Science.gov

Sample records for depleted lithospheric mantle

  1. Extremely depleted lithospheric mantle and diamonds beneath the southern Zimbabwe Craton

    NASA Astrophysics Data System (ADS)

    Smith, Chris B.; Pearson, D. Graham; Bulanova, Galina P.; Beard, Andrew D.; Carlson, Richard W.; Wittig, Nadine; Sims, Keith; Chimuka, Lovemore; Muchemwa, Ellah

    2009-11-01

    Inclusion-bearing diamonds, mantle xenoliths, and kimberlite concentrates from the Cambrian-aged Murowa and Sese kimberlites have been studied to characterise the nature of the lithospheric mantle beneath the southern Zimbabwe Craton. The diamonds are mostly octahedral, moderately rich in nitrogen with moderate to high aggregation, and contain mainly dunite-harzburgite mineral inclusions. Similarly, dunite xenoliths predominate over harzburgite and lherzolite and carry olivines with Mg/Mg + Fe (Mg#) values of 0.92-0.95, spanning the average signatures for Kaapvaal Craton peridotites. Eclogitic xenoliths are extremely rare, in contrast to the Kaapvaal mantle lithosphere. The Zimbabwe mantle assemblage has been only slightly affected by later silicic metasomatism and re-fertilisation with re-introduction of pyroxenes in contrast to the Kaapvaal and many cratonic lithospheric blocks elsewhere where strong metasomatism and re-fertilisation is widespread. Pyroxene, garnet and spinel thermobarometry suggests an ambient 40 mW m - 2 geotherm, with the lithosphere extending down to 210 km at the time of kimberlite eruption. Whole rock peridotite Re-Os isotope analyses yield T RD model ages of 2.7 to 2.9 Ga, providing minimum estimates of the time of melt depletion, are slightly younger in age than the basement greenstone formation. These model ages coincide with the mean T RD age of > 200 analyses of Kaapvaal Craton peridotites, whereas the average Re-Os model age for the Zimbabwe peridotites is 3.2 Ga. The Os data and low Yb n/Lu n ratios suggest a model whereby thick lithospheric mantle was stabilised during the early stages of crustal development by shallow peridotite melting required for formation of residues with sufficiently high Cr/Al to stabilise chromite which then transforms to low Ca, high Cr garnet. Sulphide inclusions in diamond produce minimum T RD model ages of 3.4 Ga indicating that parts of the lithosphere were present at the earliest stages of crust

  2. Ancient melt depletion overprinted by young carbonatitic metasomatism in the New Zealand lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Scott, J. M.; Hodgkinson, A.; Palin, J. M.; Waight, T. E.; Van der Meer, Q. H. A.; Cooper, A. F.

    2014-01-01

    Spinel facies dunite, harzburgite, lherzolite and wehrlite mantle xenoliths from a cluster of Miocene volcanoes in southern New Zealand preserve evidence of the complex evolution of the underlying continental mantle lithosphere. Spinel Cr# records melt extraction with some values indicative of near complete removal of clinopyroxene. LREE-enriched, low Ti/Eu and low Al2O3 clinopyroxene and rare F-, LREE-rich apatite indicates subsequent interaction between peridotite and a metasomatising carbonatitic melt. The clearest metasomatic signature occurs in the formerly highly depleted samples because there was little or no pre-existing clinopyroxene to dilute the carbonatite signature. For the same reason, the isotopic character of the metasomatising agent is best observed in the formerly highly depleted peridotites (87Sr/86Sr = 0.7028-0.7031; 143Nd/144Nd = 0.5129; 206Pb/204Pb = 20.2-20.3). These isotope ratios are very close to, but slightly less radiogenic than, the HIMU end-member mantle reservoir. Nd isotope data imply carbonatite metasomatism occurred within the last several hundred million years, with ubiquitous pyroxene core-to-rim Al diffusion zoning indicating that it must pre-date cooling of the lithospheric mantle following Late Cretaceous-Eocene rifting of Zealandia from Gondwana. Metasomatism was significantly younger than ancient Re-depletion ages of ~2 Ga and shows that decoupling of peridotite isotope systems has occurred.

  3. Unravelling the effects of primary melt depletion and metasomatism in the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Gannoun, A.; Alard, O.; Burton, K. W.; Rogers, N.; Schiano, P.

    2003-04-01

    Osmium behaves as a highly compatible element during mantle melting and is preferentially retained in the residue, whereas Re is moderately incompatible and enters the melt. The Re-Os isotope system thus offers unique information on the timing and nature of melt depletion in the mantle, that is often considered to be immune from secondary metasomatic processes. For the system to be perturbed either Re or "exotic" Os must be added during some later event. However, the Os budget in mantle rocks is almost entirely controlled by sulphide, and thus the integrity of Os is fundamentally dependent upon the behaviour of sulphide. In this study we have reexamined the petrology and geochemistry of a classic suite of spinel lherzolite xenoliths from the Massif Central, France. These samples preserve a range of fertility (0.85 - 3.61 CaO wt %) attributed to variable melt extraction. Equilibration temperatures of 900^oC-1100^oC, and minimum equilibration pressures of 1.3Gpa (from geobarometry and fluid inclusions) indicate that these xenoliths last equilibrated under upper mantle conditions. Whole rock Re-Os data yields a range of 187Os/188Os ratios from 0.115 - 0.125 which correlate well with indices of fertility, consistent these rocks having been simply affected by melt depletion. However, A detailed study of secondary melt inclusions within the silicate phases has revealed that not only are the xenoliths contaminated by exotic, small percentage highly silicic melts but also that sulphide blebs are found in co-genetic relationships with CO_2 rich, silica rich and composite melt inclusions. That, at least some, of the Os in these rocks is hosted in metasomatic sulphide is consistent with in-situ Os isotope data from Mont Briancon (1). This shows that within a single rock only sulphides trapped in olivine preserve unradiogenic compositions, whereas interstitial, metasomatic sulphides are more radiogenic. Preliminary Re-Os data for olivine also yields unradiogenic values

  4. Re-Os systematics of the lithospheric mantle beneath the Western Ross Sea area, Antarctica: depletion ages and dynamic response during rifting

    NASA Astrophysics Data System (ADS)

    Doherty, C.; Class, C.; Goldstein, S. L.; Shirey, S. B.; Martin, A. P.; Cooper, A. F.; Berg, J. H.; Gamble, J. A.

    2013-12-01

    The West Antarctic Rift System (WARS) is situated between the East Antarctic craton and Marie Byrd Land. Seismic studies on the structure of the lithosphere beneath the WARS reveal thinned lithosphere [1] with crustal thickness ranging from 16 to 22 km in the Ross Sea basin [2,3] that is underlain by a low velocity zone at 80-200 km [4]. However, seismic studies alone provide little information on the age of the lithospheric mantle or its fate during rifting and the formation of the WARS. Geochemical studies on lithosphere surrounding Archean cratons have demonstrated the persistence of off-craton Proterozoic lithosphere and potentially Archean lithosphere (e.g. southeast Australia and southern Africa) [5,6], and suggest that it is possible to constrain the age and structure of the lithosphere in the WARS. Os isotope ratios can be used to date the melt depletion events in the asthenosphere that are considered to be equivalent to the stabilization age of the lithospheric mantle [7]. Here we present the first Re-Os isotope measurements on mantle xenoliths from 5.0 to <1.0 Ma-old volcanic rocks collected in a transection from the rift shoulder and into the rift basin in the Western Ross Sea area of the WARS, and suggest that these data can be used to examine the dynamic response of the lithosphere to rifting. For example, ancient Re-depletion ages across this margin could indicate thinning of the lithospheric mantle during continental extension and dynamic extension of the lithospheric mantle beneath the rift basin. In contrast, younger ages might suggest a more complex history or possibly the replacement by asthenosphere as a result of lithospheric delamination during rifting. Our 187Os/188Os isotope ratios show a large range throughout the rifted margin (0.1051 at Foster Crater to 0.1265 on Ross Island), yet define individual melt depletion trends at 7 locations across the rift. Alumachron model ages derived from 187Os/188Os vs. Al2O3 wt% depletion trends reveal

  5. Enriched continental flood basalts from depleted mantle melts: modeling the lithospheric contamination of Karoo lavas from Antarctica

    NASA Astrophysics Data System (ADS)

    Heinonen, Jussi S.; Luttinen, Arto V.; Bohrson, Wendy A.

    2016-01-01

    Continental flood basalts (CFBs) represent large-scale melting events in the Earth's upper mantle and show considerable geochemical heterogeneity that is typically linked to substantial contribution from underlying continental lithosphere. Large-scale partial melting of the cold subcontinental lithospheric mantle and the large amounts of crustal contamination suggested by traditional binary mixing or assimilation-fractional crystallization models are difficult to reconcile with the thermal and compositional characteristics of continental lithosphere, however. The well-exposed CFBs of Vestfjella, western Dronning Maud Land, Antarctica, belong to the Jurassic Karoo large igneous province and provide a prime locality to quantify mass contributions of lithospheric and sublithospheric sources for two reasons: (1) recently discovered CFB dikes show isotopic characteristics akin to mid-ocean ridge basalts, and thus help to constrain asthenospheric parental melt compositions and (2) the well-exposed basaltic lavas have been divided into four different geochemical magma types that exhibit considerable trace element and radiogenic isotope heterogeneity (e.g., initial ɛ Nd from -16 to +2 at 180 Ma). We simulate the geochemical evolution of Vestfjella CFBs using (1) energy-constrained assimilation-fractional crystallization equations that account for heating and partial melting of crustal wall rock and (2) assimilation-fractional crystallization equations for lithospheric mantle contamination by using highly alkaline continental volcanic rocks (i.e., partial melts of mantle lithosphere) as contaminants. Calculations indicate that the different magma types can be produced by just minor (1-15 wt%) contamination of asthenospheric parental magmas by melts from variable lithospheric reservoirs. Our models imply that the role of continental lithosphere as a CFB source component or contaminant may have been overestimated in many cases. Thus, CFBs may represent major juvenile crustal

  6. An ancient depleted mantle sample from a 42-Ma dike in Montana: Constraints on persistence of the lithosphere during Eocene Magmatism

    USGS Publications Warehouse

    Dudas, F.O.; Harlan, S.S.

    1999-01-01

    Recent models for the Cenozoic tectonic evolution of the western margin of North America propose that delamination of ancient lithosphere accompanied asthenospheric upwelling, magmatism, and uplift subsequent to Laramide deformation. On the basis of the age of an alkaline dike in south-central Montana, thermometry of mantle xenoliths from the dike, and Sr, Nd, and Pb isotopic compositions of the dike and a xenocryst, we show that refractory lithosphere, derived from ancient, depleted mantle, remained in place under the Wyoming Craton as late as 42 Ma. The Haymond School Dike, a camptonite, yields a 40Ar/39Ar plateau date of 41.97 ?? 0.19 Ma (2??). Paleomagnetic data are consistent with this date and indicate intrusion during chron C19r. The dike has Sr, Nd, and Pb isotopic compositions similar to those of other Eocene alkaline rocks from central Montana. A clinopyroxene megacryst from the dike has ??42 = 17, and 87Sr/86Sr = 0.70288, indicating that it derives from ancient, depleted mantle isotopically distinct from the source of the host camptonite. Thermometry of xenoliths from the dike shows pyroxene populations that formed at 880?? and 1200??C. Combining thermometry with previous estimates of the regional Eocene geotherm inferred from xenoliths in kimberlites, and with the Al-in-orthopyroxene barometer, we infer that lithospheric mantle remained intact to depths of 110-150 km as late as 42 Ma. Eocene magmatism was not accompanied by complete removal of ancient lithosphere.

  7. Timing of Precambrian melt depletion and Phanerozoic refertilization events in the lithospheric mantle of the Wyoming Craton and adjacent Central Plains Orogen

    USGS Publications Warehouse

    Carlson, R.W.; Irving, A.J.; Schulze, D.J.; Hearn, B.C.

    2004-01-01

    Garnet peridotite xenoliths from the Sloan kimberlite (Colorado) are variably depleted in their major magmaphile (Ca, Al) element compositions with whole rock Re-depletion model ages generally consistent with this depletion occurring in the mid-Proterozoic. Unlike many lithospheric peridotites, the Sloan samples are also depleted in incompatible trace elements, as shown by the composition of separated garnet and clinopyroxene. Most of the Sloan peridotites have intermineral Sm-Nd and Lu-Hf isotope systematics consistent with this depletion occurring in the mid-Proterozoic, though the precise age of this event is poorly defined. Thus, when sampled by the Devonian Sloan kimberlite, the compositional characteristics of the lithospheric mantle in this area primarily reflected the initial melt extraction event that presumably is associated with crust formation in the Proterozoic-a relatively simple history that may also explain the cold geotherm measured for the Sloan xenoliths. The Williams and Homestead kimberlites erupted through the Wyoming Craton in the Eocene, near the end of the Laramide Orogeny, the major tectonomagmatic event responsible for the formation of the Rocky Mountains in the late Cretaceous-early Tertiary. Rhenium-depletion model ages for the Homestead peridotites are mostly Archean, consistent with their origin in the Archean lithospheric mantle of the Wyoming Craton. Both the Williams and Homestead peridotites, however, clearly show the consequences of metasomatism by incompatible-element-rich melts. Intermineral isotope systematics in both the Homestead and Williams peridotites are highly disturbed with the Sr and Nd isotopic compositions of the minerals being dominated by the metasomatic component. Some Homestead samples preserve an incompatible element depleted signature in their radiogenic Hf isotopic compositions. Sm-Nd tie lines for garnet and clinopyroxene separates from most Homestead samples provide Mesozoic or younger "ages" suggesting

  8. The Role of the Mantle Lithosphere in Continent Stability

    NASA Astrophysics Data System (ADS)

    Carlson, R. W.; Ancuta, L. D.; Fouch, M. J.; Idleman, B. D.; Ionov, D. A.; James, D. E.; Meltzer, A.; Pearson, G.; Shirey, S. B.; Zeitler, P. K.

    2012-12-01

    Most Archean cratons are underlain by up to 200 km thick sections of mantle characterized by high seismic velocities. Xenoliths from cratonic mantle lithosphere show them to consist of refractory peridotites that are the residues of very high degrees of partial melt removal leaving the majority with less than 2% Al2O3. The partial melt removal leaves the lithospheric mantle compositionally buoyant, strong, and with very little internal radioactive heat generating capacity so that even after cooling it contributes to the strength, longevity, and relative geologic inactivity of the overlying crust. Re-Os studies, particularly in the Kaapvaal Craton of southern Africa, show a strong correspondence between the ages of melt depletion of the cratonic mantle and significant crust building events. The main age peak in the Kaapvaal lithospheric mantle is 2.9 Ga, coincident with assembly of the western and eastern blocks of the craton. The only significant disruption to this age pattern is seen below the 2 Ga Bushveld intrusion where the mantle lithosphere is characterized by slower seismic velocities and xenolith ages closer to 2 than 3 Ga. The surrounding Proterozoic mobile belts have even slower seismic velocities and xenolith ages generally less than 1.5 Ga. An interesting contrast to this picture of cold, old, stable cratonic lithosphere is that displayed by central Mongolia. This area, more or less in the middle of the huge Asian continental plate, is far removed from plate boundary processes yet in the Hangay Mountains shows elevations approaching 4 km along with extensive late Cenozoic basaltic volcanism. In contrast to cratonic lithosphere, mantle xenoliths from the Hangay region are dominantly fertile peridotite. Fifty-six percent of a large collection of peridotites from 4 Mongolian localities have more than 3.5% Al2O3 and only 4% have Al2O3 contents of less than 2%. Cenozoic basalts from the region have subchondritic 143Nd/144Nd and MORB-like He isotopic

  9. Heterogeneity of Water Concentrations in the Mantle Lithosphere Beneath Hawaii

    NASA Technical Reports Server (NTRS)

    Bizimis, M.; Peslier, A. H.; Clague, D.

    2017-01-01

    The amount and distribution of water in the oceanic mantle lithosphere has implications on its strength and of the role of volatiles during plume/lithosphere interaction. The latter plays a role in the Earth's deep water cycle as water-rich plume lavas could re-enrich an oceanic lithosphere depleted in water at the ridge, and when this heterogeneous lithosphere gets recycled back into the deep mantle. The main host of water in mantle lithologies are nominally anhydrous minerals like olivine, pyroxene and garnet, where hydrogen (H) is incorporated in mineral defects by bonding to structural oxygen. Here, we report water concentrations by Fourier transform infrared spectrometry (FTIR) on olivine, clino- and orthopyroxenes (Cpx & Opx) from spinel peridotites from the Pali vent and garnet pyroxenite xenoliths from Aliamanu vent, both part of the rejuvenated volcanism at Oahu (Hawaii). Pyroxenes from the Aliamanu pyroxenites have high water concentrations, similar to the adjacent Salt Lake Crater (SLC) pyroxenites (Cpx 400-500 ppm H2O, Opx 200 ppm H2O). This confirms that pyroxenite cumulates form water-rich lithologies within the oceanic lithosphere. In contrast, the Pali peridotites have much lower water concentrations than the SLC ones (<25 ppm vs. 50-96 ppm H2O respectively) despite being relatively fertile with >10% modal Cpx and low spinel Cr# (0.09-0.10). The contrast between the two peridotite suites is also evident in their trace elements and radiogenic isotopes. The Pali Cpx are depleted in light REE, consistent with minimal metasomatism. Those of SLC have enriched light REE patterns and Nd and Hf isotopes consistent with metasomatism by alkaline melts. These observations are consistent with heterogeneous water distribution in the oceanic lithosphere that may be related to metasomatism, as well as relatively dry peridotites cross-cut by narrow (?) water-rich melt reaction zones.

  10. Water in the Cratonic Mantle Lithosphere

    NASA Technical Reports Server (NTRS)

    Peslier, A. H.

    2016-01-01

    The fact that Archean and Proterozoic cratons are underlain by the thickest (>200 km) lithosphere on Earth has always puzzled scientists because the dynamic convection of the surrounding asthenosphere would be expected to delaminate and erode these mantle lithospheric "keels" over time. Although density and temperature of the cratonic lithosphere certainly play a role in its strength and longevity, the role of water has only been recently addressed with data on actual mantle samples. Water in mantle lithologies (primarily peridotites and pyroxenites) is mainly stored in nominally anhydrous minerals (olivine, pyroxene, garnet) where it is incorporated as hydrogen bonded to structural oxygen in lattice defects. The property of hydrolytic weakening of olivine [4] has generated the hypothesis that olivine, the main mineral of the upper mantle, may be dehydrated in cratonic mantle lithospheres, contributing to its strength. This presentation will review the distribution of water concentrations in four cratonic lithospheres. The distribution of water contents in olivine from peridotite xenoliths found in kimberlites is different in each craton (Figure 1). The range of water contents of olivine, pyroxene and garnet at each xenolith location appears linked to local metasomatic events, some of which occurred later then the Archean and Proterozoic when these peridotites initially formed via melting. Although the low olivine water contents (<10 ppm wt H2O) at > 6 GPa at the base of the Kaapvaal cratonic lithosphere may contribute to its strength, and prevent its delamination, the wide range of those from Siberian xenoliths is not compatible with providing a high enough viscosity contrast with the asthenophere. The water content in olivine inclusions from Siberian diamonds, on the other hand, have systematically low water contents (<20 ppm wt H2O). The xenoliths may represent a biased sample of the cratonic lithosphere with an over-­abundance of metasomatized peridotites with

  11. Tracing lithosphere amalgamation through time: chemical geodynamics of sub-continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Wittig, Nadine

    2014-05-01

    The theory of plate tectonics is a relatively young concept in the Earth Sciences and describes the surface expression of planetary cooling via magmatism and reconciles mantle convection and plate movement with orogenesis, earthquakes and volcanism. Detailed observation of current tectonic plate movement has purported a relatively clear picture of the planet's geodynamics. Modern oceanic basins are the predominant sites of thermal equilibration of Earth interior resulting from decompressional, convective melting of peridotites. This magmatism generates mid-ocean ridge mafic crust and depleted upper mantle and in this model, oceanic crust becomes associated with buoyant mantle to form oceanic lithosphere. Subduction zones return this material together with sediments into the deeper mantle and presumably aid the formation of continental crust via arc magmatism. The mechanisms of continental crust amalgamation with buoyant mantle are less clear, and distinctly more difficult to trace back in time because metamorphism and metasomatism render the processes associating convecting mantle with continental crust elusive. Paramount in assessing these mechanisms is understanding the timing of crust and mantle formation so that the onset of plate tectonics and potential changes in modi operandi with respect to convection, mantle composition and melting pressure and temperature may be traced from the early Hadean to the present day. Typically the formation age of continental crust is more easily determined from felsic samples that contain accessory and relatively robust phases such as zircon and monazite that render a geochronological approach feasible. The lack of equally robust minerals and pervasive and ubiquitous metasomatism afflicting obducted orogenic peridotites and mantle xenoliths obliterates primary mineralogical and geochemical information. Hence it has proven difficult to acquire mantle depletion ages from continental lithospheric mantle, perhaps with the exception

  12. Depletion, cryptic metasomatism, and modal metasomatism (refertilization) of Variscan lithospheric mantle: Evidence from major elements, trace elements, and Sr-Nd-Os isotopes in a Saxothuringian garnet peridotite

    NASA Astrophysics Data System (ADS)

    Gordon Medaris, L.; Ackerman, Lukáš; Jelínek, Emil; Michels, Zachary D.; Erban, Vojtěch; Kotková, Jana

    2015-06-01

    Orogenic garnet peridotites of diverse origins and histories in the Bohemian Massif attest to a variety of mantle processes, including partial melting, cryptic metasomatism, and modal metasomatism (refertilization), all of which are recorded by Saxothuringian garnet peridotite from the T-7 borehole in northern Bohemia. The T-7 peridotite consists of interlayered garnet lherzolite, harzburgite, and phlogopite-garnet pyroxenite lenses that yield peak temperatures and pressures of 1030-1150 °C and 36.1-48.0 kbar. Olivine crystallographic preferred orientations exhibit [axial](010) slip, corresponding to a pure shear component of deformation under relatively low flow stress conditions. Some lherzolite samples are fertile, resembling primitive mantle in major and trace element composition, but other lherzolites are slightly depleted in incompatible major elements, HREE, and HFSE, and slightly enriched in LREE. Harzburgite is depleted in incompatible major elements, HREE, and HFSE, but enriched in LREE. Harzburgite adjacent to pyroxenite has been refertilized, containing phlogopite, less olivine, more orthopyroxene, and more garnet than distal harzburgite. The T-7 peridotite compositions are the result of variable degrees of partial melting in the spinel stability field, followed by cryptic metasomatism and modal metasomatism by transient basaltic melts in the garnet field. Trace elements, Sr and Nd isotopes, and occurrence of phlogopite reflect a subduction component in the metasomatising melts. Partial melting of the T-7 peridotite was a Proterozoic event, as indicated by Rhenium depletion model ages (TRD); the age of cryptic and modal metasomatism is unconstrained, but is thought to be related to Variscan subduction and amalgamation of the Bohemian Massif.

  13. The continental lithospheric mantle: characteristics and significance as a mantle reservoir.

    PubMed

    Pearson, D G; Nowell, G M

    2002-11-15

    The continental lithospheric mantle (CLM) is a small-volumed (ca. 2.5% of the total mantle), chemically distinct mantle reservoir that has been suggested to play a role in the source of continental and oceanic magmatism. It is our most easily identifiable reservoir for preserving chemical heterogeneity in the mantle. Petrological and geophysical constraints indicate that the maximum depth of the CLM is ca. 250 km. There is a clear secular variation of CLM composition, such that CLM formed in the last 2 Gyr is less depleted and therefore less dynamically stable than ancient CLM formed in the Archean. We present new trace-element data for kimberlite-hosted lithospheric peridotites and metasomites. These data, combined with other data for spinel peridotites from non-cratonic regions, show that neither hydrous nor anhydrous lithospheric mantle xenoliths make suitable sources for continental or oceanic basalts. Addition of a hydrous phase, either amphibole or phlogopite, to depleted peridotite results in positive Nb and Ti anomalies that are the opposite of those predicted for some flood-basalt sources on the basis of their trace-element abundances. Overall, the Sr and Nd isotopic composition of cratonic and non-cratonic CLM is close to bulk Earth, with cratonic CLM showing small numbers of extreme compositions. Thus, while the CLM is certainly ancient in many locations, its average composition is not significantly 'enriched' over primitive upper mantle, in terms of either radiogenic isotopes or trace elements. These characteristics, plus a change in lithospheric chemistry with depth, indicate that the elemental and isotopic composition of lithospheric mantle likely to be re-incorporated into convecting mantle via delamination/thermal erosion processes is probably not very distinct from that of the convecting mantle. These observations lead us to question the requirement for CLM participation in the source of oceanic magmas and to promote consideration of a mantle that

  14. Osmium isotopic evidence for ancient subcontinental lithospheric mantle beneath the kerguelen islands, southern indian ocean

    PubMed

    Hassler; Shimizu

    1998-04-17

    Upper mantle xenoliths found in ocean island basalts are an important window through which the oceanic mantle lithosphere may be viewed directly. Osmium isotopic data on peridotite xenoliths from the Kerguelen Islands, an archipelago that is located on the northern Kerguelen Plateau in the southern Indian Ocean, demonstrate that pieces of mantle of diverse provenance are present beneath the Islands. In particular, peridotites with unradiogenic osmium and ancient rhenium-depletion ages (to 1.36 x 10(9) years old) may be pieces of the Gondwanaland subcontinental lithosphere that were incorporated into the Indian Ocean lithosphere as a result of the rifting process.

  15. Seismic structure of the lithosphere beneath NW Namibia: Impact of the Tristan da Cunha mantle plume

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohui; Heit, Benjamin; Brune, Sascha; Steinberger, Bernhard; Geissler, Wolfram H.; Jokat, Wilfried; Weber, Michael

    2017-01-01

    Northwestern Namibia, at the landfall of the Walvis Ridge, was affected by the Tristan da Cunha mantle plume during continental rupture between Africa and South America, as evidenced by the presence of the Etendeka continental flood basalts. Here we use data from a passive-source seismological network to investigate the upper mantle structure and to elucidate the Cretaceous mantle plume-lithosphere interaction. Receiver functions reveal an interface associated with a negative velocity contrast within the lithosphere at an average depth of 80 km. We interpret this interface as the relic of the lithosphere-asthenosphere boundary (LAB) formed during the Mesozoic by interaction of the Tristan da Cunha plume head with the pre-existing lithosphere. The velocity contrast might be explained by stagnated and "frozen" melts beneath an intensively depleted and dehydrated peridotitic mantle. The present-day LAB is poorly visible with converted waves, indicating a gradual impedance contrast. Beneath much of the study area, converted phases of the 410 and 660 km mantle transition zone discontinuities arrive 1.5 s earlier than in the landward plume-unaffected continental interior, suggesting high velocities in the upper mantle caused by a thick lithosphere. This indicates that after lithospheric thinning during continental breakup, the lithosphere has increased in thickness during the last 132 Myr. Thermal cooling of the continental lithosphere alone cannot produce the lithospheric thickness required here. We propose that the remnant plume material, which has a higher seismic velocity than the ambient mantle due to melt depletion and dehydration, significantly contributed to the thickening of the mantle lithosphere.

  16. Identifying mantle lithosphere inheritance in controlling intraplate orogenesis

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.; Stephenson, Randell

    2016-09-01

    Crustal inheritance is often considered important in the tectonic evolution of the Wilson Cycle. However, the role of the mantle lithosphere is usually overlooked due to its difficulty to image and uncertainty in rheological makeup. Recently, increased resolution in lithosphere imaging has shown potential scarring in continental mantle lithosphere to be ubiquitous. In our study, we analyze intraplate deformation driven by mantle lithosphere heterogeneities from ancient Wilson Cycle processes and compare this to crustal inheritance deformation. We present 2-D numerical experiments of continental convergence to generate intraplate deformation, exploring the limits of continental rheology to understand the dominant lithosphere layer across a broad range of geological settings. By implementing a "jelly sandwich" rheology, common in stable continental lithosphere, we find that during compression the strength of the mantle lithosphere is integral in generating deformation from a structural anomaly. We posit that if the continental mantle is the strongest layer within the lithosphere, then such inheritance may have important implications for the Wilson Cycle. Furthermore, our models show that deformation driven by mantle lithosphere scarring can produce tectonic patterns related to intraplate orogenesis originating from crustal sources, highlighting the need for a more formal discussion of the role of the mantle lithosphere in plate tectonics.

  17. Convective instability within the Tibetan Lithospheric Mantle (Invited)

    NASA Astrophysics Data System (ADS)

    Houseman, G. A.; Molnar, P. H.; Evans, L.; England, P. C.

    2013-12-01

    Studies of seismic surface waves in Asia show that shear-wave speeds at depths of ~120-250km beneath the Tibetan Plateau are higher than is generally observed for continents, other than beneath Archaean cratons. The high-speed layer has been interpreted as continental lithosphere that was thickened during the convergence between India and Asia. This interpretation contradicts conceptual models in which gravitational instabilities remove a significant fraction of the mantle lithosphere beneath Tibet during that convergence. In contrast, the suggestion of relatively recent (post-early-Miocene) surface uplift of the Plateau, inferred from the onset of normal faulting across the plateau, synchronous increased rates of compressional deformation in the surroundings of the the plateau, and widespread volcanism in the northern part of the plateau, implies action of a mechanism that increased the gravitational potential energy of, and temperatures within, the Tibetan lithosphere in a way that would not occur if the mantle lithosphere had simply thickened continually throughout the India-Asia convergence. A resolution to this paradox is suggested by the observation that, while shear-wave speeds are indeed high at depths of 120-250 km beneath the Tibetan plateau, they are anomalously low at shallower depths, implying a temperature inversion that is hard to reconcile with uninterrupted lithospheric thickening. We suggest that the ensemble of observations may be explained by the convective overturn of a lithospheric root that is depleted in iron such that it remains buoyant with respect to normal upper mantle. The increased rate of strain within the Tibetan lithosphere once convergence began reduced its effective viscosity, and continuing convergence thickened the lithospheric root. These conditions led to convective overturn, similar to the original conceptual models, with the difference that the overturn was confined within the root, which remains buoyant with respect to the

  18. Preservation of ancient and fertile lithospheric mantle beneath the southwestern United States.

    PubMed

    Lee, C T; Yin, Q; Rudnick, R L; Jacobsen, S B

    2001-05-03

    Stable continental regions, free from tectonic activity, are generally found only within ancient cratons-the centres of continents which formed in the Archaean era, 4.0-2.5 Gyr ago. But in the Cordilleran mountain belt of western North America some younger (middle Proterozoic) regions have remained stable, whereas some older (late Archaean) regions have been tectonically disturbed, suggesting that age alone does not determine lithospheric strength and crustal stability. Here we report rhenium-osmium isotope and mineral compositions of peridotite xenoliths from two regions of the Cordilleran mountain belt. We found that the younger, undeformed Colorado plateau is underlain by lithospheric mantle that is 'depleted' (deficient in minerals extracted by partial melting of the rock), whereas the older (Archaean), yet deformed, southern Basin and Range province is underlain by 'fertile' lithospheric mantle (not depleted by melt extraction). We suggest that the apparent relationship between composition and lithospheric strength, inferred from different degrees of crustal deformation, occurs because depleted mantle is intrinsically less dense than fertile mantle (due to iron having been lost when melt was extracted from the rock). This allows the depleted mantle to form a thicker thermal boundary layer between the deep convecting mantle and the crust, thus reducing tectonic activity at the surface. The inference that not all Archaean crust developed a strong and thick thermal boundary layer leads to the possibility that such ancient crust may have been overlooked because of its intensive reworking or lost from the geological record owing to preferential recycling.

  19. 87Sr/86Sr in spinel peridotites from Borée, Massif Central, France: melt depletion and metasomatism in the sub-continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Barnett, Caroline; Harvey, Jason

    2016-04-01

    Radiogenic isotopes and elemental concentrations in peridotite xenoliths may be used to model the timing and degree of partial melting in the upper mantle, but this primary melt depletion signature may be overwritten by subsequent episodes of melt or fluid infiltration. Spinel peridotites from the Maar de Borée, Massif Central, France have mainly poikilitic protogranular textures and clear petrographic evidence of a melt phase apparently unrelated to host basalt infiltration. Bulk rock major and compatible trace element concentrations are consistent with varying degrees of partial melting but incompatible trace element concentrations indicate cryptic metasomatism in some samples. Lithophile trace element mass balance cannot always be reconciled by the inclusion of the chemically characterized melt phase and suggest a contribution from a trace abundance grain boundary phase1. 87Sr/86Sr values for unleached bulk rocks and clinopyroxene mineral separates are higher than those for their leached equivalents, consistent with the removal of a radiogenic grain boundary phase. While unleached bulk rock 87Sr/86Sr is sometimes indistinguishable (within error) from its constituent unleached clinopyroxene, in two samples they show distinct patterns, as do the REE trends in these two xenoliths. BO01-01 bulk-rock is LREE-enriched (La/YbN = 3.6)2, and constituent clinopyroxene shows a similar relative enrichment trend. Bulk-rock 87Sr/86Sr is 0.70342±1 while that of clinopyroxene is lower at 0.70332±2. Clinopyroxene modal abundance is 11%. BO01-03 bulk-rock is only slightly LREE-enriched (La/YbN = 1.2) and both bulk-rock and clinopyroxene show a generally flatter profile. Bulk-rock 87Sr/86Sr is 0.70285±1 while that of clinopyroxene is in this case higher at 0.70296±2. Clinopyroxene modal abundance is also higher at 15%, consistent with a greater contribution by clinopyroxene to the bulk-rock Sr-isotope budget. The results appear to be inconsistent with a simple model of single

  20. European Lithospheric Mantle; geochemical, petrological and geophysical processes

    NASA Astrophysics Data System (ADS)

    Ntaflos, Th.; Puziewicz, J.; Downes, H.; Matusiak-Małek, M.

    2017-04-01

    The second European Mantle Workshop occurred at the end of August 2015, in Wroclaw, Poland, attended by leading scientists in the study the lithospheric mantle from around the world. It built upon the results of the first European Mantle Workshop (held in 2007, in Ferrara, Italy) published in the Geological Society of London Special Publication 293 (Coltorti & Gregoire, 2008).

  1. Perennial plate tectonics with lasting mantle lithosphere scars

    NASA Astrophysics Data System (ADS)

    Heron, P.; Pysklywec, R. N.; Stephenson, R.

    2015-12-01

    Although the conventional theory of plate tectonics can explain non-rigid behaviour at plate boundaries, it cannot adequately explain the processes involved in deformation and seismicity within plate interiors. Here, we consider that the pre-existing deformation or "scarring" within the mantle lithosphere may have a very long lived presence that could incorporate deformation of the plate interior and plate boundary. Mantle lithosphere scars from continent-continent collisions could generate virtual plate boundaries that remain over long timescales, producing "perennial" plate tectonics. Local geophysical studies can map the crustal environment well, and global whole mantle tomography models are rapidly improving, yet high-resolution images of the mantle lithosphere are often not available in regions where scarring may be present. Where mantle lithosphere heterogeneities have been observed (usually interpreted simply as subduction scars), the same attention has not been afforded to them as, for example, re-activation of faults within the Earth's crust. In idealized numerical simulations, we compare how relic scarring at varying depths in the lithosphere affects patterns of deformation. High-resolution thermal-mechanical numerical experiments explore continental lithospheric deformation featuring a weakened crust and mantle lithosphere scars. Our models show that deep lithospheric scars can control the tectonic evolution of a region over shallow geological features, indicating the importance of mantle lithosphere heterogeneities. The Altyn Tagh Fault (ATF) in central China is an example of an ancient continental collision zone that undergoes periodic deformation during times of regional compression. We suggest that the ATF may be a locale where a long-lasting mantle lithosphere scar can control the subsequent crustal evolution and deformation, with ancient plate boundaries having a "perennial" plate tectonic presence.

  2. Widespread refertilization of cratonic and circum-cratonic lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Tang, Yan-Jie; Zhang, Hong-Fu; Ying, Ji-Feng; Su, Ben-Xun

    2013-03-01

    Studies of mantle xenoliths have confirmed that Archean subcontinental lithospheric mantle (SCLM) is highly depleted in basaltic components (such as Al, Ca and Na) due to high-degree extraction of mafic and ultramafic melts and thus is refractory and buoyant, which made it chronically stable as tectonically independent units. However, increasing studies show that ancient SCLM can be refertilized by episodic rejuvenation events like infiltration of upwelling fertile material. The North China Craton is one of the most typical cases for relatively complete destruction of its Archean keel since the eruption of Paleozoic kimberlites, as is evidenced by a dramatic change in the compositions of mantle xenoliths sampled by Paleozoic to Cenozoic magmas, reflecting significant lithospheric thinning and the change in the character of the SCLM. The compositional change has been interpreted as the result of refertilization of Archean SCLM via multiple-stage peridotite-melt reactions, suggested by linear correlations between MgO and indices of fertility, covariations of Al2O3 with CaO, La/Yb, 87Sr/86Sr, 143Nd/144Nd, 187Os/188Os and Re-depletion ages (TRD), high Re abundances, scatter in Re-Os isotopic plot, variable in situ TRD ages of sulfides, and correlation between TRD ages and olivine Fo of peridotite xenoliths in Paleozoic kimberlites and Cenozoic basalts on the craton. By integrating major and trace element, Sr, Nd and Os isotopic compositions of peridotite xenoliths and orogenic massif peridotites from the continents of Europe, Asia, America, Africa and Australia, together with previous studies of petrology and geochemistry of global peridotites, we suggest that (1) refertilization of cratonic and circum-cratonic lithospheric mantle is widespread; (2) Archean SCLM worldwide has experienced a multi-stage history of melt depletion and refertilization since segregation from the convecting mantle; (3) cratonic SCLM may be more susceptible to compositional change caused by

  3. Evidence for recycled Archaean oceanic mantle lithosphere in the Azores plume.

    PubMed

    Schaefer, Bruce F; Turner, Simon; Parkinson, Ian; Rogers, Nick; Hawkesworth, Chris

    2002-11-21

    The compositional differences between mid-ocean-ridge and ocean-island basalts place important constraints on the form of mantle convection. Also, it is thought that the scale and nature of heterogeneities within plumes and the degree to which heterogeneous material endures within the mantle might be reflected in spatial variations of basalt composition observed at the Earth's surface. Here we report osmium isotope data on lavas from a transect across the Azores archipelago which vary in a symmetrical pattern across what is thought to be a mantle plume. Many of the lavas from the centre of the plume have lower 187Os/188Os ratios than most ocean-island basalts and some extend to subchondritic 187Os/188Os ratios-lower than any yet reported from ocean-island basalts. These low ratios require derivation from a depleted, harzburgitic mantle, consistent with the low-iron signature of the Azores plume. Rhenium-depletion model ages extend to 2.5 Gyr, and we infer that the osmium isotope signature is unlikely to be derived from Iberian subcontinental lithospheric mantle. Instead, we interpret the osmium isotope signature as having a deep origin and infer that it may be recycled, Archaean oceanic mantle lithosphere that has delaminated from its overlying oceanic crust. If correct, our data provide evidence for deep mantle subduction and storage of oceanic mantle lithosphere during the Archaean era.

  4. Stored mafic/ultramafic crust and early Archean mantle depletion

    NASA Technical Reports Server (NTRS)

    Chase, Clement G.; Patchett, P. J.

    1990-01-01

    Both early and late Archean rocks from greenstone belts and felsic gneiss complexes exhibit positive epsilon(Nd) values of +1 to +5 by 3.5 Ga, demonstrating that a depleted mantle reservoir existed very early. The amount of preserved pre-3.0 Ga continental crust cannot explain such high epsilon values in the depleted residue unless the volume of residual mantle was very small: a layer less than 70 km thick by 3.0 Ga. Repeated and exclusive sampling of such a thin layer, especially in forming the felsic gneiss complexes, is implausible. Extraction of enough continental crust to deplete the early mantle and its destructive recycling before 3.0 Ga ago requires another implausibility, that the sites of crustal generation of recycling were substantially distinct. In contrast, formation of mafic or ultramafic crust analogous to present-day oceanic crust was continuous from very early times. Recycled subducted oceanic lithosphere is a likely contributor to present-day hotspot magmas, and forms a reservoir at least comparable in volume to continental crust. Subduction of an early mafic/ultramafic oceanic crust and temporary storage rather than immediate mixing back into undifferentiated mantle may be responsible for the depletion and high epsilon(Nd) values of the Archean upper mantle.

  5. Lithospheric Mantle heterogeneities beneath northern Santa Cruz province, Argentina

    NASA Astrophysics Data System (ADS)

    Mundl, Andrea; Ntaflos, Theodoros; Bjerg, Ernesto

    2013-04-01

    interstitial clinopyroxene appears to be of metasomatic origin. The clinopyroxene from cumulate dunites has depleted LREE abundances and low HREE indicating that they have been formed from residual melts. In contrast, clinopyroxene from mantle dunites has enriched LREE (10 x PM) and LILE suggesting that the metasomatic agent was fluid-rich silicate melt. Calculated equilibrium conditions cover a wide range, from 800 to 1100 °C. Considering the crustal thickness in the area being around 35 km, a pressure between 12 and 17 kbar can be assumed as reasonable, indicating that xenoliths were extracted from shallow depths, in the order of 40 to 60 km. Model calculations have shown that the Lithospheric Mantle beneath Don Camilo is fertile and that spinel peridotites experienced low degrees of partial melting (2-8% batch melting in the spinel peridotite field). The metasomatic agent was a fluid rich silicate melt presumably similar to that which affected the xenoliths from Cerro Clark locality, north of Don Camilo. The clinopyroxenes with the highest Sr and lowest Nd isotopic signatures suggest that the metasomatism was an old event apparently not associated to the interaction of the Lithospheric Mantle in southern Patagonia with downgoing Nazca and Antarctic plates.

  6. Lithospheric mantle duplex beneath the central Mojave Desert revealed by xenoliths from Dish Hill, California

    NASA Astrophysics Data System (ADS)

    Luffi, Peter; Saleeby, Jason B.; Lee, Cin-Ty A.; Ducea, Mihai N.

    2009-03-01

    Low-angle subduction of oceanic lithosphere may be an important process in modifying continental lithosphere. A classic example is the underthrusting of the Farallon plate beneath North America during the Laramide orogeny. To assess the relevance of this process to the evolution and composition of continental lithosphere, the mantle stratigraphy beneath the Mojave Desert was constrained using ultramafic xenoliths hosted in Plio-Pleistocene cinder cones. Whole-rock chemistry, clinopyroxene trace element and Nd isotope data, in combination with geothermometry and surface heat flow, indicate kilometer-scale compositional layering. The shallow parts are depleted in radiogenic Nd (ɛNd = -13 to -6.4) and are interpreted to be ancient continental mantle that escaped tectonic erosion by low-angle subduction. The deeper samples are enriched in radiogenic Nd (ɛNd = +5.7 to +16.1) and reveal two superposed mantle slices of recent origin. Within each slice, compositions range from fertile lherzolites at the top to harzburgites at the bottom: the latter formed by 25-28% low-pressure melt depletion and the former formed by refertilization of harzburgites by mid-ocean-ridge-basalt-like liquids. The superposition and internal compositional zonation of the slices preclude recent fertilization by Cenozoic extension-related magmas. The above observations imply that the lower Mojavian lithosphere represents tectonically subcreted and imbricated lithosphere having an oceanic protolith. If so, the lherzolitic domains may be related to melting and refertilization beneath mid-ocean ridges. The present Mojavian lithosphere is thus a composite of a shallow section of the original North American lithosphere underlain by Farallon oceanic lithosphere accreted during low-angle subduction.

  7. The Cenozoic lithospheric mantle beneath the interior of South China Block: Constraints from mantle xenoliths in Guangxi Province

    NASA Astrophysics Data System (ADS)

    Li, Xi-Yao; Zheng, Jian-Ping; Sun, Min; Pan, Shao-Kui; Wang, Wei; Xia, Qun-Ke

    2014-12-01

    In contrast to the coastal regions of the South China Block (SCB), little is known about the subcontinental lithospheric mantle beneath the interior of the SCB. Mantle xenoliths entrained in Cenozoic basalts in the eastern and central Guangxi Province, the interior of the SCB, includes spinel harzburgites, clinopyroxene-poor lherzolites, lherzolites and olivine websterites. The mineral chemistry of the harzburgites and clinopyroxene-poor lherzolites is moderately refractory [Mg# value of olivine (Mg#Ol) = 90.2-91.3], whereas other lherzolite is more fertile (Mg#Ol = 89.3). Zoned olivines (Mg#Ol = 83.7-88.8) in the harzburgites and zoned olivine xenocrysts (Mg#Ol = 75.2-82) in the basalts reflect disequilibrium between olivines and the basaltic host melts during magma ascent. An olivine websterite (Mg#Ol = 87.5) is similar to the lherzolite in mineral chemistry. The REE patterns of clinopyroxenes in these xenoliths vary from LREE-depleted, to flat, to LREE-enriched patterns, and commonly exhibit positive Sr anomalies and negative Nb, Zr and Ti anomalies. The peridotitic xenoliths mostly experienced moderate to high degree of melt extraction (F = 10-20%) and were modified by silicate metasomatism. We thus suggest that the harzburgites and clinopyroxene-poor lherzolites with high Mg#Ol values represent ancient (Proterozoic) lithospheric mantle, preserved beneath the Guangxi Province. In contrast, the minor, fertile (low-Mg#Ol) lherzolites represent lithospheric mantle accreted during the Phanerozoic, and a small amount of pyroxenite was produced via interaction between peridotite and silicate-rich melts. The mantle-accretion process that occurred beneath the SCB during the Mesozoic to Cenozoic time extended into Guangxi Province. The lithospheric mantle beneath the interior of the SCB is heterogeneous, featuring various types of peridotite and co-existing pyroxenite. This heterogeneity also indicates that the lithospheric mantle beneath the regions affected by

  8. A global coupled model of the lithosphere and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Iaffaldano, G.; Bunge, H.

