsy surgery candidates with intracerebral electrodes implanted in the ACC and three Parkinson's disease patients with externalized deep brain stimulation electrodes implanted in the STN participated in the study. A Flanker test (FT) with visual stimuli (arrows) was performed. Subjects reacted to four types of stimuli presented on the monitor by pushing the right or left button: congruent arrows to the right or left side (simple task) and incongruent arrows to the right or left side (more difficult complex task). We explored the activation of STN and the activation of the ACC while processing the FT. Both conditions, i.e. congruent and incongruent, induced oscillatory changes in the ACC and also STN with significantly higher activation during incongruent trial. At variance with the ACC, in the STN not only the ERD beta but also the ERD alpha activity was significantly more activated by the incongruent condition. In line with our earlier studies, the STN appears to be involved in activities linked with increased cognitive load. The specificity and complexity of task-related activation of the STN might indicate the involvement of the STN in processes controlling human behaviour, e.g. in the selection and inhibition of competing alternatives.
Therapeutic deep brain stimulation in Parkinsonian rats directly influences motor cortex.
Li, Qian; Ke, Ya; Chan, Danny C W; Qian, Zhong-Ming; Yung, Ken K L; Ko, Ho; Arbuthnott, Gordon W; Yung, Wing-Ho
2012-12-06
Much recent discussion about the origin of Parkinsonian symptoms has centered around the idea that they arise with the increase of beta frequency waves in the EEG. This activity may be closely related to an oscillation between subthalamic nucleus (STN) and globus pallidus. Since STN is the target of deep brain stimulation, it had been assumed that its action is on the nucleus itself. By means of simultaneous recordings of the firing activities from populations of neurons and the local field potentials in the motor cortex of freely moving Parkinsonian rats, this study casts doubt on this assumption. Instead, we found evidence that the corrective action is upon the cortex, where stochastic antidromic spikes originating from the STN directly modify the firing probability of the corticofugal projection neurons, destroy the dominance of beta rhythm, and thus restore motor control to the subjects, be they patients or rodents. Copyright © 2012 Elsevier Inc. All rights reserved.
Gomez, J; Salmon, C Garrido; Filho, O Baffa; Santos, J Peixoto; Pitella, J
2012-06-01
Parkinson disease and related syndromes are associated directly with the concentrations of neuromelanin, iron and other heavy metals, and nowadays it is discussed the possible protective role of neuromelanin by the sequester redox active iron ions, reducing the formation of free hydroxyl radicals and therefore inactivating the iron ions that induce oxidative stress. The aim of this work is to study the concentration ratios between iron ions and neuromelanin in subthalamic nucleus of patients with Parkinson's disease (PD) using Electron Spin Resonance (ESR). Necropsy samples of subthalamic nucleus from eight human brains were studied: three non-affected by any neurodegenerative disease and five with Parkinson's disease. The samples were stored in formaldehyde and washed with a solution of 0.01 molar of ethylenediaminetetraacetic acid. ESR experiments were development in a JEOL FA-200 X-Band spectrometer at different temperatures between -170° C to room temperature. The relative concentrations of each species were estimated from the double integral values of the fitted spectra. For all samples, ESR spectra showed to be composed of three different signals following the Curie's law. One signal was attributed to high-spin ferric ions (g∼ 4.3) in rhomboedric symmetry, Cu(II) ions (close to g=2.0) and neuromelanin (g∼ 2.01). The ferric ions concentration ratio between patients and controls was 3.0±0.2. The same ratio for neuromelanine was 0.24±0.06. Our preliminary results indicated a significant increment of iron concentration in PD samples which agrees with previous histochemical and biochemical reports. This finding and the clear reduction of neuromelanin concentration in PD samples suggest the possible role of neuromelanin as iron ions storage. © 2012 American Association of Physicists in Medicine.
Holiga, Štefan; Mueller, Karsten; Möller, Harald E.; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L.; Jech, Robert
2015-01-01
During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a “microlesion effect” (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis. PMID:26509113
Holiga, Štefan; Mueller, Karsten; Möller, Harald E; Urgošík, Dušan; Růžička, Evžen; Schroeter, Matthias L; Jech, Robert
2015-01-01
During implantation of deep-brain stimulation (DBS) electrodes in the target structure, neurosurgeons and neurologists commonly observe a "microlesion effect" (MLE), which occurs well before initiating subthalamic DBS. This phenomenon typically leads to a transitory improvement of motor symptoms of patients suffering from Parkinson's disease (PD). Mechanisms behind MLE remain poorly understood. In this work, we exploited the notion of ranking to assess spontaneous brain activity in PD patients examined by resting-state functional magnetic resonance imaging in response to penetration of DBS electrodes in the subthalamic nucleus. In particular, we employed a hypothesis-free method, eigenvector centrality (EC), to reveal motor-communication-hubs of the highest rank and their reorganization following the surgery; providing a unique opportunity to evaluate the direct impact of disrupting the PD motor circuitry in vivo without prior assumptions. Penetration of electrodes was associated with increased EC of functional connectivity in the brainstem. Changes in connectivity were quantitatively related to motor improvement, which further emphasizes the clinical importance of the functional integrity of the brainstem. Surprisingly, MLE and DBS were associated with anatomically different EC maps despite their similar clinical benefit on motor functions. The DBS solely caused an increase in connectivity of the left premotor region suggesting separate pathophysiological mechanisms of both interventions. While the DBS acts at the cortical level suggesting compensatory activation of less affected motor regions, the MLE affects more fundamental circuitry as the dysfunctional brainstem predominates in the beginning of PD. These findings invigorate the overlooked brainstem perspective in the understanding of PD and support the current trend towards its early diagnosis.
Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L; Aziz, Tipu; Brown, Peter
2013-02-01
Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. We therefore recorded from the subthalamic nucleus region (STNr) in patients with Parkinson's disease (PD) as they made maximal voluntary grips. Relative to age-matched controls they had more rapid force decrement when contraction was meant to be sustained and prolonged release reaction time and slower rate of force offset when they were supposed to release the grip. These impairments were independent from medication status. Increased STNr power over 5-12 Hz (in the theta/alpha band) independently predicted better performance-reduced force decrement, shortened release reaction time and faster rate of force offset. In contrast, lower mean levels and progressive reduction of STNr power over 55-375 Hz (high gamma/high frequency) over the period when contraction was meant to be sustained were both strongly associated with greater force decrement over time. Higher power over 13-23 Hz (low beta) was associated with more rapid force decrement during the period when grip should have been sustained, and with a paradoxical shortening of the release reaction time. These observations suggest that STNr activities at 5-12 Hz and 55-375 Hz are necessary for optimal grip performance and that deficiencies of such activities lead to motor impairments. In contrast, increased levels of 13-25 Hz activity both promote force decrement and shorten the release reaction time, consistent with a role in antagonising (and terminating) voluntary movement. Frequency specific oscillatory activities in the STNr impact on motor performance from the beginning to the end of a voluntary grip. Copyright © 2012 Elsevier Inc. All rights reserved.
Tan, Huiling; Pogosyan, Alek; Anzak, Anam; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Ashkan, Keyoumars; Bogdanovic, Marko; Green, Alexander L.; Aziz, Tipu; Brown, Peter
2013-01-01
Local field potential recordings made from the basal ganglia of patients undergoing deep brain stimulation have suggested that frequency specific activity is involved in determining the rate of force development and the peak force at the outset of a movement. However, the extent to which the basal ganglia might be involved in motor performance later on in a sustained contraction is less clear. We therefore recorded from the subthalamic nucleus region (STNr) in patients with Parkinson's disease (PD) as they made maximal voluntary grips. Relative to age-matched controls they had more rapid force decrement when contraction was meant to be sustained and prolonged release reaction time and slower rate of force offset when they were supposed to release the grip. These impairments were independent from medication status. Increased STNr power over 5–12 Hz (in the theta/alpha band) independently predicted better performance—reduced force decrement, shortened release reaction time and faster rate of force offset. In contrast, lower mean levels and progressive reduction of STNr power over 55–375 Hz (high gamma/high frequency) over the period when contraction was meant to be sustained were both strongly associated with greater force decrement over time. Higher power over 13–23 Hz (low beta) was associated with more rapid force decrement during the period when grip should have been sustained, and with a paradoxical shortening of the release reaction time. These observations suggest that STNr activities at 5–12 Hz and 55–375 Hz are necessary for optimal grip performance and that deficiencies of such activities lead to motor impairments. In contrast, increased levels of 13–25 Hz activity both promote force decrement and shorten the release reaction time, consistent with a role in antagonising (and terminating) voluntary movement. Frequency specific oscillatory activities in the STNr impact on motor performance from the beginning to the end of a voluntary grip. PMID:23178580
The role of cortical oscillations in a spiking neural network model of the basal ganglia
Fountas, Zafeirios; Shanahan, Murray
2017-01-01
Although brain oscillations involving the basal ganglia (BG) have been the target of extensive research, the main focus lies disproportionally on oscillations generated within the BG circuit rather than other sources, such as cortical areas. We remedy this here by investigating the influence of various cortical frequency bands on the intrinsic effective connectivity of the BG, as well as the role of the latter in regulating cortical behaviour. To do this, we construct a detailed neural model of the complete BG circuit based on fine-tuned spiking neurons, with both electrical and chemical synapses as well as short-term plasticity between structures. As a measure of effective connectivity, we estimate information transfer between nuclei by means of transfer entropy. Our model successfully reproduces firing and oscillatory behaviour found in both the healthy and Parkinsonian BG. We found that, indeed, effective connectivity changes dramatically for different cortical frequency bands and phase offsets, which are able to modulate (or even block) information flow in the three major BG pathways. In particular, alpha (8–12Hz) and beta (13–30Hz) oscillations activate the direct BG pathway, and favour the modulation of the indirect and hyper-direct pathways via the subthalamic nucleus—globus pallidus loop. In contrast, gamma (30–90Hz) frequencies block the information flow from the cortex completely through activation of the indirect pathway. Finally, below alpha, all pathways decay gradually and the system gives rise to spontaneous activity generated in the globus pallidus. Our results indicate the existence of a multimodal gating mechanism at the level of the BG that can be entirely controlled by cortical oscillations, and provide evidence for the hypothesis of cortically-entrained but locally-generated subthalamic beta activity. These two findings suggest new insights into the pathophysiology of specific BG disorders. PMID:29236724
Subthalamic stimulation may inhibit the beneficial effects of levodopa on akinesia and gait.
Fleury, Vanessa; Pollak, Pierre; Gere, Julien; Tommasi, Giorgio; Romito, Luigi; Combescure, Christophe; Bardinet, Eric; Chabardes, Stephan; Momjian, Shahan; Krainik, Alexandre; Burkhard, Pierre; Yelnik, Jérôme; Krack, Paul
2016-09-01
Gait and akinesia deterioration in PD patients during the immediate postoperative period of DBS has been directly related to stimulation in the subthalamic region. The underlying mechanisms remain poorly understood. The aim of the present study was to clinically and anatomically describe this side effect. PD patients presenting with a worsening of gait and/or akinesia following STN-DBS, that was reversible on stimulation arrest were included. The evaluation included (1) a Stand Walk Sit Test during a monopolar survey of each electrode in the on-drug condition; (2) a 5-condition test with the following conditions: off-drug/off-DBS, off-drug/on-best-compromise-DBS, on-drug/off-DBS, on-drug/on-best-compromise-DBS, and on-drug/on-worsening-DBS, which utilized the contact inducing the most prominent gait deterioration. The following scales were performed: UPDRSIII subscores, Stand Walk Sit Test, and dyskinesia and freezing of gait scales. Localization of contacts was performed using a coregistration method. Twelve of 17 patients underwent the complete evaluation. Stimulation of the most proximal contacts significantly slowed down the Stand Walk Sit Test. The on-drug/on-worsening-DBS condition compared with the on-drug/off-DBS condition worsened akinesia (P = 0.02), Stand Walk Sit Test (P = 0.001), freezing of gait (P = 0.02), and improved dyskinesias (P = 0.003). Compared with the off-drug/off-DBS condition, the on-drug/on-worsening-DBS condition improved rigidity (P = 0.007) and tremor (P = 0.007). Worsening contact sites were predominantly dorsal and anterior to the STN in the anterior zona incerta and Forel fields H2. A paradoxical deterioration of gait and akinesia is a rare side effect following STN-DBS. We propose that this may be related to misplaced contacts, and we discuss the pathophysiology and strategies to identify and manage this complication. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Parkinson subtype-specific Granger-causal coupling and coherence frequency in the subthalamic area.
Florin, Esther; Pfeifer, Johannes; Visser-Vandewalle, Veerle; Schnitzler, Alfons; Timmermann, Lars
2016-09-22
Previous work on Parkinson's disease (PD) has indicated a predominantly afferent coupling between affected arm muscle activity and electrophysiological activity within the subthalamic nucleus (STN). So far, no information is available indicating which frequency components drive the afferent information flow in PD patients. Non-directional coupling e.g. by measuring coherence is primarily established in the beta band as well as at tremor frequency. Based on previous evidence it is likely that different subtypes of the disease are associated with different connectivity patterns. Therefore, we determined coherence and causality between local field potentials (LFPs) in the STN and surface electromyograms (EMGs) from the contralateral arm in 18 akinetic-rigid (AR) PD patients and 8 tremor-dominant (TD) PD patients. During the intraoperative recording, patients were asked to lift their forearm contralateral to the recording side. Significantly more afferent connections were detected for the TD patients for tremor-periods and non-tremor-periods combined as well as for only tremor periods. Within the STN 74% and 63% of the afferent connections are associated with coherence from 4-8Hz and 8-12Hz, respectively. However, when considering only tremor-periods significantly more afferent than efferent connections were associated with coherence from 12 to 20Hz across all recording heights. No difference between efferent and afferent connections is seen in the frequency range from 4 to 12Hz for all recording heights. For the AR patients, no significant difference in afferent and efferent connections within the STN was found for the different frequency bands. Still, for the AR patients dorsal of the STN significantly more afferent than efferent connections were associated with coherence in the frequency range from 12 to 16Hz. These results provide further evidence for the differential pathological oscillations and pathways present in AR and TD Parkinson patients. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Teijeiro, Juan; Macías, Raúl J; Maragoto, Carlos; García, Iván; Alvarez, Mario; Quintanal, Nelson E
2014-01-01
Our objectives were to study the length of multi-unit recordings (MURs) of brain activity in 20 years of movement disorder neurosurgeries and to determine the number of times in which it was necessary for the teams using single-unit recording (SUR) to explore all the electrode tracks in the simultaneously recorded sites (SRS). This was a retrospective descriptive statistical analysis of MUR length on 4,296 tracks in 952 surgeries. The exclusion criteria were: tracks with fewer than 5 recorded signals, tracks that had a signal length different from the habitual 2s, or there being unusual situations not related to the MUR, as well as the first 20 surgeries of each surgical target. This yielded a total of 3,448 tracks in 805 surgeries. We also determined the number of the total 952 surgeries in which all the tracks in the SURs of the SRS were explored. The mean and its confidence interval (P=.05) of time per MUR track were 5.49±0.16min in subthalamic nucleus surgery, 8.82±0.24min in the medial or internal globus pallidus) and 18.51±1.31min in the ventral intermediate nucleus of the thalamus. For the total sum of tracks per surgery, in 75% of cases the total time was less than 39min in subthalamic nucleus, almost 42min in the medial or internal globus pallidus and less than 1h and 17min in ventral intermediate nucleus of the thalamus. All the tracks in the SUR SRS were explored in only 4.2% of the surgeries. The impact of MUR on surgical time is acceptable for this guide in objective localization for surgical targets, without having to use several simultaneous electrodes (not all indispensable in most of the cases). Consequently, there is less risk for the patient. Copyright © 2013 Sociedad Española de Neurocirugía. Published by Elsevier España. All rights reserved.
Benis, Damien; David, Olivier; Piallat, Brigitte; Kibleur, Astrid; Goetz, Laurent; Bhattacharjee, Manik; Fraix, Valérie; Seigneuret, Eric; Krack, Paul; Chabardès, Stéphan; Bastin, Julien
2016-11-01
The subthalamic nucleus (STN) plays a critical role during action inhibition, perhaps by acting like a fast brake on the motor system when inappropriate responses have to be rapidly suppressed. However, the mechanisms involving the STN during motor inhibition are still unclear, particularly because of a relative lack of single-cell responses reported in this structure in humans. In this study, we used extracellular microelectrode recordings during deep brain stimulation surgery in patients with Parkinson's disease (PD) to study STN neurophysiological correlates of inhibitory control during a stop signal task. We found two neuronal subpopulations responding either during motor execution (GO units) or during motor inhibition (STOP units). GO units fired selectively before patients' motor responses whereas STOP units fired selectively when patients successfully withheld their move at a latency preceding the duration of the inhibition process. These results provide electrophysiological evidence for the hypothesized role of the STN in current models of response inhibition. Copyright © 2016. Published by Elsevier Ltd.
The subthalamic nucleus during decision-making with multiple alternatives.
Keuken, Max C; Van Maanen, Leendert; Bogacz, Rafal; Schäfer, Andreas; Neumann, Jane; Turner, Robert; Forstmann, Birte U
2015-10-01
Several prominent neurocomputational models predict that an increase of choice alternatives is modulated by increased activity in the subthalamic nucleus (STN). In turn, increased STN activity allows prolonged accumulation of information. At the same time, areas in the medial frontal cortex such as the anterior cingulate cortex (ACC) and the pre-SMA are hypothesized to influence the information processing in the STN. This study set out to test concrete predictions of STN activity in multiple-alternative decision-making using a multimodal combination of 7 Tesla structural and functional Magnetic Resonance Imaging, and ancestral graph (AG) modeling. The results are in line with the predictions in that increased STN activity was found with an increasing amount of choice alternatives. In addition, our study shows that activity in the ACC is correlated with activity in the STN without directly modulating it. This result sheds new light on the information processing streams between medial frontal cortex and the basal ganglia. © 2015 Wiley Periodicals, Inc.
Tanei, Takafumi; Kajita, Yasukazu; Nihashi, Takashi; Kaneoke, Yoshiki; Takebayashi, Shigenori; Nakatsubo, Daisuke; Wakabayashi, Toshihiko
2009-11-01
Changes in regional cerebral blood flow (rCBF) induced by unilateral deep brain stimulation (DBS) of the subthalamic nucleus (STN) were investigated in 7 consecutive patients with Parkinson's disease, 4 men and 3 women (mean age 62.3 +/- 8.1 years), who underwent rCBF measurement by N-isopropyl-p-(iodine-123)-iodoamphetamine single photon emission computed tomography at rest before and after unilateral STN DBS preoperatively in the on-drug condition, and postoperatively in the on-drug and on-stimulation condition. Statistical parametric mapping was used to identify significant changes in rCBF from the preoperative to the postoperative conditions. rCBF was increased in the bilateral cingulate cortices and bilateral cerebellar hemispheres. rCBF was decreased in the bilateral medial frontal cortices and left superior temporal cortex. Unilateral STN DBS produced rCBF changes in the bilateral cingulate cortices, cerebellar hemispheres, and medial frontal cortices. These findings indicate that unilateral STN DBS affects rCBF in both hemispheres.
Nagahama, Hiroshi; Suzuki, Kengo; Shonai, Takaharu; Aratani, Kazuki; Sakurai, Yuuki; Nakamura, Manami; Sakata, Motomichi
2015-01-01
Electrodes are surgically implanted into the subthalamic nucleus (STN) of Parkinson's disease patients to provide deep brain stimulation. For ensuring correct positioning, the anatomic location of the STN must be determined preoperatively. Magnetic resonance imaging has been used for pinpointing the location of the STN. To identify the optimal imaging sequence for identifying the STN, we compared images produced with T2 star-weighted angiography (SWAN), gradient echo T2*-weighted imaging, and fast spin echo T2-weighted imaging in 6 healthy volunteers. Our comparison involved measurement of the contrast-to-noise ratio (CNR) for the STN and substantia nigra and a radiologist's interpretations of the images. Of the sequences examined, the CNR and qualitative scores were significantly higher on SWAN images than on other images (p < 0.01) for STN visualization. Kappa value (0.74) on SWAN images was the highest in three sequences for visualizing the STN. SWAN is the sequence best suited for identifying the STN at the present time.
Causal role for the subthalamic nucleus in interrupting behavior
Fife, Kathryn H; Gutierrez-Reed, Navarre A; Zell, Vivien; Bailly, Julie; Lewis, Christina M; Aron, Adam R; Hnasko, Thomas S
2017-01-01
Stopping or pausing in response to threats, conflicting information, or surprise is fundamental to behavior. Evidence across species has shown that the subthalamic nucleus (STN) is activated by scenarios involving stopping or pausing, yet evidence that the STN causally implements stops or pauses is lacking. Here we used optogenetics to activate or inhibit mouse STN to test its putative causal role. We first demonstrated that optogenetic stimulation of the STN excited its major projection targets. Next we showed that brief activation of STN projection neurons was sufficient to interrupt or pause a self-initiated bout of licking. Finally, we developed an assay in which surprise was used to interrupt licking, and showed that STN inhibition reduced the disruptive effect of surprise. Thus STN activation interrupts behavior, and blocking the STN blunts the interruptive effect of surprise. These results provide strong evidence that the STN is both necessary and sufficient for such forms of behavioral response suppression. DOI: http://dx.doi.org/10.7554/eLife.27689.001 PMID:28742497
Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Štastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert
2015-03-10
Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson's disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well.
Subthalamic Nucleus Stimulation Modulates Motor Cortex Oscillatory Activity in Parkinson's Disease
ERIC Educational Resources Information Center
Devos, D.; Labyt, E.; Derambure, P.; Bourriez, J. L.; Cassim, F.; Reyns, N.; Blond, S.; Guieu, J. D.; Destee, A.; Defebvre, L.
2004-01-01
In Parkinson's disease, impaired motor preparation has been related to an increased latency in the appearance of movement-related desynchronization (MRD) throughout the contralateral primary sensorimotor (PSM) cortex. Internal globus pallidus (GPi) stimulation improved movement desynchronization over the PSM cortex during movement execution but…
Theory of feedback controlled brain stimulations for Parkinson's disease
NASA Astrophysics Data System (ADS)
Sanzeni, A.; Celani, A.; Tiana, G.; Vergassola, M.
2016-01-01
Limb tremor and other debilitating symptoms caused by the neurodegenerative Parkinson's disease are currently treated by administering drugs and by fixed-frequency deep brain stimulation. The latter interferes directly with the brain dynamics by delivering electrical impulses to neurons in the subthalamic nucleus. While deep brain stimulation has shown therapeutic benefits in many instances, its mechanism is still unclear. Since its understanding could lead to improved protocols of stimulation and feedback control, we have studied a mathematical model of the many-body neural network dynamics controlling the dynamics of the basal ganglia. On the basis of the results obtained from the model, we propose a new procedure of active stimulation, that depends on the feedback of the network and that respects the constraints imposed by existing technology. We show by numerical simulations that the new protocol outperforms the standard ones for deep brain stimulation and we suggest future experiments that could further improve the feedback procedure.
Knight, Emily J; Testini, Paola; Min, Hoon-Ki; Gibson, William S; Gorny, Krzysztof R; Favazza, Christopher P; Felmlee, Joel P; Kim, Inyong; Welker, Kirk M; Clayton, Daniel A; Klassen, Bryan T; Chang, Su-youne; Lee, Kendall H
2015-06-01
To test the hypothesis suggested by previous studies that subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease would affect the activity of motor and nonmotor networks, we applied intraoperative functional magnetic resonance imaging (fMRI) to patients receiving DBS. Ten patients receiving STN DBS for Parkinson disease underwent intraoperative 1.5-T fMRI during high-frequency stimulation delivered via an external pulse generator. The study was conducted between January 1, 2013, and September 30, 2014. We observed blood oxygen level-dependent (BOLD) signal changes (false discovery rate <0.001) in the motor circuitry (including the primary motor, premotor, and supplementary motor cortices; thalamus; pedunculopontine nucleus; and cerebellum) and in the limbic circuitry (including the cingulate and insular cortices). Activation of the motor network was observed also after applying a Bonferroni correction (P<.001) to the data set, suggesting that across patients, BOLD changes in the motor circuitry are more consistent compared with those occurring in the nonmotor network. These findings support the modulatory role of STN DBS on the activity of motor and nonmotor networks and suggest complex mechanisms as the basis of the efficacy of this treatment modality. Furthermore, these results suggest that across patients, BOLD changes in the motor circuitry are more consistent than those in the nonmotor network. With further studies combining the use of real-time intraoperative fMRI with clinical outcomes in patients treated with DBS, functional imaging techniques have the potential not only to elucidate the mechanisms of DBS functioning but also to guide and assist in the surgical treatment of patients affected by movement and neuropsychiatric disorders. clinicaltrials.gov Identifier: NCT01809613. Copyright © 2015 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Surprise disrupts cognition via a fronto-basal ganglia suppressive mechanism
Wessel, Jan R.; Jenkinson, Ned; Brittain, John-Stuart; Voets, Sarah H. E. M.; Aziz, Tipu Z.; Aron, Adam R.
2016-01-01
Surprising events markedly affect behaviour and cognition, yet the underlying mechanism is unclear. Surprise recruits a brain mechanism that globally suppresses motor activity, ostensibly via the subthalamic nucleus (STN) of the basal ganglia. Here, we tested whether this suppressive mechanism extends beyond skeletomotor suppression and also affects cognition (here, verbal working memory, WM). We recorded scalp-EEG (electrophysiology) in healthy participants and STN local field potentials in Parkinson's patients during a task in which surprise disrupted WM. For scalp-EEG, surprising events engage the same independent neural signal component that indexes action stopping in a stop-signal task. Importantly, the degree of this recruitment mediates surprise-related WM decrements. Intracranially, STN activity is also increased post surprise, especially when WM is interrupted. These results suggest that surprise interrupts cognition via the same fronto-basal ganglia mechanism that interrupts action. This motivates a new neural theory of how cognition is interrupted, and how distraction arises after surprising events. PMID:27088156
Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens.
Stenner, Max-Philipp; Dürschmid, Stefan; Rutledge, Robb B; Zaehle, Tino; Schmitt, Friedhelm C; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J; Schoenfeld, Mircea Ariel
2016-10-01
The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10-30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. Copyright © 2016 the American Physiological Society.
Perimovement decrease of alpha/beta oscillations in the human nucleus accumbens
Dürschmid, Stefan; Rutledge, Robb B.; Zaehle, Tino; Schmitt, Friedhelm C.; Kaufmann, Jörn; Voges, Jürgen; Heinze, Hans-Jochen; Dolan, Raymond J.; Schoenfeld, Mircea Ariel
2016-01-01
The human nucleus accumbens is thought to play an important role in guiding future action selection via an evaluation of current action outcomes. Here we provide electrophysiological evidence for a more direct, i.e., online, role during action preparation. We recorded local field potentials from the nucleus accumbens in patients with epilepsy undergoing surgery for deep brain stimulation. We found a consistent decrease in the power of alpha/beta oscillations (10–30 Hz) before and around the time of movements. This perimovement alpha/beta desynchronization was observed in seven of eight patients and was present both before instructed movements in a serial reaction time task as well as before self-paced, deliberate choices in a decision making task. A similar beta decrease over sensorimotor cortex and in the subthalamic nucleus has been directly related to movement preparation and execution. Our results support the idea of a direct role of the human nucleus accumbens in action preparation and execution. PMID:27486103
Distinct Roles of Dopamine and Subthalamic Nucleus in Learning and Probabilistic Decision Making
ERIC Educational Resources Information Center
Coulthard, Elizabeth J.; Bogacz, Rafal; Javed, Shazia; Mooney, Lucy K.; Murphy, Gillian; Keeley, Sophie; Whone, Alan L.
2012-01-01
Even simple behaviour requires us to make decisions based on combining multiple pieces of learned and new information. Making such decisions requires both learning the optimal response to each given stimulus as well as combining probabilistic information from multiple stimuli before selecting a response. Computational theories of decision making…
Sieger, Tomáš; Serranová, Tereza; Růžička, Filip; Vostatek, Pavel; Wild, Jiří; Šťastná, Daniela; Bonnet, Cecilia; Novák, Daniel; Růžička, Evžen; Urgošík, Dušan; Jech, Robert
2015-01-01
Both animal studies and studies using deep brain stimulation in humans have demonstrated the involvement of the subthalamic nucleus (STN) in motivational and emotional processes; however, participation of this nucleus in processing human emotion has not been investigated directly at the single-neuron level. We analyzed the relationship between the neuronal firing from intraoperative microrecordings from the STN during affective picture presentation in patients with Parkinson’s disease (PD) and the affective ratings of emotional valence and arousal performed subsequently. We observed that 17% of neurons responded to emotional valence and arousal of visual stimuli according to individual ratings. The activity of some neurons was related to emotional valence, whereas different neurons responded to arousal. In addition, 14% of neurons responded to visual stimuli. Our results suggest the existence of neurons involved in processing or transmission of visual and emotional information in the human STN, and provide evidence of separate processing of the affective dimensions of valence and arousal at the level of single neurons as well. PMID:25713375
Greenhouse, Ian; Gould, Sherrie; Houser, Melissa; Aron, Adam R.
2014-01-01
Switching between responses is a key executive function known to rely on the frontal cortex and the basal ganglia. Here we aimed to establish with greater anatomical specificity whether such switching could be mediated via different possible frontal–basal-ganglia circuits. Accordingly, we stimulated dorsal vs. ventral contacts of electrodes in the subthalamic nucleus (STN) in Parkinson's patients during switching performance, and also studied matched controls. The patients underwent three sessions: once with bilateral dorsal contact stimulation, once with bilateral ventral contact stimulation, and once Off stimulation. Patients Off stimulation showed abnormal patterns of switching, and stimulation of the ventral contacts but not the dorsal contacts normalized the pattern of behavior relative to controls. This provides some of the first evidence in humans that stimulation of dorsal vs. ventral STN DBS contacts has differential effects on executive function. As response switching is an executive function known to rely on prefrontal cortex, these results suggest that ventral contact stimulation affected an executive/associative cortico-basal ganglia circuit. PMID:23562963
Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan
2003-01-01
This paper reports findings on the respiratory/phonatory subsystems from an on-going study investigating the effect of unilateral electrostimulation of the subthalamic nucleus (STN) on different speech subsystems in people with Parkinson's disease (PD). Speech recordings were made in the medication-off state at baseline, three months post surgery with stimulation-on, and with stimulation-off, in six right-handed PD patients. Subjects completed several speech tasks. Acoustic analyses of the maximally sustained vowel phonation were reported. The results were compared to the scores of the motor section of the Unified Parkinson's Disease Rating Scale (UPDRS-III) obtained under the same conditions. Results showed that stimulation-on improved UPDRS-III scores in all six subjects. While mild improvement was observed for all subjects in the Stimulation-on condition, three subjects received left-STN stimulation showed a significant decline in vocal intensity and vowel duration from their baseline indicating the speech function was very susceptible to micro lesions due to the surgical procedure itself when the surgical site was in the dominant hemisphere.
Schulz, Geralyn M; Hosey, Lara A; Bradberry, Trent J; Stager, Sheila V; Lee, Li-Ching; Pawha, Rajesh; Lyons, Kelly E; Metman, Leo Verhagen; Braun, Allen R
2012-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus improves the motor symptoms of Parkinson's disease, but may produce a worsening of speech and language performance at rates and amplitudes typically selected in clinical practice. The possibility that these dissociated effects might be modulated by selective stimulation of left and right STN has never been systematically investigated. To address this issue, we analyzed motor, speech and language functions of 12 patients implanted with bilateral stimulators configured for optimal motor responses. Behavioral responses were quantified under four stimulator conditions: bilateral DBS, right-only DBS, left-only DBS and no DBS. Under bilateral and left-only DBS conditions, our results exhibited a significant improvement in motor symptoms but worsening of speech and language. These findings contribute to the growing body of literature demonstrating that bilateral STN DBS compromises speech and language function and suggests that these negative effects may be principally due to left-sided stimulation. These findings may have practical clinical consequences, suggesting that clinicians might optimize motor, speech and language functions by carefully adjusting left- and right-sided stimulation parameters.
Hartmann, C J; Wojtecki, L; Vesper, J; Volkmann, J; Groiss, S J; Schnitzler, A; Südmeyer, M
2015-10-01
This study was conducted to better understand the development of clinical efficacy and impedance levels in the long-term course of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson's disease (PD). In this retrospective study of twenty PD patients, the motor part of the Unified Parkinson's Disease Rating Scale was periodically assessed i) after withdrawal of medication and inactivated stimulation, ii) after withdrawal of medication with activated stimulation and iii) after challenge with l-Dopa during activated stimulation up to 13 years after surgery. STN-DBS with or without medication significantly improved motor function up to 13 years after surgery. The contribution of axial symptoms increased over time. While the stimulation parameters were kept constant, the therapeutic impedances progressively declined. STN-DBS in PD remains effective in the long-term course of the disease. Constant current stimulation might be preferable over voltage-controlled stimulation, as it would alleviate the impact of impedance changes on the volume of tissue activated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kaptan, Hülagu; Çakmur, Raif
2018-04-15
The primary target of this operation is Ventral Intermediate Nucleus (VIM); however VIM - Subthalamic Nucleus (STN) were tried to be reached with one electrode, adjusting the angle well, the coronal section; medial of VIM can partially reach the STN. Using the properties of the electrode; we believe we could act on a wide area. An analysis was performed on one patient who underwent VIM Deep Brain Stimulation (DBS) in 3 periods (pre - peri - post-operation). A 53 - year - old woman diagnosed with Parkinson's disease 8 years earlier including symptoms of severe tremor on the right than left underwent bilateral DBS VIM. Obtaining a satisfactory improvement of tremor, the patient did well, and postoperative complications were not observed. The patient was discharged from hospital on postoperative thirty day. It is certain that more research and experience are needed. However, we believe that the two targets can reach the same point and the second operations for another target can be avoided.We believe that this initiative is advantageous and promising regarding patient and cost.
Aldridge, Danielle; Theodoros, Deborah; Angwin, Anthony; Vogel, Adam P
2016-12-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in reducing motor symptoms for many individuals with Parkinson's disease (PD). However, STN DBS does not appear to influence speech in the same way, and may result in a variety of negative outcomes for people with PD (PWP). A high degree of inter-individual variability amongst PWP regarding speech outcomes following STN DBS is evident in many studies. Furthermore, speech studies in PWP following STN DBS have employed a wide variety of designs and methodologies, which complicate comparison and interpretation of outcome data amongst studies within this growing body of research. An analysis of published evidence regarding speech outcomes in PWP following STN DBS, according to design and quality, is missing. This systematic review aimed to analyse and coalesce all of the current evidence reported within observational and experimental studies investigating the effects of STN DBS on speech. It will strengthen understanding of the relationship between STN DBS and speech, and inform future research by highlighting methodological limitations of current evidence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Baunez, Christelle; Christakou, Anastasia; Chudasama, Yogita; Forni, Claude; Robbins, Trevor W.
2007-01-01
It is now well established that subthalamic nucleus high-frequency stimulation (STN HFS) alleviates motor problems in Parkinson's disease. However, its efficacy for cognitive function remains a matter of debate. The aim of this study was to assess the effects of STN HFS in rats performing a visual attentional task. Bilateral STN HFS was applied in intact and in bilaterally dopamine (DA)-depleted rats. In all animals, STN HFS had a transient debilitating effect on all the variables measured in the task. In DA-depleted rats, STN HFS did not alleviate the deficits induced by the DA lesion such as omissions and latency to make correct responses, but induced perseverative approaches to the food magazine, an indicator of enhanced motivation. In sham-operated controls, STN HFS significantly reduced accuracy and induced perseverative behaviour, mimicking partially the effects of bilateral STN lesions in the same task. These results are in line with the hypothesis that STN HFS only partially mimics inactivation of STN produced by lesioning and confirm the motivational exacerbation induced by STN inactivation. PMID:17331214
Alcohol preference influences the subthalamic nucleus control on motivation for alcohol in rats.
Lardeux, Sylvie; Baunez, Christelle
2008-02-01
In addition to its role in motor and attentional processes, the subthalamic nucleus (STN) has also been recently demonstrated to be involved in motivational function. Indeed, bilateral STN lesions modulate differentially the motivation for natural rewards and drugs of abuse, increasing motivation for food and decreasing motivation for cocaine in rats. Here, we show that in outbred rats, the STN can modulate the motivation for alcohol according to alcohol preference, without affecting alcohol intake. When performed on 'High-Drinker' rats, STN lesions enhanced the breaking point (BP) under a progressive ratio schedule of reinforcement and increased the time spent in the environment previously paired with alcohol access in the place preference paradigm. In contrast, when performed on 'Low-Drinker' rats, STN lesions decreased the BP and increased the time spent in the environment paired with water. These results show that STN lesions enhance the motivation for alcohol in rats showing a high alcohol preference, whereas they decrease it in rats showing a low preference for alcohol. These results suggest that the STN plays a complex role in the reward circuit, that is not limited to a
The Subthalamic Nucleus, Limbic Function, and Impulse Control.
Rossi, P Justin; Gunduz, Aysegul; Okun, Michael S
2015-12-01
It has been well documented that deep brain stimulation (DBS) of the subthalamic nucleus (STN) to address some of the disabling motor symptoms of Parkinson's disease (PD) can evoke unintended effects, especially on non-motor behavior. This observation has catalyzed more than a decade of research concentrated on establishing trends and identifying potential mechanisms for these non-motor effects. While many issues remain unresolved, the collective result of many research studies and clinical observations has been a general recognition of the role of the STN in mediating limbic function. In particular, the STN has been implicated in impulse control and the related construct of valence processing. A better understanding of STN involvement in these phenomena could have important implications for treating impulse control disorders (ICDs). ICDs affect up to 40% of PD patients on dopamine agonist therapy and approximately 15% of PD patients overall. ICDs have been reported to be associated with STN DBS. In this paper we will focus on impulse control and review pre-clinical, clinical, behavioral, imaging, and electrophysiological studies pertaining to the limbic function of the STN.
Singh, Arun; Mehrkens, Jan H; Bötzel, Kai
2012-03-15
Bradykinesia and hypokinesia are the prominent symptoms of substantia nigra degeneration in Parkinson's disease (PD). In segmental dystonia, movements of not affected limbs are not impaired. Here we studied the impact of the mere implantation of stimulation electrodes on the performance of fast movements in these two groups. We investigated 9 PD patients with subthalamic electrodes and 9 patients with segmental dystonia with electrodes in the globus pallidus internum. Patients were studied on the first postoperative day without electrical stimulation of the electrodes. Subjects had to perform boxing movements with either touching the target or stopping the fist in front of the target. PD subjects performed significantly faster movements in the touch-task only as compared to dystonic patients. No difference was seen in the stopping task. In conclusion, our findings suggest that a small subthalamic lesion in individuals with PD specifically reverses bradykinesia during simple ballistic movements (touch) but not during complex ones requiring more pre-programming (no-touch paradigm). Copyright © 2011 Elsevier B.V. All rights reserved.
Mideksa, K G; Singh, A; Hoogenboom, N; Hellriegel, H; Krause, H; Schnitzler, A; Deuschl, G; Raethjen, J; Schmidt, G; Muthuraman, M
2016-08-01
One of the most commonly used therapy to treat patients with Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Identifying the most optimal target area for the placement of the DBS electrodes have become one of the intensive research area. In this study, the first aim is to investigate the capabilities of different source-analysis techniques in detecting deep sources located at the sub-cortical level and validating it using the a-priori information about the location of the source, that is, the STN. Secondly, we aim at an investigation of whether EEG or MEG is best suited in mapping the DBS-induced brain activity. To do this, simultaneous EEG and MEG measurement were used to record the DBS-induced electromagnetic potentials and fields. The boundary-element method (BEM) have been used to solve the forward problem. The position of the DBS electrodes was then estimated using the dipole (moving, rotating, and fixed MUSIC), and current-density-reconstruction (CDR) (minimum-norm and sLORETA) approaches. The source-localization results from the dipole approaches demonstrated that the fixed MUSIC algorithm best localizes deep focal sources, whereas the moving dipole detects not only the region of interest but also neighboring regions that are affected by stimulating the STN. The results from the CDR approaches validated the capability of sLORETA in detecting the STN compared to minimum-norm. Moreover, the source-localization results using the EEG modality outperformed that of the MEG by locating the DBS-induced activity in the STN.
Telford, Ryan; Vattoth, Surjith
2014-01-01
Summary Diseases affecting the basal ganglia and deep brain structures vary widely in etiology and include metabolic, infectious, ischemic, and neurodegenerative conditions. Some neurologic diseases, such as Wernicke encephalopathy or pseudohypoparathyroidism, require specific treatments, which if unrecognized could lead to further complications. Other pathologies, such as hypertrophic olivary degeneration, if not properly diagnosed may be mistaken for a primary medullary neoplasm and create unnecessary concern. The deep brain structures are complex and can be difficult to distinguish on routine imaging. It is imperative that radiologists first understand the intrinsic anatomic relationships between the different basal ganglia nuclei and deep brain structures with magnetic resonance (MR) imaging. It is important to understand the "normal" MR signal characteristics, locations, and appearances of these structures. This is essential to recognizing diseases affecting the basal ganglia and deep brain structures, especially since most of these diseases result in symmetrical, and therefore less noticeable, abnormalities. It is also crucial that neurosurgeons correctly identify the deep brain nuclei presurgically for positioning deep brain stimulator leads, the most important being the subthalamic nucleus for Parkinson syndromes and the thalamic ventral intermediate nucleus for essential tremor. Radiologists will be able to better assist clinicians in diagnosis and treatment once they are able to accurately localize specific deep brain structures. PMID:24571832
ERIC Educational Resources Information Center
Lundervold, Duane A.; Pahwa, Rajesh; Lyons, Kelly E.
2013-01-01
Effects of brief Behavioral Relaxation Training (BRT) on anxiety and dyskinesia of a 57-year-old female, with an 11-year history of Parkinson's disease (PD) and 18-months post-deep brain stimulation of the subthalamic nucleus, were evaluated. Multiple process and outcome measures were used including the Clinical Anxiety Scale (CAS), Subjective…
ERIC Educational Resources Information Center
Putzer, Manfred; Barry, William J.; Moringlane, Jean Richard
2008-01-01
The effect of deep brain stimulation on the two speech-production subsystems, articulation and phonation, of nine Parkinsonian patients is examined. Production parameters (stop closure voicing; stop closure, VOT, vowel) in fast syllable-repetitions were defined and measured and quantitative, objective metrics of vocal fold function were obtained…
Patterns of Cortical Synchronization in Isolated Dystonia Compared With Parkinson Disease
Miocinovic, Svjetlana; de Hemptinne, Coralie; Qasim, Salman; Ostrem, Jill L.; Starr, Philip A.
2016-01-01
IMPORTANCE Isolated dystonia and Parkinson disease (PD) are disorders of the basal gangliothalamocortical network. They have largely distinct clinical profiles, but both disorders respond to deep brain stimulation (DBS) in the same subcortical targets using similar stimulation paradigms, suggesting pathophysiologic overlap. We hypothesized that, similar to PD, isolated dystonia is associated with elevated cortical neuronal synchronization. OBJECTIVE To investigate the electrophysiologic characteristics of the sensorimotor cortex arm-related area using a temporary subdural electrode strip in patients with isolated dystonia and PD undergoing DBS implantation in the awake state. DESIGN, SETTING, AND PARTICIPANTS An observational study recruited patients scheduled for DBS at the University of California, San Francisco and the San Francisco Veterans Affairs Medical Center. Data were collected from May 1, 2008, through April 1, 2015. Findings are reported for 22 patients with isolated cervical or segmental dystonia (8 with [DYST-ARM] and 14 without [DYST] arm symptoms] and 14 patients with akinetic rigid PD. Data were analyzed from November 1, 2014, through May 1, 2015. MAIN OUTCOMES AND MEASURES Cortical local field potentials, power spectral density, and phase-amplitude coupling (PAC). RESULTS Among our 3 groups that together included 36 patients, cortical PAC was present in primary motor and premotor arm-related areas for all groups, but the DYST group was less likely to exhibit increased PAC (P = .008). Similar to what has been shown for patients with PD, subthalamic DBS reversibly decreased PAC in a subset of patients with dystonia who were studied before and during intraoperative test stimulation (n = 4). At rest, broadband gamma (50–200 Hz) power in the primary motor cortex was greater in the DYST-ARM and PD groups compared with the DYST group, whereas alpha (8–13 Hz) and beta (13–30 Hz) power was comparable in all 3 groups. During movement, the DYST-ARM group had impaired beta and low gamma desynchronization in the primary motor cortex. CONCLUSIONS AND RELEVANCE Isolated dystonia and PD have physiologic overlap with respect to high levels of motor cortex synchronization and reduction of cortical synchronization by subthalamic DBS, providing an explanation for their similar therapeutic response to basal ganglia stimulation. PMID:26409266
Swann, Nicole C; de Hemptinne, Coralie; Miocinovic, Svjetlana; Qasim, Salman; Ostrem, Jill L; Galifianakis, Nicholas B; Luciano, Marta San; Wang, Sarah S; Ziman, Nathan; Taylor, Robin; Starr, Philip A
2018-02-01
OBJECTIVE Dysfunction of distributed neural networks underlies many brain disorders. The development of neuromodulation therapies depends on a better understanding of these networks. Invasive human brain recordings have a favorable temporal and spatial resolution for the analysis of network phenomena but have generally been limited to acute intraoperative recording or short-term recording through temporarily externalized leads. Here, the authors describe their initial experience with an investigational, first-generation, totally implantable, bidirectional neural interface that allows both continuous therapeutic stimulation and recording of field potentials at multiple sites in a neural network. METHODS Under a physician-sponsored US Food and Drug Administration investigational device exemption, 5 patients with Parkinson's disease were implanted with the Activa PC+S system (Medtronic Inc.). The device was attached to a quadripolar lead placed in the subdural space over motor cortex, for electrocorticography potential recordings, and to a quadripolar lead in the subthalamic nucleus (STN), for both therapeutic stimulation and recording of local field potentials. Recordings from the brain of each patient were performed at multiple time points over a 1-year period. RESULTS There were no serious surgical complications or interruptions in deep brain stimulation therapy. Signals in both the cortex and the STN were relatively stable over time, despite a gradual increase in electrode impedance. Canonical movement-related changes in specific frequency bands in the motor cortex were identified in most but not all recordings. CONCLUSIONS The acquisition of chronic multisite field potentials in humans is feasible. The device performance characteristics described here may inform the design of the next generation of totally implantable neural interfaces. This research tool provides a platform for translating discoveries in brain network dynamics to improved neurostimulation paradigms. Clinical trial registration no.: NCT01934296 (clinicaltrials.gov).
Sharott, Andrew; Magill, Peter J; Bolam, J Paul; Brown, Peter
2005-01-01
Population activity in cortico-basal ganglia circuits is synchronized at different frequencies according to brain state. However, the structures that are likely to drive the synchronization of activity in these circuits remain unclear. Furthermore, it is not known whether the direction of transmission of activity is fixed or dependent on brain state. We have used the directed transfer function (DTF) to investigate the direction in which coherent activity is effectively driven in cortico-basal ganglia circuits. Local field potentials (LFPs) were simultaneously recorded in the subthalamic nucleus (STN), globus pallidus (GP) and substantia nigra pars reticulata (SNr), together with the ipsilateral frontal electrocorticogram (ECoG) of anaesthetized rats. Directional analysis was performed on recordings made during robust cortical slow-wave activity (SWA) and ‘global activation’. During SWA, there was coherence at ∼1 Hz between ECoG and basal ganglia LFPs, with much of the coherent activity directed from cortex to basal ganglia. There were similar coherent activities at ∼1 Hz within the basal ganglia, with more activity directed from SNr to GP and STN, and from STN to GP rather than vice versa. During global activation, peaks in coherent activity were seen at higher frequencies (15–60 Hz), with most coherence also directed from cortex to basal ganglia. Within the basal ganglia, however, coherence was predominantly directed from GP to STN and SNr. Together, these results highlight a lead role for the cortex in activity relationships with the basal ganglia, and further suggest that the effective direction of coupling between basal ganglia nuclei is dynamically organized according to brain state, with activity relationships involving the GP displaying the greatest capacity to change. PMID:15550466
Confirmation of thalamosubthalamic projections by electron microscopic autoradiography.
Sugimoto, T; Hattori, T
1983-05-16
Direct projections from the centre median-parafascicular complex (CM-Pf) to the subthalamic nucleus(STN) were confirmed by electron microscopic autoradiography. [3H]Leucine injections into the rat CM-Pf produced preferential labeling of Gray's type I boutons containing round vesicles in the ipsilateral STN. Further results strongly suggested the existence of some common CM-Pf projections to both the striatum and STN.