    2004-12-01

    Understanding the dynamics of global lithospheric motion is one of the most important problems in geodynamics today. Mantle convection is commonly accepted as the driving force for plate motion but, while the kinematics of plate movement is well known from space geodetic and paleomagnetic observations, we lack a rigorous description of the coupled mantle convection-plate motion system. Here we present first results from a coupled mantle convection-global lithosphere motion model following a similar effort by Lithgow-Bertelloni and Guynn. Our plate motion code is SHELLS, a thinsheet FEM code developed by Bird which computes global plate motion and explicitly accounts for faults. The global mantle convection code is TERRA, a high-resolution 3-D FEM code developed and parallelized by Bunge and Baumgardner. We perform simple modeling experiments in which the shear tractions applied to the bottom of the lithosphere arise directly from the mantle circulation model. Our mantle circulation model includes a history of subduction and accounts, among others, for variations in mantle viscosity and strong bottom heating from the core. We find that our results are sensitive to the amount of core heating, an inference that has received renewed attention lately, and that models with stronger core heating overall are in better agreement with observations of intraplate stresses derived from the World Stress Map.

  9. Project Skippy explores lithosphere and mantle beneath Australia

    NASA Astrophysics Data System (ADS)

    van der Hilst, Rob; Kennett, Brian; Christie, Doug; Grant, John

    A new project is probing the seismic structure of the lithosphere and mantle beneath Australia. The Skippy Project, named after the bush kangaroo, exploits Australia's regional seismicity and makes use of recent advances in digital recording technology to collect three-component broadband seismic data from over 60 sites across the continent (Figure 1).The main goal of the Skippy Project, which is run by Australian National University's Research School of Earth Sciences (RSES), is to delineate the three-dimensional seismic structure of the lithosphere and mantle beneath the continent.

  10. Metasomatic Enrichment of Oceanic Lithospheric Mantle Documented by Petit-Spot Xenoliths

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Hirano, N.; Machida, S.; Kaczmarek, M. A.; Muntener, O.

    2015-12-01

    Oceanic lithosphere is generally interpreted as mantle residue after MORB extraction. It has been proposed, however, that metasomatism could take place at the interface between the low-velocity zone and the cooling and thickening oceanic lithosphere or by the percolation of low-degree melts produced in periphery of Mid Ocean Ridges. This later process is observed in slow spreading ridges and ophiolites where shallow oceanic lithospheric mantle could be metasomatized/refertilized during incomplete MORB melt extraction. Nevertheless, direct evidence for metasomatic refertilization of the deep part of the oceanic lithospheric mantle is still missing. Xenoliths and xenocrysts sampled by petit-spot volcanoes interpreted as low-degree melts extracted from the base of the lithosphere in response to plate flexure, provide important new information about the nature and the processes associated with the evolution of oceanic lithospheric mantle. Here, we report, first, the presence of a garnet xenocryst in petit-spot lavas from Japan characterized by low-Cr, low-Ti content and mostly flat MREE-HREE pattern. This garnet is interpreted as formed during subsolidus cooling of pyroxenitic or gabbroic cumulates formed at ~1 GPa during the incomplete melt extraction at the periphery of the Pacific mid-ocean ridge. It is the first time that such processes are documented in fast spreading context. Second, we report petit-spot mantle xenoliths with cpx trace element "signatures" characterized by high U, Th, relative depletion in Nb, Pb, Ti and high but variable LREE/HREE ratio suggesting equilibration depth closed to the Gt/Sp transition zone. Such "signatures" are unknown from oceanic settings and show unexpected similarity to melt-metasomatized gt-peridotites sampled by kimberlites. This similarity suggests that metasomatic processes are not restricted to continental setting, but could correspond to a global mechanism at the lithosphere-asthenosphere boundary. As plate flexure

  11. Fabrics of Mantle Lithosphere of Fennoscandia Inferred from Seismic Anisotropy

    NASA Astrophysics Data System (ADS)

    Vecsey, L.; Plomerova, J.; Munzarova, H.; Babuska, V.

    2015-12-01

    Though crust in Archean cratons often displays a relatively simple architecture in comparison with younger orogens, where Moho topography and deep crustal structure are more complex, differences in structure of the mantle lithosphere are less prominent. The mantle lithosphere of Fennoscandia is built by domains with their own fossil inclined fabrics, which are similar to those we retrieved in younger continental provinces from investigations of seismic anisotropy. Passive seismic experiments SVEKALAPKO and LAPNET provided data for structural studies of the upper mantle beneath Fennoscandia. We evaluate the large-scale anisotropy in the upper mantle from (1) splitting of SKS waves (Vecsey et al., 2008), (2) directional terms of relative P-wave travel time residuals, (3) teleseismic tomography and (4) jointly interpreted body-wave anisotropic parameters (Plomerova et al., 2011). The domains of mantle lithosphere are sharply bounded both in the Proterozoic and Archean provinces and can be modelled in 3D by peridotite aggregates with dipping lineation a or foliation (a,c). The domains represent lithosphere fragments retaining fossil olivine preferred orientation created before the micro-plates assembled. Wedge-like penetration of the Archean domain into the Proterozoic province in the south-central Finland, supported by alternating ages of mantle xenoliths, seems to continue towards the north, where a westward shift of a boundary between regions with positive and negative velocity perturbations in teleseismic P-wave tomography can indicate an inclination of the Baltic-Bothnia Megashear Zone. We search for a mechanism which could create the observed inclined fabrics within continental assemblages. Such mechanism should differ from simple cooling processes which would lead to a horizontal stratification of the lithosphere without creating domains exhibiting different fabrics.

  12. Mantle xenoliths from Marosticano area (Northern Italy): a comparison with Veneto Volcanic Province lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Brombin, Valentina; Bonadiman, Costanza; Coltorti, Massimo

    2016-04-01

    redox conditions (Δlog fO2: +1.2 to -0.7, Ballhaus, 1991) to Lessinean and Val d'Adige xenoliths which may indicate a local oxidation of the mantle below this portion of VVP. References • Beccaluva L., Bianchini G., Bonadiman C., Coltorti M., Milani L., Salvini L., Siena F., Tassinari R. (2007). Intraplate lithospheric and sublithospheric components in the Adriatic domain: Nephelinite to tholeiite magma generation in the Paleogene Veneto Volcanic Province, Southern Alps. Geological Society of America, 131-152. • Beccaluva L., Bonadiman C., Coltorti M., Salvini L., Siena F. (2001). Depletion events, nature of metasomatizing agent and timing of enrichment processes in lithospheric mantle xenoliths from the Veneto Volcanic Province. Journal of Petrology, 42, 173-187. • Gasperini D., Bosch D., Braga R., Bondi M., Macera P., Morten L. (2006). Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithospere. Geochemical Journal, 40, 377-404. • Siena F., Coltorti M. (1989). Lithospheric mantle evolution: evidences from ultramafic xenoliths in the Lessinean volcanics (Northern Itlay). Chemical Geology, 77, 347-364.

  13. Seismic evidence for the layered mantle lithosphere: a comparsion between Zagros and South Africa

    NASA Astrophysics Data System (ADS)

    Sodoudi, Forough; Kind, Rainer

    2014-05-01

    Recent S receiver function studies present evidence for the existence of the layered mantle lithosphere beneath ancient cratons. However, the nature of these layers is still unclear. They can be attributed to the presence of accumulated melts, remnants of subduction interfaces, changes in anisotropic properties or fluids. Further characterization of these layers is needed to provide more insights into the assembly and evolution of cratons. Here we compare the mantle lithosphere of the ancient Kalahari craton with the relatively young mantle lithosphere of Zagros, which is assumed as the location of the future craton. We applied the S receiver function method to map the internal layering of the lithosphere and to image its lower limit. For this aim, we used teleseismic events recorded at 97 seismic stations within the Kalahari craton and those recorded at 61 permanent seismic stations in Iran. Our results reveal a thick and stratified mantle lithosphere beneath the Kalahari craton containing three significant negative velocity contrasts at 85, 150-200, and 260-280 km depth. Moreover, they imply that frozen-in anisotropy as well as notable compositional variations can lead to sharp Mid-Lithospheric Discontinuities (MLD) that can be clearly observed in the SRF data. We show that a 50 km thick anisotropic layer just below the Moho boundary with 3% S wave anisotropy may be responsible for producing a MLD at 85 km depth. The horizontal anisotropy in the upper lithosphere may be attributed to processes during the formation of the Kalahari Craton. Furthermore, significant correlation between the depths of an apparent boundary separating the depleted and metasomatised lithosphere, as inferred from chemical tomography, and those of our second layer led us to characterize it as a compositional boundary, most likely due to the modification of the cratonic mantle lithosphere by magma infiltration. The largest velocity contrast (3.6-4.7%) is observed at a boundary located at

  14. Hyperextension of continental lithospheric mantle to oceanic-like lithosphere: the record of late gabbros in the Ronda subcontinental lithospheric mantle section (Betic Cordillera, S-Spain)

    NASA Astrophysics Data System (ADS)

    Hidas, Karoly; Garrido, Carlos; Targuisti, Kamal; Padron-Navarta, Jose Alberto; Tommasi, Andrea; Marchesi, Claudio; Konc, Zoltan; Varas-Reus, Maria Isabel; Acosta Vigil, Antonio

    2014-05-01

    Rupturing continents is a primary player in plate tectonic cycle thus longevity, stability, evolution and breakup of subcontinental lithosphere belongs for a long time to a class of basic geological problems among processes that shape the view of our Earth. An emerging body of evidences - based on mainly geophysical and structural studies - demonstrates that the western Mediterranean and its back-arc basins, such as the Alborán Domain, are hyperextended to an oceanic-like lithosphere. Formation of gabbroic melts in the late ductile history of the Ronda Peridotite (S-Spain) - the largest (ca. 300 km2) outcrop of subcontinental lithospheric mantle massifs on Earth - also attests for the extreme thinning of the continental lithosphere that started in early Miocene times. In the Ronda Peridotite, discordant gabbroic veins and their host plagioclase lherzolite, as well as gabbroic patches in dunite were collected in the youngest plagioclase tectonite domains of the Ojén and Ronda massifs, respectively. In Ojén, gabbro occurs as 1-3 centimeter wide discordant veins and dikes that crosscut the plagioclase tectonite foliation at high angle (60°). Within the veins cm-scale igneous plagioclase and clinopyroxene grains show a shape preferred orientation and grow oriented, subparallel to the trace of high temperature host peridotite foliation and oblique to the trend of the vein. In contrast to Ojén, mafic melts in the Ronda massif crystallized along subcentimeter wide anastomozing veins and they often form segregated interstitial melt accumulations in the host dunite composed of plagioclase, clinopyroxene and amphibole. Despite the differences in petrography and major element composition, the identical shape of calculated REE patterns of liquid in equilibrium with clinopyroxenes indicates that the percolating melt in Ronda and Ojén shares a common source. However, unlike gabbros from the oceanic lithosphere that shows clinopyroxene in equilibrium with LREE-depleted MORB

  15. Seawater cycled throughout Earth's mantle in partially serpentinized lithosphere

    NASA Astrophysics Data System (ADS)

    Kendrick, M. A.; Hémond, C.; Kamenetsky, V. S.; Danyushevsky, L.; Devey, C. W.; Rodemann, T.; Jackson, M. G.; Perfit, M. R.

    2017-02-01

    The extent to which water and halogens in Earth's mantle have primordial origins, or are dominated by seawater-derived components introduced by subduction is debated. About 90% of non-radiogenic xenon in the Earth's mantle has a subducted atmospheric origin, but the degree to which atmospheric gases and other seawater components are coupled during subduction is unclear. Here we present the concentrations of water and halogens in samples of magmatic glasses collected from mid-ocean ridges and ocean islands globally. We show that water and halogen enrichment is unexpectedly associated with trace element signatures characteristic of dehydrated oceanic crust, and that the most incompatible halogens have relatively uniform abundance ratios that are different from primitive mantle values. Taken together, these results imply that Earth's mantle is highly processed and that most of its water and halogens were introduced by the subduction of serpentinized lithospheric mantle associated with dehydrated oceanic crust.

  16. Origin of LREE-depleted amphiboles in the subcontinental mantle

    NASA Astrophysics Data System (ADS)

    Vannucci, R.; Piccardo, G. B.; Rivalenti, G.; Zanetti, A.; Rampone, E.; Ottolini, L.; Oberti, R.; Mazzucchelli, M.; Bottazzi, P.

    1995-05-01

    Ion-microprobe analyses of interstitial kaersutite and Ti-pargasite grains from orogenic peridotites and lherzolite xenoliths reveal that LREE-depleted amphiboles are common in the subcontinental mantle samples. Incompatibility diagrams for the investigated amphiboles show that REEs almost parallel those of coexisting clinopyroxenes, whereas Sr, Zr, and Ti show variable anomalies (i.e., Sr/Sr ∗ and Ti/Ti ∗ > 1 and Zr/Zr ∗ < 1). In the chondrite-normalized incompatibility diagrams, Sr lies almost a factor of two above Ce and Nd and is usually depleted relative to HREEs. Average amphibole/clinopyroxene partition coefficients for spinel-bearing assemblages range from 1.4-1.8 for LREEs and from 1.8-2.2 for HREEs. Corresponding D values for Zr, Sr, and Ti are about 1, 3, and 5, respectively. Present data apparently contrast with the conventional wisdom that the presence of amphibole in mantle rocks is related to the introduction of melt or fluids enriched in incompatible elements. In the absence of experimental evidence that aqueous fluids in equilibrium with deep mantle are LREE-, Sr-depleted, we propose either a diffusive redistribution (near solidus or at subsolidus) or a chromatographic process to account for the formation of depleted amphibole from LREE-, Sr-enriched fluids. The crystallization of LREE-, Sr-depleted kaersutite and Ti-pargasite has important geodynamic implications, since it refers, at least for some peridotite massifs (i.e., Zabargad, External Ligurides, Eastern Pyrenees) to the steady-state equilibration under spinel-facies conditions and is related to the early evolution of peridotites. This stage is broadly related to the timing of lithospheric accretion.

  17. Evidence from mantle xenoliths for lithosphere removal beneath the central Rio Grande Rift

    NASA Astrophysics Data System (ADS)

    Byerly, Benjamin L.; Lassiter, John C.

    2012-11-01

    Seismic tomography beneath the Central Rio Grande Rift (RGR) at ˜34°N shows a low P and S wave velocity zone in the mantle that extends up the base of the Moho. This low-velocity region has been interpreted by (Gao et al., 2004) to be the result of convective removal of a portion of the once >100 km thick Proterozoic lithosphere. The amount of extension in the central RGR is thought to be low (˜25%) and thus cannot account for the amount of lithosphere thinning suggested by seismic tomography. We measured whole rock and mineral major element, trace element, and isotopic compositions of spinel-peridotite xenoliths erupted along the central axis of the rift (Elephant Butte) and the eastern margin of the Colorado Plateau (Cerro Chato) to determine their depth of origin and mantle provenance and to test the delamination hypothesis. If lithosphere removal has not occurred and the low P and S wave velocities are instead the result of hydration or melt infiltration in the lithosphere, then xenoliths erupted on the rift axis should have geochemical compositions similar to Proterozoic sub-continental lithospheric mantle (SCLM). At Cerro Chato, on the margin of the Colorado Plateau, xenoliths were derived from ˜60 km depth and have geochemical signatures similar to Proterozoic sub-continental lithospheric mantle (e.g. refractory major element compositions, LREE-enrichment, enriched Sr and Nd isotopes, unradiogenic Os isotopes). At Elephant Butte, along the central rift axis, two distinct groups of xenoliths are present. The majority of xenoliths from Elephant Butte are LREE-depleted and have fertile major element compositions. Additionally, these xenoliths have isotopic signatures similar to the range for DMM (e.g. 87Sr/86Sr ranging from 0.7018 to 0.7023, ɛNd ranging from 7 to 21, and 187Os/188Os ranging from 0.122 to 0.130). We interpret this group of xenoliths to be derived from asthenospheric mantle. A less-abundant group of xenoliths at Elephant Butte are LREE

  18. Silicate melt metasomatism in the lithospheric mantle beneath SW Poland

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna

    2014-05-01

    The xenoliths of peridotites representing the subcontinental lithospheric mantle (SCLM) beneath SW Poland and adjacent parts of Germany occur in the Cenozoic alkaline volcanic rocks. Our study is based on detailed characterization of xenoliths occurring in 7 locations (Steinberg in Upper Lusatia, Księginki, Pilchowice, Krzeniów, Wilcza Góra, Winna Góra and Lutynia in Lower Silesia). One of the two major lithologies occurring in the xenoliths, which we call the "B" lithology, comprises peridotites (typically harzburgites) with olivine containing from 90.5 to 84.0 mole % of forsterite. The harzburgites contain no clinopyroxene or are poor in that mineral (eg. in Krzeniów the group "B" harzburgites contain < 1 vol. % of the mineral). They exhibit significant variation in orthopyroxene contents, which varies from 25 to 10 vol. %. Some of the xenoliths are more impoverished in orthopyroxene and have dunitic compositions. The ortho- and clinopyroxene exhibit mg# similar to that of olivine, and typically are low aluminous (Al < 0.10 atom pfu in ortho-, and < 0.20 atom pfu in clinopyroxene). The exception are xenoliths from Księginki, which contain pyroxenes characterised by negative correlation between mg# and Al. The REE patterns of both ortho- and clinopyroxene in the group "B" peridotites suggest equilibration with silicate melt. The rocks of "B" lithology were formed due to alkaline silicate melt percolation in the depleted peridotitic protolith. The basaltic melts formed at high pressure are usually undersaturated in both ortho- and clinopyroxene at lower pressures (Kelemen et al. 1992). Because of cooling and dissolution of ortho- and clinopyroxene the melts change their composition and become saturated in one or both of those phases. Experimental results (e.g. Tursack & Liang 2012 and references therein) show that the same refers to alkaline basaltic silicate melts and that its reactive percolation in the peridotitic host leads to decrease of Mg

  19. Exploring the Potential for Long-term Storage of Depleted Peridotite in the Mantle

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Parman, S.

    2006-12-01

    There is an increasingly powerful body of evidence indicating early, episodic extraction of material from the mantle during the Pre-Cambrian [e.g. 1,2]. These melt extraction events would inevitably have led to large- scale formation of depleted lithospheric mantle. Recent data from Helium and Osmium isotopic systems indicate an important role for ancient, depleted components in the mantle source regions of modern oceanic basalts [3,4]. The implication is that discrete fragments of ancient depleted lithosphere are stored in the mantle over long timescales, presumably through the mechanism of subduction. Melt extraction from fertile peridotite in the upper mantle yields a solid residue that ranges from depleted lherzolite to harzburgite or dunite. In the upper mantle the mineralogy of depleted peridotite is dominated by olivine and opx, and in the transition zone olivine undergoes polymorphic transitions and pyroxene converts to majorite. Depleted peridotite then transforms into an assemblage of Mg-perovskite and ferropericlase at about 670 km. For any given isotherm, depleted peridotite is less dense than fertile mantle throughout the upper mantle, and negative buoyancy can only occur in cold slabs. In the lower mantle depleted peridotite is enriched in ferropericlase relative to fertile mantle and recent experimental results indicate that KD (Pv/FP) may be a factor of 3 to 5 greater in fertile compositions than in depleted compositions, causing an increase in the Fe content of ferropericlase in depleted compositions. Whether or not discrete fragments of depleted peridotite can remain negatively buoyant in the deep mantle depends on many factors including temperature, the modal abundance of minerals and their relative compressibilities, and the amount of iron and its spin state in depleted and fertile lithologies. Here we present petrologic, geochemical and mineral physical modeling to investigate the potential for long-term storage of depleted peridotite as a

  20. How Depleted is the MORB mantle?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Hart, S. R.

    2015-12-01

    Knowledge of the degree of mantle depletion of highly incompatible elements is critically important for assessing Earth's internal heat production and Urey number. Current views of the degree of MORB source depletion are dominated by Salters and Stracke (2004), and Workman and Hart (2005). The first is based on an assessment of average MORB compositions, whereas the second considers trace element data of oceanic peridotites. Both require an independent determination of one absolute concentration, Lu (Salters & Stracke), or Nd (Workman & Hart). Both use parent-daughter ratios Lu/Hf, Sm/Nd, and Rb/Sr calculated from MORB isotopes combined with continental-crust extraction models, as well as "canonical" trace element ratios, to boot-strap the full range of trace element abundances. We show that the single most important factor in determining the ultimate degree of incompatible element depletion in the MORB source lies in the assumptions about the timing of continent extraction, exemplified by continuous extraction versus simple two-stage models. Continued crust extraction generates additional, recent mantle depletion, without affecting the isotopic composition of the residual mantle significantly. Previous emphasis on chemical compositions of MORB and/or peridotites has tended to obscure this. We will explore the effect of different continent extraction models on the degree of U, Th, and K depletion in the MORB source. Given the uncertainties of the two most popular models, the uncertainties of U and Th in DMM are at least ±50%, and this impacts the constraints on the terrestrial Urey ratio. Salters, F.J.M. and Stracke, A., 2004, Geochem. Geophys. Geosyst. 5, Q05004. Workman, R.K. and Hart, S.R., 2005, EPSL 231, 53-72.

  1. Water in Hawaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Peslier, Anne H.; Bizimis, Michael

    2015-04-01

    The distribution of water concentrations in the oceanic upper mantle has drastic influence on its melting, rheology, and electrical and thermal conductivities and yet is primarily known indirectly from analyses of OIB and MORB. Here, actual mantle samples, eight peridotite xenoliths from Salt Lake Crater (SLC) and one from Pali in Oahu in Hawaii were analyzed by FTIR. Water contents of orthopyroxene, clinopyroxene, and the highest measured in olivine are 116-222, 246-442, and 10-26 ppm weight H2O, respectively. Although pyroxene water contents correlate with indices of partial melting, they are too high to be explained by simple melting modeling. Mantle-melt interaction modeling reproduces best the SLC data. These peridotites represent depleted oceanic mantle older than the Pacific lithosphere that has been refertilized by nephelinite melts containing <5 weight % H2O. Metasomatism in the Hawaiian peridotites resulted in an apparent decoupling of water and LREE that can be reconciled via assimilation and fractional crystallization. Calculated bulk-rock water contents for SLC (50-96 ppm H2O) are on the low side of that of the MORB source (50-200 ppm H2O). Preceding metasomatism, the SLC peridotites must have been even drier, with a water content similar to that of the Pali peridotite (45 ppm H2O), a relatively unmetasomatized fragment of the Pacific lithosphere. Moreover, our data show that the oceanic mantle lithosphere above plumes is not necessarily enriched in water. Calculated viscosities using olivine water contents allow to estimate the depth of the lithosphere-asthenosphere boundary beneath Hawaii at ˜90 km.

  2. Lithospheric mantle evolution in the Afro-Arabian domain: Insights from Bir Ali mantle xenoliths (Yemen)

    NASA Astrophysics Data System (ADS)

    Sgualdo, P.; Aviado, K.; Beccaluva, L.; Bianchini, G.; Blichert-Toft, J.; Bryce, J. G.; Graham, D. W.; Natali, C.; Siena, F.

    2015-05-01

    Detailed petrological and geochemical investigations of an extensive sampling of mantle xenoliths from the Neogene-Quaternary Bir Ali diatreme (southern Yemen) indicate that the underlying lithospheric mantle consists predominantly of medium- to fine-grained (often foliated) spinel-peridotites (85-90%) and spinel-pyroxenites (10-15%) showing thermobarometric estimates in the P-T range of 0.9-2.0 GPa and 900-1150 °C. Peridotites, including lherzolites, harzburgites and dunites delineate continuous chemical, modal and mineralogical variations compatible with large extractions of basic melts occurring since the late Proterozoic (~ 2 Ga, according to Lu-Hf model ages). Pyroxenites may represent intrusions of subalkaline basic melts interacting and equilibrated with the host peridotite. Subsequent metasomatism has led to modal changes, with evidence of reaction patches and clinopyroxene and spinel destabilization, as well as formation of new phases (glass, amphibole and feldspar). These changes are accompanied by enrichment of the most incompatible elements and isotopic compositions. 143Nd/144Nd ranges from 0.51419 to 0.51209 (εNd from + 30.3 to - 10.5), 176Hf/177Hf from 0.28459 to 0.28239 (εHf from + 64.4 to - 13.6), and 208Pb/204Pb from 36.85 to 41.56, thus extending from the depleted mantle (DM) towards the enriched OIB mantle (EM and HIMU) components. 3He/4He (R/RA) ratios vary from 7.2 to 7.9 with He concentrations co-varying with the most incompatible element enrichment, in parallel with metasomatic effects. These metasomatic events, particularly effective in harzburgites and dunites, are attributable to the variable interaction with alkaline basic melts related to the general extensional and rifting regime affecting the East Africa-Arabian domain during the Cenozoic. In this respect, Bir Ali mantle xenoliths resemble those occurring along the Arabian margins and the East Africa Rift system, similarly affected by alkaline metasomatism, whereas they are

  3. Osmium Isotope Constraints on the Timing of Production and Destruction of Mantle Lithosphere in the Southwest United States

    NASA Astrophysics Data System (ADS)

    Brandon, A. D.

    2013-12-01

    When convecting mantle melts, the residual peridotite becomes less dense and may be become stabilized as lithosphere. The Re-Os isotope chronometer has been successfully applied to determining the timing of melt extraction in mantle peridotite. In continental regions where multiple mantle xenolith locales are present, the Re-Os chronometer can be applied to assessing the timing of mantle melting in relation to juvenile continental crust production, stabilization, and destruction of mantle lithosphere. This is evaluated here for the off-craton mantle lithosphere in the Southwest United States by examining 5 mantle xenolith suites from locales spanning a region hundreds of kilometers north to south and east to west - Dish Hill, California; Lunar Crater Nevada; Grand Canyon and San Carlos, Arizona; and Kilbourne Hole, New Mexico. Because Re is mobile in mantle peridotites at surface conditions, direct Re-Os isochrons representing mantle melting ages are typically absent. Instead melting proxies for Re such as Al2O3 can be used to obtain ';aluminachron' ages or to assess disturbances of the mantle lithosphere following partial melting. The Dish Hill, Grand Canyon, and Kilbourne Hole suites display lithophile element evidence for post-melting, multiple modal and cryptic metasomatic events in combination with positive and well correlated Os isotope versus Al2O3 trends. For example, each of these xenolith suites has samples with light rare earth element (LREE) depleted to LREE-enriched bulk rock and clinopyroxene compositions. However, no correlation exists between LREE differences and their Os isotope, bulk rock Al compositions, or other indices of melt-rock interaction. The Os-aluminachron age obtained for Dish Hill is 2.15 Ga, for Grand Canyon is 2.31 Ga, and for Kilbourne Hole is 1.96 Ga. These ages overlap TDM ages for the overlying crustal provinces confirming a link between melting that creates mantle lithosphere and production of juvenile continental crust. A

  4. Gravitational instability of mantle lithosphere and core complexes

    NASA Astrophysics Data System (ADS)

    Molnar, Peter

    2015-03-01

    For a wide range of viscosity structures, convergent and downward flow of the mantle lithosphere during the growth of gravitational instability induces not only thickening of overlying crust but also concurrent horizontal extension in the upper crust. Such extension, if it occurred in the Earth, would include normal faulting of the upper crust above a region of horizontal shortening in the lower crust and uppermost mantle. Convergent flow in the lower crust would also create shear stress on horizontal planes and localized upward flow of the lower crust. These features—extension of upper crust and exhumation of strained lower crust—characterize metamorphic core complexes exposed in regions of normal to thick continental crust. Thus, convergent flow and downwelling mantle lithosphere might contribute to the development of core complexes, at least in some settings. If horizontal shortening and crustal thickening at depth do occur simultaneously with normal faulting at the surface of the Earth today, evidence of this process does not seem obvious, but perhaps it has occurred concurrently with widespread regional crustal extension in places like the Basin and Range Province, Tibet, the Pamir, or the Aegean. If such mantle flow does participate in the development of core complexes, a weak lower crust might not be a prerequisite for their formation.

  5. Numerical models of mantle lithosphere weakening, erosion and delamination induced by melt extraction and emplacement

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2016-09-01

    Continental rifting caused by extension and heating from below affects the lithosphere or cratons in various ways. Volcanism and melt intrusions often occur along with thinning, weakening and even breaking lithosphere. Although mechanical necking models of the lithosphere are often applied, the aspects of melting and the implications due to melt transport and emplacement at shallower depths are not well understood. A two-phase flow approach employing melt extraction and shallow emplacement associated with thermal weakening is developed and compared with observations. The results of this comparison indicate the importance of partial melts and an asthenospheric magma source for increasing the rising rate of the lithosphere-asthenosphere boundary during extension. Thermo-mechanical physics of visco-plastic flow is approximated using the Finite Difference method with Eulerian formulation in 2D. The conservation of mass, momentum and energy equations are solved for a multi-component (crust-mantle) and two-phase (melt-matrix) system. Rheology is temperature- and stress-dependent. In consideration of depletion and enrichment melting and solidification are controlled by a simplified linear binary solid solution model. Melt is extracted and emplaced in predefined depth regions (emplacement zones) in the lithospheric mantle and crust. The Compaction Boussinesq Approximation was applied; its validity was tested against the Full Compaction formulation and found fully satisfactory for the case of sublithospheric melting models. A simple model guided by the geodynamic situation of the Rwenzori region typically results in updoming asthenosphere with melt-assisted erosion of the lithosphere's base. Even with a conservative approach for a temperature anomaly melting alone doubles the lithospheric erosion rate in comparison with a model without melting. With melt extraction and intrusion lithospheric erosion and upwelling of the lithosphere-asthenosphere boundary speeds up by a

  6. Geochemical and isotopic characteristics of lithospheric mantle beneath West Kettle River, British Columbia: Evidence from ultramafic xenoliths

    SciTech Connect

    Xue, Xianyu; Baadsgaard, H.; Scarfe, C.M. ); Irving, A.J. )

    1990-09-10

    A group of spinel peridotite xenoliths from West Kettle River, British Columbia, represents essentially undepleted to moderately depleted lithospheric mantle rocks in terms of major and compatible trace elements. Whole rock Sr isotopic composition for most of these xenoliths, and whole rock Sm-Nd isotopic composition and LREE contents for some of them, seem to have been perturbed by near-surface processes. Sr and Nd isotopic results for acid-cleaned clinopyroxenes separated from these spinel peridotites reveal an isotopically mid-ocean ridge basalt (MORB)-like mantle. Seven spinel lherzolites gave Nd model ages of 1.5-3.6 Ga, similar to MORB, and on a Sm-Nd isotope diagram plot close to a reference Nd isochron with an age of 0.7 Ga and an initial {var epsilon}{sub Nd} of +7. These features likely resulted from multiple mantle depletion. The isotopic similarities of these xenoliths with MORB suggest that this area is underlain by oceanic lithospheric mantle, possibly accreted to North America during the mid-Jurassic. The Nd isochron age could record the time when the oceanic lithosphere was isolated from the asthenosphere. Recent enrichment event may have acted on such a depleted mantle, as indicated by the low Sm/Nd ratios of two spinel harzburgites.

  7. Isotopic characterisation of the sub-continental lithospheric mantle beneath Zealandia, a rifted fragment of Gondwana

    NASA Astrophysics Data System (ADS)

    Waight, Tod E.; Scott, James M.; van der Meer, Quinten H. A.

    2013-04-01

    The greater New Zealand region, known as Zealandia, represents an amalgamation of crustal fragments accreted to the paleo-Pacific Gondwana margin and which underwent significant thinning during the subsequent split from Australia and Antarctica in the mid-Cretaceous following opening of the Tasman Sea and the Southern Ocean. We present Sr, Nd and Pb isotopes and laser ablation trace element data for a comprehensive suite of clinopyroxene separates from spinel peridotite xenoliths (lherzolite to harzburgite) from the sub-continental lithospheric mantle across southern New Zealand. These xenoliths were transported to the surface in intra-plate alkaline volcanics that erupted across the region in the Eocene and Miocene (33-10 m.y.a.). Most of the volcanic suites have similar geochemical and isotopic properties that indicate melting of an OIB-like mantle source in the garnet stability zone and that contained a HIMU component. The volcanics have tapped two adjacent but chemically contrasting upper mantle domains: a fertile eastern domain and an extremely depleted western domain. Both domains underlie Mesozoic metasedimentary crust. Radiogenic isotope compositions of the clinopyroxene have 87Sr/86Sr between 0.7023 to 0.7035, 143Nd/144Nd between 0.5128 and 0.5132 (corresponding to ?Nd between +3 and +13) with a few samples extending to even more depleted compositions, 206Pb/204 Pb between ca. 19.5 to 21.5 and 208Pb/204 Pb between ca. 38.5 to 40.5. No correlations are observed between isotopic composition, age or geographical separation. These isotopic compositions indicate that the sub-continental lithospheric mantle under southern New Zealand has a regionally distinct and pervasive FOZO to HIMU - like signature. The isotopic signatures are also similar to those of the alkaline magmas that transported the xenoliths and suggest that most of the HIMU signature observed in the volcanics could be derived from a major source component in the sub-continental lithospheric mantle

  8. Mantle-crust differentiation of chalcophile elements in the oceanic lithosphere

    NASA Astrophysics Data System (ADS)

    Ciążela, J.; Dick, H. J.; Koepke, J.; Kuhn, T.; Muszynski, A.; Kubiak, M.

    2014-12-01

    The chalcophile elements, as associated with sulfides, are believed mainly from the study of ophiolites to be generally enriched in the upper mantle, but depleted by magmatic processes in the lower and upper ocean crust. However, studies of some orogenic lherzolites suggest a copper depletion of peridotites in relation to the primitive mantle, suggesting that a portion of the sulfides is melted during decompression and incorporated into the ascending magmas. The rarity of abyssal peridotites and the high degree of their alteration have not allowed these results to be verified in situ in the oceans.Here, we present the first complete study of chalcophile elements based on a suite of rocks from an oceanic core complex (OCC), the Kane Megamullion at 22°30'N at the Mid-Atlantic Ridge. OCCs provide large exposures of mantle and lower crustal rocks on the seafloor on detachment fault footwalls at slow and ultraslow spreading ridges. The Kane Megamullion is one of the best sampled OCCs in the world, with 1342 rocks from 28 dredge sites and 14 dives. We have made XRF, TD-MS and INAA analyses of 129 representative peridotites, gabbroic rocks, diabases and basalts. Our results suggest a depletion of some peridotites in relation to the primitive mantle (28 ppm Cu). Dunites, troctolites and olivine gabbros are relatively enriched in chalcophile elements. The amount of sulfides decreases gradually with progressive differentiation, reaching a minimum in gabbronorites and diabases. The highest bulk abundance of chalcophile elements in our sample suite was observed in dunites (up to ~ 300 ppm Cu in several samples) and a contact zone between residual peridotite and a mafic vein (294 ppm Cu). Plagioclase-bearing harzburgites, generally formed by late-stage melt impregnation in the mantle, are typically more enriched in Cu than unimpregnated residual peridotites. For these reasons, our initial results indicate sulfide melting during mantle melting, and their local precipitation in

  9. Far-offset Airgun Imaging of the Mantle: Lithospheric velocity structure of the North Atlantic

    NASA Astrophysics Data System (ADS)

    Lizarralde, D.; Gaherty, J.; Collins, J. A.; Hirth, G.

    2001-12-01

    The extraction of oceanic crust at mid-ocean ridges leaves behind residual mantle depleted of basaltic constituents and volatiles, with an embedded structural fabric associated with melting and mantle flow beneath a spreading center. This basic layered structure should remain in the lithosphere as it cools and translates from the ridge, providing a record of mid-ocean ridge processes over time. Images of the seismic velocity structure within the uppermost oceanic mantle will thus provide a powerful compliment to geologic and geophysical studies of oceanic crust from which much of our understanding of mid-ocean-ridge processes has come. In June 2001, we conducted a lithosphere-scale active-source seismic refraction experiment along an 800-km-long transect in the western Atlantic to investigate the seismic structure of oceanic mantle lithosphere. The transect extends along a plate-kinematic flow line ranging in age from 87 to 145 Ma (a portion of the IPOD-USGS transect). The experiment involved 16 ocean-bottom seismometers (OBSs) deployed along the transect in 3-km-seperated pairs spaced 80-120 km apart and 3 OBSs plus a seismometer on Bermuda located 75, 150, and 350 km off of the transect. These instruments recorded shots from R/V Maurice Ewing's 9,750-cu.-in. airgun array. Shooting occurred in two modes. At 32 locations at the ends of the transect, each spaced 6 km apart, 18-30 shots were fired while steaming in a circle of radius ~800 m. The shot interval was 9 minutes. Over the inner 500-km of the transect, between 4 and 7 passes were made while shooting on distance every 1 km. The extraordinary shot-time intervals were required to ensure all water-borne shot energy had crossed the array befor the next shot was fired. By stacking the co-located and "circle" shots, and by merging data from the paired instruments, profiles can be created with a trace spacing of 1-3 km, which is unprecedented for an experiment of this scale. We will present fully processed record

  10. Experimental Constraints on the Rheology of the Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Mei, S.; Suzuki, A. M.; Kohlstedt, D. L.; Dixon, N. A.; Durham, W. B.

    2009-12-01

    To provide a better understanding of rheological properties of mantle rocks under lithospheric conditions, we carried out a series of experiments on the steady-state creep behavior of polycrystalline olivine, the most abundant mineral of the upper mantle, at high pressures (~4 to 9 GPa), relatively low temperatures (673 ≤ T ≤ 1273 K), and anhydrous conditions using a deformation-DIA. Differential stress and sample displacement were monitored in-situ using synchrotron x-ray diffraction and radiography, respectively. The low-temperature plasticity of olivine is well constrained by our data with a Peierls stress of 6.2 ± 0.3 GPa and an activation energy of 290 ± 60 kJ/mol. The flow stress in the low-temperature plasticity regime characterized in this study is less temperature sensitive than reported in earlier studies using micro-indentation and load relaxation techniques, in which samples were deformed in a transient rather than steady-state fashion. A transition from low-T plasticity to high-T creep occurs at ~1300 K for a laboratory strain rate of ~10-5 s-1. Low-T plasticity dominates deformation of olivine-rich rocks at depths in the lithospheric mantle where pressure is high enough to suppress frictional sliding while temperature is low enough not to activate dislocation climb. Extrapolation of our low-temperature flow law to a strain rate of 10-14s-1 and a temperature of 873 K, the cut-off temperature for earthquakes in the mantle, yields a strength of ~500 MPa. This value is similar to that obtained from the flow law of Evans and Goetze [1979] and a factor of five large than that calculated from the flow law of Raterron et al. [2004].

  11. Fertile Lithospheric Mantle beneath Far East Russia; evidence for Lithospheric delamination

    NASA Astrophysics Data System (ADS)

    Ntaflos, T.; Koutsovitis, P.; Aschchepkov, I.; Hauzenberger, C. A.; Prikhodko, V.; Barkar, A.

    2012-12-01

    In the back-arc environment of Far East Russia, mantle xenoliths from Sikhoti-Alin( Komku area, KO) and Primorie (Sviyaginsky area, SV), Far East Russia are fertile spinel lherzolites with traces of amphibole, phlogopite and hyalophane in some of the studied samples. Though samples from both localities are fertile there is a systematic difference in their fertility. The KO samples have mg# varying from 0.891 to 0.899 and are slightly more fertile than the SV samples that have mg# ranging from 0.898 to 0.904. LA-ICP-MS analyses on clinopyroxenes confirm this trend as the (La/Yb)N in KO samples range from 1.49 to 5.4 and in SV samples from 0.15 to 1.73. The estimated equilibration temperatures for the KO suite range from 940 °C to 1035 °C and for the SV suite from 770 to 945. The differences in the estimated equilibrium temperatures between the KO and SV suites suggest that the less fertile SV suite originated in shallower depths than the more fertile KO suite. Kaersutite, and extremely Ti-rich phlogopite, up to 14 wt% TiO2, are associated with intergranular glass indicating clearly metasomatism of undersaturated alkaline melts. Pargasitic amphibole occurs as inclusion in clinopyroxene. Incompatible element abundances, besides Ba, Sr and Ti that are slightly enriched in the amphibole, are similar in both phases suggesting minor metasomatism due to percolation of small amounts of water-rich fluids. The lithospheric mantle beneath the studied area represents the residue after partial melting of up to 2 % of a primitive mantle and is comparable to that of Mongolia. Despite the fact that the studied area experienced several subducting episodes, the lithospheric mantle appears to be unaffected from the upwelling fluids/melts of the subducted slab(s). Since there is no indication for plume activity, and/or evidence for refertilization, it is likely that the lithospheric mantle has been delaminated as the result of tectonic events (lithospheric attenuation, inverse

  12. Dynamics of metasomatic transformation of lithospheric mantle rocks under Siberian Craton

    NASA Astrophysics Data System (ADS)

    Sharapov, Victor; Perepechko, Yury; Tomilenko, Anatoly; Chudnenko, Konstantin; Sorokin, Konstantin

    2014-05-01

    Numerical problem for one- and two-velocity hydrodynamics of heat and mass transfer in permeable zones over 'asthenospheric lenses' (with estimates for dynamics of non-isothermal metasomatosis of mantle rocks, using the approximation of flow reactor scheme) was formulated and solved based on the study of inclusion contents in minerals of metamorphic rocks of the lithosphere mantle and earth crust, estimates of thermodynamic conditions of inclusions appearance, and the results of experimental modeling of influence of hot reduced gases on rocks and minerals of xenoliths in mantle rocks under the cratons of Siberian Platform (SP): 1) the supply of fluid flows of any composition from upper mantle magma sources results in formation of zonal metasomatic columns in ultrabasic lithosphere mantle in permeable zones of deep faults; 2) when major element or petrogenetic components are supplied from magma source, depleted ultrabasic rocks of the lithosphere mantle are transformed into substrates which can be regarded as deep analogs of crust rodingites; 3) other fluid compositions cause deep calcinations and noticeable salination of metasomated substrate, or garnetization (eclogitization) of primary ultrabasic matrix develops; 4) above these zones the zone of basification appears; it is changed by the area of pyroxenitization, amphibolization, and biotitization; 5) modeling of thermo and mass exchange for two-velocity hydrodynamic problem showed that hydraulic approximation increases velocities of heat front during convective heating and decreases pressure in fluid along the flow. It was shown that grospydites, regarded earlier as eclogites, in permeable areas of lithosphere mantle, are typical zones draining upper mantle magma sources of metasomatic columns. As a result of the convective melting the polybaric magmatic sources may appear. Thus the formation of the (kimberlites?) melilitites or carbonatites is possible at the base of the lithospheric plates. It is shown that

  13. Trace element characteristics of lithospheric and asthenospheric mantle in the Rio Grande rift region

    SciTech Connect

    Perry, F.V.

    1994-06-01

    Trace element analyses of 10 mafic volcanic rocks from the Colorado Plateau transition zone, Colorado Plateau, Rio Grande rift, and Great Plains were obtained to characterize the trace element characteristics of asthenospheric and lithospheric mantle beneath these regions. Characterization of these mantle reservoirs using the trace element contents of basalts allows one to track the response of the lithosphere to continental rifting and extension.

  14. Mantle xenoliths from Central Vietnam: evidence for at least Meso-Proterozoic formation of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Proßegger, Peter; Ntaflos, Theodoros; Ackerman, Lukáš; Hauzenberger, Christoph; Tran, Tuan Anh

    2016-04-01

    with concave upwards REE and (La/Yb)N < 1 suggesting various degrees of melt extraction and group B with (La/Yb)N ranging between 1 and 10. The group B in a mantle normalized trace element diagram shows negative Pb and Sr anomalies compared to their neighbour elements, which together with the general absence of hydrous phases, suggest variable interaction with percolating silicate melt(s). The primitive-mantle normalized highly siderophile element (HSE) concentration pattern show almost no fractionation among Ir, Ru and Pt with only slight depletion in Os suggesting very limited effect of metasomatism on the HSE contents. On the other hand, most of the samples display clear Re addition from the percolating melts preventing calculation of reliable rhenium depletion ages (TRD). However, one sample with depleted Pd and Re signature yield TRD of 1.0 Ga which can be interpreted as a minimum SCLM stabilization age in this area. Mantle xenoliths from Central Vietnam range from fertile to depleted compositions partly affected by metasomatic silicate melts. Re-Os isotopic composition reveals a Meso-Proterozoic minimum stabilization age of the lithospheric mantle.

  15. Power law olivine crystal size distributions in lithospheric mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Armienti, P.; Tarquini, S.