Voon, Valerie; Droux, Fabien; Chabardes, Stephan; Bougerol, Thierry; Kohl, Sina; David, Olivier; Krack, Paul; Polosan, Mircea
2018-07-01
Our daily decisions involve an element of risk, a behavioral process that is potentially modifiable. Here we assess the role of the associative-limbic subthalamic nucleus (STN) in obsessive compulsive disorder (OCD) testing on and off deep-brain stimulation (DBS) on anticipatory risk taking to obtain rewards and avoid losses. We assessed 12 OCD STN DBS in a randomized double-blind within-subject cross-over design. STN DBS decreased risk taking to rewards (p = 0.02) and greater risk taking to rewards was positively correlated with OCD severity (p = 0.01) and disease duration (p = 0.01). STN DBS was also associated with impaired subjective discrimination of loss magnitude (p < 0.05), an effect mediated by acute DBS rather than chronic DBS. We highlight a role for the STN in mediating dissociable valence prospects on risk seeking. STN stimulation decreases risk taking to rewards and impairs discrimination of loss magnitude. These findings may have implications for behavioral symptoms related to STN DBS and the potential for STN DBS for the treatment of psychiatric disorders. Copyright © 2018. Published by Elsevier Ltd.
Alegret, Montse; Valldeoriola, Francesc; Martí, MaJosé; Pilleri, Manuela; Junqué, Carme; Rumià, Jordi; Tolosa, Eduardo
2004-12-01
Bilateral subthalamic deep brain stimulation (STN-DBS) and continuous subcutaneous infusion of apomorphine (APM-csi) can provide a comparable improvement on motor function in patients with advanced Parkinson's disease (PD), but the mechanisms by which both therapies exert their effects are different. We analyzed the cognitive effects of APM-csi. We also compared neuropsychological effects induced by STN-DBS and APM-csi in advanced PD to ascertain the neuropsychological aspects relevant in determining the therapeutic procedure that is the most appropriate in a particular patient. We studied 9 patients treated with STN-DBS and 7 patients with APM-csi. Neuropsychological measures included Rey's Auditory-Verbal Learning, Stroop, Trail Making, phonetic verbal fluency, and Judgment of Line Orientation tests. In the APM-csi group, significant changes were not observed in the neuropsychological tests performance. By contrast, in the STN-DBS group, moderate worsening was found in phonetic verbal fluency and Stroop Naming scores that was partially reversible at long-term follow-up and did not have consequences on regular activities. Consequently, these findings could be interpreted as being not relevant in deciding the most suitable treatment in a given patient. 2004 Movement Disorder Society.
Subthalamic nucleus stimulation impairs emotional conflict adaptation in Parkinson's disease.
Irmen, Friederike; Huebl, Julius; Schroll, Henning; Brücke, Christof; Schneider, Gerd-Helge; Hamker, Fred H; Kühn, Andrea A
2017-10-01
The subthalamic nucleus (STN) occupies a strategic position in the motor network, slowing down responses in situations with conflicting perceptual input. Recent evidence suggests a role of the STN in emotion processing through strong connections with emotion recognition structures. As deep brain stimulation (DBS) of the STN in patients with Parkinson's disease (PD) inhibits monitoring of perceptual and value-based conflict, STN DBS may also interfere with emotional conflict processing. To assess a possible interference of STN DBS with emotional conflict processing, we used an emotional Stroop paradigm. Subjects categorized face stimuli according to their emotional expression while ignoring emotionally congruent or incongruent superimposed word labels. Eleven PD patients ON and OFF STN DBS and eleven age-matched healthy subjects conducted the task. We found conflict-induced response slowing in healthy controls and PD patients OFF DBS, but not ON DBS, suggesting STN DBS to decrease adaptation to within-trial conflict. OFF DBS, patients showed more conflict-induced slowing for negative conflict stimuli, which was diminished by STN DBS. Computational modelling of STN influence on conflict adaptation disclosed DBS to interfere via increased baseline activity. © The Author (2017). Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Wang, Emily; Verhagen Metman, Leo; Bakay, Roy; Arzbaecher, Jean; Bernard, Bryan
2004-05-01
Previously, it was found that 16 right-handed patients with idiopathic Parkinsons disease who underwent unilateral implantation of deep brain stimulator in subthalamic nucleus (STN) showed significant improvement in their nonspeech motor functions. Eight of the 16 patients had stimulator in the left STN and eight in the right STN. In contrast, their speech function showed very mild improvement that was limited to the respiratory/phonotory subsystems. Further, there seemed a trend that the patients with right STN stimulation did better than those with left STN stimulation. It was speculated that the difference might be due to a micro lesion caused by the surgical procedure to the corticobulbar fibers run in the left internal capsule. This paper reports speech changes associated with bilateral DBS in STN in four of the 16 subjects who elected to have deep brain stimulator implanted in STN on the opposite side of the brain at a later time. Results show negative changes in speech after bilateral DBS in STN. The changes were not limited to the micro lesion effect due to the surgery itself, but also related to the active stimulation on the dominant hemisphere for speech processing. [Work supported by NIH.
Hartinger, Mariam; Tripoliti, Elina; Hardcastle, William J; Limousin, Patricia
2011-03-01
Parkinson's disease (PD) affects speech in the majority of patients. Subthalamic nucleus deep brain stimulation (STN-DBS) is particularly effective in reducing tremor and rigidity. However, its effect on speech is variable. The aim of this pilot study was to quantify the effects of bilateral STN-DBS and medication on articulation, using electropalatography (EPG). Two patients, PT1 and PT2, were studied under four conditions: on and off medication and ON and OFF stimulation. The EPG protocol consisted of a number of target words with alveolar and velar stops, repeated 10 times in random order. The motor part III of the Unified Parkinson Disease Rating Scale (UPDRS) indicated significantly improved motor scores in the ON stimulation condition in both patients. However, PT1's articulation patterns deteriorated with stimulation whereas PT2 showed improving articulatory accuracy in the same condition. The results revealed different effects of stimulation and medication on articulation particularly with regard to timing. The study quantified less articulatory undershoot for velar stops in comparison to alveolars. Furthermore, the findings provided preliminary evidence that stimulation with medication has a more detrimental effect on articulation than stimulation without medication.
Surgery for Dystonia and Tremor.
Crowell, Jason L; Shah, Binit B
2016-03-01
Surgical procedures for dystonia and tremor have evolved over the past few decades, and our understanding of risk, benefit, and predictive factors has increased substantially in that time. Deep brain stimulation (DBS) is the most utilized surgical treatment for dystonia and tremor, though lesioning remains an effective option in appropriate patients. Dystonic syndromes that have shown a substantial reduction in severity secondary to DBS are isolated dystonia, including generalized, cervical, and segmental, as well as acquired dystonia such as tardive dystonia. Essential tremor is quite amenable to DBS, though the response of other forms of postural and kinetic tremor is not nearly as robust or consistent based on available evidence. Regarding targeting, DBS lead placement in the globus pallidus internus has shown marked efficacy in dystonia reduction. The subthalamic nucleus is an emerging target, and increasing evidence suggests that this may be a viable target in dystonia as well. The ventralis intermedius nucleus of the thalamus is the preferred target for essential tremor, though targeting the subthalamic zone/caudal zona incerta has shown promise and may emerge as another option in essential tremor and possibly other tremor disorders. In the carefully selected patient, DBS and lesioning procedures are relatively safe and effective for the management of dystonia and tremor.
Comparing Realistic Subthalamic Nucleus Neuron Models
NASA Astrophysics Data System (ADS)
Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.
2011-06-01
The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.
Leimbach, Friederike; Georgiev, Dejan; Litvak, Vladimir; Antoniades, Chrystalina; Limousin, Patricia; Jahanshahi, Marjan; Bogacz, Rafal
2018-06-01
During a decision process, the evidence supporting alternative options is integrated over time, and the choice is made when the accumulated evidence for one of the options reaches a decision threshold. Humans and animals have an ability to control the decision threshold, that is, the amount of evidence that needs to be gathered to commit to a choice, and it has been proposed that the subthalamic nucleus (STN) is important for this control. Recent behavioral and neurophysiological data suggest that, in some circumstances, the decision threshold decreases with time during choice trials, allowing overcoming of indecision during difficult choices. Here we asked whether this within-trial decrease of the decision threshold is mediated by the STN and if it is affected by disrupting information processing in the STN through deep brain stimulation (DBS). We assessed 13 patients with Parkinson disease receiving bilateral STN DBS six or more months after the surgery, 11 age-matched controls, and 12 young healthy controls. All participants completed a series of decision trials, in which the evidence was presented in discrete time points, which allowed more direct estimation of the decision threshold. The participants differed widely in the slope of their decision threshold, ranging from constant threshold within a trial to steeply decreasing. However, the slope of the decision threshold did not depend on whether STN DBS was switched on or off and did not differ between the patients and controls. Furthermore, there was no difference in accuracy and RT between the patients in the on and off stimulation conditions and healthy controls. Previous studies that have reported modulation of the decision threshold by STN DBS or unilateral subthalamotomy in Parkinson disease have involved either fast decision-making under conflict or time pressure or in anticipation of high reward. Our findings suggest that, in the absence of reward, decision conflict, or time pressure for decision-making, the STN does not play a critical role in modulating the within-trial decrease of decision thresholds during the choice process.
Martinez-Fernandez, Raul; Pelissier, Pierre; Quesada, Jean-Louis; Klinger, Hélène; Lhommée, Eugénie; Schmitt, Emmanuelle; Fraix, Valerie; Chabardes, Stephan; Mertens, Patrick; Castrioto, Anna; Kistner, Andrea; Broussolle, Emmanuel; Pollak, Pierre; Thobois, Stéphane; Krack, Paul
2016-03-01
Subthalamic nucleus deep brain stimulation (STN-DBS) improves motor symptoms of Parkinson's disease, leading to improvement in health-related quality of life (HRQoL). However, an excessive decrease in dopaminergic medication can lead to a withdrawal syndrome with apathy as the predominant feature. The present study aims to assess the impact of postoperative apathy on HRQoL. A cohort of 88 patients who underwent STN-DBS was divided into two groups, those who were apathetic at 1 year and those who were not, as measured by the Starkstein scale. HRQoL was assessed using the Parkinson's disease questionnaire 39 (PDQ-39) and was compared between the two groups. We also compared activities of daily living, motor improvement and motor complications (Unified Parkinson's Disease Rating Scale, UPDRS), depression and anxiety, as well as cognition and drug dosages. Baseline characteristics and postoperative complications were recorded. One year after surgery, 27.1% of patients suffered from apathy. While motor improvement was significant and equivalent in both the apathy (-40.4% of UPDRS motor score) and non-apathy groups (-48.6%), the PDQ-39 score did not improve in the apathy group (-5.5%; p=0.464), whereas it improved significantly (-36.7%; p≤0.001) in the non-apathy group. Change in apathy scores correlated significantly with change in HRQoL scores (r=0.278, p=0.009). Depression and anxiety scores remained unchanged from baseline in the apathy group (p=0.409, p=0.075), while they improved significantly in patients without apathy (p=0.006, p≤0.001). A significant correlation was found between changes in apathy and depression (r=0.594, p≤0.001). The development of apathy after STN-DBS can cancel out the benefits of motor improvement in terms of HRQoL. Systematic evaluation and management of apathy occurring after subthalamic stimulation appears mandatory. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J
2014-01-01
Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.
The Striatum and Subthalamic Nucleus as Independent and Collaborative Structures in Motor Control
Tewari, Alia; Jog, Rachna; Jog, Mandar S.
2016-01-01
The striatum and the subthalamic nucleus (STN) are two separate input structures into the basal ganglia (BG). Accordingly, research to date has primarily focused on the distinct roles of these structures in motor control and cognition, often through investigation of Parkinson’s disease (PD). Both structures are divided into sensorimotor, associative, and limbic subdivisions based on cortical connectivity. The more recent discovery of the STN as an input structure into the BG drives comparison of these two structures and their respective roles in cognition and motor control. This review compares the role of the striatum and STN in motor response inhibition and execution, competing motor programs, feedback based learning, and response planning. Through comparison, it is found that the striatum and STN have highly independent roles in motor control but also collaborate in order to execute desired actions. There is also the possibility that inhibition or activation of one of these structures indirectly contributes to the function of other connected anatomical structures. Both structures contribute to selective motor response inhibition, which forms the basis of many tasks, but the STN additionally contributes to global inhibition through the hyperdirect pathway. Research is warranted on the functional connectivity of the network for inhibition involving the rIFG, preSMA, striatum, and STN. PMID:26973474
Structural and functional connectivity of the subthalamic nucleus during vocal emotion decoding
Frühholz, Sascha; Ceravolo, Leonardo; Grandjean, Didier
2016-01-01
Our understanding of the role played by the subthalamic nucleus (STN) in human emotion has recently advanced with STN deep brain stimulation, a neurosurgical treatment for Parkinson’s disease and obsessive-compulsive disorder. However, the potential presence of several confounds related to pathological models raises the question of how much they affect the relevance of observations regarding the physiological function of the STN itself. This underscores the crucial importance of obtaining evidence from healthy participants. In this study, we tested the structural and functional connectivity between the STN and other brain regions related to vocal emotion in a healthy population by combining diffusion tensor imaging and psychophysiological interaction analysis from a high-resolution functional magnetic resonance imaging study. As expected, we showed that the STN is functionally connected to the structures involved in emotional prosody decoding, notably the orbitofrontal cortex, inferior frontal gyrus, auditory cortex, pallidum and amygdala. These functional results were corroborated by probabilistic fiber tracking, which revealed that the left STN is structurally connected to the amygdala and the orbitofrontal cortex. These results confirm, in healthy participants, the role played by the STN in human emotion and its structural and functional connectivity with the brain network involved in vocal emotions. PMID:26400857
Radiosurgical Subthalamic Nucleotomy.
Régis, Jean; Carron, Romain; Witjas, Tatiana
2018-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is the reference technique in Parkinson's disease (PD) at different stages of complications. Some patients cannot afford DBS due to anticoagulation or comorbidities or due to pecuniary reasons. Radiosurgery is a minimally invasive stereotactic technique, with no craniotomy and subsequently no risk of bleeding or infection. Its good safety efficacy profile has been established in the treatment of tremor, and the postoperative care issues are simple with a much shorter hospital stay (mean 48 h). The application of radiosurgery to STN target in PD as an alternative to DBS is being debated. The lesion of the STN is presumed to induce hemiballism. Experimental works suggest a potential lower risk of hemiballism in animal models of PD. However, radiofrequency ablation of the STN is associated with a significant rate of severe dyskinesia, sometimes permanent and severe enough to request salvage pallidotomies. The positive experience of VIM radiosurgery in tremor and its capacity to create precise, accurate and well-controlled lesions provides reasonable rationale for the evaluation of this technique when applied to STN in PD. Preliminary results till date have shown the absence of severe permanent dyskinesia. Prospective controlled trials are mandatory to evaluate the safety efficacy of this technique in PD. © 2018 S. Karger AG, Basel.
Wu, Xi; Qiu, Yiqing; Simfukwe, Keith; Wang, Jiali; Chen, Jianchun
2017-01-01
Background Stimulation-induced transient nonmotor psychiatric symptoms (STPSs) are side effects following bilateral subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients. We designed algorithms which (1) determine the electrode contacts that induce STPSs and (2) provide a programming protocol to eliminate STPS and maintain the optimal motor functions. Our objective is to test the effectiveness of these algorithms. Materials and Methods 454 PD patients who underwent programming sessions after STN-DBS implantations were retrospectively analyzed. Only STPS patients were enrolled. In these patients, the contacts inducing STPS were found and the programming protocol algorithms used. Results Eleven patients were diagnosed with STPS. Of these patients, two had four episodes of crying, and two had four episodes of mirthful laughter. In one patient, two episodes of abnormal sense of spatial orientation were observed. Hallucination episodes were observed twice in one patient, while five patients recorded eight episodes of hypomania. There were no statistical differences between the UPDRS-III under the final stimulation parameter (without STPS) and previous optimum UPDRS-III under the STPSs (p = 1.000). Conclusion The flow diagram used for determining electrode contacts that induce STPS and the programming protocol employed in the treatment of these symptoms are effective. PMID:28894620
Jahanshahi, Marjan
2013-01-01
Inhibition of inappropriate, habitual or prepotent responses is an essential component of executive control and a cornerstone of self-control. Via the hyperdirect pathway, the subthalamic nucleus (STN) receives inputs from frontal areas involved in inhibition and executive control. Evidence is reviewed from our own work and the literature suggesting that in Parkinson's disease (PD), deep brain stimulation (DBS) of the STN has an impact on executive control during attention-demanding tasks or in situations of conflict when habitual or prepotent responses have to be inhibited. These results support a role for the STN in an inter-related set of processes: switching from automatic to controlled processing, inhibitory and executive control, adjusting response thresholds and influencing speed-accuracy trade-offs. Such STN DBS-induced deficits in inhibitory and executive control may contribute to some of the psychiatric problems experienced by a proportion of operated cases after STN DBS surgery in PD. However, as no direct evidence for such a link is currently available, there is a need to provide direct evidence for such a link between STN DBS-induced deficits in inhibitory and executive control and post-surgical psychiatric complications experienced by operated patients. PMID:24399941
Defining the neurocircuitry of exercise hyperpnoea
Paterson, David J
2014-01-01
One hundred years ago in this journal, Krogh and Lindhard published a seminal paper highlighting the importance of the brain in the control of breathing during exercise. This symposium report reviews the historical developments that have taken place since 1913, and attempts to place the detailed neurocircuitry thought to underpin exercise hyperpnoea into context by focusing on key structures that might form the command network. With the advent of enhanced neuroimaging and functional neurosurgical techniques, a unique window of opportunity has recently arisen to target potential circuits in humans. Animal studies have identified a priori sites of interest in mid-brain structures, in particular the subthalamic locomotor region (subthalamic nucleus, STN) and the periaqueductal grey (PAG), which have now been recorded from in humans during exercise. When all data are viewed in an integrative manner, the PAG, in particular the lateral PAG, and aspects of the dorsal lateral PAG, appear to be key communicating circuitry for ‘central command’. Moreover, the PAG also fulfils many requirements of a command centre. It has functional connectivity to higher centres (dorsal lateral prefrontal cortex) and the basal ganglia (in particular, the STN), and receives a sensory input from contracting muscle, but, importantly, it sends efferent information to brainstem nuclei involved in cardiorespiratory control. PMID:23918772
Pallanti, Stefano; Bernardi, Silvia; Raglione, Laura Maria; Marini, Paolo; Ammannati, Franco; Sorbi, Sandro; Ramat, Silvia
2010-07-01
"Punding" is the term used to describe a stereotyped motor behavior characterized by an intense fascination with repetitive purposeless movements, such as taking apart mechanical objects, handling common objects as if they were new and entertaining, constantly picking at oneself, etc. As a phenomenon with both impulsive and compulsive features, the phenomenology of punding is currently being questioned. In order to investigate the pathophysiology of this phenomenon, we screened a population of Parkinson's disease (PD) outpatients who underwent subthalamic nucleus deep brain stimulation (STN DBS). We conducted a patient-and-relative-completed survey with 24 consecutive patients in an academic outpatient care center, using a modified version of a structured interview. Patients were administered the Unified Parkinson's Disease Rating Scale (UPDRS), the Obsessive-Compulsive Inventory and the Sheehan Disability Scale. Five (20.8%) of the 24 subjects were identified as punders, including three men (60%) and two women. The punders were comparable to the non-punders in terms of clinical and demographic factors. The punder and non-punder groups only differed statistically with regard to the length of time from DBS implantation. Those findings suggest that punding might be induced by STN DBS, and its rate of occurrence in DBS population seems to be more common than previously suspected. Copyright 2010 Elsevier Ltd. All rights reserved.
Azevedo, Elsa; Santos, Rosa; Freitas, João; Rosas, Maria-José; Gago, Miguel; Garrett, Carolina; Rosengarten, Bernhard
2010-11-01
In Parkinson's disease (PD) subthalamic nucleus deep brain stimulation (STN-DBS) improves motor function. Also an effect on the neurovascular coupling in motor cortex was reported due to a parallel activation of a subthalamic vasodilator area (SVA). To address this issue further we analysed neurovascular coupling in a non-motor area. Twenty PD patients selected for bilateral STN-DBS were investigated with functional transcranial Doppler (f-TCD) before and after surgery. Hemodynamic responses to visual stimulation were registered in left posterior cerebral artery (PCA) and analysed with a control-system approach (parameters gain, rate time, attenuation and natural frequency). To exclude autonomic effects of STN-DBS, we also addressed spectrum analysis of heart rate and of systolic arterial blood pressure variability, and baroreceptor gain. Findings in the PD group were compared with healthy age-matched controls. PD patients showed no neurovascular coupling changes in PCA territory, compared to controls, and STN-DBS changed neither blood flow regulatory parameters nor autonomic function. Improvement of vasoregulation in some motor cortical areas after STN-DBS might be related to an improved neuronal functional rather than indicating an effect on the neurovascular coupling or autonomic function. Copyright © 2010 Elsevier Ltd. All rights reserved.
Subthalamic nucleus detects unnatural android movement.
Ikeda, Takashi; Hirata, Masayuki; Kasaki, Masashi; Alimardani, Maryam; Matsushita, Kojiro; Yamamoto, Tomoyuki; Nishio, Shuichi; Ishiguro, Hiroshi
2017-12-19
An android, i.e., a realistic humanoid robot with human-like capabilities, may induce an uncanny feeling in human observers. The uncanny feeling about an android has two main causes: its appearance and movement. The uncanny feeling about an android increases when its appearance is almost human-like but its movement is not fully natural or comparable to human movement. Even if an android has human-like flexible joints, its slightly jerky movements cause a human observer to detect subtle unnaturalness in them. However, the neural mechanism underlying the detection of unnatural movements remains unclear. We conducted an fMRI experiment to compare the observation of an android and the observation of a human on which the android is modelled, and we found differences in the activation pattern of the brain regions that are responsible for the production of smooth and natural movement. More specifically, we found that the visual observation of the android, compared with that of the human model, caused greater activation in the subthalamic nucleus (STN). When the android's slightly jerky movements are visually observed, the STN detects their subtle unnaturalness. This finding suggests that the detection of unnatural movements is attributed to an error signal resulting from a mismatch between a visual input and an internal model for smooth movement.
Fisher, Benjamin; Kausar, Jamilla; Garratt, Hayley; Hodson, James; White, Anwen; Ughratdar, Ismail; Mitchell, Rosalind
2018-06-19
Deep brain stimulation for Parkinson's disease (PD) utilises an implantable pulse generator (IPG) whose finite lifespan in non-rechargeable systems necessitates their periodic replacement. We wish to determine if there is any significant difference in longevity of 2 commonly used IPG systems; the Medtronic Kinetra, and the Medtronic Activa Primary Cell (PC), which has come to replace it. All patients with bilateral Subthalamic Nucleus stimulators for PD performed in our centre were included. Battery life was then assessed using a Kaplan-Meier approach and comparisons between the Kinetra and Activa PC batteries were performed using log-rank tests. Complete data was available for 183 patients. There was a significant difference in the average battery duration with an estimated median battery life in the Kinetra cohort of 6.6 years (95% CI 6.4-6.7), compared to 4.5 years (95% CI 4.4-4.5) in the Activa PC cohort (p < 0.001). The Activa PC IPG demonstrates a significantly reduced battery life of 2.1 years, with a median battery life of 4.5 years in comparison to 6.6 years in the Kinetra IPG. Future technology developments should therefore be focused on improving the battery life of the newer IPG systems. © 2018 S. Karger AG, Basel.
Vonberg, Isabelle; Ehlen, Felicitas; Fromm, Ortwin; Kühn, Andrea A; Klostermann, Fabian
2016-01-01
Reduced verbal fluency (VF) has been reported in patients with Parkinson's disease (PD), especially those treated by Deep Brain Stimulation of the subthalamic nucleus (STN DBS). To delineate the nature of this dysfunction we aimed at identifying the particular VF-related operations modified by STN DBS. Eleven PD patients performed VF tasks in their STN DBS ON and OFF condition. To differentiate VF-components modulated by the stimulation, a temporal cluster analysis was performed, separating production spurts (i.e., 'clusters' as correlates of automatic activation spread within lexical fields) from slower cluster transitions (i.e., 'switches' reflecting set-shifting towards new lexical fields). The results were compared to those of eleven healthy control subjects. PD patients produced significantly more switches accompanied by shorter switch times in the STN DBS ON compared to the STN DBS OFF condition. The number of clusters and time intervals between words within clusters were not affected by the treatment state. Although switch behavior in patients with DBS ON improved, their task performance was still lower compared to that of healthy controls. Beyond impacting on motor symptoms, STN DBS seems to influence the dynamics of cognitive procedures. Specifically, the results are in line with basal ganglia roles for cognitive switching, in the particular case of VF, from prevailing lexical concepts to new ones.
Zeredo, Jorge L.; Toda, Kazuo; Kumei, Yasuhiro
2014-01-01
The reduced-gravity environment in space is known to cause an upward shift in body fluids and thus require cardiovascular adaptations in astronauts. In this study, we recorded in rats the neuronal activity in the subthalamic cerebrovasodilator area (SVA), a key area that controls cerebral blood flow (CBF), in response to partial gravity. “Partial gravity” is the term that defines the reduced-gravity levels between 1 g (the unit gravity acceleration on Earth) and 0 g (complete weightlessness in space). Neuronal activity was recorded telemetrically through chronically implanted microelectrodes in freely moving rats. Graded levels of partial gravity from 0.4 g to 0.01 g were generated by customized parabolic-flight maneuvers. Electrophysiological signals in each partial-gravity phase were compared to those of the preceding 1 g level-flight. As a result, SVA neuronal activity was significantly inhibited by the partial-gravity levels of 0.15 g and lower, but not by 0.2 g and higher. Gravity levels between 0.2–0.15 g could represent a critical threshold for the inhibition of neurons in the rat SVA. The lunar gravity (0.16 g) might thus trigger neurogenic mechanisms of CBF control. This is the first study to examine brain electrophysiology with partial gravity as an experimental parameter. PMID:25370031
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I.; Friston, Karl; Brown, Peter
2012-01-01
Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson’s disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those above 30 Hz is particularly unclear. Do they improve movement and, if so, in what way? We acquired simultaneously magnetoencephalography (MEG) and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power over 60-90 Hz and 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity over 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronisation over 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity, as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronisation over 60-90 Hz in the basal ganglia cortical network is prokinetic, but likely through a modulatory effect rather than any involvement in explicit motor processing. PMID:22855804
Litvak, Vladimir; Eusebio, Alexandre; Jha, Ashwani; Oostenveld, Robert; Barnes, Gareth; Foltynie, Tom; Limousin, Patricia; Zrinzo, Ludvic; Hariz, Marwan I; Friston, Karl; Brown, Peter
2012-08-01
Functional neurosurgery has afforded the opportunity to assess interactions between populations of neurons in the human cerebral cortex and basal ganglia in patients with Parkinson's disease (PD). Interactions occur over a wide range of frequencies, and the functional significance of those >30 Hz is particularly unclear. Do they improve movement, and, if so, in what way? We acquired simultaneously magnetoencephalography and direct recordings from the subthalamic nucleus (STN) in 17 PD patients. We examined the effect of synchronous and sequential finger movements and of the dopamine prodrug levodopa on induced power in the contralateral primary motor cortex (M1) and STN and on the coherence between the two structures. We observed discrete peaks in M1 and STN power at 60-90 Hz and at 300-400 Hz. All these power peaks increased with movement and levodopa treatment. Only STN activity at 60-90 Hz was coherent with activity in M1. Directionality analysis showed that STN gamma activity at 60-90 Hz tended to drive gamma activity in M1. The effects of levodopa on both local and distant synchronization at 60-90 Hz correlated with the degree of improvement in bradykinesia-rigidity as did local STN activity at 300-400 Hz. Despite this, there were no effects of movement type, nor interactions between movement type and levodopa in the STN, nor in the coherence between STN and M1. We conclude that synchronization at 60-90 Hz in the basal ganglia cortical network is prokinetic but likely through a modulatory effect rather than any involvement in explicit motor processing.
NASA Technical Reports Server (NTRS)
Murashov, A. K.; Wolgemuth, D. J.
1996-01-01
We have examined the spatial pattern of expression of a member of the hsp70 gene family, hsp70.2, in the mouse central nervous system. Surprisingly, RNA blot analysis and in situ hybridization revealed abundant expression of an 'antisense' hsp70.2 transcript in several areas of adult mouse brain. Two different transcripts recognized by sense and antisense riboprobes for the hsp70.2 gene were expressed in distinct and only partially overlapping neuronal populations. RNA blot analysis revealed low levels of the 2.7 kb transcript of hsp70.2 in several areas of the brain, with highest signal in the hippocampus. Abundant expression of a slightly larger (approximately 2.8 kb) 'antisense' transcript was detected in several brain regions, notably in the brainstem, cerebellum, mesencephalic tectum, thalamus, cortex, and hippocampus. In situ hybridization revealed that the sense and antisense transcripts were both predominantly neuronal and localized to the same cell types in the granular layer of the cerebellum, trapezoid nucleus of the superior olivary complex, locus coeruleus and hippocampus. The hsp70.2 antisense transcripts were particularly abundant in the frontal cortex, dentate gyrus, subthalamic nucleus, zona incerta, superior and inferior colliculi, central gray, brainstem, and cerebellar Purkinje cells. Our findings have revealed a distinct cellular and spatial localization of both sense and antisense transcripts, demonstrating a new level of complexity in the function of the heat shock genes.
Computation of an MRI brain atlas from a population of Parkinson’s disease patients
NASA Astrophysics Data System (ADS)
Angelidakis, L.; Papageorgiou, I. E.; Damianou, C.; Psychogios, M. N.; Lingor, P.; von Eckardstein, K.; Hadjidemetriou, S.
2017-11-01
Parkinson’s Disease (PD) is a degenerative disorder of the brain. This study presents an MRI-based brain atlas of PD to characterize associated alterations for diagnostic and interventional purposes. The atlas standardizes primarily the implicated subcortical regions such as the globus pallidus (GP), substantia nigra (SN), subthalamic nucleus (STN), caudate nucleus (CN), thalamus (TH), putamen (PUT), and red nucleus (RN). The data were 3.0 T MRI brain images from 16 PD patients and 10 matched controls. The images used were T1-weighted (T 1 w), T2-weighted (T 2 w) images, and Susceptibility Weighted Images (SWI). The T1w images were the reference for the inter-subject non-rigid registration available from 3DSlicer. Anatomic labeling was achieved with BrainSuite and regions were refined with the level sets segmentation of ITK-Snap. The subcortical centers were analyzed for their volume and signal intensity. Comparison with an age-matched control group unravels a significant PD-related T1w signal loss in the striatum (CN and PUT) centers, but approximately a constant volume. The results in this study improve MRI based PD localization and can lead to the development of novel biomarkers.
Goubareva, N N; Fedorova, N V; Bril', E V; Tomskiy, A A; Gamaleya, A A; Poddubskaya, A A; Shabalov, V A; Omarova, S M
To evaluate the efficacy of deep brain stimulation in the subthalamic nucleus (DBS STN) in patients with Parkinson's disease (PD) using different methods of targeting according to the dynamics of motor symptoms of PD. The study involved 90 patients treated with DBS STN. In 30 cases intraoperative microelectrode recording (MER) was used. MER was not performed in 30 patients of the comparison group. The control group consisted of 30 patients with PD who received conservative treatment. Hoehn and Yahr scale, Tinetti Balance and Mobility Scale (TBMS), Unified Parkinson's Disease Rating Scale (UPDRS), Parkinson's Disease Quality of Life-39 Scoring System (РDQ-39), Schwab & England ADL Scale were used. Levodopa equivalent daily dose (LEDD, 2010) was calculated for each patient. The effect of DBS STN using intraoperative microelectrode recording on the main motor symptoms, motor complications, walking as well as indicators of quality of life and daily activities was shown. In both DBS STN groups, there was a significant reduction in the LEDD and marked improvement of the control of motor symptoms of PD. A significant reduction in the severity of motor fluctuations (50%) and drug-induced dyskinesia (51%) was observed. Quality of life and daily activity in off-medication condition were significantly improved in both DBS STN groups of patients, irrespective of the method of target planning (75-100%), compared with the control group.
Pham, Uyen Ha Gia; Andersson, Stein; Toft, Mathias; Pripp, Are Hugo; Konglund, Ane Eidahl; Dietrichs, Espen; Malt, Ulrik Fredrik; Skogseid, Inger Marie; Haraldsen, Ira Ronit Hebolt; Solbakk, Anne-Kristin
2015-01-01
Objective. Studies on the effect of subthalamic deep brain stimulation (STN-DBS) on executive functioning in Parkinson's disease (PD) are still controversial. In this study we compared self-reported daily executive functioning in PD patients before and after three months of STN-DBS. We also examined whether executive functioning in everyday life was associated with motor symptoms, apathy, and psychiatric symptoms. Method. 40 PD patients were examined with the Behavior Rating Inventory of Executive Function-Adult Version (BRIEF-A), the Symptom Checklist 90-Revised (SCL-90-R), and the Apathy Evaluation Scale (AES-S). Results. PD patients reported significant improvement in daily life executive functioning after 3 months of STN-DBS. Anxiety scores significantly declined, while other psychiatric symptoms remained unchanged. The improvement of self-reported executive functioning did not correlate with motor improvement after STN-DBS. Apathy scores remained unchanged after surgery. Only preoperative depressed mood had predictive value to the improvement of executive function and appears to prevent potentially favorable outcomes from STN-DBS on some aspects of executive function. Conclusion. PD patients being screened for STN-DBS surgery should be evaluated with regard to self-reported executive functioning. Depressive symptoms in presurgical PD patients should be treated. Complementary information about daily life executive functioning in PD patients might enhance further treatment planning of STN-DBS.
Hacker, Mallory L.; Turchan, Maxim; Molinari, Anna L.; Currie, Amanda D.
2017-01-01
Previous studies suggest that deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease (PD) leads to weight gain. This study analyzes changes in body mass index (BMI) in 29 subjects from a prospective, single-blind trial of DBS in early stage PD (age 50–75, Hoehn & Yahr stage II off medication, treated with antiparkinsonian medications for ≥6 months but <4 years, and without a history of motor fluctuations, dyskinesias, or dementia). Subjects were randomized to DBS plus optimal drug therapy (DBS+ODT; n = 15) or ODT (n = 14) and followed for 24 months. Weight and height were recorded at baseline and each follow-up visit and used to calculate BMI. BMIs were compared within and between groups using nonparametric t-tests. Mean BMI at baseline was 29.7 in the ODT group and 32.3 in the DBS+ODT group (p > 0.05). BMI change over two years was not different between the groups (p = 0.62, ODT = −0.89; DBS+ODT = −0.17). This study suggests that STN-DBS is not associated with weight gain in subjects with early stage PD. This finding will be tested in an upcoming FDA-approved phase III multicenter, randomized, double-blind, placebo-controlled, pivotal clinical trial evaluating DBS in early stage PD (ClinicalTrials.gov identifier NCT00282152). PMID:28676842
Millan, Sarah H; Hacker, Mallory L; Turchan, Maxim; Molinari, Anna L; Currie, Amanda D; Charles, David
2017-01-01
Previous studies suggest that deep brain stimulation of the subthalamic nucleus (STN-DBS) for Parkinson's disease (PD) leads to weight gain. This study analyzes changes in body mass index (BMI) in 29 subjects from a prospective, single-blind trial of DBS in early stage PD (age 50-75, Hoehn & Yahr stage II off medication, treated with antiparkinsonian medications for ≥6 months but <4 years, and without a history of motor fluctuations, dyskinesias, or dementia). Subjects were randomized to DBS plus optimal drug therapy (DBS+ODT; n = 15) or ODT ( n = 14) and followed for 24 months. Weight and height were recorded at baseline and each follow-up visit and used to calculate BMI. BMIs were compared within and between groups using nonparametric t -tests. Mean BMI at baseline was 29.7 in the ODT group and 32.3 in the DBS+ODT group ( p > 0.05). BMI change over two years was not different between the groups ( p = 0.62, ODT = -0.89; DBS+ODT = -0.17). This study suggests that STN-DBS is not associated with weight gain in subjects with early stage PD. This finding will be tested in an upcoming FDA-approved phase III multicenter, randomized, double-blind, placebo-controlled, pivotal clinical trial evaluating DBS in early stage PD (ClinicalTrials.gov identifier NCT00282152).
Halpern, Casey H; Rick, Jacqueline H; Danish, Shabbar F; Grossman, Murray; Baltuch, Gordon H
2009-05-01
Parkinson's disease (PD) is a neurodegenerative disorder characterized by significant motor dysfunction and various non-motor disturbances, including cognitive alterations. Deep brain stimulation (DBS) is an increasingly utilized therapeutic option for patients with PD that yields remarkable success in alleviating disabling motor symptoms. DBS has additionally been associated with changes in cognition, yet the evidence is not consistent across studies. The following review sought to provide a clearer understanding of the various cognitive sequelae of bilateral subthalamic nucleus (STN) DBS while taking into account corresponding neuroanatomy and potential confounding variables. A literature search was performed using the following inclusion criteria: (1) at least five subjects followed for a mean of at least 3 months after surgery; (2) pre- and postoperative cognitive data using at least one standardized measure; (3) adequate report of study results using means and standard deviations. Two recent meta-analyses found mild post-operative impairments in verbal learning and executive function in patients who underwent DBS surgery. However, studies have revealed improved working memory and psychomotor speed in the 'on' vs 'off' stimulation state. A deficit in language may be a consequence of the surgical procedure. While cognitive decline has been observed in some domains, our review of the data suggests that STN DBS is a worthwhile and safe method to treat PD. (c) 2008 John Wiley & Sons, Ltd.
Karamintziou, Sofia D; Custódio, Ana Luísa; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stéphan; Stathis, Pantelis G; Tagaris, George A; Sakas, Damianos E; Polychronaki, Georgia E; Tsirogiannis, George L; David, Olivier; Nikita, Konstantina S
2017-01-01
Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson's disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications.
Strowd, Roy E; Herco, Maja; Passmore-Griffin, Leah; Avery, Bradley; Haq, Ihtsham; Tatter, Stephen B; Tate, Jessica; Siddiqui, Mustafa S
2016-01-01
To evaluate whether weight change in patients with Parkinson's disease (PD) is different in those undergoing deep brain stimulation (DBS) of the subthalamic nucleus (STN) compared to those not undergoing DBS. A retrospective case-control study was performed in PD patients who had undergone STN DBS (cases) compared to matched PD patients without DBS (controls). Demographic and clinical data including Unified Parkinson's Disease Rating Scale (UPDRS) motor scores were collected. Repeated measures mixed model regression was used to identify variables associated with weight gain. Thirty-five cases and 34 controls were identified. Baseline age, gender, diagnosis and weight were similar. Duration of diagnosis was longer in cases (6.3 vs 4.9 years, p=0.0015). At 21.3 months, cases gained 2.9 kg (+4.65%) while controls lost 1.8 kg (-3.05%, p<0.02). Postoperative UPDRS motor scores improved by 49% indicating surgical efficacy. Only younger age (p=0.0002) and DBS (p=0.008) were significantly associated with weight gain. In this case-control study, PD patients undergoing STN DBS experienced post-operative weight gain that was significantly different from the weight loss observed in non-DBS PD controls. Patients, especially overweight individuals, should be informed that STN DBS can result in weight gain. Copyright © 2015 Elsevier B.V. All rights reserved.
Nozaki, Takao; Sugiyama, Kenji; Yagi, Shunsuke; Yoshikawa, Etsuji; Kanno, Toshihiko; Asakawa, Tetsuya; Ito, Tae; Terada, Tatsuhiro; Namba, Hiroki; Ouchi, Yasuomi
2013-03-01
To elucidate the dynamic effects of deep brain stimulation (DBS) in the subthalamic nucleus (STN) during activity on the dopaminergic system, 12 PD patients who had STN-DBS operations at least 1 month prior, underwent two positron emission tomography scans during right-foot movement in DBS-off and DBS-on conditions. To quantify motor performance changes, the motion speed and mobility angle of the foot at the ankle were measured twice. Estimations of the binding potential of [(11)C]raclopride (BP(ND)) were based on the Logan plot method. Significant motor recovery was found in the DBS-on condition. The STN-DBS during exercise significantly reduced the [(11)C]raclopride BP(ND) in the caudate and the nucleus accumbens (NA), but not in the dorsal or ventral putamen. The magnitude of dopamine release in the NA correlated negatively with the magnitude of motor load, indicating that STN-DBS facilitated motor behavior more smoothly and at less expense to dopamine neurons in the region. The lack of dopamine release in the putamen and the significant dopamine release in the ventromedial striatum by STN-DBS during exercise indicated dopaminergic activation occurring in the motivational circuit during action, suggesting a compensatory functional activation of the motor loop from the nonmotor to the motor loop system.
Conrad, Erin C; Mossner, James M; Chou, Kelvin L; Patil, Parag G
2018-05-23
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves motor symptoms of Parkinson disease (PD). However, motor outcomes can be variable, perhaps due to inconsistent positioning of the active contact relative to an unknown optimal locus of stimulation. Here, we determine the optimal locus of STN stimulation in a geometrically unconstrained, mathematically precise, and atlas-independent manner, using Unified Parkinson Disease Rating Scale (UPDRS) motor outcomes and an electrophysiological neuronal stimulation model. In 20 patients with PD, we mapped motor improvement to active electrode location, relative to the individual, directly MRI-visualized STN. Our analysis included a novel, unconstrained and computational electrical-field model of neuronal activation to estimate the optimal locus of DBS. We mapped the optimal locus to a tightly defined ovoid region 0.49 mm lateral, 0.88 mm posterior, and 2.63 mm dorsal to the anatomical midpoint of the STN. On average, this locus is 11.75 lateral, 1.84 mm posterior, and 1.08 mm ventral to the mid-commissural point. Our novel, atlas-independent method reveals a single, ovoid optimal locus of stimulation in STN DBS for PD. The methodology, here applied to UPDRS and PD, is generalizable to atlas-independent mapping of other motor and non-motor effects of DBS. © 2018 S. Karger AG, Basel.
Patients' expectations in subthalamic nucleus deep brain stimulation surgery for Parkinson disease.
Hasegawa, Harutomo; Samuel, Michael; Douiri, Abdel; Ashkan, Keyoumars
2014-12-01
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for patients with advanced Parkinson disease. However, some patients feel less satisfied with the outcome of surgery. We sought to study the relationship between expectations, satisfaction, and outcome in STN DBS for Parkinson disease. Twenty-two consecutive patients undergoing STN DBS completed a modified 39-item Parkinson disease questionnaire (PDQ-39) preoperatively and 6 months postoperatively. A satisfaction questionnaire accompanied the postoperative questionnaire. Patients expected a significant improvement from surgery preoperatively: preoperative score (median PDQ-39 summary score [interquartile range]): 37.0 (9.5), expected postoperative score: 13.0 (8.0), P < 0.001. Patients improved after surgery (preoperative score 39.0 [11.5], postoperative score 25.0 [14.3], P = 0.003), although there was a substantial disparity between the expected change (24.0 [15.0]) and actual change (14.0 [22.5]), P = 0.008. However, most patients felt that surgery fulfilled their expectations (mean score on a 0%-100% visual analog scale); (75.3 ± 17.8) and were satisfied (73.3 ± 25.3). Satisfaction correlated with fulfillment of expectations (r = 0.910, P < 0.001) but not with quantitative changes in PDQ-39 scores. Addressing patients' expectations both preoperatively and postoperatively may play an important role in patient satisfaction, and therefore overall success, of STN DBS surgery for Parkinson disease. Copyright © 2014 Elsevier Inc. All rights reserved.
Ranjan, Manish; Boutet, Alexandre; Xu, David S; Lozano, Christopher S; Kumar, Rajeev; Fasano, Alfonso; Kucharczyk, Walter; Lozano, Andres M
2018-05-30
The visualization of the subthalamic nucleus (STN) on magnetic resonance imaging (MRI) is variable. Studies of the contribution of patient-related factors and intrinsic brain volumetrics to STN visualization have not been reported previously. To assess the visualization of the STN during deep brain stimulation (DBS) surgery in a clinical setting. Eighty-two patients undergoing pre-operative MRI to plan for STN DBS for Parkinson disease were retrospectively studied. The visualization of the STN and its borders was assessed and scored by 3 independent observers using a 4-point ordinal scale (from 0 = not seen to 3 = excellent visualization). This measure was then correlated with the patients' clinical information and brain volumes. The mean STN visualization scores were 1.68 and 1.63 for the right and left STN, respectively, with a good interobserver reliability (intraclass correlation coefficient: 0.744). Older age and decreased white matter volume were negatively correlated with STN visualization (p < 0.05). STN visualization is only fair to good on routine MRI with good concordance of interindividual rating. Advancing age and decreased white matter are associated with poor visualization of the STN. Knowledge about factors contributing to poor visualization of the STN could alert a surgeon to modify the imaging strategy to optimize surgical targeting. © 2018 S. Karger AG, Basel.
Wagenbreth, Caroline; Zaehle, Tino; Galazky, Imke; Voges, Jürgen; Guitart-Masip, Marc; Heinze, Hans-Jochen; Düzel, Emrah
2015-06-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for motor impairments in Parkinson's disease (PD) but its effect on the motivational regulation of action control is still not fully understood. We investigated whether DBS of the STN influences the ability of PD patients to act for anticipated reward or loss, or whether DBS improves action execution independent of motivational valence. 16 PD patients (12 male, mean age = 58.5 ± 10.17 years) treated with bilateral STN-DBS and an age- and gender-matched group of healthy controls (HC) performed a go/no-go task whose contingencies explicitly decouple valence and action. Patients were tested with (ON) and without (OFF) active STN stimulation. For HC, there was a benefit in performing rewarded actions when compared to actions that avoided punishment. PD patients showed such a benefit reliably only when STN stimulation was ON. In fact, the relative behavioral benefit for go for reward over go to avoid losing was stronger in the PD patients under DBS ON than in HC. In PD patients, rather than generally improving motor functions independent of motivational valence, modulation of the STN by DBS improves action execution specifically when rewards are anticipated. Thus, STN-DBS establishes a reliable congruency between action and reward ("Pavlovian congruency") and remarkably enhances it over the level observed in HC.
Marshall, D F; Strutt, A M; Williams, A E; Simpson, R K; Jankovic, J; York, M K
2012-12-01
Despite common occurrences of verbal fluency declines following bilateral subthalamic nucleus deep brain stimulation (STN-DBS) for the treatment of Parkinson's disease (PD), alternating fluency measures using cued and uncued paradigms have not been evaluated. Twenty-three STN-DBS patients were compared with 20 non-surgical PD patients on a comprehensive neuropsychological assessment, including cued and uncued intradimensional (phonemic/phonemic and semantic/semantic) and extradimensional (phonemic/semantic) alternating fluency measures at baseline and 6-month follow-up. STN-DBS patients demonstrated a greater decline on the cued phonemic/phonemic fluency and the uncued phonemic/semantic fluency tasks compared to the PD patients. For STN-DBS patients, verbal learning and information processing speed accounted for a significant proportion of the variance in declines in alternating phonemic/phonemic and phonemic/semantic fluency scores, respectively, whilst only naming was related to uncued phonemic/semantic performance for the PD patients. Both groups were aided by cueing for the extradimensional task at baseline and follow-up, and the PD patients were also aided by cueing for the phonemic/phonemic task on follow-up. These findings suggest that changes in alternating fluency are not related to disease progression alone as STN-DBS patients demonstrated greater declines over time than the PD patients, and this change was related to declines in information processing speed. © 2012 The Author(s) European Journal of Neurology © 2012 EFNS.
Williams, Amy E; Arzola, Gladys Marina; Strutt, Adriana M; Simpson, Richard; Jankovic, Joseph; York, Michele K
2011-06-01
Subthalamic nucleus deep brain stimulation (STN-DBS) is currently the treatment of choice for medication-resistant levodopa-related motor complications in patients with Parkinson's disease (PD). While STN-DBS often results in meaningful motor improvements, consensus regarding long-term neuropsychological outcome continues to be debated. We assessed the cognitive outcomes of 19 STN-DBS patients compared to a group of 18 medically-managed PD patients on a comprehensive neuropsychological battery at baseline and two years post-surgery. Patients did not demonstrate changes in global cognitive functioning on screening measures. However, neuropsychological results revealed impairments in nonverbal recall, oral information processing speed, and lexical and semantic fluency in STN-DBS patients compared to PD controls 2 years post-surgery in these preliminary analyses. Additionally, reliable change indices revealed that approximately 50% of STN-DBS patients demonstrated significant declines in nonverbal memory and oral information processing speed compared to 25-30% of PD controls, and 26% of STN-DBS patients declined on lexical fluency compared to 11% of PD patients. Approximately 30% of both groups declined on semantic fluency. The number of STN-DBS patients who converted to dementia 2 years following surgery was not significantly different from the PD participants (32% versus 16%, respectively). Our results suggest that neuropsychological evaluations may identify possible mild cognitive changes following surgery. Copyright © 2011 Elsevier Ltd. All rights reserved.
Multicontrast multiecho FLASH MRI for targeting the subthalamic nucleus.