    2002-12-01

    Olivine crystal size distributions (CSDs) have been measured in three suites of spinel- and garnet-bearing harzburgites and lherzolites found as xenoliths in alkaline basalts from Canary Islands, Africa; Victoria Land, Antarctica; and Pali Aike, South America. The xenoliths derive from lithospheric mantle, from depths ranging from 80 to 20 km. Their textures vary from coarse to porphyroclastic and mosaic-porphyroclastic up to cataclastic. Data have been collected by processing digital images acquired optically from standard petrographic thin sections. The acquisition method is based on a high-resolution colour scanner that allows image capturing of a whole thin section. Image processing was performed using the VISILOG 5.2 package, resolving crystals larger than about 150 μm and applying stereological corrections based on the Schwartz-Saltykov algorithm. Taking account of truncation effects due to resolution limits and thin section size, all samples show scale invariance of crystal size distributions over almost three orders of magnitude (0.2-25 mm). Power law relations show fractal dimensions varying between 2.4 and 3.8, a range of values observed for distributions of fragment sizes in a variety of other geological contexts. A fragmentation model can reproduce the fractal dimensions around 2.6, which correspond to well-equilibrated granoblastic textures. Fractal dimensions >3 are typical of porphyroclastic and cataclastic samples. Slight bends in some linear arrays suggest selective tectonic crushing of crystals with size larger than 1 mm. The scale invariance shown by lithospheric mantle xenoliths in a variety of tectonic settings forms distant geographic regions, which indicate that this is a common characteristic of the upper mantle and should be taken into account in rheological models and evaluation of metasomatic models.

  16. Petrogenesis of Cenozoic, alkalic volcanic lineages at Mount Morning, West Antarctica and their entrained lithospheric mantle xenoliths: Lithospheric versus asthenospheric mantle sources

    NASA Astrophysics Data System (ADS)

    Martin, Adam P.; Cooper, Alan F.; Price, Richard C.

    2013-12-01

    Two volcanic lineages are identified at Mount Morning, a Cenozoic to recent, eruptive centre in the Ross Sea, West Antarctica, which is part of the McMurdo Volcanic Group. Both the older (at least 18.7-11.4 Ma), mildly alkalic, nepheline- or quartz-normative Mason Spur Lineage, and the younger (at least 6-0.02 Ma), nepheline normative, strongly alkalic Riviera Ridge Lineage evolved by fractional crystallization from nominally anhydrous (<0.5 wt% H2O) parental magmas. Both lineages are analogous to other, relatively anhydrous lineages in the McMurdo Volcanic Group and distinctly different from those in which kaersutite is present on the liquid line of descent. Sub-continental lithospheric mantle (SCLM) xenoliths entrained in Riviera Ridge Lineage rocks show trace element and isotopic Sr-Nd-Pb variation that is consistent with four-component mixing whereby depleted mantle has been refertilised by enriched, HIMU-like and Nb-enriched (carbonatite) components. Refertilization may have occurred c. 530-490 Ma ago when fluids derived from subduction associated with Gondwanaland amalgamation infiltrated the SCLM. Similar trace element and isotope variation (Sr-Nd-Pb) in Mount Morning basaltic rocks and entrained xenoliths suggests that the source for the basaltic magmas lies (at least in part) in the lithospheric mantle. It has long been recognized that Cenozoic volcanic rocks in Antarctica (Victoria Land - including Mount Morning - and Marie Byrd Land), Zealandia and eastern Australia share common chemical and isotopic source characteristics and they have been argued to collectively constitute a single diffuse alkaline magmatic province (DAMP). Source characteristic similarities suggest DAMP volcanic rocks inherit at least some of their trace element and isotopic characteristics from the lithospheric mantle. Super-chondritic Nb/Ta values measured in some SCLM xenoliths and volcanic rocks at Mount Morning, and in volcanic rocks across the DAMP, can be explained by addition

  17. Melting the lithosphere: Metasomes as a source for mantle-derived magmas

    NASA Astrophysics Data System (ADS)

    Rooney, Tyrone O.; Nelson, Wendy R.; Ayalew, Dereje; Hanan, Barry; Yirgu, Gezahegn; Kappelman, John

    2017-03-01

    Peridotite constitutes most of the Earth's upper mantle, and it is therefore unsurprising that most mantle-derived magmas exhibit evidence of past equilibrium with an olivine-dominated source. Although there is mounting evidence for the role of pyroxenite in magma generation within upwelling mantle plumes, a less documented non-peridotite source of melts are metasomatic veins (metasomes) within the lithospheric mantle. Here we present major and trace element analyses of 66 lavas erupted from a small Miocene shield volcano located within the Ethiopian flood basalt province. Erupted lavas are intercalated with lahars and pyroclastic horizons that are overlain by a later stage of activity manifested in small cinder cones and flows. The lavas form two distinctive petrographic and geochemical groups: (A) an olivine-phyric, low Ti group (1.7-2.7 wt.% TiO2; 4.0-13.6 wt.% MgO), which geochemically resembles most of the basalts in the region. These low Ti lavas are the only geochemical units identified in the later cinder cones and associated lava flows; (B) a clinopyroxene-phyric high Ti group (3.1-6.5 wt.% TiO2; 2.8-9.2 wt.% MgO), which resembles the Oligocene HT-2 flood basalts. This unit is found intercalated with low Ti lavas within the Miocene shield. In comparison to the low Ti group, the high Ti lavas exhibit a profound depletion in Ni, Cr, Al, and Si, and significant enrichment in Ca, Fe, V, and the most incompatible trace elements. A characteristic negative K anomaly in primitive-mantle normalized diagrams, and Na2O > K2O, suggests a source rich in amphibole, devoid of olivine, and perhaps containing some carbonate and magnetite. While melt generation during rift development in Ethiopia is strongly correlated with the thermo-chemical anomalies associated with the African Superplume, thermobaric destabilization and melting of mantle metasomes may also contribute to lithospheric thinning. In regions impacted by mantle plumes, such melts may be critical to weakening

  18. Mantle Heterogeneity and Off Axis Volcanism on Young Pacific Lithosphere

    NASA Astrophysics Data System (ADS)

    Harmon, N.; Forsyth, D. W.; Weeraratne, D. S.; Webb, S. C.; Yang, Y.

    2011-12-01

    Plate tectonics and mantle plumes explain most volcanism on earth, but there are numerous actively forming linear volcanic chains in the middle of tectonic plates that are not explained by these theories. Using the multidisciplinary geophysical dataset of the MELT and GLIMPSE experiments, we show that associated with 3 volcanic chains west of the East Pacific Rise there are low seismic velocities and densities in the asthenosphere that extend to the East Pacific Rise spreading center. Analogous to the Hawaiian swell, the low-density anomalies produce swells beneath the volcanoes on young seafloor. The associated gravity anomalies are part of a set of gravity lineaments that have been previously interpreted as being due to thermo-elastic cracking of the lithosphere or small-scale convection. The correlation between the surface volcanism and subsurface density and velocity anomalies and their extension to the spreading center suggest that pre-existing, buoyant or fertile asthenospheric mantle heterogeneities are stretched in the direction of plate motion by shear between the plate and the underlying mantle. These heterogeneities seed small-scale convection, producing upwelling and pressure release melting, forming volcanic chains that extend nearly to the ridge axis.

  19. Mantle heterogeneity and off axis volcanism on young Pacific lithosphere

    NASA Astrophysics Data System (ADS)

    Harmon, Nicholas; Forsyth, Donald W.; Weeraratne, Dayanthie S.; Yang, Yingjie; Webb, Spahr C.

    2011-11-01

    Plate tectonics and mantle plumes explain most volcanism on earth, but there are numerous actively forming linear volcanic chains in the middle of tectonic plates that are not explained by these theories. Using the multidisciplinary geophysical dataset of the MELT and GLIMPSE experiments, we show that associated with 3 volcanic chains west of the East Pacific Rise there are low seismic velocities and densities in the asthenosphere that extend to the East Pacific Rise spreading center. Analogous to the Hawaiian swell, the low-density anomalies produce swells beneath the volcanoes on young seafloor. The associated gravity anomalies are part of a set of gravity lineaments that have been previously interpreted as being due to thermo-elastic cracking of the lithosphere or small-scale convection. The correlation between the surface volcanism and subsurface density and velocity anomalies and their extension to the spreading center suggest that pre-existing, buoyant or fertile asthenospheric mantle heterogeneities are stretched in the direction of plate motion by shear between the plate and the underlying mantle. These heterogeneities seed small-scale convection, producing upwelling and pressure release melting, forming volcanic chains that extend nearly to the ridge axis.

  20. Dynamic topography as constraints on stress and viscosity in the mantle and lithosphere

    NASA Astrophysics Data System (ADS)

    Zhong, S.

    2015-12-01

    Mantle convection generates stress in the mantle and lithosphere. The lithosphere stress is responsible for localized deformation including seismic deformation at plate boundaries, and localized stress highs in lithosphere are also suggested to cause dynamically self-consistent generation of plate tectonics and continental lithosphere instability, as the stress exceeds a threshold or yield stress. Modeling load-induced deformation at oceanic islands (e.g., Hawaii) constrains lithospheric stress at 100-200 MPa in the plate interiors, leading to a lower limit on lithospheric yield stress (Zhong and Watts, 2013). However, convection-induced lithospheric stress is poorly understood, ranging from 500 MPa to tens of MPa as reported in mantle convection studies. The magnitude and distribution of lithospheric and mantle stress depend critically on buoyancy and viscosity, particularly the latter. Unfortunately, lithospheric and mantle viscosity is also poorly constrained. For example, the inferred lower mantle viscosity from post-glacial rebound and geoid modeling studies ranges from 1023 Pas to 1022 Pas (e.g., Mitrovica and Forte, 2004; Simons and Hager, 1996; Paulson et al., 2007). In addition to the stress, the lower mantle viscosity may also affect the time evolution of mantle structure including sinking rate of slabs and formation of the degree-2 mantle seismic structure. Therefore, it is important to develop independent constraints on mantle viscosity and convection-induced stress. In this study, I demonstrate that dynamic topography can be used to place first-order constraints on both lithospheric stress and mantle viscosity. For a given superadiabatic temperature difference across the mantle (e.g., 2500 K), a larger mantle viscosity (or a smaller Rayleigh number) leads to a larger lithospheric stress and a larger dynamic topography. To be consistent with the inferred dynamic topography, the lower mantle viscosity is constrained to be significantly smaller than 1023

  1. Noble gas composition of subcontinental lithospheric mantle: An extensively degassed reservoir beneath Southern Patagonia

    NASA Astrophysics Data System (ADS)

    Jalowitzki, Tiago; Sumino, Hirochika; Conceição, Rommulo V.; Orihashi, Yuji; Nagao, Keisuke; Bertotto, Gustavo W.; Balbinot, Eduardo; Schilling, Manuel E.; Gervasoni, Fernanda

    2016-09-01

    Patagonia, in the Southern Andes, is one of the few locations where interactions between the oceanic and continental lithosphere can be studied due to subduction of an active spreading ridge beneath the continent. In order to characterize the noble gas composition of Patagonian subcontinental lithospheric mantle (SCLM), we present the first noble gas data alongside new lithophile (Sr-Nd-Pb) isotopic data for mantle xenoliths from Pali-Aike Volcanic Field and Gobernador Gregores, Southern Patagonia. Based on noble gas isotopic compositions, Pali-Aike mantle xenoliths represent intrinsic SCLM with higher (U + Th + K)/(3He, 22Ne, 36Ar) ratios than the mid-ocean ridge basalt (MORB) source. This reservoir shows slightly radiogenic helium (3He/4He = 6.84-6.90 RA), coupled with a strongly nucleogenic neon signature (mantle source 21Ne/22Ne = 0.085-0.094). The 40Ar/36Ar ratios vary from a near-atmospheric ratio of 510 up to 17700, with mantle source 40Ar/36Ar between 31100-6800+9400 and 54000-9600+14200. In addition, the 3He/22Ne ratios for the local SCLM endmember, at 12.03 ± 0.15 to 13.66 ± 0.37, are higher than depleted MORBs, at 3He/22Ne = 8.31-9.75. Although asthenospheric mantle upwelling through the Patagonian slab window would result in a MORB-like metasomatism after collision of the South Chile Ridge with the Chile trench ca. 14 Ma, this mantle reservoir could have remained unhomogenized after rapid passage and northward migration of the Chile Triple Junction. The mantle endmember xenon isotopic ratios of Pali-Aike mantle xenoliths, which is first defined for any SCLM-derived samples, show values indistinguishable from the MORB source (129Xe/132Xe =1.0833-0.0053+0.0216 and 136Xe/132Xe =0.3761-0.0034+0.0246). The noble gas component observed in Gobernador Gregores mantle xenoliths is characterized by isotopic compositions in the MORB range in terms of helium (3He/4He = 7.17-7.37 RA), but with slightly nucleogenic neon (mantle source 21Ne/22Ne = 0.065-0.079). We

  2. Rapid Cenozoic ingrowth of isotopic signatures simulating "HIMU" in ancient lithospheric mantle: Distinguishing source from process

    NASA Astrophysics Data System (ADS)

    McCoy-West, Alex J.; Bennett, Vickie C.; Amelin, Yuri

    2016-08-01

    Chemical and isotopic heterogeneities in the lithospheric mantle are increasingly being recognised on all scales of examination, although the mechanisms responsible for generating this variability are still poorly understood. To investigate the relative behaviour of different isotopic systems in off-cratonic mantle, and specifically the origin of the regional southwest Pacific "HIMU" (high time integrated 238U/204Pb) Pb isotopic signature, we present the first U-Th-Pb, Rb-Sr, Sm-Nd and Re-Os isotopic dataset for spinel peridotite xenoliths sampling the subcontinental lithospheric mantle (SCLM) beneath Zealandia. Strongly metasomatised xenoliths converge to a restricted range of Sr and Nd isotopic compositions (87Sr/86Sr = 0.7028-0.7033; εNd ≈ +3-+6) reflecting pervasive overprinting of their original melt depletion signatures by carbonatite-rich melts. In contrast, rare, weakly metasomatised samples possess radiogenic Nd isotopic compositions (εNd > +15) and unradiogenic Sr isotopic compositions (87Sr/86Sr < 0.7022). This is consistent with melt extraction at ca. 2.0 Ga and in accord with widespread Paleoproterozoic Re-Os model ages from both weakly metasomatised and the more numerous, strongly metasomatised xenoliths. The coupling of chalcophile (Os), and lithophile (Sr and Nd) melt depletion ages from peridotite xenoliths on a regional scale under Zealandia argues for preservation of a significant mantle keel (⩾2 million km3) associated with a large-scale Paleoproterozoic melting event. Lead isotopic compositions are highly variable with 206Pb/204Pb = 17.3-21.3 (n = 34) and two further samples with more extreme compositions of 22.4 and 25.4, but are not correlated with other isotopic data or U/Pb and Th/Pb ratios in either strongly or weakly metasomatised xenoliths; this signature is thus a recent addition to the lithospheric mantle. Lead model ages suggest that this metasomatism occurred in the last 200 m.y., with errorchrons from individual localities

  3. Experimental Constraints on the Strength of the Lithospheric Mantle

    SciTech Connect

    Mei, S.; Suzuki, A; Kohlstedt, D; Dixon, N; Durham, W

    2010-01-01

    To provide a better understanding of rheological properties of mantle rocks under lithospheric conditions, we carried out a series of experiments on the creep behavior of polycrystalline olivine at high pressures ({approx}4-9 GPa), relatively low temperatures (673 {le} T {le} 1273 K), and anhydrous conditions, using a deformation-DIA. Differential stress and sample displacement were monitored in situ using synchrotron X-ray diffraction and radiography, respectively. Experimental results were fit to the low-temperature plasticity flow law. On the basis of this analysis, the low-temperature plasticity of olivine deformed under anhydrous conditions is well constrained by our data with a Peierls stress of {sigma}{sub P} = 5.9 {+-} 0.2 GPa, a zero-stress activation energy of E{sub k}(0) = 320 {+-} 50 kJ mol{sup -1}, and A{sub P} = 1.4 x 10{sup -7} s{sup -1} MPa{sup -2}. Compared with published results for high-temperature creep of olivine, a transition from low-temperature plasticity to high-temperature creep occurs at {approx}1300 K for a strain rate of {approx}10{sup -5} s{sup -1}. For a geological strain rate of 10{sup -14} s{sup -1}, extrapolation of our low-temperature flow law to 873 K, the cutoff temperature for earthquakes in the mantle, yields a strength of {approx}600 MPa. The low-temperature, high-stress flow law for olivine in this study provides a solid basis for modeling tectonic processes occurring within Earth's lithosphere.

  4. Lithosphere Structure and Mantle Characterization of the Alpine-Himalayan Belt: Atlas, Zagros and Tibet

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, I.; Tunini, L.; Fernandez, M.; Verges, J.; Garcia-Castellanos, D.

    2015-12-01

    By combining geophysical and petrological information, we investigate the crust and upper mantle of three orogens of the Alpine-Himalayan Belt (Atlas, Zagros and Tibet), characterizing the lithosphere from the thermal, compositional and seismological viewpoint. The modeling is based on an integrated geophysical-petrological methodology combining elevation, gravity, geoid, surface heat flow, seismic and geochemical data.The results show prominent lithospheric mantle thickening beneath the Moroccan margin followed by thinning beneath the Atlas Mountains. Different convergence accommodation between the crust and lithospheric mantle suggests a decoupled crustal-mantle mechanical response. In the northern Zagros the lithosphere-asthenosphere boundary rises sharply below the Sanandaj Sirjan Zone in a narrow region, whereas in the central Zagros the thinning is smoother and affects a wider region. The transition from the Arabian to the Eurasian lithospheric domain is located beneath the Zagros range, and it is marked by a change in the mantle velocity anomaly and in the lithospheric mantle composition. In the western Himalaya-Tibetan orogen, the lithosphere thickening is gradual reaching the maximum below the northern edge of the Plateau. The Indian lithospheric mantle underlies the whole Tibetan Plateau up to the boundary with the Tarim Basin. In the eastern sector, the thickening generates sharp steps beneath the Himalaya Range, and it thins abruptly beneath the Qiangtang and the Songpan Ganzi terrains. The Indian underthrusting is restricted to the southern Plateau. Different Eurasian domains have been also identified beneath the Tarim Basin, the Altaids region and NE Plateau by means of different lithospheric mantle compositions. The lithospheric models crossing Zagros and Tibetan Plateau show that the present-day lithosphere mantle structure of the Arabia-Eurasia and India-Eurasia collision zones are laterally-varying along the strike of both orogens, not just in

  5. Fossilized Dipping Fabrics in Continental Mantle Lithosphere as Possible Remnants of Stacked Oceanic Paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, V.; Plomerova, J.; Vecsey, L.; Munzarova, H.

    2015-12-01

    We have examined seismic anisotropy within the mantle lithosphere of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-wave anisotropy delimit domains of the mantle lithosphere, each of them having a consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics in the mantle lithosphere. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or by stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006), and the lithosphere base as a boundary between a fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  6. Density and P-wave velocity structure beneath the Paraná Magmatic Province: Refertilization of an ancient lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Chaves, Carlos; Ussami, Naomi; Ritsema, Jeroen

    2016-08-01

    We estimate density and P-wave velocity perturbations in the mantle beneath the southeastern South America plate from geoid anomalies and P-wave traveltime residuals to constrain the structure of the lithosphere underneath the Paraná Magmatic Province (PMP) and conterminous geological provinces. Our analysis shows a consistent correlation between density and velocity anomalies. The P-wave speed and density are 1% and 15 kg/m3 lower, respectively, in the upper mantle under the Late Cretaceous to Cenozoic alkaline provinces, except beneath the Goiás Alkaline Province (GAP), where density (+20 kg/m3) and velocity (+0.5%) are relatively high. Underneath the PMP, the density is higher by about 50 kg/m3 in the north and 25 kg/m3 in the south, to a depth of 250 - 300 km. These values correlate with high-velocity perturbations of +0.5% and +0.3%, respectively. Profiles of density perturbation versus depth in the upper mantle are different for the PMP and the adjacent Archean São Francisco (SFC) and Amazonian (AC) cratons. The Paleoproterozoic PMP basement has a high-density root. The density is relatively low in the SFC and AC lithospheres. A reduction of density is a typical characteristic of chemically depleted Archean cratons. A more fertile Proterozoic and Phanerozoic subcontinental lithospheric mantle has a higher density, as deduced from density estimates of mantle xenoliths of different ages and composition. In conjunction with Re-Os isotopic studies of the PMP basalts, chemical and isotopic analyses of peridodite xenoliths from the GAP in the northern PMP, and electromagnetic induction experiments of the PMP lithosphere, our density and P-wave speed models suggest that the densification of the PMP lithosphere and flood basalt generation are related to mantle refertilization. Metasomatic refertilization resulted from the introduction of asthenospheric components from the mantle wedge above Proterozoic subduction zones, which surrounded the Paraná lithosphere

  7. Continental collision with a sandwiched accreted terrane: Insights into Himalayan-Tibetan lithospheric mantle tectonics?

    NASA Astrophysics Data System (ADS)

    Kelly, Sean; Butler, Jared P.; Beaumont, Christopher

    2016-12-01

    Many collisional orogens contain exotic terranes that were accreted to either the subducting or overriding plate prior to terminal continent-continent collision. The ways in which the physical properties of these terranes influence collision remain poorly understood. We use 2D thermomechanical finite element models to examine the effects of prior 'soft' terrane accretion to a continental upper plate (retro-lithosphere) on the ensuing continent-continent collision. The experiments explore how the style of collision changes in response to variations in the density and viscosity of the accreted terrane lithospheric mantle, as well as the density of the pro-lithospheric mantle, which determines its propensity to subduct or compress the accreted terrane and retro-lithosphere. The models evolve self-consistently through several emergent phases: breakoff of subducted oceanic lithosphere; pro-continent subduction; shortening of the retro-lithosphere accreted terrane, sometimes accompanied by lithospheric delamination; and, terminal underthrusting of pro-lithospheric mantle beneath the accreted terrane crust or mantle. The modeled variations in the properties of the accreted terrane lithospheric mantle can be interpreted to reflect metasomatism during earlier oceanic subduction beneath the terrane. Strongly metasomatized (i.e., dense and weak) mantle is easily removed by delamination or entrainment by the subducting pro-lithosphere, and facilitates later flat-slab underthrusting. The models are a prototype representation of the Himalayan-Tibetan orogeny in which there is only one accreted terrane, representing the Lhasa terrane, but they nonetheless exhibit processes like those inferred for the more complex Himalayan-Tibetan system. Present-day underthrusting of the Tibetan Plateau crust by Indian mantle lithosphere requires that the Lhasa terrane lithospheric mantle has been removed. Some of the model results support previous conceptual interpretations that Tibetan

  8. Lithosphere-Mantle Interactions Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Gerault, M.; Becker, T. W.; Husson, L.; Humphreys, E.

    2014-12-01

    Episodes of flat-slab subduction along the western margin of the Americas may have lead to the formation of intra-continental basins and seas, as well as mountain belts and continental plateaux. Here, we explore some of the consequences of a flat slab morphology, linking dynamic topography and stress patterns in continents to slab and mantle dynamics. Using a 2-D cylindrical code, we develop general models and apply them to the North and South America plates. The results are primarily controlled by the coupling along the slab-continent interface (due to geometry and viscosity), the viscosity of the mantle wedge, and the buoyancy of the subducted lithosphere. All models predict broad subsidence, large deviatoric stresses, and horizontal compression above the tip of the flat slab and the deep slab hinge. In models where the slab lays horizontally for hundreds of kilometers, overriding plate compression focuses on both ends of the flat segment, where normal-dip subduction exerts a direct downward pull. In between, a broad low-stress region gets uplifted proportionally to the amount of coupling between the slab and the continent. Anomalously buoyant seafloor enhances this effect but is not required. The downward bending of the flat slab extremities causes its upper part to undergo extension and the lower part to compress. These results have potential for explaining the existence of relatively undeformed, uplifted regions surrounded by mountain belts, such as in the western U.S. and parts of the Andes. Adequately modeling topography and stress in the unusual setting of southwestern Mexico requires a low-viscosity subduction interface and mantle wedge. Our results are only partially controlled by the buoyancy of the subducting plate, suggesting that the viscosity and the morphology of the slab are important, and that the often-used low resolution and "Stokeslet" models may be missing substantial effects.

  9. Metasomatic processes within the fertile lithospheric Mantle beneath Don Camilo, Santa Cruz, Argentina

    NASA Astrophysics Data System (ADS)

    Ntaflos, Th.; Mundl, A.; Bjerg, E. A.; Tschegg, C.; Kosler, J.

    2009-04-01

    Mantle xenoliths in alkalibasalts from Don Camilo, an area located at the North margin of the Deseado Massif in Patagonia, comprise mainly spinel-bearing lherzolites and dunites as well as less common harburgites, wehrlites, clinopyroxenites and gabbros. Spinel-lherzolites and harzburgites have protogranular textures whereas dunites have equigranular to equigranular tabular textures. There are two kinds of dunites: mantle and cumulate dunites. The olivine mg# in the mantle dunites vary within a narrow range from 90.5 to 91.5 and the NiO content from, 0.39 to 0.42 wt. %, whereas in the cumulate dunites the mg# ranges from 87 to 90.5 and the NiO content from 0.22 to 0.40 wt. %. Both types of dunite contain fine grained interstitial diopside. Hydrous phases, besides one sample that contains amphibole, were so far not found. The spinel peridotites have Primitive Mantle normalized (PM) whole rock REE abundances depleted in LREE [(La/Yb)N=0.34-0.85)] and the dunites are LREE enriched [(La/Yb)N=3.49]. LA-ICP-MS analyses of cpx show that a number of the studied spinel peridotite xenoliths experienced cryptic metasomatism. Three groups of xenoliths have been recognized according to their PM normalized REE and other incompatible trace element patterns in cpx: group I has depleted LREE abundances and group II is highly enriched in LREE (20-30 x PM) and group III has moderate LREE enrichments. Cores of some clinopyroxenes in group II have depleted LREE similar to those in group I, apparently representing relictic cores not affected by metasomatism. In addition, the metasomatized clinopyroxenes are significantly enriched in Sr, Th and U. Evidently, the metasomatic agent was a H2O-rich fluid (high LREE, Sr, Th and U). Mantle and cumulate dunites have experienced modal metasomatism. In both types of dunite interstitial clinopyroxene appear to be of metasomatic origin. The clinopyroxene from cumulate dunites depleted LREE abundances and low HREE indicating that they have been

  10. Dipping fossil fabrics of continental mantle lithosphere as tectonic heritage of oceanic paleosubductions

    NASA Astrophysics Data System (ADS)

    Babuska, Vladislav; Plomerova, Jaroslava; Vecsey, Ludek; Munzarova, Helena

    2016-04-01

    Subduction and orogenesis require a strong mantle layer (Burov, Tectonophys. 2010) and our findings confirm the leading role of the mantle lithosphere. We have examined seismic anisotropy of Archean, Proterozoic and Phanerozoic provinces of Europe by means of shear-wave splitting and P-wave travel-time deviations of teleseismic waves observed at dense arrays of seismic stations (e.g., Vecsey et al., Tectonophys. 2007). Lateral variations of seismic-velocity anisotropy delimit domains of the mantle lithosphere, each of them having its own consistent fabric. The domains, modeled in 3D by olivine aggregates with dipping lineation a, or foliation (a,c), represent microplates or their fragments that preserved their pre-assembly fossil fabrics. Evaluating seismic anisotropy in 3D, as well as mapping boundaries of the domains helps to decipher processes of the lithosphere formation. Systematically dipping mantle fabrics and other seismological findings seem to support a model of continental lithosphere built from systems of paleosubductions of plates of ancient oceanic lithosphere (Babuska and Plomerova, AGU Geoph. Monograph 1989), or from stacking of the plates (Helmstaedt and Schulze, Geol. Soc. Spec. Publ. 1989). Seismic anisotropy in the oceanic mantle lithosphere, explained mainly by the olivine A- or D-type fabric (Karato et al., Annu. Rev. Earth Planet. Sci. 2008), was discovered a half century ago (Hess, Nature 1964). Field observations and laboratory experiments indicate the oceanic olivine fabric might be preserved in the subducting lithosphere to a depth of at least 200-300 km. We thus interpret the dipping anisotropic fabrics in domains of the European mantle lithosphere as systems of "frozen" paleosubductions (Babuska and Plomerova, PEPI 2006) and the lithosphere base as a boundary between the fossil anisotropy in the lithospheric mantle and an underlying seismic anisotropy related to present-day flow in the asthenosphere (Plomerova and Babuska, Lithos 2010).

  11. Project Hotspot - The Snake River Scientific Drilling Project - Investigating the Interactions of Mantle Plumes and Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Shervais, J. W.

    2008-12-01

    The Yellowstone-Snake River Plain (YSRP) volcanic province is the world's best modern example of a time- transgressive hotspot track beneath continental crust. Recently, a 100 km wide thermal anomaly has been imaged by seismic tomography to depths of over 500 km beneath the Yellowstone Plateau. The Yellowstone Plateau volcanic field consists largely of rhyolite lavas and ignimbrites, with few mantle-derived basalts. In contrast, the Snake River Plain (SRP), which represents the track of the Yellowstone hotspot, consists of rhyolite caldera complexes that herald the onset of plume-related volcanism and basalts that are compositionally similar to ocean island basalts like Hawaii. The SRP preserves a record of volcanic activity that spans over 16 Ma and is still active today, with basalts as young as 200 ka in the west and 2 ka in the east. The SRP is unique because it is young and relatively undisturbed tectonically, and because it contains a complete record of volcanic activity associated with passage of the hotspot. This complete volcanic record can only be sampled by drilling. In addition, the western SRP rift basin preserves an unparalleled deep-water lacustrine archive of paleoclimate evolution in western North America during the late Neogene. The central question addressed by the Snake River Scientific Drilling Project is how do mantle hotspots interact with continental lithosphere, and how does this interaction affect the geochemical evolution of mantle-derived magmas and the continental lithosphere? Our hypothesis is that continental mantle lithosphere is constructed in part from the base up by the underplating of mantle plumes, which are compositionally distinct from cratonic lithosphere, and that plumes modify the impacted lithosphere by thermally and mechanically eroding cratonic mantle lithosphere, and by underplating depleted plume-source mantle. Addition of mafic magma to the crust represents a significant contribution to crustal growth, and densifies

  12. Impact of Mafic Underplating and Mantle Depletion on Subsequent Extension: a Numerical Modeling Approach

    NASA Astrophysics Data System (ADS)

    Chenin, P.; Lavier, L. L.; Manatschal, G.

    2015-12-01

    Orogenic processes leave pervasive and long-lasting structural and compositional heterogeneities such as suture zones, faults and magmatic intrusions in both the crust and the mantle. Intuitively, rifts are expected to take advantage of inherited weaknesses, thus to localize at former orogenic structures. This theory known asthe Wilson Cycle is well-illustrated in the northern North Atlantic, where extension follows the structural grain of the Caledonian orogen. However, the Alpine and southern North Atlantic rift systems are striking counterexamples, since both circumvent the core of the Variscan orogen to the southeast and to the west, respectively. Yet, one major distinctive feature between the Caledonides and the Variscides is the amount of post-orogenic magmatic activity. Indeed, while the Caledonian range orogenic collapse was essentially a-magmatic, widespread acidic intrusions and mafic underplating were emplaced in the Variscan continental crust. In this study we investigate how mafic underplating of the continental crust and associated upper mantle depletion may impact a subsequent extensional event. We design numerical models to compare the behavior of lithospheres with various distributions of lower crust and mantle heterogeneities under different thermal states. We show that the existence of a mafic layer in and / or a region of depleted mantle beneath a quartzite crust bearing weak heterogeneities results in delocalization of extension outside this area, in the case of thermally re-equilibrated lithospheres. Furthermore, the existence of a strong heterogeneity within the lower crust and / or the upper mantle triggers a necking instability, which may result in the formation of ribbons of little- or un-thinned continental crust between regions of more intense thinning. The wavelength of these ribbons compares well with the scale of the Flemish Cap and Galicia Bank, both of which developed over underplated Variscan lithosphere.

  13. Petrological-Geochemical Constraints on Formation and Modification of Cratonic Lithospheric Mantle and Implications for its Thermophysical Properties (Invited)

    NASA Astrophysics Data System (ADS)

    Aulbach, S.; Huismans, R. S.; Rondenay, S.

    2013-12-01

    Petrological-Geochemical Constraints on Formation and Modification of Cratonic Lithospheric Mantle and Implications for its Thermophysical Properties Oceanic basalts sample compositionally heterogeneous convecting mantle sources that are not primitive, but contain some amount of recycled crustal material [1]. This also applies to the distant geological past, as picritic and komatiitic melts show evidence for the presence of such heterogeneities [2]. Since the loss of these melts leads to the generation of a complementary lithospheric mantle residue and since 50% of the present continental crust formed by the Late Archaean [3], half of today's continents may be underlain by highly depleted cratonic lithospheric mantle that potentially formed from non-primitive mantle sources. While intensive effort has focused on identifying and constraining the relative contributions of recycled components in melts, their effects on the melting relations and thermophysical properties of mantle residues remain obscure. The FeO-MgO relationships of refractory cratonic garnet peridotite xenoliths filtered for the effects of metasomatism and opx enrichment are consistent with the onset of partial melt extraction at >5 GPa, while their Al2O3-Cr2O3/Al2O3 systematics indicate an average melting pressure ≥3 GPa for most cratonic mantle sections [4]. Thus, they followed deep partial melting paths at excess mantle potential temperatures (plumes), which generates more buoyant residues with higher shear wave velocities [5]. Superposed on the effects of melt depletion may be the effects of entrainment of oceanic crust in these plumes. This can lead to variable, pervasive enrichment of peridotite by aluminous opx (corresponding to SiO2 addition) depending plume buoyancy (excess temperature) and ability to entrain dense eclogite material, and entails a secular trend toward less SiO2-enriched mantle residues [4]. Such opx addition will also lead to an increase in Al2O3 and dilution of FeO, which

  14. Geochemical Evolution of Cratonic Lithospheric Mantle: A 3.6 Ga Story of Persistence and Transformation (Invited)

    NASA Astrophysics Data System (ADS)

    O'Reilly, S. Y.; Griffin, W. L.; Pearson, N. J.

    2013-12-01

    Over the last decade, our view of the Earth has changed dramatically with the rapid development of planetary- and lithosphere-scale seismic tomography at increasingly higher resolution, and other global datasets such as gravity, magnetic and magnetotellurics. We now have access to geochemical (including isotopic) data for a large proportion of the elements in the periodic table, at very low levels in bulk rocks and in tiny volumes of tiny volumes. These advances, along with imaging of microstructures, enormous databanks for tectonic syntheses, and robust geodynamic modelling, have generated new concepts in understanding lithosphere evolution, structure and processes. The 4-D Lithosphere Mapping methodology introduced the integration of geophysical and geochemical datasets to construct geologically realistic sections of rock types and major boundaries in the deep lithosphere, in different timeslices. Correlation of petrological and geophysical data allows broader extrapolation of Lithosphere Mapping beyond xenolith sampling sites. The lithosphere-asthenosphere boundary (LAB) is a first-order Earth discontinuity: it may shallow due to extension and metasomatism, or deepen due to vertical accretion. Its (paleo-)location can be traced geochemically (a proxy for paleogeophysics), and cratonic LAB is commonly marked by significant concentrations of eclogites. Convergent geochronology datasets of Hf isotopic model ages for zircons and Re-Os model ages for mantle sulfides and PGMs, reinforced by other geochemical and tectonic criteria, indicate that over 70% of the SCLM and its overlying crust (now mostly lower crust) formed at about 3.5 Ga, probably in a series of global overturn events that marked a change in Earth's fundamental geodynamic behaviour. This primitive SCLM, the roots of the Archean cratons up to 300km deep, was geochemically highly depleted, and subsequently played a major role in crustal metallogeny for many ore types. Firstly, the high degree of buoyancy

  15. Lithospheric detachment of India and Tibet inferred from thickening of the mantle transition zone

    NASA Astrophysics Data System (ADS)

    Duan, Yaohui; Tian, Xiaobo; Liu, Zhen; Zhu, Gaohua; Nie, Shitan

    2016-07-01

    To spatially and temporally interpret eruptive volcanic activity and plateau uplift, the dynamic model of the Himalayan-Tibetan orogen requires several scenarios in which the deep part of the lithosphere is removed. The removed cold, dense material sank deeply and may rest in the mantle transition zone, which is considered as the graveyard for descending mantle lithosphere. Beneath the Himalayas and southern Tibet, stacking teleseismic P-wave receiver functions reveal thickening of the mantle transition zone (MTZ), which is caused by decreasing temperatures. We interpret the MTZ thickening beneath southern Tibet as being a result of a remnant of detached thickened Tibet mantle lithosphere, whereas the other thickening is most likely caused by a lithospheric slab that detached from the Indian plate and is sinking into the MTZ beneath the Himalayas.

  16. Westernmost Mediterranean Mantle Tomography: Slab Rollback and Delaminated Atlas Lithosphere

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Humphreys, E.

    2012-12-01

    We present a new velocity model for the upper mantle in the westernmost Mediterranean including the Iberian Peninsula and northern Morocco. Our imaging improves over previous efforts by taking advantage of the data generated by the PICASSO, IberArray, TopoMed and connected seismograph deployments and by using a new methodology that includes finite-frequency effects and iterative ray tracing, utilizes local earthquakes in addition to teleseismic events and includes constraints from surface wave analyses. We image a subducted slab as a high velocity anomaly located under the Alboran Sea and southern Spain that extends to the bottom of the transition zone. The anomaly has an arcuate shape at most depths and reaches the surface beneath Gibraltar but not under southern Spain. The N-S oriented Gibraltar and E-W oriented southern Spain segments of the slab appear to be separated by a vertical tear or "slab gap". Under the Atlas Mountains in northern Morocco we image low velocities to depths of over 200 km and a high-velocity body at depths of 300-450 km beneath the Middle Atlas, which we tentatively interpret as delaminated lithosphere.

  17. Lithospheric roots beneath western Laurentia: The geochemical signal in mantle garnets

    USGS Publications Warehouse

    Canil, D.; Schulze, D.J.; Hall, D.; Hearn, B.C.; Milliken, S.M.

    2003-01-01

    This study presents major and trace element data for 243 mantle garnet xenocrysts from six kimberlites in parts of western North America. The geochemical data for the garnet xenocrysts are used to infer the composition, thickness, and tectonothermal affinity of the mantle lithosphere beneath western Laurentia at the time of kimberlite eruption. The garnets record temperatures between 800 and 1450??C using Ni-in-garnet thermometry and represent mainly lherzolitic mantle lithosphere sampled over an interval from about 110-260 km depth. Garnets with sinuous rare-earth element patterns, high Sr, and high Sc/V occur mainly at shallow depths and occur almost exclusively in kimberlites interpreted to have sampled Archean mantle lithosphere beneath the Wyoming Province in Laurentia, and are notably absent in garnets from kimberlites erupting through the Proterozoic Yavapai Mazatzal and Trans-Hudson provinces. The similarities in depths of equilibration, but differing geochemical patterns in garnets from the Cross kimberlite (southeastern British Columbia) compared to kimberlites in the Wyoming Province argue for post-Archean replacement and (or) modification of mantle beneath the Archean Hearne Province. Convective removal of mantle lithosphere beneath the Archean Hearne Province in a "tEctonic vise" during the Proterozoic terminal collisions that formed Laurentia either did not occur, or was followed by replacement of thick mantle lithosphere that was sampled by kimberlite in the Triassic, and is still observed there seismically today.

  18. Oxidation state of the lithospheric mantle beneath the Massif Central,France

    NASA Astrophysics Data System (ADS)

    Uenver-Thiele, L.; Woodland, A. B.; Downes, H.; Altherr, R.

    2012-04-01

    The Tertiary and Quaternary volcanism of the French Massif Central sampled the underlying subcontinental lithospheric mantle (SCLM) in the form of xenoliths over a wide geographic area of ~20.000km2. Such an extensive distribution of xenoliths provides an unique opportunity to investigate regional variations in mantle structure and composition. On the basis of textural and geochemical differences, Lenoir et al. (2000) and later Downes et al. (2003) identified two distinct domains in the SCLM lying north and south of latitude 45° 30' N, respectively. The northern domain is relatively refractory, but has experienced pervasive enrichment of LREE. The southern domain is generally more fertile, exhibiting depletion in LREE. A metasomatic overprint has developed to variable extents in many xenolith suites. The different histories of these two juxtaposed blocks of SCLM should also be reflected in their oxidation state, with local variations also to be expected due to metasomatic interactions. For example, if carbonate-melt metasomatism played a role in the LREE enrichment of the northern domain (Lenoir et al. 2000; Downes et al. 2003), then such mantle should be relatively oxidised. Since surprisingly little redox data are currently available, we are undertaking a study to determine the oxidation state of the SCLM beneath the Massif Central over the largest geographical area possible. All xenoliths investigated are spinel peridotites, mostly with protogranular textures (although some samples are porphyroclastic or equigranular). Most samples are nominally anhydrous although minor amphibole is present in some xenolith suites. Major element compositions of the individual minerals were determined by microprobe. Two-pyroxene temperatures (BKN) range from 750° to ~1200° C. Ferric iron contents of spinel were determined by Mössbauer spectroscopy and gave a range of Fe3+/ Fetot from 0.191 to 0.418, with a conservative uncertainty of ±0.02. These data were used to calculate

  19. Constraints from Xenoliths on Cenozoic Deformation and Rheology of the Western North American Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Behr, W. M.; Smith, D.; Bernard, R. E.

    2015-12-01

    We investigate xenoliths from several volcanic centers in the western US Cordillera, including the Navajo Volcanic Field in the Four Corners region of the Colorado Plateau, the San Carlos Volcanic Field in Arizona, and the Cima and Dish Hill volcanic fields in the western Mojave. We use these xenolith suites to determine to what extent and by what mechanisms the western North American lithospheric mantle has deformed during Cenozoic tectonic events, including Laramide flat-slab subduction, Basin-and-Range extension, and Quaternary strike-slip faulting associated with the San Andreas Fault System. We find the following. 1) Laramide flat-slab subduction substantially and heterogeneously deformed the North American lithospheric mantle. Despite some serpentinization, deformation along the plate interface was accommodated primarily by olivine dislocation creep, and was cold enough that the mantle lithosphere was strong and could transmit basal shear tractions into the upper plate crust, generating high topography. 2) During B&R extension, the mantle lithosphere was thinned and heated, and Laramide-age shear zone foliations were obliterated by grain growth, even in mixed phase lithologies. Despite annealing, LPO in olivine is preserved in several samples. This fossil LPO may control present-day mantle lid seismic anisotropy in the Basin and Range and may also provide an important source of viscous anisotropy. 3) The mantle lithosphere is actively deforming in localized zones beneath faults of the San Andreas system, but high sub-Moho temperatures render it very weak such that most of the strength of the lithosphere resides in the crust. Because deformation is localized, mantle lid anisotropy in the Mojave region is likely controlled by a fossil LPO, despite present-day deformation in the lithospheric mantle.

  20. Nature and evolution of lithospheric mantle beneath the southern Ethiopian rift zone: evidence from petrology and geochemistry of mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Sakyi, Patrick Asamoah

    2016-06-01

    Mantle xenoliths hosted in Quaternary basaltic lavas from the Dillo and Megado areas of the southern Ethiopian rift are investigated to understand the geochemical composition and associated processes occurring in the lithospheric mantle beneath the region. The xenoliths are comprised of predominantly spinel lherzolite with subordinate harzburgite and clinopyroxenite. Fo content of olivine and Cr# of spinel for peridotites from both localities positively correlate and suggest the occurrence of variable degrees of partial melting and melt extraction. The clinopyroxene from lherzolites is both LREE depleted (La/Sm(N) = 0.11-0.37 × Cl) and LREE enriched (La/Sm(N) = 1.88-15.72 × Cl) with flat HREEs (Dy/Lu(N) = 0.96-1.31 × Cl). All clinopyroxene from the harzburgites and clinopyroxenites exhibits LREE-enriched (La/Sm(N) = 2.92-27.63.1 × Cl and, 0.45 and 1.38 × Cl, respectively) patterns with slight fractionation of HREE. The 143Nd/144Nd and 176Hf/177Hf ratios of clinopyroxene from lherzolite range from 0.51291 to 0.51370 and 0.28289 to 0.28385, respectively. Most of the samples define ages of 900 and 500 Ma on Sm-Nd and Lu-Hf reference isochrons, within the age range of Pan-African crustal formation. The initial Nd and Hf isotopic ratios were calculated at 1, 1.5, 2 and 2.5 Ga plot away from the trends defined by MORB, DMM and E-DMM which were determined from southern Ethiopian peridotites, thus indicating that the Dillo and Megado xenoliths could have been produced by melt extraction from the asthenosphere during the Pan-African orogenic event. There is no significant difference in 87Sr/86Sr ratios between the depleted and enriched clinopyroxene. This suggests that the melts that caused the enrichment of the clinopyroxene are mainly derived from the depleted asthenospheric mantle from which the xenoliths are extracted. Largely, the mineralogical and isotopic compositions of the xenoliths show heterogeneity of the CLM that could have been produced from various

  1. Metamorphism of peritotites in the mantle wedge above the subduction zone: Hydration of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Savelieva, G. N.; Raznitsin, Yu. N.; Merkulova, M. V.