Xiao, Yiming; Beriault, Silvain; Pike, G Bruce; Collins, D Louis
2012-06-01
The subthalamic nucleus (STN) is one of the most common stimulation targets for treating Parkinson's disease using deep brain stimulation (DBS). This procedure requires precise placement of the stimulating electrode. Common practice of DBS implantation utilizes microelectrode recording to locate the sites with the correct electrical response after an initial location estimate based on a universal human brain atlas that is linearly scaled to the patient's anatomy as seen on the preoperative images. However, this often results in prolonged surgical time and possible surgical complications since the small-sized STN is difficult to visualize on conventional magnetic resonance (MR) images and its intersubject variability is not sufficiently considered in the atlas customization. This paper proposes a multicontrast, multiecho MR imaging (MRI) method that directly delineates the STN and other basal ganglia structures through five co-registered image contrasts (T1-weighted navigation image, R2 map, susceptibility-weighted imaging (phase, magnitude and fusion image)) obtained within a clinically acceptable time. The image protocol was optimized through both simulation and in vivo experiments to obtain the best image quality. Taking advantage of the multiple echoes and high readout bandwidths, no interimage registration is required since all images are produced in one acquisition, and image distortion and chemical shift are reduced. This MRI protocol is expected to mitigate some of the shortcomings of the state-of-the-art DBS implantation methods. Copyright © 2012 Elsevier Inc. All rights reserved.
Validity of Single Tract Microelectrode Recording in Subthalamic Nucleus Stimulation
Umemura, Atsushi; Oka, Yuichi; Yamada, Kazuo; Oyama, Genko; Shimo, Yasushi; Hattori, Nobutaka
2013-01-01
In surgery for subthalamic nucleus (STN) deep brain stimulation (DBS), precise implantation of the lead into the STN is essential. Physiological refinement with microelectrode recording (MER) is the gold standard for identifying STN. We studied single tract MER findings and surgical outcomes and verified our surgical method using single tract MER. The number of trajectories in MER and the final position of lead placement were retrospectively analyzed in 440 sides of STN DBS in 221 patients. Bilateral STN DBS yielded marked improvement in the motor score, dyskinesia/fluctuation score, and reduced requirement of dopaminergic medication in this series. The number of trajectories required to obtain sufficient activity of the STN was one in 79.0%, two in 18.2%, and three or more in 2.5% of 440 sides. In 92 sides requiring altered trajectory, the final direction of trajectory movement was posterior in 73.9%, anterior in 13.0%, lateral in 5.4%, and medial in 4.3%. In 18 patients, posterior moves were required due to significant brain shift with intracranial air caused by outflow of CSF during the second side procedure. Sufficient STN activity is obtained with minimum trajectories by proper targeting and precise interpretation of MER findings even in the single tract method. Anterior–posterior moves rather than medial–lateral moves should be attempted first in cases with insufficient recording of STN activity. PMID:24140767
Basal Ganglia Neuronal Activity during Scanning Eye Movements in Parkinson’s Disease
Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert
2013-01-01
The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control. PMID:24223158
Li, Dianyou; Zhang, Chencheng; Gault, Judith; Wang, Wei; Liu, Jianmin; Shao, Ming; Zhao, Yanyan; Zeljic, Kristina; Gao, Guodong; Sun, Bomin
2017-01-01
Deep brain stimulation (DBS) is the most commonly performed surgery for the debilitating symptoms of Parkinson disease (PD). However, DBS systems remain largely unaffordable to patients in developing countries, warranting the development of a safe, economically viable, and functionally comparable alternative. To investigate the efficacy and safety of wirelessly programmed DBS of bilateral subthalamic nucleus (STN) in patients with primary PD. Sixty-four patients with primary PD were randomly divided into test and control groups (1:1), where DBS was initiated at either 1 month or 3 months, respectively, after surgery. Safety and efficacy of the treatment were compared between on- and off-medication states 3 months after surgery. Outcome measures included analysis of Unified Parkinson's Disease Rating Scale (UPDRS) scores, duration of "on" periods, and daily equivalent doses of levodopa. All patients were followed up both 6 and 12 months after surgery. Three months after surgery, significant decrease in the UPDRS motor scores were observed for the test group in the off-medication state (25.08 ± 1.00) versus the control group (4.20 ± 1.99). Bilateral wireless programming STN-DBS is safe and effective for patients with primary PD in whom medical management has failed to restore motor function. © 2017 S. Karger AG, Basel.
McConnell, George C; So, Rosa Q; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M
2012-11-07
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson's disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90 Hz) improve motor symptoms, while low frequencies (<50 Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high-frequency DBS reversed motor symptoms, and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high-frequency DBS, but not low-frequency DBS, reduced pathological low-frequency oscillations (∼9 Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low-frequency band to the stimulation frequency during high-frequency DBS, but not during low-frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high-frequency DBS is more effective than low-frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low-frequency network oscillations with a regularized pattern of neuronal firing.
McConnell, George C.; So, Rosa Q.; Hilliard, Justin D; Lopomo, Paola; Grill, Warren M.
2012-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for the motor symptoms of Parkinson’s disease (PD). The effects of DBS depend strongly on stimulation frequency: high frequencies (>90Hz) improve motor symptoms, while low frequencies (<50Hz) are either ineffective or exacerbate symptoms. The neuronal basis for these frequency-dependent effects of DBS is unclear. The effects of different frequencies of STN-DBS on behavior and single-unit neuronal activity in the basal ganglia were studied in the unilateral 6-hydroxydopamine lesioned rat model of PD. Only high frequency DBS reversed motor symptoms and the effectiveness of DBS depended strongly on stimulation frequency in a manner reminiscent of its clinical effects in persons with PD. Quantification of single-unit activity in the globus pallidus externa (GPe) and substantia nigra reticulata (SNr) revealed that high frequency DBS, but not low frequency DBS, reduced pathological low frequency oscillations (~9Hz) and entrained neurons to fire at the stimulation frequency. Similarly, the coherence between simultaneously recorded pairs of neurons within and across GPe and SNr shifted from the pathological low frequency band to the stimulation frequency during high frequency DBS, but not during low frequency DBS. The changes in firing patterns in basal ganglia neurons were not correlated with changes in firing rate. These results indicate that high frequency DBS is more effective than low frequency DBS, not as a result of changes in firing rate, but rather due to its ability to replace pathological low frequency network oscillations with a regularized pattern of neuronal firing. PMID:23136407
Management of non-motor complications in Parkinson's disease.
Fujimoto, Ken-ichi
2009-08-01
This paper summarizes the methods we devised for the treatment of psychosis, orthostatic hypotension, and mood disorders among the various non-motor complications of Parkinson's disease. Psychosis may not manifest when a patient believes in his/her delusions. If left untreated over a prolonged period, however, the delusions progress to paranoia that is very difficult to cure. Accordingly, enquiries should be made during routine examinations to detect the presence of psychosis and facilitate early discovery. Atypical antipsychotics are used when psychosis does not improve after reducing the doses of antiparkinson drugs. We achieved favorable results by using mianserin hydrochloride prior to this step, with efficacy being observed for hallucinations and mild delusions that often manifested at night. This drug does not act as a dopamine receptor blocker, so it has the advantage of not aggravating motor symptoms. With this therapy, it is also possible to improve motor symptoms without inducing psychosis by reducing the doses of antiparkinson drugs and locally stimulating the motor loop by deep brain stimulation of the subthalamic nucleus. We previously introduced leg-holding exercises for the treatment of orthostatic hypotension, through which blood pooled in the veins is returned to the systemic circulation by holding the knees. This can be done easily and is free of adverse reactions. Mood disorders are difficult to cope with in patients with Parkinson's disease, but may be treated by selecting an appropriate dopamine agonist while giving consideration to affinity for the dopamine D3 receptor. However, treatment becomes complicated when the dopamine receptor is overstimulated. Here we report on cases of successfully treated pathological gambling and dopamine dysregulation syndrome, which are considered difficult to manage. The solution may differ depending on a patient's environment, and it is not easy to prescribe therapy based on evidence-based medicine. The best therapy should be selected by maintaining communication with the patient and developing a relationship built on trust.
Exercise-induced changes in local cerebral glucose utilization in the rat.
Vissing, J; Andersen, M; Diemer, N H
1996-07-01
In exercise, little is known about local cerebral glucose utilization (LCGU), which is an index of functional neurogenic activity. We measured LCGU in resting and running (approximately 85% of maximum O2 uptake) rats (n = 7 in both groups) previously equipped with a tail artery catheter. LCGU was measured quantitatively from 2-deoxy-D-[1-14C]glucose autoradiographs. During exercise, total cerebral glucose utilization (TCGU) increased by 38% (p < 0.005). LCGU increased (p < 0.05) in areas involved in motor function (motor cortex 39%, cerebellum approximately 110%, basal ganglia approximately 30%, substantia nigra approximately 37%, and in the following nuclei: subthalamic 47%, posterior hypothalamic 74%, red 61%, ambiguous 43%, pontine 61%), areas involved in sensory function (somatosensory 27%, auditory 32%, and visual cortex 42%, thalamus approximately 75%, and in the following nuclei: Darkschewitsch 22%, cochlear 51%, vestibular 30%, superior olive 23%, cuneate 115%), areas involved in autonomic function (dorsal raphe nucleus 30%, and areas in the hypothalamus approximately 35%, amygdala approximately 35%, and hippocampus 29%), and in white matter of the corpus callosum (36%) and cerebellum (52%). LCGU did not change with exercise in prefrontal and frontal cortex, cingulum, inferior olive, nucleus of solitary tract and median raphe, lateral septal and interpenduncular nuclei, or in areas of the hippocampus, amygdala, and hypothalamus. Glucose utilization did not decrease during exercise in any of the studied cerebral regions. In summary, heavy dynamic exercise increases TCGU and evokes marked differential changes in LCGU. The findings provide clues to the cerebral areas that participate in the large motor, sensory, and autonomic adaptation occurring in exercise.
Zavala, Baltazar A.; Tan, Huiling; Little, Simon; Ashkan, Keyoumars; Hariz, Marwan; Foltynie, Thomas; Zrinzo, Ludvic; Zaghloul, Kareem A.
2014-01-01
Making the right decision from conflicting information takes time. Recent computational, electrophysiological, and clinical studies have implicated two brain areas as being crucial in assuring sufficient time is taken for decision-making under conditions of conflict: the medial prefrontal cortex and the subthalamic nucleus (STN). Both structures exhibit an elevation of activity at low frequencies (<10 Hz) during conflict that correlates with the amount of time taken to respond. This suggests that the two sites could become functionally coupled during conflict. To establish the nature of this interaction we recorded from deep-brain stimulation electrodes implanted bilaterally in the STN of 13 Parkinson's disease patients while they performed a sensory integration task involving randomly moving dots. By gradually increasing the number of dots moving coherently in one direction, we were able to determine changes in the STN associated with response execution. Furthermore, by occasionally having 10% of the dots move in the opposite direction as the majority, we were able to identify an independent increase in STN theta-delta activity triggered by conflict. Crucially, simultaneous midline frontal electroencephalographic recordings revealed an increase in the theta-delta band coherence between the two structures that was specific to high-conflict trials. Activity over the midline frontal cortex was Granger causal to that in STN. These results establish the cortico-subcortical circuit enabling successful choices to be made under conditions of conflict and provide support for the hypothesis that the brain uses frequency-specific channels of communication to convey behaviorally relevant information. PMID:24849364
Obeso, Ignacio; Wilkinson, Leonora; Rodríguez-Oroz, Maria-Cruz; Obeso, Jose A; Jahanshahi, Marjan
2013-05-01
It has been proposed that the subthalamic nucleus (STN) mediates response inhibition and conflict resolution through the fronto-basal ganglia pathways. Our aim was to compare the effects of deep brain stimulation (DBS) of the STN on reactive and proactive inhibition and conflict resolution in Parkinson's disease using a single task. We used the conditional Stop signal reaction time task that provides the Stop signal reaction time (SSRT) as a measure of reactive inhibition, the response delay effect (RDE) as a measure of proactive inhibition and conflict-induced slowing (CIS) as a measure of conflict resolution. DBS of the STN significantly prolonged SSRT relative to stimulation off. However, while the RDE measure of proactive inhibition was not significantly altered by DBS of the STN, relative to healthy controls, RDE was significantly lower with DBS off but not DBS on. DBS of the STN did not alter the mean CIS but produced a significant differential effect on the slowest and fastest RTs on conflict trials, further prolonging the slowest RTs on the conflict trials relative to DBS off and to controls. These results are the first demonstration, using a single task in the same patient sample, that DBS of the STN produces differential effects on reactive and proactive inhibition and on conflict resolution, suggesting that these effects are likely to be mediated through the impact of STN stimulation on different fronto-basal ganglia pathways: hyperdirect, direct and indirect.
Different methods for anatomical targeting.
Iacopino, D G; Conti, A; Angileri, F F; Tomasello, F
2003-03-01
Several procedures are used in the different neurosurgical centers in order to perform stereotactic surgery for movement disorders. At the moment no procedure can really be considered superior to the other. We contribute with our experience of targeting method. Ten patients were selected, in accordance to the guidelines for the treatment of Parkinson disease, and operated by several methods including pallidotomy, bilateral insertion of chronic deep brain electrodes within the internal pallidum and in the subthalamic nucleus (18 procedures). in each patient an MR scan was performed the day before surgery. Scans were performed axially parallel to the intercommissural line. The operating day a contrast CT scan was performed under stereotactic conditions. after digitalization of the MRI images, it was possible to visualize the surgical target and to relate it to parenchimal and vascular anatomic structures readable at the CT examination. The CT scan obtained was confronted with the MR previously performed, the geometrical relation between the different parenchimal and vascular structures and the selected targets were obtained. Stereotactic coordinates were obtained on the CT examination. It was possible to calculate the position of the subthalamic nucleus and of the internal pallidum on the CT scan, not only relating to the intercommissural line, but considering also the neurovascular structures displayed both on the MRI and the CT scans. The technique that our group presents consist in an integration between information derived from the CT and the MR techniques, so that we can benefit from the advantages of both methods and overcome the disadvantages.
Humphries, Mark D; Gurney, Kevin
2012-07-01
Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Deep Brain Stimulation in Early Parkinson’s Disease: Enrollment Experience from a Pilot Trial
Charles, PD; Dolhun, RM; Gill, CE; Davis, TL; Bliton, MJ; Tramontana, MG; Salomon, RM; Wang; Hedera, P; Phibbs, FT; Neimat, JS; Konrad, PE
2011-01-01
Background Deep brain stimulation (DBS) of the subthalamic nucleus is an accepted therapy for advanced Parkinson’s disease (PD). In animal models, pharmacologic ablation and stimulation of the subthalamic nucleus have resulted in clinical improvement and, in some cases, improved survival of dopaminergic neurons. DBS has not been studied in the early stages of PD, but early application should be explored to evaluate safety, efficacy, and the potential to alter disease progression. Methods We are conducting a prospective, randomized, single-blind clinical trial of optimal drug therapy (ODT) compared to medication plus DBS (ODT + DBS) in subjects with Hoehn & Yahr Stage II idiopathic PD who are without motor fluctuations or dementia. We report here subject screening, enrollment, baseline characteristics, and adverse events. Results 30 subjects (average age 60 ± 6.9 years, average duration of medicine 2.1 ± 1.3 years, average UPDRS-III scores 14.9 on medication and 27.0 off medication) are enrolled in the ongoing study. Twelve of 15 subjects randomized to DBS experienced perioperative adverse events, the majority of which were related to the procedure or device and resolved without sequelae. Frequently reported adverse events included wound healing problems, headache, edema, and confusion. Conclusion This report demonstrates that subjects with early stage PD can be successfully recruited, consented and retained in a long term clinical trial of DBS. Our ongoing pilot investigation will provide important preliminary safety and tolerability data concerning the application of DBS in early stage PD. PMID:22104012
Subthalamic nucleus modulates social and anxogenic-like behaviors.
Reymann, Jean-Michel; Naudet, Florian; Pihan, Morgane; Saïkali, Stephan; Laviolle, Bruno; Bentué-Ferrer, Danièle
2013-09-01
In Parkinson's disease, global social maladjustment and anxiety are frequent after subthalamic nucleus (STN) stimulation and are generally considered to be linked with sociofamilial alterations induced by the motor effects of stimulation. We hypothesized that the STN is per se involved in these changes and aimed to explore the role of STN in social and anxogenic-like behaviors using an animal model. Nineteen male Wistar rats with bilateral lesions of the STN were compared with 26 sham-lesioned rats by synchronizing an ethological approach based upon direct observation of social behaviors and a standardized approach, the elevated plus maze (EPM). Comparisons between groups were performed by a Mann-Whitney-Wilcoxon test. Lesioned rats showed impairments in their social (P=0.05) and aggressive behaviors with a diminution of attacking (P=0.04) and chasing (P=0.06). In the EPM, concerning the open arms, the percentage of distance, time, inactive time, and entry were significantly decreased in lesioned rats (P=0.02, P=0.01, P=0.04, and P=0.05). The time spent in non-protected head dips was also diminished in the lesioned rats (P=0.01). These results strongly implicate the STN in social behavior and anxogenic-like behavior. In human, as DBS induces changes in the underlying dynamics of the stimulated brain networks, it could create an abnormal brain state in which anxiety and social behavior are altered. These results highlight another level of complexity of the behavioral changes after stimulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Mulders, Anne E P; Leentjens, Albert F G; Schruers, Koen; Duits, Annelien; Ackermans, Linda; Temel, Yasin
2017-08-01
Patients with treatment-resistant obsessive-compulsive disorder (OCD) are potential candidates for deep brain stimulation (DBS). The anteromedial subthalamic nucleus (STN) is among the most commonly used targets for DBS in OCD. We present a patient with a 30-year history of treatment-resistant OCD who underwent anteromedial STN-DBS. Despite a clear mood-enhancing effect, stimulation caused motor side effects, including bilateral hyperkinesia, dyskinesias, and sudden large amplitude choreatic movements of arms and legs when stimulating at voltages greater than approximately 1.5 V. DBS at lower amplitudes and at other contact points failed to result in a significant reduction of obsessions and compulsions without inducing motor side effects. Because of this limitation in programming options, we decided to reoperate and target the ventral capsule/ventral striatum (VC/VS), which resulted in a substantial reduction in key obsessive and compulsive symptoms without serious side effects. Choreatic movements and hemiballismus have previously been linked to STN dysfunction and have been incidentally reported as side effects of DBS of the dorsolateral STN in Parkinson disease (PD). However, in PD, these side effects were usually transient, and they rarely interfered with DBS programming. In our patient, the motor side effects were persistent, and they made optimal DBS programming impossible. To our knowledge, such severe and persistent motor side effects have not been described previously for anteromedial STN-DBS. Copyright © 2017 Elsevier Inc. All rights reserved.
Wojtecki, Lars; Storzer, Lena; Schnitzler, Alfons
2016-01-01
Abstract Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a widely used treatment for the motor symptoms of Parkinson’s disease (PD). DBS or pharmacological treatment is believed to modulate the tendency to, or reverse, impulse control disorders. Several brain areas involved in impulsivity and reward valuation, such as the prefrontal cortex and striatum, are linked to the STN, and activity in these areas might be affected by STN-DBS. To investigate the effect of STN-DBS on one type of impulsive decision-making—delay discounting (i.e., the devaluation of reward with increasing delay until its receipt)—we tested 40 human PD patients receiving STN-DBS treatment and medication for at least 3 months. Patients were pseudo-randomly assigned to one of four groups to test the effects of DBS on/off states as well as medication on/off states on delay discounting. The delay-discounting task consisted of a series of choices among a smaller. sooner or a larger, later monetary reward. Despite considerable effects of DBS on motor performance, patients receiving STN-DBS did not choose more or less impulsively compared with those in the off-DBS group, as well as when controlling for risk attitude. Although null results have to be interpreted with caution, our findings are of significance to other researchers studying the effects of PD treatment on impulsive decision-making, and they are of clinical relevance for determining the therapeutic benefits of using STN-DBS. PMID:27257622
Karamintziou, Sofia D.; Custódio, Ana Luísa; Piallat, Brigitte; Polosan, Mircea; Chabardès, Stéphan; Stathis, Pantelis G.; Tagaris, George A.; Sakas, Damianos E.; Polychronaki, Georgia E.; Tsirogiannis, George L.; David, Olivier; Nikita, Konstantina S.
2017-01-01
Advances in the field of closed-loop neuromodulation call for analysis and modeling approaches capable of confronting challenges related to the complex neuronal response to stimulation and the presence of strong internal and measurement noise in neural recordings. Here we elaborate on the algorithmic aspects of a noise-resistant closed-loop subthalamic nucleus deep brain stimulation system for advanced Parkinson’s disease and treatment-refractory obsessive-compulsive disorder, ensuring remarkable performance in terms of both efficiency and selectivity of stimulation, as well as in terms of computational speed. First, we propose an efficient method drawn from dynamical systems theory, for the reliable assessment of significant nonlinear coupling between beta and high-frequency subthalamic neuronal activity, as a biomarker for feedback control. Further, we present a model-based strategy through which optimal parameters of stimulation for minimum energy desynchronizing control of neuronal activity are being identified. The strategy integrates stochastic modeling and derivative-free optimization of neural dynamics based on quadratic modeling. On the basis of numerical simulations, we demonstrate the potential of the presented modeling approach to identify, at a relatively low computational cost, stimulation settings potentially associated with a significantly higher degree of efficiency and selectivity compared with stimulation settings determined post-operatively. Our data reinforce the hypothesis that model-based control strategies are crucial for the design of novel stimulation protocols at the backstage of clinical applications. PMID:28222198
Stimulation of the subthalamic nucleus and impulsivity: release your horses.
Ballanger, Benedicte; van Eimeren, Thilo; Moro, Elena; Lozano, Andres M; Hamani, Clement; Boulinguez, Philippe; Pellecchia, Giovanna; Houle, Sylvain; Poon, Yu Yan; Lang, Anthony E; Strafella, Antonio P
2009-12-01
In Parkinson disease (PD) patients, deep brain stimulation (DBS) of the subthalamic nucleus (STN) may contribute to certain impulsive behavior during high-conflict decisions. A neurocomputational model of the basal ganglia has recently been proposed that suggests this behavioral aspect may be related to the role played by the STN in relaying a "hold your horses" signal intended to allow more time to settle on the best option. The aim of the present study was 2-fold: 1) to extend these observations by providing evidence that the STN may influence and prevent the execution of any response even during low-conflict decisions; and 2) to identify the neural correlates of this effect. We measured regional cerebral blood flow during a Go/NoGo and a control (Go) task to study the motor improvement and response inhibition deficits associated with STN-DBS in patients with PD. Although it improved Unified Parkinson Disease Rating Scale motor ratings and induced a global decrease in reaction time during task performance, STN-DBS impaired response inhibition, as revealed by an increase in commission errors in NoGo trials. These behavioral effects were accompanied by changes in synaptic activity consisting of a reduced activation in the cortical networks responsible for reactive and proactive response inhibition. The present results suggest that although it improves motor functions in PD patients, modulation of STN hyperactivity with DBS may tend at the same time to favor the appearance of impulsive behavior by acting on the gating mechanism involved in response initiation.
Sexual well being in parkinsonian patients after deep brain stimulation of the subthalamic nucleus
Castelli, L; Perozzo, P; Genesia, M; Torre, E; Pesare, M; Cinquepalmi, A; Lanotte, M; Bergamasco, B; Lopiano, L
2004-01-01
Objectives: To evaluate changes in sexual well being in a group of patients with Parkinson's disease following deep brain stimulation (DBS) of the subthalamic nucleus (STN). Methods: 31 consecutive patients with Parkinson's disease (21 men and 10 women), bilaterally implanted for DBS of STN, were evaluated one month before and 9–12 months after surgery. Sexual functioning was assessed using a reduced form of the Gollombok Rust inventory of sexual satisfaction (GRISS). Depression (Beck depression inventory) and anxiety (STAI-X1/X2) were also evaluated. Relations between sexual functioning and modifications in the severity of disease (Hoehn and Yahr stage), reduction in levodopa equivalent daily dosage (LEDD), age, and duration of disease were analysed. Results: While no modifications were found in female patients, male patients reported slightly but significantly more satisfaction with their sexual life after DBS of STN. When only male patients under 60 years old were considered, a greater improvement in sexual functioning was found, though still small. Modifications in depressive symptoms and anxiety, as well as duration of the disease, reduction in LEDD, and improvement in the severity of disease, showed no relation with changes in sexual functioning after DBS of STN. Conclusions: DBS of STN appears to affect sexual functioning in a small but positive way. Male patients with Parkinson's disease, especially when under 60, appeared more satisfied with their sexual well being over a short term follow up period. PMID:15314111
Polar, Christian A; Gupta, Rahul; Lehmkuhle, Mark J; Dorval, Alan D
2018-05-30
The motor cortex and subthalamic nucleus (STN) of patients with Parkinson's disease (PD) exhibit abnormally high levels of electrophysiological oscillations in the ~12-35 Hz beta-frequency range. Recent studies have shown that beta is partly carried forward to regulate future motor states in the healthy condition, suggesting that steady state beta power is lower when a sequence of movements occurs in a short period of time, such as during fast gait. However, whether this relationship between beta power and motor states persists upon parkinsonian onset or in response to effective therapy is unclear. Using a 6-hydroxy dopamine (6-OHDA) rat model of PD and a custom-built behavioral and neurophysiological recording system, we aimed to elucidate a better understanding of the mechanisms underlying cortical beta power and PD symptoms. In addition to elevated levels of beta oscillations, we show that parkinsonian onset was accompanied by a decoupling of movement intensity - quantified as gait speed - from cortical beta power. Although subthalamic deep brain stimulation (DBS) reduced general levels of beta oscillations in the cortex of all PD animals, the brain's capacity to regulate steady state levels of beta power as a function of movement intensity was only restored in animals with therapeutic DBS. We propose that, in addition to lowering general levels of cortical beta power, restoring the brain's ability to maintain this inverse relationship is critical for effective symptom suppression. Copyright © 2017. Published by Elsevier Inc.
Frequency and function in the basal ganglia: the origins of beta and gamma band activity.
Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin
2017-07-01
Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and movement, respectively, consistent with experimental local field potentials. This new model predicts that the pallido-striatum connection has a key role in the generation of beta band activity, and that the gamma band activity associated with motor task performance has its origins in the pallido-subthalamic feedback loop. The network's functionality as a selection mechanism also occurs as an emergent property, and closer fits to the data gave better selection properties. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the BG and therefore lays the foundation for an integrated approach to study BG pathologies such as Parkinson's disease in silico. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Udupa, Kaviraja; Bahl, Nina; Ni, Zhen; Gunraj, Carolyn; Mazzella, Filomena; Moro, Elena; Hodaie, Mojgan; Lozano, Andres M; Lang, Anthony E; Chen, Robert
2016-01-13
Noninvasive brain stimulation studies have shown abnormal motor cortical plasticity in Parkinson's disease (PD). These studies used peripheral nerve stimulation paired with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) at specific intervals to induce plasticity. Induction of cortical plasticity through stimulation of the basal ganglia (BG)-M1 connections has not been studied. In the present study, we used a novel technique of plasticity induction by repeated pairing of deep-brain stimulation (DBS) of the BG with M1 stimulation using TMS. We hypothesize that repeated pairing of subthalamic nucleus (STN)-DBS and M1-TMS at specific time intervals will lead to plasticity in the M1. Ten PD human patients with STN-DBS were studied in the on-medication state with DBS set to 3 Hz. The interstimulus intervals (ISIs) between STN-DBS and TMS that produced cortical facilitation were determined individually for each patient. Three plasticity induction conditions with repeated pairings (180 times) at specific ISIs (∼ 3 and ∼ 23 ms) that produced cortical facilitation and a control ISI of 167 ms were tested in random order. Repeated pairing of STN-DBS and M1-TMS at short (∼ 3 ms) and medium (∼ 23 ms) latencies increased M1 excitability that lasted for at least 45 min, whereas the control condition (fixed ISI of 167 ms) had no effect. There were no specific changes in motor thresholds, intracortical circuits, or recruitment curves. Our results indicate that paired-associative cortical plasticity can be induced by repeated STN and M1 stimulation at specific intervals. These results show that STN-DBS can modulate cortical plasticity. We introduced a new experimental paradigm to test the hypothesis that pairing subthalamic nucleus deep-brain stimulation (STN-DBS) with motor cortical transcranial magnetic stimulation (M1-TMS) at specific times can induce cortical plasticity in patients with Parkinson's disease (PD). We found that repeated pairing of STN-DBS with TMS at short (∼ 3 ms) and medium (∼ 23 ms) intervals increased cortical excitability that lasted for up to 45 min, whereas the control condition (fixed latency of 167 ms) had no effects on cortical excitability. This is the first demonstration of associative plasticity in the STN-M1 circuits in PD patients using this novel technique. The potential therapeutic effects of combining DBS and noninvasive cortical stimulation should be investigated further. Copyright © 2016 the authors 0270-6474/16/360397-09$15.00/0.
Reich, Martin M; Brumberg, Joachim; Pozzi, Nicolò G; Marotta, Giorgio; Roothans, Jonas; Åström, Mattias; Musacchio, Thomas; Lopiano, Leonardo; Lanotte, Michele; Lehrke, Ralph; Buck, Andreas K; Volkmann, Jens; Isaias, Ioannis U
2016-11-01
Thalamic deep brain stimulation is a mainstay treatment for severe and drug-refractory essential tremor, but postoperative management may be complicated in some patients by a progressive cerebellar syndrome including gait ataxia, dysmetria, worsening of intention tremor and dysarthria. Typically, this syndrome manifests several months after an initially effective therapy and necessitates frequent adjustments in stimulation parameters. There is an ongoing debate as to whether progressive ataxia reflects a delayed therapeutic failure due to disease progression or an adverse effect related to repeated increases of stimulation intensity. In this study we used a multimodal approach comparing clinical stimulation responses, modelling of volume of tissue activated and metabolic brain maps in essential tremor patients with and without progressive ataxia to disentangle a disease-related from a stimulation-induced aetiology. Ten subjects with stable and effective bilateral thalamic stimulation were stratified according to the presence (five subjects) of severe chronic-progressive gait ataxia. We quantified stimulated brain areas and identified the stimulation-induced brain metabolic changes by multiple 18 F-fluorodeoxyglucose positron emission tomography performed with and without active neurostimulation. Three days after deactivating thalamic stimulation and following an initial rebound of symptom severity, gait ataxia had dramatically improved in all affected patients, while tremor had worsened to the presurgical severity, thus indicating a stimulation rather than disease-related phenomenon. Models of the volume of tissue activated revealed a more ventrocaudal stimulation in the (sub)thalamic area of patients with progressive gait ataxia. Metabolic maps of both patient groups differed by an increased glucose uptake in the cerebellar nodule of patients with gait ataxia. Our data suggest that chronic progressive gait ataxia in essential tremor is a reversible cerebellar syndrome caused by a maladaptive response to neurostimulation of the (sub)thalamic area. The metabolic signature of progressive gait ataxia is an activation of the cerebellar nodule, which may be caused by inadvertent current spread and antidromic stimulation of a cerebellar outflow pathway originating in the vermis. An anatomical candidate could be the ascending limb of the uncinate tract in the subthalamic area. Adjustments in programming and precise placement of the electrode may prevent this adverse effect and help fine-tuning deep brain stimulation to ameliorate tremor without negative cerebellar signs. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Pérez-Suárez, Javier; Torres Díaz, Cristina V; López Manzanares, Lydia; Navas García, Marta; Pastor, Jesús; Barrio Fernández, Patricia; G de Sola, Rafael
2017-01-01
Although there are few reports of radiofrequency lesions performed through deep brain stimulation (DBS) electrodes in patients with movement disorders, experience with this method is scarce. We present 2 patients who had been previously treated with DBS of subthalamic nuclei (STN) and the ventral intermediate (VIM) nucleus of the thalamus for Parkinson's disease and essential tremor, respectively, and underwent a radiofrequency lesion through their DBS electrodes after developing a hardware infection. The authors conduct a review of the literature regarding this method. Both patients had a good clinical outcome after 20 and 8 months, respectively, as assessed by a reduction in Fahn-Tolosa-Marin Scale and Unified Parkinson's Disease Rating Scale scores. The second patient underwent a second DBS system implantation surgery after his radiofrequency treatment to optimize his management, achieving optimal clinical control with lower current and drug requirements than before the radiofrequency intervention. No adverse effects were observed. Radiofrequency lesions through DBS electrodes allow the creation of small and localized lesions. Its effectiveness and low-risk profile, in addition to its low cost, make this procedure suitable and a possible alternative in the therapeutic repertoire for the surgical treatment of movement disorders. © 2017 S. Karger AG, Basel.
Oswal, Ashwini; Jha, Ashwani; Neal, Spencer; Reid, Alphonso; Bradbury, David; Aston, Peter; Limousin, Patricia; Foltynie, Tom; Zrinzo, Ludvic; Brown, Peter; Litvak, Vladimir
2016-01-01
Background Deep Brain Stimulation (DBS) is an effective treatment for several neurological and psychiatric disorders. In order to gain insights into the therapeutic mechanisms of DBS and to advance future therapies a better understanding of the effects of DBS on large-scale brain networks is required. New method In this paper, we describe an experimental protocol and analysis pipeline for simultaneously performing DBS and intracranial local field potential (LFP) recordings at a target brain region during concurrent magnetoencephalography (MEG) measurement. Firstly we describe a phantom setup that allowed us to precisely characterise the MEG artefacts that occurred during DBS at clinical settings. Results Using the phantom recordings we demonstrate that with MEG beamforming it is possible to recover oscillatory activity synchronised to a reference channel, despite the presence of high amplitude artefacts evoked by DBS. Finally, we highlight the applicability of these methods by illustrating in a single patient with Parkinson's disease (PD), that changes in cortical-subthalamic nucleus coupling can be induced by DBS. Comparison with existing approaches To our knowledge this paper provides the first technical description of a recording and analysis pipeline for combining simultaneous cortical recordings using MEG, with intracranial LFP recordings of a target brain nucleus during DBS. PMID:26698227
Qasim, Salman E.; de Hemptinne, Coralie; Swann, Nicole C.; Miocinovic, Svjetlana; Ostrem, Jill L.; Starr, Philip A.
2015-01-01
The pathophysiology of rest tremor in Parkinson’s disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. PMID:26639855
General anaesthesia for deep brain stimulator electrode insertion in Parkinson's disease.
Sutcliffe, A J; Mitchell, R D; Gan, Y C; Mocroft, A P; Nightingale, P
2011-03-01
This paper compares the use of general and local anaesthetic in patients having deep brain stimulator (DBS) surgery. It is a retrospective case note study of 46 patients treated consecutively with subthalamic nucleus stimulation for Parkinson's disease as practise changed in a Neurosurgical unit. The first 20 patients (LA group) had permanent electrodes placed under local anaesthesia. The remaining 26 patients (GA group) had the entire procedure under general anaesthesia. The groups were similar for age, sex, duration of Parkinson's disease and preoperative levodopa requirement. The clinical results were similar in that within each group, the reduction in levodopa was not only clinically but also statistically significant (p < 0.001 for both, paired t test): for the LA group, the 6-month requirement was 39.4% (29.5-52.6%) of the preoperative requirement and for the GA group, the 6-month requirement was 32.3% (25.2-41.5%) of the preoperative requirement. The reduction in levodopa was maintained at 1 year. Of note, duration of surgery and length of stay were reduced. The mean duration of surgery was 8.2 h (7.8-8.6) for the LA group and 7.5 h (7.2-7.8) for the GA group (p = 0.003). The geometric mean of length of hospital stay was 5.4 days(4.6-6.3) for the LA group and 3.8 days (3.4-4.4) for the GA group (p = 0.001) There was no difference in electrophysiological recording. This study describes benefits in the GA group for the entire procedure of STN DBS. In these samples, there was no difference in the adverse effects seen in patients undergoing deep brain stimulator insertion with general anaesthetic compared with local anaesthetic. The use of general anaesthetic did not detract from the known benefits of surgery.
Demeter, Gyula; Valálik, István; Pajkossy, Péter; Szőllősi, Ágnes; Lukács, Ágnes; Kemény, Ferenc; Racsmány, Mihály
2017-04-24
Although the improvement of motor symptoms in Parkinson's disease (PD) after deep brain stimulation (DBS) of the subthalamic nucleus (STN) is well documented, there are open questions regarding its impact on cognitive functions. The aim of this study was to assess the effect of bilateral DBS of the STN on executive functions in PD patients using a DBS wait-listed PD control group. Ten PD patients with DBS implantation (DBS group) and ten PD wait-listed patients (Clinical control group) participated in the study. Neuropsychological tasks were used to assess general mental ability and various executive functions. Each task was administered twice to each participant: before and after surgery (with the stimulators on) in the DBS group and with a matched delay between the two task administration points in the control group. There was no significant difference between the DBS and the control groups' performance in tasks measuring the updating of verbal, spatial or visual information (Digit span, Corsi and N-back tasks), planning and shifting (Trail Making B), and conflict resolution (Stroop task). However, the DBS group showed a significant decline on the semantic verbal fluency task after surgery compared to the control group, which is in line with findings of previous studies. Our results provide support for the relative cognitive safety of the STN DBS using a wait-listed PD control group. Differential effects of the STN DBS on frontostriatal networks are discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Zavala, Baltazar A; Tan, Huiling; Little, Simon; Ashkan, Keyoumars; Hariz, Marwan; Foltynie, Thomas; Zrinzo, Ludvic; Zaghloul, Kareem A; Brown, Peter
2014-05-21
Making the right decision from conflicting information takes time. Recent computational, electrophysiological, and clinical studies have implicated two brain areas as being crucial in assuring sufficient time is taken for decision-making under conditions of conflict: the medial prefrontal cortex and the subthalamic nucleus (STN). Both structures exhibit an elevation of activity at low frequencies (<10 Hz) during conflict that correlates with the amount of time taken to respond. This suggests that the two sites could become functionally coupled during conflict. To establish the nature of this interaction we recorded from deep-brain stimulation electrodes implanted bilaterally in the STN of 13 Parkinson's disease patients while they performed a sensory integration task involving randomly moving dots. By gradually increasing the number of dots moving coherently in one direction, we were able to determine changes in the STN associated with response execution. Furthermore, by occasionally having 10% of the dots move in the opposite direction as the majority, we were able to identify an independent increase in STN theta-delta activity triggered by conflict. Crucially, simultaneous midline frontal electroencephalographic recordings revealed an increase in the theta-delta band coherence between the two structures that was specific to high-conflict trials. Activity over the midline frontal cortex was Granger causal to that in STN. These results establish the cortico-subcortical circuit enabling successful choices to be made under conditions of conflict and provide support for the hypothesis that the brain uses frequency-specific channels of communication to convey behaviorally relevant information. Copyright © 2014 Zavala et al.
Swann, Nicole; Poizner, Howard; Houser, Melissa; Gould, Sherrie; Greenhouse, Ian; Cai, Weidong; Strunk, Jon; George, Jobi; Aron, Adam R
2011-01-01
Stopping an initiated response could be implemented by a fronto-basal-ganglia circuit, including the right inferior frontal cortex (rIFC) and the subthalamic nucleus (STN). Intracranial recording studies in humans reveal an increase in beta-band power (~16-20 Hz) within the rIFC and STN when a response is stopped. This suggests that the beta-band could be important for communication in this network. If this is the case, then altering one region should affect the electrophysiological response at the other. We addressed this hypothesis by recording scalp EEG during a stop task while modulating STN activity with deep brain stimulation. We studied 15 human patients with Parkinson's Disease and 15 matched healthy control subjects. Behaviorally, patients OFF stimulation were slower than controls to stop their response. Moreover, stopping speed was improved for ON compared to OFF stimulation. For scalp EEG, there was greater beta power, around the time of stopping, for patients ON compared to OFF stimulation. This effect was stronger over the right compared to left frontal cortex, consistent with the putative right-lateralization of the stopping network. Thus, deep brain stimulation of the STN improved behavioral stopping performance and increased the beta-band response over the right frontal cortex. These results complement other evidence for a structurally-connected, functional, circuit between right frontal cortex and the basal ganglia. The results also suggest that deep brain stimulation of the STN may improve task performance by increasing the fidelity of information transfer within a fronto-basal ganglia circuit. PMID:21490213
Sweet, Jennifer A; Walter, Benjamin L; Gunalan, Kabilar; Chaturvedi, Ashutosh; McIntyre, Cameron C; Miller, Jonathan P
2014-04-01
Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future.
Charles, David; Tolleson, Christopher; Davis, Thomas L; Gill, Chandler E; Molinari, Anna L; Bliton, Mark J; Tramontana, Michael G; Salomon, Ronald M; Kao, Chris; Wang, Lily; Hedera, Peter; Phibbs, Fenna T; Neimat, Joseph S; Konrad, Peter E
2012-01-01
Deep brain stimulation provides significant symptomatic benefit for people with advanced Parkinson's disease whose symptoms are no longer adequately controlled with medication. Preliminary evidence suggests that subthalamic nucleus stimulation may also be efficacious in early Parkinson's disease, and results of animal studies suggest that it may spare dopaminergic neurons in the substantia nigra. We report the methodology and design of a novel Phase I clinical trial testing the safety and tolerability of deep brain stimulation in early Parkinson's disease and discuss previous failed attempts at neuroprotection. We recently conducted a prospective, randomized, parallel-group, single-blind pilot clinical trial of deep brain stimulation in early Parkinson's disease. Subjects were randomized to receive either optimal drug therapy or deep brain stimulation plus optimal drug therapy. Follow-up visits occurred every six months for a period of two years and included week-long therapy washouts. Thirty subjects with Hoehn & Yahr Stage II idiopathic Parkinson's disease were enrolled over a period of 32 months. Twenty-nine subjects completed all follow-up visits; one patient in the optimal drug therapy group withdrew from the study after baseline. Baseline characteristics for all thirty patients were not significantly different. This study demonstrates that it is possible to recruit and retain subjects in a clinical trial testing deep brain stimulation in early Parkinson's disease. The results of this trial will be used to support the design of a Phase III, multicenter trial investigating the efficacy of deep brain stimulation in early Parkinson's disease.
Charles, David; Tolleson, Christopher; Davis, Thomas L.; Gill, Chandler E.; Molinari, Anna L.; Bliton, Mark J.; Tramontana, Michael G.; Salomon, Ronald M.; Kao, Chris; Wang, Lily; Hedera, Peter; Phibbs, Fenna T.; Neimat, Joseph S.; Konrad, Peter E.
2014-01-01
Background Deep brain stimulation provides significant symptomatic benefit for people with advanced Parkinson's disease whose symptoms are no longer adequately controlled with medication. Preliminary evidence suggests that subthalamic nucleus stimulation may also be efficacious in early Parkinson's disease, and results of animal studies suggest that it may spare dopaminergic neurons in the substantia nigra. Objective We report the methodology and design of a novel Phase I clinical trial testing the safety and tolerability of deep brain stimulation in early Parkinson's disease and discuss previous failed attempts at neuroprotection. Methods We recently conducted a prospective, randomized, parallel-group, single-blind pilot clinical trial of deep brain stimulation in early Parkinson's disease. Subjects were randomized to receive either optimal drug therapy or deep brain stimulation plus optimal drug therapy. Follow-up visits occurred every six months for a period of two years and included week-long therapy washouts. Results Thirty subjects with Hoehn & Yahr Stage II idiopathic Parkinson's disease were enrolled over a period of 32 months. Twenty-nine subjects completed all follow-up visits; one patient in the optimal drug therapy group withdrew from the study after baseline. Baseline characteristics for all thirty patients were not significantly different. Conclusions This study demonstrates that it is possible to recruit and retain subjects in a clinical trial testing deep brain stimulation in early Parkinson's disease. The results of this trial will be used to support the design of a Phase III, multicenter trial investigating the efficacy of deep brain stimulation in early Parkinson's disease. PMID:23938229
Cost-effectiveness of neurostimulation in Parkinson's disease with early motor complications.
Dams, Judith; Balzer-Geldsetzer, Monika; Siebert, Uwe; Deuschl, Günther; Schuepbach, W M Michael; Krack, Paul; Timmermann, Lars; Schnitzler, Alfons; Reese, Jens-Peter; Dodel, Richard
2016-08-01
Recent research efforts have focused on the effects of deep brain stimulation of the subthalamic nucleus (STN DBS) for selected patients with mild-to-moderate PD experiencing motor complications. We assessed the cost utility of subthalamic DBS compared with the best medical treatment for German patients below the age of 61 with early motor complications of PD. We applied a previously published Markov model that integrated health utilities based on EuroQoL and direct costs over patients' lifetime adjusted to the German health care payer perspective (year of costing: 2013). Effectiveness was evaluated using the Parkinson's Disease Questionnaire 39 summary index. We performed sensitivity analyses to assess uncertainty. In the base-case analysis, the incremental cost-utility ratio for STN DBS compared to best medical treatment was 22,700 Euros per quality-adjusted life year gained. The time to, and costs for, battery exchange had a major effect on the incremental cost-utility ratios, but never exceeded a threshold of 50,000 Euros per quality-adjusted life year. Our decision analysis supports the fact that STN DBS at earlier stages of the disease is cost-effective in patients below the age of 61 when compared with the best medical treatment in the German health care system. This finding was supported by detailed sensitivity analyses reporting robust results. Whereas the EARLYSTIM study has shown STN DBS to be superior to medical therapy with respect to quality of life for patients with early motor complications, this further analysis has shown its cost-effectiveness. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Caire, François; Ranoux, Danièle; Guehl, Dominique; Burbaud, Pierre; Cuny, Emmanuel
2013-09-01
The dorso-lateral part of the subthalamic nucleus (STN) is considered as the usual target of deep brain stimulation for Parkinson's disease. Nevertheless, the exact anatomical location of the electrode contacts used for chronic stimulation is still a matter of debate. The aim of this study was to perform a systematic review of the existing literature on this issue. We searched for studies on the anatomical location of active contacts published until December 2012. We identified 13 studies, published between 2002 and 2010, including 260 patients and 466 electrodes. One hundred and sixty-four active contacts (35 %) were identified within the STN, 117 (25 %) at the interface between STN and the surrounding structures, 184 (40 %) above the STN and one within the substantia nigra. We observed great discrepancies between the different series. The contra-lateral improvement was between 37 and 78.5 % for contacts located within the STN, between 48.6 and 73 % outside the STN, between 65.3 and 66 % at the interface. The authors report no clear correlation between anatomical location and stimulation parameters. Post-operative analysis of the anatomical location of active contacts is difficult, and all the methods used are debatable. The relationship between the anatomical location of active contacts and the clinical effectiveness of stimulation is unclear. It would be necessary to take into account the volume of the electrode contacts and the diffusion of the stimulation. We can nevertheless assume that the interface between dorso-lateral STN, zona incerta and Forel's fields could be directly involved in the effects of stimulation.
Multi-modal and targeted imaging improves automated mid-brain segmentation
NASA Astrophysics Data System (ADS)
Plassard, Andrew J.; D'Haese, Pierre F.; Pallavaram, Srivatsan; Newton, Allen T.; Claassen, Daniel O.; Dawant, Benoit M.; Landman, Bennett A.
2017-02-01
The basal ganglia and limbic system, particularly the thalamus, putamen, internal and external globus pallidus, substantia nigra, and sub-thalamic nucleus, comprise a clinically relevant signal network for Parkinson's disease. In order to manually trace these structures, a combination of high-resolution and specialized sequences at 7T are used, but it is not feasible to scan clinical patients in those scanners. Targeted imaging sequences at 3T such as F-GATIR, and other optimized inversion recovery sequences, have been presented which enhance contrast in a select group of these structures. In this work, we show that a series of atlases generated at 7T can be used to accurately segment these structures at 3T using a combination of standard and optimized imaging sequences, though no one approach provided the best result across all structures. In the thalamus and putamen, a median Dice coefficient over 0.88 and a mean surface distance less than 1.0mm was achieved using a combination of T1 and an optimized inversion recovery imaging sequences. In the internal and external globus pallidus a Dice over 0.75 and a mean surface distance less than 1.2mm was achieved using a combination of T1 and FGATIR imaging sequences. In the substantia nigra and sub-thalamic nucleus a Dice coefficient of over 0.6 and a mean surface distance of less than 1.0mm was achieved using the optimized inversion recovery imaging sequence. On average, using T1 and optimized inversion recovery together produced significantly improved segmentation results than any individual modality (p<0.05 wilcox sign-rank test).
Modulation of the subthalamic nucleus activity by serotonergic agents and fluoxetine administration.
Aristieta, A; Morera-Herreras, T; Ruiz-Ortega, J A; Miguelez, C; Vidaurrazaga, I; Arrue, A; Zumarraga, M; Ugedo, L
2014-05-01
Within the basal ganglia, the subthalamic nucleus (STN) is the only glutamatergic structure and occupies a central position in the indirect pathway. In rat, the STN receives serotonergic input from the dorsal raphe nucleus and expresses serotonergic receptors. This study examined the consequences of serotonergic neurotransmission modulation on STN neuron activity. In vivo single-unit extracellular recordings, HPLC determination, and rotarod and bar test were performed in control, 4-chloro-DL-phenylalanine methyl ester hydrochloride- (pCPA, a serotonin synthesis inhibitor) and chronically fluoxetine-treated rats. The pCPA treatment and the administration of serotonin (5-HT) receptor antagonists increased number of bursting neurons in the STN. The systemic administration of the 5-HT(1A) agonist, 8-OH-DPAT, decreased the firing rate and increased the coefficient of variation of STN neurons in pCPA-treated rats but not in control animals. Additionally, microinjection of 8-OH-DPAT into the STN reduced the firing rate of STN neurons, while microinjection of the 5-HT(2C) agonist, Ro 60-0175, increased the firing rate in both control and fluoxetine-treated animals. Finally, the fluoxetine challenge increased the firing rate of STN neurons in fluoxetine-treated rats and induced catalepsy. Our results indicate that the depletion and the blockage of 5-HT modify STN neuron firing pattern. STN neuron activity is under the control of 5-HT(1A) and 5-HT(2C) receptors located both inside and outside the STN. Finally, fluoxetine increases STN neuron activity in chronically fluoxetine-treated rats, which may explain the role of this nucleus in fluoxetine-induced extrapyramidal side effects.