    2016-05-01

    Two areas with different types of hydration (serpentinization), which occurred in two settings distinct in temperatures, pressures, and stresses, are spatially individualized in the ophiolitic ultramafic massifs of the Polar Urals. The high-temperature hydration of ultramafic rocks occurred in the lithosphere of the mantle wedge directly above the subducted slab. The initial conditions of hydration are limited to 1.2-2 GPa and 650-700°C; a stable assemblage of olivine + antigorite + magnetite → amphibole → talc → chlorite was formed at 0.9-1.2 GPa and 550-600°C. The low-temperature mesh lizardite-chrysotile serpentinization occurred in the crustal, near-surface conditions. Both types of hydration were accompanied by release of hydrogen, which participates in abiogenic CH4 synthesis in the presence of CO2 dissolved in water.

  2. Effective elastic thickness of the Venusian lithosphere with lateral viscosity variations in the mantle

    NASA Technical Reports Server (NTRS)

    Moresi, Louis

    1993-01-01

    Both the Earth and Venus have a convecting mantle at the top of which is a relatively strong, mechanical boundary layer. The surface topography and gravity signals which result from the convection within the viscous mantle are modified by the elastic properties of this lithospheric boundary layer. In particular the ability of the lithosphere to support loads and transmit stresses from below is a function of the wavelength of the load--the lithosphere is strong to loading at shorter wavelengths. As a consequence it is usual to expect that long wavelength topography cannot be supported by the mechanical strength of the lithosphere and must be compensated--isostatically or dynamically--within the uppermost mantle or the crust. The flexural rigidity of the lithosphere can therefore be determined by estimating the greatest wavelength at which uncompensated surface topography can be supported, usually by measuring the admittance as a function of wavelength. In fact this procedure for determining the elastic thickness relies upon being able to distinguish topography with underlying support from that supported by the brittle lithosphere on the basis of their each having a characteristic value of the admittance. However, in the presence of lateral viscosity variations in the mantle, it is possible for topography to be generated which is NOT compensated by density anomalies in the underlying mantle at the same wavelength. Although this effect is not likely to be important for the Earth, on Venus, where the high surface temperatures would be expected to give a weaker lithosphere, lateral viscosity variations in the mantle can give a misleadingly large apparent elastic thickness for the lithosphere.

  3. Seismic tomography of the Colorado Rocky Mountains upper mantle from CREST: Lithosphere-asthenosphere interactions and mantle support of topography

    NASA Astrophysics Data System (ADS)

    MacCarthy, J. K.; Aster, R. C.; Dueker, K.; Hansen, S.; Schmandt, B.; Karlstrom, K.

    2014-09-01

    The CREST experiment (Colorado Rocky Mountains Experiment and Seismic Transects) integrated the EarthScope USArray Transportable Array with portable and permanent stations to provide detailed seismic imaging of crust and mantle properties beneath the highest topography region of the Rocky Mountains. Inverting approximately 14,600 P- and 3600 S-wave arrival times recorded at 160 stations for upper mantle Vp and Vs structure, we find that large Vp perturbations relative to AK135 of 7% and Vs variations of 8% take place over very short (approaching tens of kilometers) lateral distances. Highest heterogeneity is observed in the upper 300 km of the mantle, but well resolved low velocity features extend to the top of the transition zone in portions of these images. The previously noted low velocity upper mantle Aspen Anomaly is resolved into multiple features. The lowest Vp and Vs velocities in the region are found beneath the San Juan Mountains, which is clearly distinguished from other low velocity features of the northern Rio Grande Rift, Taos/Latir region, Aspen region, and below the Never Summer Mountains. We suggest that the San Juan anomaly, and a similar feature below the Taos/Latir region of northern New Mexico, are related to delamination and remnant heat (and melt) beneath these sites of extraordinarily voluminous middle-Cenozoic volcanism. We interpret a northeast-southwest grain in velocity structure that parallels the Colorado Mineral belt to depths near 150 km as being reflective of control by uppermost mantle Proterozoic accretionary lithospheric architecture. Further to the north and west, the Wyoming province and northern Colorado Plateau show high velocity features indicative of thick (∼150 km) preserved Archean and Proterozoic lithosphere, respectively. Overall, we interpret the highly heterogeneous uppermost mantle velocity structure beneath the southern Rocky Mountains as reflecting interfingered chemical Proterozoic lithosphere that has been, is

  4. Ultra-depleted isotopic compositions in fertile asthenosphere-derived peridotites: constraints on the composition of the upper mantle

    NASA Astrophysics Data System (ADS)

    Byerly, B. L.; Lassiter, J. C.

    2012-12-01

    Recent studies of abyssal peridotites (AP) and OIB xenoliths have reported refractory, isotopically ultra-depleted domains within the convecting upper mantle with Nd- and Hf-isotope compositions that extend far beyond the MORB field. These results have important implications regarding the average composition of the depleted upper mantle and the genetic relationship between MORB and AP. However, the abundance of ultra-depleted domains in the mantle is unclear. In addition, recent melt extraction processes at mid-ocean ridges make it difficult to evaluate the compositions of ultra-depleted domains prior to exhumation and thus evaluate their role in melt generation. To better constrain the abundance and composition of typical convecting upper mantle, we examined a suite of spinel peridotite xenoliths from the central Rio Grande Rift (RGR) where most of the preexisting lithosphere has been convectively removed and replaced with depleted upper mantle. Seismic tomography indicates that the lithosphere beneath the RGR has been substantially removed (Gao, 2004), and geochemical evidence supports this. Two distinct populations of xenoliths are observed from Elephant Butte, central RGR. One population, interpreted to derive from residual Proterozoic lithospheric mantle, is refractory (bulk Al2O3 <2.3 wt.%), LREE- and LILE-enriched, has enriched Sr, Nd, and Pb isotopic compositions and along with xenoliths from the Eastern Colorado Plateau define a strong Lu/Hf-176Hf/177Hf "pseudo-isochron" with an apparent age of ~1.6 Ga. In contrast, the majority of the RGR xenoliths have fertile major element compositions (bulk Al2O3 ~ 4.0 wt %), low spinel Cr# (~10), and LREE-depleted trace element patterns, and overlap with composition estimates for the depleted mantle (Workman & Hart, 2005). We interpret these xenoliths to reflect recent replacement of the pre-existing lithosphere with material from the convecting upper mantle. The fertile xenoliths have cpx Sr-, Nd-, and Hf

  5. Water Content in the SW USA Mantle Lithosphere: FTIR Analysis of Dish Hill and Kilbourne Hole Pyroxenites

    NASA Technical Reports Server (NTRS)

    Gibler, Robert; Peslier, Anne H.; Schaffer, Lillian Aurora; Brandon, Alan D.

    2014-01-01

    Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by < 5% melting of a spinel peridotite source. Clinopyroxenes contain from 272 to 313 ppm weight H2O similar to the lower limit of KH peridotite clinopyroxenes (250-530 ppm H2O). This is unexpected as crystallized melts like pyroxenites should concentrate water more than residual mantle-like peridotites, given that H is incompatible. PUM normalized bulk REE of the DH pyroxenites are characterized by flat to LREE depleted REE profiles consistent with > 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and <1ppm in clinopyroxene. The DH pyroxenites may thus come from a dry mantle source, potentially unaffected by the subduction of the Farallon plate. These water-poor melts either originated from shallow oceanic lithosphere overlaying the Farallon slab or from continental mantle formed > 2 Ga. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau.

  6. Water content in the SW USA mantle lithosphere: FTIR analysis of Dish Hill and Kilbourne Hole pyroxenites

    NASA Astrophysics Data System (ADS)

    Gibler, R.; Peslier, A. H.; Schaffer, L. A.; Brandon, A. D.

    2014-12-01

    Kilbourne Hole (NM, USA) and Dish Hill (CA, USA) mantle xenoliths sample continental mantle in two different tectonic settings. Kilbourne Hole (KH) is located in the Rio Grande rift. Dish Hill (DH) is located in the southern Mojave province, an area potentially affected by subduction of the Farallon plate beneath North America [1]. FTIR analyses were obtained on well characterized pyroxenite, dunite and wehrlite xenoliths, thought to represent crystallized melts at mantle depths. PUM normalized REE patterns of the KH bulk-rocks are slightly LREE enriched and consistent with those of liquids generated by < 5% melting of a spinel peridotite source [2]. Clinopyroxenes contain from 272 to 313 ppm weight H2O similar to the lower limit of KH peridotite clinopyroxenes (250-530 ppm H2O, [3]). This is unexpected as crystallized melts like pyroxenites should concentrate water more than residual mantle-like peridotites, given that H is incompatible. PUM normalized bulk REE of the DH pyroxenites are characterized by flat to LREE depleted REE profiles consistent with > 6% melting of a spinel peridotite source. Pyroxenite pyroxenes have no detectable water but one DH wehrlite, which bulk-rock is LREE enriched, has 4 ppm H2O in orthopyroxene and <1ppm in clinopyroxene. The DH pyroxenites may thus come from a dry mantle source, potentially unaffected by the subduction of the Farallon plate. These water-poor melts either originated from shallow oceanic lithosphere overlaying the Farallon slab [4] or from continental mantle formed > 2 Ga [5]. The Farallon subduction appears to have enriched in water the southwestern United States lithospheric mantle further east than DH, beneath the Colorado plateau [6]. [1] Atwater, 1970 Tectonophysics 31, 145-165. [2] Shaw, 2000 CM 38, 1041-1064. [3] Schaffer et al, 2013 AGU Fall Meeting. [4] Luffi et al, 2009 JGR 114, 1-36. [5] Armytage et al, 2013 GCA 137, 113-133. [6] Li et al, 2008 JGR 113, 1-22.

  7. Refertilization process in the Patagonian subcontinental lithospheric mantle of Estancia Sol de Mayo (Argentina)

    NASA Astrophysics Data System (ADS)

    Melchiorre, Massimiliano; Coltorti, Massimo; Gregoire, Michel; Benoit, Mathieu

    2015-05-01

    Anhydrous mantle xenoliths equilibrated at 1003-1040 °C from Estancia Sol de Mayo (ESM, Central Patagonia, Argentina) and entrained in post-plateau alkaline lavas belonging to Meseta Lago Buenos Aires have been investigated aiming at reconstructing the depletion and enrichment processes that affected this portion of the Patagonia lithospheric mantle. Xenoliths are characterized by a coarse-grained protogranular texture and are devoid of evident modal metasomatism. They show two texturally different clinopyroxenes: protogranular (cpx1) and texturally related to spinel (cpx2). Three different types of orthopyroxenes are also recognized: large protogranular crystals with exsolution lamellae (opx1); small clean and undeformed grains without exsolution lamellae (opx2) and small grains arranged in a vein (opx3). Major element composition of clinopyroxenes and orthopyroxenes highlights two different trends characterized by i) a high Al2O3 content at almost constant mg# and ii) a slight increase in Al2O3 content with decreasing mg#. Clinopyroxenes are enriched in LREE and are characterized by prominent to slightly negative Nb, Zr and Ti anomalies. No geochemical differences are observed between cpx1 and cpx2, while a discrimination can be observed between opx1 and opx2 (LREE-depleted; prominent to slightly negative Ti and Zr anomalies) and opx3 (prominent positive Zr anomaly). Partial melting modeling using both major and trace elements indicates a melting degree between ~ 5% and ~ 13% (up to ~ 23% according to major element modeling) for lherzolites and between ~ 20% and ~ 30% for harzburgites (down to ~ 5% according to trace element modeling). La/Yb and Al2O3, as well as Sr and Al2O3 negative correlations in clinopyroxenes point to a refertilization event affecting this lithospheric mantle. The agent was most probably a transitional alkaline/subalkaline melt, as indicated by the presence of orthopyroxene in the vein and the similar geochemical features of ESM

  8. Assessing thermo-mechanical properties of the lithospheric mantle in Asia

    NASA Astrophysics Data System (ADS)

    Stolk, W.; Kaban, M. K.; Beekman, F.; Tesauro, M.; Cloetingh, S.

    2012-12-01

    Asia is a key natural laboratory for the study of active intra-continental deformation in response to the ongoing far-field collision of India and Eurasia. The resulting tectonic processes strongly depend on the thermo-mechanical structure of the lithosphere. However, the problem of the thermo-mechanical properties of the lithospheric mantle is complex and still not well resolved. While seismic studies give an indication of the heterogeneity of the mantle lithosphere it alone is insufficient to attribute these anomalies to thermal differences, since compositional difference may have a significant effect on observed wave velocities. Using solely gravity field analysis one cannot distinguish between e.g. stacked density anomalies or lateral density anomalies. Combining both datasets allows for a better insight into the mantle lithosphere, though the solution to the problem at hand remains non-unique. This study, of which the preliminary results will be presented here, attempts to gain insight into both compositional and thermal aspects of the mantle lithosphere in Asia. By combining a recent high resolution tomographic inversion with gravity field data, but without the assumption of a steady state mantle, a trade off between compositional and thermal effects can be made. Furthermore, susceptibility of the resulting model to small changes in parameter space can be obtained thus creating a 'playing field' for possible solutions to the thermo-mechanical problem. This 'playing field' can be further constrained by additional data from other sources, such as xenolith studies.

  9. Support for a Uniformitarian Model of Continental Mantle Lithosphere Formation from the "Near-Cratonic" Composition of Proterozoic Southern African Mantle Lithosphere

    NASA Astrophysics Data System (ADS)

    Janney, P. E.

    2014-12-01

    The transition at the end of the Archean between the generation of cratonic and mobile belt continental lithosphere is regarded as a first-order change in the mode of generation of continental lithosphere. It is widely debated whether this transition represented a fundamental change in the process by which the lithospheric mantle was generated (i.e., as melting residues of deep-seated mantle upwellings to residues of relatively shallow mantle melting at subduction zones), or whether it primarily reflected a more gradual change in the conditions (i.e., temperatures, depths and degrees of melting) of lithosphere generation in a suprasubduction zone setting. The marked contrast, in many cases, between the major element compositions of peridotite xenoliths from Archean cratons and those from adjacent post-Archean mobile belts has accentuated the significance of this transition. Peridotite xenoliths from the post-Archean mobile belt terranes surrounding the Kaapvaal craton in southern Africa are clearly Proterozoic in age from Re-Os isotope constraints, but they are unusual in that they share several key similarities in composition and mineralogy with Archean Kaapvaal peridotites (e.g., low bulk-rock Al2O3, relatively low modal olivine and high modal orthopyroxene). Although they lack the low FeO and high olivine Mg# values of the most extreme Kaapvaal samples, they show a very large degree of overlap (extending to olivine Mg# values of greater than 93 for example). These similarities support a common mode of origin for cratonic and post-cratonic lithosphere in southern Africa (although varying somewhat in the degrees and depths of melt extraction) and a similar history of post-formation modification. A comparison of the conditions of melt extraction for cratonic and post-cratonic lithosphere inferred from compatible and mildly incompatible trace elements will be presented.

  10. Geochemical evolution of lithospheric mantle underlying Intrasudetic Fault (SW Poland).

    NASA Astrophysics Data System (ADS)

    Ćwiek, Mateusz; Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros

    2015-04-01

    The Pilchowice basanite (SW Poland) forms volcanic plug located exactly on Intrasudetic Fault, which is one of the major tectonic lines in northern part of the Bohemian Massif. It originated during the formation of Variscan Orogen and marks the contact between two different crustal domains. The basanite is rhönite-bearing (Ladenberger et al., 2005. Min.Pol-Spec. Pap.) and contains small (<3 cm) xenoliths of clinopyroxene-bearing spinel harzburgites and spinel dunites. Numerous, fine-grained aggregates formed of olivine, clinopyroxene, spinel and glass occur interstitially. A "glassy patch" enclosing subhedral clinopyroxene occurs in one of the xenoliths. The Fo content in olivine forming xenoliths varies from 91.4 down to 83.2%, but the NiO content is always high (0.31-0.45 % wt.). Orthopyroxene has the composition of Al-Cr-Fe enstatite (mg# 0.86- 0.92). It is either LREE-depleted or shows U-shaped REE patterns. Clinopyroxene is Al-Ti-Cr diopside (mg# = 0.80-0.95). Spinel is mainly chromite with wide variation of cr# (0.40-0.80). Clinopyroxene is usually LREE-enriched with convex upward REE pattern. Two other types of REE patterns in clinopyroxene are also present: convex downward (U-shaped) and with constant enrichment in LREE. All the clinopyroxenes show distinct Ti and Zr-Hf negative anomalies. Low Al2O3 content in orthopyroxene suggests that Pilchowice peridotites are restites after extensive (16-35%) partial melting (Faccini et al., 2013, JoP), which is in an opposition to modal content of clinopyroxene (0-4.1 vol.%). This suggests, that clinopyroxene is a "stealth" metasomatic phase (O'Reillly and Griffin, 2013, Springer). As trace element composition of clinopyroxene shows features typical for reaction with alkaline silicate melt (negative inflection at the most incompatible trace elements) and carbonatite (Ti, Zr, Hf anomalies), we suggest that majority of xenoliths were metasomatized by the an agent being a carbonatite-silicate melt or by CO2-bearing

  11. Oxidation state of the lithospheric mantle beneath Diavik diamond mine, central Slave craton, NWT, Canada

    NASA Astrophysics Data System (ADS)

    Creighton, Steven; Stachel, Thomas; Eichenberg, Dave; Luth, Robert W.

    2010-05-01

    Oxygen fugacity ( fO2) conditions were determined for 29 peridotite xenoliths from the A154-North and A154-South kimberlites of the Diavik diamond mine using the newly developed flank method modified specifically for measuring Fe3+ in mantle-derived pyropic garnets. The results indicate that the garnet-bearing lithospheric mantle beneath the central Slave craton is vertically layered with respect to oxidation state. The shallow (<140 km), “ultra-depleted” layer is the most oxidized section of garnet-bearing subcratonic mantle thus far measured, up to one log unit more oxidizing relative to the FMQ buffer [Δlog fO2 (FMQ) + 1]. The lower, more fertile layer has fO2 conditions that extend down to Δlog fO2 (FMQ) - 3.8, consistent with xenolith suites from other localities worldwide. Based on trace element concentrations in garnets, two distinct metasomatic events affected the mantle lithosphere at Diavik. An oxidized fluid imparted sinusoidal chondrite-normalized REE patterns on garnets throughout the entire depth range sampled. In contrast, a reducing melt metasomatic event affected only the lower portion of the lithospheric mantle. The fO2 state of the Diavik mantle sample suggests that diamond formation occurred by reduction of carbonate by fluids arising from beneath the lithosphere.

  12. Isotopic evidence from lavas and mantle xenoliths for a mixed asthenospheric-lithospheric source for Rio Grande rift magmas

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. N.; Byerly, B. L.; Lassiter, J. C.

    2011-12-01

    Lavas from the Rio Grande rift have a wide range of isotopic compositions from MORB-like to OIB and further enriched values. Most previous studies have interpreted this as reflecting variable melt derivation from asthenospheric and lithospheric mantle sources with temporal evolution related to thinning or delamination of the lithosphere associated with rifting. Alternatively, Wolff et al. (2005) and Crocker et al. (2010) have argued for strong crustal overprinting of the lavas; which swamps the mantle signature and limits our understanding of the mantle evolution beneath the rift. We have examined lavas and mantle xenoliths from West Potrillo, Elephant Butte and Cerro Chato localities of the rift in order to investigate whether the mantle beneath the rift possesses the isotopic signature of the lavas or if crustal inputs are required to explain the enrichments in the lavas. The lavas display a wide range of isotopic composition with 87Sr/86Sr (0.702990-0.704936), 143Nd/144Nd (0.512745-0.512973), 206Pb/204Pb (18.66-19.93), 207Pb/204Pb (15.54-15.66) and 208Pb/204Pb (38.32-39.53). The Elephant Butte lavas are more enriched than the West Potrillo lavas. Clinopyroxene separates from the mantle xenoliths have 87Sr/86Sr (0.701756-0.704455), 143Nd/144Nd (0.512880-0.514040), 206Pb/204Pb (17.99-19.52), 207Pb/204Pb (15.39-15.68) and 208Pb/204Pb (37.46-39.22). The Elephant Butte xenoliths have depleted mantle-like compositions while the Cerro Chato xenoliths are chemically similar to SCLM. The lavas lie on a mixing line between these two end-members in Sr-Nd-Pb space. The isotopic ratios of the lavas are correlated with Sm/Yb, La/Sm and Ba/Nb ratios, which are generally more sensitive to melting processes rather than crustal assimilation. Indices of fractional crystallization such as SiO2 and Mg# are not correlated with the isotopic ratios. The West Potrillo lavas generally have lower SiO2 and higher Sm/Yb compared to Elephant Butte, likely due to a greater depth of melt

  13. Growth rate of the lithospheric mantle: variations in time and space

    NASA Astrophysics Data System (ADS)

    Artemieva, I. M.

    2007-05-01

    Two global databases for the continents, (a) for tectono-thermal ages and (b) for lithospheric thermal thickness (Artemieva, Tectonophysics, 2006 and available for download at the web-site), are used to calculate (i) the volume of the preserved continental lithosphere of different ages within the individual cratons, (ii) the lithospheric growth rate for different continents over the past 3.6 Ga, (iii) a global model of lithosphere growth rate since the Archean. The submerged areas with continental crust are excluded from the analysis. On the scale of a craton, significant differences in the rates of lithosphere growth are observed between the individual cratons. These data are compared with independent estimates of growth rate of juvenile crust on different continents as constrained by sedimentary record, geological and isotope data. On the global scale, the results show a general agreement between the global cumulative growth rate of the continental lithosphere and juvenile crust (Condie, 1998). The most pronounced peak in lithosphere growth occurred at 2.1-1.7 Ga, when the volume of lithospheric mantle was increasing with the rate of ca. 10-20 (km3 per year). Contrary to growth models of juvenile crust, the peaks in growth rate of the lithospheric mantle at ca. 2.7- 2.6 Ga and 1.3-1.1 Ga are weak, ca. 5-8 (km3 per year). The differences between the growth rates of the lithosphere and juvenile crust are interpreted as indicator of the preservation rate of the cratonic lithosphere since the Archean.

  14. Osmium isotopic evidence for mesozoic removal of lithospheric mantle beneath the sierra nevada, california

    PubMed

    Lee; Yin; Rudnick; Chesley; Jacobsen

    2000-09-15

    Thermobarometric and Os isotopic data for peridotite xenoliths from late Miocene and younger lavas in the Sierra Nevada reveal that the lithospheric mantle is vertically stratified: the shallowest portions (<45 to 60 kilometers) are cold (670 degrees to 740 degrees C) and show evidence for heating and yield Proterozoic Os model ages, whereas the deeper portions (45 to 100 kilometers) yield Phanerozoic Os model ages and show evidence for extensive cooling from temperatures >1100 degrees C to 750 degrees C. Because a variety of isotopic evidence suggests that the Sierran batholith formed on preexisting Proterozoic lithosphere, most of the original lithospheric mantle appears to have been removed before the late Miocene, leaving only a sliver of ancient mantle beneath the crust.

  15. Superplumes from the core-mantle boundary to the lithosphere: implications for heat flux.

    PubMed

    Romanowicz, Barbara; Gung, Yuancheng

    2002-04-19

    Three-dimensional modeling of upper-mantle anelastic structure reveals that thermal upwellings associated with the two superplumes, imaged by seismic elastic tomography at the base of the mantle, persist through the upper-mantle transition zone and are deflected horizontally beneath the lithosphere. This explains the unique transverse shear wave isotropy in the central Pacific. We infer that the two superplumes may play a major and stable role in supplying heat and horizontal flow to the low-viscosity asthenospheric channel, lubricating plate motions and feeding hot spots. We suggest that more heat may be carried through the core-mantle boundary than is accounted for by hot spot fluxes alone.

  16. Linking mantle upwelling with the lithosphere descent [corrected] and the Japan Sea evolution: a hypothesis.

    PubMed

    Ismail-Zadeh, Alik; Honda, Satoru; Tsepelev, Igor

    2013-01-01

    Recent seismic tomography studies image a low velocity zone (interpreted as a high temperature anomaly) in the mantle beneath the subducting Pacific plate near the Japanese islands at the depth of about 400 km. This thermal feature is rather peculiar in terms of the conventional view of mantle convection and subduction zones. Here we present a dynamic restoration of the thermal state of the mantle beneath this region assimilating geophysical, geodetic, and geological data up to 40 million years. We hypothesise that the hot mantle upwelling beneath the Pacific plate partly penetrated through the subducting plate into the mantle wedge and generated two smaller hot upwellings, which contributed to the rapid subsidence in the basins of the Japan Sea and to back-arc spreading. Another part of the hot mantle migrated upward beneath the Pacific lithosphere, and the presently observed hot anomaly is a remnant part of this mantle upwelling.

  17. Linking mantle upwelling with the lithosphere decent and the Japan Sea evolution: a hypothesis

    PubMed Central

    Ismail-Zadeh, Alik; Honda, Satoru; Tsepelev, Igor

    2013-01-01

    Recent seismic tomography studies image a low velocity zone (interpreted as a high temperature anomaly) in the mantle beneath the subducting Pacific plate near the Japanese islands at the depth of about 400 km. This thermal feature is rather peculiar in terms of the conventional view of mantle convection and subduction zones. Here we present a dynamic restoration of the thermal state of the mantle beneath this region assimilating geophysical, geodetic, and geological data up to 40 million years. We hypothesise that the hot mantle upwelling beneath the Pacific plate partly penetrated through the subducting plate into the mantle wedge and generated two smaller hot upwellings, which contributed to the rapid subsidence in the basins of the Japan Sea and to back-arc spreading. Another part of the hot mantle migrated upward beneath the Pacific lithosphere, and the presently observed hot anomaly is a remnant part of this mantle upwelling. PMID:23355951

  18. Seismic anisotropy of the mantle lithosphere beneath the Swedish National Seismological Network (SNSN)

    NASA Astrophysics Data System (ADS)

    Eken, T.; Plomerova, J.; Roberts, R.; Ludek, V.; Babuska, V.; Shomali, H.; Bodvarsson, R.

    2009-04-01

    Body-wave analysis - shear-wave splitting and P-travel time residuals - detect anisotropic structure of the upper mantle beneath the Swedish part of Fennoscandia. Geographic variations of both the splitting measurements and the P-residual spheres map regions of different fabrics of the mantle lithosphere. The fabric of individual mantle domains is internally consistent, usually with sudden changes at their boundaries. Distinct back-azimuth dependence of SKS splitting excludes single layer anisotropy models with horizontal symmetry axes for the whole region. Based upon joint inversion of body-wave anisotropic parameters we instead propose 3D self-consistent anisotropic models of well-defined mantle lithosphere domains with differently oriented fabrics approximated by hexagonal aggregates with plunging symmetry axes. The domain-like structure of the Precambrian mantle lithosphere, most probably retaining fossil fabric since the domains' origin, supports the idea of the existence of an early form of plate tectonics during formation of continental cratons already in the Archean. Similarly to different geochemical and geological constraints, the 3D anisotropy modelling and mapping of fabrics of the lithosphere domains contribute to tracking plate tectonics regimes back in time.

  19. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton

    PubMed Central

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M.; Xiao, Yan

    2014-01-01

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ7Li in Archean lithospheric mantle. The δ7Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from −27 to +21, in marked deviation from the δ7Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1–2 ppm). The Li abundances and δ7Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ7Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ7Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust. PMID:24589693

  20. Abnormal lithium isotope composition from the ancient lithospheric mantle beneath the North China Craton.

    PubMed

    Tang, Yan-Jie; Zhang, Hong-Fu; Deloule, Etienne; Su, Ben-Xun; Ying, Ji-Feng; Santosh, M; Xiao, Yan

    2014-03-04

    Lithium elemental and isotopic compositions of olivines in peridotite xenoliths from Hebi in the North China Craton provide direct evidence for the highly variable δ(7)Li in Archean lithospheric mantle. The δ(7)Li in the cores of olivines from the Hebi high-Mg# peridotites (Fo > 91) show extreme variation from -27 to +21, in marked deviation from the δ(7)Li range of fresh MORB (+1.6 to +5.6) although the Li abundances of the olivines are within the range of normal mantle (1-2 ppm). The Li abundances and δ(7)Li characteristics of the Hebi olivines could not have been produced by recent diffusive-driven isotopic fractionation of Li and therefore the δ(7)Li in the cores of these olivines record the isotopic signature of the subcontinental lithospheric mantle. Our data demonstrate that abnormal δ(7)Li may be preserved in the ancient lithospheric mantle as observed in our study from the central North China Craton, which suggest that the subcontinental lithospheric mantle has experienced modification of fluid/melt derived from recycled oceanic crust.

  1. Long-wave tangential stresses in the lithosphere and mantle of Venus

    SciTech Connect

    Zharkov, V.N.; Marchenkov, K.I.; Lyubimov, V.M.

    1987-01-01

    The loading coefficients are calculated for real models of Venus taking into account the asthenosphere for anomalous density waves positioned at different characteristic levels. An associated analysis of the topography and the non-equilibrium part of the gravitational field allows one to determine long-wave primary tangential stresses in the lithosphere and mantle for zonal harmonics with n = 2-8. The stresses in the lithosphere of Venus are approximately equal to 30 bar, while those in the lower mantle can be up to 45 bar, but they are only on the order of a few bars in the weakened upper mantle. The low level of tangential stresses in the core and mantle of Venus is an important indication that the interior of the planet is intensely heated. A conclusion is drawn on aseismic nature of Venus.

  2. Characterization of the sub-continental lithospheric mantle beneath the Cameroon volcanic line inferred from alkaline basalt hosted peridotite xenoliths from Barombi Mbo and Nyos Lakes

    NASA Astrophysics Data System (ADS)

    Pintér, Zsanett; Patkó, Levente; Tene Djoukam, Joëlle Flore; Kovács, István; Tchouankoue, Jean Pierre; Falus, György; Konc, Zoltán; Tommasi, Andréa; Barou, Fabrice; Mihály, Judith; Németh, Csaba; Jeffries, Teresa

    2015-11-01

    We carried out detailed petrographic, major and trace element geochemical, microstructural and FTIR analyses on eight characteristic ultramafic xenoliths from Nyos and Barombi Mbo Lakes in the continental sector of the Cameroon Volcanic Line (CVL). The studied xenoliths are spinel lherzolites showing lithologies similar to the other xenoliths reported previously along the CVL. They have protogranular and porphyroclastic textures. One of the Barombi xenolith contains amphibole, which had not been previously reported in this locality. Amphibole is common in the Nyos xenoliths suite. Peridotite xenoliths from both localities show some chemical heterogeneity, but Barombi xenoliths generally are less depleted in basaltic elements with respect to Nyos xenoliths. Trace element compositions of Nyos spinel lherzolites show a moderately depleted initial (premetasomatic) composition and variable enrichment in REE. Evidence for both modal and cryptic metasomatism is present in Nyos xenoliths. Rare earth element patterns of clinopyroxene suggest that interaction between mafic melts and the upper mantle occurred beneath the Nyos locality. Barombi Mbo xenoliths, on the other hand, record a small degree of partial melting. The Barombi Mbo xenoliths have weak, dominantly orthorhombic olivine crystal preferred orientations, whereas Nyos ones have strong axial-[010] patterns, which may have formed in response to transpression. Nominally anhydrous mantle minerals (NAMs) of the Barombi Mbo xenoliths show generally higher bulk concentrations of 'water' (70-127 ppm) than Nyos xenoliths (32-81 ppm). The Barombi Mbo xenoliths could originate from a juvenile segment of the lithospheric mantle, which had been originally part of the asthenosphere. It became a part of the lithosphere in response to thermal relaxation following the extension, forming a weakly deformed lower lithospheric mantle region along the CVL. The Nyos xenoliths, however, represent a shallow lithospheric mantle bearing

  3. Peculiarities of mantle lithosphere beneath the large kimberlite pipes in different regions for Siberian craton

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Logvinova, Alla; Ntaflos, Theodoros; Vladykin, Nikolai; Spetsius, Zdislav; Kostrovitsky, Sergey; Stegnitsky, Yuri; Prokopyev, Sergey

    2016-04-01

    the walls. 6. Large productive pipes demonstrate abundance of the eclogites showing the signs of re-melting and formation of conduits for the rising melts 7. The temperature and pressure histograms for the xenocrysts and captured xenolith from the large diamondiferous pipes reveal the peaks in the High P -T conditions. Large pipes of low diamond grade demonstrate commonly complex magmatic history with the essential oxidation of melts in the latest stages. In different terranes the structure of the lithosphere have individual features, In Magan terrane Mir and closely located pipes demonstrate very depleted high- pressure SCLM part and developed pyroxenite layer in MSCLM with the metasomatic upper part. . In Daldyn terrane systematic differences in compositions of mantle pyropes and clinopyroxenes from large kimberlite pipes in the Alakit and Daldyn fields in Siberia suggest different geodynamic position. All pipes demonstrate good layering but the most productive pipes reveal more contrast SCLM structures. In the Alakit field, Cr-diopsides are much more alkaline and contain more sub-calcic pyropes and dunitic-type diamond inclusions like in Stykanskaya and some other pipes, while in the Daldyn field harzburgitic pyropes are frequent. The eclogitic diamond inclusions in the Alakit field are sharply divided in types and PT conditions, while in the Daldyn field they show varying compositions and often continuous PT ranges with increasing Fe# with decreasing pressures. In Markha terrane in Nakyn field the rhythmic layering beneath the Nyurbinskaya and Botuobinskaya pipes is accompanied by the abundance of the Al- rich eclogites with the domination of the Ca- rich types in the lower part of mantle section. In Upper Muna field the LSCLM part is abundant in the pyroxenite material in contrast to the other mantle segments of Siberian platform. The diamond grade in this part is lower but the quality of the diamonds is higher. Supported by the RFBR grants: 05-05-64718, 03

  4. Surface topography changes in North Africa derived from combined lithosphere and mantle modelling

    NASA Astrophysics Data System (ADS)

    Buiter, S. J. H.; Steinberger, B.

    2009-04-01

    Northern Africa hosts several large intracratonic basins which record sedimentary processes since their formation in the (Pre)Cambrian. The absence of larger-scale normal faults indicates that they are not typical rift basins. Until now, no conclusive formation mechanism has been identified, though various processes (such as magmatism, phase changes, hydrothermal circulation and glacial loading) have been proposed. Here we focus on the contribution of deep-seated mantle processes to changes in surface topography. Traditionally, mantle flow models have relied on simplified translation of vertical stresses to changes in surface topography by using local isostasy or an elastic lithosphere. We evaluate the role of the brittle-elastic-viscous lithosphere rheology in controlling surface topography. We use models of mantle flow driven by density anomalies that are converted from seismic tomography, with prescribed surface plate motions and mantle viscosity structure inferred from mineral physics and surface observations. Density anomalies are advected backward in time. This approach provides reasonably accurate results back to 70 Myr ago and our models therefore span the entire Cenozoic. The mantle flow and pressure fields in the reference frame of the moving African plate are applied to lithosphere finite element models with an elastic-linear viscous-plastic rheology. Our first results focus on the Taoudenni, Kufrah and Chad basins. The Chad basin experienced Cretaceous extension and this allows us to evaluate the effects of rifting in combination with mantle processes.

  5. Sr-Nd-Pb isotope systematics of mantle xenoliths from Somerset Island kimberlites: Evidence for lithosphere stratification beneath Arctic Canada

    NASA Astrophysics Data System (ADS)

    Schmidberger, S. S.; Simonetti, A.; Francis, D.

    2001-11-01

    Sr, Nd, and Pb isotopic compositions were determined for a suite of Archean garnet peridotite and garnet pyroxenite xenoliths and their host Nikos kimberlite (100 Ma) from Somerset Island to constrain the isotopic character of the mantle root beneath the northern Canadian craton. The Nikos peridotites are enriched in highly incompatible trace elements (La/Sm N = 4-6), and show 143Nd/ 144Nd (t) (0.51249-0.51276) and a large range in 87Sr/ 86Sr (t) (0.7047-0.7085) and Pb ( 206Pb/ 204Pb (t) = 17.18 to 19.03) isotope ratios that are distinct from those estimated for "depleted mantle" compositions at the time of kimberlite emplacement. The Nd isotopic compositions of the peridotites overlap those of the Nikos kimberlite, suggesting that the xenoliths were contaminated with kimberlite or a kimberlite-related accessory phase (i.e., apatite). The highly variable Sr and Pb isotopic compositions of the peridotites, however, indicate that kimberlite contribution was restricted to very small amounts (˜1 wt % or less). The high-temperature peridotites (>1100°C) that sample the deep Somerset lithosphere trend toward more radiogenic 87Sr/ 86Sr (t) (0.7085) and unradiogenic 206Pb/ 204Pb (t) (17.18) isotopic ratios than those of the low-temperature peridotites (<1100°C). This is in agreement with Sr isotopic compositions of clinopyroxene from the low-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7038-0.7046) that are significantly less radiogenic than those of clinopyroxene from the high-temperature peridotites ( 87Sr/ 86Sr (t) = 0.7052-0.7091). The depth correlation of Sr isotopes for clinopyroxene and Sr and Pb isotopic compositions for the Nikos whole-rocks indicate that the deep Somerset lithosphere (>160 km) is isotopically distinct from the shallow lithospheric mantle. The isotopic stratification with depth suggests that the lower lithosphere is probably younger and may have been added to the existing Archean shallow mantle in a Phanerozoic magmatic event. The radiogenic Sr

  6. Lithospheric thickness and mantle/lithosphere density contrast beneath Beta Rigio, Venus

    NASA Technical Reports Server (NTRS)

    Moore, William B.; Schubert, Gerald

    1995-01-01

    The spatial variation of the geoid/topography ratio over the large Venusian volcanic highland Beta Regio is suggestive of thermal compensation, i.e., support of the highland's topography by lithospheric thinning. Both the thickness of the lithosphere and the density contrast at its base can be inferred from a quadratic regression of suitably filtered (600 km less than wavelength less than 4000 km) geoid vs. topography data. The regression yields a mean lithospheric thickness of 270 km and a density contrast of magnitude 2.5% to 3.0%. Simple isostatic balance of the long-wavelength topography at Beta Regio requires thinning of the lithosphere by 50-60% beneath the rise.

  7. Mantle exhumation and OCT architecture dependency on lithosphere deformation modes during continental breakup: Numerical experiments

    NASA Astrophysics Data System (ADS)

    Jeanniot, Ludovic; Kusznir, Nick; Manatschal, Gianreto; Cowie, Leanne

    2013-04-01

    The initiation of sea-floor spreading, during the continental breakup process, requires both the rupture of the continental crust and the initiation of decompression melting. This process results in mantle upwelling and at some point decompressional melting which creates new oceanic crust. Using numerical experiments, we investigate how the deformation mode of continental lithosphere thinning and stretching controls the rupture of continental crust and lithospheric mantle, the onset of decompression melting, their relative timing, and the circumstances under which mantle exhumation may occur. We assume that the topmost continental and ocean lithosphere, corresponding to the cooler brittle seismogenic layer, deforms by extensional faulting (pure-shear deformation) and magmatic intrusion, consistent with the observations of deformation processes occurring at slow spreading ocean ridges (Cannat, 1996). We assume that deformation beneath this topmost lithosphere layer (approximately 15-20 km thick) occurs in response to passive upwelling and thermal and melt buoyancy driven small-scale convection. We use a 2D finite element viscous flow model (FeMargin) to describe lithosphere and asthenosphere deformation. This flow field is used to advect lithosphere and asthenosphere temperature and material. The finite element model is kinematically driven by Vx for the topmost upper crust inducing passive upwelling beneath that layer. A vertical velocity Vz is defined for buoyancy enhanced upwelling as predicted by Braun et al. (2000). Melt generation is predicted by decompression melting using the parameterization and methodology of Katz et al. (2003). Numerical experiments have been used to investigate the dependency of continental crust and lithosphere rupture, decompression melt initiation, rifted margin ocean-continent transition architecture and subsidence history on the half-spreading rate Vx, buoyancy driven upwelling rate Vz, the relative contribution of these deformation

  8. Cr-pyrope garnets in the lithospheric mantle 2. Compositional populations and their distribution in time and space

    NASA Astrophysics Data System (ADS)

    Griffin, W. L.; Fisher, N. I.; Friedman, J. H.; O'Reilly, Suzanne Y.; Ryan, C. G.

    2002-12-01

    Three novel statistical approaches (Cluster Analysis by Regressive Partitioning [CARP], Patient Rule Induction Method [PRIM], and ModeMap) have been used to define compositional populations within a large database (n > 13,000) of Cr-pyrope garnets from the subcontinental lithospheric mantle (SCLM). The variables used are the major oxides and proton-microprobe data for Zn, Ga, Sr, Y, and Zr. Because the rules defining these populations (classes) are expressed in simple compositional variables, they are easily applied to new samples and other databases. The classes defined by the three methods show strong similarities and correlations, suggesting that they are statistically meaningful. The geological significance of the classes has been tested by classifying garnets from 184 mantle-derived peridotite xenoliths and from a smaller database (n > 5400) of garnets analyzed for >20 trace elements by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICPMS). The relative abundances of these classes in the lithospheric mantle vary widely across different tectonic settings, and some classes are absent or very rare in either Archean or Phanerozoic SCLM. Their distribution with depth also varies widely within individual lithospheric sections and between different sections of similar tectonothermal age. These garnet classes therefore are a useful tool for mapping the geology of the SCLM. Archean SCLM sections show high degrees of depletion and varying degrees of metasomatism, and they are commonly strongly layered. Several Proterozoic SCLM sections show a concentration of more depleted material near their base, grading upward into more fertile lherzolites. The distribution of garnet classes reflecting low-T phlogopite-related metasomatism and high-T melt-related metasomatism suggests that many of these Proterozoic SCLM sections consist of strongly metasomatized Archean SCLM. The garnet-facies SCLM beneath Phanerozoic terrains is only mildly depleted

  9. Processes of lithosphere evolution: New evidence on the structure of the continental crust and uppermost mantle

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.; Perchuc, E.; Thybo, H.

    2002-01-01

    We discuss the structure of the continental lithosphere, its physical properties, and the mechanisms that formed and modified it since the early Archean. The structure of the upper mantle and the crust is derived primarily from global and regional seismic tomography studies of Eurasia and from global and regional data on seismic anisotropy. These data as documented in the papers of this special issue of Tectonophysics are used to illustrate the role of different tectonic processes in the lithospheric evolution since Archean to present. These include, but are not limited to, cratonization, terrane accretion and collision, continental rifting (both passive and active), subduction, and lithospheric basal erosion due to a relative motion of cratonic keels and the convective mantle. ?? 2002 Elsevier Science B.V. All rights reserved.

  10. Origin and Distribution of Water Contents in Continental and Oceanic Lithospheric Mantle

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2013-01-01

    The water content distribution of the upper mantle will be reviewed as based on the peridotite record. The amount of water in cratonic xenoliths appears controlled by metasomatism while that of the oceanic mantle retains in part the signature of melting events. In both cases, the water distribution is heterogeneous both with depth and laterally, depending on localized water re-enrichments next to melt/fluid channels. The consequence of the water distribution on the rheology of the upper mantle and the location of the lithosphere-asthenosphere boundary will also be discussed.

  11. The Neotectonic crustal uplift and lithospheric softening in plate interiors caused by infiltration of mantle fluids into the lithosphere

    NASA Astrophysics Data System (ADS)

    Artyushkov, Eugene

    2013-04-01

    Large-scale crustal uplifts on the continents are commonly attributed to plate collision. Within the continents convergent boundaries now exist only in some regions, e.g., between the Eurasian and Indian plates. A predominant part of continental lithosphere refers to intraplate areas. Thus, the Precambrian crust where shortening terminated half a billion years ago or earlier covers about 70% of the continental areas. However, during the Pliocene and Pleistocene most of the Precambrian crust underwent the uplifts from 100-200 m to 1-2 km. They occurred over most of the African continent, in Greenland and East Siberia, and in many other regions. Neotectonic crustal uplift widely occurred on the Phanerozoic lithosphere. In most regions, e.g., in the Central and Northeastern Asia, the uplift by 1-2 km or more took place long after strong shortening of the crust in the Mesozoic and Paleozoic. It was accompanied by extension or compression of only a few per cent. In the absence of strong crustal thickening, the Neotectonic uplift in intraplate areas required a density decrease in the lithosphere which was caused by two main processes. The first one is expansion of previously metamorphosed dense mafic rocks within the crust due to a secondary metamorphism, diaphtoresis, under the temperature T = 350-400 °C. This mechanism is evidenced by a strong heterogeneity of the uplift in space. Thus in the Archean East Siberia in many places the uplift varies by 300-500 m in regions, only 20 km wide. Rock expansion from diaphtoresis required an inflow into the crust of large volumes of fluid from the mantle. The second process is a convective replacement by the asthenosphere of a denser mantle lithosphere whose viscosity was reduced by several orders of magnitude due to infiltration of fluids from the mantle. In many areas, e.g. in Central Asia and western North America this gave rise to a rise of the top of the asthenospheric layer by ~100 km. Over most of the continental areas

  12. Origin of cratonic lithospheric mantle roots: A geochemical study of peridotites from the North Atlantic Craton, West Greenland

    NASA Astrophysics Data System (ADS)

    Wittig, N.; Pearson, D. G.; Webb, M.; Ottley, C. J.; Irvine, G. J.; Kopylova, M.; Jensen, S. M.; Nowell, G. M.