Effects of subthalamic nucleus stimulation on motor cortex plasticity in Parkinson disease
Kim, Sang Jin; Udupa, Kaviraja; Ni, Zhen; Moro, Elena; Gunraj, Carolyn; Mazzella, Filomena; Lozano, Andres M.; Hodaie, Mojgan; Lang, Anthony E.
2015-01-01
Objective: We hypothesized that subthalamic nucleus (STN) deep brain stimulation (DBS) will improve long-term potentiation (LTP)-like plasticity in motor cortex in Parkinson disease (PD). Methods: We studied 8 patients with PD treated with STN-DBS and 9 age-matched healthy controls. Patients with PD were studied in 4 sessions in medication (Med) OFF/stimulator (Stim) OFF, Med-OFF/Stim-ON, Med-ON/Stim-OFF, and Med-ON/Stim-ON states in random order. Motor evoked potential amplitude and cortical silent period duration were measured at baseline before paired associated stimulation (PAS) and at 3 different time intervals (T0, T30, T60) up to 60 minutes after PAS in the abductor pollicis brevis and abductor digiti minimi muscles. Results: Motor evoked potential size significantly increased after PAS in controls (+67.7% of baseline at T30) and in patients in the Med-ON/Stim-ON condition (+55.8% of baseline at T30), but not in patients in the Med-OFF/Stim-OFF (−0.4% of baseline at T30), Med-OFF/Stim-ON (+10.3% of baseline at T30), and Med-ON/Stim-OFF conditions (+17.3% of baseline at T30). Cortical silent period duration increased after PAS in controls but not in patients in all test conditions. Conclusions: Our findings suggest that STN-DBS together with dopaminergic medications restore LTP-like plasticity in motor cortex in PD. Restoration of cortical plasticity may be one of the mechanisms of how STN-DBS produces clinical benefit. PMID:26156511
Hyper-connectivity of the Thalamus in during Early Stages following Mild Traumatic Brain Injury
Sours, Chandler; George, Elijah O.; Zhuo, Jiachen; Roys, Steven; Gullapalli, Rao P.
2015-01-01
The thalamo-cortical resting state functional connectivity of 7 sub-thalamic regions were examined in a prospectively recruited population of 77 acute mild TBI (mTBI) patients within the first 10 days (mean 6±3 days) of injury and 35 neurologically intact control subjects using the Oxford thalamic connectivity atlas. Neuropsychological assessments were conducted using the Automated Neuropsychological Assessment Metrics (ANAM). A subset of participants received a magentic resonance spectroscopy (MRS) exam to determine metabolite concentrations in the thalamus and posterior cingulate cortex. Results show that patients performed worse than the control group on various subtests of ANAM and the weighted throughput score, suggesting reduced cognitive performance at this early stage of injury. Both voxel and region of interest based analysis of the resting state fMRI data demonstrated that acute mTBI patients have increased functional connectivity between the various sub-thalamic regions and cortical regions associated with sensory processing and the default mode network (DMN). In addition, a significant reduction in NAA/Cr was observed in the thalamus in the mTBI patients. Furthermore, an increase in Cho/Cr ratio specific to mTBI patients with self-reported sensory symptoms was observed compared to those without self-reported sensory symptoms. These results provide novel insights into the neural mechanisms of the brain state related to internal rumination and arousal, which have implications for new interventions for mTBI patients with persistent symptoms. Furthermore, an understanding of heightened sensitivity to sensory related inputs during early stages of injury may facilitate enhanced prediction of safe return to work. PMID:26153468
Deep-brain-stimulation does not impair deglutition in Parkinson's disease.
Lengerer, Sabrina; Kipping, Judy; Rommel, Natalie; Weiss, Daniel; Breit, Sorin; Gasser, Thomas; Plewnia, Christian; Krüger, Rejko; Wächter, Tobias
2012-08-01
A large proportion of patients with Parkinson's disease develop dysphagia during the course of the disease. Dysphagia in Parkinson's disease affects different phases of deglutition, has a strong impact on quality of life and may cause severe complications, i.e., aspirational pneumonia. So far, little is known on how deep-brain-stimulation of the subthalamic nucleus influences deglutition in PD. Videofluoroscopic swallowing studies on 18 patients with Parkinson's disease, which had been performed preoperatively, and postoperatively with deep-brain-stimulation-on and deep-brain-stimulation-off, were analyzed retrospectively. The patients were examined in each condition with three consistencies (viscous, fluid and solid). The 'New Zealand index for multidisciplinary evaluation of swallowing (NZIMES) Subscale One' for qualitative and 'Logemann-MBS-Parameters' for quantitative evaluation were assessed. Preoperatively, none of the patients presented with clinically relevant signs of dysphagia. While postoperatively, the mean daily levodopa equivalent dosage was reduced by 50% and deep-brain-stimulation led to a 50% improvement in motor symptoms measured by the UPDRS III, no clinically relevant influence of deep-brain-stimulation-on swallowing was observed using qualitative parameters (NZIMES). However quantitative parameters (Logemann scale) found significant changes of pharyngeal parameters with deep-brain-stimulation-on as compared to preoperative condition and deep-brain-stimulation-off mostly with fluid consistency. In Parkinson patients without dysphagia deep-brain-stimulation of the subthalamic nucleus modulates the pharyngeal deglutition phase but has no clinically relevant influence on deglutition. Further studies are needed to test if deep-brain-stimulation is a therapeutic option for patients with swallowing disorders. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mock, Stephen; Osborn, David J.; Brown, Elizabeth T.; Reynolds, W. Stuart; Turchan, Maxim; Pallavaram, Srivatsan; Rodriguez, William; Dmochowski, Roger; Tolleson, Christopher M.
2016-01-01
Objective Deep Brain Stimulation (DBS) is an established adjunctive surgical intervention for treating Parkinson’s disease (PD) motor symptoms. Both surgical targets, the globus pallidus interna (GPi) and subthalamic nucleus (STN), appear equally beneficial when treating motor symptoms but effects on nonmotor symptoms are not clear. Lower urinary tract symptoms (LUTS) are a common PD complaint. Given prior data in STN-DBS, we aimed to further explore potential benefits in LUTS in both targets. Methods We performed a prospective, non-blinded clinical trial evaluating LUTS in PD patients in both targets pre and post DBS using validated urologic surveys. Participants were already slated for DBS and target selection predetermined before study entry. LUTS was evaluated using: the American Urological Association (AUA-SI), Quality of Life score (QOL), Overactive bladder 8 questionnaire (OAB-q), and sexual health inventory for men (SHIM). Results Of 33 participants, 20 underwent STN DBS and 13 had GPi DBS. Patients demonstrated moderate baseline LUTS. The urologic QOL score significantly improved post DBS (3.24±1.77vs 2.52±1.30; p=0.03). Analyzed by target, only the STN showed significant change in QOL (vs. 2.25±1.33; p=0.04). There were no other significant differences in urologic scores post DBS noted in either target. Conclusion In PD patients with moderate LUTS, there were notable improvements in QOL for LUTS post DBS in the total sample and STN target. There may be differences in DBS effects on LUTS between targets but this will require further larger, blinded studies. PMID:27172446
De Reuck, J L; Deramecourt, V; Auger, F; Durieux, N; Cordonnier, C; Devos, D; Defebvre, L; Moreau, C; Caparros-Lefebvre, D; Leys, D; Maurage, C A; Pasquier, F; Bordet, R
2014-07-01
Accumulation of iron (Fe) is often detected in brains of people suffering from neurodegenerative diseases. However, no studies have compared the Fe load between these disease entities. The present study investigates by T2*-weighted gradient-echo 7.0 T magnetic resonance imaging (MRI) the Fe content in post-mortem brains with different neurodegenerative and cerebrovascular diseases. One hundred and fifty-two post-mortem brains, composed of 46 with Alzheimer's disease (AD), 37 with frontotemporal lobar degeneration (FTLD), 11 with amyotrophic lateral sclerosis, 13 with Lewy body disease, 14 with progressive supranuclear palsy, 16 with vascular dementia (VaD) and 15 controls without a brain disease, were examined. The Fe load was determined semi-quantitatively on T2*-weighted MRI serial brain sections in the claustrum, caudate nucleus, putamen, globus pallidus, thalamus, subthalamic nucleus, hippocampus, mamillary body, lateral geniculate body, red nucleus, substantia nigra and dentate nucleus. The disease diagnosis was made on subsequent neuropathological examination. The Fe load was significantly increased in the claustrum, caudate nucleus and putamen of FTLD brains and to a lesser degree in the globus pallidus, thalamus and subthalamic nucleus. In the other neurodegenerative diseases no Fe accumulation was observed, except for a mild increase in the caudate nucleus of AD brains. In VaD brains no Fe increase was detected. Only FTLD displays a significant Fe load, suggesting that impaired Fe homeostasis plays an important role in the pathogenesis of this heterogeneous disease entity. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Coxon, James P; Van Impe, Annouchka; Wenderoth, Nicole; Swinnen, Stephan P
2012-06-13
Diffusion weighted imaging (DWI) studies in humans have shown that seniors exhibit reduced white matter integrity compared with young adults, with the most pronounced change occurring in frontal white matter. It is generally assumed that this structural deterioration underlies inhibitory control deficits in old age, but specific evidence from a structural neuroscience perspective is lacking. Cognitive action control is thought to rely on an interconnected network consisting of right inferior frontal cortex (r-IFC), pre-supplementary motor area (preSMA), and the subthalamic nucleus (STN). Here we performed probabilistic DWI tractography to delineate this cognitive control network and had the same individuals (20 young, 20 older adults) perform a task probing both response inhibition and action reprogramming. We hypothesized that structural integrity (fractional anisotropy) and connection strength within this network would be predictive of individual and age-related differences in task performance. We show that the integrity of r-IFC white matter is an age-independent predictor of stop-signal reaction time (SSRT). We further provide evidence that the integrity of white matter projecting to STN predicts both outright stopping (SSRT) and transient braking of response initiation to buy time for action reprogramming (stopping interference effects). These associations remain even after controlling for Go task performance, demonstrating specificity to the Stop component of this task. Finally, a multiple regression analysis reveals bilateral preSMA-STN tract strength as a significant predictor of SSRT in older adults. Our data link age-related decline in inhibitory control with structural decline of STN projections.
Muscular contraction stimulates posterior hypothalamic neurons.
Waldrop, T G; Stremel, R W
1989-02-01
Recent studies have suggested that the subthalamic locomotor region (STLR) of the posterior hypothalamus is involved in modulating cardiorespiratory responses to feedback from contracting muscles. The purpose of this study was to determine whether neurons in this hypothalamic region alter their discharge frequency during contraction of hindlimb muscles. Stainless steel electrodes were used to record single-unit activity of STLR neurons during static and rhythmic contractions of hindlimb muscles in anesthetized cats. Recordings were also made from neurons in areas outside but surrounding the subthalamic locomotor region. Contraction of the triceps surae muscles was induced by stimulation of the peripheral cut ends of the L7 and S1 ventral roots. Both static and rhythmic contractions of the triceps surae evoked an increase in the discharge rate of the majority of the STLR cells studied. Two types of excitatory responses were observed: 1) abrupt increases in discharge frequency at the onset of muscular contraction and 2) a delayed more gradual increase in firing. Most of the cells that responded to muscular contraction could be activated by mechanical probing of the triceps surae muscles. However, the changes in discharge frequency were unrelated to changes in arterial pressure occurring during muscular contraction. Most of the neurons located outside the STLR were slightly inhibited by or did not respond to muscular contraction. Thus input from contracting muscles exerts predominantly an excitatory effect on neurons in the posterior hypothalamus. These results are consistent with other studies which have concluded that this hypothalamic site is involved in influencing the cardiorespiratory responses to muscular contraction.
Karlsson, Fredrik; Malinova, Elin; Olofsson, Katarina; Blomstedt, Patric; Linder, Jan; Nordh, Erik
2018-01-17
We aimed to study the effect of deep brain stimulation (DBS) in the subthalamic nucleus (STN) and caudal zona incerta (cZi) on level of perceived voice tremor in patients with Parkinson disease (PD). This is a prospective nonrandomized design with consecutive patients. Perceived voice tremor was assessed in patients with PD having received either STN-DBS (8 patients, 5 bilateral and 3 unilateral, aged 43.1-73.6 years; median = 61.2 years) or cZi-DBS (14 bilateral patients, aged 39.0-71.9 years; median = 56.6 years) 12 months before the assessment. Sustained vowels that were produced OFF and ON stimulation (with simultaneous l-DOPA medication) were assessed perceptually in terms of voice tremor by two raters on a four-point rating scale. The assessments were repeated five times per sample and rated in a blinded and randomized procedure. Three out of the 22 patients (13%) were concluded to have voice tremor OFF stimulation. Patients with PD with STN-DBS showed mild levels of perceived voice tremor OFF stimulation and a group level improvement. Patients with moderate/severe perceived voice tremor and cZi-DBS showed marked improvements, but there was no overall group effect. Six patients with cZi-DBS showed small increases in perceived voice tremor severity. STN-DBS decreased perceived voice tremor on a group level. cZi-DBS decreased perceived voice tremor in patients with PD with moderate to severe preoperative levels of the symptom. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Heluani, Alessandra Shenandoa; Porto, Fábio Henrique de Gobbi; Listik, Sergio; de Campos, Alexandre Walter; Machado, Alexandre Aluizio Costa; Cukiert, Arthur; de Oliveira Jr, José Oswaldo
2012-01-01
Deep brain stimulation (DBS) has been widely used to control motor symptoms and improve quality of life in patients with Parkinsons disease (PD). Recently, DBS in the subthalamic nucleus (STN) has become the preferred target for patients with mixed motor symptoms. Despite resultant motor and quality of life improvements, the procedure has been associated with cognitive decline, mainly in language skills, and also with psychiatric symptoms. Objective To evaluate the influence of DBS in the STN on cognition, mood and quality of life. Methods We studied 20 patients with PD submitted to DBS in the STN from May 2008 to June 2012 with an extensive battery of cognitive tests including memory, language, praxis, executive functions and attention assessments; the Parkinson's Disease Quality of Life Questionnaire (PDQ-39); and the Hospital Anxiety and Depression Scale (HAD), were applied both before and after the surgery. Data was analyzed using SPSS version 17.0 and results compared using the paired Student's t test. Results A total of 20 patients with pre and post-operative assessments were included. A statistically significant improvement was found in total score and on subscales of mobility, activities of daily living and emotional well-being from the PDQ-39 (P=0.009, 0.025, 0.001 and 0.034, respectively). No significant difference was found on the cognitive battery or mood scale. Conclusion DBS in the SNT improved quality of life in PD with no negative impact on cognitive skills and mood. PMID:29213806
Influence of subthalamic deep-brain stimulation on cognitive action control in incentive context.
Houvenaghel, Jean-François; Duprez, Joan; Argaud, Soizic; Naudet, Florian; Dondaine, Thibaut; Robert, Gabriel Hadrien; Drapier, Sophie; Haegelen, Claire; Jannin, Pierre; Drapier, Dominique; Vérin, Marc; Sauleau, Paul
2016-10-01
Subthalamic nucleus deep-brain stimulation (STN-DBS) is an effective treatment in Parkinson's disease (PD), but can have cognitive side effects, such as increasing the difficulty of producing appropriate responses when a habitual but inappropriate responses represent strong alternatives. STN-DBS also appears to modulate representations of incentives such as monetary rewards. Furthermore, conflict resolution can be modulated by incentive context. We therefore used a rewarded Simon Task to assess the influence of promised rewards on cognitive action control in 50 patients with PD, half of whom were being treated with STN-DBS. Results were analyzed according to the activation-suppression model. We showed that STN-DBS (i) favored the expression of motor impulsivity, as measured with the Barratt Impulsiveness Scale, (ii) facilitated the expression of incentive actions as observed with a greater increase in speed according to promised reward in patients with versus without DBS and (iii) may increase impulsive action selection in an incentive context. In addition, analysis of subgroups of implanted patients suggested that those who exhibited the most impulsive action selection had the least severe disease. This may indicate that patients with less marked disease are more at risk of developing impulsivity postoperatively. Finally, in these patients, incentive context increased the difficulty of resolving conflict situations. As a whole, the current study revealed that in patients with PD, STN-DBS affects the cognitive processes involved in conflict resolution, reward processing and the influence of promised rewards on conflict resolution. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effects of varying subthalamic nucleus stimulation on apraxia of lid opening in Parkinson's disease.
Tommasi, Giorgio; Krack, Paul; Fraix, Valérie; Pollak, Pierre
2012-09-01
Apraxia of lid opening (ALO) is a non-paralytic inability to open the eyes or sustain lid elevation at will. The exact pathophysiological mechanisms underlying the syndrome are still unknown. ALO has been reported in patients with Parkinson's disease (PD) after subthalamic nucleus (STN) deep brain stimulation (DBS), suggesting a possible involvement of the basal ganglia. We aimed to assess the effects of varying STN stimulation voltage on ALO in PD patients. Seven out of 14 PD patients with bilateral STN stimulation consecutively seen in our centre presented with ALO. We progressively increased voltage on each STN, using either 130 Hz (high-frequency stimulation, HFS) or 2 or 3 Hz (low-frequency stimulation, LFS). In five patients, HFS induced ALO time-locked to stimulation in 7 out of 10 STNs at a voltage higher than that used for chronic stimulation. LFS induced myoclonus in the pretarsal orbicularis oculi muscle (pOOm) with a rhythm synchronous to the frequency. In the other two patients with ALO already present at the time of the study, HFS improved ALO in 3 out of 4 STNs. ALO recurred within minutes of stimulation arrest. Our findings show that STN-DBS can have opposite effects on ALO. On the one hand, ALO is thought to be a corticobulbar side effect due to lateral current spreading from the STN, in which case it is necessary to use voltages below the ALO-inducing threshold. On the other hand, ALO may be considered a form of off-phase focal dystonia possibly improved by increasing the stimulation voltages.
Bot, Maarten; van Rootselaar, Fleur; Contarino, Maria Fiorella; Odekerken, Vincent; Dijk, Joke; de Bie, Rob; Schuurman, Richard; van den Munckhof, Pepijn
2017-12-21
Ventral intermediate nucleus (VIM) deep brain stimulation (DBS) and posterior subthalamic area (PSA) DBS suppress tremor in essential tremor (ET) patients, but it is not clear which target is optimal. Aligning both targets in 1 surgical trajectory would facilitate exploring stimulation of either target in a single patient. To evaluate aligning VIM and PSA in 1 surgical trajectory for DBS in ET. Technical aspects of trajectories, intraoperative stimulation findings, final electrode placement, target used for chronic stimulation, and adverse and beneficial effects were evaluated. In 17 patients representing 33 trajectories, we successfully aligned VIM and PSA targets in 26 trajectories. Trajectory distance between targets averaged 7.2 (range 6-10) mm. In all but 4 aligned trajectories, optimal intraoperative tremor suppression was obtained in the PSA. During follow-up, active electrode contacts were located in PSA in the majority of cases. Overall, successful tremor control was achieved in 69% of patients. Stimulation-induced dysarthria or gait ataxia occurred in, respectively, 56% and 44% of patients. Neither difference in tremor suppression or side effects was noted between aligned and nonaligned leads nor between the different locations of chronic stimulation. Alignment of VIM and PSA for DBS in ET is feasible and enables intraoperative exploration of both targets in 1 trajectory. This facilitates positioning of electrode contacts in both areas, where multiple effective points of stimulation can be found. In the majority of aligned leads, optimal intraoperative and chronic stimulation were located in the PSA. Copyright © 2017 by the Congress of Neurological Surgeons
Mandali, Alekhya; Chakravarthy, V. Srinivasa; Rajan, Roopa; Sarma, Sankara; Kishore, Asha
2016-01-01
Background: Subthalamic Nucleus Deep Brain Stimulation (STN-DBS) is highly effective in alleviating motor symptoms of Parkinson's disease (PD) which are not optimally controlled by dopamine replacement therapy. Clinical studies and reports suggest that STN-DBS may result in increased impulsivity and de novo impulse control disorders (ICD). Objective/Hypothesis: We aimed to compare performance on a decision making task, the Iowa Gambling Task (IGT), in healthy conditions (HC), untreated and medically-treated PD conditions with and without STN stimulation. We hypothesized that the position of electrode and stimulation current modulate impulsivity after STN-DBS. Methods: We built a computational spiking network model of basal ganglia (BG) and compared the model's STN output with STN activity in PD. Reinforcement learning methodology was applied to simulate IGT performance under various conditions of dopaminergic and STN stimulation where IGT total and bin scores were compared among various conditions. Results: The computational model reproduced neural activity observed in normal and PD conditions. Untreated and medically-treated PD conditions had lower total IGT scores (higher impulsivity) compared to HC (P < 0.0001). The electrode position that happens to selectively stimulate the part of the STN corresponding to an advantageous panel on IGT resulted in de-selection of that panel and worsening of performance (P < 0.0001). Supratherapeutic stimulation amplitudes also worsened IGT performance (P < 0.001). Conclusion(s): In our computational model, STN stimulation led to impulsive decision making in IGT in PD condition. Electrode position and stimulation current influenced impulsivity which may explain the variable effects of STN-DBS reported in patients. PMID:27965590
Complications of subthalamic nucleus stimulation in Parkinson's disease.
Umemura, Atsushi; Oka, Yuichi; Yamamoto, Kenichi; Okita, Kenji; Matsukawa, Noriyuki; Yamada, Kazuo
2011-01-01
Subthalamic nucleus deep brain stimulation (STN-DBS) is effective for medically refractory Parkinson's disease. We retrospectively analyzed complications in 180 consecutive patients who underwent bilateral STN-DBS. Surgery-related complications were symptomatic intracerebral hemorrhage in 2, chronic subdural hematoma in 1, and transient deterioration of medication-induced psychosis in 2 patients. Device-related complications involved device infection in 5, skin erosion in 5, and implantable pulse generator malfunction in 2 patients. All of these patients required surgical repair. Surgery and device-related complications could be reduced with increased surgical experience and the introduction of new surgical equipment and technology. Treatment or stimulation-related complications were intractable dyskinesia/dystonia in 11, problematic dysarthria in 7, apraxia of eyelid opening (ALO) in 11, back pain in 10, and restless leg syndrome in 6 patients. Neuropsychiatric complications were transient mood changes in some, impulse control disorder in 2, severe depression related to excessive reduction of dopaminergic medications in 2, rapid progression of dementia in 1, and suicide attempts in 2 patients. Most complications were mild and transient. Dysarthria and ALO were the most frequent permanent sequelae after STN-DBS. Treatment-related adverse events may be caused not only by the effect of stimulation effect but also excessive reduction of dopaminergic medication, or progression of the disease. In conclusion, STN-DBS seems to be a relatively safe procedure. Although serious complications with permanent sequelae are rare, significant incidences of adverse effects occur. Physicians engaged in this treatment should have a comprehensive understanding of the probable complications and how to avoid them.
Li, Yan; Deng, Jianxin; Zhou, Jun; Li, Xueen
2016-11-01
Corresponding to pre-puncture and post-puncture insertion, elastic and viscoelastic mechanical properties of brain tissues on the implanting trajectory of sub-thalamic nucleus stimulation are investigated, respectively. Elastic mechanical properties in pre-puncture are investigated through pre-puncture needle insertion experiments using whole porcine brains. A linear polynomial and a second order polynomial are fitted to the average insertion force in pre-puncture. The Young's modulus in pre-puncture is calculated from the slope of the two fittings. Viscoelastic mechanical properties of brain tissues in post-puncture insertion are investigated through indentation stress relaxation tests for six interested regions along a planned trajectory. A linear viscoelastic model with a Prony series approximation is fitted to the average load trace of each region using Boltzmann hereditary integral. Shear relaxation moduli of each region are calculated using the parameters of the Prony series approximation. The results show that, in pre-puncture insertion, needle force almost increases linearly with needle displacement. Both fitting lines can perfectly fit the average insertion force. The Young's moduli calculated from the slope of the two fittings are worthy of trust to model linearly or nonlinearly instantaneous elastic responses of brain tissues, respectively. In post-puncture insertion, both region and time significantly affect the viscoelastic behaviors. Six tested regions can be classified into three categories in stiffness. Shear relaxation moduli decay dramatically in short time scales but equilibrium is never truly achieved. The regional and temporal viscoelastic mechanical properties in post-puncture insertion are valuable for guiding probe insertion into each region on the implanting trajectory.
Tamir, Idit; Marmor-Levin, Odeya; Eitan, Renana; Bergman, Hagai; Israel, Zvi
2017-10-01
The clinical outcome of patients with Parkinson disease (PD) who undergo subthalamic nucleus (STN) deep brain stimulation (DBS) is, in part, determined by the length of the electrode trajectory through the motor STN domain, the dorsolateral oscillatory region (DLOR). Trajectory length has been found to correlate with the stimulation-related improvement in patients' motor function (estimated by part III of the United Parkinson's Disease Rating Scale [UPDRS]). Therefore, it seems that ideally trajectories should have maximal DLOR length. We retrospectively studied the influence of various anatomic aspects of the brains of patients with PD and the geometry of trajectories planned on the length of the DLOR and STN recorded during DBS surgery. We examined 212 trajectories and 424 microelectrode recording tracks in 115 patients operated on in our center between 2010 and 2015. We found a strong correlation between the length of the recorded DLOR and STN. Trajectories that were more lateral and/or posterior in orientation had a longer STN and DLOR pass, although the DLOR/STN fraction length remained constant. The STN target was more lateral when the third ventricle was wider, and the latter correlated with older age and male gender. Trajectory angles correlate with the recorded STN and DLOR lengths, and should be altered toward a more posterolateral angle in older patients and atrophied brains to compensate for the changes in STN location and geometry. These fine adjustments should yield a longer motor domain pass, thereby improving the patient's predicted outcome. Copyright © 2017 Elsevier Inc. All rights reserved.
Connolly, Allison T; Muralidharan, Abirami; Hendrix, Claudia; Johnson, Luke; Gupta, Rahul; Stanslaski, Scott; Denison, Tim; Baker, Kenneth B; Vitek, Jerrold L; Johnson, Matthew D
2016-01-01
Objective Using the Medtronic Activa® PC + S system, this study investigated how passive joint manipulation, reaching behavior, and deep brain stimulation (DBS) modulate local field potential (LFP) activity in the subthalamic nucleus (STN) and globus pallidus (GP). Approach Five non-human primates were implanted unilaterally with one or more DBS leads. LFPs were collected in montage recordings during resting state conditions and during motor tasks that facilitate the expression of parkinsonian motor signs. These recordings were made in the naïve state in one subject, in the parkinsonian state in two subjects, and in both naïve and parkinsonian states in two subjects. Main results LFPs measured at rest were consistent over time for a given recording location and parkinsonian state in a given subject; however, LFPs were highly variable between subjects, between and within recording locations, and across parkinsonian states. LFPs in both naïve and parkinsonian states across all recorded nuclei contained a spectral peak in the beta band (10–30 Hz). Moreover, the spectral content of recorded LFPs was modulated by passive and active movement of the subjects’ limbs. LFPs recorded during a cued-reaching task displayed task-related beta desynchronization in STN and GP. The bidirectional capabilities of the Activa® PC + S also allowed for recording LFPs while delivering DBS. The therapeutic effect of STN DBS on parkinsonian rigidity outlasted stimulation for 30–60 s, but there was no correlation with beta band power. Significance This study emphasizes (1) the variability in spontaneous LFPs amongst subjects and (2) the value of using the Activa® PC + S system to record neural data in the context of behavioral tasks that allow one to evaluate a subject’s symptomatology. PMID:26469737
NASA Astrophysics Data System (ADS)
Connolly, Allison T.; Muralidharan, Abirami; Hendrix, Claudia; Johnson, Luke; Gupta, Rahul; Stanslaski, Scott; Denison, Tim; Baker, Kenneth B.; Vitek, Jerrold L.; Johnson, Matthew D.
2015-12-01
Objective. Using the Medtronic Activa® PC + S system, this study investigated how passive joint manipulation, reaching behavior, and deep brain stimulation (DBS) modulate local field potential (LFP) activity in the subthalamic nucleus (STN) and globus pallidus (GP). Approach. Five non-human primates were implanted unilaterally with one or more DBS leads. LFPs were collected in montage recordings during resting state conditions and during motor tasks that facilitate the expression of parkinsonian motor signs. These recordings were made in the naïve state in one subject, in the parkinsonian state in two subjects, and in both naïve and parkinsonian states in two subjects. Main results. LFPs measured at rest were consistent over time for a given recording location and parkinsonian state in a given subject; however, LFPs were highly variable between subjects, between and within recording locations, and across parkinsonian states. LFPs in both naïve and parkinsonian states across all recorded nuclei contained a spectral peak in the beta band (10-30 Hz). Moreover, the spectral content of recorded LFPs was modulated by passive and active movement of the subjects’ limbs. LFPs recorded during a cued-reaching task displayed task-related beta desynchronization in STN and GP. The bidirectional capabilities of the Activa® PC + S also allowed for recording LFPs while delivering DBS. The therapeutic effect of STN DBS on parkinsonian rigidity outlasted stimulation for 30-60 s, but there was no correlation with beta band power. Significance. This study emphasizes (1) the variability in spontaneous LFPs amongst subjects and (2) the value of using the Activa® PC + S system to record neural data in the context of behavioral tasks that allow one to evaluate a subject’s symptomatology.
Clinical efficacy of deep brain stimulation for the treatment of medically refractory epilepsy.
Klinger, Neil V; Mittal, Sandeep
2016-01-01
Epilepsy affects 50 million people worldwide and about 30% of these patients will not be adequately controlled with antiepileptic drugs (AEDs) alone. For patients where resective surgery is not indicated, deep brain stimulation (DBS) may be an effective alternative. The majority of available literature targets the thalamic nuclei (anterior; centromedian), subthalamic nucleus, hippocampus, and cerebellum. Here, we review patient outcomes and adverse events related to DBS to these various targets. Data show DBS may be a safe and effective treatment option for refractory epilepsy. Copyright © 2015. Published by Elsevier B.V.
Emerging analgesic drugs for Parkinson's disease.
Perez-Lloret, Santiago; Rey, María Verónica; Dellapina, Estelle; Pellaprat, Jean; Brefel-Courbon, Christine; Rascol, Olivier
2012-06-01
Pain affects between 40 and 85% of Parkinson's disease (PD) patients. It is a frequently disabling and overlooked feature, which can significantly reduce health-related quality of life. Unfortunately, there are no universally recommended treatments for this condition. Evidence about the efficacy and safety of available analgesic treatments is summarized in this review. Potential targets for upcoming therapies are then discussed in light of what is currently known about the physiopathology of pain in PD. Protocols for efficacy and safety assessment of novel analgesic therapies are discussed. Finally, critical aspects of study protocol design such as patient selection or outcomes to be evaluated are discussed. Preliminary results indicate that duloxetine, cranial electrotherapy stimulation, rotigotine, subthalamic or pallidum nuclei stimulation or lesion or levodopa could be effective for treating pain in PD. Similarly, some case reports indicate that repetitive transcranial magnetic stimulation (rTMS) or apomorphine could be effective for relieving painful off-period dystonia. Clinical trials with rTMS or oxycodone/naloxone prolonged-release tablets for neuropathic pain or botulinum toxin for off-period dystonia are underway. Success of clinical trials about analgesic strategies in PD will depend on the selection of the right PD population to be treated, according to the type of pain, and the proper selection of study outcomes and follow-up of international recommendations.
Changing pattern in the basal ganglia: motor switching under reduced dopaminergic drive
Fiore, Vincenzo G.; Rigoli, Francesco; Stenner, Max-Philipp; Zaehle, Tino; Hirth, Frank; Heinze, Hans-Jochen; Dolan, Raymond J.
2016-01-01
Action selection in the basal ganglia is often described within the framework of a standard model, associating low dopaminergic drive with motor suppression. Whilst powerful, this model does not explain several clinical and experimental data, including varying therapeutic efficacy across movement disorders. We tested the predictions of this model in patients with Parkinson’s disease, on and off subthalamic deep brain stimulation (DBS), focussing on adaptive sensory-motor responses to a changing environment and maintenance of an action until it is no longer suitable. Surprisingly, we observed prolonged perseverance under on-stimulation, and high inter-individual variability in terms of the motor selections performed when comparing the two conditions. To account for these data, we revised the standard model exploring its space of parameters and associated motor functions and found that, depending on effective connectivity between external and internal parts of the globus pallidus and saliency of the sensory input, a low dopaminergic drive can result in increased, dysfunctional, motor switching, besides motor suppression. This new framework provides insight into the biophysical mechanisms underlying DBS, allowing a description in terms of alteration of the signal-to-baseline ratio in the indirect pathway, which better account of known electrophysiological data in comparison with the standard model. PMID:27004463
[Neuroarchitecture of musical emotions].
Sel, Alejandra; Calvo-Merino, Beatriz
2013-03-01
The emotional response to music, or musical emotion, is a universal response that draws on diverse psychological processes implemented in a large array of neural structures and mechanisms. Studies using electroencephalography, functional magnetic resonance, lesions and individuals with extent musical training have begun to elucidate some of these mechanisms. The objective of this article is reviewing the most relevant studies that have tried to identify the neural correlates of musical emotion from the more automatic to the more complex processes, and to understand how these correlates interact in the brain. The article describes how the presentation of music perceived as emotional is associated with a rapid autonomic response in thalamic and subthalamic structures, accompanied by changes in the electrodermal and endocrine responses. It also explains how musical emotion processing activates auditory cortex, as well as a series of limbic and paralimbic structures, such as the amygdala, the anterior cingulate cortex or the hippocampus, demonstrating the relevant contribution of the limbic system to musical emotion. Further, it is detailed how musical emotion depends to a great extent on semantic and syntactic process carried out in temporal and parietofrontal areas, respectively. Some of the recent works demonstrating that musical emotion highly relies on emotional simulation are also mentioned. Finally, a summary of these studies, their limitations, and suggestions for further research on the neuroarchitecture of musical emotion are given.
Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A
2016-02-01
The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.
Tanaka, Yasuhiro; Tsuboi, Takashi; Watanabe, Hirohisa; Kajita, Yasukazu; Nakatsubo, Daisuke; Fujimoto, Yasushi; Ohdake, Reiko; Ito, Mizuki; Atsuta, Naoki; Yamamoto, Masahiko; Wakabayashi, Toshihiko; Katsuno, Masahisa; Sobue, Gen
2016-10-19
Voice and speech disorders are one of the most important issues after subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) patients. However, articulation features in this patient population remain unclear. We studied the articulation features of PD patients with STN-DBS. Participants were 56 PD patients treated with STN-DBS (STN-DBS group) and 41 patients treated only with medical therapy (medical-therapy-alone group). Articulation function was evaluated with acoustic and auditory-perceptual analyses. The vowel space area (VSA) was calculated using the formant frequency data of three vowels (/a/, /i/, and /u/) from sustained phonation task. The VSA reportedly reflects the distance of mouth/jaw and tongue movements during speech and phonation. Correlations between acoustic and auditory-perceptual measurements were also assessed. The VSA did not significantly differ between the medical-therapy-alone group and the STN-DBS group in the off-stimulation condition. In the STN-DBS group, the VSA was larger in the on-stimulation condition than in the off-stimulation condition. However, individual analysis showed the VSA changes after stopping stimulation were heterogeneous. In total, 89.8% of the STN-DBS group showed a large VSA size in the on- than in the off-stimulation condition. In contrast, the VSA of the remaining patients in that group was smaller in the on- than the off-stimulation condition. STN-DBS may resolve hypokinesia of the articulation structures, including the mouth/jaw and tongue, and improve maximal vowel articulation. However, in the on-stimulation condition, the VSA was not significantly correlated with speech intelligibility. This may be because STN-DBS potentially affects other speech processes such as voice and/or respiratory process.
Mills, Kelly A; Markun, Leslie C; San Luciano, Marta; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L
2015-04-01
Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the 'dual-task loss' analysis. This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
NASA Astrophysics Data System (ADS)
Gmel, Gerrit E.; Hamilton, Tara J.; Obradovic, Milan; Gorman, Robert B.; Single, Peter S.; Chenery, Helen J.; Coyne, Terry; Silburn, Peter A.; Parker, John L.
2015-12-01
Objective. Deep brain stimulation (DBS) has become the standard treatment for advanced stages of Parkinson’s disease (PD) and other motor disorders. Although the surgical procedure has improved in accuracy over the years thanks to imaging and microelectrode recordings, the underlying principles that render DBS effective are still debated today. The aim of this paper is to present initial findings around a new biomarker that is capable of assessing the efficacy of DBS treatment for PD which could be used both as a research tool, as well as in the context of a closed-loop stimulator. Approach. We have used a novel multi-channel stimulator and recording device capable of measuring the response of nervous tissue to stimulation very close to the stimulus site with minimal latency, rejecting most of the stimulus artefact usually found with commercial devices. We have recorded and analyzed the responses obtained intraoperatively in two patients undergoing DBS surgery in the subthalamic nucleus (STN) for advanced PD. Main results. We have identified a biomarker in the responses of the STN to DBS. The responses can be analyzed in two parts, an initial evoked compound action potential arising directly after the stimulus onset, and late responses (LRs), taking the form of positive peaks, that follow the initial response. We have observed a morphological change in the LRs coinciding with a decrease in the rigidity of the patients. Significance. These initial results could lead to a better characterization of the DBS therapy, and the design of adaptive DBS algorithms that could significantly improve existing therapies and help us gain insights into the functioning of the basal ganglia and DBS.
Flores Alves Dos Santos, Joao; Tezenas du Montcel, Sophie; Gargiulo, Marcella; Behar, Cecile; Montel, Sébastien; Hergueta, Thierry; Navarro, Soledad; Belaid, Hayat; Cloitre, Pauline; Karachi, Carine; Mallet, Luc; Welter, Marie-Laure
2017-01-01
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for the motor and non-motor signs of Parkinson's disease (PD), however, psychological disorders and social maladjustment have been reported in about one third of patients after STN-DBS. We propose here a perioperative psychoeducation programme to limit such social and familial disruption. Nineteen PD patients and carers were included in a randomised single blind study. Social adjustment scale (SAS) scores from patients and carers that received the psychoeducation programme (n = 9) were compared, both 1 and 2 years after surgery, with patients and carers with usual care (n = 10). Depression, anxiety, cognitive status, apathy, coping, parkinsonian disability, quality-of-life, carers' anxiety and burden were also analysed. Seventeen patients completed the study, 2 were excluded from the final analysis because of adverse events. At 1 year, 2/7 patients with psychoeducation and 8/10 with usual care had an aggravation in at least one domain of the SAS (p = .058). At 2 years, only 1 patient with psychoeducation suffered persistent aggravated social adjustment as compared to 8 patients with usual care (p = .015). At 1 year, anxiety, depression and instrumental coping ratings improved more in the psychoeducation than in the usual care group (p = .038, p = .050 and p = .050, respectively). No significant differences were found between groups for quality of life, cognitive status, apathy or motor disability. Our results suggest that a perioperative psychoeducation programme prevents social maladjustment in PD patients following STN-DBS and improves anxiety and depression compared to usual care. These preliminary data need to be confirmed in larger studies.
Flores Alves Dos Santos, Joao; Tezenas du Montcel, Sophie; Gargiulo, Marcella; Behar, Cecile; Montel, Sébastien; Hergueta, Thierry; Navarro, Soledad; Belaid, Hayat; Cloitre, Pauline; Karachi, Carine; Mallet, Luc
2017-01-01
Background Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for the motor and non-motor signs of Parkinson’s disease (PD), however, psychological disorders and social maladjustment have been reported in about one third of patients after STN-DBS. We propose here a perioperative psychoeducation programme to limit such social and familial disruption. Methods Nineteen PD patients and carers were included in a randomised single blind study. Social adjustment scale (SAS) scores from patients and carers that received the psychoeducation programme (n = 9) were compared, both 1 and 2 years after surgery, with patients and carers with usual care (n = 10). Depression, anxiety, cognitive status, apathy, coping, parkinsonian disability, quality-of-life, carers’ anxiety and burden were also analysed. Results Seventeen patients completed the study, 2 were excluded from the final analysis because of adverse events. At 1 year, 2/7 patients with psychoeducation and 8/10 with usual care had an aggravation in at least one domain of the SAS (p = .058). At 2 years, only 1 patient with psychoeducation suffered persistent aggravated social adjustment as compared to 8 patients with usual care (p = .015). At 1 year, anxiety, depression and instrumental coping ratings improved more in the psychoeducation than in the usual care group (p = .038, p = .050 and p = .050, respectively). No significant differences were found between groups for quality of life, cognitive status, apathy or motor disability. Conclusions Our results suggest that a perioperative psychoeducation programme prevents social maladjustment in PD patients following STN-DBS and improves anxiety and depression compared to usual care. These preliminary data need to be confirmed in larger studies. PMID:28399152
Wang, Yan-Yan; Wang, Yong; Jiang, Hai-Fei; Liu, Jun-Hua; Jia, Jun; Wang, Ke; Zhao, Fei; Luo, Min-Hua; Luo, Min-Min; Wang, Xiao-Min
2018-02-01
The glutamatergic projection from the motor cortex to the subthalamic nucleus (STN) constitutes the cortico-basal ganglia circuit and plays a critical role in the control of movement. Emerging evidence shows that the cortico-STN pathway is susceptible to dopamine depletion. Specifically in Parkinson's disease (PD), abnormal electrophysiological activities were observed in the motor cortex and STN, while the STN serves as a key target of deep brain stimulation for PD therapy. However, direct morphological changes in the cortico-STN connectivity in response to PD progress are poorly understood at present. In the present study, we used a trans-synaptic anterograde tracing method with herpes simplex virus-green fluorescent protein (HSV-GFP) to monitor the cortico-STN connectivity in a rat model of PD. We found that the connectivity from the primary motor cortex (M1) to the STN was impaired in parkinsonian rats as manifested by a marked decrease in trans-synaptic infection of HSV-GFP from M1 neurons to STN neurons in unilateral 6-hydroxydopamine (6-OHDA)-lesioned rats. Ultrastructural analysis with electron microscopy revealed that excitatory synapses in the STN were also impaired in parkinsonian rats. Glutamatergic terminals identified by a specific marker (vesicular glutamate transporter 1) were reduced in the STN, while glutamatergic neurons showed an insignificant change in their total number in both the M1 and STN regions. These results indicate that the M1-STN glutamatergic connectivity is downregulated in parkinsonian rats. This downregulation is mediated probably via a mechanism involving the impairments of excitatory terminals and synapses in the STN. Copyright © 2017. Published by Elsevier Inc.
Sabbar, M; Delaville, C; De Deurwaerdère, P; Benazzouz, A; Lakhdar-Ghazal, N
2012-05-17
Lead intoxication has been suggested as a high risk factor for the development of Parkinson disease. However, its impact on motor and nonmotor functions and the mechanism by which it can be involved in the disease are still unclear. In the present study, we studied the effects of lead intoxication on the following: (1) locomotor activity using an open field actimeter and motor coordination using the rotarod test, (2) anxiety behavior using the elevated plus maze, (3) "depression-like" behavior using sucrose preference test, and (4) subthalamic nucleus (STN) neuronal activity using extracellular single unit recordings. Male Sprague-Dawley rats were treated once a day with lead acetate or sodium acetate (20 mg/kg/d i.p.) during 3 weeks. The tissue content of monoamines was used to determine alteration of these systems at the end of experiments. Results show that lead significantly reduced exploratory activity, locomotor activity and the time spent on the rotarod bar. Furthermore, lead induced anxiety but not "depressive-like" behavior. The electrophysiological results show that lead altered the discharge pattern of STN neurons with an increase in the number of bursting and irregular cells without affecting the firing rate. Moreover, lead intoxication resulted in a decrease of tissue noradrenaline content without any change in the levels of dopamine and serotonin. Together, these results show for the first time that lead intoxication resulted in motor and nonmotor behavioral changes paralleled by noradrenaline depletion and changes in the firing activity of STN neurons, providing evidence consistent with the induction of atypical parkinsonian-like deficits. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Fonoff, Erich Talamoni; Azevedo, Angelo; Angelos, Jairo Silva Dos; Martinez, Raquel Chacon Ruiz; Navarro, Jessie; Reis, Paul Rodrigo; Sepulveda, Miguel Ernesto San Martin; Cury, Rubens Gisbert; Ghilardi, Maria Gabriela Dos Santos; Teixeira, Manoel Jacobsen; Lopez, William Omar Contreras
2016-07-01
OBJECT Currently, bilateral procedures involve 2 sequential implants in each of the hemispheres. The present report demonstrates the feasibility of simultaneous bilateral procedures during the implantation of deep brain stimulation (DBS) leads. METHODS Fifty-seven patients with movement disorders underwent bilateral DBS implantation in the same study period. The authors compared the time required for the surgical implantation of deep brain electrodes in 2 randomly assigned groups. One group of 28 patients underwent traditional sequential electrode implantation, and the other 29 patients underwent simultaneous bilateral implantation. Clinical outcomes of the patients with Parkinson's disease (PD) who had undergone DBS implantation of the subthalamic nucleus using either of the 2 techniques were compared. RESULTS Overall, a reduction of 38.51% in total operating time for the simultaneous bilateral group (136.4 ± 20.93 minutes) as compared with that for the traditional consecutive approach (220.3 ± 27.58 minutes) was observed. Regarding clinical outcomes in the PD patients who underwent subthalamic nucleus DBS implantation, comparing the preoperative off-medication condition with the off-medication/on-stimulation condition 1 year after the surgery in both procedure groups, there was a mean 47.8% ± 9.5% improvement in the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) score in the simultaneous group, while the sequential group experienced 47.5% ± 15.8% improvement (p = 0.96). Moreover, a marked reduction in the levodopa-equivalent dose from preoperatively to postoperatively was similar in these 2 groups. The simultaneous bilateral procedure presented major advantages over the traditional sequential approach, with a shorter total operating time. CONCLUSIONS A simultaneous stereotactic approach significantly reduces the operation time in bilateral DBS procedures, resulting in decreased microrecording time, contributing to the optimization of functional stereotactic procedures.
Diving Response in Rats: Role of the Subthalamic Vasodilator Area
Golanov, Eugene V.; Shiflett, James M.; Britz, Gavin W.
2016-01-01
Diving response (DR) is a powerful integrative response targeted toward survival of the hypoxic/anoxic conditions. Being present in all animals and humans, it allows to survive adverse conditions like diving. Earlier, we discovered that forehead stimulation affords neuroprotective effect, decreasing infarction volume triggered by permanent occlusion of the middle cerebral artery in rats. We hypothesized that cold stimulation of the forehead induces DR in rats, which, in turn, exerts neuroprotection. We compared autonomic [AP, heart rate (HR), cerebral blood flow (CBF)] and EEG responses to the known DR-triggering stimulus, ammonia stimulation of the nasal mucosa, cold stimulation of the forehead, and cold stimulation of the glabrous skin of the tail base in anesthetized rats. Responses in AP, HR, CBF, and EEG to cold stimulation of the forehead and ammonia vapors instillation into the nasal cavity were comparable and differed significantly from responses to the cold stimulation of the tail base. Excitotoxic lesion of the subthalamic vasodilator area (SVA), which is known to participate in CBF regulation and to afford neuroprotection upon excitation, failed to affect autonomic components of the DR evoked by forehead cold stimulation or nasal mucosa ammonia stimulation. We conclude that cold stimulation of the forehead triggers physiological response comparable to the response evoked by ammonia vapor instillation into nasal cavity, which is considered as stimulus triggering protective DR. These observations may explain the neuroprotective effect of the forehead stimulation. Data demonstrate that SVA does not directly participate in the autonomic adjustments accompanying DR; however, it is involved in diving-evoked modulation of EEG. We suggest that forehead stimulation can be employed as a stimulus capable of triggering oxygen-conserving DR and can be used for neuroprotective therapy. PMID:27708614
Zhu, X L; Chan, Danny T M; Lau, Claire K Y; Poon, Wai S; Mok, Vincent C T; Chan, Anne Y Y; Wong, Lawrence K S; Yeung, Jonas H M; Leung, Michael C M; Tang, Venus Y H; Wong, Rosanna K M; Yeung, Carol
2014-12-01
Deep brain stimulation (DBS) is an effective but costly treatment for patients with advanced Parkinson disease (PD). This study examined the cost-effectiveness of DBS in relation to its improved effectiveness to help funding decision makers decide whether the treatment should be adopted. The incremental cost-effective ratio (ICER) per quality-adjusted life year has been benchmarked as being between US$50,000 and US$100,000 by US agencies, whereas it is less than €30,000 per quality-adjusted life year in Europe. To provide cost-effectiveness information of subthalamic nucleus DBS for patients with advanced PD. Direct medical expenses during the year before the DBS treatment were used to measure the baseline cost. Cost-effectiveness was measured by the ICER for the Unified Parkinson's Disease Rating Scale Part III and the ICER for the EuroQol Group's Health-Related Quality of Life measurement. Thirteen patients with advanced PD were recruited between January 2009 and January 2011. A 1-point improvement in the Unified Parkinson's Disease Rating Scale Part III score was associated with an ICER of US$926 in the first year and US$421 in the second year. A 1-point improvement on the EuroQol Group's Health-Related Quality of Life measurement was associated with an ICER of US$123,110 in the first year and US$62,846 in the second year. Cost-effectiveness of subthalamic nucleus DBS for treatment of advanced PD is greater during a 2-year period than 1 year only. These results can be used as a reference for the use of DBS for PD in a region with public health financing. Copyright © 2014 Elsevier Inc. All rights reserved.
Drapier, D; Péron, J; Leray, E; Sauleau, P; Biseul, I; Drapier, S; Le Jeune, F; Travers, D; Bourguignon, A; Haegelen, C; Millet, B; Vérin, M
2008-09-01
To test the hypothesis that emotion recognition and apathy share the same functional circuit involving the subthalamic nucleus (STN). A consecutive series of 17 patients with advanced Parkinson's disease (PD) was assessed 3 months before (M-3) and 3 months (M+3) after STN deep brain stimulation (DBS). Mean (+/-S.D.) age at surgery was 56.9 (8.7) years. Mean disease duration at surgery was 11.8 (2.6) years. Apathy was measured using the Apathy Evaluation Scale (AES) at both M-3 and M3. Patients were also assessed using a computerised paradigm of facial emotion recognition [Ekman, P., & Friesen, W. V. (1976). Pictures of facial affect. Palo Alto: Consulting Psychologist Press] before and after STN DBS. Prior to this, the Benton Facial Recognition Test was used to check that the ability to perceive faces was intact. Apathy had significantly worsened at M3 (42.5+/-8.9, p=0.006) after STN-DBS, in relation to the preoperative assessment (37.2+/-5.5). There was also a significant reduction in recognition percentages for facial expressions of fear (43.1%+/-22.9 vs. 61.6%+/-21.4, p=0.022) and sadness (52.7%+/-19.1 vs. 67.6%+/-22.8, p=0.031) after STN DBS. However, the postoperative worsening of apathy and emotion recognition impairment were not correlated. Our results confirm that the STN is involved in both the apathy and emotion recognition networks. However, the absence of any correlation between apathy and emotion recognition impairment suggests that the worsening of apathy following surgery could not be explained by a lack of facial emotion recognition and that its behavioural and cognitive components should therefore also be taken into consideration.
Kojovic, Maja; Higgins, Andrea; Jahanshahi, Marjan
2016-08-01
The subthalamic nucleus (STN) is part of the motor, associative, and limbic cortico-striatal circuits through which it can influence a range of behaviours, with preclinical and clinical evidence suggesting that the STN is involved in motivational modulation of behaviour. In the present study, we investigated if in Parkinson's disease (PD) motivational modulation of movement speed is altered by deep brain stimulation (DBS) of the STN (STN-DBS). We studied the effect of monetary incentive on speed of movement initiation and execution in a computer-based simple reaction time task in 10 operated patients with Parkinson's disease using a STN DBS ON/OFF design and also in 11 healthy participants. Prospect of reward improved speed of movement initiation in PD patients both with STN-DBS ON and OFF. However, only with STN-DBS ON, the patients showed greater speeding of initiation time with higher reward magnitude, suggesting enhanced responsivity to higher reward value. Also, on the rewarded trials, PD patients ON stimulation made more anticipation errors than on unrewarded trials, reflecting a propensity to impulsive responses triggered by prospect of reward by subthalamic stimulation. The motivational modulation of movement speed was preserved and enhanced in PD with STN-DBS. Motivational modulation of movement speed in PD is maintained with STN-DBS, with STN stimulation having a further energizing effect on movement initiation in response to greater incentive value. Our results suggest that STN plays a role in integrating motivational influences into motor action, which may explain some previous reports of STN-DBS induced impulsivity with increased motivational salience of stimuli. Copyright © 2016. Published by Elsevier Ltd.
De Reuck, Jacques; Devos, David; Moreau, Caroline; Auger, Florent; Durieux, Nicolas; Deramecourt, Vincent; Pasquier, Florence; Maurage, Claude-Alain; Cordonnier, Charlotte; Leys, Didier; Bordet, Regis
2017-12-01
Amyotrophic lateral sclerosis (ALS) is associated with frontotemporal lobar degeneration (FTLD) in 15% of the cases. A neuropathological continuity between ALS and FTLD-TDP is suspected. The present post-mortem 7.0-tesla magnetic resonance imaging (MRI) study compares the topographic distribution of iron (Fe) deposition and the incidence of small cerebrovascular lesions in ALS and in FTLD brains. Seventy-eight post-mortem brains underwent 7.0-tesla MRI. The patients consisted of 12 with ALS, 38 with FTLD, and 28 controls. Three ALS brains had minor FTLD features. Three coronal sections of a cerebral hemisphere were submitted to T2 and T2* MRI sequences. The amount of Fe deposition in the deep brain structures and the number of small cerebrovascular lesions was determined in ALS and the subtypes of FTLD compared to control brains, with neuropathological correlates. A significant increase of Fe deposition was observed in the claustrum, caudate nucleus, globus pallidus, thalamus, and subthalamic nucleus of the FTLD-FUS and FTLD-TDP groups, while in the ALS one, the Fe increase was only observed in the caudate and the subthalamic nuclei. White matter changes were only significantly more severe in the FTLD compared to those in ALS and in controls brains. Cortical micro-bleeds were increased in the frontal and temporal lobes of FTLD as well as of ALS brains compared to controls. Cortical micro-infarcts were, on the other hand, more frequent in the control compared to the ALS and FTLD groups. The present study supports the assumption of a neuropathological continuity between ALS and FTLD and illustrates the favourable vascular risk profile in these diseases.
Smith-Anttila, Casey J.A.; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Andersson, Malin; Dumas, Sylvie
2016-01-01
The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson’s disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene (Vglut2/Slc17a6) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system. PMID:27699212
Shamir, Reuben R; Duchin, Yuval; Kim, Jinyoung; Patriat, Remi; Marmor, Odeya; Bergman, Hagai; Vitek, Jerrold L; Sapiro, Guillermo; Bick, Atira; Eliahou, Ruth; Eitan, Renana; Israel, Zvi; Harel, Noam
2018-05-24
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a proven and effective therapy for the management of the motor symptoms of Parkinson's disease (PD). While accurate positioning of the stimulating electrode is critical for success of this therapy, precise identification of the STN based on imaging can be challenging. We developed a method to accurately visualize the STN on a standard clinical magnetic resonance imaging (MRI). The method incorporates a database of 7-Tesla (T) MRIs of PD patients together with machine-learning methods (hereafter 7 T-ML). To validate the clinical application accuracy of the 7 T-ML method by comparing it with identification of the STN based on intraoperative microelectrode recordings. Sixteen PD patients who underwent microelectrode-recordings guided STN DBS were included in this study (30 implanted leads and electrode trajectories). The length of the STN along the electrode trajectory and the position of its contacts to dorsal, inside, or ventral to the STN were compared using microelectrode-recordings and the 7 T-ML method computed based on the patient's clinical 3T MRI. All 30 electrode trajectories that intersected the STN based on microelectrode-recordings, also intersected it when visualized with the 7 T-ML method. STN trajectory average length was 6.2 ± 0.7 mm based on microelectrode recordings and 5.8 ± 0.9 mm for the 7 T-ML method. We observed a 93% agreement regarding contact location between the microelectrode-recordings and the 7 T-ML method. The 7 T-ML method is highly consistent with microelectrode-recordings data. This method provides a reliable and accurate patient-specific prediction for targeting the STN.
Jouve, Loréline; Salin, Pascal; Melon, Christophe; Kerkerian-Le Goff, Lydia
2010-07-21
The thalamic centromedian-parafascicular (CM/Pf) complex, mainly represented by Pf in rodents, is proposed as an interesting target for the neurosurgical treatment of movement disorders, including Parkinson's disease. In this study, we examined the functional impact of subchronic high-frequency stimulation (HFS) of Pf in the 6-hydroxydopamine-lesioned hemiparkinsonian rat model. Pf-HFS had significant anti-akinetic action, evidenced by alleviation of limb use asymmetry (cylinder test). Whereas this anti-akinetic action was moderate, Pf-HFS totally reversed lateralized neglect (corridor task), suggesting potent action on sensorimotor integration. At the cellular level, Pf-HFS partially reversed the dopamine denervation-induced increase in striatal preproenkephalin A mRNA levels, a marker of the neurons of the indirect pathway, without interfering with the markers of the direct pathway (preprotachykinin and preprodynorphin). Pf-HFS totally reversed the lesion-induced changes in the gene expression of cytochrome oxidase subunit I in the subthalamic nucleus, the globus pallidus, and the substantia nigra pars reticulata, and partially in the entopeduncular nucleus. Unlike HFS of the subthalamic nucleus, Pf-HFS did not induce per se dyskinesias and directly, although partially, alleviated L-3,4-dihydroxyphenylalanine (L-DOPA)-induced forelimb dyskinesia. Conversely, L-DOPA treatment negatively interfered with the anti-parkinsonian effect of Pf-HFS. Altogether, these data show that Pf-DBS, by recruiting a large basal ganglia circuitry, provides moderate to strong anti-parkinsonian benefits that might, however, be affected by L-DOPA. The widespread behavioral and cellular outcomes of Pf-HFS evidenced here demonstrate that CM/Pf is an important node for modulating the pathophysiological functioning of basal ganglia and related disorders.
Jech, Robert; Růzicka, Evzen; Urgosík, Dusan; Serranová, Tereza; Volfová, Markéta; Nováková, Olga; Roth, Jan; Dusek, Petr; Mecír, Petr
2006-05-01
We studied changes of the EEG spectral power induced by deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease (PD). Also analyzed were changes of visual evoked potentials (VEP) with DBS on and off. Eleven patients with advanced PD treated with bilateral DBS STN were examined after an overnight withdrawal of L-DOPA and 2 h after switching off the neurostimulators. All underwent clinical examination followed by resting EEG and VEP recordings, a procedure repeated after DBS STN was switched on. With DBS switched on, the dominant EEG frequency increased from 9.44+/-1.3 to 9.71+/-1.3 Hz (P<0.01) while its relative spectral power dropped by 11% on average (P<0.05). Switching on the neurostimulators caused a decrease in the N70/P100 amplitude of the VEP (P<0.01), which inversely correlated with the intensity of DBS (black-and-white pattern: P<0.01; color pattern: P<0.05). Despite artifacts generated by neurostimulators, the VEP and resting EEG were suitable for the detection of effects related to DBS STN. The acceleration of dominant frequency in the alpha band may be evidence of DBS STN influence on speeding up of intracortical oscillations. The spectral power decrease, seen mainly in the fronto-central region, might reflect a desynchronization in the premotor and motor circuits, though no movement was executed. Similarly, desynchronization of the cortical activity recorded posteriorly may by responsible for the VEP amplitude decrease implying DBS STN-related influence even on the visual system. Changes in idling EEG activity observed diffusely over scalp together with involvement of the VEP suggest that the effects of DBS STN reach far beyond the motor system influencing the basic mechanisms of rhythmic cortical oscillations.
Zavala, Baltazar; Tan, Huiling; Ashkan, Keyoumars; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Zaghloul, Kareem; Brown, Peter
2016-08-15
The medial prefrontal cortex (mPFC) is thought to control the shift from automatic to controlled action selection when conflict is present or when mistakes have been recently committed. Growing evidence suggests that this process involves frequency specific communication in the theta (4-8Hz) band between the mPFC and the subthalamic nucleus (STN), which is the main target of deep brain stimulation (DBS) for Parkinson's disease. Key in this hypothesis is the finding that DBS can lead to impulsivity by disrupting the correlation between higher mPFC oscillations and slower reaction times during conflict. In order to test whether theta band coherence between the mPFC and the STN underlies adjustments to conflict and to errors, we simultaneously recorded mPFC and STN electrophysiological activity while DBS patients performed an arrowed flanker task. These recordings revealed higher theta phase coherence between the two sites during the high conflict trials relative to the low conflict trials. These differences were observed soon after conflicting arrows were displayed, but before a response was executed. Furthermore, trials that occurred after an error was committed showed higher phase coherence relative to trials that followed a correct trial, suggesting that mPFC-STN connectivity may also play a role in error related adjustments in behavior. Interestingly, the phase coherence we observed occurred before increases in theta power, implying that the theta phase and power may influence behavior at separate times during cortical monitoring. Finally, we showed that pre-stimulus differences in STN theta power were related to the reaction time on a given trial, which may help adjust behavior based on the probability of observing conflict during a task. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Mills, Kelly A; Markun, Leslie C; Luciano, Marta San; Rizk, Rami; Allen, I Elaine; Racine, Caroline A; Starr, Philip A; Alberts, Jay L; Ostrem, Jill L
2015-01-01
Objective Subthalamic nucleus (STN) deep brain stimulation (DBS) can improve motor complications of Parkinson's disease (PD) but may worsen specific cognitive functions. The effect of STN DBS on cognitive function in dystonia patients is less clear. Previous reports indicate that bilateral STN stimulation in patients with PD amplifies the decrement in cognitive-motor dual-task performance seen when moving from a single-task to dual-task paradigm. We aimed to determine if the effect of bilateral STN DBS on dual-task performance in isolated patients with dystonia, who have less cognitive impairment and no dementia, is similar to that seen in PD. Methods Eight isolated predominantly cervical patients with dystonia treated with bilateral STN DBS, with average dystonia duration of 10.5 years and Montreal Cognitive Assessment score of 26.5, completed working memory (n-back) and motor (forced-maintenance) tests under single-task and dual-task conditions while on and off DBS. Results A multivariate, repeated-measures analysis of variance showed no effect of stimulation status (On vs Off) on working memory (F=0.75, p=0.39) or motor function (F=0.22, p=0.69) when performed under single-task conditions, though as working memory task difficulty increased, stimulation disrupted the accuracy of force-tracking. There was a very small worsening in working memory performance (F=9.14, p=0.019) when moving from single-task to dual-tasks when using the ‘dual-task loss’ analysis. Conclusions This study suggests the effect of STN DBS on working memory and attention may be much less consequential in patients with dystonia than has been reported in PD. PMID:25012202
Schweizer, Nadine; Viereckel, Thomas; Smith-Anttila, Casey J A; Nordenankar, Karin; Arvidsson, Emma; Mahmoudi, Souha; Zampera, André; Wärner Jonsson, Hanna; Bergquist, Jonas; Lévesque, Daniel; Konradsson-Geuken, Åsa; Andersson, Malin; Dumas, Sylvie; Wallén-Mackenzie, Åsa
2016-01-01
The subthalamic nucleus (STN) plays a central role in motor, cognitive, and affective behavior. Deep brain stimulation (DBS) of the STN is the most common surgical intervention for advanced Parkinson's disease (PD), and STN has lately gained attention as target for DBS in neuropsychiatric disorders, including obsessive compulsive disorder, eating disorders, and addiction. Animal studies using STN-DBS, lesioning, or inactivation of STN neurons have been used extensively alongside clinical studies to unravel the structural organization, circuitry, and function of the STN. Recent studies in rodent STN models have exposed different roles for STN neurons in reward-related functions. We have previously shown that the majority of STN neurons express the vesicular glutamate transporter 2 gene ( Vglut2/Slc17a6 ) and that reduction of Vglut2 mRNA levels within the STN of mice [conditional knockout (cKO)] causes reduced postsynaptic activity and behavioral hyperlocomotion. The cKO mice showed less interest in fatty rewards, which motivated analysis of reward-response. The current results demonstrate decreased sugar consumption and strong rearing behavior, whereas biochemical analyses show altered dopaminergic and peptidergic activity in the striatum. The behavioral alterations were in fact correlated with opposite effects in the dorsal versus the ventral striatum. Significant cell loss and disorganization of the STN structure was identified, which likely accounts for the observed alterations. Rare genetic variants of the human VGLUT2 gene exist, and this study shows that reduced Vglut2/Slc17a6 gene expression levels exclusively within the STN of mice is sufficient to cause strong modifications in both the STN and the mesostriatal dopamine system.
Ferraro, Stefania; Nigri, Anna; Bruzzone, Maria Grazia; Brivio, Luca; Proietti Cecchini, Alberto; Verri, Mattia; Chiapparini, Luisa; Leone, Massimo
2018-01-01
Objective We tested the hypothesis of a defective functional connectivity between the posterior hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache based on: a) clinical and neuro-endocrinological findings in cluster headache patients; b) neuroimaging findings during cluster headache attacks; c) neuroimaging findings in drug-refractory chronic cluster headache patients improved after successful deep brain stimulation. Methods Resting state functional magnetic resonance imaging, associated with a seed-based approach, was employed to investigate the functional connectivity of the posterior hypothalamus in chronic cluster headache patients (n = 17) compared to age and sex-matched healthy subjects (n = 16). Random-effect analyses were performed to study differences between patients and controls in ipsilateral and contralateral-to-the-pain posterior hypothalamus functional connectivity. Results Cluster headache patients showed an increased functional connectivity between the ipsilateral posterior hypothalamus and a number of diencephalic-mesencephalic structures, comprising ventral tegmental area, dorsal nuclei of raphe, and bilateral substantia nigra, sub-thalamic nucleus, and red nucleus ( p < 0.005 FDR-corrected vs . control group). No difference between patients and controls was found comparing the contralateral hypothalami. Conclusions The observed deranged functional connectivity between the posterior ipsilateral hypothalamus and diencephalic-mesencephalic regions in chronic cluster headache patients mainly involves structures that are part of (i.e. ventral tegmental area, substantia nigra) or modulate (dorsal nuclei of raphe, sub-thalamic nucleus) the midbrain dopaminergic systems. The midbrain dopaminergic systems could play a role in cluster headache pathophysiology and in particular in the chronicization process. Future studies are needed to better clarify if this finding is specific to cluster headache or if it represents an unspecific response to chronic pain.
Li, Xiang-Hong; Wang, Jin-Yan; Gao, Ge; Chang, Jing-Yu; Woodward, Donald J; Luo, Fei
2010-05-15
Deep brain stimulation (DBS) has been used in the clinic to treat Parkinson's disease (PD) and other neuropsychiatric disorders. Our previous work has shown that DBS in the subthalamic nucleus (STN) can improve major motor deficits, and induce a variety of neural responses in rats with unilateral dopamine (DA) lesions. In the present study, we examined the effect of STN DBS on reaction time (RT) performance and parallel changes in neural activity in the cortico-basal ganglia regions of partially bilateral DA- lesioned rats. We recorded neural activity with a multiple-channel single-unit electrode system in the primary motor cortex (MI), the STN, and the substantia nigra pars reticulata (SNr) during RT test. RT performance was severely impaired following bilateral injection of 6-OHDA into the dorsolateral part of the striatum. In parallel with such behavioral impairments, the number of responsive neurons to different behavioral events was remarkably decreased after DA lesion. Bilateral STN DBS improved RT performance in 6-OHDA lesioned rats, and restored operational behavior-related neural responses in cortico-basal ganglia regions. These behavioral and electrophysiological effects of DBS lasted nearly an hour after DBS termination. These results demonstrate that a partial DA lesion-induced impairment of RT performance is associated with changes in neural activity in the cortico-basal ganglia circuit. Furthermore, STN DBS can reverse changes in behavior and neural activity caused by partial DA depletion. The observed long-lasting beneficial effect of STN DBS suggests the involvement of the mechanism of neural plasticity in modulating cortico-basal ganglia circuits. (c) 2009 Wiley-Liss, Inc.
Liu, Kang-Du; Shan, Din-E; Kuo, Terry B J; Yang, Cheryl C H
2013-07-01
The beneficial effects of subthalamic nucleus deep brain stimulation (STN-DBS) on motor symptoms and quality of life in Parkinson's disease (PD) are well known, but little is known of the effects on autonomic function. Diffusion of current during stimulation of the STN may simultaneously involve the motor and nonmotor, limbic and associative areas of the STN. The aims of this study were to examine whether STN stimulation affects functions of the autonomic nervous system and, if so, to correlate the effects with the active contacts of electrodes in the STN. Eight PD patients with good motor control and quality of sleep after STN-DBS surgery were recruited. All patients had two days of recordings with portable polysomnography (PSG) (first night with stimulation "on" and second night "off"). From the PSG data, the first sleep cycle of each recording night was defined. Heart rate variability (HRV) was analyzed between the same uninterrupted periods of the two sleep nights. In addition, the optimal electrode positions were defined from postoperative MRI studies, and the coordinates of active contacts were confirmed. HRV spectral analysis showed that only low-frequency (LF)/high-frequency (HF) power was significantly activated in the stimulation "on" groups (P = 0.011). There was a significant negative correlation between power change of LF/HF and electrode position lateral to the midcommissural point (ρ = 0.857, P = 0.007) These results demonstrate that STN-DBS can enhance sympathetic regulation; the autonomic response may be due to electrical signals being distributed to limbic components of the STN or descending sympathetic pathways in the zona incerta.
Bezzina, G.; Boon, F.S. den; Hampson, C.L.; Cheung, T.H.C.; Body, S.; Bradshaw, C.M.; Szabadi, E.; Anderson, I.M.; Deakin, J.F.W.
2008-01-01
The subthalamic nucleus (STN), a major relay in the indirect striatofugal pathway, plays an important role in extrapyramidal motor control. Recent evidence indicates that it may also be involved in regulating the incentive value of food reinforcers. Objective To examine the effect of lesions of the STN on performance on a progressive-ratio schedule using a quantitative model that dissociates effects of interventions on motor and motivational processes [Killeen PR. Mathematical principles of reinforcement. Behav Brain Sci 1994;17:105–72]. Rats with bilateral quinolinic acid-induced lesions of the STN (n = 14) or sham lesions (n = 14) were trained to press a lever for food-pellet reinforcers under a progressive-ratio schedule. In Phase 1 (90 sessions) the reinforcer was one pellet; in Phase 2 (30 sessions) it was two pellets; in Phase 3 (30 sessions) it was again one pellet. Results The performance of both groups conformed to the model of progressive-ratio schedule performance. The motor parameter, δ, was significantly higher in the STN-lesioned than the sham-lesioned group, reflecting lower overall response rates in the lesioned group. The motivational parameter, a, was significantly higher in the STN-lesioned group than in the sham-lesioned group, consistent with enhanced reinforcer value in the STN-lesioned group compared to the sham-lesioned group. In both groups, a was sensitive to changes in reinforcer size, being significantly greater under the two-pellet condition (Phase 2) than under the one-pellet condition (Phases 1 and 3). The results suggest that destruction of the STN impairs response capacity and enhances the incentive value of food reinforcers. PMID:18840473
Effects of Subthalamic Stimulation on Olfactory Function in Parkinson Disease.
Cury, Rubens Gisbert; Carvalho, Margarete de Jesus; Lasteros, Fernando Jeyson Lopez; Dias, Alice Estevo; Dos Santos Ghilardi, Maria Gabriela; Paiva, Anderson Rodrigues Brandão; Coutinho, Artur Martins; Buchpiguel, Carlos Alberto; Teixeira, Manoel J; Barbosa, Egberto Reis; Fonoff, Erich Talamoni
2018-06-01
Olfactory dysfunction is a nonmotor symptom of Parkinson disease (PD) associated with reduction in quality of life. There is no evidence on whether improvements in olfaction after subthalamic deep brain stimulation (STN-DBS) may be directly attributable to motor improvement or whether this reflects a direct effect of DBS on olfactory brain areas. The aim of the present study was to evaluate the effect of DBS on olfactory function in PD, as well as to explore the correlation between these changes and changes in motor symptoms and brain metabolism. Thirty-two patients with PD were screened for STN-DBS. Patients were evaluated before and 1 year after surgery. Primary outcome was the change in olfactory function (Sniffin' Sticks odor-identification test [SST]) after surgery among the patients with hyposmia at baseline. Secondary outcomes included the relationship between motor outcomes and olfactory changes and [ 18 F]fluorodeoxyglucose-positron emission tomography analysis between subgroups with improvement versus no improvement of smell. STN-DBS improved SST after surgery (preoperative SST, median 7.3 ± 2.4 vs. postoperative SST, median 8.2 ± 2.1; P = 0.045) in a subset of patients among 29 of 32 patients who presented with hyposmia at baseline. The improvement in SST was correlated with DBS response (r = 0.424; P = 0.035). There was also an increase in glucose metabolism in the midbrain, cerebellum, and right frontal lobe in patients with SST improvement (P < 0.001). STN-DBS improves odor identification in a subset of patients with PD. Motor improvement together with changes in the brain metabolism may be linked to this improvement. Copyright © 2018 Elsevier Inc. All rights reserved.
Parkinson's disease: increased motor network activity in the absence of movement.
Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David
2013-03-06
We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.
Eugster, Lukas; Oberholzer, Michael; Debove, Ines; Lachenmayer, M. Lenard; Mathis, Johannes; Pollo, Claudio; Schüpbach, W. M. Michael; Bassetti, Claudio L.
2017-01-01
Objectives Sleep-wake disturbances (SWD) are frequent in Parkinson’s disease (PD). The effect of deep brain stimulation (DBS) on SWD is poorly known. In this study we examined the subjective and objective sleep-wake profile and the quality of life (QoL) of PD patients in the context of subthalamic DBS. Patients and methods We retrospectively analyzed data from PD patients and candidates for DBS in the nucleus suthalamicus (STN). Pre-DBS, sleep-wake assessments included subjective and objective (polysomnography, vigilance tests and actigraphy) measures. Post-DBS, subjective measures were collected. QoL was assessed using the Parkinson’s Disease Questionnaire (PDQ-39) and the RAND SF-36-item Health Survey (RAND SF-36). Results Data from 74 PD patients (62% male, mean age 62.2 years, SD = 8.9) with a mean UPDRS-III (OFF) of 34.2 (SD = 14.8) and 11.8 (SD = 4.5) years under PD treatment were analyzed. Pre-DBS, daytime sleepiness, apathy, fatigue and depressive symptoms were present in 49%, 34%, 38% and 25% of patients respectively but not always as co-occurring symptoms. Sleep-wake disturbances were significantly correlated with QoL scores. One year after STN DBS, motor signs, QoL and sleepiness improved but apathy worsened. Changes in QoL were associated with changes in sleepiness and apathy but baseline sleep-wake functions were not predictive of STN DBS outcome. Conclusion In PD patients presenting for STN DBS, subjective and objective sleep-wake disturbances are common and have a negative impact on QoL before and after neurosurgery. Given the current preliminary evidence, prospective observational studies assessing subjective and objective sleep-wake variables prior to and after DBS are needed. PMID:29253029
Stop! border ahead: Automatic detection of subthalamic exit during deep brain stimulation surgery.
Valsky, Dan; Marmor-Levin, Odeya; Deffains, Marc; Eitan, Renana; Blackwell, Kim T; Bergman, Hagai; Israel, Zvi
2017-01-01
Microelectrode recordings along preplanned trajectories are often used for accurate definition of the subthalamic nucleus (STN) borders during deep brain stimulation (DBS) surgery for Parkinson's disease. Usually, the demarcation of the STN borders is performed manually by a neurophysiologist. The exact detection of the borders is difficult, especially detecting the transition between the STN and the substantia nigra pars reticulata. Consequently, demarcation may be inaccurate, leading to suboptimal location of the DBS lead and inadequate clinical outcomes. We present machine-learning classification procedures that use microelectrode recording power spectra and allow for real-time, high-accuracy discrimination between the STN and substantia nigra pars reticulata. A support vector machine procedure was tested on microelectrode recordings from 58 trajectories that included both STN and substantia nigra pars reticulata that achieved a 97.6% consistency with human expert classification (evaluated by 10-fold cross-validation). We used the same data set as a training set to find the optimal parameters for a hidden Markov model using both microelectrode recording features and trajectory history to enable real-time classification of the ventral STN border (STN exit). Seventy-three additional trajectories were used to test the reliability of the learned statistical model in identifying the exit from the STN. The hidden Markov model procedure identified the STN exit with an error of 0.04 ± 0.18 mm and detection reliability (error < 1 mm) of 94%. The results indicate that robust, accurate, and automatic real-time electrophysiological detection of the ventral STN border is feasible. © 2016 International Parkinson and Movement Disorder Society. © 2016 International Parkinson and Movement Disorder Society.
Maruo, Tomoyuki; Saitoh, Youichi; Hosomi, Koichi; Kishima, Haruhiko; Shimokawa, Toshio; Hirata, Masayuki; Goto, Tetsu; Morris, Shayne; Harada, Yu; Yanagisawa, Takufumi; Aly, Mohamed M; Yoshimine, Toshiki
2011-04-01
Patients with Parkinson's disease (PD) reportedly show deficits in sensory processing in addition to motor symptoms. However, little is known about the effects of bilateral deep brain stimulation of the subthalamic nucleus (STN-DBS) on temperature sensation as measured by quantitative sensory testing (QST). This study was designed to quantitatively evaluate the effects of STN-DBS on temperature sensation and pain in PD patients. We conducted a QST study comparing the effects of STN-DBS on cold sense thresholds (CSTs) and warm sense thresholds (WSTs) as well as on cold-induced and heat-induced pain thresholds (CPT and HPT) in 17 PD patients and 14 healthy control subjects. The CSTs and WSTs of patients were significantly smaller during the DBS-on mode when compared with the DBS-off mode (P<.001), whereas the CSTs and WSTs of patients in the DBS-off mode were significantly greater than those of healthy control subjects (P<.02). The CPTs and HPTs in PD patients were significantly larger on the more affected side than on the less affected side (P<.02). Because elevations in thermal sense and pain thresholds of QST are reportedly almost compatible with decreases in sensation, our findings confirm that temperature sensations may be disturbed in PD patients when compared with healthy persons and that STN-DBS can be used to improve temperature sensation in these patients. The mechanisms underlying our findings are not well understood, but improvement in temperature sensation appears to be a sign of modulation of disease-related brain network abnormalities. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Combs, Hannah L; Folley, Bradley S; Berry, David T R; Segerstrom, Suzanne C; Han, Dong Y; Anderson-Mooney, Amelia J; Walls, Brittany D; van Horne, Craig
2015-12-01
Parkinson's disease (PD) is a common, degenerative disorder of the central nervous system. Individuals experience predominantly extrapyramidal symptoms including resting tremor, rigidity, bradykinesia, gait abnormalities, cognitive impairment, depression, and neurobehavioral concerns. Cognitive impairments associated with PD are diverse, including difficulty with attention, processing speed, executive functioning, memory recall, visuospatial functions, word-retrieval, and naming. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or globus pallidus internus (GPi) is FDA approved and has been shown to be effective in reducing motor symptoms of PD. Studies have found that stimulating STN and GPi are equally effective at improving motor symptoms and dyskinesias; however, there has been discrepancy as to whether the cognitive, behavioral, and mood symptoms are affected differently between the two targets. The present study used random-effects meta-analytic models along with a novel p-curve analytic procedure to compare the potential cognitive and emotional impairments associated with STN-DBS in the current literature to those associated with GPi-DBS. Forty-one articles were reviewed with an aggregated sample size of 1622 patients. Following STN-DBS, small declines were found in psychomotor speed, memory, attention, executive functions, and overall cognition; and moderate declines were found in both semantic and phonemic fluency. However, GPi-DBS resulted in fewer neurocognitive declines than STN-DBS (small declines in attention and small-moderate declines in verbal fluency). With regards to its effect on depression symptomatology, both GPi-DBS and STN-DBS resulted in lower levels of depressive symptoms post-surgery. From a neurocognitive standpoint, both GPi-DBS and STN-DBS produce subtle cognitive declines but appears to be relatively well tolerated.
Zimnik, Andrew J.; Nora, Gerald J.; Desmurget, Michel
2015-01-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN-DBS) has largely replaced ablative therapies for Parkinson's disease. Because of the similar efficacies of the two treatments, it has been proposed that DBS acts by creating an “informational lesion,” whereby pathologic neuronal firing patterns are replaced by low-entropy, stimulus-entrained firing patterns. The informational lesion hypothesis, in its current form, states that DBS blocks the transmission of all information from the basal ganglia, including both pathologic firing patterns and normal, task-related modulations in activity. We tested this prediction in two healthy rhesus macaques by recording single-unit spiking activity from the globus pallidus (232 neurons) while the animals completed choice reaction time reaching movements with and without STN-DBS. Despite strong effects of DBS on the activity of most pallidal cells, reach-related modulations in firing rate were equally prevalent in the DBS-on and DBS-off states. This remained true even when the analysis was restricted to cells affected significantly by DBS. In addition, the overall form and timing of perimovement modulations in firing rate were preserved between DBS-on and DBS-off states in the majority of neurons (66%). Active movement and DBS had largely additive effects on the firing rate of most neurons, indicating an orthogonal relationship in which both inputs contribute independently to the overall firing rate of pallidal neurons. These findings suggest that STN-DBS does not act as an indiscriminate informational lesion but rather as a filter that permits task-related modulations in activity while, presumably, eliminating the pathological firing associated with parkinsonism. PMID:25740526
Kurcova, Sandra; Bardon, Jan; Vastik, Miroslav; Vecerkova, Marketa; Frolova, Monika; Hvizdosova, Lenka; Nevrly, Martin; Mensikova, Katerina; Otruba, Pavel; Krahulik, David; Kurca, Egon; Sivak, Stefan; Zapletalova, Jana; Kanovsky, Petr
2018-01-01
Abstract Numerous studies document significant improvement in motor symptoms in patients with Parkinson's disease (PD) after deep brain stimulation of the subthalamic nucleus (STN-DBS). However, little is known about the initial effects of STN-DBS on nonmotor domains. Our objective was to elucidate the initial effects of STN-DBS on non-motor and motor symptoms in PD patients in a 4-month follow-up. This open prospective study followed 24 patients with PD who underwent STN-DBS. The patients were examined using dedicated rating scales preoperatively and at 1 and 4 months following STN-DBS to determine initial changes in motor and nonmotor symptoms. Patients at month 1 after STN-DBS had significantly reduced the Parkinson's disease Questionnaire scores (P = .018) and Scales for Outcomes in Parkinson's disease – Autonomic scores (P = .002); these scores had increased at Month 4 after DBS-STN. Nonmotor Symptoms Scale for Parkinson's Disease had improved significantly at Month 1 (P < .001); at Month 4, it remained significantly lower than before stimulation (P = .036). There was no significant difference in The Parkinson's Disease Sleep Scaleat Month 1 and significant improvement at Month 4 (P = .026). There were no significant changes in The Female Sexual Function Index or International Index of Erectile Function. Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III scores show significant improvements at Month 1 (P < .001) and at Month 4 (P < .001). STN-DBS in patients with advanced PD clearly improves not only motor symptoms, but also several domains of nonmotor functions, namely sleep, autonomic functions and quality of life quickly following the start of stimulation. PMID:29384860
Mulders, A E P; Plantinga, B R; Schruers, K; Duits, A; Janssen, M L F; Ackermans, L; Leentjens, A F G; Jahanshahi, A; Temel, Y
2016-12-01
Obsessive-compulsive disorder (OCD) is among the most disabling chronic psychiatric disorders and has a significant negative impact on multiple domains of quality of life. For patients suffering from severe refractory OCD, deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been applied. Reviewing the literature of the last years we believe that through its central position within the cortico-basal ganglia-thalamocortical circuits, the STN has a coordinating role in decision-making and action-selection mechanisms. Dysfunctional information-processing at the level of the STN is responsible for some of the core symptoms of OCD. Research confirms an electrophysiological dysfunction in the associative and limbic (non-motor) parts of the STN. Compared to Parkinson׳s disease patients, STN neurons in OCD exhibit a lower firing rate, less frequent but longer bursts, increased burst activity in the anterior ventromedial area, an asymmetrical left-sided burst distribution, and a predominant oscillatory activity in the δ-band. Moreover, there is direct evidence for the involvement of the STN in both checking behavior and OCD symptoms, which are both related to changes in electrophysiological activity in the non-motor STN. Through a combination of mechanisms, DBS of the STN seems to interrupt the disturbed information-processing, leading to a normalization of connectivity within the cortico-basal ganglia-thalamocortical circuits and consequently to a reduction in symptoms. In conclusion, based on the STN׳s strategic position within cortico-basal ganglia-thalamocortical circuits and its involvement in action-selection mechanisms that are responsible for some of the core symptoms of OCD, the STN is a mechanism-based target for DBS in OCD. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Haegelen, Claire; García-Lorenzo, Daniel; Le Jeune, Florence; Péron, Julie; Gibaud, Bernard; Riffaud, Laurent; Brassier, Gilles; Barillot, Christian; Vérin, Marc; Morandi, Xavier
2010-03-01
The subthalamic nucleus (STN) has become an effective target of deep-brain stimulation (DBS) in severely disabled patients with advanced Parkinson's disease (PD). Clinical studies have reported DBS-induced adverse effects on cognitive functions, mood, emotion and behavior. STN DBS seems to interfere with the limbic functions of the basal ganglia, but the limbic effects of STN DBS are controversial. We measured prospectively resting regional cerebral metabolism (rCMb) with 18-fluorodeoxyglucose and PET, and resting regional cerebral blood flow (rCBF) with HMPAO and SPECT in six patients with Parkinson's disease. We compared PET and SPECT 1 month before and 3 months after STN DBS. On cerebral MRI, 13 regions of interest (ROI) were manually delineated slice by slice in frontal and limbic lobes. We obtained mean rCBF and rCMb values for each ROI and the whole brain. We normalized rCBF and rCMB values to ones for the whole brain volume, which we compared before and following STN DBS. No significant difference emerged in the SPECT analysis. PET analysis revealed a significant decrease in rCMb following STN DBS in the superior frontal gyri and left and right dorsolateral prefrontal cortex (p < 0.05). A non-significant decrease in rCMb in the left anterior cingulate gyrus appeared following STN DBS (p = 0.075). Our prospective SPECT and PET study revealed significantly decreased glucose metabolism of the two superior frontal gyri without any attendant perfusion changes following STN DBS. These results suggest that STN DBS may change medial prefrontal function and therefore the integration of limbic information, either by disrupting emotional processes within the STN, or by hampering the normal function of a limbic circuit.
Bot, Maarten; Schuurman, P Richard; Odekerken, Vincent J J; Verhagen, Rens; Contarino, Fiorella Maria; De Bie, Rob M A; van den Munckhof, Pepijn
2018-05-01
Individual motor improvement after deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) varies considerably. Stereotactic targeting of the dorsolateral sensorimotor part of the STN is considered paramount for maximising effectiveness, but studies employing the midcommissural point (MCP) as anatomical reference failed to show correlation between DBS location and motor improvement. The medial border of the STN as reference may provide better insight in the relationship between DBS location and clinical outcome. Motor improvement after 12 months of 65 STN DBS electrodes was categorised into non-responding, responding and optimally responding body-sides. Stereotactic coordinates of optimal electrode contacts relative to both medial STN border and MCP served to define theoretic DBS 'hotspots'. Using the medial STN border as reference, significant negative correlation (Pearson's correlation -0.52, P<0.01) was found between the Euclidean distance from the centre of stimulation to this DBS hotspot and motor improvement. This hotspot was located at 2.8 mm lateral, 1.7 mm anterior and 2.5 mm superior relative to the medial STN border. Using MCP as reference, no correlation was found. The medial STN border proved superior compared with MCP as anatomical reference for correlation of DBS location and motor improvement, and enabled defining an optimal DBS location within the nucleus. We therefore propose the medial STN border as a better individual reference point than the currently used MCP on preoperative stereotactic imaging, in order to obtain optimal and thus less variable motor improvement for individual patients with PD following STN DBS. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Creed, Meaghan C; Hamani, Clement; Nobrega, José N
2013-07-01
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) has been routinely used for the treatment of some movement disorders. However, DBS may be associated with adverse psychiatric effects, such as depression, anxiety and impulsivity. To compare DBS applied to the entopeduncular nucleus (EPN; the rodent homolog of the GPi) and STN in terms of their effects on depressive- and anxiety-like behavior in rats. DBS was applied for 21 days (4 h a day) to either the STN or EPN. Rats then underwent behavioral testing on learned helplessness and elevated plus maze tasks before being sacrificed for brain analyses of zif268, BDNF and trkB mRNA as well as BDNF protein levels. Repeated DBS of the STN, but not of the EPN, led to impaired performance in the learned helplessness task, suggesting that STN-DBS induces or potentiates depressive-like behavior. There was no effect of DBS on elevated plus maze or on open field behavior. Repeated STN-DBS, but not EPN-DBS, led to decreased levels of BDNF and trkB mRNA in hippocampus. Acute stimulation of the STN or EPN resulted in similar changes in zif268 levels in several brain areas, except for the raphe where decreases were seen only after STB-DBS. Together these results indicate that the effects of STN- and EPN-DBS differ in behavioral and neurochemical respects. Results further suggest that the EPN may be a preferable target for clinical DBS when psychiatric side effects are considered insofar as it may be associated with a lower incidence of depressive-like behavior than the STN. Copyright © 2013 Elsevier Inc. All rights reserved.
Subthalamic nucleus deep brain stimulation improves somatosensory function in Parkinson's disease.
Aman, Joshua E; Abosch, Aviva; Bebler, Maggie; Lu, Chia-Hao; Konczak, Jürgen
2014-02-01
An established treatment for the motor symptoms of Parkinson's disease (PD) is deep brain stimulation (DBS) of the subthalamic nucleus (STN). Mounting evidence suggests that PD is also associated with somatosensory deficits, yet the effect of STN-DBS on somatosensory processing is largely unknown. This study investigated whether STN-DBS affects somatosensory processing, specifically the processing of tactile and proprioceptive cues, by systematically examining the accuracy of haptic perception of object size. (Haptic perception refers to one's ability to extract object features such as shape and size by active touch.) Without vision, 13 PD patients with implanted STN-DBS and 13 healthy controls haptically explored the heights of 2 successively presented 3-dimensional (3D) blocks using a precision grip. Participants verbally indicated which block was taller and then used their nonprobing hand to motorically match the perceived size of the comparison block. Patients were tested during ON and OFF stimulation, following a 12-hour medication washout period. First, when compared to controls, the PD group's haptic discrimination threshold during OFF stimulation was elevated by 192% and mean hand aperture error was increased by 105%. Second, DBS lowered the haptic discrimination threshold by 26% and aperture error decreased by 20%. Third, during DBS ON, probing with the motorically more affected hand decreased haptic precision compared to probing with the less affected hand. This study offers the first evidence that STN-DBS improves haptic precision, further indicating that somatosensory function is improved by STN-DBS. We conclude that DBS-related improvements are not explained by improvements in motor function alone, but rather by enhanced somatosensory processing. © 2013 Movement Disorder Society.
Aliane, Verena; Pérez, Sylvie; Deniau, Jean-Michel; Kemel, Marie-Louise
2012-11-01
Motor stereotypy is a key symptom of various neurological or neuropsychiatric disorders. Neuroleptics or the promising treatment using deep brain stimulation stops stereotypies but the mechanisms underlying their actions are unclear. In rat, motor stereotypies are linked to an imbalance between prefrontal and sensorimotor cortico-basal ganglia circuits. Indeed, cortico-nigral transmission was reduced in the prefrontal but not sensorimotor basal ganglia circuits and dopamine and acetylcholine release was altered in the prefrontal but not sensorimotor territory of the dorsal striatum. Furthermore, cholinergic transmission in the prefrontal territory of the dorsal striatum plays a crucial role in the arrest of motor stereotypy. Here we found that, as previously observed for raclopride, high-frequency stimulation of the subthalamic nucleus (HFS STN) rapidly stopped cocaine-induced motor stereotypies in rat. Importantly, raclopride and HFS STN exerted a strong effect on cocaine-induced alterations in prefrontal basal ganglia circuits. Raclopride restored the cholinergic transmission in the prefrontal territory of the dorsal striatum and the cortico-nigral information transmissions in the prefrontal basal ganglia circuits. HFS STN also restored the N-methyl-d-aspartic-acid-evoked release of acetylcholine and dopamine in the prefrontal territory of the dorsal striatum. However, in contrast to raclopride, HFS STN did not restore the cortico-substantia nigra pars reticulata transmissions but exerted strong inhibitory and excitatory effects on neuronal activity in the prefrontal subdivision of the substantia nigra pars reticulata. Thus, both raclopride and HFS STN stop cocaine-induced motor stereotypy, but exert different effects on the related alterations in the prefrontal basal ganglia circuits. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Ikeda, Chikako; Yokota, Osamu; Nagao, Shigeto; Ishizu, Hideki; Morisada, Yumi; Terada, Seishi; Nakashima, Yoshihiko; Akiyama, Haruhiko; Uchitomi, Yosuke
2014-09-01
Clinical presentations of pathologically confirmed corticobasal degeneration (CBD) vary, and the heterogeneity makes its clinical diagnosis difficult, especially when a patient lacks any motor disturbance in the early stage. We compared clinical and pathological features of four pathologically confirmed CBD cases that initially developed non-motor symptoms, including behavioural and psychiatric symptoms but without motor disturbance (CBD-NM), and five CBD cases that initially developed parkinsonism and/or falls (CBD-M). The age range at death for the CBD-NM and CBD-M subjects (58-85 years vs 45-67 years) and the range of disease duration (2-18 years vs 2-6 years) did not significantly differ between the groups. Prominent symptoms in the early stage of CBD-NM cases included self-centred behaviours such as frontotemporal dementia (n = 1), apathy with and without auditory hallucination (n = 2), and aggressive behaviours with delusion and visual hallucination (n = 1). Among the four CBD-NM cases, only one developed asymmetric motor disturbance, and two could walk without support throughout the course. Final clinical diagnoses of the CBD-NM cases were frontotemporal dementia (n = 2), senile psychosis with delirium (n = 1), and schizophrenia (n = 1). Neuronal loss was significantly less severe in the subthalamic nucleus and substantia nigra in the CBD-NM cases than in the CBD-M cases. The severity of tau pathology in all regions examined was comparable in the two groups. CBD cases that initially develop psychiatric and behavioural changes without motor symptoms may have less severe degenerative changes in the subthalamic nucleus and substantia nigra, and some CBD cases can lack motor disturbance not only in the early stage but also in the last stage of the course. © 2014 The Authors. Psychogeriatrics © 2014 Japanese Psychogeriatric Society.
Rodriguez-Sabate, Clara; Morales, Ingrid; Sanchez, Alberto; Rodriguez, Manuel
2017-01-01
The complexity of basal ganglia (BG) interactions is often condensed into simple models mainly based on animal data and that present BG in closed-loop cortico-subcortical circuits of excitatory/inhibitory pathways which analyze the incoming cortical data and return the processed information to the cortex. This study was aimed at identifying functional relationships in the BG motor-loop of 24 healthy-subjects who provided written, informed consent and whose BOLD-activity was recorded by MRI methods. The analysis of the functional interaction between these centers by correlation techniques and multiple linear regression showed non-linear relationships which cannot be suitably addressed with these methods. The multiple correspondence analysis (MCA), an unsupervised multivariable procedure which can identify non-linear interactions, was used to study the functional connectivity of BG when subjects were at rest. Linear methods showed different functional interactions expected according to current BG models. MCA showed additional functional interactions which were not evident when using lineal methods. Seven functional configurations of BG were identified with MCA, two involving the primary motor and somatosensory cortex, one involving the deepest BG (external-internal globus pallidum, subthalamic nucleus and substantia nigral), one with the input-output BG centers (putamen and motor thalamus), two linking the input-output centers with other BG (external pallidum and subthalamic nucleus), and one linking the external pallidum and the substantia nigral. The results provide evidence that the non-linear MCA and linear methods are complementary and should be best used in conjunction to more fully understand the nature of functional connectivity of brain centers.
Temel, Yasin; Boothman, Laura J; Blokland, Arjan; Magill, Peter J; Steinbusch, Harry W M; Visser-Vandewalle, Veerle; Sharp, Trevor
2007-10-23
Bilateral, high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the surgical therapy of choice for movement disability in advanced Parkinson's disease (PD), but this procedure evokes debilitating psychiatric effects, including depressed mood, of unknown neural origin. Here, we report the unexpected finding that HFS of the STN inhibits midbrain 5-hydroxytryptamine (5-HT) neurons to evoke depression-related behavioral changes. We found that bilateral HFS of the STN consistently inhibited (40-50%) the firing rate of 5-HT neurons in the dorsal raphe nucleus of the rat, but not neighboring non-5-HT neurons. This effect was apparent at clinically relevant stimulation parameters (> or =100 Hz, > or =30 microA), was not elicited by HFS of either neighboring or remote structures to the STN, and was still present in rat models of PD. We also found that bilateral HFS of the STN evoked clear-cut, depressive-like behavior in a widely used experimental paradigm of depression (forced swim test), and this effect was also observed in a PD model. Importantly, the depressive-like behavior elicited by HFS of the STN was reversed by a selective 5-HT-enhancing antidepressant, thereby linking the behavioral change to decreased 5-HT neuronal activity. Overall, these findings link reduced 5-HT function to the psychiatric effects of HFS of the STN observed in PD patients and provide a rational basis for their clinical management. More generally, the powerful interaction between the STN and 5-HT system uncovered here offers insights into the high level of comorbidity of basal ganglia disease and mood disorder.