    2008-09-01

    A critical examination of the extent to which geodynamic information on the initial mantle depletion and accretion event(s) is preserved in kimberlite-borne cratonic SCLM peridotite xenoliths is attempted by using new major and trace element data of whole-rock peridotites ( n = 55) sampled across the North Atlantic Craton (NAC; West Greenland). We also present additional whole-rock trace element data of mantle xenoliths from Somerset Island, the Slave and Kaapvaal cratons for comparison. Peridotites comprising the West Greenland SCLM are distinctly more olivine-rich and orthopyroxene-poor than most other cratonic peridotites, in particular those from the Kaapvaal craton. The West Greenland peridotites have higher Mg/Si but lower Al/Si, Al 2O 3 and CaO than cratonic mantle from the Kaapvaal Craton. We suggest that the more orthopyroxene depleted, harzburgite to dunite character of the NAC peridotites reflects more of the original melting history than peridotites from other cratons and in that sense may be more typical of cratonic lithosphere compositions prior to extensive modification. Despite this, some modal and cryptic metasomatism has clearly taken place in the West Greenland lithosphere. The insensitivity of major elements to pressure of melting at high degrees of melt extraction combined with the ease with which these elements may be changed by modal metasomatism mean that we cannot confidently constrain the depth of melting of peridotites using this approach. Mildly incompatible trace elements offer much more promise in terms of providing geodynamic information about the original Archean melting regime. The very low, systematically varying heavy REE abundances in NAC whole-rock peridotites and in peridotites from all other cratons where high-quality data are available provide ubiquitous evidence for a shallow melting regime in the absence of, or to the exhaustion of garnet. This finding explicitly excludes large extents of deep (iso- and polybaric) melting

  13. Lithosphere thickness and mantle viscosity inverted from GPS-derived deformation rates in Fennoscandia

    NASA Astrophysics Data System (ADS)

    Zhao, S.; Lambeck, K.; Lidberg, M.

    2012-07-01

    Crustal deformation in Fennoscandia is associated with the glacial isostatic adjustment (GIA) process that is caused by ongoing stress release of the mantle after removal of the Late Pleistocene ice sheet by ˜10 cal ka BP. With an earth model of defined structure and rheology and an ice-sheet model of known melting history, the GIA process can be simulated by geophysical models, and the surface deformation rates can be calculated and used to compare with global positioning system (GPS) observations. Therefore, the crustal deformation rates observed by GPS in Fennoscandia provide constraints on the geophysical models. On the basis of two ice sheet models (ANU-ICE and ICE-5G) reconstructed independently by the Australian National University (ANU) and University of Toronto, we use the GPS-derived deformation rates to invert for lithosphere thickness and mantle viscosity in Fennoscandia. The results show that only a three-layer earth model can be resolved from current GPS data, providing robust estimates of effective lithosphere thickness, upper and lower mantle viscosity. The earth models estimated from inversion of GPS data with two different ice sheet models define a narrow range of parameter space: the lithosphere thickness between 93 and 110 km, upper mantle viscosity between 3.4 and 5.0 × 1020 Pa s, and lower mantle viscosity between 7 × 1021 and 13 × 1021 Pa s. The estimates are consistent with those inverted from relative sea-level indicators.

  14. Lithosphere thinning induced by slab penetration into a hydrous mantle transition zone

    NASA Astrophysics Data System (ADS)

    Wang, Zhensheng; Kusky, Timothy M.; Capitanio, Fabio A.

    2016-11-01

    Water plays an important role in deformation and partial melting of Earth's mantle. The mantle transition zone (MTZ) is a deep reservoir of bound water from subducting slabs. When this reservoir is perturbed by subducting slabs, water is released, impacting the rheology and dynamics of the mantle. We model the role of released water from the MTZ in lithospheric destruction, deformation and deep-source magmatism. Comparing the model results from the North China Craton, we infer that the first peak period of magmatism during craton destruction and lithospheric removal (135-115 Ma) resulted from the subducting Izanagi plate perturbing the strongly hydrous MTZ, whereas the second peak period of magmatism (80 Ma-Cenozoic) is related to extension and asthenospheric partial melting caused by Pacific slab rollback.

  15. Lithospheric deformation induced by loading of the Hawaiian Islands and its implications for mantle rheology

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Watts, A. B.

    2013-11-01

    long-term rheological properties of the lithosphere are fundamental for understanding both surface tectonics and mantle dynamics on Earth. In this study, we have developed 3-D finite element models for computing the load-induced surface deformation and stress for lithosphere and mantle with realistic nonlinear viscoelastic rheology including the frictional sliding, low-temperature plasticity, and high-temperature creep. We have determined the lithospheric deformation and stress due to volcano loading in the Hawaiian Islands region for the last few million years. By comparing model predictions with seismic observations of the depth to the top of oceanic crust and depth dependence of seismicity in the Hawaiian Islands region, we have sought to constrain lithospheric rheology. Our calculations show that the load-induced surface deformation is controlled by low-temperature plasticity and frictional sliding but is insensitive to high-temperature creep. Lithospheric strength predicted from laboratory-derived low-temperature plasticity needs to be reduced significantly, and a frictional coefficient μf ranging from 0.1 to 0.7 is required in order to account for the observations. However, μf = 0.1 weakens the shallow part of the lithosphere so much that it causes the minima in strain rate and stress to occur at too large depths to be consistent with the observed depth distribution of seismicity. Our results therefore suggest a value for μf between 0.25 and 0.7. Finally, the maximum stress that accumulates in the deformed lithosphere beneath the Hawaiian Islands is about 100-200 MPa for models that match the observations, and this stress may be viewed as the largest lithospheric stress on Earth.

  16. Seismic Tomography of the Arctic: Continental Cratons, Ancient Orogens, Oceanic Lithosphere and Convecting Mantle Beneath (Invited)

    NASA Astrophysics Data System (ADS)

    Lebedev, S.; Schaeffer, A. J.

    2013-12-01

    Lateral variations in seismic velocities in the upper mantle, mapped by seismic tomography, reflect primarily the variations in the temperature of the rock at depth. Seismic tomography thus reveals lateral changes in the temperature and thickness of the lithosphere; it maps deep boundaries between tectonic blocks with different properties and with different age of the lithosphere. Our new global, shear-wave tomographic model of the upper mantle and the crust is constrained by an unprecedentedly large number of broadband waveform fits (nearly one million seismograms, with both surface and S waves included) and provides improved resolution of the lithosphere across the whole of the Arctic region, compared to other available models. The most prominent high-velocity anomalies, seen down to 150-200 km depths, indicate the cold, thick, stable mantle lithosphere beneath Precambrian cratons. The northern boundaries of the Canadian Shield's and Greenland's cratonic lithosphere closely follow the coastlines, with the Greenland and North American cratons clearly separated from each other. In Eurasia, in contrast, cratonic lithosphere extends hundreds of kilometres north of the coast of the continent, beneath the Barents and eastern Kara Seas. The boundaries of the Archean cratons mapped by tomography indicate the likely offshore extensions of major Phanerozoic sutures in northern Eurasia. The old oceanic lithosphere of the Canada Basin is much colder and thicker than the younger lithosphere beneath the adjacent Amundsen Basin, north of the Gakkel Ridge. Beneath the slow-spreading Gakkel Ridge, we detect the expected low-velocity anomaly associated with partial melting in the uppermost mantle; the anomaly is weaker, however, than beneath faster-spreading ridges globally. South of the ridge, the Nansen Basin shows higher seismic velocities in the upper mantle beneath it, compared to the Amundsen Basin. At 150-250 km depth, most of the oceanic portions of the central Arctic (the

  17. Speculations on the Archean mantle: Missing link between komatiite and depleted garnet peridotite

    NASA Astrophysics Data System (ADS)

    Takahashi, Eiichi

    1990-09-01

    Like in the modern Earth, thermal and tectonic regime of the planet in the Archean (>=2.5 Ga) may have been dominated by those activities on the ocean floor. Because of the continuous operation of plate tectonics, however, the geologic record of the Archean ocean floor has been eliminated a long time ago. Using high-pressure melting experiment data on a mantle peridotite and some key observations on Archean rocks (DGPs and PKs), a model for mid-oceanic ridge in the Archean (AMOR) is constructed. High magnesian peridotitic komatiites (PKs, MgO>=33 wt%) which are limited only on the oldest cratons (>=3.3 Ga) are considered to have been produced by partial melting of mantle peridotite at >=7 GPa and >=1800°C. Less magnesian PKs (MgO>=25 wt%) which are characteristic of the latest Archean (>=2.5 Ga) may have been produced at >=4 GPa and >=1650°C. Potential mantle temperatures (PMTs) of the Earth were estimated from the above two constraints on PKs and that for the genesis of mid-ocean ridge basalts (MORBs) in the modern Earth; PMT=1750°C at 3.5 Ga, 1600°C at 2.5 Ga, and 1280°C at present. If estimated cooling rate of the Earth's mantle (1.3°C/ 107 years) is valid for another 5×108 years or so, PMT will become lower than mantle solidus, and then plate tectonics would cease. Very depleted garnet peridotites (DGPs) found as xenoliths in south African kimberlites show distinct chemical trends compared with spinel and garnet peridotites found in young orogenic terrains and oceanic regions. Re-Os isotopic analyses on bulk xenoliths and Sm-Nd model ages of garnets in diamonds in them indicate that DGPs have undergone extensive partial melting and melt extraction in the early Archean. The bulk chemical trends of DGPs can be explained by extraction of PK magma from primitive mantle peridotite. A 40-60 wt% extraction of PK magma ranging from 25 to 35 wt% MgO would suffice to yield entire spectrum of DGPs. A hypothesis for their origin by global melting (magma ocean) of

  18. Dating layered websterite formation in the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Le Roux, V.; Nielsen, S. G.; Sun, C.; Yao, L.

    2016-11-01

    Pyroxenites are often documented among exhumed mantle rocks, and can be found in most tectonic environments, from supra-subduction to sub-continental and sub-oceanic mantle. In particular, websterites, i.e. orthopyroxene-clinopyroxene bearing pyroxenites, are found in parallel layers in most orogenic and ophiolitic peridotites. Their formation is often ascribed to melt infiltration and melt-rock reaction processes accompanied by variable amount of deformation. One outstanding question is whether the ubiquitous occurrence of layered websterites in exhumed rocks is generally linked to the exhumation process or truly represents large-scale melt infiltration processes at depth prior to exhumation. These two hypotheses can be distinguished by comparing the exhumation and formation ages of the websterites. However, determination of the layered websterite formation age is challenging. Here we present a novel approach to constrain the formation age of websterite layers using samples from the Lherz massif (France), where layered websterites and lherzolites have formed through melt-rock reaction. By combining high-resolution REE variations, isotope model ages, and diffusive re-equilibration timescales using REE closure temperatures across the websterite layers, we constrain a minimum age and a maximum age for the formation of layered websterites. We show that layered websterites in Lherz formed 1,500-1,800 Ma ago, and are thus clearly disconnected from the process of exhumation at 104 Ma. Multiple generations of layered websterites commonly found in ultramafic massifs, along with the evidence for ancient melt-rock reaction in Lherz, indicate that melt-rock reactions can happen episodically or continuously in the mantle and that layered websterites found in exhumed mantle rocks record ubiquitous melt infiltration processes in the mantle.

  19. Mantle xenoliths from Szentbékálla, Balaton: Geochemical and petrological constraints on the evolution of the lithospheric mantle underneath Pannonian Basin, Hungary

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theo; Bizimis, Michael; Abart, Rainer

    2017-04-01

    Pliocene alkali basalts from the Bakony-Balaton Highland Volcanic Field (BBHVF) in the western Pannonian Basin carry mantle xenoliths comprising hydrous and anhydrous spinel peridotites. The studied mantle xenoliths from Szentbékálla, near Lake Balaton, Hungary, are fine- and coarse-grained fertile to depleted spinel lherzolites, spinel harzburgites and dunites, with protogranular, porphyroclastic, and secondary protogranular and mosaic equigranular textures. Melt pockets, with shapes resembling amphibole, are common in a number of samples, whereas other samples have thin films of intergranular glass. Bulk-rock major element abundances show that the mantle lithosphere beneath this area experienced variable degrees (up to 20%) of partial melting. The clinopyroxene trace elements systematics retain a record of melt depletion and metasomatic processes attributed to subduction-related melt/fluids or to the infiltration of percolating undersaturated melts in the Pannonian lithospheric mantle. The radiogenic isotopes of Sr, Nd and Hf in clinopyroxene suggest that this metasomatism was a relatively recent event. Textural evidence suggests that the calcite filling up the vesicles in the melt pockets and in veinlets cross-cutting the constituent minerals is of epigenetic nature and not due to carbonatite metasomatism. The non-metasomatized primitive mantle normalized clinopyroxene REE abundances mimic those, but at higher values, of their bulk-rock REE patterns. Bulk-rock and clinopyroxene REE with upward and downward LREE respectively, indicate up to 2.4% host basalt infiltration. The calculated bulk composition of the melt pockets is identical to small amphibole relics found as inclusions in second generation clinopyroxene within the melt pockets, suggesting incongruent melting of amphibole, without the need for additional metasomatic melt/fluids to initiate the amphibole breakdown. The heat for the temperature increase necessary for amphibole breakdown was derived from

  20. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere

    NASA Astrophysics Data System (ADS)

    Čížková, Hana; van den Berg, Arie P.; Spakman, Wim; Matyska, Ctirad

    2012-06-01

    The viscosity of the mantle is indispensable for predicting Earth's mechanical behavior at scales ranging from deep mantle material flow to local stress accumulation in earthquakes zones. But, mantle viscosity is not well determined. For the lower mantle, particularly, only few constraints result from elaborate high-pressure experiments (Karato, 2008) and a variety of viscosity depth profiles result from joint inversion of the geoid and postglacial rebound data (Forte and Mitrovica, 1996; Kaufmann and Lambeck, 2000; Mitrovica and Forte, 2004). Here, we use inferred lower-mantle sinking speed of lithosphere subduction remnants as a unique internal constraint on modeling the viscosity profile. This entails a series of elaborate dynamic subduction calculations spanning a range of viscosity profiles from which we select profiles that predict the inferred sinking speed of 12 ± 3 mm/yr (van der Meer et al., 2010). Our modeling shows that sinking speed is very sensitive to lower mantle viscosity. Good predictions of sinking speed are obtained for nearly constant lower mantle viscosity of about 3-4 × 1022 Pa s. Viscosity profiles incorporating a viscosity maximum in the deep lower mantle, as proposed in numerous studies, only lead to a good prediction in combination with a weak postperovskite layer at the bottom of the lower mantle, and only for a depth average viscosity of 5 × 1022 Pa s.

  1. Melting of the Earth's lithospheric mantle inferred from protactinium-thorium-uranium isotopic data

    PubMed

    Asmerom; Cheng; Thomas; Hirschmann; Edwards

    2000-07-20

    The processes responsible for the generation of partial melt in the Earth's lithospheric mantle and the movement of this melt to the Earth's surface remain enigmatic, owing to the perceived difficulties in generating large-degree partial melts at depth and in transporting small-degree melts through a static lithosphere. Here we present a method of placing constraints on melting in the lithospheric mantle using 231Pa-235U data obtained from continental basalts in the southwestern United States and Mexico. Combined with 230Th-238U data, the 231Pa-235U data allow us to constrain the source mineralogy and thus the depth of melting of these basalts. Our analysis indicates that it is possible to transport small melt fractions--of the order of 0.1%--through the lithosphere, as might result from the coalescence of melt by compaction owing to melting-induced deformation. The large observed 231Pa excesses require that the timescale of melt generation and transport within the lithosphere is small compared to the half-life of 231Pa (approximately 32.7 kyr). The 231Pa-230Th data also constrain the thorium and uranium distribution coefficients for clinopyroxene in the source regions of these basalts to be within 2% of one another, indicating that in this setting 230Th excesses are not expected during melting at depths shallower than 85 km.

  2. Lithosphere versus asthenosphere mantle sources at the Big Pine Volcanic Field, California

    NASA Astrophysics Data System (ADS)

    Gazel, Esteban; Plank, Terry; Forsyth, Donald W.; Bendersky, Claire; Lee, Cin-Ty A.; Hauri, Erik H.

    2012-06-01

    Here we report the first measurements of the H2O content of magmas and mantle xenoliths from the Big Pine Volcanic Field (BPVF), California, in order to constrain the melting process in the mantle, and the role of asthenospheric and lithospheric sources in this westernmost region of the Basin and Range Province, western USA. Melt inclusions trapped in primitive olivines (Fo82-90) record surprisingly high H2O contents (1.5 to 3.0 wt.%), while lithospheric mantle xenoliths record low H2O concentrations (whole rock <75 ppm). Estimates of the oxidation state of BPVF magmas, based on V partitioning in olivine, are also high (FMQ +1.0 to +1.5). Pressures and temperatures of equilibration of the BPVF melts indicate a shift over time, from higher melting temperatures (˜1320°C) and pressures (˜2 GPa) for magmas that are >500 ka, to cooler (˜1220°C) and shallower melting (˜1 GPa) conditions in younger magmas. The estimated depth of melting correlates strongly with some trace element ratios in the magmas (e.g., Ce/Pb, Ba/La), with deeper melts having values closer to upper mantle asthenosphere values, and shallower melts having values more typical of subduction zone magmas. This geochemical stratification is consistent with seismic observations of a shallow lithosphere-asthenosphere boundary (˜55 km depth). Combined trace element and cryoscopic melting models yield self-consistent estimates for the degree of melting (˜5%) and source H2O concentration (˜1000 ppm). We suggest two possible geodynamic models to explain small-scale convection necessary for magma generation. The first is related to the Isabella seismic anomaly, either a remnant of the Farallon Plate or foundered lithosphere. The second scenario is related to slow extension of the lithosphere.

  3. Is the Continental Crust Stronger or Weaker than the Mantle Lithosphere ?

    NASA Astrophysics Data System (ADS)

    Houseman, G. A.; Billen, M. I.

    2005-12-01

    Standard models of the stress that can be supported by the continental lithosphere (encapsulated in the so-called Christmas-tree diagram) suggest that the deep continental crust is relatively weak compared to the mantle lithosphere, primarily because of the effect of thermal activation. Such models, however, are based on laboratory measurements that must be extrapolated over roughly seven orders of magnitude, in both spatial and temporal scales, to say nothing of the effects of variable crustal composition and, in particular, varying concentration of water. Direct measures of crustal strength, however, may be obtained from geodetic measurements of strain rate and stress estimates that are calibrated against the effect of gravity on an inferred density structure. Crustal strength in this case is defined by apparent viscosity: the ratio of stress difference to strain-rate. Such measurements, though less precise than laboratory measurements, are directly applicable on the time and length scales on which lithosphere deforms. When lithospheric deformation is driven by internal buoyancy forces in tectonically active areas the implied viscosity of the mantle lithosphere is on the order of 1021 Pa s or less. In such systems, deformation of the crust follows that of the mantle lithosphere, and the resulting spatial variations in crustal thickness and surface topography provide direct constraints on the relative crustal viscosity. The general stability of continental lithosphere suggests that it is relatively strong compared to typical intra-plate deviatoric stress, but may be weakened by stress, temperature, or fluids. Analysis of tectonic systems from a number of regions also shows that there are very large regional differences in the apparent strength of the crust. In the Transverse Ranges of California, for example, steep topographic gradients imply that the crust is relatively strong compared to the mantle. In contrast the relatively uniform elevation of the Tibetan

  4. Structure of the Crust and Mantle Lithosphere underneath NW Namibia Revealed by the WALPASS Seismic Experiment

    NASA Astrophysics Data System (ADS)

    Yuan, X.; Jokat, W.; Weber, M. H.; Geissler, W.; Heit, B.; Eken, T.; Pandey, S.; Lushetile, B.; Hoffmann, K.

    2013-12-01

    The amphibian Walvis Ridge Passive-Source Seismic Experiment (WALPASS) have been operated for a period of two years from 2010 to 2012 in the area where the Walvis Ridge intersects the continental margin of northwestern Namibia. The deployment was intended to study the lithospheric and upper mantle structure in the ocean-continent transition area beneath the passive continental margin. The main idea is to find seismic anomalies related to the postulated hotspot track from the continent to the ocean along the Walvis Ridge that links the Etendeka continental flood-basalt province to the Tristan da Cunha hotspot in the mid Atlantic ocean. This could provide clues of the role of plume-lithosphere interaction during the continental break-up. We present here seismic structures of the crustal and mantle lithosphere in this geophysically little studied region using seismic methods including P and S receiver functions and shear wave splitting. The average crustal thickness in the continental Namibia is ~35 km with a relatively low Vp/Vs ratio of 1.7. Underneath the NE extension of the Walvis Ridge the crust is the thickest (45 km) with a high Vp/Vs ratio (>1.80). The thick crust and high Vp/Vs ratio beneath the Walvis Ridge are consistent with high Vp derived by controlled source seismics, implying a magmatic underplating. A low velocity zone in the mantle is observed at depths of 60-120 km, possibly representing the base of the lithosphere. The P-to-S converted phases at the 410 and 660 km discontinuities arrive 2-3 s earlier, indicating higher upper mantle velocities (+5%). Seismic anisotropy in the mantle derived by the SKS splitting exhibits a pattern of the plume and plate interaction.

  5. Softening of the subcontinental lithospheric mantle by asthenosphere melts and the continental extension/oceanic spreading transition

    NASA Astrophysics Data System (ADS)

    Ranalli, G.; Piccardo, G. B.; Corona-Chávez, P.

    2007-05-01

    The majority of ophiolitic peridotites in the Alpine-Apennine system show evidence of extensive interaction between subcontinental lithospheric mantle and fractional melts of asthenospheric origin. This interaction led to petrological, structural, and geochemical changes in the lithospheric mantle, and was accompanied by a temperature increase to near-asthenospheric values, resulting in the thermomechanical erosion of the lithosphere. We term the parts of mantle lithosphere thus affected the asthenospherized lithospheric mantle or ALM. The thermal and rheological consequences of thermomechanical erosion are explored by modelling the temperature and rheological properties of the thinned lithosphere as a function of thickness of ALM and time since asthenospherization (i.e., since the beginning of thermal relaxation). Results are given both in terms of rheological profiles (strength envelopes) and total lithospheric strength (TLS) for different lower crustal rheologies. The TLS decreases as a consequence of thermomechanical erosion. This decrease is a non-linear function of the thickness of the ALM. While practically negligible if less than 50% of lithospheric mantle is affected, it becomes significant (up to almost one order of magnitude) if thermomechanical erosion approaches the Moho. The maximum decrease in TLS is achieved within a short time span (˜1-2 Ma) after the end of the heating episode. As a working hypothesis, we propose that thermomechanical erosion of the lithospheric mantle, related to lithosphere/asthenospheric melts interaction, can be an important factor in a geologically rapid decrease in TLS. This softening could lead to whole lithospheric failure and consequently to a transition from continental extension to oceanic spreading.

  6. Petrogenesis of spinel peridotite suite xenoliths from northern Santa Cruz province, Argentina; implication for the Patagonian Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Ntaflos, Theodoros; Mundl, Andrea; Bjerg, Ernesto; Tschegg, Cornelius; Kosler, Jan

    2010-05-01

    interstitial clinopyroxene appears to be of metasomatic origin. The clinopyroxene from cumulate dunites has depleted LREE abundances and low HREE indicating that they have been formed from residual melts. In contrast, clinopyroxene from mantle dunites has enriched LREE (10 x PM) and LILE suggesting that the metasomatic agent was fluid-rich silicate melt. Calculated equilibrium conditions cover a wide range, from 800 to 1100 °C. Considering the crustal thickness in the area being around 35 km, a pressure between 12 and 17 kbar can be assumed as reasonable, indicating that xenoliths were extracted from shallow depths, in the order of 40 to 60 km. Model calculations have shown that the Lithospheric Mantle beneath Don Camilo is fertile and that spinel peridotites experienced low degrees of partial melting (2-8% batch melting in the spinel peridotite field). The metasomatic agent was a fluid rich silicate melt presumably similar to that which affected the xenoliths from Cerro Clark locality, north of Don Camilo. Don Camilo mantle xenoliths, like Tres Lagos, Cerro Redondo and Gobernador Gregores, does not show evidence for interaction of the Lithospheric Mantle in southern Patagonia with subduction related components.

  7. Metasomatized ancient lithospheric mantle beneath the young Zealandia microcontinent and its role in HIMU-like intraplate magmatism

    NASA Astrophysics Data System (ADS)

    Scott, J. M.; Waight, T. E.; van der Meer, Q. H. A.; Palin, J. M.; Cooper, A. F.; Münker, C.

    2014-09-01

    has been long debate on the asthenospheric versus lithospheric source for numerous intraplate basalts with ocean island basalt (OIB) and high time-integrated U/Pb (HIMU)-like source signatures that have erupted through the Zealandia continental crust. Analysis of 157 spinel facies peridotitic mantle xenoliths from 25 localities across Zealandia permits the first comprehensive regional description of the subcontinental lithospheric mantle (SCLM) and insights into whether it could be a source to the intraplate basalts. Contrary to previous assumptions, the Oligocene-Miocene Zealandia SCLM is highly heterogeneous. It is composed of a refractory craton-like domain (West Otago) adjacent to several moderately fertile domains (East Otago, North Otago, Auckland Islands). Each domain has an early history decoupled from the overlying Carboniferous and younger continental crust, and each domain has undergone varying degrees of depletion followed by enrichment. Clinopyroxene grains reveal trace element characteristics (low Ti/Eu, high Th/U) consistent with enrichment through reaction with carbonatite. This metasomatic overprint has a composition that closely matches HIMU in Sr, Pb ± Nd isotopes. However, clinopyroxene Hf isotopes are in part highly radiogenic and decoupled from the other isotope systems, and also mostly more radiogenic than the intraplate basalts. If the studied spinel facies xenoliths are representative of the thin Zealandia SCLM, the melting of garnet facies lithosphere could only be the intraplate basalt source if it had a less radiogenic Hf-Nd isotope composition than the investigated spinel facies, or was mixed with asthenosphere-derived melts containing less radiogenic Hf.

  8. Temperature Control of Continental Lithosphere Elastic Thickness: Effective Elastic Thickness Te vs Upper Mantle Velocity Vs

    NASA Astrophysics Data System (ADS)

    Hyndman, R. D.; Currie, C. A.; Mazzotti, S.; Frederiksen, A.

    2006-12-01

    The elastic thickness of continental lithosphere is closely related to its total strength and therefore to its susceptibility to tectonic deformation and earthquakes. Recently it has been questioned whether the elastic thickness and strength are dependent on crust and upper mantle temperatures and compositions in the way predicted by laboratory data. We test this dependence in western North America by a regional comparison of the effective elastic thickness (Te) from topography-gravity coherence, and upper mantle temperatures mapped by tomography shear wave velocities (Vs). We find a good correlation between Te and Vs of the form expected based on the thermal and laboratory data. The Te distribution is strongly bimodal as previously found globally, less than 20 km for the high temperature Cordillera and over 100 km for the adjacent cold stable Canadian Shield. Only intermediate thermal regimes have intermediate Te that suggests a weak layer in the lower crust over a stronger upper mantle. Strength envelopes based on laboratory data correspond to the observed Te for thermal regimes with temperatures at the Moho of 800-900C for the Cordillera and 400-500C for the Shield, in agreement with temperatures from Vs and other estimators. Our study supports the conclusion that lithosphere elastic thickness and strength are controlled primarily by temperature and that laboratory- based rheology provides a good first order estimate of the deformation behaviour of the crust and upper mantle. The Cordillera and other continental backarcs are weak enough to be deformed by plate boundary forces, whereas cratons are generally much too strong. In the Cordillera, the upper mantle is too hot for brittle failure and earthquakes occur only in the upper 10-15 km of the crust. In the cool craton, earthquakes occur rarely in the upper mantle because the total lithosphere strength is too great for significant deformation by plate tectonic forces.

  9. Continental collision slowing due to viscous mantle lithosphere rather than topography.

    PubMed

    Clark, Marin Kristen

    2012-02-29

    Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.

  10. The viscosity of Earth's lower mantle inferred from sinking speed of subducted lithosphere

    NASA Astrophysics Data System (ADS)

    Cizkova, H.; van den Berg, A. P.; Spakman, W.; Matyska, C.

    2012-04-01

    The viscosity of the mantle is indispensable for predicting Earth's mechanical behavior at scales ranging from deep mantle material flow to local stress accumulation in earthquakes zones. Mantle viscosity is, however, not well determined. For the lower mantle, particularly, only few constraints result from elaborate high-pressure experiments (Karato, 2008) and a variety of viscosity depth profiles result from joint inversion of the dynamic geoid and postglacial rebound data (Forte and Mitrovica, 1996; Kaufmann and Lambeck, 2000; Mitrovica and Forte, 2004). Here we use lower-mantle sinking speed of lithosphere subduction remnants as a unique internal constraint on modeling the viscosity profile. We perform a series of dynamic subduction calculations in the models with complex composite rheology spanning a range of viscosity profiles in the lower mantle. We focus on the models with detached remnants resulting from the slab break-off, that sink to the lower mante. Using these models we select profiles that predict the inferred sinking speed of 12 ± 3 mm/yr (van der Meer et al., 2010). Our modeling shows that sinking speed is very sensitive to lower mantle viscosity. The best-fitting viscosity profiles are associated with subduction models that show accumulation or thickening of the slab, but minor temporal stagnation associated with the phase change at 660 km and a mild increase of viscosity in the top of the lower mantle by a factor of about three. The sinking speed constrains almost uniform viscosity models of the lower mantle to a viscosity value of 1 - 2 - 1022 Pas. Higher amplitudes of the lower mantle viscosity (and an associated step-wise increase at the 660 km phase boundary) are responsible for the detached slab being stagnant for several 10s of millions of years at the top of the lower mantle. This yields a corresponding delay in age-depth curves and leads to average deviating from the inferences of van der Meer et al. (2010). A weaker lower mantle, on the

  11. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle

    PubMed Central

    Prieto, Germán A.; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-01-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere. PMID:28345055

  12. Earthquake rupture below the brittle-ductile transition in continental lithospheric mantle.

    PubMed

    Prieto, Germán A; Froment, Bérénice; Yu, Chunquan; Poli, Piero; Abercrombie, Rachel

    2017-03-01

    Earthquakes deep in the continental lithosphere are rare and hard to interpret in our current understanding of temperature control on brittle failure. The recent lithospheric mantle earthquake with a moment magnitude of 4.8 at a depth of ~75 km in the Wyoming Craton was exceptionally well recorded and thus enabled us to probe the cause of these unusual earthquakes. On the basis of complete earthquake energy balance estimates using broadband waveforms and temperature estimates using surface heat flow and shear wave velocities, we argue that this earthquake occurred in response to ductile deformation at temperatures above 750°C. The high stress drop, low rupture velocity, and low radiation efficiency are all consistent with a dissipative mechanism. Our results imply that earthquake nucleation in the lithospheric mantle is not exclusively limited to the brittle regime; weakening mechanisms in the ductile regime can allow earthquakes to initiate and propagate. This finding has significant implications for understanding deep earthquake rupture mechanics and rheology of the continental lithosphere.

  13. Complex metasomatism of lithospheric mantle by asthenosphere-derived melts: Evidence from peridotite xenoliths in Weichang at the northern margin of the North China Craton

    NASA Astrophysics Data System (ADS)

    Zou, Dongya; Zhang, Hongfu; Hu, Zhaochu; Santosh, M.

    2016-11-01

    The petrology, in situ analyses of major and trace elements as well as Sr isotopic compositions of spinel-facies lherzolite and harzburgite xenoliths from Weichang within the northern margin of the North China Craton (NCC) are reported for the first time in this study to evaluate the nature and evolution of the lithospheric mantle. These peridotite xenoliths display porphyroclastic texture and can be subdivided into two groups. Group I peridotites have slightly higher forsterite contents (Fo) (90.6-91.2) and 87Sr/86Sr ratios (0.7025-0.7043) in the cores than those in the rims (89.8-90.8; 0.7025-0.7038) of olivines and clinopyroxenes, respectively. The clinopyroxenes in these rocks exhibit uniform LREE-depleted patterns. These geochemical features suggest that the Group I peridotites were weakly metasomatized by recent asthenospheric melts. In contrast, Group II peridotites show sieve-texture and clear compositional zoning in minerals. The olivines and clinopyroxenes from these rocks have higher Fo (86.9-91.3) and 87Sr/86Sr ratios (0.7035-0.7049) in the cores than those in the rims (76.9-90.6; 0.7021-0.7046). The clinopyroxenes show three types of REE patterns: LREE-enriched, convex-upward and spoon-shaped. The LREE-enriched clinopyroxenes have the highest (La/Yb)N and lowest Ti/Eu and those with spoon-shaped REE patterns show an increase in LREE, Ba, Th and U contents from the cores to the rims. These features indicate that the Group II peridotites witnessed a high degree of refertilization by recent asthenosphere-derived silicate and carbonatite melts or their mixture. Compared with the data of the Mesozoic NCC lithospheric mantle, the heterogeneous and low 87Sr/86Sr ratios (0.7025-0.7049) in the LREE-depleted clinopyroxenes reveal that the ancient lithospheric mantle could have been modified by asthenospheric melts before the recent metasomatism event. We conclude that the lithospheric mantle beneath Weichang underwent multiple modifications through asthenosphere-lithosphere

  14. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Humphreys, Emma R.; Niu, Yaoling

    2009-09-01

    We have examined island-averaged geochemical data for 115 volcanic islands with known eruption ages and ages of the underlain lithosphere from the Pacific, Atlantic and Indian Oceans. These age data allow calculation of the lithosphere thickness at the time of volcanism. After correcting the basalts (including alkalic types) (< 53% SiO2) for fractionation effect to Mg# = 0.72, we found that the island-averaged Si72 and Al72 decrease whereas Fe72, Mg72, Ti72 and P72 increase with increasing lithosphere thickness. The island-averaged [La/Sm]CN and [Sm/Yb]CN ratios also increase with increasing lithosphere thickness. These statistically significant trends are most consistent with the interpretation that the mean extent of melting decreases whereas the mean pressure of melting increases with increasing lithosphere thickness. This is physically consistent with the active role the lithosphere plays in limiting the final depth of intra-oceanic mantle melting. That is, beneath a thin lithosphere, a parcel of mantle rises to a shallow level, and thus melts more by decompression with the aggregated melt having the property of high extent and low pressure of melting. By contrast, a parcel of mantle beneath a thick lithosphere has restricted amount of upwelling, and thus melts less by decompression with the aggregated melt having the property of low extent and high pressure of melting. This demonstrates that oceanic lithosphere thickness variation exerts the first-order control on the geochemistry of ocean island basalts (OIB). Variation in initial depth of melting as a result of fertile mantle compositional variation and mantle potential temperature variation can influence OIB compositions, but these two variables must have secondary effects because they do not overshadow the effect of lithosphere thickness variation that is prominent on a global scale. The mantle potential temperature variation beneath ocean islands cannot be constrained with the existing data. Fertile

  15. Rock Magnetic Mineral Assemblage in Mineral Separates from Xenoliths of Continental Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Khakhalova, E.; Feinberg, J. M.; Ionov, D. A.; Ferre, E. C.; Friedman, S. A.; Hernandez, F. M.; Neal, C. R.; Conder, J. A.

    2014-12-01

    Studies of aeromagnetic anomalies suggest that the lithospheric mantle may contribute to long wavelength features. Examination of unaltered mantle xenoliths may reveal the mineralogical sources of these aeromagnetic anomalies. Prior work has reported microscopic inclusions of magnetic minerals in mantle silicates. Here we explore the magnetism of pure olivine, clinopyroxene, orthopyroxene, and spinel separated from peridotite xenoliths from the Dariganga and Tariat localities in Mongolia that sample the lithospheric mantle. All separates were leached with HF and HCl to remove secondary minerals adhering to the surface of the grains or in cracks. Separates were then mounted in cement to create monomineralic specimens for investigation using hysteresis loops, first order reversal curves (FORC), alternating field and thermal demagnetization of a 1T IRM, and low-temperature magnetometry. All specimens showed trace concentrations of ferromagnetic inclusions with Ms values of ~10-3 Am2kg-1. Thermal demagnetization showed a range of unblocking temperatures with median destructive temperatures of 300-400°C. Two specimens showed a dramatic demagnetization at 585°C, consistent with pure magnetite (Mt). The presence of Mt was confirmed by observations of the Verwey transition at 100-120K and by backfield remanence acquisition curves that plateau at ~300 mT. The median destructive alternating field was ~20 mT and 40-80 mT for specimens from Dariganga and Tariat, respectively. FORC diagrams show single-domain-like behavior with a median Hc of ~20 mT. The demagnetization experiments suggest that Mt inclusions in the lattice of olivine, opx, cpx and spinel carry magnetic remanence. Thus, the lithospheric mantle may exhibit in-situ ferromagnetism carried by Mt below 585°C. The magnetization of separates varies between xenolith localities but is consistent amongst minerals of the same locality. Future work will address whether the Mt formed before or during xenolith ascent.

  16. Structure of the Lithosphere and Upper Mantle Across the Arabian Peninsula

    SciTech Connect

    Al-Amri, A; Rodgers, A

    2007-01-05

    Analysis of modern broadband (BB) waveform data allows for the inference of seismic velocity structure of the crust and upper mantle using a variety of techniques. This presentation will report inferences of seismic structure of the Arabian Plate using BB data from various networks. Most data were recorded by the Saudi Arabian National Digital Seismic Network (SANDSN) which consists of 38 (26 BB, 11 SP) stations, mostly located on the Arabian Shield. Additional data were taken from the 1995-7 Saudi Arabian IRIS-PASSCAL Deployment (9 BB stations) and other stations across the Peninsula. Crustal structure, inferred from teleseismic P-wave receiver functions, reveals thicker crust in the Arabian Platform (40-45 km) and the interior of the Arabian Shield (35-40 km) and thinner crust along the Red Sea coast. Lithospheric thickness inferred from teleseismic S-wave receiver functions reveals very thin lithosphere (40-80 km) along the Red Sea coast which thickens rapidly toward the interior of the Arabian Shield (100-120 km). We also observe a step of 20-40 km in lithospheric thickness across the Shield-Platform boundary. Seismic velocity structure of the upper mantle inferred from teleseismic P- and S-wave travel time tomography reveals large differences between the Shield and Platform, with the Shield being underlain by slower velocities, {+-}3% for P-waves and {+-}6% for S-waves. Seismic anisotropy was inferred from shear-wave splitting, using teleseismic SKS waveforms. Results reveal a splitting time of approximately 1.4 seconds, with the fast axis slightly east of north. The shear-wave splitting results are consistent across the Peninsula, with a slight clockwise rotation parallel for stations near the Gulf of Aqaba. In summary, these results allow us to make several conclusions about the tectonic evolution and current state of the Arabian Plate. Lithospheric thickness implies that thinning near the Red Sea has accompanied the rupturing of the Arabian

  17. Seismic imaging of the lithosphere beneath Hudson Bay: Episodic growth of the Laurentian mantle keel

    NASA Astrophysics Data System (ADS)

    Darbyshire, Fiona A.; Eaton, David W.; Bastow, Ian D.

    2013-07-01

    The Hudson Bay basin in northern Canada conceals one of the major collisional zones of the Canadian Shield, the Trans-Hudson Orogen (THO), which marks the Paleoproterozoic collision between the Archean Superior and Western Churchill cratons at ˜1.9-1.8Ga. Improved knowledge of upper mantle structure beneath the region is essential to establish the nature of the THO, specifically whether Himalayan-style plate tectonics operated in Paleoproterozoic times. Detailed seismological constraints on lithospheric architecture are also required to advance our understanding of the mechanism and timing of keel formation. We use surface wave tomography to illuminate new details of the lithospheric architecture of the Hudson Bay region, resolving both seismic wavespeed and azimuthal anisotropy. Phase velocity maps are calculated from fundamental-mode Rayleigh wave dispersion curves, then used to construct a 3D model exploring upper mantle structure to depths of ˜300km. Fast shear wavespeeds suggest a lithospheric thickness varying from ˜180km to almost 280 km beneath the Hudson Bay region. The new study confirms previous inferences that there is no correlation between crustal ages and lithospheric thickness. Patterns of shear wavespeed and azimuthal anisotropy indicate a layered lithosphere. In the uppermost mantle, both the highest velocities and the anisotropic fast directions wrap around the Bay. This structure is likely related to the formation processes of the Paleozoic intracratonic basin. At greater depth (˜70-150km) we resolve two high-wavespeed cores separated by a relatively narrow near-vertical lower-velocity curtain. This internal architecture is suggested to result from the terminal phase of a modern-style plate-tectonic collision between the Archean Superior and Churchill cratons during the Trans-Hudson orogeny, entrapping juvenile Proterozoic material. The lower lithosphere (≥160km depth) has a relatively homogeneous wavespeed structure across the region

  18. Petrogenesis of nephelinites from the Tarim Large Igneous Province, NW China: Implications for mantle source characteristics and plume-lithosphere interaction

    NASA Astrophysics Data System (ADS)

    Cheng, Zhiguo; Zhang, Zhaochong; Hou, Tong; Santosh, M.; Zhang, Dongyang; Ke, Shan

    2015-04-01

    The nephelinite exposed in the Wajilitage area in the northwestern margin of the Tarim large igneous province (TLIP), Xinjiang, NW China display porphyritic textures with clinopyroxene, nepheline and olivine as the major phenocryst phases, together with minor apatite, sodalite and alkali feldspar. The groundmass typically has cryptocrystalline texture and is composed of crystallites of clinopyroxene, nepheline, Fe-Ti oxides, sodalite, apatite, rutile, biotite, amphibole and alkali feldspar. We report rutile SIMS U-Pb age of 268 ± 30 Ma suggesting that the nephelinite may represent the last phase of the TLIP magmatism, which is also confirmed by the field relation. The nephelinite shows depleted Sr-Nd isotopic compositions with age-corrected 87Sr/86Sr and εNd(t) values of 0.70348-0.70371 and + 3.28 to + 3.88 respectively indicating asthenospheric mantle source. Based on the reconstructed primary melt composition, the depth of magma generation is estimated as 115-140 km and the temperatures of mantle melting as 1540-1575 °C. The hotter than normal asthenospheric mantle temperature suggests the involvement of mantle thermal plume. The Mg isotope values display a limited range of δ26Mg from - 0.35 to - 0.55‰, which are lower than the mantle values (- 0.25‰). The Mg isotopic compositions, combined with the Sr-Nd isotopes and major and trace element data suggest that the Wajilitage nephelinite was most likely generated by low-degree partial melting of the hybridized carbonated peridotite/eclogite source, which we correlate with metasomatism by subducted carbonates within the early-middle Paleozoic convergent regime. A plume-lithosphere model is proposed with slight thinning of the lithosphere and variable depth and degree of melting of the carbonated mantle during the plume-lithosphere interaction. This model also accounts for the variation in lithology of the TLIP.

  19. Joint modeling of lithosphere and mantle dynamics: Evaluation of constraints from global tomography models

    NASA Astrophysics Data System (ADS)

    Wang, Xinguo; Holt, William E.; Ghosh, Attreyee

    2015-12-01

    With the advances in technology, seismological theory, and data acquisition, a number of high-resolution seismic tomography models have been published. However, discrepancies between tomography models often arise from different theoretical treatments of seismic wave propagation, different inversion strategies, and different data sets. Using a fixed velocity-to-density scaling and a fixed radial viscosity profile, we compute global mantle flow models associated with the different tomography models and test the impact of these for explaining surface geophysical observations (geoid, dynamic topography, stress, and strain rates). We use the joint modeling of lithosphere and mantle dynamics approach of Ghosh and Holt (2012) to compute the full lithosphere stresses, except that we use HC for the mantle circulation model, which accounts for the primary flow-coupling features associated with density-driven mantle flow. Our results show that the seismic tomography models of S40RTS and SAW642AN provide a better match with surface observables on a global scale than other models tested. Both of these tomography models have important similarities, including upwellings located in Pacific, Eastern Africa, Iceland, and mid-ocean ridges in the Atlantic and Indian Ocean and downwelling flows mainly located beneath the Andes, the Middle East, and central and Southeast Asia.

  20. Mantle Dynamics and Lithosphere-Asthenosphere Interaction in the South Atlantic from Space Gravity Data

    NASA Astrophysics Data System (ADS)

    Maia, M.; Cadio, C.; Alodia, G.; Metivier, L.

    2015-12-01

    Geoid anomalies are essential tools for the understanding of mantle density distribution and of the patterns of convection. Previous wavelet analyses of the geoid revealed the existence of density anomalies in the deep mantle linked to the long-term volcanic activity of the Central Pacific (Cadio et al., 2011). The South Atlantic displays geodynamic characteristics similar to those of French Polynesia: long lasting volcanic activity, dating back to the opening of the Atlantic; wide area covered by volcanic edifices and seamount chains; irregularity of age patterns and a broad regional depth anomaly. Preliminary wavelet analyses of the geoid anomalies in this area revealed strong correlation with deep velocity anomalies from different tomographic models. However, here, the lithospheric signal linked to the ocean basin and continents must be estimated because it contributes to long wavelengths in geoid spectrum. We tested different lithospheric models in order to estimate this contribution. At intermediate and long wavelengths, the residual geoid confirms the existence of density anomalies in the mantle correlated with the surface expression of the volcanism. Cadio, C., I. Panet, A. Davaille, M. Diament, L. Métivier and O. de Viron, 2011. Pacific geoid anomalies revisited in light of thermochemical oscillating domes in the lower mantle, Earth Planetary Science Letters, 306, doi:10.1016/j.epsl.2011.03.040.

  1. New model of the mantle lithosphere beneath Kuoyka kimberlite field Yakutia.

    NASA Astrophysics Data System (ADS)

    Ashchepkov, Igor; Kostrovitsky, Sergey; Ovchinnikov, Yury; Tychkov, Nikolai; Khmelnikova, Olga; Palessky, Stanislav

    2013-04-01

    New data for the 11 pipes from Kuoyka field show that high Cr2O3 garnets to 10- 12% as well as high Cr chromites (to 64%Cr2O3) are found in several more pipes Zaozernaya, Seraya, Slyudyanka, Vodorasdelnaya, Titan, Lusya in addition to Djanga pipe. All garnets belong o lherzolite field and not less than 1/3 are TiO rich. The TiO2 rich chromites are dominating in the Cr- rich population. Metasomatic Cr2O3- rich (to 6%) ilmenites pre in the MgO and TiO2- part of the variation diagrams. The Cr- diopside variations show high variations of Fe and Na content to 4 % suggesting the hybridic origin similar to the Cr- pyroxeneis from Obnazhennaya pyroxenites (Taylor et al ., 2003). Omphicites (to 7 % Na2O) are rare. Cr-amphiboles (pargasites and hornblendes) are common in the upper part of the SCLM as well as in the Anabar and Kharamai region. Reconstructions of the mantle sections show the deep lithospheric roots beneath the Zosernaya pipe (7.5 GPa) traced by the PT conditions for Opx, Cpx, Gar, Cr and Ilm. SCLM is divided in to 4 sections and Ilm trace tow intervals in lower and upper part form 4 GPa. Th HT branch is sporadically found from 7 GPa to the Moho. In other pipes ilmenite and garnet PT estimates are more common in the lower part o mantle section while the Cpx trace mainly middle part of SCLM similar to the Obnazhennaya pip. It seems that kimberlites captured mainly the walls of feeders traced by Cr- low garnets and ilmenites in the lower part of SCLM while peridotitic mantle column was captured starting from the middle part of SCLM. The NS transsect of the Kuoyka field show more fertile mantle sections in the NNW part of the field. The TRE determined for the minerals from Kuoyka field show rather rounded patterns for REE of garnets with high variations in HREE part and small elevation in LREE . The depleted compositions reval the inflection in Eu TRE spidergrams well as relatively small Sr minima. Many of them show Ta peak, relatively small Pb elevation and Th

  2. Relative strength of lithospheric mantle compared to granulite lower crust in orogenic roots: insight from field laboratory.

    NASA Astrophysics Data System (ADS)

    Kusbach, V.; Ulrich, S.; Schulmann, K.

    2009-04-01

    The continental lithosphere is composed by strong lithospheric mantle and weak lower crust for average and hot geotherms. However, some experiments and seismic studies show that the strength contrast between mantle and crust can vary in order of several magnitudes. The internal zone of the European Variscan orogen (Bohemian Massif, Czech Republic) contains large complexes of Ky - K-feldspar granulites with incorporated spinel and garnet peridotites that can respond to question of mantle-lower crust strength contrast from the field perspective. The studied spinel-garnet harzburgite body (the Mohelno peridotite) represents probably a fragment of strongly depleted oceanic lithosphere showing peak conditions of 22,4-27,6 kbar and 1120-1275°C. The peridotite forms large folded sheet with steep hinge and vertical axial plane. It exhibits presence of spinel along the outer arc and the internal part of the fold and garnet along inner arc, both related to coarse-grained orthopyroxene - olivine microstructure. This coarse microstructure is dynamically recrystallized forming fine-grained matrix (~10 - 20 microns) and the EBSD measurements show presence of axial [100] LPO olivine pattern dominantly along the outer arc of the fold and in spinel harzburgite, while the inner arc of the fold and partly also garnet harzburgite reveals presence of axial [010] LPO pattern. Steep foliation and sub-horizontal to moderately plunging lineation determined from olivine EBSD data defines the shape of the megafold. Host rocks exhibit transposed mylonitic fabric S1-2 revealing peak conditions of 18 kbar, 800°C and heterogeneous D3 retrogression at about 10 - 7 kbar, 650°C. The foliation S2-3 is fully concordant with limbs of peridotite megafold, but close to the outer arc it is affected by asymmetrical folds with axial planar leucosomes coherent with the shape of the megafold hinge zone. In contrast, the S2 in the internal part of the megafold is affected by sinistral and dextral melt

  3. The temperature of the western United States lithosphere and areas of likely mantle compositional variations

    NASA Astrophysics Data System (ADS)

    Schutt, D.; Lowry, A. R.; Buehler, J. S.; Blackwell, D. D.

    2013-12-01

    Estimates of lithospheric temperature are challenging, but essential given that the evolution, deformation, and dynamics of the U.S. lithosphere are fundamentally connected to temperature. To map out lithospheric geotherms, Pn velocities are mapped to temperature. These Pn-derived temperatures are coupled with newly revised estimates of heatflow and shallow subsurface temperatures to 'pin' lithospheric geotherms at the near-surface and just below the Moho. Making only very limited assumptions about the rather poorly known distribution of crustal heat producing elements, tight constraints can be placed on lithospheric geotherms in much of the western U.S. Where Pn velocities and surface heatflow mismatch, information can be gleaned about transient or horizontally-advective thermal processes, or compositionally modulated Pn velocity variations.. Lower crustal temperatures in the western U.S. are high (> 850C) in the Colorado Rocky Mountains, the Rio Grande Rift, the southern margin of the Colorado Plateau, the eastern portion of the Nevada Basin and Range, the Oregon High Lava Plains, and the Yellowstone hotspot track. These locales are strongly correlated with <10Ma magmatism. In these places, temperatures are likely above the wet solidus and near the dry solidus for typical crustal compositions. This implies the lower crust has little strength, promoting crustal flow in response to gravitational potential energy variations, and decoupling the upper crust from the mantle lithosphere and asthenosphere. In deforming zones, elastic thicknesses predicted using a dry diorite/olivine rheology and estimated temperatures are higher than observed. Either lithology or hydration must be weakening the lithosphere relative to a dry diorite/olivine composition crust and mantle. To test the robustness of this observation, we predict the temperature at the Moho that would give the observed elastic thickness for various rheologies, and find in most cases this temperature is far

  4. Formation and Evolution of the Continental Lithospheric Mantle: Perspectives From Radiogenic Isotopes of Silicate and Sulfide Inclusions in Macrodiamonds

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Richardson, S. H.

    2007-12-01

    Silicate and sulfide inclusions that occur in diamonds comprise the oldest (>3 Ga), deepest (>140 km) samples of mantle-derived minerals available for study. Their relevance to the evolution of the continental lithosphere is clear because terrestrial macrodiamonds are confined to regions of the Earth with continental lithospheric mantle keels. The goals of analytical work on inclusions in diamond are to obtain paragenesis constraints, radiogenic ages, and initial isotopic compositions. The purpose is to place diamond formation episodes into the broader framework of the geological processes that create and modify the continental lithosphere and to relate the source of the C and N in diamond-forming fluids to understanding the Earth's C and N cycles in the Archean. Although sulfide and silicate inclusions rarely occur in the same diamond, they both can be grouped according to their geochemical similarity with the chief rock types that comprise the mantle keel: peridotite and eclogite. Silicate inclusions are classified as harzburgitic (depleted; olivine > Fo91, garnet Cr2O3 > 3 wt% and CaO from 0 to 5 wt%), lherzolitic (fertile), or eclogitic (basaltic; garnet Cr2O3 < 2 wt% and CaO from 3 to 15 wt%, clinopyroxene with higher Na2O, Al2O3, and FeO); they are amenable for trace element study by SIMS and for Sm-Nd and Rb-Sr analysis by conventional P-TIMS after grouping by mineralogical similarity. Sulfide inclusions (chiefly FeS with lesser Ni, Cu, and Co) are classified as peridotitic (Ni > 14 wt%; Os > 2 ppm) versus eclogitic (Ni < 10 wt%; Os < 200 ppb); single sulfides are amenable for S isotopic study by SIMS or TIMS, and Re-Os analysis by N-TIMS. Work on inclusions in diamonds depends on the distribution of mined, diamond-bearing kimberlites, and the generosity of mining companies because of the extreme rarity of inclusions in suites of mostly gem-quality diamonds. Most isotopic work has been on the Kaapvaal-Zimbabwe craton with lesser work on the Slave, Siberian

  5. Variations on the Lower Silesian (SW Poland) lithospheric mantle - the Grodziec xenoliths case study

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Ćwiek, Mateusz; Puziewicz, Jacek; Ntaflos, Theodoros

    2016-04-01

    The lithospheric mantle underlying the northern margin of Bohemian Massif (Lower Silesia, SW Poland) is in general characterized by presence of two ultramafic lithologies, both of mostly harzburgitic composition. The group A harzburgites are strongly depleted and record variable metasomatic events, which are however always related to reactions with mixed alkaline-carbonatite melts. The group B harzburgites also record reaction with mafic melts, but in this case the reaction resulted in enrichment of the peridotites in Fe ("Fe-metasomatism"). The xenoliths suites from Grodziec (this study), Krzeniów (Matusiak-Małek et al., 2014, JoP) and Wilcza Góra (Matusiak-Małek et al., submitted), all in the Złotoryja volcanic complex, follow the "A" and "B" lithological characteristics. The Grodziec suite contains, however, numerous lherzolitic xenoliths. The group A xenoliths from Grodziec are anhydrous lherzolites, scarcely harzburgites. The Fo content in olivine varies from 90.7 to 91.8%, Mg# in ortho-and clinopyroxene is 0.91-0.92. Al content in orthopyroxene is 0.05-0.14 a pfu (0.70 to 3.44 wt.%), which makes them one of the highest in region. Few lherzolites are characterized by slightly lower Fo content in olivine (89.16-90.10%) and are therefore classified as A- group. The Mg# of pyroxenes in this group varies from 0.89 to 0.90, but orthopyroxene is generally characterized by low Al content (< 0.08 a pfu, corresponding to <2 wt.% in majority of xenoliths). Group B xenoliths are orthopyroxene - free dunites, and wehrlite. Olivine contains from 85.14 to 86.14 % of Fo, the Mg# of clinopyroxene varies from 0.84 to 0.88. Clinopyroxene in all the groups is LREE enriched and has negative Sr, Zf-Hf and Ti anomalies, but the enrichment decreases from group A to B and so are the depths of negative anomalies. Temperatures of major element equilibration of group A and A- pyroxenes are from approximately 1010 to 1100°C with no specific differences between the groups. So high

  6. Petrofabric and seismic properties of lithospheric mantle xenoliths from the Calatrava volcanic field (Central Spain)

    NASA Astrophysics Data System (ADS)

    Puelles, P.; Ábalos, B.; Gil Ibarguchi, J. I.; Sarrionandia, F.; Carracedo, M.; Fernández-Armas, S.

    2016-06-01

    The microstructural and petrofabric study of peridotite xenoliths from the El Aprisco (Neogene Calatrava Volcanic Field) has provided new information on deformation mechanisms, ambient conditions and seismic properties of the central Iberian subcontinental mantle. Olivine, orthopyroxene, clinopyroxene, amphibole and spinel constitute the mineral assemblage in equilibrium. Their microstructure indicates that they accommodated crystal-plastic deformation under high water fugacity conditions. Crystallographic preferred orientation patterns of key minerals were determined with the EBSD technique. The xenoliths exhibit B, C and A olivine fabrics. B-type fabrics, involving the (010)[001] slip system, may develop in domains where deformation occurs under comparatively lower temperature, higher water-content and faster strain rates. They are interpreted here as the result of deformation in a suprasubduction mantle setting triggered by changing conditions imposed by a cooler subducting slab that incorporated fluids into the system. Xenoliths with olivine C-type fabrics involve activation of the dominant (100)[001] slip system, denote intracrystalline slip at higher temperatures and water-contents. They are here interpreted to sample lithospheric mantle domains where the impact of those new conditions was not so strong. Finally, the A-type fabrics, characteristic of the (010)[100] slip system, are frequent in the mantle under moderate to high temperature. These fabrics are considered here as characteristic of the mantle prior to subduction. The olivine fabrics constrain heterogeneous seismic properties. Propagation orientation of P waves (8.27-8.51 km/s) coincides with olivine [100] axis concentrations, whereas the fastest S1 waves (5.13-5.22 km/s) propagate parallel to [010] axis minima. The maximum shear wave birefringence (VS1-VS2 = 0.17-0.37 km/s) is close to the direction of the macroscopic lineation. Heterogeneity of calculated seismic properties would concur with

  7. Tibetan and Indian lithospheres in the upper mantle beneath Tibet: Evidence from broadband surface-wave dispersion

    NASA Astrophysics Data System (ADS)

    Agius, Matthew R.; Lebedev, Sergei

    2013-10-01

    Broadband seismic experiments over the last two decades have produced dense data coverage across Tibet. Yet, the mechanism of the India-Asia lithospheric convergence beneath it remains a puzzle, with even its basic features debated and with very different end-member models advocated today. We measured highly accurate Rayleigh- and Love-wave phase-velocity curves in broad period ranges (up to 5-200 s) for a few tens of pairs and groups of stations across Tibet, combining, in each case, hundreds to thousands of interstation measurements made with cross-correlation and waveform-inversion methods. Robust shear-velocity profiles were then determined by extensive series of nonlinear inversions of the data, designed to constrain the depth-dependent ranges of isotropic-average shear speeds and radial anisotropy. Temperature anomalies in the upper mantle were estimated from shear velocities using accurate petrophysical relationships. Our results reveal strong heterogeneity in the upper mantle beneath Tibet. Very large high-velocity anomalies in the upper mantle are consistent with the presence of underthrust (beneath southwestern Tibet) and subducted (beneath central and eastern Tibet) Indian lithosphere. The corresponding thermal anomalies match those estimated for subducted Indian lithosphere. In contrast to the Indian lithosphere, Tibetan lithosphere and asthenosphere display low-to-normal shear speeds; Tibetan lithosphere is thus warm and thin. Radial anisotropy in the upper mantle is weak in central and strong in northeastern Tibet, possibly reflecting asthenospheric flow above the subducting Indian lithospheric slab.

  8. Deep Europe today: Geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga

    USGS Publications Warehouse

    Artemieva, I.M.; Thybo, H.; Kaban, M.K.; ,

    2006-01-01

    We present a summary of geophysical models of the subcrustal lithosphere of Europe. This includes the results from seismic (reflection and refraction profiles, P- and S-wave tomography, mantle anisotropy), gravity, thermal, electromagnetic, elastic and petrological studies of the lithospheric mantle. We discuss major tectonic processes as reflected in the lithospheric structure of Europe, from Precambrian terrane accretion and subduction to Phanerozoic rifting, volcanism, subduction and continent-continent collision. The differences in the lithospheric structure of Precambrian and Phanerozoic Europe, as illustrated by a comparative analysis of different geophysical data, are shown to have both a compositional and a thermal origin. We propose an integrated model of physical properties of the European subcrustal lithosphere, with emphasis on the depth intervals around 150 and 250 km. At these depths, seismic velocity models, constrained by body-and surface-wave continent-scale tomography, are compared with mantle temperatures and mantle gravity anomalies. This comparison provides a framework for discussion of the physical or chemical origin of the major lithospheric anomalies and their relation to large-scale tectonic processes, which have formed the present lithosphere of Europe. ?? The Geological Society of London 2006.

  9. The Acasta Gneisses revisited: Evidence for an early depleted mantle

    NASA Astrophysics Data System (ADS)

    Scherer, E. E.; Sprung, P.; Bleeker, W.; Mezger, K.

    2010-12-01

    The oldest known mineral samples crystallized on the Earth are the up to 4.4 Ga zircon grains from the Jack Hills, Australia [e.g., 1,2]. Zircon, which is datable by U-Pb, contains ca. 1 wt% Hf, and has very low Lu/Hf, is well suited to recording the initial 176Hf/177Hf of its parent magma. It has therefore been widely used to track Earth’s crust-mantle differentiation over time and to estimate the relative amounts of juvenile and recycled components that contributed to Archean and Hadean crust. [e.g., 3,4,5,6]. Zircon studies may be subject to sampling bias, however: Juvenile mafic magmas are likely to stem from depleted sources, but are less likely to crystallize zircon. Processes such as host-rock metamorphism, remelting, weathering of the host rock, and sedimentary transport of grains may have further biased the zircon population. Metamict grains or those with high aspect ratios are likely to be destroyed by these processes, potentially biasing the zircon Hf record toward enriched compositions such that the degree of mantle depletion remains poorly defined before 4 Ga. In addition, incorrect age assignments to Hf analyses result in spurious initial ɛHf values. Here, we attempt to overcome these issues by investigating the bulk rock Lu-Hf and Sm-Nd systematics of some of the oldest rocks on Earth, the Acasta Gneisses (Northwest Territories, Canada). Earlier studies showed that zircon grains in these gneisses tend to come from enriched sources [e.g, 3,7,8] and are thus of little use for directly tracking the degree of mantle depletion. Furthermore, the gneisses themselves have been multiply metamorphosed and are often affected by mixing: The banded gneisses in particular comprise several magmatic precursor rocks of different age that have been repeatedly folded into each other. This promted questions of whether zircon ages should be used in the calculation of bulk rock initial epsilon Nd, and whether linear trends on Sm-Nd isochron represented meaningful

  10. Metasomatism in the lithospheric mantle beneath southern Patagonia, Argentina

    NASA Astrophysics Data System (ADS)

    Kolosova-Satlberger, Olesya; Ntaflos, Theodoros; Bjerg, Ernesto

    2014-05-01

    Mantle xenoliths from Gobernador Gregores, southern Patagonia are spinel- lherzolites, harzburgites and wherlites. A large number of the studied xenoliths have experienced cryptic and modal metasomatism. The xenoliths are mainly coarse-grained with prevalent protogranular texture but equigranular tabular and mosaic textures are present as well. Xenoliths that have undergone modal metasomatism bear hydrous phases such as amphibole, phlogopite ± apatite and melt pockets. The latter are of particular interest because of their unusually large size (up to 1 cm in diameter) and freshness. They consist of second generation olivine, clinopyroxene and spinel ± relict amphibole ± sulfides that are surrounded by a yellowish vesicular glass matrix. The melt pockets are found in amphibole- and/or phlogopite-bearing wehrlites and harzburgites as well as anhydrous lherzolites. Subhedral primary olivines enclosed by melt pockets show in the BSE images a dark grey margin up to 80 microns thick attributed to the reaction of the primatry olivine with melt. Fine grained spinel inclusions are always associated with the dark grey margin, indicating that they belong to the secong generation assemblage. There are considerable differences between first and second generation minerals found in melt pockets. While primary olivine has Fo-contents that range from 88.0 to 93.3, second generation olivines in melt pockets vary from Fo89.3 to Fo94.4. Both primary and second generation cpx are diopsides with the latter systematically enriched in TiO2. The glasses that occur in melt pockets or propagate intergranular have compositions varying from trachyandesite to phonolite. The variable composition of the glass could be attributed to host basalt infiltration and decompressional melting of amphiboles. Some of the studied xenoliths show melt propagation of two compositional different glasses crosscutting primary generation minerals and finally mixing with each other. Microprobe analyses suggest

  11. Osmium isotope evidence for Early to Middle Proterozoic mantle lithosphere stabilization and concomitant production of juvenile crust in Dish Hill, CA peridotite xenoliths

    NASA Astrophysics Data System (ADS)

    Armytage, Rosalind M. G.; Brandon, Alan D.; Peslier, Anne H.; Lapen, Thomas J.

    2014-07-01

    The 187Os/188Os compositions in peridotite samples from the sub-continental lithospheric mantle (SCLM) can be used to constrain the timing of melt extraction and potentially test the link between large-scale mantle melting and juvenile crust production. The SCLM has often experienced a complex history such that some lithophile elements such as REEs (rare earth elements) in these rocks typically record overprinting during metasomatism. New 187Os/188Os, major and trace element compositional data were obtained on sixteen Dish Hill peridotite xenoliths (California, USA) and are used to examine these issues. The samples show strong correlations between 187Os/188Os and indicators of melt depletion such as Lu abundance in clinopyroxene, modal abundance of clinopyroxene, bulk rock Al2O3 and the Cr# (Cr/(Cr + Al) in spinel. These relationships indicate that metasomatism did not compromise the 187Os/188Os systematics. The data appear to form two melt depletion trends consistent with Re depletion model ages (TRD) obtained from the two Al2O3 versus 187Os/188Os trends are 2.1 ± 0.5 Ga and 1.3 ± 0.3 Ga (±95% conf.). It has been suggested that the SCLM under Dish Hill may be fragments of oceanic lithosphere emplaced as the result of Farallon plate subduction during the Late Cretaceous (Luffi et al., 2009). However, the strong melt depletion trends, major element compositions and Re-depletion ages are not consistent with the interpretation of this suite of xenoliths having an oceanic lithospheric origin. Rather, the 2.1 Ga age coincides with Nd model ages of 2-2.3 Ga (Bennett and DePaolo, 1987; Rämö and Calzia, 1998) for the overlying Mojavia crustal province. The 1.3 Ga age is consistent with large-scale A-type magmatism in the nearby region at this time that is purported to be the result of mantle plume melting processes. Therefore, data from this study point to the SCLM under Dish Hill being formed by two ancient mantle-melting events, which could be the result of

  12. The Sandvik peridotite, Gurskøy, Norway: Three billion years of mantle evolution in the Baltica lithosphere

    NASA Astrophysics Data System (ADS)

    Lapen, Thomas J.; Medaris, L. Gordon, Jr.; Beard, Brian L.; Johnson, Clark M.

    2009-05-01

    The Sandvik ultramafic body, Island of Gurskøy, Western Gneiss Region, Norway, is a mantle fragment that contains polymetamorphic mineral assemblages and affords a unique view into the response of subcontinental lithospheric mantle to repeated orogenic/magmatic events. The Sandvik peridotite body and nearby outcrops record four paragenetic stages: 1) pre-exsolution porphyroclasts of ol + grt + opx (high-Ca ) + cpx (low-Ca), which equilibrated at 1100-1200 °C and 6.5-7.0 GPa; 2) kelyphite containing ol + grt + spl +opx (low-Ca) + am (high-Al), as well as exsolved pyroxene containing opx + cpx + spl in equilibrium with matrix olivine, at 725 °C and 1.5 GPa; 3) granoblastic matrix of ol + spl + opx (low-Ca) + am (high-Al), at 700 °C and 1.0 GPa. A nearby outcrop contains a fourth assemblage consisting of ol + chl + opx + am. Lu-Hf and Re-Os model ages of garnet peridotite indicate melt depletion at 3.3 Ga [Beyer, E.E., Brueckner, H.K., Griffin, W.L., O'Reilly, S.Y., Graham, S., 2004. Archean mantle fragments in Proterozoic crust, Western Gneiss Region, Norway. Geology 32, 609-612.; Lapen, T.J., Medaris, L.G. Jr., Johnson, C.M., and Beard, B.L., 2005. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm-Nd and Lu-Hf isotope analyses of the Sandvik ultramafic body, Norway. Contributions to Mineralogy and Petrology 150, 131-145.], marking the time of separation from the convecting mantle. Lu-Hf whole rock and mineral isochron ages of constituent garnet peridotite and garnet pyroxenite layers in the Sandvik body reflect cooling and emplacement at ~ 1.25 Ga and ~ 1.18 Ga, respectively, whereas Sm-Nd whole rock and mineral ages of the garnet pyroxenite layers and the garnet peridotite are consistent with metasomatic alteration at ~ 1.15 Ga [Lapen, T.J., Medaris, L.G. Jr., Johnson, C.M., and Beard, B.L., 2005. Archean to Middle Proterozoic evolution of Baltica subcontinental lithosphere: evidence from combined Sm-Nd and

  13. Inherited structure and coupled crust-mantle lithosphere evolution: Numerical models of Central Australia

    NASA Astrophysics Data System (ADS)

    Heron, Philip J.; Pysklywec, Russell N.

    2016-05-01

    Continents have a rich tectonic history that have left lasting crustal impressions. In analyzing Central Australian intraplate orogenesis, complex continental features make it difficult to identify the controls of inherited structure. Here the tectonics of two types of inherited structures (e.g., a thermally enhanced or a rheologically strengthened region) are compared in numerical simulations of continental compression with and without "glacial buzzsaw" erosion. We find that although both inherited structures produce deformation in the upper crust that is confined to areas where material contrasts, patterns of deformation in the deep lithosphere differ significantly. Furthermore, our models infer that glacial buzzsaw erosion has little impact at depth. This tectonic isolation of the mantle lithosphere from glacial processes may further assist in the identification of a controlling inherited structure in intraplate orogenesis. Our models are interpreted in the context of Central Australian tectonics (specifically the Petermann and Alice Springs orogenies).

  14. Can We Probe the Conductivity of the Lithosphere and Upper Mantle Using Satellite Tidal Magnetic Signals?

    NASA Technical Reports Server (NTRS)

    Schnepf, N. R.; Kuvshinov, A.; Sabaka, T.

    2015-01-01

    A few studies convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in satellite observations. This result encourages using M2 satellite magnetic data to constrain subsurface electrical conductivity in oceanic regions. Traditional satellite-based induction studies using signals of magnetospheric origin are mostly sensitive to conducting structures because of the inductive coupling between primary and induced sources. In contrast, galvanic coupling from the oceanic tidal signal allows for studying less conductive, shallower structures. We perform global 3-D electromagnetic numerical simulations to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of our sensitivity analysis suggest it will be promising to use M2 oceanic signals detected at satellite altitude for probing lithospheric and upper mantle conductivity. Our simulations also suggest that M2 seafloor electric and magnetic field data may provide complementary details to better constrain lithospheric conductivity.

  15. An upper mantle seismic discontinuity beneath the Galápagos Archipelago and its implications for studies of the lithosphere-asthenosphere boundary

    NASA Astrophysics Data System (ADS)

    Byrnes, Joseph S.; Hooft, Emilie E. E.; Toomey, Douglas R.; Villagómez, Darwin R.; Geist, Dennis J.; Solomon, Sean C.

    2015-04-01

    An upper mantle seismic discontinuity (the Gutenberg or G discontinuity), at which shear wave velocity decreases with depth, has been mapped from S-to-p conversions in radial receiver functions recorded across the Galápagos Archipelago. The mean depth of the discontinuity is 91 ± 8 km beneath the southeastern archipelago and 72 ± 5 km beneath surrounding regions. The discontinuity appears deeper beneath the portion of the Nazca plate that we infer passed over the Galápagos mantle plume than elsewhere in the region. We equate the depth of the G discontinuity to the maximum depth extent of anhydrous melting, which forms an overlying layer of dehydrated and depleted mantle. We attribute areas of shallow discontinuity depth to the formation of the dehydrated layer near the Galápagos Spreading Center and areas of greater discontinuity depth to its modification over a mantle plume with an excess temperature of 115 ± 30°C. The G discontinuity lies within a high-seismic-velocity anomaly that we conclude forms by partial dehydration and a gradual but steady increase in seismic velocity with decreasing depth after upwelling mantle first encounters the solidus for volatile-bearing mantle material. At the depth of the solidus for anhydrous mantle material, removal of remaining water creates a sharp decrease in velocity with depth; this discontinuity may also mark a site of melt accumulation. Results from seismic imaging, the compositions of Galápagos lavas, and rare-earth-element concentrations across the archipelago require that mantle upwelling and partial melting occur over a broad region within the dehydrated and depleted layer. We conclude that the G discontinuity beneath the archipelago does not mark the boundary between rigid lithosphere and convecting asthenosphere.

  16. Tracing ancient events in the lithospheric mantle: A case study from ophiolitic chromitites of SW Turkey

    NASA Astrophysics Data System (ADS)

    Akbulut, Mehmet; González-Jiménez, José María; Griffin, William L.; Belousova, Elena; O'Reilly, Suzanne Y.; McGowan, Nicole; Pearson, Norman J.

    2016-04-01

    New major-, minor- and trace-element data on high-Cr chromites from several ophiolitic podiform chromitites from Lycian and Antalya peridotites in southwestern Turkey reveal a polygenetic origin from a range of arc-type melts within forearc and back-arc settings. These forearc and the back-arc related high-Cr chromitites are interpreted to reflect the tectonic juxtaposition of different lithospheric mantle segments during the obduction. The diversity of the γOs(t=0) values (-8.28 to +13.92) in the Antalya and Lycian chromitite PGMs and their good correlations with the sub- to supra-chondritic 187Os/188Os ratios (0.1175-0.1459) suggests a heterogeneous mantle source that incorporated up to 40% recycled crust, probably due to subduction processes of the orogenic events. The few model ages calculated define two significant peaks in TRD model ages at 1.5 and 0.25 Ga, suggesting that the chromitites are younger than 0.25 Ga and include relics of an at least Mesoproterozoic or older (>1.0 Ga) mantle protolith. Eight of the nine zircon grains separated from the chromitites, are interpreted as detrital and/or resorbed xenocrystic relics, whilst a significantly less reworked/resorbed one is considered to be of metasomatic origin. In-situ U-Pb dating of the xenocrystic zircon grains yielded a spread of ages within ca 0.6-2.1 Ga, suggesting recycling of crustal rocks younger than 0.6 Ga (Late Neoproterozoic). The notable coincidence between the lower age limit of the older zircons (ca 1.6 Ga) and the oldest Os model age peak (ca 1.5 Ga) from the PGM may suggest a Mesoproterozoic rifting stage. These findings imply a Paleoproterozoic sub-continental lithospheric mantle (SCLM) protolith for the SW Anatolian mantle which was later converted into an oceanic lithospheric mantle domain possibly following a rifting and continental break-up initiated during Mesoproterozoic (ca 1.5-1.0 Ga). The single metasomatic zircon of ca 0.09 Ga age coinciding with the initiation of the

  17. Lithospheric Architecture and Mantle-Supported Topography of the Colorado Plateau Constrained by Receiver Function Imaging

    NASA Astrophysics Data System (ADS)

    Wilson, D.; Aster, R. C.; Grand, S. P.; Ni, J. F.; Baldridge, W. S.

    2009-12-01

    After maintaining elevations near sea level for hundreds of millions years, the Colorado Plateau (CP) of the southwestern United States has a present average elevation of 2 km. However, the sources of buoyant support for this high elevation have long been unclear. We apply receiver function joint velocity analysis and imaging to data from the LA RISTRA experiment to construct a new seismic image of crust and upper mantle structure that constitutes the first complete seismic transect of its kind across the CP. We find that the central CP crust has variable thickness of 42-50 km that thins to 30-35 km at plateau margins. For the central CP, crustal Vp/Vs ratios average 1.71 to the northwest and 1.80 to the southeast of the Yavapai/Southern Yavapai province boundary. Higher Vp/Vs ratios to the southeast of the boundary indicates that the Southern Yavapai crust may on average be slightly more mafic which is consistent with the lower concentrations of incompatible elements found for this region. Isostatic calculations constrained by these observations show that only approximately 20% of central CP elevation can be explained by thickened crust alone, with the bowl-shaped, high-elevation edges of the CP requiring nearly total mantle compensation. We calculate an uplift budget which shows that the CP buoyancy arises from the combined effects of crustal thickening, Laramide/post-Laramide alteration of the lithospheric root, and dynamic support from mantle upwelling. Prior to the Laramide, thick crust and low-density uppermost mantle were balanced by a thick, dense Proterozoic lithospheric root that kept the CP near sea level. Laramide/post-Laramide tectonics altered this root most likely by a combination of metasomatism, post-Laramide thermal conduction and expansion, and perhaps minor tectonic erosion. This, combined with dynamic topography due to mantle upwelling produced by the foundering of the Farallon slab, resulted in buoyant CP uplift to the present high elevations

  18. Helium isotopes in lithospheric mantle: Evidence from Tertiary basalts of the western USA

    SciTech Connect

    Dodson, A.; DePaolo, D.J.; Kennedy, B.M. |

    1998-12-01

    The isotopic compositions of He, Sr, and Nd were measured in Tertiary-age basalts from the Basin and Range province of the western USA to evaluate models for the He isotopic character of subcontinental mantle lithosphere (SCML) and assess the role of recycled SCML in models of mantle evolution. Previous isotopic and trace element measurements suggested that most of these basalts were formed by melting of SCML. {sup 3}He/{sup 4}He ratios, measured by in-vacuo crushing of olivine phenocrysts, vary from 2.9 to 7.8 times the atmospheric value (2.9 to 7.8 Ra) consistently below the MORB value of 8.7 {+-} 0.5 Ra. The lowest R/Ra values, associated with low {epsilon}{sub Nd}, high {sup 87}Sr/{sup 86}Sr, and high La/Nb, are attributable to lithosphere mantle, and indicate that SCML is not dominated by MORB-type He, nor by high R/Ra, plume-type He. Consideration of geographic variability indicates there are two, and possibly three, distinct regions of SCML with differing He isotopic characteristics. SCML beneath the eastern Sierra Nevada is inferred to have {sup 3}He/{sup 4}He of {approximately}5.5 Ra and a He/Nd ratio slightly less than MORB-type mantle; SCML beneath the central Basin and Range has {sup 3}He/{sup 4}He of {approximately}4 Ra and a higher He/Nd ratio than MORB-type mantle. The SCML under southwestern Utah shows less systematic correlation of He isotopes with other geochemical parameters, but also has a lower bound R/Ra value of about 4 Ra. The inferred SCML helium ratios are consistent with retention of radiogenic {sup 4}He over 800 Ma for the eastern Sierra Nevada and 1700 Ma for the other two regions. The results are not consistent with models of He infiltration from the underlying asthenosphere and suggest the lithosphere of the Basin and Range region was not delaminated during the early Tertiary. The He, Sr, Nd, and Pb isotopic compositions inferred for the SCML of the southwestern USA are a reasonably good match to the characteristics of the EMII

  19. The redox conditions of anhydrous and hydrous xenoliths of suprasubduction and intraplate lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Bonadiman, C.; Coltorti, M.

    2012-12-01

    The oxidation state of the upper mantle, its relationship with C-H-O fluids speciation and tectonic settings has been debated for decades and the various modelling have considered the prevalent role of the hydrous minerals over nominally anhydrous minerals (and the opposite) as well as the dissolution of silicate minerals (as providers of Fe3+ to the system) as directly related to water activity and oxygen fugacity. Each of these modelling has different implications for mantle rheology, seismic structure, and the evolution of the lithosphere (i.e.: Karato and Jung, 1998, Hirshmann, 2006). Upper mantle is the only part of the Earth's mantle where the oxygen fugacity can be directly measured, its values/variation being dependent on various processes such as partial melting and metasomatism often operating in time and space without solution of continuity. Recent general reviews of oxygen thermobarometry measurements (Forst & McCammon, 2008; Foley, 2011) indicate that the oxygen fugacity at the top of the upper mantle falls within ±2 log units of the fayalite-magnetite-quartz (FMQ) oxygen buffer. There is also a general consensus in considering H2O as the strongest oxidizing agent in mantle metasomatic fluids, its activity leading to the formation of amphibole and raising the mantle redox state. This contribution presents fO2 and water activity results from three spinel-bearing mantle xenolith localities and distinct geodynamic settings: Ichinomegata (Japan) amphibole-bearing peridotites entrained in calc-alkaline basalts and Cerro Fraile (South Patagonia, Argentina), mostly anhydrous lherzolites and pirossenites brought up to the surface by alkaline basalts representing fragments of sub-arc mantle and Baker Rocks, Victoria Land (Antarctica), amphibole-bearing lherzolites representing portion of intraplate subcontinental lithospheric mantle. The three mantle sectors records fO2 values in the range of -1.9 to +0.8 log units of the FQM buffer. and low to very low aH2O

  20. Regional uplift associated with continental large igneous provinces: The roles of mantle plumes and the lithosphere

    USGS Publications Warehouse

    Saunders, A.D.; Jones, S.M.; Morgan, L.A.; Pierce, K.L.; Widdowson, M.; Xu, Y.G.

    2007-01-01

    The timing and duration of surface uplift associated with large igneous provinces provide important constraints on mantle convection processes. Here we review geological indicators of surface uplift associated with five continent-based magmatic provinces: Emeishan Traps (260??million years ago: Ma), Siberian Traps (251??Ma), Deccan Traps (65??Ma), North Atlantic (Phase 1, 61??Ma and Phase 2, 55??Ma), and Yellowstone (16??Ma to recent). All five magmatic provinces were associated with surface uplift. Surface uplift can be measured directly from sedimentary indicators of sea-level in the North Atlantic and from geomorpholocial indicators of relative uplift and tilting in Yellowstone. In the other provinces, surface uplift is inferred from the record of erosion. In the Deccan, North Atlantic and Emeishan provinces, transient uplift that results from variations in thermal structure of the lithosphere and underlying mantle can be distinguished from permanent uplift that results from the extraction and emplacement of magma. Transient surface uplift is more useful in constraining mantle convection since models of melt generation and emplacement are not required for its interpretation. Observations of the spatial and temporal relationships between surface uplift, rifting and magmatism are also important in constraining models of LIP formation. Onset of surface uplift preceded magmatism in all five of the provinces. Biostratigraphic constraints on timing of uplift and erosion are best for the North Atlantic and Emeishan Provinces, where the time interval between significant uplift and first magmatism is less than 1??million years and 2.5??million years respectively. Rifting post-dates the earliest magmatism in the case of the North Atlantic Phase 1 and possibly in the case of Siberia. The relative age of onset of offshore rifting is not well constrained for the Deccan and the importance of rifting in controlling magmatism is disputed in the Emeishan and Yellowstone

  1. Hyperextension of continental to oceanic-like lithosphere: The record of late gabbros in the shallow subcontinental lithospheric mantle of the westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Hidas, Károly; Varas-Reus, Maria Isabel; Garrido, Carlos J.; Marchesi, Claudio; Acosta-Vigil, Antonio; Padrón-Navarta, José Alberto; Targuisti, Kamal; Konc, Zoltán

    2015-05-01

    We report gabbroic dikes in the plagioclase tectonite domains of the Ojén and Ronda massifs (Betic Cordillera, southern Spain), which record crystallization at low-pressure syn-, or slightly postkinematic to the late ductile history of the Betic Peridotite in the westernmost Mediterranean. We present mineral major and trace element compositional data of discordant gabbroic dikes in the Ojén massif and gabbroic patches in the Ronda massif, complemented by the whole rock and electron backscattered diffraction (EBSD) data of the Ojén occurrence. In the Ojén massif, gabbro occurs as 1-3 centimeter wide discordant dikes that crosscut the plagioclase tectonite foliation at high angle. These dikes are composed of cm-scale igneous plagioclase and clinopyroxene crystals that show shape preferred orientations subparallel to the lineation of the host peridotite and oblique to the trend of the dike. Intrusion of Ojén gabbro dikes is coherent with the stress field that formed the high temperature, ductile plagioclase tectonite foliation and then attests for a mantle igneous event prior to the intracrustal emplacement of the massif. In the Ronda massif, gabbroic rocks crystallized in subcentimeter wide anastomozing veins, or as interstitial patches in the host dunite. They are mostly composed of plagioclase and clinopyroxene. Plagioclase composition is bytownitic in the Ojén, and andesinic in the Ronda massif. Clinopyroxene in both places shows identical, light Rare-Earth Element (LREE) depleted trace element patterns. The calculated trace element composition of melts in exchange equilibrium with the studied igneous clinopyroxenes reflects LREE-enriched character coupled with negative Eu anomaly, and indicates that gabbro-forming melts in Ronda and Ojén share a common melt source with an island arc tholeiitic affinity. Geothermobarometric data and liquidus mineralogy indicate that gabbro crystallization occurred at shallow depths (0.2-0.5 GPa) in a 7-16 km thick

  2. Isotopic (Pb, Sr, Nd, C, O) evidence for plume-related sampling of an ancient, depleted mantle reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Simonetti, Antonio

    2015-02-01

    The exact mantle source for carbonatite melts remains highly controversial. Despite their predominant occurrence within continental (lithospheric) domains, the radiogenic isotope data from young (< 200 Ma) carbonatite complexes worldwide overlap the fields defined by present-day oceanic island basalts (OIBs). This feature suggests an intimate petrogenetic relationship with asthenospheric mantle. New Pb, Sr, C, and O isotopic data are reported here for constituent minerals from the Oka carbonatite complex, which is associated with the Cretaceous Monteregian Igneous Province (MIP), northeastern North America. The Pb isotope data define linear arrays in Pb-Pb isotope diagrams, with the corresponding Sr isotope ratios being highly variable (0.70314-0.70343); both these features are consistent with open system behavior involving at least three distinct mantle reservoirs. Compared to the isotope composition of known mantle sources for OIBs and carbonatite occurrences worldwide, the least radiogenic 207Pb/204Pb (14.96 ± 0.07) and 208Pb/204Pb (37.29 ± 0.15) isotopic compositions relative to their corresponding 206Pb/204Pb ratios (18.86 ± 0.08) reported here are distinct, and indicate the involvement of an ancient depleted mantle (ADM) source. The extremely unradiogenic Pb isotope compositions necessitate U/Pb fractionation early in Earth's history (prior to 4.0 Ga ago) and growth via a multi-stage Pb evolution model. The combined stable (C and O) and radiogenic isotopic compositions effectively rule out crustal/lithosphere contamination during the petrogenetic history of the Oka complex. Instead, the isotopic variations reported here most likely result from the mixing of discrete, small volume partial melts derived from a heterogeneous plume source characterized by a mixed HIMU-EM1-ADM signature.

  3. Formation of ridges in a stable lithosphere in mantle convection models with a viscoplastic rheology.

    PubMed

    Rozel, A; Golabek, G J; Näf, R; Tackley, P J

    2015-06-28

    Numerical simulations of mantle convection with a viscoplastic rheology usually display mobile, episodic or stagnant lid regimes. In this study, we report a new convective regime in which a ridge can form without destabilizing the surrounding lithosphere or forming subduction zones. Using simulations in 2-D spherical annulus geometry, we show that a depth-dependent yield stress is sufficient to reach this ridge only regime. This regime occurs when the friction coefficient is close to the critical value between mobile lid and stagnant lid regimes. Maps of convective regime as a function of the parameters friction coefficients and depth dependence of viscosity are provided for both basal heating and mixed heating situations. The ridge only regime appears for both pure basal heating and mixed heating mode. For basal heating, this regime can occur for all vertical viscosity contrasts, while for mixed heating, a highly viscous deep mantle is required.

  4. Evolution of Mojavian mantle lithosphere influenced by Farallon plate subduction: Evidence from Hf and Nd isotopes in peridotite xenoliths from Dish Hill, CA

    NASA Astrophysics Data System (ADS)

    Armytage, Rosalind M. G.; Brandon, Alan D.; Andreasen, Rasmus; Lapen, Thomas J.

    2015-06-01

    A major issue in the assembly of continents is the role of subduction in building and reworking the continental mantle lithosphere. Spinel lherzolite xenoliths from Dish Hill, CA represent Mojavian sub-continental lithospheric mantle (SCLM) that existed along an off-craton continental edge during late Cretaceous Farallon plate subduction. The Dish Hill locale is well situated for recording any Farallon plate influence, be it as oceanic lithosphere accretion or for its role in providing metasomatic agents to the Mojavian SCLM. The 176Hf/177Hf and 143Nd/144Nd isotopic compositions of clinopyroxenes from these xenoliths are radiogenic with εHf from +12.9 to +134.4 and εNd from +2.2 to +26.1, indicative of ancient Proterozoic melt depletion. Four out of the sixteen samples lie on a 2.1 Ga reference line for melt extraction from primitive mantle for both 176Hf/177Hf and 143Nd/144Nd, confirming their position on the 2.1 Ga 187Os/188Os aluminachron from previous work on these peridotites (Armytage et al., 2014). A second Re-depletion age obtained from an 187Os/188Os aluminachron of 1.3 Ga is also observed in the 176Lu-176Hf and 147Sm-143Nd systematics. The 176Hf/177Hf-143Nd/144Nd data from Dish Hill do not provide strong evidence for the existence of a duplex of oceanic lithosphere and SCLM, or for these peridotites being sourced from modern asthenospheric mantle upwelling after lithospheric removal. However, subchondritic 176Lu/177Hf and 147Sm/144Nd ratios and trace element compositions in some of the peridotites point to the influence of metasomatic processes. In seven of the peridotites 176Hf/177Hf ratios are not complemented by similarly radiogenic 143Nd/144Nd ratios. Such decoupling, relative to the mantle array, indicates that the 176Hf/177Hf record in these peridotites is more robust to resetting by these local metasomatic processes than 143Nd/144Nd. The 87Sr/86Sr ratios measured in these samples fall into two distinct groups based on (Ce/Yb)PM, with the less

  5. Understanding plate-motion changes over the past 100 Myr with quantitative models of the coupled lithosphere/mantle system

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2015-04-01

    The volume of geophysical datasets has grown substantially over recent decades. Our knowledge of continental evolution has increased due to advances in interpreting the records of orogeny and sedimentation. Ocean-floor observations now allow one to resolve past plate motions (e.g. in the North Atlantic and Indian Ocean over the past 20 Myr) at temporal resolutions of about 1 Myr. Altogether, these ever-growing datasets allow us to reconstruct the past evolution of Earth's lithospheric plates in greater detail. This is key to unravelling the dynamics of geological processes, because plate motions and their temporal changes are powerful probe into the evolving force balance between shallow- and deep-rooted processes. However, such progress is not yet matched by the ability to quantitatively model past plate-motion changes and, therefore, to test hypotheses on the dominant controls. The main technical challenge is simulating the rheological behaviour of the lithosphere/mantle system, which varies significantly from viscous to brittle. Traditionally computer models for viscous mantle flow on the one hand, and for the motions of the brittle lithosphere on the other hand, have been developed separately. Coupling of these two independent classes of models has been accomplished only for neo-tectonic scenarios, without accounting for the impact of time-evolving mantle-flow (e.g. Iaffaldano and Bunge 2009). However, we have built a coupled model to simulate the lithosphere/mantle system (using SHELLS and TERRA, respectively) through geological time, and to exploit the growing body of geophysical data as a primary constraint on these quantitative models. TERRA is a global spherical finite-element code for mantle convection (e.g. Baumgardner 1985, Bunge et al. 1996, Davies et al. 2013), whilst SHELLS is a thin-sheet finite-element code for lithosphere dynamics (e.g. Bird 1998). Our efforts are focused, in particular, on achieving the technical ability to: (i) simulate the

  6. Probing the structure of the sub-Salinia mantle lithosphere using spinel lherzolite xenoliths from Crystal Knob, Santa Lucia Range, California

    NASA Astrophysics Data System (ADS)

    Quinn, D. P.; Saleeby, J.; Ducea, M. N.; Luffi, P. I.