Winstanley, Catharine A; Baunez, Christelle; Theobald, David E H; Robbins, Trevor W
2005-06-01
Although the subthalamic nucleus (STN) is involved in regulating motor function, and inactivation of this structure relieves the motor symptoms in Parkinsonian patients, recent data indicate that corticosubthalamic connections are involved in both the regulation of attention and the ability to withhold from responding. Considerable evidence suggests that the neural circuitry underlying such behavioural disinhibition or impulsive action can be at least partially dissociated from that implicated in impulsive decision-making and it has been suggested that the tendency to choose impulsively is related to the ability to form and use Pavlovian associations. To explore these hypotheses further, STN-lesioned rats were tested on the delay-discounting model of impulsive choice, where impulsivity is defined as the selection of a small immediate over a larger delayed reward, as well as in a rodent autoshaping paradigm. In contrast to previous reports of increased impulsive action, STN lesions decreased impulsive choice but dramatically impaired the acquisition of the autoshaping response. When the STN was lesioned after the establishment of autoshaping behaviour, lesioned subjects were more sensitive to the omission of reward, indicative of a reduction in the use of Pavlovian associations to control autoshaping performance. These results emphasize the importance of the STN in permitting conditioned stimulus-unconditioned stimulus associations to regulate goal-seeking, a function which may relate to the alterations in impulsive choice observed in the delay-discounting task. These data bear a striking similarity to those observed after lesions of the orbitofrontal cortex and are suggestive of an important role for corticosubthalamic connections in complex cognitive behaviour.
Rabie, Ahmed; Verhagen Metman, Leo; Slavin, Konstantin V
2016-12-21
To answer the question of whether the anatomical center of the subthalamic nucleus (STN), as calculated indirectly from stereotactic atlases or by direct visualization on magnetic resonance imaging (MRI), corresponds to the best functional target. Since the neighboring red nucleus (RN) is well visualized on MRI, we studied the relationships of the final target to its different borders. We analyzed the data of 23 PD patients (46 targets) who underwent bilateral frame-based STN deep brain stimulation (DBS) procedure with microelectrode recording guidance. We calculated coordinates of the active contact on DBS electrode on postoperative MRI, which we referred to as the final "functional/optimal" target. The coordinates calculated by the atlas-based "indirect" and "direct" methods, as well as the coordinates of the different RN borders were compared to these final coordinates. The mean ± SD of the final target coordinates was 11.7 ± 1.5 mm lateral (X), 2.4 ± 1.5 mm posterior (Y), and 6.1 ± 1.7 mm inferior to the mid-commissural point (Z). No significant differences were found between the "indirect" X, Z coordinates and those of the final targets. The "indirect" Y coordinate was significantly posterior to Y of the final target, with mean difference of 0.6 mm ( p = 0.014). No significant differences were found between the "direct" X, Y, and Z coordinates and those of the final targets. The functional STN target is located in direct proximity to its anatomical center. During preoperative targeting, we recommend using the "direct" method, and taking into consideration the relationships of the final target to the mid-commissural point (MCP) and the different RN borders.
Local Dependence in an Operational CAT: Diagnosis and Implications
ERIC Educational Resources Information Center
Pommerich, Mary; Segall, Daniel O.
2008-01-01
The accuracy of CAT scores can be negatively affected by local dependence if the CAT utilizes parameters that are misspecified due to the presence of local dependence and/or fails to control for local dependence in responses during the administration stage. This article evaluates the existence and effect of local dependence in a test of…
Ramirez de Noriega, Fernando; Eitan, Renana; Marmor, Odeya; Lavi, Adi; Linetzky, Eduard; Bergman, Hagai; Israel, Zvi
2015-02-18
Background: Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established therapy for advanced Parkinson's disease (PD). Motor efficacy and safety have been established for constant voltage (CV) devices and more recently for constant current (CC) devices. CC devices adjust output voltage to provide CC stimulation irrespective of impedance fluctuation, while the current applied by CV stimulation depends on the impedance that may change over time. No study has directly compared the clinical effects of these two stimulation modalities. Objective: To compare the safety and clinical impact of CC STN DBS to CV STN DBS in patients with advanced PD 2 years after surgery. Methods: Patients were eligible for inclusion if they had undergone STN DBS surgery for idiopathic PD, had been implanted with a Medtronic Activa PC and if their stimulation program and medication had been stable for at least 1 year. This single-center trial was designed as a double-blind, randomized, prospective study with crossover after 2 weeks. Motor equivalence of the 2 modalities was confirmed utilizing part III of the Unified Parkinson's Disease Rating Scale (UPDRS). PD diaries and multiple subjective and objective evaluations of quality of life, depression, cognition and emotional processing were evaluated on both CV and on CC stimulation. Analysis using the paired t test with Bonferroni correction for multiple comparisons was performed to identify any significant difference between the stimulation modalities. Results: 8 patients were recruited (6 men, 2 women); 1 patient did not complete the study. The average age at surgery was 56.7 years (range 47-63). Disease duration at the time of surgery was 7.5 years (range 3-12). Patients were recruited 23.8 months (range 22.5-24) after surgery. At the postoperative study baseline, this patient group showed an average motor improvement of 69% (range 51-97) as measured by the change in UPDRS part III with stimulation alone. Levodopa equivalent medication was reduced on average by 67% (range 15-88). Patients were poorly compliant with PD diaries, and these did not yield useful information. The minor deterioration in quality-of-life scores (Parkinson's Disease Questionnaire-39, Quality of Life Enjoyment and Satisfaction Questionnaire) with CC stimulation were not statistically significant. Two measures of depression (Hamilton Rating Scale D17, Quick Inventory of Depressive Symptomatology - Self-Report) showed a nonsignificant lower score (less depression) with CC stimulation, but a third (Beck Depression Inventory) showed equivalence. Cognitive testing (Mini Mental State Examination) and emotional processing (Montreal Affective Voices) were equivalent for CC and CV. Conclusion: CC STN DBS is safe. For equivalent motor efficacy, no significant difference could be identified between CC and CV stimulation for nonmotor evaluations in PD patients 2 years after surgery. © 2015 S. Karger AG, Basel.
Local dependence in random graph models: characterization, properties and statistical inference
Schweinberger, Michael; Handcock, Mark S.
2015-01-01
Summary Dependent phenomena, such as relational, spatial and temporal phenomena, tend to be characterized by local dependence in the sense that units which are close in a well-defined sense are dependent. In contrast with spatial and temporal phenomena, though, relational phenomena tend to lack a natural neighbourhood structure in the sense that it is unknown which units are close and thus dependent. Owing to the challenge of characterizing local dependence and constructing random graph models with local dependence, many conventional exponential family random graph models induce strong dependence and are not amenable to statistical inference. We take first steps to characterize local dependence in random graph models, inspired by the notion of finite neighbourhoods in spatial statistics and M-dependence in time series, and we show that local dependence endows random graph models with desirable properties which make them amenable to statistical inference. We show that random graph models with local dependence satisfy a natural domain consistency condition which every model should satisfy, but conventional exponential family random graph models do not satisfy. In addition, we establish a central limit theorem for random graph models with local dependence, which suggests that random graph models with local dependence are amenable to statistical inference. We discuss how random graph models with local dependence can be constructed by exploiting either observed or unobserved neighbourhood structure. In the absence of observed neighbourhood structure, we take a Bayesian view and express the uncertainty about the neighbourhood structure by specifying a prior on a set of suitable neighbourhood structures. We present simulation results and applications to two real world networks with ‘ground truth’. PMID:26560142
Timmermann, Lars; Jain, Roshini; Chen, Lilly; Maarouf, Mohamed; Barbe, Michael T; Allert, Niels; Brücke, Thomas; Kaiser, Iris; Beirer, Sebastian; Sejio, Fernando; Suarez, Esther; Lozano, Beatriz; Haegelen, Claire; Vérin, Marc; Porta, Mauro; Servello, Domenico; Gill, Steven; Whone, Alan; Van Dyck, Nic; Alesch, Francois
2015-07-01
High-frequency deep brain stimulation (DBS) with a single electrical source is effective for motor symptom relief in patients with Parkinson's disease. We postulated that a multiple-source, constant-current device that permits well defined distribution of current would lead to motor improvement in patients with Parkinson's disease. We did a prospective, multicentre, non-randomised, open-label intervention study of an implantable DBS device (the VANTAGE study) at six specialist DBS centres at universities in six European countries. Patients were judged eligible if they were aged 21-75 years, had been diagnosed with bilateral idiopathic Parkinson's disease with motor symptoms for more than 5 years, had a Hoehn and Yahr score of 2 or greater, and had a Unified Parkinson's disease rating scale part III (UPDRS III) score in the medication-off state of more than 30, which improved by 33% or more after a levodopa challenge. Participants underwent bilateral implantation in the subthalamic nucleus of a multiple-source, constant-current, eight-contact, rechargeable DBS system, and were assessed 12, 26, and 52 weeks after implantation. The primary endpoint was the mean change in UPDRS III scores (assessed by site investigators who were aware of the treatment assignment) from baseline (medication-off state) to 26 weeks after first lead implantation (stimulation-on, medication-off state). This study is registered with ClinicalTrials.gov, number NCT01221948. Of 53 patients enrolled in the study, 40 received a bilateral implant in the subthalamic nucleus and their data contributed to the primary endpoint analysis. Improvement was noted in the UPDRS III motor score 6 months after first lead implantation (mean 13·5 [SD 6·8], 95% CI 11·3-15·7) compared with baseline (37·4 [8·9], 34·5-40·2), with a mean difference of 23·8 (SD 10·6; 95% CI 20·3-27·3; p<0·0001). One patient died of pneumonia 24 weeks after implantation, which was judged to be unrelated to the procedure. 125 adverse events were reported, the most frequent of which were dystonia, speech disorder, and apathy. 18 serious adverse events were recorded, three of which were attributed to the device or procedure (one case each of infection, migration, and respiratory depression). All serious adverse events resolved without residual effects and stimulation remained on during the study. The multiple-source, constant-current, eight-contact DBS system suppressed motor symptoms effectively in patients with Parkinson's disease, with an acceptable safety profile. Future trials are needed to investigate systematically the potential benefits of this system on postoperative outcome and its side-effects. Boston Scientific. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wichmann, Thomas; DeLong, Mahlon R
2016-04-01
Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.
Karachi, C; Francois, Chantal
2018-03-01
Patients with Parkinson's disease (PD) develop cardinal motor symptoms, including akinesia, rigidity, and tremor, that are alleviated by dopaminergic medication and/or subthalamic deep brain stimulation. Over the time course of the disease, gait and balance disorders worsen and become resistant to pharmacological and surgical treatments. These disorders generate debilitating motor symptoms leading to increased dependency, morbidity, and mortality. PD patients also experience sleep disturbance that raise the question of a common physiological basis. An extensive experimental and clinical body of work has highlighted the crucial role of the pedunculopontine nucleus (PPN) in the control of gait and sleep, and its potential major role in PD. Here, we summarise our investigations in the monkey PPN in the normal and parkinsonian states. We first examined the anatomy and connectivity of the PPN and the cuneiform nucleus which both belong to the mesencephalic locomotor region. Second, we conducted experiments to demonstrate the specific effects of PPN cholinergic lesions on locomotion in the normal and parkinsonian monkey. Third, we aimed to understand how PPN cholinergic lesions impair sleep in parkinsonian monkeys. Our final goal was to develop a novel model of advanced PD with gait and sleep disorders. We believe that this monkey model, even if it does not attempt to reproduce the exact human disease with all its complexities, represents a good biomedical model to characterise locomotion and sleep in the context of PD.
Chang, Yu-Kai; Tsai, Jack Han-Chao; Wang, Chun-Chih; Chang, Erik Chihhung
2015-07-01
The aim of this study was to use diffusion tensor imaging (DTI) to characterize and compare microscopic differences in white matter integrity in the basal ganglia between elite professional athletes specializing in running and martial arts. Thirty-three young adults with sport-related skills as elite professional runners (n = 11) or elite professional martial artists (n = 11) were recruited and compared with non-athletic and healthy controls (n = 11). All participants underwent health- and skill-related physical fitness assessments. Fractional anisotropy (FA) and mean diffusivity (MD), the primary indices derived from DTI, were computed for five regions of interest in the bilateral basal ganglia, including the caudate nucleus, putamen, globus pallidus internal segment (GPi), globus pallidus external segment (GPe), and subthalamic nucleus. Results revealed that both athletic groups demonstrated better physical fitness indices compared with their control counterparts, with the running group exhibiting the highest cardiovascular fitness and the martial arts group exhibiting the highest muscular endurance and flexibility. With respect to the basal ganglia, both athletic groups showed significantly lower FA and marginally higher MD values in the GPi compared with the healthy control group. These findings suggest that professional sport or motor skill training is associated with changes in white matter integrity in specific regions of the basal ganglia, although these positive changes did not appear to depend on the type of sport-related motor skill being practiced.
Bardinet, Eric; Bhattacharjee, Manik; Dormont, Didier; Pidoux, Bernard; Malandain, Grégoire; Schüpbach, Michael; Ayache, Nicholas; Cornu, Philippe; Agid, Yves; Yelnik, Jérôme
2009-02-01
The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.
Seong-Cheol, Park; Chong Sik, Lee; Seok Min, Kim; Eu Jene, Choi; Do Hee, Lee; Jung Kyo, Lee
2016-12-22
Recently, the use of magnetic dental implants has been re-popularized with the introduction of strong rare earth metal, for example, neodymium, magnets. Unrecognized magnetic dental implants can cause critical magnetic resonance image distortions. We report a case involving surgical failure caused by a magnetic dental implant. A 62-year-old man underwent deep brain stimulation for medically insufficiently controlled Parkinson's disease. Stereotactic magnetic resonance imaging performed for the first deep brain stimulation showed that the overdenture was removed. However, a dental implant remained and contained a neodymium magnet, which was unrecognized at the time of imaging; the magnet caused localized non-linear distortions that were the largest around the dental magnets. In the magnetic field, the subthalamic area was distorted by a 4.6 mm right shift and counter clockwise rotation. However, distortions were visually subtle in the operation field and small for distant stereotactic markers, with approximately 1-2 mm distortions. The surgeon considered the distortion to be normal asymmetry or variation. Stereotactic marker distortion was calculated to be in the acceptable range in the surgical planning software. Targeting errors, approximately 5 mm on the right side and 2 mm on the left side, occurred postoperatively. Both leads were revised after the removal of dental magnets. Dental magnets may cause surgical failures and should be checked and removed before stereotactic surgery. Our findings should be considered when reviewing surgical precautions and making distortion-detection algorithm improvements.
Lindahl, Mikael; Hellgren Kotaleski, Jeanette
2016-01-01
The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson's disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion-induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN-MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion-induced changes to CTX-MSN D1, CTX-MSN D2, TA-MSN, and MSN-MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function.
Adaptive deep brain stimulation in advanced Parkinson disease.
Little, Simon; Pogosyan, Alex; Neal, Spencer; Zavala, Baltazar; Zrinzo, Ludvic; Hariz, Marwan; Foltynie, Thomas; Limousin, Patricia; Ashkan, Keyoumars; FitzGerald, James; Green, Alexander L; Aziz, Tipu Z; Brown, Peter
2013-09-01
Brain-computer interfaces (BCIs) could potentially be used to interact with pathological brain signals to intervene and ameliorate their effects in disease states. Here, we provide proof-of-principle of this approach by using a BCI to interpret pathological brain activity in patients with advanced Parkinson disease (PD) and to use this feedback to control when therapeutic deep brain stimulation (DBS) is delivered. Our goal was to demonstrate that by personalizing and optimizing stimulation in real time, we could improve on both the efficacy and efficiency of conventional continuous DBS. We tested BCI-controlled adaptive DBS (aDBS) of the subthalamic nucleus in 8 PD patients. Feedback was provided by processing of the local field potentials recorded directly from the stimulation electrodes. The results were compared to no stimulation, conventional continuous stimulation (cDBS), and random intermittent stimulation. Both unblinded and blinded clinical assessments of motor effect were performed using the Unified Parkinson's Disease Rating Scale. Motor scores improved by 66% (unblinded) and 50% (blinded) during aDBS, which were 29% (p = 0.03) and 27% (p = 0.005) better than cDBS, respectively. These improvements were achieved with a 56% reduction in stimulation time compared to cDBS, and a corresponding reduction in energy requirements (p < 0.001). aDBS was also more effective than no stimulation and random intermittent stimulation. BCI-controlled DBS is tractable and can be more efficient and efficacious than conventional continuous neuromodulation for PD. Copyright © 2013 American Neurological Association.
Ewert, Siobhan; Plettig, Philip; Li, Ningfei; Chakravarty, M Mallar; Collins, D Louis; Herrington, Todd M; Kühn, Andrea A; Horn, Andreas
2018-04-15
Three-dimensional atlases of subcortical brain structures are valuable tools to reference anatomy in neuroscience and neurology. For instance, they can be used to study the position and shape of the three most common deep brain stimulation (DBS) targets, the subthalamic nucleus (STN), internal part of the pallidum (GPi) and ventral intermediate nucleus of the thalamus (VIM) in spatial relationship to DBS electrodes. Here, we present a composite atlas based on manual segmentations of a multimodal high resolution brain template, histology and structural connectivity. In a first step, four key structures were defined on the template itself using a combination of multispectral image analysis and manual segmentation. Second, these structures were used as anchor points to coregister a detailed histological atlas into standard space. Results show that this approach significantly improved coregistration accuracy over previously published methods. Finally, a sub-segmentation of STN and GPi into functional zones was achieved based on structural connectivity. The result is a composite atlas that defines key nuclei on the template itself, fills the gaps between them using histology and further subdivides them using structural connectivity. We show that the atlas can be used to segment DBS targets in single subjects, yielding more accurate results compared to priorly published atlases. The atlas will be made publicly available and constitutes a resource to study DBS electrode localizations in combination with modern neuroimaging methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Zhang, Rong; Saito, Ryuta; Mano, Yui; Kanamori, Masayuki; Sonoda, Yukihiko; Kumabe, Toshihiro; Tominaga, Teiji
2014-01-30
Convection-enhanced delivery (CED) has been developed as a potentially effective drug-delivery strategy into the central nervous system. In contrast to systemic intravenous administration, local delivery achieves high concentration and prolonged retention in the local tissue, with increased chance of local toxicity, especially with toxic agents such as chemotherapeutic agents. Therefore, the factors that affect local toxicity should be extensively studied. With the assumption that concentration-oriented evaluation of toxicity is important for local CED, we evaluated the appearance of local toxicity among different agents after delivery with CED and studied if it is dose dependent or concentration dependent. Local toxicity profile of chemotherapeutic agents delivered via CED indicates BCNU was dose-dependent, whereas that of ACNU was concentration-dependent. On the other hand, local toxicity for doxorubicin, which is not distributed effectively by CED, was dose-dependent. Local toxicity for PLD, which is extensively distributed by CED, was concentration-dependent. Traditional evaluation of drug induced toxicity was dose-oriented. This is true for systemic intravascular delivery. However, with local CED, toxicity of several drugs exacerbated in concentration-dependent manner. From our study, local toxicity of drugs that are likely to distribute effectively tended to be concentration-dependent. Concentration rather than dose may be more important for the toxicity of agents that are effectively distributed by CED. Concentration-oriented evaluation of toxicity is more important for CED. Copyright © 2013 Elsevier B.V. All rights reserved.
Direct Evidence of Memory Retrieval as a Source of Difficulty in Non-Local Dependencies in Language
ERIC Educational Resources Information Center
Fedorenko, Evelina; Woodbury, Rebecca; Gibson, Edward
2013-01-01
Linguistic dependencies between non-adjacent words have been shown to cause comprehension difficulty, compared with local dependencies. According to one class of sentence comprehension accounts, non-local dependencies are difficult because they require the retrieval of the first dependent from memory when the second dependent is encountered.…
Zahodne, Laura B.; Susatia, Frandy; Bowers, Dawn; Ong, Tiara L.; Jacobson, Charles E.; Okun, Michael S.; Rodriguez, Ramon L.; Malaty, Irene A.; Foote, Kelly D.; Fernandez, Hubert H.
2011-01-01
Of 96 Parkinson’s disease (PD) patients at the University of Florida Movement Disorders Center, one (1%) met diagnostic criteria for binge eating disorder (BED). Eight (8.3%) exhibited subthreshold BED. Psychometric criteria classified problem gambling in 17.8%, hoarding in 8.3%, buying in 11.5%, hypersexuality in 1.0%, and mania in 1.0% of patients. More overeaters met psychometric criteria for at least one additional impulse control disorder (67% vs. 29%). No more overeaters than non-overeaters were taking a dopamine agonist (44% vs. 41%). More overeaters had a history of subthalamic DBS (44% vs. 14%). History of DBS was the only independent predictor of overeating. PMID:21304139
Polarization-dependent DANES study on vertically-aligned ZnO nanorods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chengjun; Park, Chang-In; Jin, Zhenlan
2016-05-01
The local structural and local density of states of vertically-aligned ZnO nanorods were examined by using a polarization-dependent diffraction anomalous near edge structure (DANES) measurements from c-oriented ZnO nanorods at the Zn K edge with the incident x-ray electric field parallel and perpendicular to the x-ray momentum transfer direction. Orientation-dependent local structures determined by DANES were comparable with polarization-dependent EXAFS results. Unlike other techniques, polarization-dependent DANES can uniquely describe the orientation-dependent local structural properties and the local density of states of a selected element in selected-phased crystals of compounds or mixed-phased structures.
Belasen, Abigail; Youn, Youngwon; Gee, Lucy; Prusik, Julia; Lai, Brant; Ramirez-Zamora, Adolfo; Rizvi, Khizer; Yeung, Philip; Shin, Damian S; Argoff, Charles; Pilitsis, Julie G
2016-10-01
Chronic pain is a major, debilitating symptom of Parkinson's disease (PD). Although, deep brain stimulation (DBS) has been shown to improve pain outcomes, the mechanisms underlying this phenomenon are unclear. Microelectrode recording allows us to measure both local field potentials (LFPs) and single neuronal unit activity (SUA). In this study, we examined how single unit and LFP oscillatory activity in the basal ganglia are impacted by mechanical and thermal sensory stimuli and explored their role in pain modulation. We assessed changes in LFPs and SUAs in the subthalamic nucleus (STN), globus pallidus interna (Gpi), and globus pallidus externa (Gpe) following exposure with mechanical or thermal stimuli. Sensory thresholds were determined pre-operatively using quantitative sensory testing. Based on these data, patients were exposed to innocuous and noxious mechanical, pressure, and thermal stimuli at individualized thresholds. In the STN, LFP alpha oscillatory activity and SUA increased in response to innocuous mechanical stimuli; SUA further increased in response to noxious mechanical, noxious pressure, and noxious thermal stimuli (p < 0.05). In the Gpe, LFP low betaactivity and SUA increased with noxious thermal stimuli; SUA also increased in response to innocuous thermal stimuli (p < 0.05). In the Gpi, innocuous thermal stimuli increased LFP gammaactivity; noxious pressure stimuli decreased low betaactivity; SUA increased in response to noxious thermal stimuli (p < 0.05). Our study is the first to demonstrate that mechanical and thermal stimuli alter basal ganglia LFPs and SUAs in PD. While STN SUA increases nearly uniformly to all sensory stimuli, SUA in the pallidal nuclei respond solely to thermal stimuli. Similarly, thermal stimuli yield increases in pallidal LFP activity, but not STN activity. We speculate that DBS may provide analgesia through suppression of stimuli-specific changes in basal ganglia activity, supporting a role for these nuclei in sensory and pain processing circuits. © 2016 International Neuromodulation Society.
Beta oscillatory neurons in the motor thalamus of movement disorder and pain patients.
Basha, Diellor; Dostrovsky, Jonathan O; Lopez Rios, Adriana L; Hodaie, Mojgan; Lozano, Andres M; Hutchison, William D
2014-11-01
Excessive beta oscillations (15-25Hz) in the basal ganglia have been linked to the akineto-rigid symptoms of Parkinson's disease (PD) although it remains unclear whether the underlying mechanism is causative or associative. While a number of studies have reported beta activity in the subthalamic nucleus and globus pallidus internus, relatively little is known about the beta rhythm of the motor thalamus and its relation to movement disorders. To test whether thalamic beta oscillations are related to parkinsonian symptoms, we examined the spectral properties of neuronal activity in the ventral thalamic nuclei of five Parkinson's disease patients (two female, age range 50-72years) and compared them to five essential tremor (three female, aged 41-75) and four central pain patients (one female, aged 38-60). Spike and local field potential recordings were obtained during microelectrode-guided localization of thalamic nuclei prior to the implantation of deep brain stimulating electrodes. A total of 118 movement-related neurons in the region of the ventral intermediate nucleus (Vim) were analyzed across all patient groups. Eighty of these neurons (68%) displayed significant oscillatory firing in the beta range with the limbs at rest. In contrast, only 5.7% of the ventral oral posterior (Vop) (χ(2) test, p<0.05) and only 7.2% of the ventral caudal (Vc) neurons fired rhythmically at beta frequency (χ(2) test, p<0.05). Beta power was significantly decreased during limb movements (ANOVA, p<0.05) and was inversely related to tremor-frequency power during tremor epochs in ET and PD (r(2)=0.44). Comparison between patient groups showed that Vim beta power was significantly higher in ET patients versus pain and PD groups (ANOVA, p<0.05). The findings suggest that beta oscillations are found predominantly in Vim and are involved in movement but are not enhanced in tremor-dominant Parkinson's patients. Copyright © 2014 Elsevier Inc. All rights reserved.
Salimi-Badr, Armin; Ebadzadeh, Mohammad Mehdi; Darlot, Christian
2018-01-01
In this paper, a novel system-level mathematical model of the Basal Ganglia (BG) for kinematic planning, is proposed. An arm composed of several segments presents a geometric redundancy. Thus, selecting one trajectory among an infinite number of possible ones requires overcoming redundancy, according to some kinds of optimization. Solving this optimization is assumed to be the function of BG in planning. In the proposed model, first, a mathematical solution of kinematic planning is proposed for movements of a redundant arm in a plane, based on minimizing energy consumption. Next, the function of each part in the model is interpreted as a possible role of a nucleus of BG. Since the kinematic variables are considered as vectors, the proposed model is presented based on the vector calculus. This vector model predicts different neuronal populations in BG which is in accordance with some recent experimental studies. According to the proposed model, the function of the direct pathway is to calculate the necessary rotation of each joint, and the function of the indirect pathway is to control each joint rotation considering the movement of the other joints. In the proposed model, the local feedback loop between Subthalamic Nucleus and Globus Pallidus externus is interpreted as a local memory to store the previous amounts of movements of the other joints, which are utilized by the indirect pathway. In this model, activities of dopaminergic neurons would encode, at short-term, the error between the desired and actual positions of the end-effector. The short-term modulating effect of dopamine on Striatum is also modeled as cross product. The model is simulated to generate the commands of a redundant manipulator. The performance of the model is studied for different reaching movements between 8 points in a plane. Finally, some symptoms of Parkinson's disease such as bradykinesia and akinesia are simulated by modifying the model parameters, inspired by the dopamine depletion. Copyright © 2017 Elsevier Ltd. All rights reserved.
Minimization of Dependency Length in Written English
ERIC Educational Resources Information Center
Temperley, David
2007-01-01
Gibson's Dependency Locality Theory (DLT) [Gibson, E. 1998. "Linguistic complexity: locality of syntactic dependencies." "Cognition," 68, 1-76; Gibson, E. 2000. "The dependency locality theory: A distance-based theory of linguistic complexity." In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), "Image,…
Pratt, Wayne E.; Choi, Eugene; Guy, Elizabeth G.
2012-01-01
The subthalamic nucleus (STN) serves important functions in regulating movement, cognition, and motivation and is connected with cortical and basal ganglia circuits that process reward and reinforcement. In order to further examine the role of the STN on motivation toward food in non-deprived rats, these experiments studied the effects of pharmacological inhibition or μ-opioid receptor stimulation of the STN on the 2-hr intake of a sweetened fat diet, the amount of work exerted to earn sucrose on a progressive ratio 2 (PR-2) schedule of reinforcement, and performance on a differential reinforcement of low-rate responding (DRL) schedule for sucrose reward. Separate behavioral groups (N = 6–9) were tested following bilateral inhibition of the STN with the GABAA receptor agonist muscimol (at 0–5 ng/0.5 μl/side) or following μ-opioid receptor stimulation with the agonist D-Ala2, N-MePhe4, Gly-ol-enkephalin (DAMGO; at 0, 0.025 or 0.25 μg/0.5 μl/side). Although STN inhibition increased ambulatory behavior during 2-hr feeding sessions, it did not significantly alter intake of the sweetened fat diet. STN inhibition also did not affect the breakpoint for sucrose pellets during a 1-hr PR-2 reinforcement schedule or impact the number of reinforcers earned on a 1-hr DRL-20 sec reinforcement schedule in non-deprived rats. In contrast, STN μ-opioid receptor stimulation significantly increased feeding on the palatable diet and reduced the reinforcers earned on a DRL-20 schedule, although DAMGO microinfusions had no effect on PR-2 performance. These data suggest that STN inhibition does not enhance incentive motivation for food in the absence of food restriction and that STN μ-opioid receptors play an important and unique role in motivational processes. PMID:22391117
Moran, Anan; Stein, Edward; Tischler, Hadass; Belelovsky, Katya; Bar-Gad, Izhar
2011-01-01
Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is a well-established therapy for patients with severe Parkinson's disease (PD); however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia (BG) during high-frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro-stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, BG output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial effect of DBS in PD.
Favier, Mathieu; Carcenac, Carole; Drui, Guillaume; Boulet, Sabrina; El Mestikawy, Salah; Savasta, Marc
2013-12-05
It has been suggested that glutamatergic system hyperactivity may be related to the pathogenesis of Parkinson's disease (PD). Vesicular glutamate transporters (VGLUT1-3) import glutamate into synaptic vesicles and are key anatomical and functional markers of glutamatergic excitatory transmission. Both VGLUT1 and VGLUT2 have been identified as definitive markers of glutamatergic neurons, but VGLUT 3 is also expressed by non glutamatergic neurons. VGLUT1 and VGLUT2 are thought to be expressed in a complementary manner in the cortex and the thalamus (VL/VM), in glutamatergic neurons involved in different physiological functions. Chronic high-frequency stimulation (HFS) of the subthalamic nucleus (STN) is the neurosurgical therapy of choice for the management of motor deficits in patients with advanced PD. STN-HFS is highly effective, but its mechanisms of action remain unclear. This study examines the effect of STN-HFS on VGLUT1-3 expression in different brain nuclei involved in motor circuits, namely the basal ganglia (BG) network, in normal and 6-hydroxydopamine (6-OHDA) lesioned rats. Here we report that: 1) Dopamine(DA)-depletion did not affect VGLUT1 and VGLUT3 expression but significantly decreased that of VGLUT2 in almost all BG structures studied; 2) STN-HFS did not change VGLUT1-3 expression in the different brain areas of normal rats while, on the contrary, it systematically induced a significant increase of their expression in DA-depleted rats and 3) STN-HFS reversed the decrease in VGLUT2 expression induced by the DA-depletion. These results show for the first time a comparative analysis of changes of expression for the three VGLUTs induced by STN-HFS in the BG network of normal and hemiparkinsonian rats. They provide evidence for the involvement of VGLUT2 in the modulation of BG cicuits and in particular that of thalamostriatal and thalamocortical pathways suggesting their key role in its therapeutic effects for alleviating PD motor symptoms.
Mondillon, Laurie; Mermillod, Martial; Musca, Serban C; Rieu, Isabelle; Vidal, Tiphaine; Chambres, Patrick; Auxiette, Catherine; Dalens, Hélène; Marie Coulangeon, Louise; Jalenques, Isabelle; Lemaire, Jean-Jacques; Ulla, Miguel; Derost, Philippe; Marques, Ana; Durif, Franck
2012-10-01
Deep brain stimulation of the subthalamic nucleus (DBS) is a widely used surgical technique to suppress motor symptoms in Parkinson's disease (PD), and as such improves patients' quality of life. However, DBS may produce emotional disorders such as a reduced ability to recognize emotional facial expressions (EFE). Previous studies have not considered the fact that DBS and l-dopa medication can have differential, common, or complementary consequences on EFE processing. A thorough way of investigating the effect of DBS and l-dopa medication in greater detail is to compare patients' performances after surgery, with the two therapies either being administered ('on') or not administered ('off'). We therefore used a four-condition (l-dopa 'on'/DBS 'on', l-dopa 'on'/DBS 'off', l-dopa 'off'/DBS 'on', and l-dopa 'off'/DBS 'off') EFE recognition paradigm and compared implanted PD patients to healthy controls. The results confirmed those of previous studies, yielding a significant impairment in the detection of some facial expressions relative to controls. Disgust recognition was impaired when patients were 'off' l-dopa and 'on' DBS, and fear recognition impaired when 'off' of both therapies. More interestingly, the combined effect of both DBS and l-dopa administration seems much more beneficial for EFE recognition than the separate administration of each individual therapy. We discuss the implications of these findings in the light of the inverted U curve function that describes the differential effects of dopamine level on the right orbitofrontal cortex (OFC). We propose that, while l-dopa could "overdose" in dopamine the ventral stream of the OFC, DBS would compensate for this over-activation by decreasing OFC activity, thereby restoring the necessary OFC-amygdala interaction. Another finding is that, when collapsing over all treatment conditions, PD patients recognized more neutral faces than the matched controls, a result that concurs with embodiment theories. Copyright © 2012 Elsevier Ltd. All rights reserved.
Subthalamic nucleus stimulation affects theory of mind network: a PET study in Parkinson's disease.
Péron, Julie; Le Jeune, Florence; Haegelen, Claire; Dondaine, Thibaut; Drapier, Dominique; Sauleau, Paul; Reymann, Jean-Michel; Drapier, Sophie; Rouaud, Tiphaine; Millet, Bruno; Vérin, Marc
2010-03-29
There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism. To this end, we conducted (18)FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM. These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.
De Salles, A A; Melega, W P; Laćan, G; Steele, L J; Solberg, T D
2001-12-01
Radiosurgery for functional neurosurgery performed using a linear accelerator (LINAC) has not been extensively characterized in preclinical studies. In the present study, the properties of a newly designed 3-mm-diameter collimator were evaluated in a dedicated LINAC, which produced lesions in the basal ganglia of vervet monkeys. Lesion formation was determined in vivo in three animals by examining magnetic resonance (MR) images to show the dose-delivery precision of targeting and the geometry and extent of the lesions. Postmortem immunohistochemical studies were conducted to determine the extent of lesion-induced radiobiological effects. In three male vervet monkeys, the subthalamic nucleus (STN; one animal) and the pars compacta of the lateral substantia nigra (SN; two animals) were targeted by a Novalis Shaped Beam Surgery System that included a 3-mm collimator and delivered a maximum dose of 150 Gy. Magnetic resonance images obtained 4, 5, and 9 months posttreatment were reviewed, and the animals were killed so that immunohistological characterizations could be made. The generation of precise radiosurgical lesions by a 3-mm collimator was validated in studies that targeted the basal ganglia of the vervet monkey. The extent of the lesions created in all animals remained restricted in diameter (< 3 mm) throughout the duration of the studies, as assessed by reviewing MR images. Histological studies showed that the lesions were contained within the STN and SN target areas and that there were persistent increases in glial fibrillary acidic protein immunoreactivity. Increases in immunoreactivity for tyrosine hydroxylase, the serotonin transporter, and the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate glutamate receptor in penumbral regions of the lesion were suggestive of compensatory neuronal adaptations. This radiosurgical approach may be of particular interest for the induction of lesions of the STN and SN in studies of experimental parkinsonism, as well as for the development of potential radiosurgical treatments for Parkinson disease.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson's disease.
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M; Tan, Huiling; Brown, Peter
2017-04-01
Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson's disease, elevations in beta activity (13-35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson's disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson's disease, and helps inform how adaptive deep brain stimulation might best be delivered. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved.
Karimi, M; Golchin, N; Tabbal, S D; Hershey, T; Videen, T O; Wu, J; Usche, J W M; Revilla, F J; Hartlein, J M; Wernle, A R; Mink, J W; Perlmutter, J S
2008-10-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (r(s) = -0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (r(s) = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (r(s) = -0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease.
Karimi, M.; Golchin, N.; Tabbal, S. D.; Hershey, T.; Videen, T. O.; Wu, J.; Usche, J. W. M.; Revilla, F. J.; Hartlein, J. M.; Wernle, A. R.; Mink, J. W.
2008-01-01
Deep brain stimulation of the subthalamic nucleus (STN DBS) improves motor symptoms in idiopathic Parkinson's disease, yet the mechanism of action remains unclear. Previous studies indicate that STN DBS increases regional cerebral blood flow (rCBF) in immediate downstream targets but does not reveal which brain regions may have functional changes associated with improved motor manifestations. We studied 48 patients with STN DBS who withheld medication overnight and underwent PET scans to measure rCBF responses to bilateral STN DBS. PET scans were performed with bilateral DBS OFF and ON in a counterbalanced order followed by clinical ratings of motor manifestations using Unified Parkinson Disease Rating Scale 3 (UPDRS 3). We investigated whether improvement in UPDRS 3 scores in rigidity, bradykinesia, postural stability and gait correlate with rCBF responses in a priori determined regions. These regions were selected based on a previous study showing significant STN DBS-induced rCBF change in the thalamus, midbrain and supplementary motor area (SMA). We also chose the pedunculopontine nucleus region (PPN) due to mounting evidence of its involvement in locomotion. In the current study, bilateral STN DBS improved rigidity (62%), bradykinesia (44%), gait (49%) and postural stability (56%) (paired t-tests: P < 0.001). As expected, bilateral STN DBS also increased rCBF in the bilateral thalami, right midbrain, and decreased rCBF in the right premotor cortex (P < 0.05, corrected). There were significant correlations between improvement of rigidity and decreased rCBF in the SMA (rs = –0.4, P < 0.02) and between improvement in bradykinesia and increased rCBF in the thalamus (rs = 0.31, P < 0.05). In addition, improved postural reflexes correlated with decreased rCBF in the PPN (rs = –0.38, P < 0.03). These modest correlations between selective motor manifestations and rCBF in specific regions suggest possible regional selectivity for improvement of different motor signs of Parkinson's disease. PMID:18697909
Sestini, Stelvio; Pupi, Alberto; Ammannati, Franco; Silvia, Ramat; Sorbi, Sandro; Castagnoli, Antonio
2007-10-01
The aim of this follow-up study was to assess persistent motor and regional cerebral blood flow (rCBF) changes in patients with Parkinson's disease (PD) treated with high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN). Ten PD patients with STN-DBS underwent three rCBF SPECT studies at rest, once preoperatively in the off-drug condition (T(0)), and twice postoperatively in the off-drug/off-stimulation conditions at 5 +/- 2 (T(1)) and 42 +/- 7 months (T(2)). Patients were assessed using the UPDRS, H&Y and S&E scales. SPM was used to investigate baseline rCBF changes from the preoperative condition to the postoperative conditions and the relationship between rCBF and UPDRS scores used as covariate of interest. Parkinsonian patients showed a clinical improvement which was significant only on follow-up at 42 months. The main effect of treatment from T(0) to T(1) was to produce baseline rCBF increases in the pre-supplementary motor area (pre-SMA), premotor cortex and somatosensory association cortex. From T(1) to T(2) a further baseline rCBF increase was detected in the pre-SMA (p < 0.0001). A correlation was detected between the slight improvement in motor scores and the rCBF increase in the pre-SMA (p < 0.0001), which is known to play a crucial role in clinical progression. Our study suggests the presence of adaptive functional changes in the human brain of PD patients treated with long-term STN-DBS. Such adaptive processes seem to occur in the pre-SMA and to play only a slightly beneficial role in terms of functional compensation of motor impairment.
Drapier, Sophie; Raoul, Sylvie; Drapier, Dominique; Leray, Emmanuelle; Lallement, François; Rivier, Isabelle; Sauleau, Paul; Lajat, Youen; Edan, Gilles; Vérin, Marc
2005-05-01
The well known global improvement of quality of life (QoL) after bilateral high frequency chronic deep brain stimulation of the subthalamic nucleus (STN DBS) in Parkinson's disease (PD) is in contrast to behavioral disturbances as observed after surgery. Indeed the impact of DBS on physical versus mental aspects of QoL in PD remains unknown. To assess the influence of bilateral STN DBS on physical versus mental aspects of QoL in Parkinson's disease. The results of 27 patients for the Unified Parkinson's disease Rating Scale (UPDRS), Parkinson's Disease Questionnaire 39 (PDQ39) and Short Form 36 health survey questionnaire (SF36) were compared before surgery and after 12 months of bilateral STN DBS. Comparing off-dopa conditions before versus 12 months after surgery, both UPDRS part II and part III significantly improved: 32.6% and 52%, respectively. UPDRS part I scores did not change significantly at 12 months. As for PDQ39, the global score significantly improved after surgery (21.1 %) as did four subscores: mobility (25.6 %), activity of daily living (34.5 %), stigma (40.1 %) and bodily discomfort (30 %). Three PDQ39 subscores, however, showed no significant changes: emotional well-being (10.7 %), social support (3.2%) and cognition (8.5 %) and one item even worsened: communication (-7.7 %). In SF36, only physical items significantly improved. Using clinician's based rating scale, bilateral STN DBS showed significant improvement in PD patients at 12 month follow up. However, using patient's self-assessment scales, the clinical benefit of STN DBS was more subtle: physical items of QoL significantly improved, whereas mental items such as emotional well-being, social support, cognition and communication showed no improvement. Our results are suggestive of a dissociation of motor and non-motor symptoms control after bilateral STN DBS in PD patients.
The modulatory effect of adaptive deep brain stimulation on beta bursts in Parkinson’s disease
Tinkhauser, Gerd; Pogosyan, Alek; Little, Simon; Beudel, Martijn; Herz, Damian M.; Tan, Huiling
2017-01-01
Abstract Adaptive deep brain stimulation uses feedback about the state of neural circuits to control stimulation rather than delivering fixed stimulation all the time, as currently performed. In patients with Parkinson’s disease, elevations in beta activity (13–35 Hz) in the subthalamic nucleus have been demonstrated to correlate with clinical impairment and have provided the basis for feedback control in trials of adaptive deep brain stimulation. These pilot studies have suggested that adaptive deep brain stimulation may potentially be more effective, efficient and selective than conventional deep brain stimulation, implying mechanistic differences between the two approaches. Here we test the hypothesis that such differences arise through differential effects on the temporal dynamics of beta activity. The latter is not constantly increased in Parkinson’s disease, but comes in bursts of different durations and amplitudes. We demonstrate that the amplitude of beta activity in the subthalamic nucleus increases in proportion to burst duration, consistent with progressively increasing synchronization. Effective adaptive deep brain stimulation truncated long beta bursts shifting the distribution of burst duration away from long duration with large amplitude towards short duration, lower amplitude bursts. Critically, bursts with shorter duration are negatively and bursts with longer duration positively correlated with the motor impairment off stimulation. Conventional deep brain stimulation did not change the distribution of burst durations. Although both adaptive and conventional deep brain stimulation suppressed mean beta activity amplitude compared to the unstimulated state, this was achieved by a selective effect on burst duration during adaptive deep brain stimulation, whereas conventional deep brain stimulation globally suppressed beta activity. We posit that the relatively selective effect of adaptive deep brain stimulation provides a rationale for why this approach could be more efficacious than conventional continuous deep brain stimulation in the treatment of Parkinson’s disease, and helps inform how adaptive deep brain stimulation might best be delivered. PMID:28334851
Acera, M; Molano, A; Tijero, B; Bilbao, G; Lambarri, I; Villoria, R; Somme, J; Ruiz de Gopegui, E; Gabilondo, I; Gomez-Esteban, J C
2017-07-13
The aim of this study was to evaluate the effects of deep brain stimulation of the subthalamic nucleus (DBS-SN) on cognitive function in patients with Parkinson's disease (PD) 5 years after surgery. We conducted a prospective study including 50 patients with PD who underwent DBS-SN (62.5% were men; mean age of 62.2±8.2 years; mean progression time of 14.1±6.3 years). All patients were assessed before the procedure and at one year after surgery; 40 patients were further followed up until the 5-year mark. Follow-up assessments included the following neuropsychological tests: Mini-Mental State Examination (MMSE), Mattis Dementia Rating Scale (MDRS), letter-number sequencing of the WAIS-III (WAIS-III-LN), clock-drawing test, Rey auditory verbal learning test (RAVLT), Benton Visual Retention Test (BVRT), Judgment of Line Orientation (JLO) test, FAS Phonemic Verbal Fluency Test, Stroop test, and the Montgomery-Asberg Depression Rating Scale (MADRS). Patients were found to score lower on the MMSE (-0.89%), clock-drawing test (-2.61%), MDRS (-1.72%), and especially phonemic (-13.28%) and sematic verbal fluency tests (-12.40%) at one year after surgery. Delayed recall on the RAVLT worsened one year after the procedure (-10.12%). At 5 years, impairment affected mainly verbal fluency; scores decreased an additional 16.10% and 16.60% in semantic and phonemic verbal fluency, respectively. Moderate decreases were observed in immediate recall (-16.87%), WAIS-III-LN (-16.67%), and JLO test (-11.56%). In our sample, DBS-SN did not result in global cognitive impairment 5 years after surgery. Verbal function was found to be significantly impaired one year after the procedure. Impaired learning and visuospatial function may be attributed to degeneration associated with PD. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Impulse control behaviors and subthalamic deep brain stimulation in Parkinson disease.
Merola, Aristide; Romagnolo, Alberto; Rizzi, Laura; Rizzone, Mario Giorgio; Zibetti, Maurizio; Lanotte, Michele; Mandybur, George; Duker, Andrew P; Espay, Alberto J; Lopiano, Leonardo
2017-01-01
To determine the clinical and demographic correlates of persistent, remitting, and new-onset impulse control behaviors (ICBs) before and after subthalamic deep brain stimulation (STN-DBS) in Parkinson's disease (PD). We compared the pre- and post-surgical prevalence of ICBs, classified as impulse control disorders (ICD), dopamine dysregulation syndrome (DDS), and punding in 150 consecutive PD STN-DBS-treated patients and determined the association with motor, cognitive, neuropsychological, and neuropsychiatric endpoints. At baseline (before STN-DBS), ICBs were associated with younger age (p = 0.045) and male gender (85 %; p = 0.001). Over an average follow-up of 4.3 ± 2.1 years of chronic STN-DBS there was an overall trend for reduction in ICBs (from 17.3 to 12.7 %; p = 0.095) with significant improvement in hypersexuality (12-8.0 %; p = 0.047), gambling (10.7-5.3 %; p = 0.033), and DDS (4.7-0 %; p < 0.001). ICB remitted in 18/26 patients (69 %) and persisted in 8/26 (31 %); the latter group was characterized by higher levodopa equivalent daily dose. Patients who developed a new-onset ICB during follow-up (n = 11/150) were characterized by younger age (p = 0.042), lower dyskinesia improvement (p ≤ 0.035), and a gender distribution with higher prevalence of women (p = 0.018). In addition, new-onset ICB was more common among patients with borderline, schizoid, and/or schizotypal traits of personality disorders; persistent ICB in those with obsessive-compulsive traits. PD-related ICBs exhibit a complex outcome after STN-DBS, with a tendency for overall reduction but with age, gender, dopaminergic therapy, and neuropsychiatric features exerting independent effects.
Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng
2016-12-01
Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation-induced side effects after multiple treatments with conventional stimulation. A return to conventional stimulation may be required if ILS induces new side effects or the needs of the patient change.
Zhang, Shizhen; Zhou, Peizhi; Jiang, Shu; Wang, Wei; Li, Peng
2016-01-01
Abstract Background: Deep brain stimulation (DBS) of the subthalamic nucleus is an effective treatment for advanced Parkinson disease (PD). However, achieving ideal outcomes by conventional programming can be difficult in some patients, resulting in suboptimal control of PD symptoms and stimulation-induced adverse effects. Interleaving stimulation (ILS) is a newer programming technique that can individually optimize the stimulation area, thereby improving control of PD symptoms while alleviating stimulation-induced side effects after conventional programming fails to achieve the desired results. Methods: We retrospectively reviewed PD patients who received DBS programming during the previous 4 years in our hospital. We collected clinical and demographic data from 12 patients who received ILS because of incomplete alleviation of PD symptoms or stimulation-induced adverse effects after conventional programming had proven ineffective or intolerable. Appropriate lead location was confirmed with postoperative reconstruction images. The rationale and clinical efficacy of ILS was analyzed. Results: We divided our patients into 4 groups based on the following symptoms: stimulation-induced dysarthria and choreoathetoid dyskinesias, gait disturbance, and incomplete control of parkinsonism. After treatment with ILS, patients showed satisfactory improvement in PD symptoms and alleviation of stimulation-induced side effects, with a mean improvement in Unified PD Rating Scale motor scores of 26.9%. Conclusions: ILS is a newer choice and effective programming strategy to maximize symptom control in PD while decreasing stimulation-induced adverse effects when conventional programming fails to achieve satisfactory outcome. However, we should keep in mind that most DBS patients are routinely treated with conventional stimulation and that not all patients benefit from ILS. ILS is not recommended as the first choice of programming, and it is recommended only when patients have unsatisfactory control of PD symptoms or stimulation-induced side effects after multiple treatments with conventional stimulation. A return to conventional stimulation may be required if ILS induces new side effects or the needs of the patient change. PMID:27930569
MRI directed bilateral stimulation of the subthalamic nucleus in patients with Parkinson's disease
Patel, N; Plaha, P; O'Sullivan, K; McCarter, R; Heywood, P; Gill, S
2003-01-01
Objective: Bilateral chronic high frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has emerged as an appropriate therapy for patients with advanced Parkinson's disease refractory to medical therapy. Advances in neuroimaging and neurophysiology have led to the development of varied targeting methods for the delivery of this treatment. Intraoperative neurophysiological and clinical monitoring is regarded by many to be mandatory for accurate STN localisation. We have examined efficacy of bilateral STN stimulation using a predominantly magnetic resonance imaging (MRI)-directed technique. Methods: DBS leads were stereotactically implanted into the STN using an MRI directed method, with intraoperative macrostimulation used purely for adjustment. The effects of DBS were evaluated in 16 patients followed up to 12 months, and compared with baseline assessments. Assessments were performed in both off and on medication states, and were based on the Unified Parkinson's Disease Rating Scale (UPDRS) and timed motor tests. Functional status outcomes were examined using the PDQ-39 quality of life questionnaire. A battery of psychometric tests was used to assess cognition. Results: After 12 months, stimulation in the off medication state resulted in significant improvements in Activities of Daily Living and Motor scores (UPDRS parts II and III) by 62% and 61% respectively. Timed motor tests were significantly improved in the off medication state. Motor scores (UPDRS part III) were significantly improved by 40% in the on medication state. Dyskinesias and off duration were significantly reduced and the mean dose of L-dopa equivalents was reduced by half. Psychometric test scores were mostly unchanged or improved. Adverse events were few. Conclusions: An MRI directed targeting method for implantation of DBS leads into the STN can be used safely and effectively, and results are comparable with studies using intraoperative microelectrode neurophysiological targeting. In addition, our method was associated with an efficient use of operating time, and without the necessary costs of microelectrode recording. PMID:14638880
Masilamoni, Gunasingh Jeyaraj; Groover, Olivia; Smith, Yoland
2017-04-01
There is anatomical and functional evidence that ventral midbrain dopaminergic (DA) cell groups and the subthalamic nucleus (STN) receive noradrenergic innervation in rodents, but much less is known about these interactions in primates. Degeneration of NE neurons in the locus coeruleus (LC) and related brainstem NE cell groups is a well-established pathological feature of Parkinson's disease (PD), but the development of such pathology in animal models of PD has been inconsistent across species and laboratories. We recently demonstrated 30-40% neuronal loss in the LC, A5 and A6 NE cell groups of rhesus monkeys rendered parkinsonian by chronic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In this study, we used dopamine-beta-hydroxylase (DβH) immunocytochemistry to assess the impact of this neuronal loss on the number of NE terminal-like varicosities in the substantia nigra pars compacta (SNC), ventral tegmental area (VTA), retrorubral field (RRF) and STN of MPTP-treated parkinsonian monkeys. Our findings reveal that the NE innervation of the ventral midbrain and STN of normal monkeys is heterogeneously distributed being far more extensive in the VTA, RRF and dorsal tier of the SNC than in the ventral SNC and STN. In parkinsonian monkeys, all regions underwent a significant (~50-70%) decrease in NE innervation. At the electron microscopic level, some DβH-positive terminals formed asymmetric axo-dendritic synapses in VTA and STN. These findings demonstrate that the VTA, RRF and SNCd are the main ventral midbrain targets of ascending NE inputs, and that these connections undergo a major break-down in chronically MPTP-treated parkinsonian monkeys. This severe degeneration of the ascending NE system may contribute to the pathophysiology of ventral midbrain and STN neurons in PD. Copyright © 2017 Elsevier Inc. All rights reserved.
Asymmetric right/left encoding of emotions in the human subthalamic nucleus
Eitan, Renana; Shamir, Reuben R.; Linetsky, Eduard; Rosenbluh, Ovadya; Moshel, Shay; Ben-Hur, Tamir; Bergman, Hagai; Israel, Zvi
2013-01-01
Emotional processing is lateralized to the non-dominant brain hemisphere. However, there is no clear spatial model for lateralization of emotional domains in the basal ganglia. The subthalamic nucleus (STN), an input structure in the basal ganglia network, plays a major role in the pathophysiology of Parkinson's disease (PD). This role is probably not limited only to the motor deficits of PD, but may also span the emotional and cognitive deficits commonly observed in PD patients. Beta oscillations (12–30 Hz), the electrophysiological signature of PD, are restricted to the dorsolateral part of the STN that corresponds to the anatomically defined sensorimotor STN. The more medial, more anterior and more ventral parts of the STN are thought to correspond to the anatomically defined limbic and associative territories of the STN. Surprisingly, little is known about the electrophysiological properties of the non-motor domains of the STN, nor about electrophysiological differences between right and left STNs. In this study, microelectrodes were utilized to record the STN spontaneous spiking activity and responses to vocal non-verbal emotional stimuli during deep brain stimulation (DBS) surgeries in human PD patients. The oscillation properties of the STN neurons were used to map the dorsal oscillatory and the ventral non-oscillatory regions of the STN. Emotive auditory stimulation evoked activity in the ventral non-oscillatory region of the right STN. These responses were not observed in the left ventral STN or in the dorsal regions of either the right or left STN. Therefore, our results suggest that the ventral non-oscillatory regions are asymmetrically associated with non-motor functions, with the right ventral STN associated with emotional processing. These results suggest that DBS of the right ventral STN may be associated with beneficial or adverse emotional effects observed in PD patients and may relieve mental symptoms in other neurological and psychiatric diseases. PMID:24194703
Chan, Danny T M; Zhu, Cannon X L; Lau, Claire K Y; Poon, Tak L; Cheung, Fung C; Lee, Michael; Taw, Benedict; Hung, Kwan N; Choi, Priscilla; AuYeung, Mandy; Chan, Germaine; Cheung, Yuk F; Chan, Anne Y Y; Yeung, Jonas H M; Mok, Vincent C T; Poon, Wai S
2016-09-01
We assessed the effects of bilateral subthalamic nucleus (STN) deep brain stimulation (DBS) in patients with Parkinson disease at the 1-year and 2-year follow-up evaluations. Unified Parkinson's Disease Rating Scale (UPDRS) motor score at "off" medication ("on" DBS) and quality-of-life assessments (39-item Parkinson's Disease Questionnaire [PDQ-39]) were conducted. The percentage of awake "on" time and awake "off" time and levodopa requirement were also assessed. A 2-year prospective study was conducted of 25 consecutive patients from 3 DBS referral centers in Hong Kong. The patients were treated with bilateral stimulation of the STN. Assessments were performed at 1 year and 2 years after DBS and were compared with the baseline. The 2-year outcome assessments were completed by 18 patients. The mean UPDRS motor score improvement was 57% in the first year and 45% in the second year. PDQ-39 showed significant improvement in quality of life for 2 consecutive years. The levodopa requirement decreased 63% in the first year and 55.9% in the second year. The awake "on" time was doubled in the first year and sustained in the second year. Awake "off" time was reduced from 28.1% to 5.9% in the first year and returned to 10.6% in the second year. Improvement of UPDRS motor score, reduction in awake "off" time, and decrease of daily levodopa dosage all were main factors correlated with the improvement in PDQ-39 summary index. The effects of STN DBS in patients with Parkinson disease in Hong Kong were satisfactory. The results showed that reduction in UPDRS motor score, awake "off"-time, and daily levodopa dosage were the major drivers of overall improvement in PDQ-39. Copyright © 2016 Elsevier Inc. All rights reserved.
Sajonz, Bastian Elmar Alexander; Amtage, Florian; Reinacher, Peter Christoph; Jenkner, Carolin; Piroth, Tobias; Kätzler, Jürgen; Urbach, Horst; Coenen, Volker Arnd
2016-12-22
Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS). ©Bastian Elmar Alexander Sajonz, Florian Amtage, Peter Christoph Reinacher, Carolin Jenkner, Tobias Piroth, Jürgen Kätzler, Horst Urbach, Volker Arnd Coenen. Originally published in JMIR Research Protocols (http://www.researchprotocols.org), 22.12.2016.
A Multilevel Testlet Model for Dual Local Dependence
ERIC Educational Resources Information Center
Jiao, Hong; Kamata, Akihito; Wang, Shudong; Jin, Ying
2012-01-01
The applications of item response theory (IRT) models assume local item independence and that examinees are independent of each other. When a representative sample for psychometric analysis is selected using a cluster sampling method in a testlet-based assessment, both local item dependence and local person dependence are likely to be induced.…
[Long-term care of Parkinson patients with deep brain stimulation].
Allert, N; Barbe, M T; Timmermann, L; Coenen, V A
2011-12-01
For more than 15 years deep brain stimulation of the subthalamic nucleus and globus pallidus internus have become therapeutic options in advanced Parkinson's disease. The number of patients with long-term treatment is increasing steadily. This review focuses on issues of the long-term care of these Parkinson's patients, including differences of the available deep brain stimulation systems, recommendations for follow-up examinations, implications for medical diagnostics and therapies and an algorithm for symptom deterioration. Today, there is no profound evidence that deep brain stimulation prevents disease progression. However, symptomatic relief from motor symptoms is maintained during long-term follow-up and interruption of the therapy remains an exception. © Georg Thieme Verlag KG Stuttgart · New York.
[Deep brain stimulation in the treatment of movement disorders].
Goto, Satoshi
2007-11-01
The introduction of deep brain stimulation (DBS) was a historical step forward for the treatment of advanced and medically intractable movement disorders that include Parkinson's disease, dystonias, essential tremor, and Holmes' tremor. DBS is able to modulate the target region electrically in a reversible and adjustable fashion in contrast to an irreversible and destructive lesioning procedure. In the treatment of movement disorders, the potential targets are the thalamic ventral intermediate nucleus (Vim), globus pallidus internus (GPi), subthalamic nucleus (STN), pedunculopontine nucleus (PPN), and thalamic Vo-complex nucleus. With the development of DBS technology and stereotactic neurosurgical techniques, its therapeutic efficacy has been increased while reducing surgical complications. DBS has become an established therapy for disabling movement disorders and is currently being used to treat neuropsychiatric disorders.
Brain region-dependent differential expression of alpha-synuclein.
Taguchi, Katsutoshi; Watanabe, Yoshihisa; Tsujimura, Atsushi; Tanaka, Masaki
2016-04-15
α-Synuclein, the major constituent of Lewy bodies (LBs), is normally expressed in presynapses and is involved in synaptic function. Abnormal intracellular aggregation of α-synuclein is observed as LBs and Lewy neurites in neurodegenerative disorders, such as Parkinson's disease (PD) or dementia with Lewy bodies. Accumulated evidence suggests that abundant intracellular expression of α-synuclein is one of the risk factors for pathological aggregation. Recently, we reported differential expression patterns of α-synuclein between excitatory and inhibitory hippocampal neurons. Here we further investigated the precise expression profile in the adult mouse brain with special reference to vulnerable regions along the progression of idiopathic PD. The results show that α-synuclein was highly expressed in the neuronal cell bodies of some early PD-affected brain regions, such as the olfactory bulb, dorsal motor nucleus of the vagus, and substantia nigra pars compacta. Synaptic expression of α-synuclein was mostly accompanied by expression of vesicular glutamate transporter-1, an excitatory presynaptic marker. In contrast, expression of α-synuclein in the GABAergic inhibitory synapses was different among brain regions. α-Synuclein was clearly expressed in inhibitory synapses in the external plexiform layer of the olfactory bulb, globus pallidus, and substantia nigra pars reticulata, but not in the cerebral cortex, subthalamic nucleus, or thalamus. These results suggest that some neurons in early PD-affected human brain regions express high levels of perikaryal α-synuclein, as happens in the mouse brain. Additionally, synaptic profiles expressing α-synuclein are different in various brain regions. © 2015 Wiley Periodicals, Inc.
The many facets of motor learning and their relevance for Parkinson's disease.
Marinelli, Lucio; Quartarone, Angelo; Hallett, Mark; Frazzitta, Giuseppe; Ghilardi, Maria Felice
2017-07-01
The final goal of motor learning, a complex process that includes both implicit and explicit (or declarative) components, is the optimization and automatization of motor skills. Motor learning involves different neural networks and neurotransmitters systems depending on the type of task and on the stage of learning. After the first phase of acquisition, a motor skill goes through consolidation (i.e., becoming resistant to interference) and retention, processes in which sleep and long-term potentiation seem to play important roles. The studies of motor learning in Parkinson's disease have yielded controversial results that likely stem from the use of different experimental paradigms. When a task's characteristics, instructions, context, learning phase and type of measures are taken into consideration, it is apparent that, in general, only learning that relies on attentional resources and cognitive strategies is affected by PD, in agreement with the finding of a fronto-striatal deficit in this disease. Levodopa administration does not seem to reverse the learning deficits in PD, while deep brain stimulation of either globus pallidus or subthalamic nucleus appears to be beneficial. Finally and most importantly, patients with PD often show a decrease in retention of newly learned skill, a problem that is present even in the early stages of the disease. A thorough dissection and understanding of the processes involved in motor learning is warranted to provide solid bases for effective medical, surgical and rehabilitative approaches in PD. Copyright © 2017 International Federation of Clinical Neurophysiology. All rights reserved.
Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment.
ERIC Educational Resources Information Center
Habing, Brian
2001-01-01
Discusses ideas underlying nonparametric regression and the parametric bootstrap with an overview of their application to item response theory and the assessment of local dependence. Illustrates the use of the method in assessing local dependence that varies with examinee trait levels. (SLD)
Analysis of electrodes' placement and deformation in deep brain stimulation from medical images
NASA Astrophysics Data System (ADS)
Mehri, Maroua; Lalys, Florent; Maumet, Camille; Haegelen, Claire; Jannin, Pierre
2012-02-01
Deep brain stimulation (DBS) is used to reduce the motor symptoms such as rigidity or bradykinesia, in patients with Parkinson's disease (PD). The Subthalamic Nucleus (STN) has emerged as prime target of DBS in idiopathic PD. However, DBS surgery is a difficult procedure requiring the exact positioning of electrodes in the pre-operative selected targets. This positioning is usually planned using patients' pre-operative images, along with digital atlases, assuming that electrode's trajectory is linear. However, it has been demonstrated that anatomical brain deformations induce electrode's deformations resulting in errors in the intra-operative targeting stage. In order to meet the need of a higher degree of placement accuracy and to help constructing a computer-aided-placement tool, we studied the electrodes' deformation in regards to patients' clinical data (i.e., sex, mean PD duration and brain atrophy index). Firstly, we presented an automatic algorithm for the segmentation of electrode's axis from post-operative CT images, which aims to localize the electrodes' stimulated contacts. To assess our method, we applied our algorithm on 25 patients who had undergone bilateral STNDBS. We found a placement error of 0.91+/-0.38 mm. Then, from the segmented axis, we quantitatively analyzed the electrodes' curvature and correlated it with patients' clinical data. We found a positive significant correlation between mean curvature index of the electrode and brain atrophy index for male patients and between mean curvature index of the electrode and mean PD duration for female patients. These results help understanding DBS electrode' deformations and would help ensuring better anticipation of electrodes' placement.
Eight-hours adaptive deep brain stimulation in patients with Parkinson disease
Arlotti, Mattia; Marceglia, Sara; Foffani, Guglielmo; Volkmann, Jens; Lozano, Andres M.; Moro, Elena; Cogiamanian, Filippo; Prenassi, Marco; Bocci, Tommaso; Cortese, Francesca; Rampini, Paolo; Barbieri, Sergio
2018-01-01
Objectives To assess the feasibility and clinical efficacy of local field potentials (LFPs)–based adaptive deep brain stimulation (aDBS) in patients with advanced Parkinson disease (PD) during daily activities in an open-label, nonblinded study. Methods We monitored neurophysiologic and clinical fluctuations during 2 perioperative experimental sessions lasting for up to 8 hours. On the first day, the patient took his/her daily medication, while on the second, he/she additionally underwent subthalamic nucleus aDBS driven by LFPs beta band power. Results The beta band power correlated in both experimental sessions with the patient's clinical state (Pearson correlation coefficient r = 0.506, p < 0.001, and r = 0.477, p < 0.001). aDBS after LFP changes was effective (30% improvement without medication [3-way analysis of variance, interaction day × medication p = 0.036; 30.5 ± 3.4 vs 22.2 ± 3.3, p = 0.003]), safe, and well tolerated in patients performing regular daily activities and taking additional dopaminergic medication. aDBS was able to decrease DBS amplitude during motor “on” states compared to “off” states (paired t test p = 0.046), and this automatic adjustment of STN-DBS prevented dyskinesias. Conclusions The main findings of our study are that aDBS is technically feasible in everyday life and provides a safe, well-tolerated, and effective treatment method for the management of clinical fluctuations. Classification of evidence This study provides Class IV evidence that for patients with advanced PD, aDBS is safe, well tolerated, and effective in controlling PD motor symptoms. PMID:29444973
2016-01-01
Abstract The basal ganglia are a crucial brain system for behavioral selection, and their function is disturbed in Parkinson’s disease (PD), where neurons exhibit inappropriate synchronization and oscillations. We present a spiking neural model of basal ganglia including plausible details on synaptic dynamics, connectivity patterns, neuron behavior, and dopamine effects. Recordings of neuronal activity in the subthalamic nucleus and Type A (TA; arkypallidal) and Type I (TI; prototypical) neurons in globus pallidus externa were used to validate the model. Simulation experiments predict that both local inhibition in striatum and the existence of an indirect pathway are important for basal ganglia to function properly over a large range of cortical drives. The dopamine depletion–induced increase of AMPA efficacy in corticostriatal synapses to medium spiny neurons (MSNs) with dopamine receptor D2 synapses (CTX-MSN D2) and the reduction of MSN lateral connectivity (MSN–MSN) were found to contribute significantly to the enhanced synchrony and oscillations seen in PD. Additionally, reversing the dopamine depletion–induced changes to CTX–MSN D1, CTX–MSN D2, TA–MSN, and MSN–MSN couplings could improve or restore basal ganglia action selection ability. In summary, we found multiple changes of parameters for synaptic efficacy and neural excitability that could improve action selection ability and at the same time reduce oscillations. Identification of such targets could potentially generate ideas for treatments of PD and increase our understanding of the relation between network dynamics and network function. PMID:28101525
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C.; Westbrook, Thomas F.; Harper, J. Wade; Elledge, Stephen J.
2015-01-01
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify new DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the ALS candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a PARP-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors and >70% of randomly tested transcription factors localized to sites of DNA damage and approximately 90% were PARP-dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding domain-dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP-dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. PMID:26004182
Detecting local diversity-dependence in diversification.
Xu, Liang; Etienne, Rampal S
2018-04-06
Whether there are ecological limits to species diversification is a hotly debated topic. Molecular phylogenies show slowdowns in lineage accumulation, suggesting that speciation rates decline with increasing diversity. A maximum-likelihood (ML) method to detect diversity-dependent (DD) diversification from phylogenetic branching times exists, but it assumes that diversity-dependence is a global phenomenon and therefore ignores that the underlying species interactions are mostly local, and not all species in the phylogeny co-occur locally. Here, we explore whether this ML method based on the nonspatial diversity-dependence model can detect local diversity-dependence, by applying it to phylogenies, simulated with a spatial stochastic model of local DD speciation, extinction, and dispersal between two local communities. We find that type I errors (falsely detecting diversity-dependence) are low, and the power to detect diversity-dependence is high when dispersal rates are not too low. Interestingly, when dispersal is high the power to detect diversity-dependence is even higher than in the nonspatial model. Moreover, estimates of intrinsic speciation rate, extinction rate, and ecological limit strongly depend on dispersal rate. We conclude that the nonspatial DD approach can be used to detect diversity-dependence in clades of species that live in not too disconnected areas, but parameter estimates must be interpreted cautiously. © 2018 The Author(s). Evolution published by Wiley Periodicals, Inc. on behalf of The Society for the Study of Evolution.
Local fluctuations of the signed traded volumes and the dependencies of demands: a copula analysis
NASA Astrophysics Data System (ADS)
Wang, Shanshan; Guhr, Thomas
2018-03-01
We investigate how the local fluctuations of the signed traded volumes affect the dependence of demands between stocks. We analyze the empirical dependence of demands using copulas and show that they are well described by a bivariate K copula density function. We find that large local fluctuations strongly increase the positive dependence but lower slightly the negative one in the copula density. This interesting feature is due to cross-correlations of volume imbalances between stocks. Also, we explore the asymmetries of tail dependencies of the copula density, which are moderate for the negative dependencies but strong for the positive ones. For the latter, we reveal that large local fluctuations of the signed traded volumes trigger stronger dependencies of demands than of supplies, probably indicating a bull market with persistent raising of prices.
Kumaravelu, Karthik; Brocker, David T; Grill, Warren M
2016-04-01
Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.
Izhar, Lior; Adamson, Britt; Ciccia, Alberto; Lewis, Jedd; Pontano-Vaites, Laura; Leng, Yumei; Liang, Anthony C; Westbrook, Thomas F; Harper, J Wade; Elledge, Stephen J
2015-06-09
Localization to sites of DNA damage is a hallmark of DNA damage response (DDR) proteins. To identify DDR factors, we screened epitope-tagged proteins for localization to sites of chromatin damaged by UV laser microirradiation and found >120 proteins that localize to damaged chromatin. These include the BAF tumor suppressor complex and the amyotrophic lateral sclerosis (ALS) candidate protein TAF15. TAF15 contains multiple domains that bind damaged chromatin in a poly-(ADP-ribose) polymerase (PARP)-dependent manner, suggesting a possible role as glue that tethers multiple PAR chains together. Many positives were transcription factors; > 70% of randomly tested transcription factors localized to sites of DNA damage, and of these, ∼90% were PARP dependent for localization. Mutational analyses showed that localization to damaged chromatin is DNA-binding-domain dependent. By examining Hoechst staining patterns at damage sites, we see evidence of chromatin decompaction that is PARP dependent. We propose that PARP-regulated chromatin remodeling at sites of damage allows transient accessibility of DNA-binding proteins. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Localized attacks on spatially embedded networks with dependencies.
Berezin, Yehiel; Bashan, Amir; Danziger, Michael M; Li, Daqing; Havlin, Shlomo
2015-03-11
Many real world complex systems such as critical infrastructure networks are embedded in space and their components may depend on one another to function. They are also susceptible to geographically localized damage caused by malicious attacks or natural disasters. Here, we study a general model of spatially embedded networks with dependencies under localized attacks. We develop a theoretical and numerical approach to describe and predict the effects of localized attacks on spatially embedded systems with dependencies. Surprisingly, we find that a localized attack can cause substantially more damage than an equivalent random attack. Furthermore, we find that for a broad range of parameters, systems which appear stable are in fact metastable. Though robust to random failures-even of finite fraction-if subjected to a localized attack larger than a critical size which is independent of the system size (i.e., a zero fraction), a cascading failure emerges which leads to complete system collapse. Our results demonstrate the potential high risk of localized attacks on spatially embedded network systems with dependencies and may be useful for designing more resilient systems.
Mendonça, Marcelo D; Barbosa, Raquel; Seromenho-Santos, Alexandra; Reizinho, Carla; Bugalho, Paulo
2018-04-01
Stuttering, a speech fluency disorder, is a rare complication of Deep Brain Stimulation (DBS) in Parkinson's Disease (PD). We report a 61 years-old patient with PD, afflicted by severe On and Off dystonia, treated with Subthalamic Nucleus DBS that developed post-DBS stuttering while on 130 Hz stimulation. Stuttering reduction was noted when frequency was changed to 80 Hz, but the previously observed dystonia improvement was lost. There are no reports in literature on patients developing stuttering with low-frequency stimulation. We question if low-frequency stimulation could have a role for managing PD's post-DBS stuttering, and notice that stuttering improvement was associated with dystonia worsening suggesting that they are distinct phenomena. Copyright © 2018 Elsevier Ltd. All rights reserved.
Frictional behavior of large displacement experimental faults
Beeler, N.M.; Tullis, T.E.; Blanpied, M.L.; Weeks, J.D.
1996-01-01
The coefficient of friction and velocity dependence of friction of initially bare surfaces and 1-mm-thick simulated fault gouges (400 mm at 25??C and 25 MPa normal stress. Steady state negative friction velocity dependence and a steady state fault zone microstructure are achieved after ???18 mm displacement, and an approximately constant strength is reached after a few tens of millimeters of sliding on initially bare surfaces. Simulated fault gouges show a large but systematic variation of friction, velocity dependence of friction, dilatancy, and degree of localization with displacement. At short displacement (<10 mm), simulated gouge is strong, velocity strengthening and changes in sliding velocity are accompanied by relatively large changes in dilatancy rate. With continued displacement, simulated gouges become progressively weaker and less velocity strengthening, the velocity dependence of dilatancy rate decreases, and deformation becomes localized into a narrow basal shear which at its most localized is observed to be velocity weakening. With subsequent displacement, the fault restrengthens, returns to velocity strengthening, or to velocity neutral, the velocity dependence of dilatancy rate becomes larger, and deformation becomes distributed. Correlation of friction, velocity dependence of friction and of dilatancy rate, and degree of localization at all displacements in simulated gouge suggest that all quantities are interrelated. The observations do not distinguish the independent variables but suggest that the degree of localization is controlled by the fault strength, not by the friction velocity dependence. The friction velocity dependence and velocity dependence of dilatancy rate can be used as qualitative measures of the degree of localization in simulated gouge, in agreement with previous studies. Theory equating the friction velocity dependence of simulated gouge to the sum of the friction velocity dependence of bare surfaces and the velocity dependence of dilatancy rate of simulated gouge fails to quantitatively account for the experimental observations.
Ihlen, Espen A. F.; Weiss, Aner; Helbostad, Jorunn L.; Hausdorff, Jeffrey M.
2015-01-01
The present study compares phase-dependent measures of local dynamic stability of daily life walking with 35 conventional gait features in their ability to discriminate between community-dwelling older fallers and nonfallers. The study reanalyzes 3D-acceleration data of 3-day daily life activity from 39 older people who reported less than 2 falls during one year and 31 who reported two or more falls. Phase-dependent local dynamic stability was defined for initial perturbation at 0%, 20%, 40%, 60%, and 80% of the step cycle. A partial least square discriminant analysis (PLS-DA) was used to compare the discriminant abilities of phase-dependent local dynamic stability with the discriminant abilities of 35 conventional gait features. The phase-dependent local dynamic stability λ at 0% and 60% of the step cycle discriminated well between fallers and nonfallers (AUC = 0.83) and was significantly larger (p < 0.01) for the nonfallers. Furthermore, phase-dependent λ discriminated as well between fallers and nonfallers as all other gait features combined. The present result suggests that phase-dependent measures of local dynamic stability of daily life walking might be of importance for further development in early fall risk screening tools. PMID:26491669
NASA Astrophysics Data System (ADS)
Foufoula-Georgiou, E.; Ganti, V. K.; Passalacqua, P.
2010-12-01
Nonlinear geomorphic transport laws are often derived from mechanistic considerations at a point, and yet they are implemented on 90m or 30 m DEMs, presenting a mismatch in the scales of derivation and application of the flux laws. Since estimates of local slopes and curvatures are known to depend on the scale of the DEM used in their computation, two questions arise: (1) how to meaningfully compensate for the scale dependence, if any, of local transport laws? and (2) how to formally derive, via upscaling, constitutive laws that are applicable at larger scales? Recently, non-local geomorphic transport laws for sediment transport on hillslopes have been introduced using the concept of an integral flux that depends on topographic attributes in the vicinity of a point of interest. In this paper, we demonstrate the scale dependence of local nonlinear hillslope sediment transport laws and derive a closure term via upscaling (Reynolds averaging). We also show that the non-local hillslope transport laws are inherently scale independent owing to their non-local, scale-free nature. These concepts are demonstrated via an application to a small subbasin of the Oregon Coast Range using 2m LiDAR topographic data.
Finite metapopulation models with density-dependent migration and stochastic local dynamics
Saether, B.-E.; Engen, S.; Lande, R.
1999-01-01
The effects of small density-dependent migration on the dynamics of a metapopulation are studied in a model with stochastic local dynamics. We use a diffusion approximation to study how changes in the migration rate and habitat occupancy affect the rates of local colonization and extinction. If the emigration rate increases or if the immigration rate decreases with local population size, a positive expected rate of change in habitat occupancy is found for a greater range of habitat occupancies than when the migration is density-independent. In contrast, the reverse patterns of density dependence in respective emigration and immigration reduce the range of habitat occupancies where the metapopulation will be viable. This occurs because density-dependent migration strongly influences both the establishment and rescue effects in the local dynamics of metapopulations.
Liu, Yi; Li, Weina; Tan, Changhong; Liu, Xi; Wang, Xin; Gui, Yuejiang; Qin, Lu; Deng, Fen; Hu, Changlin; Chen, Lifen
2014-09-01
Deep brain stimulation (DBS) is the surgical procedure of choice for patients with advanced Parkinson disease (PD). The globus pallidus internus (GPi) and the subthalamic nucleus (STN) are commonly targeted by this procedure. The purpose of this meta-analysis was to compare the efficacy of DBS in each region. MEDLINE/PubMed, EMBASE, Web of Knowledge, and the Cochrane Library were searched for English-language studies published before April 2013. of studies investigating the efficacy and clinical outcomes of DBS of the GPi and STN for PD were analyzed. Six eligible trials containing a total of 563 patients were included in the analysis. Deep brain stimulation of the GPi or STN equally improved motor function, measured by the Unified Parkinson's Disease Rating Scale Section III (UPDRSIII) (motor section, for patients in on- and off-medication phases), within 1 year postsurgery. The change score for the on-medication phase was 0.68 (95% CI - 2.12 to 3.47, p > 0.05; 5 studies, 518 patients) and for the off-medication phase was 1.83 (95% CI - 3.12 to 6.77, p > 0.05; 5 studies, 518 patients). The UPDRS Section II (activities of daily living) scores for patients on medication improved equally in both DBS groups (p = 0.97). STN DBS allowed medication dosages to be reduced more than GPi DBS (95% CI 129.27-316.64, p < 0.00001; 5 studies, 540 patients). Psychiatric symptoms, measured by Beck Depression Inventory, 2nd edition scores, showed greater improvement from baseline after GPi DBS than after STN DBS (standardized mean difference -2.28, 95% CI -3.73 to -0.84, p = 0.002; 3 studies, 382 patients). GPi and STN DBS improve motor function and activities of daily living for PD patients. Differences in therapeutic efficacy for PD were not observed between the 2 procedures. STN DBS allowed greater reduction in medication for patients, whereas GPi DBS provided greater relief from psychiatric symptoms. An understanding of other symptomatic aspects of targeting each region and long-term observations on therapeutic effects are needed.
Koga, Shunsuke; Kouri, Naomi; Walton, Ronald L; Ebbert, Mark T W; Josephs, Keith A; Litvan, Irene; Graff-Radford, Neill; Ahlskog, J Eric; Uitti, Ryan J; van Gerpen, Jay A; Boeve, Bradley F; Parks, Adam; Ross, Owen A; Dickson, Dennis W
2018-06-20
Corticobasal degeneration (CBD) is a clinically heterogeneous tauopathy, which has overlapping clinicopathologic and genetic characteristics with progressive supranuclear palsy (PSP). This study aimed to elucidate whether transactive response DNA-binding protein of 43 kDa (TDP-43) pathology contributes to clinicopathologic heterogeneity of CBD. Paraffin-embedded sections of the midbrain, pons, subthalamic nucleus, and basal forebrain from 187 autopsy-confirmed CBD cases were screened with immunohistochemistry for phospho-TDP-43. In cases with TDP-43 pathology, additional brain regions (i.e., precentral, cingulate, and superior frontal gyri, hippocampus, medulla, and cerebellum) were immunostained. Hierarchical clustering analysis was performed based on the topographical distribution and severity of TDP-43 pathology, and clinicopathologic and genetic features were compared between the clusters. TDP-43 pathology was observed in 45% of CBD cases, most frequently in midbrain tegmentum (80% of TDP-43-positive cases), followed by subthalamic nucleus (69%). TDP-43-positive CBD was divided into TDP-limited (52%) and TDP-severe (48%) by hierarchical clustering analysis. TDP-severe patients were more likely to have been diagnosed clinically as PSP compared to TDP-limited and TDP-negative patients (80 vs 32 vs 30%, P < 0.001). The presence of downward gaze palsy was the strongest factor for the antemortem diagnosis of PSP, and severe TDP-43 pathology in the midbrain tectum was strongly associated with downward gaze palsy. In addition, tau burden in the olivopontocerebellar system was significantly greater in TDP-positive than TDP-negative CBD. Genetic analyses revealed that MAPT H1/H1 genotype frequency was significantly lower in TDP-severe than in TDP-negative and TDP-limited CBD (65 vs 89 vs 91%, P < 0.001). The homozygous minor allele frequencies in GRN rs5848 and TMEM106B rs3173615 were not significantly different between the three groups. In conclusion, the present study indicates that CBD with severe TDP-43 pathology is a distinct clinicopathologic subtype of CBD, characterized by PSP-like clinical presentations, severe tau pathology in the olivopontocerebellar system, and low frequency of MAPT H1 haplotype.
Effects of subthalamic stimulation on speech of consecutive patients with Parkinson disease
Zrinzo, L.; Martinez-Torres, I.; Frost, E.; Pinto, S.; Foltynie, T.; Holl, E.; Petersen, E.; Roughton, M.; Hariz, M.I.; Limousin, P.
2011-01-01
Objective: Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced Parkinson disease (PD). Following STN-DBS, speech intelligibility can deteriorate, limiting its beneficial effect. Here we prospectively examined the short- and long-term speech response to STN-DBS in a consecutive series of patients to identify clinical and surgical factors associated with speech change. Methods: Thirty-two consecutive patients were assessed before surgery, then 1 month, 6 months, and 1 year after STN-DBS in 4 conditions on- and off-medication with on- and off-stimulation using established and validated speech and movement scales. Fifteen of these patients were followed up for 3 years. A control group of 12 patients with PD were followed up for 1 year. Results: Within the surgical group, speech intelligibility significantly deteriorated by an average of 14.2% ± 20.15% off-medication and 16.9% ± 21.8% on-medication 1 year after STN-DBS. The medical group deteriorated by 3.6% ± 5.5% and 4.5% ± 8.8%, respectively. Seven patients showed speech amelioration after surgery. Loudness increased significantly in all tasks with stimulation. A less severe preoperative on-medication motor score was associated with a more favorable speech response to STN-DBS after 1 year. Medially located electrodes on the left STN were associated with a significantly higher risk of speech deterioration than electrodes within the nucleus. There was a strong relationship between high voltage in the left electrode and poor speech outcome at 1 year. Conclusion: The effect of STN-DBS on speech is variable and multifactorial, with most patients exhibiting decline of speech intelligibility. Both medical and surgical issues contribute to deterioration of speech in STN-DBS patients. Classification of evidence: This study provides Class III evidence that STN-DBS for PD results in deterioration in speech intelligibility in all combinations of medication and stimulation states at 1 month, 6 months, and 1 year compared to baseline and to control subjects treated with best medical therapy. PMID:21068426
Nigrothalamic projections in the monkey demonstrated by autoradiographic technics.
Carpenter, M B; Nakano, K; Kim, R
1976-02-15
In spite of repeated demonstrations by degeneration technics, nigrothalamic fibers have been regarded with some skepticism. Attempts were made to trace nigral efferent projections in the monkey by autoradiographic technics. Tritiated amino acids (L-leucine, L-lysine and L-proline), injected into portions of the substantia nigra (SN), labeled cells in four regions, designated as, (1) rostrolateral, (2) caudolateral, (3) rostromedial and (4) central. Rostrolateral nigral neurons transported radioactive label preferentially and abundantly to thalamic nuclei; localized isotope was found in parts of three thalamic nuclei, the medial part of the ventral lateral nucleus (VLm), the magnocellular part of the ventral anterior nucleus (VAmc), and the paralaminar part of the dorsomedial nucleus (DMpl)9 Lateral neurons in the caudal half of the SN transmitted radioactive label to the same thalamic nuclei as rostrolateral nigral neuron. Isotope transported to portions of the striatum was modest and localized. Radioactive label taken up by large cells in the caudal third of the SN was transported to portions of the striatum, but not to thalamic nuclei. Labeled nigral neurons in the medial two-thirds of the rostral half of the SN, and in the middle third of the central part of the SN, transported the label mainly to parts of the caudate nucleus and putamen. In these animals modest radioactive label was seen in VLm and VAmc, but not in other thalamic nuclei. There was no evidence that nigral neurons project to the subthalamic nucleus. No radioactive transport from nigral neurons was detected in the superior colliculus, the midbrain tegmentum, or the red nucleus, and none was transported to more caudal brain stem nuclei. Nigrothalamic fibers arise particularly from cells in rostral and lateral parts of the substantia nigra. While some cells in other parts of the nigra project to thalamic nuclei, these appear scattered and less numerous. Large cells in caudal parts of the SN do not project to thalamic nuclei. These observations confirm nigrothalamic projections to VLm and VAmc, and identify a new nigral projection to part of the dorsomedial nucleus of the thalamus (DMpl). No nigral efferent fibers project to any of the intralaminar thalamic nuclei.
Parkinson's disease management strategies.
Rajput, Alex; Rajput, Ali H
2006-01-01
Parkinson's disease (PD) treatment strategies should consider each patient individually. Drug therapy is the mainstay of treatment. An average 62-year-old male first diagnosed with PD will likely live for 20 years and treatment should be geared for long-term control of symptoms and quality of life. Of the currently available drugs, none are neurotoxic to the human substantia nigra and none are neuroprotective. As PD is a progressive disorder, all drugs have adverse effects and reduced efficacy with time. PD patients need regular follow-ups to make necessary medication adjustments. There is no perfect treatment. The authors have discussed their treatment methods and the reasoning behind it. Depending on the patient's age, the predominant symptoms and quality of life, treatment is individualized. In an average patient the least potent drugs, such as anticholinergics or amantadine, are administered first adding a dopamine agonist later on. Levodopa (LD) remains the most useful drug for PD and is reserved for later stages of disease. The objective is to keep the patient at Hoehn and Yahr Stage 2.0 or lower level of disability (bilateral findings with preserved postural reflexes) during off-stage and to avoid adverse effects. There is no long-term difference between standard preparations and control release formulations of LD/carbidopa or LD/benserazide. In older subjects, the first choice is LD. In patients who cannot be managed medically, surgical treatment is an option in selected patients (nondemented, <70 years old, previous good LD response). The surgical treatment of choice is currently subthalamic nucleus deep-brain stimulation. Physiotherapy, occupational therapy and speech therapy are valuable in advanced PD cases.
Kupsch, A; Earl, C
1999-01-01
With the exception of thalamotomy for drug-refractory tremor, surgical therapy for Parkinson's disease has been almost abandoned as treatment for Parkinsonian symptoms between 1965 and 1985. Reasons for this development relate to inconsistent postoperative results, complications associated with stereotactic surgical techniques and, most importantly, the advent of levodopa, which is still considered to be the gold standard in pharmacotherapy for Parkinson's disease. However, both, the long-term experience with L-DOPA therapy on the one hand and the progress of advanced stereotactic techniques and fetal graft research on the other hand have lead to reconsideration of surgical therapy in Parkinson's disease for patients, who can not be treated satisfactorily with medication. Both lesions (via thermocoagulation) and/or neurostimulation (via chronic intracerebral implantation of electrodes) in thalamic nuclei (nucleus ventralis oralis posterior/intermedialis thalami; VOP/VIM) may alleviate rest tremor in PD patients. In principle neurostimulation has the significant advantage of reversibility with regard to side effects in comparison to lesion surgery. Furthermore ventro-posterior pallidotomy or chronic stimulation in this structures may ameliorate bradykinesia and levodopa-induced dyskinesias. Additionally, "switching-off" the subthalamic nucleus by neurostimulation has been reported to reduce rigidity, bradykinesia and levodopa-induced ON-OFF-fluctuations. On the other hand, neuronal transplantation of fetal nigral dopamine precursor cells aims at restoring the striatal dopamine deficit. Both animal and clinical experiments have shown that fetal grafts survive intrastriatal transplantation and may ensue moderate to satisfactory improvements, especially in regard to bradykinesia and ON-OFF-fluctuations. Further progress in the field of neuronal transplantation will largely depend on the development of alternative cell resources.
Neubert, Franz-Xaver; Mars, Rogier B.; Buch, Ethan R.; Olivier, Etienne; Rushworth, Matthew F. S.
2010-01-01
The right inferior frontal gyrus (rIFG) and the presupplementary motor area (pre-SMA) have been identified with cognitive control—the top-down influence on other brain areas when nonroutine behavior is required. It has been argued that they “inhibit” habitual motor responses when environmental changes mean a different response should be made. However, whether such “inhibition” can be equated with inhibitory physiological interactions has been unclear, as has the areas’ relationship with each other and the anatomical routes by which they influence movement execution. Paired-pulse transcranial magnetic stimulation (ppTMS) was applied over rIFG and primary motor cortex (M1) or over pre-SMA and M1 to measure their interactions, at a subsecond scale, during either inhibition and reprogramming of actions or during routine action selection. Distinct patterns of functional interaction between pre-SMA and M1 and between rIFG and M1 were found that were specific to action reprogramming trials; at a physiological level, direct influences of pre-SMA and rIFG on M1 were predominantly facilitatory and inhibitory, respectively. In a subsequent experiment, it was shown that the rIFG's inhibitory influence was dependent on pre-SMA. A third experiment showed that pre-SMA and rIFG influenced M1 at two time scales. By regressing white matter fractional anisotropy from diffusion-weighted magnetic resonance images against TMS-measured functional connectivity, it was shown that short-latency (6 ms) and longer latency (12 ms) influences were mediated by cortico-cortical and subcortical pathways, respectively, with the latter passing close to the subthalamic nucleus. PMID:20622155
Connectivity Predicts Deep Brain Stimulation Outcome in Parkinson Disease
Horn, Andreas; Reich, Martin; Vorwerk, Johannes; Li, Ningfei; Wenzel, Gregor; Fang, Qianqian; Schmitz-Hübsch, Tanja; Nickl, Robert; Kupsch, Andreas; Volkmann, Jens; Kühn, Andrea A.; Fox, Michael D.
2018-01-01
Objective The benefit of deep brain stimulation (DBS) for Parkinson disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remain unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. Methods A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of the Unified Parkinson Disease Rating Scale [UPDRS]). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. Results In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p<0.001). This same connectivity profile predicted response in an independent patient cohort (p<0.01). Structural and functional connectivity were independent predictors of clinical improvement (p<0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease matched to our DBS patients. Interpretation Effective STN DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. PMID:28586141
Neubert, Franz-Xaver; Mars, Rogier B; Buch, Ethan R; Olivier, Etienne; Rushworth, Matthew F S
2010-07-27
The right inferior frontal gyrus (rIFG) and the presupplementary motor area (pre-SMA) have been identified with cognitive control-the top-down influence on other brain areas when nonroutine behavior is required. It has been argued that they "inhibit" habitual motor responses when environmental changes mean a different response should be made. However, whether such "inhibition" can be equated with inhibitory physiological interactions has been unclear, as has the areas' relationship with each other and the anatomical routes by which they influence movement execution. Paired-pulse transcranial magnetic stimulation (ppTMS) was applied over rIFG and primary motor cortex (M1) or over pre-SMA and M1 to measure their interactions, at a subsecond scale, during either inhibition and reprogramming of actions or during routine action selection. Distinct patterns of functional interaction between pre-SMA and M1 and between rIFG and M1 were found that were specific to action reprogramming trials; at a physiological level, direct influences of pre-SMA and rIFG on M1 were predominantly facilitatory and inhibitory, respectively. In a subsequent experiment, it was shown that the rIFG's inhibitory influence was dependent on pre-SMA. A third experiment showed that pre-SMA and rIFG influenced M1 at two time scales. By regressing white matter fractional anisotropy from diffusion-weighted magnetic resonance images against TMS-measured functional connectivity, it was shown that short-latency (6 ms) and longer latency (12 ms) influences were mediated by cortico-cortical and subcortical pathways, respectively, with the latter passing close to the subthalamic nucleus.
Park, Hae-Jeong; Park, Bumhee; Kim, Hae Yu; Oh, Maeng-Keun; Kim, Joong Il; Yoon, Misun; Lee, Jong Doo; Chang, Jin Woo
2015-05-01
As Parkinson's disease (PD) can be considered a network abnormality, the effects of deep brain stimulation (DBS) need to be investigated in the aspect of networks. This study aimed to examine how DBS of the bilateral subthalamic nucleus (STN) affects the motor networks of patients with idiopathic PD during motor performance and to show the feasibility of the network analysis using cross-sectional positron emission tomography (PET) images in DBS studies. We obtained [¹⁵O]H₂O PET images from ten patients with PD during a sequential finger-to-thumb opposition task and during the resting state, with DBS-On and DBS-Off at STN. To identify the alteration of motor networks in PD and their changes due to STN-DBS, we applied independent component analysis (ICA) to all the cross-sectional PET images. We analysed the strength of each component according to DBS effects, task effects and interaction effects. ICA blindly decomposed components of functionally associated distributed clusters, which were comparable to the results of univariate statistical parametric mapping. ICA further revealed that STN-DBS modifies usage-strengths of components corresponding to the basal ganglia-thalamo-cortical circuits in PD patients by increasing the hypoactive basal ganglia and by suppressing the hyperactive cortical motor areas, ventrolateral thalamus and cerebellum. Our results suggest that STN-DBS may affect not only the abnormal local activity, but also alter brain networks in patients with PD. This study also demonstrated the usefulness of ICA for cross-sectional PET data to reveal network modifications due to DBS, which was not observable using the subtraction method.
Hirano, Shigeki; Asanuma, Kotaro; Ma, Yilong; Tang, Chengke; Feigin, Andrew; Dhawan, Vijay; Carbon, Maren; Eidelberg, David
2008-04-16
We compared the metabolic and neurovascular effects of levodopa (LD) therapy for Parkinson's disease (PD). Eleven PD patients were scanned with both [15O]-H2O and [18F]-fluorodeoxyglucose positron emission tomography in the unmedicated state and during intravenous LD infusion. Images were used to quantify LD-mediated changes in the expression of motor- and cognition-related PD covariance patterns in scans of cerebral blood flow (CBF) and cerebral metabolic rate for glucose (CMR). These changes in network activity were compared with those occurring during subthalamic nucleus (STN) deep brain stimulation (DBS), and those observed in a test-retest PD control group. Separate voxel-based searches were conducted to identify individual regions with dissociated treatment-mediated changes in local cerebral blood flow and metabolism. We found a significant dissociation between CBF and CMR in the modulation of the PD motor-related network by LD treatment (p < 0.001). This dissociation was characterized by reductions in network activity in the CMR scans (p < 0.003) occurring concurrently with increases in the CBF scans (p < 0.01). Flow-metabolism dissociation was also evident at the regional level, with LD-mediated reductions in CMR and increases in CBF in the putamen/globus pallidus, dorsal midbrain/pons, STN, and ventral thalamus. CBF responses to LD in the putamen and pons were relatively greater in patients exhibiting drug-induced dyskinesia. In contrast, flow-metabolism dissociation was not present in the STN DBS treatment group or in the PD control group. These findings suggest that flow-metabolism dissociation is a distinctive feature of LD treatment. This phenomenon may be especially pronounced in patients with LD-induced dyskinesia.
An automated approach towards detecting complex behaviours in deep brain oscillations.
Mace, Michael; Yousif, Nada; Naushahi, Mohammad; Abdullah-Al-Mamun, Khondaker; Wang, Shouyan; Nandi, Dipankar; Vaidyanathan, Ravi
2014-03-15
Extracting event-related potentials (ERPs) from neurological rhythms is of fundamental importance in neuroscience research. Standard ERP techniques typically require the associated ERP waveform to have low variance, be shape and latency invariant and require many repeated trials. Additionally, the non-ERP part of the signal needs to be sampled from an uncorrelated Gaussian process. This limits methods of analysis to quantifying simple behaviours and movements only when multi-trial data-sets are available. We introduce a method for automatically detecting events associated with complex or large-scale behaviours, where the ERP need not conform to the aforementioned requirements. The algorithm is based on the calculation of a detection contour and adaptive threshold. These are combined using logical operations to produce a binary signal indicating the presence (or absence) of an event with the associated detection parameters tuned using a multi-objective genetic algorithm. To validate the proposed methodology, deep brain signals were recorded from implanted electrodes in patients with Parkinson's disease as they participated in a large movement-based behavioural paradigm. The experiment involved bilateral recordings of local field potentials from the sub-thalamic nucleus (STN) and pedunculopontine nucleus (PPN) during an orientation task. After tuning, the algorithm is able to extract events achieving training set sensitivities and specificities of [87.5 ± 6.5, 76.7 ± 12.8, 90.0 ± 4.1] and [92.6 ± 6.3, 86.0 ± 9.0, 29.8 ± 12.3] (mean ± 1 std) for the three subjects, averaged across the four neural sites. Furthermore, the methodology has the potential for utility in real-time applications as only a single-trial ERP is required. Copyright © 2013 Elsevier B.V. All rights reserved.