    2013-12-01

    We present the first petrogenetic analysis of a suite of peridotite xenoliths from the Crystal Knob volcanic neck in the Santa Lucia Range, California. The neck was erupted during the Plio-Pleistocene through the Salinia terrane, a fragment of the Late Cretaceous southern Sierra-northwest Mojave supra-subduction core complex that was displaced ~310 km in the late Cenozoic along the dextral San Andreas fault. The marginal tectonic setting makes these xenoliths ideal for testing different models of upper-mantle evolution along the western North American plate boundary. Possible scenarios include the early Cenozoic underplating of Farallon-plate mantle lithosphere nappes (Luffi et al., 2009), Neogene slab window opening (Atwater and Stock, 1998), and the partial subduction and stalling of the Monterey microplate (Pisker et al., 2012). The xenoliths from Crystal Knob are spinel lherzolites, which sample the mantle lithosphere underlying Salinia, and dunite cumulates apparently related to the olivine-basalt host. Initial study is focused on the spinel lherzolites: these display an allotriomorphic granular texture with anisotropy largely absent. However, several samples exhibit a weak shape-preferred orientation in elongate spinels. Within each xenolith, the silicate phases are in Fe-Mg equilibrium; between samples, Mg# [molar Mg/(Mg+Fe)*100] ranges from 87 to 91. Spinels have Cr# [molar Cr/(Cr+Al)*100] ranging from 10 to 27. Clinopyroxene Rb-Sr and Sm-Nd radiogenic isotope data show that the lherzolites are depleted in large-ion lithophile (LIL) elements, with uniform enrichment in 143Nd (ɛNd from +10.3 to +11.0) and depletion in 87Sr (87/86Sr of .702). This data rules out origin in the continental lithosphere, such as that observed in xenoliths from above the relict subduction interface found at at Dish Hill and Cima Dome in the Mojave (Luffi et al., 2009). The Mesozoic mantle wedge, which is sampled by xenoliths from beneath the southern Sierra Nevada batholith

  7. Constraining the Composition of the Subcontinental Lithospheric Mantle Beneath the East African Rift: FTIR Analysis of Water in Spinel Peridotite Mantle Xenoliths

    NASA Technical Reports Server (NTRS)

    Erickson, Stephanie Gwen; Nelson, Wendy R.; Peslier, Anne H.; Snow, Jonathan E.

    2014-01-01

    The East African Rift System was initiated by the impingement of the Afar mantle plume on the base of the non-cratonic continental lithosphere (assembled during the Pan-African Orogeny), producing over 300,000 kmof continental flood basalts approx.30 Ma ago. The contribution of the subcontinental lithospheric mantle (SCLM) to this voluminous period of volcanism is implied based on basaltic geochemical and isotopic data. However, the role of percolating melts on the SCLM composition is less clear. Metasomatism is capable of hybridizing or overprinting the geochemical signature of the SCLM. In addition, models suggest that adding fluids to lithospheric mantle affects its stability. We investigated the nature of the SCLM using Fourier transform infrared spectrometry (FTIR) to measure water content in mantle xenoliths entrained in young (1 Ma) basaltic lavas from the Ethiopian volcanic province. The mantle xenoliths consist dominantly of spinel lherzolites and are composed of nominally anhydrous minerals, which can contain trace water as H in mineral defects. Eleven mantle xenoliths come from the Injibara-Gojam region and two from the Mega-Sidamo region. Water abundances of olivines in six samples are 1-5ppm H2O while the rest are below the limit of detection (<0.5 ppm H2O); orthopyroxene and clinopyroxene contain 80-238 and 111-340 ppm wt H2O, respectively. Two xenoliths have higher water contents - a websterite (470 ppm) and dunite (229 ppm), consistent with involvement of ascending melts. The low water content of the upper SCLM beneath Ethiopia is as dry as the oceanic mantle except for small domains represented by percolating melts. Consequently, rifting of the East African lithosphere may not have been facilitated by a hydrated upper mantle.

  8. Extreme Hf and light Fe isotopes in Archean komatiites - a remnant of very early mantle depletion?

    NASA Astrophysics Data System (ADS)

    Nebel, O.; Sossi, P.; Campbell, I. H.; Van Kranendonk, M. J.

    2014-12-01

    Hafnium isotope signatures in some Archean komatiites (ca. 3.5-3.0 billion years old) require a mantle source with a time-integrated Lu/Hf that exceeds average modern depleted mantle. Investigation of the timing and locus of parent-daughter fractionation in their mantle sources potentially constrains differentiation processes in the early Earth and their subsequent distribution and storage. In addition, they may help to constrain the Hf isotope evolution of the greater depleted mantle. In order to shed light on these processes, we discuss radiogenic Hf isotopes in conjunction with stable Fe isotope systematics in Archean komatiites from the Pilbara craton in Western Australia. Our findings indicate that, after careful evaluation of the effects of alteration, pristine samples are characterised by initial 176Hf/177Hf, which lie above the age-corrected depleted mantle, as a consequence of ancient melt extraction. Iron isotope systematics for these samples further point to a mantle source that is isotopically lighter than average modern depleted mantle, which is also consistent with melt-depletion. Taken together, these observations require a component of an old, super-depleted reservoir in the komatiite mantle source(s) that survived in the mantle for possibly hundreds of millions of years. The Lu/Hf of this refractory mantle appears to be complementary to, and therefore contemporaneous with, the first terrestrial crust, as preserved in Hadean (i.e., > 4 Ga) detrital zircon cores, which may indicate a causal relationship between them. We will discuss implications for very early mantle dynamics and the formation of very early mantle reservoirs.

  9. Low crustal velocities and mantle lithospheric variations in southern Tibet from regional Pnl waveforms

    NASA Astrophysics Data System (ADS)

    Rodgers, Arthur J.; Schwartz, Susan Y.

    We report low average crustal P-wave velocities (5.9-6.1 km/s, Poisson's ratio 0.23-0.27, thickness 68-76 km) in southern Tibet from modelling regional Pnl waveforms recorded by the 1991-1992 Tibetan Plateau Experiment. We also find that the mantle lithosphere beneath the Indus-Tsangpo Suture and the Lhasa Terrane is shield-like (Pn velocity 8.20-8.25 km/s, lid thickness 80-140 km, positive velocity gradient 0.0015-0.0025 s-1). Analysis of relative Pn travel time residuals requires a decrease in the mantle velocities beneath the northern Lhasa Terrane, the Banggong-Nujiang Suture and the southern Qiangtang Terrane. Tectonic and petrologic considerations suggest that low bulk crustal velocities could result from a thick (50-60 km) felsic upper crust with vertically limited and laterally pervasive partial melt. These results are consistent with underthrusting of Indian Shield lithosphere beneath the Tibetan Plateau to at least the central Lhasa Terrane.

  10. The Structure of the Mantle Lithosphere in Central Europe from S-Receiver Functions

    NASA Astrophysics Data System (ADS)

    Kind, Rainer; Handy, Mark; Yuan, Xiaohui; Meier, Thomas

    2016-04-01

    Data from about 650 permanent and temporary seismic broadband stations accessed from the open EIDA Archive yielded about 49.000 S-receiver functions. Selection criteria were a signal-to-noise ratio of at least two of the S signal on the SV component, low noise on the P component before the S arrival time and a relatively good approximation of the delta im- pulse on the SV component after deconvolution. All traces were checked visually. The time domain traces were migrated to depth domain by back projection along the ray path. Smooth images of major discontinuities in the upper mantle were obtained by applying an eight-seconds low-pass filter. Observations of the Moho and the discontinuity at 410 km depth serve as a check of the quality of the analysis. We observe two widespread negative (i.e., downward reduction in velocity) discontinuities. The shallower one in about the 50 km to 150 km depth interval occurs everywhere in the study area and is interpreted as the lithosphere-asthenosphere boundary (LAB) in Phanerozoic Europe. According to similar observations in the north American craton, it is interpreted as mid-lithospheric discontinuity (MLD) in the east European craton (EEC). The second negative discontinuity seen beneath the EEC, the Trans-European Suture Zone, the Bohemian Massive, and parts of the Pannonian Basin lies at a depth interval of about 150 km to 300 km. It is interpreted as cratonic LAB reaching well the S and E of the Torn- quist-Teisseyre Zone, which is considered the boundary of the EEC at the shallower levels. The deeper cratonic LAB has anomalous topography: Below the Pannonian Basin it shal- lows to c. 150 km but deepens to c. 300 km below the Bohemian Massif. There is a jump in the cratonic LAB along the northern edge of the Bohemian Massif, where the LAB sud- denly changes depth from 200 km in the north to 300 km in the south. We tentatively inter- pret these observations as a result of overthrusting the EEC mantle lithosphere during the

  11. Bathymetry of the Pacific plate and its implications for thermal evolution of lithosphere and mantle dynamics

    NASA Astrophysics Data System (ADS)

    Zhong, Shijie; Ritzwoller, Michael; Shapiro, Nikolai; Landuyt, William; Huang, Jinshui; Wessel, Paul

    2007-06-01

    A long-standing question in geodynamics is the cause of deviations of ocean depth or seafloor topography from the prediction of a cooling half-space model (HSC). Are the deviations caused entirely by mantle plumes or lithospheric reheating associated with sublithospheric small-scale convection or some other mechanisms? In this study we analyzed the age and geographical dependences of ocean depth for the Pacific plate, and we removed the effects of sediments, seamounts, and large igneous provinces (LIPs), using recently available data sets of high-resolution bathymetry, sediments, seamounts, and LIPs. We found that the removal of seamounts and LIPs results in nearly uniform standard deviations in ocean depth of ˜300 m for all ages. The ocean depth for the Pacific plate with seamounts, LIPs, the Hawaiian swell, and South Pacific super-swell excluded can be fit well with a HSC model till ˜80-85 Ma and a plate model for older seafloor, particularly, with the HSC-Plate depth-age relation recently developed by Hillier and Watts (2005) with an entirely different approach for the North Pacific Ocean. A similar ocean depth-age relation is also observed for the northern region of our study area with no major known mantle plumes. Residual topography with respect to Hillier and Watts' HSC-Plate model shows two distinct topographic highs: the Hawaiian swell and South Pacific super-swell. However, in this residual topography map, the Darwin Rise does not display anomalously high topography except the area with seamounts and LIPs. We also found that the topography estimated from the seismic model of the Pacific lithosphere of Ritzwoller et al. (2004) generally agrees with the observed topography, including the reduced topography at relatively old seafloor. Our analyses show that while mantle plumes may be important in producing the Hawaiian swell and South Pacific super-swell, they cannot be the only cause for the topographic deviations. Other mechanisms, particularly

  12. Lithosphere structure and upper mantle characteristics below the Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Rao, G. Srinivasa; Radhakrishna, M.; Sreejith, K. M.; Krishna, K. S.; Bull, J. M.

    2016-07-01

    The oceanic lithosphere in the Bay of Bengal (BOB) formed 80-120 Ma following the breakup of eastern Gondwanaland. Since its formation, it has been affected by the emplacement of two long N-S trending linear aseismic ridges (85°E and Ninetyeast) and by the loading of ca. 20-km of sediments of the Bengal Fan. Here, we present the results of a combined spatial and spectral domain analysis of residual geoid, bathymetry and gravity data constrained by seismic reflection and refraction data. Self-consistent geoid and gravity modelling defined by temperature-dependent mantle densities along a N-S transect in the BOB region revealed that the depth to the lithosphere-asthenosphere boundary (LAB) deepens steeply from 77 km in the south to 127 km in north, with the greater thickness being anomalously thick compared to the lithosphere of similar-age beneath the Pacific Ocean. The Geoid-Topography Ratio (GTR) analysis of the 85°E and Ninetyeast ridges indicate that they are compensated at shallow depths. Effective elastic thickness (Te) estimates obtained through admittance/ coherence analysis as well as the flexural modelling along these ridges led to the conclusions: (i) 85°E Ridge was emplaced in off-ridge environment (Te = 10-15 km); (ii) the higher Te values of ˜25 km over the Afanasy Nikitin Seamount (ANS) reflect the secondary emplacement of the seamount peaks in off-ridge environment, (iii) that the emplacement of the Ninetyeast Ridge north of 2°N occurred in an off-ridge environment as indicated by higher Te values (25-30 km). Furthermore, the admittance analysis of geoid and bathymetry revealed that the admittance signatures at wavelengths >800 km are compensated by processes related to upper mantle convection.

  13. Chemical and petrological heterogenity of lithospheric mantle beneath N Patagonia (Argentina) - case study of Cerro Chenque xenoliths.

    NASA Astrophysics Data System (ADS)

    Kozdrowska, Dominika; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Puziewicz, Jacek; Bjerg, Ernesto

    2015-04-01

    Mantle-xenoliths-bearing, back-arc Pliocene - Quaternary alkali basalts occur in N Patagonia, Argentina (Bjerg et al., 2005, J. of S. Am. Sci.). The Cerro Chenque (Rio Negro province) trachybasaltic lavas carry small (up to 10 cm in diameter) xenoliths of anhydrous, spinel bearing harzburgites, dunites and less abundant clino- , orthopyroxenites, websterites. The xenolith suite comprises also gabbros and norites, which are not discussed in this study. All the phases forming xenoliths are rich in Mg (Fo=90.5-93.5%; mg#Opx=0.90-0.94; mg#Cpx=0.91-0.95). Composition of spinel is extremely variable (mg#=0.65-0.85; cr#=0.00-0.70). Three types (A, B, C) of REE patterns occur in clinopyroxene and orthopyroxene: (1) type A (harzburgites and orthopyroxenites) is U-shaped in both the pyroxenes, REE contents vary significantly (e.g. La=~0.5 primitive mantle values (PM), ~5 PM, and ~50PM); (2) type B (dunites and harzburgites) clinopyroxene has flat HREE and is continuously enriched in LREE up to 10x PM, orthopyroxene is U-shaped; (3) type C (harzburgites) clinopyroxene is convex upward, La=5-7PM), orthopyroxene is continuously depleted in LREE. Clinopyroxene of all the types is poor in Ti, while normalized content of other trace elements is strongly variable. Trace element compositions of Cerro Chenque xenolithc clinopyroxene cover whole compositional range of mantle-derived clinopyroxene from Rio Negro province presented by Bjerg et al., 2005 (op.cit.). In xenoliths where clino- and orthopyroxene are in equilibrium, the calculated temperatures are always around 1000°C (Brey and Köhler,1990, JoP). No spinel-clinopyroxene symplectites suggesting peridotite provenance from garnet stability field were observed. Strong variations in rock-type and chemical composition of minerals forming Cerro Chenque xenoliths suggest complicated structure of upper mantle beneath N Patagonia. At present stage of study we suggest that Earth's lithospheric mantle in this region: - suffered from

  14. Simulating the Thermochemical Magmatic and Tectonic Evolution of Venus's Mantle and Lithosphere: Intrusive vs. Extrusive Magmatism

    NASA Astrophysics Data System (ADS)

    Tackley, Paul; Armann, Marina

    2013-04-01

    Here we extend the models of [1]. Numerical convection models of the thermochemical evolution of Venus are compared to present-day topography and geoid, recent resurfacing history and surface deformation. The models include melting, magmatism, decaying heat-producing elements, core cooling, realistic temperature-dependent viscosity and either stagnant lid or episodic lithospheric overturn. In [1] it was found that in stagnant lid convection the dominant mode of heat loss is magmatic heat pipe, which requires massive magmatism and produces very thick crust, inconsistent with observations. Partitioning of heat-producing elements into the crust helps but does not help enough. Episodic lid overturn interspersed by periods of quiescence effectively loses Venus's heat while giving lower rates of volcanism and a thinner crust. Calculations predict 5-8 overturn events over Venus's history, each lasting ~150 Myr, initiating in one place and then spreading globally. During quiescent periods convection keeps the lithosphere thin. Magmatism keeps the mantle temperature constant over Venus's history. Crustal recycling occurs by entrainment in stagnant lid convection, and by lid overturn in episodic mode. Venus-like amplitudes of topography and geoid can be produced in either stagnant or episodic modes, with a viscosity profile that is Earth-like but shifted to higher values. The basalt density inversion below the olivine-perovskite transition causes compositional stratification around 730 km; breakdown of this layering increases episodicity but far less than episodic lid overturn. The classical stagnant lid mode with interior temperature rheological temperature scale lower than TCMB is not reached because mantle temperature is controlled by magmatism while the core cools slowly from a superheated start. Core heat flow decreases with time, possibly shutting off the dynamo, particularly in episodic cases. Here we extend [1] by considering intrusive magmatism as an alternative to

  15. Variable Water Concentrations in the Asthenospheric and Lithospheric Mantle Underneath the Eastern United States

    NASA Astrophysics Data System (ADS)

    Soles, B.; Brennan, G. W.; Johnson, E. A.; Mazza, S. E.; Gazel, E.

    2014-12-01

    An Eocene (47-48 Ma) volcanic swarm in NW Virginia represents the youngest episode of volcanism in the Eastern US, possibly initiated by delamination of lithospheric mantle (Mazza 2014). The Eocene swarm is located along the MAGIC seismic array (Crampton 2013). The phenocrysts and mantle xenocrysts within these volcanic rocks are the most direct constraints on the water content of the mantle in this region and will aid interpretation of geophysical data. In this study, we measured structural hydroxyl concentrations, [OH], in clinopyroxene (cpx) and olivine (ol) xenocrysts and cpx phenocrysts from three basaltic intrusions: Mole Hill, a volcanic neck, Trimble Knob, a diatreme, and Rt.631, a dike. Polarized FTIR spectra were obtained at JMU and the Smithsonian Institution. Mineral compositions were obtained on the electron microprobe at the USGS, Reston. The cpx xenocrysts show hydration profiles, whereas cpx phenocrysts have flat or dehydration profiles. Cpx xenocryst cores contain [OH]=25-300 ppm H2O and ol xenocrysts have [OH]<2 ppm. Cpx xenocryst rims contain [OH]=160-1300 ppm, and cpx phenocrysts have [OH]=100-570 ppm, and a cpx from Trimble Knob conservatively contains 1500-3500 ppm. Magmatic water contents calculated using O'Leary (2010) range from 0.3-4.9 wt% for xenocryst rims and phenocrysts, and >6 wt% at Trimble Knob. P and T were calculated using equilibrium exchange reactions from Putirka (2008). Xenocryst rims from Mole Hill have P=13.7±1.7 kbar and T=1287±24°C, and cpx phenocrysts from the Rt.631 dike record similar conditions of P=16.1±2.8 kbar and T=1339±37°C. A cpx phenocryst from Trimble Knob has P=23.8±4.0 kbar and T=1143±124°C. We interpret our data to indicate a dry lithospheric mantle as represented by the cpx and ol xenocrysts, underplated by a wet layer at the lithosphere-asthenosphere boundary produced by fractional crystallization of magma generated deeper in the asthenosphere, as represented by the cpx phenocrysts.

  16. Mantle metasomatism

    SciTech Connect

    Menzies, M.; Hawkesworth, C.

    1986-01-01

    The concept of metasomatism and its role in the geochemical enrichment and depletion processes in upper mantle rocks remains contentious. This volume makes a comprehensive contribution to the study of metasomatic and enrichment processes: origin and importance in determining trace element and isotopic heterogeneity in the lithospheric mantle. It begins with a theoretical thermodynamic and experimental justification for metasomatism and proceeds to present evidence for this process from the study of mantle xenoliths. Finally the importance of metasomatism in relation to basaltic volcanism is assessed. The contents are as follows: Dynamics of Translithospheric Migration of Metasomatic Fluid and Alkaline Magma. Solubility of Major and Trace Elements in Mantle Metasomatic Fluids: Experimental Constraints. Mineralogic and Geochemical Evidence for Differing Styles of Metasomatism in Spinel Lherzolite Xenoliths: Enriched Mantle Source Regions of Basalts. Characterization of Mantle Metasomatic Fluids in Spinel Lherzolites and Alkali Clinophyroyxenites from the West Eifel and South-West Uganda. Metasomatised Harzburgites in Kimberlite and Alkaline Magmas: Enriched Resites and ''Flushed'' Lherzolites. Metasomatic and Enrichment Phenomena in Garnet-Peridotite Facies Mantle Xenoliths from the Matsoku Kimberlite Pipe Lesotho. Evidence for Mantle Metasomatism in Periodite Nodules from the Kimberley Pipes South Africa. Metasomatic and Enrichment Processes in Lithospheric Peridotites, an Effective of Asthenosphere-Lithosphere Interaction. Isotope Variations in Recent Volcanics: A Trace Element Perspective. Source Regions of Mid-Ocean Ridge Basalts: Evidence for Enrichment Processes. The Mantle Source for the Hawaiian Islands: Constraints from the Lavas and Ultramafic Inclusions.

  17. Crustal and sub-continental lithospheric mantle decoupling beneath the Malawi Rift

    NASA Astrophysics Data System (ADS)

    Njinju, Emmanuel Atem

    We analyzed satellite gravity and aeromagnetic data using the two-dimensional (2D) power-density spectrum technique to investigate the lithospheric and thermal structure beneath the magma-starved Malawi Rift, which forms the southern extension of the Western Branch of the East African Rift System. We observed: (1) lack of consistent pattern of crustal thinning and elevated heat flow along the surface expression of the rift. Beneath the Rungwe Volcanic Province (RVP) in the north, the crustal thickness ranges between 40 and 45 km and varies between 35 and 40 km along the entire length of the rift. (2) shallow lithosphere-asthenosphere boundary (LAB) elevated to ˜64 km beneath the entire length of the rift and deeper than 100 km beneath the surrounding Precambrian terranes reaching in places ˜124 km. (3) localized zones of high heat flow (70-75 mWm-2) beneath the RVP, and the central and southern parts of the rift. The central and southern thermal anomalies are due to the presence of uranium deposits in the Karoo sedimentary rocks. We interpret the crustal thickness heterogeneity to have been inherited from pre-existing lithospheric stretching, while strain during the extension of the Malawi Rift is preferentially localized in the sub-continental lithospheric mantle (SCLM). Our interpretation is supported by 2D forward modeling of the gravity data showing uniform stretching of the SCLM by a factor of 1.5 to 1.8 beneath the entire length of the rift. Our results indicate decoupling of the crust from the SCLM during the early stages of the development of the Malawi Rift.

  18. Processes accompanying of mantle plume emplacement into continental lithosphere: Evidence from NW Arabian plate, Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, E. V.

    2015-12-01

    Lower crustal xenoliths occurred in the Middle Cretaceous lamprophyre diatremes in Jabel Ansaria (Western Syria) (Sharkov et al., 1992). They are represented mainly garnet granulites and eclogite-like rocks, which underwent by deformations and retrograde metamorphism, and younger fresh pegmatoid garnet-kaersutite-clinopyroxene (Al-Ti augite) rocks; mantle peridotites are absent in these populations. According to mineralogical geothermobarometers, forming of garnet-granulite suite rocks occurred under pressure 13.5-15.4 kbar (depths 45-54 kn) and temperature 965-1115oC. At the same time, among populations of mantle xenoliths in the Late Cenozoic platobasalts of the region, quite the contrary, lower crustal xenoliths are absent, however, predominated spinel lherzolites (fragments of upper cooled rim of a plume head), derived from the close depths (30-40 km: Sharkov, Bogatikov, 2015). From this follows that ancient continental crust was existed here even in the Middle Cretaceous, but in the Late Cenozoic was removed by extended mantle plume head; at that upper sialic crust was not involved in geomechanic processes, because Precambrian metamorphic rocks survived as a basement for Cambrian to Cenozoic sedimentary cover of Arabian platform. In other words, though cardinal rebuilding of deep-seated structure of the region occurred in the Late Cenozoic but it did not affect on the upper shell of the ancient lithosphere. Because composition of mantle xenolithis in basalts is practically similar worldwide, we suggest that deep-seated processes are analogous also. As emplacement of the mantle plume heads accompanied by powerful basaltic magmatism, very likely that range of lower (mafic) continental crust existence is very convenient for extension of plume heads and their adiabatic melting. If such level, because of whatever reasons, was not reached, melting was limited but appeared excess of volatile matters which led to forming of lamprophyre or even kimberlite.

  19. Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Stein, S.; Okal, E.A.; Rubie, David C.

    1996-01-01

    Earth's deepest earthquakes occur as a population in subducting or previously subducted lithosphere at depths ranging from about 325 to 690 km. This depth interval closely brackets the mantle transition zone, characterized by rapid seismic velocity increases resulting from the transformation of upper mantle minerals to higher-pressure phases. Deep earthquakes thus provide the primary direct evidence for subduction of the lithosphere to these depths and allow us to investigate the deep thermal, thermodynamic, and mechanical ferment inside slabs. Numerical simulations of reaction rates show that the olivine ??? spinel transformation should be kinetically hindered in old, cold slabs descending into the transition zone. Thus wedge-shaped zones of metastable peridotite probably persist to depths of more than 600 km. Laboratory deformation experiments on some metastable minerals display a shear instability called transformational faulting. This instability involves sudden failure by localized superplasticity in thin shear zones where the metastable host mineral transforms to a denser, finer-grained phase. Hence in cold slabs, such faulting is expected for the polymorphic reactions in which olivine transforms to the spinel structure and clinoenstatite transforms to ilmenite. It is thus natural to hypothesize that deep earthquakes result from transformational faulting in metastable peridotite wedges within cold slabs. This consideration of the mineralogical states of slabs augments the traditional largely thermal view of slab processes and explains some previously enigmatic slab features. It explains why deep seismicity occurs only in the approximate depth range of the mantle transition zone, where minerals in downgoing slabs should transform to spinel and ilmenite structures. The onset of deep shocks at about 325 km is consistent with the onset of metastability near the equilibrium phase boundary in the slab. Even if a slab penetrates into the lower mantle, earthquakes

  20. Origin of the Early Cretaceous continental intraplate volcanism, NW Syria: melting of a metasomatised lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Ma, G. S.; Malpas, J.; Xenophontos, C.; Suzuki, K.; Lo, C.

    2011-12-01

    The Mesozoic evolution of the Neotethys-Eastern Mediterranean between the African-Arabian and Eurasian continents was accompanied by intermittent eruption of alkaline-transitional basalts in Arabia. The causes of the prolonged volcanism remain controversial, whether related to the arrival(s) of mantle plume [1] or prolonged far-field extension of the passive continental margin [2]. In addition, the source(s) of the volcanism is not well constrained, as previous conclusions were drawn before recent understanding of the origin of intraplate magmas - (i) melting of hydrous metasomatic veins within the lithospheric mantle [3] or (ii) melting of an incompatible-element enriched peridotite source ± eclogites in the presence of CO2 [4, 5]. The Mesozoic basalts (ankaramites and transitional basalts) from the Coastal Ranges, NW Syria analysed in this study were dated at 106.3 ± 0.2 Ma and 103.4 ± 0.3 Ma (bulk-rock 40Ar/39Ar ages), representing the last instance of Mesozoic intraplate magmatism in the Levant region. Isotopic and geochemical analysis reveals distinct compositions between the two lava series (ankaramites: ɛNd(t) = 5.1-5.6, 87Sr/87Sr(t) = 0.70293-0.70302, 187Os/188Os(t) = 0.227-0.242; transitional basalts: ɛNd(t) = 4.0-4.6, 87Sr/87Sr(t) = 0.70320-0.70424, 187Os/188Os(t) = 0.392; and lower SiO2, higher TiO2, Nb/U, Nb/Th, Nb/La and Ce/Pb in the ankaramites). Fractional crystallisation and assimilation-fractional crystallisation modelling suggests minor roles for both processes during the evolution of the lavas, despite the generally high Os isotopic ratios. The modelling also precludes derivation of one lava series from the other, suggesting that the isotopic and geochemical distinctions must be inherited from the source. It is interpreted that the chemical characteristics represent a greater component derived from metasomatic amphibole-rich veins in the source region. Both the ankaramites and transitional basalts were generated from this metasomatised

  1. Post-Archean formation of the lithospheric mantle in the central Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Udachnaya kimberlite

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri A.; Doucet, Luc S.; Carlson, Richard W.; Golovin, Alexander V.; Korsakov, Andrey V.

    2015-09-01

    The formation age of the Siberian cratonic mantle is not well established. Re-Os data on various mantle-derived materials brought up by kimberlite magmas have shown that it contains Archean components, but the reported ages range broadly (3.4 to <1 Ga). We report Re-Os isotope and PGE concentration data for a suite of 29 fresh, well-characterized xenoliths from the Udachnaya-East kimberlite representing all major peridotite rock types and a large part of the cratonic mantle profile. Several xenoliths with very low Os contents (<0.3 ppb) and/or high Re/Os ratios are not suitable for age estimates. The Os (and Ir) depletions are common in cpx-bearing spinel harzburgites and coarse garnet harzburgites, but are not found in deformed, high-T peridotites. Twenty refractory (Al2O3 0.1-1.6%) peridotites yield TRD ages from 0.9 to 2.2 Ga. TRD for a subset of six high-Mg# (0.92-0.93), low-T (⩽930 °C) spinel harzburgites and a single garnet harzburgite yield a narrow range from 2.0 to 2.2 Ga with an average of 2.1 ± 0.1 Ga, which we consider the best estimate for the age of the melting event that initially formed the lithospheric mantle beneath Udachnaya. The TRD estimates for less refractory (Mg# 0.907-0.919) deformed garnet peridotites show a greater range and are generally lower (0.9-2.0 Ga; average 1.54 ± 0.28 Ga) apparently due to the effects of melt metasomatism on the initial melting residues. The predominant part of the mantle in the central Siberian craton formed in the Paleoproterozoic and not in the Archean, unlike cratons in southern Africa and North America. Minor older components reported earlier from Udachnaya may be fragments of pre-existing lithosphere trapped during stacking of melting residues formed about 2 Ga ago. We argue that the formation of cratonic lithospheric mantle, with common high-Mg# (⩾0.92) and opx-enriched peridotites, was not limited to the Archean as previously thought, but continued in the Paleoproterozoic, i.e. that asthenospheric

  2. Did diamond-bearing orangeites originate from MARID-veined peridotites in the lithospheric mantle?

    PubMed

    Giuliani, Andrea; Phillips, David; Woodhead, Jon D; Kamenetsky, Vadim S; Fiorentini, Marco L; Maas, Roland; Soltys, Ashton; Armstrong, Richard A

    2015-04-17

    Kimberlites and orangeites (previously named Group-II kimberlites) are small-volume igneous rocks occurring in diatremes, sills and dykes. They are the main hosts for diamonds and are of scientific importance because they contain fragments of entrained mantle and crustal rocks, thus providing key information about the subcontinental lithosphere. Orangeites are ultrapotassic, H2O and CO2-rich rocks hosting minerals such as phlogopite, olivine, calcite and apatite. The major, trace element and isotopic compositions of orangeites resemble those of intensely metasomatized mantle of the type represented by MARID (mica-amphibole-rutile-ilmenite-diopside) xenoliths. Here we report new data for two MARID xenoliths from the Bultfontein kimberlite (Kimberley, South Africa) and we show that MARID-veined mantle has mineralogical (carbonate-apatite) and geochemical (Sr-Nd-Hf-O isotopes) characteristics compatible with orangeite melt generation from a MARID-rich source. This interpretation is supported by U-Pb zircon ages in MARID xenoliths from the Kimberley kimberlites, which confirm MARID rock formation before orangeite magmatism in the area.

  3. Seismic detection of folded, subducted lithosphere at the core-mantle boundary.

    PubMed

    Hutko, Alexander R; Lay, Thorne; Garnero, Edward J; Revenaugh, Justin

    2006-05-18

    Seismic tomography has been used to infer that some descending slabs of oceanic lithosphere plunge deep into the Earth's lower mantle. The fate of these slabs has remained unresolved, but it has been postulated that their ultimate destination is the lowermost few hundred kilometres of the mantle, known as the D'' region. Relatively cold slab material may account for high seismic velocities imaged in D'' beneath areas of long-lived plate subduction, and for reflections from a seismic velocity discontinuity just above the anomalously high wave speed regions. The D'' discontinuity itself is probably the result of a phase change in relatively low-temperature magnesium silicate perovskite. Here, we present images of the D'' region beneath the Cocos plate using Kirchhoff migration of horizontally polarized shear waves, and find a 100-km vertical step occurring over less than 100 km laterally in an otherwise flat D'' shear velocity discontinuity. Folding and piling of a cold slab that has reached the core-mantle boundary, as observed in numerical and experimental models, can account for the step by a 100-km elevation of the post-perovskite phase boundary due to a 700 degrees C lateral temperature reduction in the folded slab. We detect localized low velocities at the edge of the slab material, which may result from upwellings caused by the slab laterally displacing a thin hot thermal boundary layer.

  4. Pervasive, tholeiitic refertilisation and heterogeneous metasomatism in Northern Victoria Land lithospheric mantle (Antarctica)

    NASA Astrophysics Data System (ADS)

    Pelorosso, Beatrice; Bonadiman, Costanza; Coltorti, Massimo; Faccini, Barbara; Melchiorre, Massimiliano; Ntaflos, Theodoros; Gregoire, Michel

    2016-04-01

    The petrology of peridotite xenoliths in the Cenozoic volcanics from Greene Point (Northern Victoria Land, Antarctica) provides new constraints on the characterisation of the lithospheric mantle beneath the West Antarctic Rift. Based on mineral major and trace element models, this mantle domain is proposed to represent a residuum after 10% and 20% partial melting. Moreover, melting models and isotopic results for Sr and Nd systematics highlight the substantial contribution of tholeiitic melts percolating through peridotites. Close correlation with trace element contents in clinopyroxene phenocrysts from Ferrar and Karoo tholeiites allows us to ascribe this refertilisation event to the Jurassic. This asthenospheric melt was also able to transfer a garnet signature to the Northern Victoria Land mantle segment. The rare presence of glass and secondary phases indicate that Greene Point xenoliths were heterogeneously affected by alkaline metasomatism, probably related to the West Antarctic Rift System opening; this has also been widely observed in other Northern Victoria Land localities (i.e., Baker Rocks). Temperature and fO2 were calculated (950 °C; Δlog fO2 (QFM), - 1.70 to - 0.39) at a fixed pressure of 15 kbar, confirming the tendency of the anhydrous Greene Point xenolith population to have higher equilibration temperatures and comparable redox conditions, compared to the nearby amphibole-bearing peridotites from Baker Rocks.

  5. Strong lateral strength contrasts in the mantle lithosphere of continents: A case study from the hot SW Canadian Cordillera

    NASA Astrophysics Data System (ADS)

    Hardebol, N. J.; Beekman, F.; Cloetingh, S. A. P. L.

    2013-08-01

    This study aims at quantifying the 3-D variability in lithosphere strength of the south-eastern Canadian Cordillera and adjacent craton to the east. Strength is calculated in a forward manner, starting from rheological laws of brittle and ductile deformation. The work flow calculates a temperature model based on a multi-layer compositional model and subsequently estimates the strength distribution from both the compositional and temperature models. The temperature modeling involves numerical inversion and cubic spline algorithms which enable to impose boundary conditions that account better for strong lateral variations in lithosphere thickness and lateral heat flow. This addresses the lithosphere structure between the Canadian Cordillera and craton. The Canadian Cordillera is marked by a hot and thin lithosphere of ~ 60 km thickness that stands in contrast to a cold and thick craton of ~ 170 km thickness to the east, which consequently results in pronounced changes in bulk lithosphere strength. The high surface heat flow of the Cordillera interior and its contrast with the Foreland Basin can be reproduced by temperature models that combine elevated mantle heat flow due to the thin lithosphere and higher crustal heat production from magmatic intrusions. A series of rheological models, which examines the role of different temperature input models, composition and strain rate, shows that the first-order strength pattern is persistent. For the hot Canadian Cordillera, strength resides for > 80% in the upper crust and with integrated lithosphere strength of 2.0-3.5ṡ106 MPaṡm. For the cold craton, the upper mantle provides > 75% of the integrated strength with values of 4.0-8.0ṡ106 MPaṡm for the crust and 20-65ṡ106 MPaṡm for the lithosphere. Effective elastic thickness is estimated between 5 and 15 km for the Cordillera and 40-80 km for the craton. This illustrates the Cordillera to craton transition as a prominent rheological feature for upper mantle flow

  6. Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere.

    PubMed

    Bonatti, Enrico; Ligi, Marco; Brunelli, Daniele; Cipriani, Anna; Fabretti, Paola; Ferrante, Valentina; Gasperini, Luca; Ottolini, Luisa

    2003-05-29

    A 20-Myr record of creation of oceanic lithosphere is exposed along a segment of the central Mid-Atlantic Ridge on an uplifted sliver of lithosphere. The degree of melting of the mantle that is upwelling below the ridge, estimated from the chemistry of the exposed mantle rocks, as well as crustal thickness inferred from gravity measurements, show oscillations of approximately 3-4 Myr superimposed on a longer-term steady increase with time. The time lag between oscillations of mantle melting and crustal thickness indicates that the mantle is upwelling at an average rate of approximately 25 mm x yr(-1), but this appears to vary through time. Slow-spreading lithosphere seems to form through dynamic pulses of mantle upwelling and melting, leading not only to along-axis segmentation but also to across-axis structural variability. Also, the central Mid-Atlantic Ridge appears to have become steadily hotter over the past 20 Myr, possibly owing to north-south mantle flow.

  7. Regional 3D Numerical Modeling of the Lithosphere-Mantle System: Implications for Continental Rift-Parallel Surface Velocities

    NASA Astrophysics Data System (ADS)

    Stamps, S.; Bangerth, W.; Hager, B. H.

    2014-12-01

    The East African Rift System (EARS) is an active divergent plate boundary with slow, approximately E-W extension rates ranging from <1-6 mm/yr. Previous work using thin-sheet modeling indicates lithospheric buoyancy dominates the force balance driving large-scale Nubia-Somalia divergence, however GPS observations within the Western Branch of the EARS show along-rift motions that contradict this simple model. Here, we test the role of mantle flow at the rift-scale using our new, regional 3D numerical model based on the open-source code ASPECT. We define a thermal lithosphere with thicknesses that are systematically changed for generic models or based on geophysical constraints in the Western branch (e.g. melting depths, xenoliths, seismic tomography). Preliminary results suggest existing variations in lithospheric thicknesses along-rift in the Western Branch can drive upper mantle flow that is consistent with geodetic observations.

  8. Two Lithologies in Lithospheric Mantle Beneath Nothern Margin of the Bohemian Massif (e Germany and SW Poland).

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros; Kukuła, Anna; Ćwiek, Mateusz

    2014-05-01

    The subcontinental lithospheric mantle (SCLM) occurring beneath Bohemian Massif in Central Europe has been sampled in Cenozoic times by numerous lavas. Recent studies (Puziewicz et al. 2011 and references therein) show that mantle in this region is mostly anhydrous, harzburgitic, and was subjected to various kinds of metasomatic events. Two major mantle lithologies characterized by different major element composition of peridotite- forming minerals occur in the SCLM Lower Silesia and Lusatia (op. cit. and unpublished results, 9 sites). Lithology "A" (minimal temperatures from 900 to 1000ºC or no equilibrium between cpx and opx) contains olivine Fo90.5 -92.0. Part of the population "A" peridotites contain clinopyroxene of mg# 94 - 95, typical for low temperatures of equilibration. The lithology "B" (equilibration temperatures close to 900 ºC) contains olivine Fo87.5-90.0. Elevated contents of LREE in clinopyroxene from both the lithologies "A" and "B" suggest their equilibration with one of the two metasomatic agents stated in this area: anhydrous silicate alkaline melt or carbonatite-silicate melt. Action of hydrous alkaline melts in the mantle in the region is recorded only locally (e.g. Wilcza Góra). In some sites (e.g. Krzeniów) the trace element patterns show that decreasing mg# of clinopyroxene in the "A" peridotites is due to gradual replacement of primary lower-temperature mineral assemblage by the later higher-temperature one. This suggests that the variation of mineral chemistry is rather due to chromatographic fractionation of metasomatic agents than due to vertical variation in lithospheric mantle temperatures (Christensen et al.,2001). The "B" peridotites originated due to "Fe-metasomatism" of more magnesian peridotites by silicate melts percolating through lithospheric mantle. The peridotites belonging to lithology "A" might have been partly the protolith of the lithology "B". The data on Central European lithospheric mantle are equivocal and thus

  9. Mantle phase changes and deep-earthquake faulting in subducting lithosphere

    USGS Publications Warehouse

    Kirby, S.H.; Durham, W.B.; Stern, L.A.

    1991-01-01

    Inclined zones of earthquakes are the primary expression of lithosphere subduction. A distinct deep population of subduction-zone earthquakes occurs at depths of 350 to 690 kilometers. At those depths ordinary brittle fracture and frictional sliding, the faulting processes of shallow earthquakes, are not expected. A fresh understanding of these deep earthquakes comes from developments in several areas of experimental and theoretical geophysics, including the discovery and characterization of transformational faulting, a shear instability connected with localized phase transformations under nonhydrostatic stress. These developments support the hypothesis that deep earthquakes represent transformational faulting in a wedge of olivine-rich peridotite that is likely to persist metastably in coldest plate interiors to depths as great as 690 km. Predictions based on this deep structure of mantle phase changes are consistent with the global depth distribution of deep earthquakes, the maximum depths of earthquakes in individual subductions zones, and key source characteristics of deep events.

  10. Mantle phase changes and deep-earthquake faulting in subducting lithosphere.

    PubMed

    Kirby, S H; Durham, W B; Stern, L A

    1991-04-12

    Inclined zones of earthquakes are the primary expression of lithosphere subduction. A distinct deep population of subduction-zone earthquakes occurs at depths of 350 to 690 kilometers. At those depths ordinary brittle fracture and frictional sliding, the faulting processes of shallow earthquakes, are not expected. A fresh understanding of these deep earthquakes comes from developments in several areas of experimental and theoretical geophysics, including the discovery and characterization of transformational faulting, a shear instability connected with localized phase transformations under nonhydrostatic stress. These developments support the hypothesis that deep earthquakes represent transformational faulting in a wedge of olivine-rich peridotite that is likely to persist metastably in coldest plate interiors to depths as great as 690 km. Predictions based on this deep structure of mantle phase changes are consistent with the global depth distribution of deep earthquakes, the maximum depths of earthquakes in individual subductions zones, and key source characteristics of deep events.

  11. Low shear velocities in the sub-lithospheric mantle beneath the Indian shield?

    NASA Astrophysics Data System (ADS)

    Kumar, M. Ravi; Saikia, Dipankar; Singh, Arun; Srinagesh, D.; Baidya, P. R.; Dattatrayam, R. S.

    2013-03-01

    Ever since its breakup from the Gondwanaland ~140 Myr ago, the Indian plate was ravaged by four hot spots. Although the surface manifestations of such deep processes are evident in terms of large igneous provinces like the Deccan and the fast drift of the Indian plate, the modifications to the deep structure remain to be grasped. In this study, we investigate the mantle transition zone (TZ) structure beneath the Indian shield region using ~14,000 teleseismic receiver functions from 77 broadband stations sited on diverse geologic terrains. The arrival times of the P-to-s (Ps) conversions from the 410 km discontinuity at most cratonic stations appear to be delayed by ~2 s in comparison with the times observed for other Precambrian shield regions like Africa, Australia, and Canada. Such delays in the conversions from the 410 km discontinuity below the Indian shield suggest low shear wave speeds in the lithospheric and sub-lithospheric mantles due to higher temperatures, together with a thinner high velocity lid that contrasts with a thicker one found beneath most Archean cratons. A thin transition zone beneath most of the cratonic stations lends support to the enhanced temperatures within the TZ itself. Also, a further delay of the TZ discontinuities is observed for stations on the southern granulite terrain, which was under the influence of the Marion plume that is responsible for the separation of Madagascar from India. Although the data do not conclusively show evidence for a 520 km discontinuity, an LVL atop the 410 cannot be ruled out beneath certain geological provinces of the Indian shield.