A Fuzzy Inference System for Closed-Loop Deep Brain Stimulation in Parkinson's Disease.
Camara, Carmen; Warwick, Kevin; Bruña, Ricardo; Aziz, Tipu; del Pozo, Francisco; Maestú, Fernando
2015-11-01
Parkinsons disease is a complex neurodegenerative disorder for which patients present many symptoms, tremor being the main one. In advanced stages of the disease, Deep Brain Stimulation is a generalized therapy which can significantly improve the motor symptoms. However despite its beneficial effects on treating the symptomatology, the technique can be improved. One of its main limitations is that the parameters are fixed, and the stimulation is provided uninterruptedly, not taking into account any fluctuation in the patients state. A closed-loop system which provides stimulation by demand would adjust the stimulation to the variations in the state of the patient, stimulating only when it is necessary. It would not only perform a more intelligent stimulation, capable of adapting to the changes in real time, but also extending the devices battery life, thereby avoiding surgical interventions. In this work we design a tool that learns to recognize the principal symptom of Parkinsons disease and particularly the tremor. The goal of the designed system is to detect the moments the patient is suffering from a tremor episode and consequently to decide whether stimulation is needed or not. For that, local field potentials were recorded in the subthalamic nucleus of ten Parkinsonian patients, who were diagnosed with tremor-dominant Parkinsons disease and who underwent surgery for the implantation of a neurostimulator. Electromyographic activity in the forearm was simultaneously recorded, and the relation between both signals was evaluated using two different synchronization measures. The results of evaluating the synchronization indexes on each moment represent the inputs to the designed system. Finally, a fuzzy inference system was applied with the goal of identifying tremor episodes. Results are favourable, reaching accuracies of higher 98.7% in 70% of the patients.
Blanco-Lezcano, L; Rocha-Arrieta, L L; Alvarez-González, L; Martínez-Martí, L; Pavón-Fuentes, N; González-Fraguela, M E; Bauzá-Calderín, Y; Coro-Grave de Peralta, Y
The pedunculopontine nucleus (PPN), co-localized with the mesencephalic locomotor region, has been proposed as a key structure in the physiopathology of Parkinson's disease. The goal of the present study was to assess if the aminoacid neurotransmitter release in the PPN is modified by the degeneration of dopaminergic cells, from substantia nigra pars compacta in 6-hydroxidopamine (6-OHDA)-lesioned rats. In addition, it was studied the aminoacid neurotransmitter release in the PPN of rats with lesion of the subthalamic nucleus by quinolinic acid (QUIN) (100 nmol) intracerebral injection. Rats were assigned to five groups: untreated rats (I) (n = 13), 6-OHDA lesion (II) (n = 11), 6-OHDA + QUIN lesion (III) (n = 9), sham-operated (IV) (n = 10), QUIN, STN (V) lesioned (n = 9). The extracellular concentrations of glutamic acid (GLU) and gamma-aminobutyric acid (GABA) were determined by brain microdialysis and high performance liquid chromatography (HPLC). RESULTS. GLU released in PPN from 6-OHDA lesioned rats (group II), was significantly increased in comparison with the others groups (F(4, 47) = 18.21, p < 0.001). GABA released shows significant differences between experimental groups (F(4, 45) = 12.75, p < 0.001). It was detected a higher valour (p < 0.05) in-group II. The groups III and IV exhibited intermeddle valour (p < 0.001) and groups I and IV (p < 0.001) showed the lower GABA extracellular concentrations. The infusion of artificial cerebrospinal fluid with higher potassium (100 mmol) induced an increase in the GLU and GABA released in all groups, which confirm the neuronal origin of the extracellular content. These results are in agreement with the current model of basal ganglia functioning and suggest the role of STN-PPN projection in the physiopathology of Parkinson's disease.
Local regularity for time-dependent tug-of-war games with varying probabilities
NASA Astrophysics Data System (ADS)
Parviainen, Mikko; Ruosteenoja, Eero
2016-07-01
We study local regularity properties of value functions of time-dependent tug-of-war games. For games with constant probabilities we get local Lipschitz continuity. For more general games with probabilities depending on space and time we obtain Hölder and Harnack estimates. The games have a connection to the normalized p (x , t)-parabolic equation ut = Δu + (p (x , t) - 2) Δ∞N u.
Deep-Brain Stimulation for Basal Ganglia Disorders.
Wichmann, Thomas; Delong, Mahlon R
2011-07-01
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.
Involuntary masturbation and hemiballismus after bilateral anterior cerebral artery infarction.
Bejot, Yannick; Caillier, Marie; Osseby, Guy-Victor; Didi, Roy; Ben Salem, Douraied; Moreau, Thibault; Giroud, Maurice
2008-02-01
Ischemia of the areas supplied by the anterior cerebral artery is relatively uncommon. In addition, combined hemiballismus and masturbation have rarely been reported in patients with cerebrovascular disease. We describe herein a 62-year-old right-handed man simultaneously exhibiting right side hemiballismus and involuntary masturbation with the left hand after bilateral infarction of the anterior cerebral artery territory. Right side hemiballismus was related to the disruption of afferent fibers from the left frontal lobe to the left subthalamic nucleus. Involuntary masturbation using the left hand was exclusively linked to a callosal type of alien hand syndrome secondary to infarction of the right side of the anterior corpus callosum. After 2 weeks, these abnormal behaviours were completely extinguished. This report stresses the wide diversity of clinical manifestations observed after infarction of the anterior cerebral artery territory.
Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte.
Blitzer, B L; Boyer, J L
1978-01-01
The enzyme Na+,5+-ATPase was cytochemically localized in the rat hepatocyte by a modification of the Ernst potassium-dependent nitrophenyl phosphatase technique. Measurement of nitrophenol release from 50-micrometer liver slices confirmed the presence of ouabain-inhibitable nitrophenyl phosphatase activity that increased over the 30-min incubation period. Electron micrographs demonstrated that sinusoidal and lateral membrane reaction product deposition was K+-dependent, Mg++-dependent, inhibited by ouabain but not by alkaline phosphatase inhibitors, and was localized to the cytoplasmic side of the membrane. In contrast, canalicular reaction product was K+-independent, Mg++-dependent, inhibited by alkaline phosphatase inhibitors but not by ouabain, and was localized to the luminal side of the membrane. These findings indicate that Na+,K+-ATPase is localized to the sinusoidal and lateral portions of the rat hepatocyte plasma membrane and is not detectable on the bile canaliculus where alkaline phosphatase is confined. This basolateral localization of Na+,K+-ATPase is similar to that found in epithelia where secretion is also directed across the apical membrane. Images PMID:213446
Markopoulos, G; Rutherford, A; Cairns, C; Green, J
2010-08-01
Murnane and Phelps (1993) recommend word pair presentations in local environmental context (EC) studies to prevent associations being formed between successively presented items and their ECs and a consequent reduction in the EC effect. Two experiments were conducted to assess the veracity of this assumption. In Experiment 1, participants memorised single words or word pairs, or categorised them as natural or man made. Their free recall protocols were examined to assess any associations established between successively presented items. Fewest associations were observed when the item-specific encoding task (i.e., natural or man made categorisation of word referents) was applied to single words. These findings were examined further in Experiment 2, where the influence of encoding instructions and stimulus presentation on local EC dependent recognition memory was examined. Consistent with recognition dual-process signal detection model predictions and findings (e.g., Macken, 2002; Parks & Yonelinas, 2008), recollection sensitivity, but not familiarity sensitivity, was found to be local EC dependent. However, local EC dependent recognition was observed only after item-specific encoding instructions, irrespective of stimulus presentation. These findings and the existing literature suggest that the use of single word presentations and item-specific encoding enhances local EC dependent recognition.
Evolution of complex density-dependent dispersal strategies.
Parvinen, Kalle; Seppänen, Anne; Nagy, John D
2012-11-01
The question of how dispersal behavior is adaptive and how it responds to changes in selection pressure is more relevant than ever, as anthropogenic habitat alteration and climate change accelerate around the world. In metapopulation models where local populations are large, and thus local population size is measured in densities, density-dependent dispersal is expected to evolve to a single-threshold strategy, in which individuals stay in patches with local population density smaller than a threshold value and move immediately away from patches with local population density larger than the threshold. Fragmentation tends to convert continuous populations into metapopulations and also to decrease local population sizes. Therefore we analyze a metapopulation model, where each patch can support only a relatively small local population and thus experience demographic stochasticity. We investigated the evolution of density-dependent dispersal, emigration and immigration, in two scenarios: adult and natal dispersal. We show that density-dependent emigration can also evolve to a nonmonotone, "triple-threshold" strategy. This interesting phenomenon results from an interplay between the direct and indirect benefits of dispersal and the costs of dispersal. We also found that, compared to juveniles, dispersing adults may benefit more from density-dependent vs. density-independent dispersal strategies.
Accounting for Local Dependence with the Rasch Model: The Paradox of Information Increase.
Andrich, David
Test theories imply statistical, local independence. Where local independence is violated, models of modern test theory that account for it have been proposed. One violation of local independence occurs when the response to one item governs the response to a subsequent item. Expanding on a formulation of this kind of violation between two items in the dichotomous Rasch model, this paper derives three related implications. First, it formalises how the polytomous Rasch model for an item constituted by summing the scores of the dependent items absorbs the dependence in its threshold structure. Second, it shows that as a consequence the unit when the dependence is accounted for is not the same as if the items had no response dependence. Third, it explains the paradox, known, but not explained in the literature, that the greater the dependence of the constituent items the greater the apparent information in the constituted polytomous item when it should provide less information.
Song, Gyuho; Kong, Tai; Dusoe, Keith J.; ...
2018-01-24
Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Gyuho; Kong, Tai; Dusoe, Keith J.
Mechanical properties of materials are strongly dependent of their atomic arrangement as well as the sample dimension, particularly at the micrometer length scale. Here in this study, we investigated the small-scale mechanical properties of single-crystalline YCd 6, which is a rational approximant of the icosahedral Y-Cd quasicrystal. In situ microcompression tests revealed that shear localization always occurs on {101} planes, but the shear direction is not constrained to any particular crystallographic directions. Furthermore, the yield strengths show the size dependence with a power law exponent of 0.4. Shear localization on {101} planes and size-dependent yield strength are explained in termsmore » of a large interplanar spacing between {101} planes and the energetics of shear localization process, respectively. The mechanical behavior of the icosahedral Y-Cd quasicrystal is also compared to understand the influence of translational symmetry on the shear localization process in both YCd 6 and Y-Cd quasicrystal micropillars. Finally, the results of this study will provide an important insight in a fundamental understanding of shear localization process in novel complex intermetallic compounds.« less
A class of covariate-dependent spatiotemporal covariance functions
Reich, Brian J; Eidsvik, Jo; Guindani, Michele; Nail, Amy J; Schmidt, Alexandra M.
2014-01-01
In geostatistics, it is common to model spatially distributed phenomena through an underlying stationary and isotropic spatial process. However, these assumptions are often untenable in practice because of the influence of local effects in the correlation structure. Therefore, it has been of prolonged interest in the literature to provide flexible and effective ways to model non-stationarity in the spatial effects. Arguably, due to the local nature of the problem, we might envision that the correlation structure would be highly dependent on local characteristics of the domain of study, namely the latitude, longitude and altitude of the observation sites, as well as other locally defined covariate information. In this work, we provide a flexible and computationally feasible way for allowing the correlation structure of the underlying processes to depend on local covariate information. We discuss the properties of the induced covariance functions and discuss methods to assess its dependence on local covariate information by means of a simulation study and the analysis of data observed at ozone-monitoring stations in the Southeast United States. PMID:24772199
Robust Measurement via A Fused Latent and Graphical Item Response Theory Model.
Chen, Yunxiao; Li, Xiaoou; Liu, Jingchen; Ying, Zhiliang
2018-03-12
Item response theory (IRT) plays an important role in psychological and educational measurement. Unlike the classical testing theory, IRT models aggregate the item level information, yielding more accurate measurements. Most IRT models assume local independence, an assumption not likely to be satisfied in practice, especially when the number of items is large. Results in the literature and simulation studies in this paper reveal that misspecifying the local independence assumption may result in inaccurate measurements and differential item functioning. To provide more robust measurements, we propose an integrated approach by adding a graphical component to a multidimensional IRT model that can offset the effect of unknown local dependence. The new model contains a confirmatory latent variable component, which measures the targeted latent traits, and a graphical component, which captures the local dependence. An efficient proximal algorithm is proposed for the parameter estimation and structure learning of the local dependence. This approach can substantially improve the measurement, given no prior information on the local dependence structure. The model can be applied to measure both a unidimensional latent trait and multidimensional latent traits.
NASA Astrophysics Data System (ADS)
Tanaka, Kenta K.; Ichioka, Masanori; Onari, Seiichiro
2018-04-01
Local NMR relaxation rates in the vortex state of chiral and helical p -wave superconductors are investigated by the quasiclassical Eilenberger theory. We calculate the spatial and resonance frequency dependences of the local NMR spin-lattice relaxation rate T1-1 and spin-spin relaxation rate T2-1. Depending on the relation between the NMR relaxation direction and the d -vector symmetry, the local T1-1 and T2-1 in the vortex core region show different behaviors. When the NMR relaxation direction is parallel to the d -vector component, the local NMR relaxation rate is anomalously suppressed by the negative coherence effect due to the spin dependence of the odd-frequency s -wave spin-triplet Cooper pairs. The difference between the local T1-1 and T2-1 in the site-selective NMR measurement is expected to be a method to examine the d -vector symmetry of candidate materials for spin-triplet superconductors.
NASA Astrophysics Data System (ADS)
Liao, Sheng-Lun; Ho, Tak-San; Rabitz, Herschel; Chu, Shih-I.
2017-04-01
Solving and analyzing the exact time-dependent optimized effective potential (TDOEP) integral equation has been a longstanding challenge due to its highly nonlinear and nonlocal nature. To meet the challenge, we derive an exact time-local TDOEP equation that admits a unique real-time solution in terms of time-dependent Kohn-Sham orbitals and effective memory orbitals. For illustration, the dipole evolution dynamics of a one-dimension-model chain of hydrogen atoms is numerically evaluated and examined to demonstrate the utility of the proposed time-local formulation. Importantly, it is shown that the zero-force theorem, violated by the time-dependent Krieger-Li-Iafrate approximation, is fulfilled in the current TDOEP framework. This work was partially supported by DOE.
Time-dependent local-to-normal mode transition in triatomic molecules
NASA Astrophysics Data System (ADS)
Cruz, Hans; Bermúdez-Montaña, Marisol; Lemus, Renato
2018-01-01
Time-evolution of the vibrational states of two interacting harmonic oscillators in the local mode scheme is presented. A local-to-normal mode transition (LNT) is identified and studied from temporal perspective through time-dependent frequencies of the oscillators. The LNT is established as a polyad-breaking phenomenon from the local standpoint for the stretching degrees of freedom in a triatomic molecule. This study is carried out in the algebraic representation of bosonic operators. The dynamics of the states are determined via the solutions of the corresponding nonlinear Ermakov equation and a local time-dependent polyad is obtained as a tool to identify the LNT. Applications of this formalism to H2O, CO2, O3 and NO2 molecules in the adiabatic, sudden and linear regime are considered.
Keidser, Gitte; O'Brien, Anna; Hain, Jens-Uwe; McLelland, Margot; Yeend, Ingrid
2009-11-01
Frequency-dependent microphone directionality alters the spectral shape of sound as a function of arrival azimuth. The influence of this on horizontal-plane localization performance was investigated. Using a 360 degrees loudspeaker array and five stimuli with different spectral characteristics, localization performance was measured on 21 hearing-impaired listeners when wearing no hearing aids and aided with no directionality, partial (from 1 and 2 kHz) directionality, and full directionality. The test schemes were also evaluated in everyday life. Without hearing aids, localization accuracy was significantly poorer than normative data. Due to inaudibility of high-frequency energy, front/back reversals were prominent. Front/back reversals remained prominent when aided with omnidirectional microphones. For stimuli with low-frequency emphasis, directionality had no further effect on localization. For stimuli with sufficient mid- and high-frequency information, full directionality had a small positive effect on front/back localization but a negative effect on left/right localization. Partial directionality further improved front/back localization and had no significant effect on left/right localization. The field test revealed no significant effects. The alternative spectral cues provided by frequency-dependent directionality improve front/back localization in hearing-aid users.
Garcia, V; Jaffrès, H; George, J-M; Marangolo, M; Eddrief, M; Etgens, V H
2006-12-15
We propose an analytical model of spin-dependent resonant tunneling through a 3D assembly of localized states (spread out in energy and in space) in a barrier. An inhomogeneous distribution of localized states leads to resonant tunneling magnetoresistance inversion and asymmetric bias dependence as evidenced with a set of experiments with MnAs/GaAs(7-10 nm)/MnAs tunnel junctions. One of the key parameters of our theory is a dimensionless critical exponent beta scaling the typical extension of the localized states over the characteristic length scale of the spatial distribution function. Furthermore, we demonstrate, through experiments with localized states introduced preferentially in the middle of the barrier, the influence of an homogeneous distribution on the spin-dependent transport properties.
NASA Astrophysics Data System (ADS)
Davari, Nazanin; Haghdani, Shokouh; Åstrand, Per-Olof
2015-12-01
A force field model for calculating local field factors, i.e. the linear response of the local electric field for example at a nucleus in a molecule with respect to an applied electric field, is discussed. It is based on a combined charge-transfer and point-dipole interaction model for the polarizability, and thereby it includes two physically distinct terms for describing electronic polarization: changes in atomic charges arising from transfer of charge between the atoms and atomic induced dipole moments. A time dependence is included both for the atomic charges and the atomic dipole moments and if they are assumed to oscillate with the same frequency as the applied electric field, a model for frequency-dependent properties are obtained. Furthermore, if a life-time of excited states are included, a model for the complex frequency-dependent polariability is obtained including also information about excited states and the absorption spectrum. We thus present a model for the frequency-dependent local field factors through the first molecular excitation energy. It is combined with molecular dynamics simulations of liquids where a large set of configurations are sampled and for which local field factors are calculated. We are normally not interested in the average of the local field factor but rather in configurations where it is as high as possible. In electrical insulation, we would like to avoid high local field factors to reduce the risk for electrical breakdown, whereas for example in surface-enhanced Raman spectroscopy, high local field factors are desired to give dramatically increased intensities.
Canceling actions involves a race between basal ganglia pathways
Schmidt, Robert; Leventhal, Daniel K.; Mallet, Nicolas; Chen, Fujun; Berke, Joshua D.
2013-01-01
Salient cues can prompt the rapid interruption of planned actions. It has been proposed that fast, reactive behavioral inhibition involves specific basal ganglia pathways, and we tested this by comparing activity in multiple rat basal ganglia structures during performance of a stop-signal task. Subthalamic nucleus (STN) neurons showed low-latency responses to Stop cues, irrespective of whether actions were successfully canceled or not. By contrast, neurons downstream in the substantia nigra pars reticulata (SNr) responded to Stop cues only in trials with successful cancellation. Recordings and simulations together indicate that this sensorimotor gating arises from the relative timing of two distinct inputs to neurons in the SNr dorsolateral “core” subregion: cue-related excitation from STN and movement-related inhibition from striatum. Our results support race models of action cancellation, with successful stopping requiring Stop cue information to be transmitted from STN to SNr before increased striatal input creates a point of no return. PMID:23852117
Deep-Brain Stimulation for Basal Ganglia Disorders
Wichmann, Thomas; DeLong, Mahlon R.
2011-01-01
The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of ‘motor’ portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the ‘limbic’ basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders. PMID:21804953
Frontosubthalamic Circuits for Control of Action and Cognition
Herz, Damian M.; Brown, Peter; Forstmann, Birte U.; Zaghloul, Kareem
2016-01-01
The subthalamic nucleus (STN) of the basal ganglia appears to have a potent role in action and cognition. Anatomical and imaging studies show that different frontal cortical areas directly project to the STN via so-called hyperdirect pathways. This review reports some of the latest findings about such circuits, including simultaneous recordings from cortex and the STN in humans, single-unit recordings in humans, high-resolution fMRI, and neurocomputational modeling. We argue that a major function of the STN is to broadly pause behavior and cognition when stop signals, conflict signals, or surprise signals occur, and that the fronto-STN circuits for doing this, at least for stopping and conflict, are dissociable anatomically and in terms of their spectral reactivity. We also highlight recent evidence for synchronization of oscillations between prefrontal cortex and the STN, which may provide a preferential “window in time” for single neuron communication via long-range connections. PMID:27911752
Surgical treatment of Parkinson’s disease: Past, present, and future
Duker, Andrew P.; Espay, Alberto J.
2013-01-01
Advances in functional neurosurgery have expanded the treatment of Parkinson’s disease (PD), from early lesional procedures to targeted electrical stimulation of specific nodes in the basal ganglia circuitry. Deep brain stimulation (DBS), applied to selected patients with Parkinson’s disease (PD) and difficult-to-manage motor fluctuations, yields substantial reductions in off time and dyskinesia. Outcomes for DBS targeting the two major studied targets in PD, the subthalamic nucleus (STN) and the internal segment of the globus pallidus (GPi), appear to be broadly similar and the choice is best made based on individual patient factors and surgeon preference. Emerging concepts in DBS include examination of new targets, such as the potential efficacy of pedunculopontine nucleus (PPN) stimulation for treatment of freezing and falls, the utilization of pathologic oscillations in the beta band to construct an adaptive “closed-loop” DBS, and new technologies, including segmented electrodes to steer current toward specific neural populations. PMID:23896506
Deep brain stimulation with a pre-existing cochlear implant: Surgical technique and outcome.
Eddelman, Daniel; Wewel, Joshua; Wiet, R Mark; Metman, Leo V; Sani, Sepehr
2017-01-01
Patients with previously implanted cranial devices pose a special challenge in deep brain stimulation (DBS) surgery. We report the implantation of bilateral DBS leads in a patient with a cochlear implant. Technical nuances and long-term interdevice functionality are presented. A 70-year-old patient with advancing Parkinson's disease and a previously placed cochlear implant for sensorineural hearing loss was referred for placement of bilateral DBS in the subthalamic nucleus (STN). Prior to DBS, the patient underwent surgical removal of the subgaleal cochlear magnet, followed by stereotactic MRI, frame placement, stereotactic computed tomography (CT), and merging of imaging studies. This technique allowed for successful computational merging, MRI-guided targeting, and lead implantation with acceptable accuracy. Formal testing and programming of both the devices were successful without electrical interference. Successful DBS implantation with high resolution MRI-guided targeting is technically feasible in patients with previously implanted cochlear implants by following proper precautions.
A PC-based system for predicting movement from deep brain signals in Parkinson's disease.
Loukas, Constantinos; Brown, Peter
2012-07-01
There is much current interest in deep brain stimulation (DBS) of the subthalamic nucleus (STN) for the treatment of Parkinson's disease (PD). This type of surgery has enabled unprecedented access to deep brain signals in the awake human. In this paper we present an easy-to-use computer based system for recording, displaying, archiving, and processing electrophysiological signals from the STN. The system was developed for predicting self-paced hand-movements in real-time via the online processing of the electrophysiological activity of the STN. It is hoped that such a computerised system might have clinical and experimental applications. For example, those sites within the STN most relevant to the processing of voluntary movement could be identified through the predictive value of their activities with respect to the timing of future movement. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Advanced Parkinson's disease: clinical characteristics and treatment. Part II.
Kulisevsky, J; Luquin, M R; Arbelo, J M; Burguera, J A; Carrillo, F; Castro, A; Chacón, J; García-Ruiz, P J; Lezcano, E; Mir, P; Martinez-Castrillo, J C; Martínez-Torres, I; Puente, V; Sesar, A; Valldeoriola-Serra, F; Yañez, R
2013-01-01
Many patients who have had Parkinson's disease (PD) for several years will present severe motor fluctuations and dyskinesias which require more aggressive therapies. The different approaches which are now available include deep brain stimulation of the subthalamic nucleus or medial globus pallidus, subcutaneous infusion of apomorphine, and intestinal infusion of levodopa-carbidopa. To define the indications and results for the 3 available therapies for advanced PD. Exhaustive review of the literature concerning the indications and results of deep brain stimulation, subcutaneous apomorphine infusion and duodenal infusion of levodopa/carbidopa gel to treat patients with advanced Parkinson disease. Although numerous studies have confirmed the efficacy of the 3 different therapies in advanced PD, there are no comparative studies that would allow us to define the best candidate for each technique. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Lee, Kendall H.; Blaha, Charles D.; Garris, Paul A.; Mohseni, Pedram; Horne, April E.; Bennet, Kevin E.; Agnesi, Filippo; Bledsoe, Jonathan M.; Lester, Deranda B.; Kimble, Chris; Min, Hoon-Ki; Kim, Young-Bo; Cho, Zang-Hee
2010-01-01
Deep Brain Stimulation (DBS) provides therapeutic benefit for several neuropathologies including Parkinson’s disease (PD), epilepsy, chronic pain, and depression. Despite well established clinical efficacy, the mechanism(s) of DBS remains poorly understood. In this review we begin by summarizing the current understanding of the DBS mechanism. Using this knowledge as a framework, we then explore a specific hypothesis regarding DBS of the subthalamic nucleus (STN) for the treatment of PD. This hypothesis states that therapeutic benefit is provided, at least in part, by activation of surviving nigrostriatal dopaminergic neurons, subsequent striatal dopamine release, and resumption of striatal target cell control by dopamine. While highly controversial, we present preliminary data that are consistent with specific predications testing this hypothesis. We additionally propose that developing new technologies, e.g., human electrometer and closed-loop smart devices, for monitoring dopaminergic neurotransmission during STN DBS will further advance this treatment approach. PMID:20657744
The Performance of Local Dependence Measures with Psychological Data
ERIC Educational Resources Information Center
Houts, Carrie R.; Edwards, Michael C.
2013-01-01
The violation of the assumption of local independence when applying item response theory (IRT) models has been shown to have a negative impact on all estimates obtained from the given model. Numerous indices and statistics have been proposed to aid analysts in the detection of local dependence (LD). A Monte Carlo study was conducted to evaluate…
Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H.J.; Snel, Berend
2013-01-01
The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B–dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization. PMID:23569217
Nijenhuis, Wilco; von Castelmur, Eleonore; Littler, Dene; De Marco, Valeria; Tromer, Eelco; Vleugel, Mathijs; van Osch, Maria H J; Snel, Berend; Perrakis, Anastassis; Kops, Geert J P L
2013-04-15
The mitotic checkpoint ensures correct chromosome segregation by delaying cell cycle progression until all kinetochores have attached to the mitotic spindle. In this paper, we show that the mitotic checkpoint kinase MPS1 contains an N-terminal localization module, organized in an N-terminal extension (NTE) and a tetratricopeptide repeat (TPR) domain, for which we have determined the crystal structure. Although the module was necessary for kinetochore localization of MPS1 and essential for the mitotic checkpoint, the predominant kinetochore binding activity resided within the NTE. MPS1 localization further required HEC1 and Aurora B activity. We show that MPS1 localization to kinetochores depended on the calponin homology domain of HEC1 but not on Aurora B-dependent phosphorylation of the HEC1 tail. Rather, the TPR domain was the critical mediator of Aurora B control over MPS1 localization, as its deletion rendered MPS1 localization insensitive to Aurora B inhibition. These data are consistent with a model in which Aurora B activity relieves a TPR-dependent inhibitory constraint on MPS1 localization.
NASA Astrophysics Data System (ADS)
van Tiggelen, B. A.; Skipetrov, S. E.; Page, J. H.
2017-05-01
Previous work has established that the localized regime of wave transport in open media is characterized by a position-dependent diffusion coefficient. In this work we study how the concept of position-dependent diffusion affects the delay time, the transverse confinement, the coherent backscattering, and the time reversal of waves. Definitions of energy transport velocity of localized waves are proposed. We start with a phenomenological model of radiative transfer and then present a novel perturbational approach based on the self-consistent theory of localization. The latter allows us to obtain results relevant for realistic experiments in disordered quasi-1D wave guides and 3D slabs.
NASA Astrophysics Data System (ADS)
Dixit, V. K.; Porwal, S.; Singh, S. D.; Sharma, T. K.; Ghosh, Sandip; Oak, S. M.
2014-02-01
Temperature dependence of the photoluminescence (PL) peak energy of bulk and quantum well (QW) structures is studied by using a new phenomenological model for including the effect of localized states. In general an anomalous S-shaped temperature dependence of the PL peak energy is observed for many materials which is usually associated with the localization of excitons in band-tail states that are formed due to potential fluctuations. Under such conditions, the conventional models of Varshni, Viña and Passler fail to replicate the S-shaped temperature dependence of the PL peak energy and provide inconsistent and unrealistic values of the fitting parameters. The proposed formalism persuasively reproduces the S-shaped temperature dependence of the PL peak energy and provides an accurate determination of the exciton localization energy in bulk and QW structures along with the appropriate values of material parameters. An example of a strained InAs0.38P0.62/InP QW is presented by performing detailed temperature and excitation intensity dependent PL measurements and subsequent in-depth analysis using the proposed model. Versatility of the new formalism is tested on a few other semiconductor materials, e.g. GaN, nanotextured GaN, AlGaN and InGaN, which are known to have a significant contribution from the localized states. A quantitative evaluation of the fractional contribution of the localized states is essential for understanding the temperature dependence of the PL peak energy of bulk and QW well structures having a large contribution of the band-tail states.
Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework
2014-01-01
Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119
Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.
Simha, Ramanuja; Shatkay, Hagit
2014-03-19
Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.
Natal movement in juvenile Atlantic salmon: a body size-dependent strategy?
Sigurd Einum; Anders G. Finstad; Grethe Robertsen; Keith H. Nislow; Simon McKelvey; John D. Armstrong
2012-01-01
If competitive ability depends on body size, then the optimal natal movement from areas of high local population density can also be predicted to be size-dependent. Specifically, small, competitively-inferior individuals would be expected to benefit most from moving to areas of lower local density. Here we evaluate whether individual variation in natal movement...
Facilitating effects of deep brain stimulation on feedback learning in Parkinson's disease.
Meissner, Sarah Nadine; Südmeyer, Martin; Keitel, Ariane; Pollok, Bettina; Bellebaum, Christian
2016-10-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) provides an effective treatment for Parkinson's disease (PD) motor symptoms. However, findings of effects on cognitive function such as feedback learning remain controversial and rare. The aim of the present study was to gain a better understanding of cognitive alterations associated with STN-DBS. Therefore, we investigated effects of STN-DBS on active and observational feedback learning in PD. 18 PD patients with STN-DBS and 18 matched healthy controls completed active and observational feedback learning tasks. Patients were investigated ON and OFF STN-DBS. Tasks consisted of learning (with feedback) and test phases (without feedback). STN-DBS improved active learning during feedback trials and PD patients ON (but not OFF) STN-DBS showed comparable performance patterns as healthy controls. No STN-DBS effect was found when assessing performance during active test trials without feedback. In this case, however, STN-DBS effects were found to depend on symptom severity. While more impaired patients benefited from STN-DBS, stimulation had no facilitating effect on patients with less severe symptoms. Along similar lines, the severity of motor symptoms tended to be significantly correlated with differences in active test performance due to STN-DBS. For observational feedback learning, there was a tendency for a positive STN-DBS effect with patients reaching the performance level of healthy controls only ON STN-DBS. The present data suggest that STN-DBS facilitates active feedback learning in PD patients. Furthermore, they provide first evidence that STN-DBS might not only affect learning from own but also from observed actions and outcomes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Shidahara, M.; Tsoumpas, C.; McGinnity, C. J.; Kato, T.; Tamura, H.; Hammers, A.; Watabe, H.; Turkheimer, F. E.
2012-05-01
The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [11C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from -30.1% and -26.2% to -17.6% and -15.1%, respectively, for the 60 min static image and from -51.4% and -38.3% to -27.6% and -20.3% for the binding potential (BPND) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [11C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided.
Isherwood, Sarah N; Robbins, Trevor W; Nicholson, Janet R; Dalley, Jeffrey W; Pekcec, Anton
2017-09-01
Metabotropic glutamate receptor 4 (mGluR4) and dopamine D 2 receptors are specifically expressed within the indirect pathway neurons of the striato-pallidal-subthalamic pathway. This unique expression profile suggests that mGluR4 and D 2 receptors may play a cooperative role in the regulation and inhibitory control of behaviour. We investigated this possibility by testing the effects of a functionally-characterised positive allosteric mGluR4 modulator, 4-((E)-styryl)-pyrimidin-2-ylamine (Cpd11), both alone and in combination with the D 2 receptor antagonist eticlopride, on two distinct forms of impulsivity. Rats were trained on the five-choice serial reaction time task (5-CSRTT) of sustained visual attention and segregated according to low, mid, and high levels of motor impulsivity (LI, MI and HI, respectively), with unscreened rats used as an additional control group. A separate group of rats was trained on a delay discounting task (DDT) to assess choice impulsivity. Systemic administration of Cpd11 dose-dependently increased motor impulsivity and impaired attentional accuracy on the 5-CSRTT in all groups tested. Eticlopride selectively attenuated the increase in impulsivity induced by Cpd11, but not the accompanying attentional impairment, at doses that had no significant effect on behavioural performance when administered alone. Cpd11 also decreased choice impulsivity on the DDT (i.e. increased preference for the large, delayed reward) and decreased locomotor activity. These findings demonstrate that mGluR4s, in conjunction with D 2 receptors, affect motor- and choice-based measures of impulsivity, and therefore may be novel targets to modulate impulsive behaviour associated with a number of neuropsychiatric syndromes. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Dombrovski, Alexandre Y.; Siegle, Greg J.; Szanto, Katalin; Clark, Luke; Reynolds, Charles F.; Aizenstein, Howard
2012-01-01
Background Converging evidence implicates basal ganglia alterations in impulsivity and suicidal behavior. For example, D2/D3 agonists and subthalamic nucleus stimulation in Parkinson’s disease trigger impulse control disorders and possibly suicidal behavior. Further, suicidal behavior has been associated with structural basal ganglia abnormalities. Finally, low-lethality, unplanned suicide attempts are associated with increased discounting of delayed rewards, a behavior dependent upon the striatum. Thus, we tested whether, in late-life depression, changes in the basal ganglia were associated with suicide attempts and with increased delay discounting. Methods Fifty-two persons aged ≥60 underwent extensive clinical and cognitive characterization: 33 with major depression (13 suicide attempters [SA], 20 non-suicidal depressed elderly), and 19 non-depressed controls. Participants had high-resolution T1-weighted MPRAGE MRI scans. Basal ganglia gray matter voxel counts were estimated using atlas-based segmentation, with a highly-deformable automated algorithm. Discounting of delayed rewards was assessed using the Monetary Choice Questionnaire, and delay aversion with the Cambridge Gamble Task. Results SA had lower putamen but not caudate or pallidum gray matter voxel counts, compared to the control groups. This difference persisted after accounting for substance use disorders and possible brain injury from suicide attempts. SA with lower putamen gray matter voxel counts displayed higher delay discounting on the MCQ, but not delay aversion on the CGT. Secondary analyses revealed that SA had lower voxel counts in associative and possibly ventral, but not sensorimotor striatum. Conclusions Our findings, while limited by small sample size and case-control design, suggest that striatal lesions could contribute to suicidal behavior by increasing impulsivity. PMID:21999930
Dombrovski, A Y; Siegle, G J; Szanto, K; Clark, L; Reynolds, C F; Aizenstein, H
2012-06-01
Converging evidence implicates basal ganglia alterations in impulsivity and suicidal behavior. For example, D2/D3 agonists and subthalamic nucleus stimulation in Parkinson's disease (PD) trigger impulse control disorders and possibly suicidal behavior. Furthermore, suicidal behavior has been associated with structural basal ganglia abnormalities. Finally, low-lethality, unplanned suicide attempts are associated with increased discounting of delayed rewards, a behavior dependent upon the striatum. Thus, we tested whether, in late-life depression, changes in the basal ganglia were associated with suicide attempts and with increased delay discounting. Fifty-two persons aged ≥ 60 years underwent extensive clinical and cognitive characterization: 33 with major depression [13 suicide attempters (SA), 20 non-suicidal depressed elderly] and 19 non-depressed controls. Participants had high-resolution T1-weighted magnetization prepared rapid acquisition gradient-echo (MPRAGE) magnetic resonance imaging (MRI) scans. Basal ganglia gray matter voxel counts were estimated using atlas-based segmentation, with a highly deformable automated algorithm. Discounting of delayed rewards was assessed using the Monetary Choice Questionnaire (MCQ) and delay aversion with the Cambridge Gamble Task (CGT). SA had lower putamen but not caudate or pallidum gray matter voxel counts, compared to the control groups. This difference persisted after accounting for substance use disorders and possible brain injury from suicide attempts. SA with lower putamen gray matter voxel counts displayed higher delay discounting but not delay aversion. Secondary analyses revealed that SA had lower voxel counts in associative and ventral but not sensorimotor striatum. Our findings, although limited by small sample size and the case-control design, suggest that striatal lesions could contribute to suicidal behavior by increasing impulsivity.
McConnell, George C; So, Rosa Q; Grill, Warren M
2016-06-01
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.
Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.
Berkovits, Richard
2012-04-27
The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.
Sun, Meng-Xiang
2014-01-01
In plants, active transport of auxin plays an essential role in root development. Localization of the PIN1 auxin transporters to the basal membrane of cells directs auxin flow and depends on the trafficking mediator GNOM. GNOM-dependent auxin transport is vital for root development and thus offers a useful tool for the investigation of a possible tissue-specific response to dynamic auxin transport. To avoid pleiotropic effects, DEX-inducible expression of GNOM antisense RNA was used to disrupt GNOM expression transiently or persistently during embryonic root development. It was found that the elongation zone and the pericycle layer are the most sensitive to GNOM-dependent auxin transport variations, which is shown by the phenotypes in cell elongation and the initiation of lateral root primordia, respectively. This suggests that auxin dynamics is critical to cell differentiation and cell fate transition, but not to cell division. The results also reveal that GNOM-dependent auxin transport could affect local auxin biosynthesis. This suggests that local auxin biosynthesis may also contribute to the establishment of GNOM-dependent auxin gradients in specific tissues, and that auxin transport and local auxin biosynthesis may function together in the regulatory network for initiation and development of lateral root primordia. Thus, the data reveal a tissue-specific response to auxin transport and modulation of local auxin biosynthesis by auxin transport. PMID:24453227
Rothlind, Johannes C; York, Michele K; Carlson, Kim; Luo, Ping; Marks, William J; Weaver, Frances M; Stern, Matthew; Follett, Kenneth; Reda, Domenic
2015-06-01
Deep brain stimulation (DBS) improves motor symptoms in Parkinson's disease (PD), but questions remain regarding neuropsychological decrements sometimes associated with this treatment, including rates of statistically and clinically meaningful change, and whether there are differences in outcome related to surgical target. Neuropsychological functioning was assessed in patients with Parkinson's disease (PD) at baseline and after 6 months in a prospective, randomised, controlled study comparing best medical therapy (BMT, n=116) and bilateral deep brain stimulation (DBS, n=164) at either the subthalamic nucleus (STN, n=84) or globus pallidus interna (GPi, n=80), using standardised neuropsychological tests. Measures of functional outcomes were also administered. Comparison of the two DBS targets revealed few significant group differences. STN DBS was associated with greater mean reductions on some measures of processing speed, only one of which was statistically significant in comparison with stimulation of GPi. GPi DBS was associated with lower mean performance on one measure of learning and memory that requires mental control and cognitive flexibility. Compared to the group receiving BMT, the combined DBS group had significantly greater mean reductions at 6-month follow-up in performance on multiple measures of processing speed and working memory. After calculating thresholds for statistically reliable change from data obtained from the BMT group, the combined DBS group also displayed higher rates of decline in neuropsychological test performance. Among study completers, 18 (11%) study participants receiving DBS displayed reliable decline by multiple indicators in two or more cognitive domains, a significantly higher rate than in the BMT group (3%). This multi-domain cognitive decline was associated with less beneficial change in subjective ratings of everyday functioning and quality of life (QOL). The multi-domain cognitive decline group continued to function at a lower level at 24-month follow-up. In those with PD, the likelihood of significant decline in neuropsychological functioning increases with DBS, affecting a small minority of patients who also appear to respond less optimally to DBS by other indicators of QOL. NCT00056563 and NCT01076452. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Liu, Xuemeng; Zhang, Jibo; Fu, Kai; Gong, Rui; Chen, Jincao; Zhang, Jie
2017-11-01
Microelectrode recording (MER) and intraoperative magnetic resonance imaging (iMRI) have been used in deep brain stimulation surgery for Parkinson disease (PD), but comparative methodology is lacking. Therefore, we compared the 1-year follow-up outcomes of MER-guided and iMRI-guided subthalamic nucleus (STN) deep brain stimulation (DBS) surgery in PD patients. We conducted a review comparing PD patients who underwent MER-guided (n = 76, group A) and iMRI-guided STN DBS surgery (n = 61, group B) in our institution. Pre- and postoperative assessments included Unified Parkinson's Disease Rating Scale-III (UPDRS-III) score, Parkinson's Disease Questionnaire (PDQ-39), Mini-Mental State Examination (MMSE), levodopa equivalent daily doses (LEDDs), and magnetic resonance images. The mean magnitudes of electrode discrepancy were x = 1.1 ± 0.2 mm, y = 1.3 ± 0.3 mm, and z = 2.1 ± 0.5 mm in group A and x = 1.3 ± 0.4 mm, y = 1.2 ± 0.2 mm, and z = 2.5 ± 0.7 mm in group B. Significant differences were not found between 2 groups for x, y, or z (P = 0.34, P = 0.26, and P = 0.41, respectively). At 1 year, when levodopa was withdrawn for 12 hours, the UPDRS-III score improved by 66.3% ± 13.5% in group A and 64.8% ± 12.7% in group B (P = 0.24); the PDQ-39 summary index score improved by 49.7% ± 14.3% in group A and 44.1% ± 12.7% in group B (P = 0.16); the MMSE score improved by 4.2% ± 2.1% in group A and 11.1% ± 3.2% in group B (P = 0.43); and LEDDs decreased by 48.7% ± 10.1% in group A and 56.9% ± 12.0% in group B (P = 0.32). MER and iMRI both are effective ways to ensure adequate electrode placement in DBS surgery, but there is no superiority between both techniques, at least in terms of 1-year follow-up outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Zeineh, Michael M; Parekh, Mansi B; Zaharchuk, Greg; Su, Jason H; Rosenberg, Jarrett; Fischbein, Nancy J; Rutt, Brian K
2014-05-01
The objectives of this study were to acquire ultra-high resolution images of the brain using balanced steady-state free precession (bSSFP) at 7 T and to identify the potential utility of this sequence. Eight volunteers participated in this study after providing informed consent. Each volunteer was scanned with 8 phase cycles of bSSFP at 0.4-mm isotropic resolution using 0.5 number of excitations and 2-dimensional parallel acceleration of 1.75 × 1.75. Each phase cycle required 5 minutes of scanning, with pauses between the phase cycles allowing short periods of rest. The individual phase cycles were aligned and then averaged. The same volunteers underwent scanning using 3-dimensional (3D) multiecho gradient recalled echo at 0.8-mm isotropic resolution, 3D Cube T2 at 0.7-mm isotropic resolution, and thin-section coronal oblique T2-weighted fast spin echo at 0.22 × 0.22 × 2.0-mm resolution for comparison. Two neuroradiologists assessed image quality and potential research and clinical utility. The volunteers generally tolerated the scan sessions well, and composite high-resolution bSSFP images were produced for each volunteer. Rater analysis demonstrated that bSSFP had a superior 3D visualization of the microarchitecture of the hippocampus, very good contrast to delineate the borders of the subthalamic nucleus, and relatively good B1 homogeneity throughout. In addition to an excellent visualization of the cerebellum, subtle details of the brain and skull base anatomy were also easier to identify on the bSSFP images, including the line of Gennari, membrane of Liliequist, and cranial nerves. Balanced steady-state free precession had a strong iron contrast similar to or better than the comparison sequences. However, cortical gray-white contrast was significantly better with Cube T2 and T2-weighted fast spin echo. Balanced steady-state free precession can facilitate ultrahigh-resolution imaging of the brain. Although total imaging times are long, the individually short phase cycles can be acquired separately, improving examination tolerability. These images may be beneficial for studies of the hippocampus, iron-containing structures such as the subthalamic nucleus and line of Gennari, and the basal cisterns and their contents.
Cdc6 localizes to S- and G2-phase centrosomes in a cell cycle-dependent manner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Gwang Su; Kang, Jeeheon; Bang, Sung Woong
2015-01-16
Highlights: • Cdc6 protein is a component of the pre-replicative complex required for chromosomal replication initiation. • Cdc6 localized to centrosomes of S and G2 phases in a cell cycle-dependent manner. • The centrosomal localization was governed by centrosomal localization signal sequences of Cdc6. • Deletions or substitution mutations on the centrosomal localization signal interfered with centrosomal localization of the Cdc6 proteins. - Abstract: The Cdc6 protein has been primarily investigated as a component of the pre-replicative complex for the initiation of chromosome replication, which contributes to maintenance of chromosomal integrity. Here, we show that Cdc6 localized to the centrosomesmore » during S and G2 phases of the cell cycle. The centrosomal localization was mediated by Cdc6 amino acid residues 311–366, which are conserved within other Cdc6 homologues and contains a putative nuclear export signal. Deletions or substitutions of the amino acid residues did not allow the proteins to localize to centrosomes. In contrast, DsRed tag fused to the amino acid residues localized to centrosomes. These results indicated that a centrosome localization signal is contained within amino acid residues 311–366. The cell cycle-dependent centrosomal localization of Cdc6 in S and G2 phases suggest a novel function of Cdc6 in centrosomes.« less
NASA Astrophysics Data System (ADS)
Haugstad, A.; Battisti, D. S.; Armour, K.
2016-12-01
Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vashisht, Geetanjali, E-mail: geetanjali@rrcat.gov.in; Dixit, V. K., E-mail: dixit@rrcat.gov.in; Porwal, S.
2016-03-07
The effect of charge carrier localization resulting in “S-shaped” temperature dependence of the photoluminescence peak energy of InAs{sub x}P{sub 1−x}/InP quantum wells (QWs) is distinctly revealed by the temperature dependent surface photo voltage (SPV) and photoconductivity (PC) processes. It is observed that the escape efficiency of carriers from QWs depends on the localization energy, where the carriers are unable to contribute in SPV/PC signal below a critical temperature. Below the critical temperature, carriers are strongly trapped in the localized states and are therefore unable to escape from the QW. Further, the critical temperature increases with the magnitude of localization energymore » of carriers. Carrier localization thus plays a pivotal role in defining the operating temperature range of InAs{sub x}P{sub 1−x}/InP QW detectors.« less
NASA Astrophysics Data System (ADS)
Wasnik, Vaibhav; Wingreen, Ned; Mukhopadhyay, Ranjan
2012-02-01
Recent experiments suggest that in the bacterium, B. subtilis, the cue for the localization of small sporulation protein, SpoVM, that plays a central role in spore coat formation, is curvature of the bacterial plasma membrane. This curvature-dependent localization is puzzling given the orders of magnitude difference in lengthscale of an individual protein and radius of curvature of the membrane. Here we develop a minimal model to study the relationship between curvature-dependent membrane absorption of SpoVM and clustering of membrane-associated SpoVM and compare our results with experiments.
Three dimensional single molecule localization using a phase retrieved pupilfunction
Liu, Sheng; Kromann, Emil B.; Krueger, Wesley D.; Bewersdorf, Joerg; Lidke, Keith A.
2013-01-01
Localization-based superresolution imaging is dependent on finding the positions of individualfluorophores in a sample by fitting the observed single-molecule intensity pattern to the microscopepoint spread function (PSF). For three-dimensional imaging, system-specific aberrations of theoptical system can lead to inaccurate localizations when the PSF model does not account for theseaberrations. Here we describe the use of phase-retrieved pupil functions to generate a more accuratePSF and therefore more accurate 3D localizations. The complex-valued pupil function containsinformation about the system-specific aberrations and can thus be used to generate the PSF forarbitrary defocus. Further, it can be modified to include depth dependent aberrations. We describethe phase retrieval process, the method for including depth dependent aberrations, and a fastfitting algorithm using graphics processing units. The superior localization accuracy of the pupilfunction generated PSF is demonstrated with dual focal plane 3D superresolution imaging ofbiological structures. PMID:24514501