  12. Temporal distribution of mantle-derived potassic rocks and carbonatites linked to stabilization of mantle lithosphere and redox states during subduction

    NASA Astrophysics Data System (ADS)

    Foley, S. F.

    2014-12-01

    Mantle-derived potassic igneous rocks and carbonatites first appear in the geological record in the late Archean, coinciding with major crust-forming events on most continents. The compositions of potassic rocks require sources including discrete ultramafic rocks with phlogopite and pyroxenes, whereas carbonatites and ultramafic lamprophyres (carbonate-rich potassic rocks) require oxidizing conditions in which carbonate is stable. The presence of these source rocks from this time is probably related to the stabilization of mantle lithosphere. If mantle lithosphere had not been stable for considerable periods of time, then melting would be restricted to peridotite, which is not a viable option for strongly potassic rocks. The phlogopite-rich source-rock assemblages that are necessary precursors for potassic melts could be introduced into the lithosphere by either subduction processes or by multiple stages of low-degree melting. Many modern examples involve subducted sedimentary material, which concentrates potassium by the stabilization of micas in subduction metamorphism. Subduction involves a great variety of redox states, but the bulk effect is the return of oxidized material from the surface into the mantle. However, we cannot apply uniformitarianism unthinkingly, because subduction processes at and before 2.7 Ga may have had different redox states. Before the Great Oxidation Event the distribution and abundances of geological formations such as banded iron formations, red beds, and uraninites indicate that geological reservoirs became gradually oxidized, preventing an earlier increase in atmospheric oxygen. This means that the function of the subduction process to oxidize the upper mantle by the return of oxidized rocks from the surface was much weaker in the early Earth. Early continental mantle lithosphere was, therefore, likely to accumulate carbon in reduced form, which would be more easily remobilized in melts through low-temperature redox melting much

  13. Mantle in the Manihiki Plateau source with ultra-depleted incompatible element abundances but FOZO-like isotopic signature

    NASA Astrophysics Data System (ADS)

    Golowin, R.; Hoernle, K.; Portnyagin, M.; Hauff, F.; Gurenko, A.; Garbe-Schoenberg, C. D.; Werner, R.

    2014-12-01

    The ~120Ma Manihiki Plateau basement consists of high-Ti tholeiitic basalts with EM-I type isotopic signatures, similar to the Singgalo basalts at Ontong Java, and low-Ti tholeiitic basalts with FOZO (Kwaimbaita/Kroenke) to HIMU-type isotopic compositions, similar to late stage volcanism on Hikurangi and Manihiki Plateaus (Hoernle et al. 2010; Timm et al. 2011). The low-Ti basalts have affinities to boninites and have been interpreted to be derived from residual mantle wedge mantle (Ingle et al. 2007). New major, volatile and trace element and radiogenic isotope data have been generated from fresh low-Ti glass samples recovered during R/V Sonne cruises SO193 and SO225. The low-Ti samples have distinctly lower Ti/V ratios compared to lavas from Ontong Java Plateau (Kwaimbaita-Kroenke and Singgalo), but similar to boninitic rocks. Glasses and melt inclusions in olivine have low volatile contents (0.12-0.25 wt% H2O). Olivine chemistry points to derivation from peridotite source. Therefore we interpret the low-Ti lavas to have formed through melting of dry and depleted peridotite at high temperatures, consistent with Timm et al (2011). The low-Ti group is characterized by U-shaped trace element patterns. The glass samples form linear mixing arrays on radiogenic isotope diagrams, pointing to the involvement of two components: 1) a component ultra-depleted in highly incompatible elements (UDC) but with intermediate Pb, Sr and Nd isotopic compositions, being similar to Kwaimbaita/Kroenke lavas from Ontong Java, and 2) an enriched component with HIMU-type incompatible element and isotopic characteristics, similar to late-stage volcanism on Manihiki, Hikurangi and Ontong Java (e.g. Hoernle et al. 2010). The ultra-depleted, FOZO-like mantle component could represent second stage melting of FOZO type mantle or re-melting of young recycled oceanic lithosphere within the plume head. Enrichment with HIMU type melts is required to explain the enrichment in the most incompatible

  14. Constraining late stage melt-peridotite interaction in the lithospheric mantle of southern Ethiopia: evidence from lithium elemental and isotopic compositions

    NASA Astrophysics Data System (ADS)

    Alemayehu, Melesse; Zhang, Hong-Fu; Seitz, Hans-Michael

    2017-02-01

    Lithium (Li) elemental and isotopic compositions for mineral separates of coexisting olivine, orthopyroxene and clinopyroxene of mantle xenoliths from the Quaternary volcanic rocks of southern Ethiopian rift (Dillo and Megado) reveal the influence of late stage melt-peridotite interaction on the early depleted and variably metasomatized lithospheric mantle. Two types of lherzolites are reported (LREE-depleted La/Sm(N) = 0.11-0.37 × Cl and LREE-enriched, La/Sm(N) = 1.88-15.72 × Cl). The depleted lherzolites have variable range in Li concentration (olivine: 2.1-5.4 ppm; opx: 1.1-2.3 ppm; cpx: 1.0-1.8 ppm) and in Li isotopic composition (δ7Li in olivine: -9.4 to 1.5‰; in opx: -4.5 to 3.6‰; in cpx: -17.0 to 4.8‰), indicating strong disequilibrium in Li partitioning and Li isotope fractionation between samples. The enriched lherzolites have limited range in both Li abundances (olivine: 2.7-3.0 ppm; opx: 1.1-3.1 ppm; cpx: 1.1-2.3 ppm) and Li isotopic compositions (δ7Li in olivine: -1.3 to +1.3‰; in opx: -2.0 to +5.0‰; in cpx: -7.5 to +4.8‰), suggest that the earlier metasomatic event which lead to LREE enrichment could also homogenize the Li contents and its isotopes. The enriched harzburgite and clinopyroxenite minerals show limited variation in Li abundances and variable Li isotopic compositions. The Li enrichments of olivine and clinopyroxene correlate neither with the incompatible trace element enrichment nor with the Sr-Nd isotopic compositions of clinopyroxene. These observations indicate that the metasomatic events which are responsible for the LREE enrichment and for the Li addition are distinct, whereby the LREE-enrichment pre-dates the influx of Li. The presence of large Li isotopic disequilibria within and between minerals of depleted and enriched peridotites suggest that the lithospheric mantle beneath the southern Ethiopian rift has experienced recent melt-peridotite interaction. Thus, the Li data set reported in this study offer new

  15. Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    USGS Publications Warehouse

    Downes, H.; Macdonald, R.; Upton, B.G.J.; Cox, K.G.; Bodinier, J.-L.; Mason, P.R.D.; James, D.; Hill, P.G.; Hearn, B.C.

    2004-01-01

    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzbugites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0??5121 (close to the host minette values) to 0??5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd

  16. Multi-Observable Thermochemical Tomography of the lithosphere and upper mantle

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Yang, Y.; Rawlinson, N.; Jones, A. G.; Fullea, J.; Qashqai, M.

    2015-12-01

    Current knowledge of the present-day physical state and structure of the lithosphere and upper mantle essentially derives from four independent sources: i) gravity field and thermal modelling, ii) modelling/inversion of different seismic datasets, iii) magnetotelluric studies, and iv) thermobarometric and geochemical data from exhumed mantle samples. Unfortunately, the integration of these different sources of information in modern geophysical studies is still uncommon and significant discrepancies and/or inconsistencies in predictions between these sources are still the rule rather than the exception.In this contribution we will present a thermodynamically-constrained multi-observable probabilistic inversion method capable of jointly inverting i) surface and body wave datasets, gravity anomalies, geoid height, gravity gradients, receiver functions, surface heat flow, magnetotelluric data, and elevation (static and dynamic) in 3D spherical coordinates. Key aspects of the method are: (a) it combines multiple geophysical observables with different sensitivities to deep/shallow, thermal/compositional anomalies into a single thermodynamic-geophysical framework; (b) it works with thermophysical models of the Earth rather than with parameterized structures of physical parameters (e.g. Vs, Vp, density, etc), (c) it uses a general probabilistic (Bayesian) formulation to appraise the data; (d) no initial model is needed; (e) a priori compositional information relies on robust statistical analyses of a large database of natural mantle samples; (f) it provides a natural platform to estimate realistic uncertainties; (g) it handles multiscale parameterizations and complex physical models, and (h) it includes dynamic (convection) effects on surface observables by solving the complete Stokes flow using multi-dimensional decomposition methods. We will present results for both synthetic and real case studies, which serve to highlight the advantages and limitations of this new

  17. 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and sublithospheric upper mantle

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Fullea, J.; Yang, Y.; Griffin, W. L.; Jones, A. G.; Connolly, J.; Lebedev, S.; O'Reilly, S. Y.

    2011-12-01

    High-resolution imaging and characterization of the thermal and compositional structure of the lithospheric and sublithospheric upper mantle are the basis for understanding the formation and evolution of the lithosphere and the interaction between the crust-mantle and lithosphere-asthenosphere systems. Unfortunately, such imaging and characterization using available geophysical-geochemical methods still present unsolved and technically challenging problems. In this contribution we present a new full-3D multi-observable inversion method particularly designed for high-resolution (regional) thermal and compositional mapping of the lithosphere and sublithospheric upper mantle. Ambient noise tomography, multiple plane wave earthquake tomography, magnetotelluric, thermal, thermodynamic, and potential field modelling are all combined in a single thermodynamic-geophysical framework and appraised within a general probabilistic (Bayesian) formulation. This circumvents the problems of strong non-linearity involved in traditional inversions, provides highly refined seismic information, minimizes the problem of trade-off between temperature and composition in wave speeds, offers critical insights into incompatibilities between traditional stand-alone methods, and takes advantage of a priori local geochemical information. Both synthetic models and preliminary results in real-case examples will be used to discuss the benefits, robustness, and limitations of this method.

  18. Topography caused by mantle density variations: observation-based estimates and models derived from tomography and lithosphere thickness

    NASA Astrophysics Data System (ADS)

    Steinberger, Bernhard

    2016-04-01

    Large-scale topography may be due to several causes, including (1) variations in crustal thickness and density structure, (2) oceanic lithosphere age differences, (3) subcrustal density variations in the continental lithosphere and (4) convective flow in the mantle beneath the lithosphere. The last contribution in particular may change with time and be responsible for continental inundations; distinguishing between these contributions is therefore important for linking Earth's history to its observed geological record. As a step towards this goal, this paper aims at such distinction for the present-day topography: the approach taken is deriving a `model' topography due to contributions (3) and (4), along with a model geoid, using a geodynamic mantle flow model. Both lithosphere thickness and density anomalies beneath the lithosphere are inferred from seismic tomography. Density anomalies within the continental lithosphere are uncertain, because they are probably due to variations in composition and temperature, making a simple scaling from seismic to density anomalies inappropriate. Therefore, we test a number of different assumptions regarding these. As a reality check, model topography is compared, in terms of both correlation and amplitude ratio, to `residual' topography, which follows from observed topography after subtracting contributions (1) and (2). The model geoid is compared to observations as well. Comparatively good agreement is found if there is either an excess density of ≈0.2 per cent in the lithosphere above ≈150 km depth, with anomalies below as inferred from tomography, or if the excess density is ≈0.4 per cent in the entire lithosphere. Further, a good fit is found for viscosity ≈1020 Pa s in the asthenosphere, increasing to ≈1023 Pa s in the lower mantle above D'. Results are quite dependent on which tomography models they are based on; for some recent ones, topography correlation is ≈0.6, many smaller scale features are matched

  19. The Diamondiferous Lithospheric Mantle Underlying the Eastern Superior Craton: Evidence From Mantle Xenoliths From the Renard Kimberlites, Quebec

    NASA Astrophysics Data System (ADS)

    Hunt, L.; Stachel, T.; Armstrong, J. P.; Simonetti, A.

    2009-05-01

    The Renard kimberlite cluster consists of nine pipes located within a 2km2 area in the northern Otish Mountains of Quebec. The pipes are named Renards 1 to 10, with subsequent investigation revealing Renards 5 and 6 to join at depth (now Renard 65). The pipes are located within the eastern portion of the Superior craton, emplaced into Archean granitic and gneissic host rocks of the Opinica Subprovince (Percival, 2007). Amphibolite grade metamorphism, locally passing into the granulite facies (Percival et al., 1994) occurred in late Archean time (Moorhead et al., 2003). Radiometric dating of the hypabyssal Renard 1 kimberlite indicates Neoproterozoic emplacement, with a 206Pb/238U model age of 631.6±3.5 Ma (2σ) (Birkett et al., 2004). A later study on the main phases in Renard 2 and 3 gave a similar emplacement, with a 206Pb/238U model age of 640.5±2.8Ma (Fitzgerald et al., 2008). This makes this kimberlite district one of the oldest in Canada, similar in eruption age to the Wemindji kimberlites (629±29Ma: Letendre et al., 2003). These events are broadly coeval with the conversion from subduction magmatism to rifting in northern Laurentia (Birkett et al., 2004). The bodies are part of a late Neoproterozoic to Cambrian kimberlite field in eastern Canada (Girard, 2001; Moorhead et al, 2002; Letendre et al., 2003) and fit into the north-east of the Eocambrian/Cambrian Labrador Sea Province of Heaman et al. (2004). To better understand the diamondiferous lithospheric mantle beneath the Renard kimberlites, 116 microxenoliths and xenocrysts were analysed. The samples were dominantly peridotitic, composed primarily of purple garnet, emerald green clinopyroxene and olivine, with a few pink and red garnets. A minor eclogitic component comprises predominantly orange garnets and lesser amounts of clinopyroxene. A detailed study on the major, minor and trace element composition of xenolith minerals is currently underway. All but three of the clinopyroxenes analysed to date

  20. Geochemical and Isotopic Evidence for Melting and Erosion of Wyoming Craton Mantle Lithosphere Prior to 48 Ma

    NASA Astrophysics Data System (ADS)

    Duke, G. I.; Carlson, R. W.; Frost, C. D.

    2010-12-01

    Trace-element geochemistry of Cretaceous-Tertiary Great Plains igneous rocks supports isotopic data that reveal a sequence of digestion of lithospheric mantle followed by intrusion of dominantly asthenospheric magmas. Multiple Archean, Proterozoic, and Phanerozoic subduction events beneath the Wyoming craton concentrated Ba and K within the underlying mantle lithosphere, resulting in earliest Cretaceous-Tertiary lithospheric melts with fingerprints of high K, high Ba/Nb and negative epsilon-Nd, but low U, Th, total REE, and less extreme values of LREE/HREE. Youngest (Eocene-Oligocene) magmas were kimberlite and carbonatite, with high U, Th, LREE, extremely high LREE/HREE, and positive epsilon-Nd, but with high-T xenoliths from depths of only 150 km (Carlson et al., 1999). Importantly, in the entire Wyoming craton, the Homestead kimberlite is the only one of K-T age that has transported a diamond—a single micro-diamond discovered. The shallow low-T to high-T xenolith transition, lack of diamonds, and changing magma geochemistry, suggest that a significant portion of the mantle lithosphere beneath the Wyoming Archean craton must have been consumed prior to the ≤48 Ma kimberlite eruptions. In contrast, the earliest phase of Cretaceous magmatism in Arkansas was explosive diamond-containing lamproite (~102 Ma) with a Proterozoic lithospheric isotopic signature (Lambert et al., 1995). In Arkansas, there was no earlier subalkalic magmatism, and no evidence of slow digestion of the mantle lithosphere, although later magmatism trended toward higher positive epsilon-Nd values (i.e. larger asthenospheric component). Removal by melting of a significant portion of the Wyoming mantle lithosphere during late Cretaceous-early Tertiary magmatism, along with heating, may have helped promote lithospheric “relaxation” related to extension further west between 53 Ma and 49 Ma, followed by more facile penetration by asthenospheric magmas, an idea proposed to explain the time

  1. Non-depleted sub-continental mantle beneath the Superior Province of the Canadian Shield: Nd-Sr isotopic and trace element evidence from Midcontinent Rift basalts

    SciTech Connect

    Paces, J.B. ); Bell, K. )

    1989-08-01

    Midcontinent Rift flood basalts represent a sample of the relatively shallow, sub-continental upper mantle beneath the Canadian Shield at 1.1 Ga. A thick sequence of olivine tholeiite lavas, including minor intermediate to rhyolitic lavas, from the Portage Lake Volcanics (PLV) in northern Michigan have initial Nd and Sr isotopic compositions which cluster near Bulk Earth values. The effects of assimilation of old LREE-enriched continental crust into mantle-derived fractionating liquids are isotopically discernible in evolved lavas as well as in olivine tholeiites from the lowest portion of the volcanic pile. However, the effects of crustal contamination decrease with stratigraphic height and are absent in more primitive lavas in the upper half of the section. The source for PLV tholeiites is substantially less depleted than previously reported mantle values from the Superior Province. An origin for the PLV source is compatible with either of several mantle evolution models. The PLV source may have been associated with upwelling of a LIL element-enriched, asthenospheric plume which emplaced non-depleted material from deeper sources into the shallow sub-continental mantle beneath the Midcontinent Rift during continental break-up. Alternatively, the PLV source may have originated by enrichment of refractory sub-continental lithospheric mantle which was previously depleted in incompatible trace elements during Archean-aged melt extraction and continental crust formation. Concurrent generation of carbonatite magmas in other areas beneath the Superior Province indicates the widespread presence of sub-continental mantle with substantially higher {epsilon}{sub Nd}(T) and lower {epsilon}{sub Sr}(T) than the PLV source.

  2. Multi-stage impregnation of the lithospheric mantle at the Andrew Bain FZ (SWIR)

    NASA Astrophysics Data System (ADS)

    Paganelli, E.; Brunelli, D.; Bonatti, E.; Cipriani, A.; Ligi, M.

    2008-12-01

    The Southern ridge-transform intersection of Andrew Bain Fracture Zone (ABFZ) is interpreted as a "cold spot" in the mid-ocean ridge system being characterized by a negative thermal anomaly in the oceanic upper mantle. The negative thermal anomaly is associated to the cold-edge effect due to the great age contrast of the active ridge segments. During the oceanic expedition AB06-S23, in 2006, (organized by ISMAR-CNR, Bologna, Italy, and co-financed by PRNA, Italy) with the russian R/V N. Strakhov, several samples of abyssal peridotites have been collected. Textures and modal distribution of the samples have been investigated revealing a multistage impregnation history. Deep spinel-field impregnation assemblages (sp+cpx-ol) are followed by plagioclase-field patches and mineral trails (pl+cpx-ol) and late shallow gabbroic pockets and veins. The major elements mineral chemistry reveals compositional trends of low-P/T subsolidus partial- to-complete re-equilibration undergone by the upper mantle during the upwelling beneath the ridge. These samples have experienced variable degrees of melting and reacted with percolating melts of possible different composition. In particular, samples showing the lowest degrees of melting have interacted with MORB-like melts and pyroxenitic-derived melts in the spinel and plagioclase stability fields. The presence of these two kinds of melts might prove the presence of enriched portions scattered in a normal depleted mantle beneath ocean ridges. MELTS-based runs provide constraints to variable extents of pyroxenitic-derived melt interaction with the mantle source and crystallization at variable depth of the products of such an interaction. Supported by MIUR-PRIN Cofin project 2007

  3. Thin crust as evidence for depleted mantle supporting the Marion Rise.

    PubMed

    Zhou, Huaiyang; Dick, Henry J B

    2013-02-14

    The global ridge system is dominated by oceanic rises reflecting large variations in axial depth associated with mantle hotspots. The little-studied Marion Rise is as large as the Icelandic Rise, considering both length and depth, but has an axial rift (rather than a high) nearly its entire length. Uniquely along the Southwest Indian Ridge systematic sampling allows direct examination of crustal architecture over its full length. Here we show that, unlike the Icelandic Rise, peridotites are extensively exposed high on the rise, revealing that the crust is generally thin, and often missing, over a rifted rise. Therefore the Marion Rise must be largely an isostatic response to ancient melting events that created low-density depleted mantle beneath the Southwest Indian Ridge rather than thickened crust or a large thermal anomaly. The origin of this depleted mantle is probably the mantle emplaced into the African asthenosphere during the Karoo and Madagascar flood basalt events.

  4. Nd, Sr and Os isotope systematics in young, fertile spinel peridotite xenoliths from northern Queensland, Australia: A unique view of depleted MORB mantle?

    NASA Astrophysics Data System (ADS)

    Handler, M. R.; Bennett, V. C.; Carlson, R. W.

    2005-12-01

    Northeastern Queensland, a part of the Phanerozoic composite Tasman Fold Belt of eastern Australia, has a Paleozoic to Mesozoic history dominated by subduction zone processes. A suite of 13 peridotite xenoliths from the <3 Ma Atherton Tablelands Volcanic Province, predominantly from Mount Quincan, comprise fertile (1.8-3.4 wt.% Al 2O 3 and 38.7-41.9 wt.% MgO) spinel lherzolites free from secondary volatile-bearing phases and with only weak metasomatic enrichment of incompatible trace elements (Sm N/Yb N = 0.23-1.1; La N/Yb N = 0.11-4.9). The suite is isotopically heterogeneous, with measured Sr ( 87Sr/ 86Sr = 0.7027-07047), Nd ( 143Nd/ 144Nd = 0.51249-0.51362), and to a lesser extent, Os ( 187Os/ 188Os = 0.1228-0.1292) compositions broadly overlapping MORB source mantle (DMM) and extending to more depleted compositions, reflecting evolution in a time-integrated depleted reservoir. Major and rare earth element systematics are consistent with mantle that is residual after low to moderate degrees of melt extraction predominantly in the spinel facies, but with a few samples requiring partial melting at greater pressures in the garnet field or near the garnet-spinel transition. In contrast to most previously studied suites of continental lithospheric mantle samples, the incompatible trace element contents and Sr and Nd isotopic systematics of these samples suggest only minimal modification of the sampled lithosphere by metasomatic processes. Five of six Mount Quincan xenoliths preserving depleted middle to heavy REE patterns form a whole rock Sm-Nd isochron with an age of ˜275 Ma (ɛ Ndi = +9), coincident with widespread granitoid emplacement in the overlying region. This isochron is interpreted to indicate the timing of partial melting of a DMM-like source. Xenoliths from other Atherton localities scatter about the isochron, suggesting that the sampled mantle represents addition of DMM mantle to the lithosphere in the Permian, when the region may have broadly been

  5. Mantle Water Fugacity is the Dominant Factor in Total Strength and Stability/Mobility of Continental Lithosphere

    NASA Astrophysics Data System (ADS)

    Lowry, A. R.; Schutt, D.; Perez-Gussinye, M.; Ma, X.; Berry, M. A.; Ravat, D.

    2014-12-01

    More than half a century after the plate tectonic revolution, the physical mechanism that distinguishes tectonically active plate boundaries from stable continental interiors remains nebulous. Rock flow strength and mass density variations both contribute to stress, so both are certain to be important, but these depend ambiguously on rock lithology, temperature, and concentrations of water. High seismic velocities observed to great depths often are interpreted as evidence that geothermal variations dominate patterns of lithospheric strength. However, mantle seismic velocities are sensitive to flow-induced anelastic attenuation as well as to temperature. A more ductile mantle will propagate waves more slowly regardless of whether low viscosity is a consequence of high temperature or of high water fugacity, complicating interpretations of seismic velocity in the absence of other constraints. Here we use EarthScope's USArray seismic data to independently constrain crustal thickness, bulk crustal lithology and Moho temperature of the lithosphere, and magnetic bottom measurements to refine the crustal geotherm. Strength models based on these quantities are then compared to integral measurements of western U.S. isostatic strength expressed as effective elastic thickness, Te. We show that mantle water is the primary factor that distinguishes stable lithosphere of North America's cratonic interior from actively deforming zones in the western U.S. Cordillera. Seismic and magnetic constraints on temperature and lithology variations can be reconciled with integral strength measurements only if water fugacity within the lithospheric column is permitted to vary from near-saturation in deforming, mobile lithosphere to nearly completely dry in the stable cratonic interior.

  6. Constraints on the mantle and lithosphere dynamics from the observed geoid with the effect of visco-elasto-plastic rheology in the upper 300 km

    NASA Astrophysics Data System (ADS)

    Osei Tutu, Anthony; Steinberger, Bernhard; Rogozhina, Irina; Sobolev, Stephan

    2015-04-01

    Over the past decades rheological properties of the Earth's mantle and lithosphere have been extensively studied using numerical models calibrated versus a range of surface observations (e.g., free-air-gravity anomaly/geoid, dynamic topography, plate velocity, etc.).The quality of model predictions however strongly depends on the simplifying assumptions, spatial resolution and parameterizations adopted by numerical models. The geoid is largely (Hager & Richards, 1989) determined by both the density anomalies driving the mantle flow and the dynamic topography at the Earth surface and the core-mantle boundary. This is the effect of the convective processes within the Earth's mantle. The remainder is mostly due to strong heterogeneities in the lithospheric mantle and the crust, which also need to be taken into account. The surface topography caused by density anomalies both in the sub-lithospheric mantle and within the lithosphere also depends on the lithosphere rheology. Here we investigate the effects of complex lithosphere rheology on the modelled dynamic topography, geoid and plate motion using a spectral mantle flow code (Hager & O'Connell, 1981) considering radial viscosity distribution and a fully coupled code of the lithosphere and mantle accounting for strong heterogeneities in the upper mantle rheology in the 300 km depths (Popov & Sobolev, 2008). This study is the first step towards linking global mantle dynamics with lithosphere dynamics using the observed geoid as a major constraint. Here we present the results from both codes and compare them with the observed geoid, dynamic topography and plate velocities from GPS measurements. This method allows us to evaluate the effects of plate rheology (e.g., strong plate interiors and weak plate margins) and stiff subducted lithosphere on these observables (i.e. geoid, topography, plate boundary stresses) as well as on plate motion. This effort will also serve as a benchmark of the two existing numerical methods

  7. Implications for anomalous mantle pressure and dynamic topography from lithospheric stress patterns in the North Atlantic Realm

    NASA Astrophysics Data System (ADS)

    Schiffer, Christian; Nielsen, Søren Bom

    2016-08-01

    With convergent plate boundaries at some distance, the sources of the lithospheric stress field of the North Atlantic Realm are mainly mantle tractions at the base of the lithosphere, lithospheric density structure and topography. Given this, we estimate horizontal deviatoric stresses using a well-established thin sheet model in a global finite element representation. We adjust the lithospheric thickness and the sub-lithospheric pressure iteratively, comparing modelled in plane stress with the observations of the World Stress Map. We find that an anomalous mantle pressure associated with the Iceland and Azores melt anomalies, as well as topography are able to explain the general pattern of the principle horizontal stress directions. The Iceland melt anomaly overprints the classic ridge push perpendicular to the Mid Atlantic ridge and affects the conjugate passive margins in East Greenland more than in western Scandinavia. The dynamic support of topography shows a distinct maximum of c. 1000 m in Iceland and amounts <150 m along the coast of south-western Norway and 250-350 m along the coast of East Greenland. Considering that large areas of the North Atlantic Realm have been estimated to be sub-aerial during the time of break-up, two components of dynamic topography seem to have affected the area: a short-lived, which affected a wider area along the rift system and quickly dissipated after break-up, and a more durable in the close vicinity of Iceland. This is consistent with the appearance of a buoyancy anomaly at the base of the North Atlantic lithosphere at or slightly before continental breakup, relatively fast dissipation of the fringes of this, and continued melt generation below Iceland.

  8. Seismic structure of the lithosphere and upper mantle beneath the ocean islands near mid-oceanic ridges

    NASA Astrophysics Data System (ADS)

    Haldar, C.; Kumar, P.; Kumar, M. Ravi

    2014-05-01

    Deciphering the seismic character of the young lithosphere near mid-oceanic ridges (MORs) is a challenging endeavor. In this study, we determine the seismic structure of the oceanic plate near the MORs using the P-to-S conversions isolated from quality data recorded at five broadband seismological stations situated on ocean islands in their vicinity. Estimates of the crustal and lithospheric thickness values from waveform inversion of the P-receiver function stacks at individual stations reveal that the Moho depth varies between ~ 10 ± 1 km and ~ 20 ± 1 km with the depths of the lithosphere-asthenosphere boundary (LAB) varying between ~ 40 ± 4 and ~ 65 ± 7 km. We found evidence for an additional low-velocity layer below the expected LAB depths at stations on Ascension, São Jorge and Easter islands. The layer probably relates to the presence of a hot spot corresponding to a magma chamber. Further, thinning of the upper mantle transition zone suggests a hotter mantle transition zone due to the possible presence of plumes in the mantle beneath the stations.

  9. Diamonds from the Machado River alluvial deposit, Rondônia, Brazil, derived from both lithospheric and sublithospheric mantle

    NASA Astrophysics Data System (ADS)

    Burnham, A. D.; Bulanova, G. P.; Smith, C. B.; Whitehead, S. C.; Kohn, S. C.; Gobbo, L.; Walter, M. J.

    2016-11-01

    Diamonds from the Machado River alluvial deposit have been characterised on the basis of external morphology, internal textures, carbon isotopic composition, nitrogen concentration and aggregation state and mineral inclusion chemistry. Variations in morphology and features of abrasion suggest some diamonds have been derived directly from local kimberlites, whereas others have been through extensive sedimentary recycling. On the basis of mineral inclusion compositions, both lithospheric and sublithospheric diamonds are present at the deposit. The lithospheric diamonds have clear layer-by-layer octahedral and/or cuboid internal growth zonation, contain measurable nitrogen and indicate a heterogeneous lithospheric mantle beneath the region. The sublithospheric diamonds show a lack of regular sharp zonation, do not contain detectable nitrogen, are isotopically heavy (δ13CPDB predominantly - 0.7 to - 5.5) and contain inclusions of ferropericlase, former bridgmanite, majoritic garnet and former CaSiO3-perovskite. This suggests source lithologies that are Mg- and Ca-rich, probably including carbonates and serpentinites, subducted to lower mantle depths. The studied suite of sublithospheric diamonds has many similarities to the alluvial diamonds from Kankan, Guinea, but has more extreme variations in mineral inclusion chemistry. Of all superdeep diamond suites yet discovered, Machado River represents an end-member in terms of either the compositional range of materials being subducted to Transition Zone and lower mantle or the process by which materials are transferred from the subducted slab to the diamond-forming region.

  10. New constraints of subducted mantle lithosphere on plate-tectonic reconstructions of deformed continental blocks

    NASA Astrophysics Data System (ADS)

    Suppe, J.; Wu, J.; Kanda, R. V. S.; Lu, R.; Lin, C. D. J.

    2012-04-01

    Global seismic tomography and earthquake locations are now sufficiently good that many subducted slabs can be mapped in 3D, unfolded and restored to the surface of the Earth, thereby providing important new quantitative constraints on plate-tectonic reconstructions. The size, shape, present horizontal and vertical positions and seismic velocities of subducted slabs provide rich data constraints on plate-tectonic reconstructions of past plate networks into which the deformed continental regions such as Eurasia and SE Asia must fit. Commonly, we find that well-imaged and restored slabs of mantle lithosphere fit together along their edges in approximate "picture-puzzle" fashion, within seismic resolution. The slab edges correspond to plate transforms, slab tears, initial positions of trenches and edges of slab windows. This use of subducted slabs provides for more data-rich reconstructions of lost ocean basins such as those consumed between India and Eurasia and between Southeast Asia and Australia, and thereby constrains deformation of the adjacent continents. We describe our methodologies for mapping and unfolding slabs in Gocad, and using these restored slabs in GPlates. Examples are shown from Taiwan, the India-Asia collision, Southeast Asia, and Greater northeast Australia.

  11. Secondary Hotspots in the South Pacific as a Result of Mantle Plumelets and Lithospheric Extension?

    NASA Astrophysics Data System (ADS)

    Koppers, A.; Staudigel, H.; Wijbrans, J.; Pringle, M.

    2003-12-01

    has lead to new models that retain the concept of mantle plumes, but these lack both simplicity and predictive power. New models that call on "extension" are indeed simple and they may explain most characteristics of Earth's intra-plate volcanism, but they also have limited predictive power, making it more difficult to test for their validity. We argue that we require a combination of processes: one that forces regional magmatism from a large-scale source of buoyancy from below (like the rise of plumelets shooting off the top of a superplume) and one process that acts from above, as intra-plate extension opens up pathways that allow the lithosphere to be penetrated by magma.

  12. Composition and structure of mantle lithosphere in the Russian Far East according to xenolths study.

    NASA Astrophysics Data System (ADS)

    Prikhodko, V.; Ashchepkov, I.; Ntaflos, T.; Barkar, A.; Vysotsky, S.; Esin, S.; Kutolin, V.; Prussevich, A.

    2012-04-01

    Lherzolitic mantle xenoliths from the Pliocene - basalts of Russian Primorie referred to the different volcanic regions (plateaus) show spatial -temporal variations of thee mineral chemistry determined for 550 xenoliths and TRE in IGM Novosibirsk but rather similar bulk rock compositions. In the N Eastern volcanic zone in Sovgavan plateau the xenoliths bearing basalts occur in late stages of the Miocen - Pleocene basalt plateau (Tuttochi), in the late extrusions (necks) and dykes and the post erosion enclosed valley flows (Sunku and Kamky) scoria cones (MountKurgan) where amphiboles occurred in hybrid websterites. In Southern Sikhote Alin in Shkotkov plteau Fe- lherzolites with amphiboles and mica dominate in the basement lavas. The Pliocene Pogelbanochny neck and lava flow contain y large xenoliths (to 1 m) (Scheka , 1981) sapphires and some other gems (Vysotsky et al ., 2009). The xenolith in the western volcanic zones - Lesozovoskaya, Medvezhy contains kelyphites after garnets and Phl veins The Cr- diopsides in Tuttochi are more (Na, Al , Ti) depleted and dispersed, in Kamky flow Fe-rich trends is found similar to relation for CPx in Sunku flow and Mount Kurgan. The early stage Nelma and Shkotov palateu Cr-Di show high dispersion and Fe-metasomatism. Mesozoic Anyui Cpx are less Na-Ti-Al riched. The Sp refer to most Al rich OSMA part with are Cr-picotites equilibrated with garnets (16-24% Cr2O3). Calculated PT geotherms ~90 mWm-2 everywhere starts near Gar stability at18kabrs. The Western fields show lower mantle thermal gradients. In basaltic plateau P-Fe# trends show percolation trends increasing P-Fe# with Cpx pressure lower then Opx. Those from latest scoria cones demonstrates sub adiabatic PT trajectories (MountKurgan) or Fe# rising to bottom (Medvezhy) formed by melt interaction. The basement plateau Shkotov xenolith reveal first thermal plum impact and subvertical magma channel trend TRE determined by LAMICP IGM for Sovgavan Cr- diopsides (Sanky

  13. Multi-stage evolution of the lithospheric mantle beneath the westernmost Mediterranean: Geochemical constraints from peridotite xenoliths in the eastern Betic Cordillera (SE Spain)

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Konc, Zoltán; Garrido, Carlos J.; Bosch, Delphine; Hidas, Károly; Varas-Reus, María Isabel; Acosta-Vigil, Antonio

    2017-04-01

    Spinel (± plagioclase) peridotite xenoliths from the Tallante and Los Perez volcanic centres in the eastern Betics (SE Spain) range from depleted (clinopyroxene-poor) harzburgites to fertile (clinopyroxene-rich) lherzolites and orthopyroxene-free wehrlites. Significantly, only one harzburgite, which is depleted in heavy rare earth elements (HREE), retains the imprint of ca. 20% ancient melting of an original garnet lherzolite source. In contrast, REE abundances of other harzburgites and lherzolites from the eastern Betics have been increased by melt-rock reaction. The whole-rock and mineral compositions of these mantle rocks are largely controlled by three types of modal metasomatism: 1) common clinopyroxene-orthopyroxene addition and olivine consumption which increased FeOt, SiO2 and Al2O3, and decreased MgO compared to the refractory melting products; 2) subordinate orthopyroxene dissolution and precipitation of clinopyroxene and olivine, which led to higher FeOt and MgO and lower SiO2 than in common (orthopyroxene-rich) lherzolites; and 3) rare orthopyroxene consumption and olivine addition that caused higher FeOt and lower SiO2 compared to the original melting residues. These mineral modal and major element variations have been produced mostly by interactions with relatively FeOt-rich/SiO2-poor melts, likely derived from a peridotite-pyroxenite lithospheric mantle with a highly heterogeneous isotopic composition. Melting of the lithospheric mantle in the western Mediterranean was triggered by upwelling of the asthenosphere induced by back-arc extension in the Late Oligocene-Early Miocene. Trapping of small fractions of exotic melts in whole-rocks - likely the parental magmas of Miocene back-arc dykes that intruded the Betic crust - caused local disequilibrium between the trace element signatures and Pb isotopic compositions of clinopyroxene and whole-rock. Subsequent interaction with SiO2-undersaturated magmas, similar to the parental melts of the Pliocene

  14. Dynamic lithosphere within the Great Basin

    NASA Astrophysics Data System (ADS)

    Porter, Ryan C.; Fouch, Matthew J.; Schmerr, Nicholas C.

    2014-04-01

    place new constraints on the short-term, broad-scale lithospheric evolution of plate interiors, we utilize broadband seismic data from the Great Basin region of the Western United States to produce high-resolution images of the crust and upper mantle. Our results suggest that parts of the Great Basin lithosphere has been removed, likely via inflow of hot asthenosphere as subduction of the Farallon spreading center occurred and the region extended. In our proposed model, fragments of thermal lithosphere removed by this process were gravitationally unstable and subsequently sank into the underlying mantle, leaving behind less dense, stronger, chemically depleted lithosphere. This destabilization process promotes volcanism, deformation, and the reworking of continental lithosphere inboard from plate margins. Our results provide evidence for a new mechanism of lithospheric evolution that is likely common and significant in postsubduction tectonic settings.

  15. Model of the Arctic evolution since the Cretaceous to present, based on upper mantle convection linked with Pacific lithosphere subduction

    NASA Astrophysics Data System (ADS)

    Lobkovsky, Leopold

    2015-04-01

    The present paper comprises a model of Arctic basin evolution since early-mid Cretaceous to present. The model is based on the mechanism of upper mantle substance circulation beneath the Arctic lithosphere linked with Pacific lithosphere subduction. Seismic tomography data obtained for the Pacific-Eurasia-Arctic joint area indicate that Pacific lithosphere slab sinking to the mantle in subduction zone transforms into the horizontal layer upon reaching the upper mantle foot, this layer extending for two or more thousands km beneath the Eurasian continent. This pattern of seismic tomography indicates the presence of a horizontal convective cell where a flow of substance moving along the upper mantle foot from a subduction zone into the continent is compensated by a return flow moving along the lithosphere foot towards the subduction zone. The return mantle flow makes continental lithosphere extension, giving rise to processes of rifting, magmatism and spreading. The convective cell being continuously supplied with new substance which is transported through the subduction zone it is sure to expand horizontally. The above cell expansion occurs first, due to ocean ward movement of subduction zone (roll back) and secondly, due to the cell front propagation into the continent. The given model allows to understand main features for the Arctic evolution since early-mid Cretaceous to present. Numerous seismic profiling data obtained for shelf and deep water sedimentary basins in the Arctic Ocean as well as on land geological investigation reveal that since Aptian up to present the Arctic region has been characterized by sublatitudinal lithosphere extension. This extension is explained by the effect the return mantle flow related to the subduction of the Northern part of the Pacific plate acts on the Arctic lithosphere foot. The model shows the phenomenon of Arctic plume to be caused by the convective cell uprising flow. In fact lower horizontal flow of convective cell moving

  16. Lithospheric mantle heterogeneity across the continental-oceanic transition, northwest Ross Sea, Antarctica: new evidence from oxygen isotopes

    NASA Astrophysics Data System (ADS)

    Krans, S. R.; Panter, K. S.; Castillo, P.; Deering, C. D.; Kitajima, K.; Valley, J. W.; Hart, S. R.; Kyle, P. R.

    2013-12-01

    Oxygen isotopes and whole rock chemistry from alkali basalt and basanite in the northwest Ross Sea, Antarctica offer new insight on source heterogeneity across the transition from continental to oceanic lithosphere in a magma-poor rifted margin. In situ SIMS analysis of olivine (Fo 79-90) from the most primitive lavas (MgO ≥ 8 wt%, Mg# 53-70, Ni= 115-338 ppm, Cr= 244-540 ppm) yield an average δ18O = 5.18 × 0.60 ‰ (2σ, n=30) for alkali basalt and 5.25 × 0.44 ‰ (2σ, n=52) for basanite (× 0.28 ‰, 2σ precision on a homogeneous olivine standard). These are similar to the range for olivine from mantle peridotite and HIMU type oceanic basalts (δ18O= 5.0 to 5.4 ‰ and 4.9 to 5.2 ‰, respectively [1]), but with greater variability. Lavas in this region experienced little differentiation, have minimal evidence of crustal contamination (87Sr/86Sr < 0.7030, 143Nd/144Nd > 0.5129), and olivine show no correlation between δ18O and Fo content, further suggesting that the δ18O values are source related. Whole-rock chemistry of alkali basalt and basanite are spatially distributed. In general, alkali basalt is found in thicker continental lithosphere with lower Sr (477-672ppm) and Nb/Y (1.2-2.4) than basanite. Basanite is found in oceanic and thinned continental lithosphere with higher Sr (642-1131 ppm) and Nb/Y (2.4-3.6). Variation in degree of silica-undersaturation and Nb/Y can be explained by varying degree of partial melting. While alkali basalt and basanite can result from varying degrees of partial melting of similar source compositions, the presence of amphibole in mantle xenoliths have lead workers in this region to propose contributions from a metasomatic source [2, 3, 4] with variable 206Pb/204Pb ratios [5]. A negative correlation between Nb/Y and δ18O in both rock types suggests that varying degrees of partial melting are tapping sources with different δ18O values; lower degree melts have δ18O ≤ 5.0 ‰ and higher degree melts have δ18O > 5.3

  17. Combined underthrusting and mantle dripping - lateral dragging controlling the lithosphere structure of the NW-Moroccan margin and the Atlas Mountains

    NASA Astrophysics Data System (ADS)

    Jiménez-Munt, I.; Fernandez, M.; Zlotnik, S.

    2012-04-01

    Recent studies carried out in NW-Africa indicate prominent variations of the lithosphere-asthenosphere boundary (LAB) depth. The studies integrate gravity, geoid, surface heat flow, elevation and seismic data along a profile running from the Tagus Abyssal Plain to the Sahara Platform and crossing the Gorringe Bank, the NW Moroccan Margin and the Atlas Mountains. The resulting mantle density anomalies show a prominent lithospheric mantle thickening beneath the margin (LAB >200 km-depth) followed by thinning beneath the Atlas Mountains (LAB ~90 km-depth). A combination of mantle underthrusting due to oblique convergence together with a viscous dripping fed by lateral mantle dragging can explain the imaged lithospheric structure. The model is consistent with a strong decoupled crustal-mantle mechanical response to the Africa-Eurasia convergence and results in positive/negative dynamic topography in regions with thickened/thinned crust. In the present work we go a step further analysing the role of the lithospheric mantle structure on the resulting dynamic topography and the dynamic conditions suitable to produce the inferred mantle density anomalies. Therefore, we calculate the dynamic topography rising from mantle thickness variations along the profile and those related to possible lateral variations of mantle composition. In addition, we study the key factors controlling the deformation of the lithospheric mantle when submitted to convergence by means the fully dynamic software UNDERWORLD. Chief among these factors are the mantle viscosity and its temperature dependence, the characteristic time of the process, and the resulting topography variation of the free upper surface. These results allow us to speculate on the past and future evolution of the NW-Moroccan margin which could show the appropriated conditions for subduction initiation.

  18. The Preservation of Meso- Archean Refractory Lithospheric Mantle Underneath the Eastern Margin of the Tanzania Craton

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Liu, J.; Pearson, G. D.; Gibson, S. A.

    2014-12-01

    Numerous studies on the petrology and geochemistry of peridotite xenoliths from the Tanzanian Craton and its rifted margins have investigated the origin, chemical change and thermal state of the cratonic roots from its core area (Nzega and Mwadui), its Northern (Marsabit) and Eastern margin Labait and Lashaine area (e.g. Dawson, 1964; Henjes-Kunst and Altherr, 1991; Lee & Rudnick, 1999; Chesley et al., 1999; Gibson et al., 2013). These studies suggest that the Tanzanian cratonic mantle formed via high degrees of melt extraction in the Archean (oldest Re-depletion age TRD = 3.4 Ga, Burton et al., 2000) and sev­eral episodes of refertilization. In order to gain further temporal and chemical understanding on the effects of tectonic processes on cratonic roots, we carried out a Re-Os isotopic study on peridotites (n = 11) from Lashaine, which will be followed by Lu-Hf, Sm-Nd and Sr isotope investigations of the constituent minerals of the same samples. The preliminary whole-rock Os isotope data from Lashaine peridotites show a large range of 187Os/188Os (0.1061 - 0.1261), with TRD ages from Meso-Archean to very young (3.1 Ga to 0.3 Ga). There is a negative correlation between TRD and bulk alumina contents. One sample with the lowest Al2O3 yields the oldest age of 3.1 Ga. Five samples range from 2.5 to 2.8 Ga, three give ages close to 2 Ga, and one sample with a high Al2O3 has a TRD at 0.3 Ga. The positive Al2O3-187Os/188Os correlation trend passes above the PM composition may reflect ancient metasomatism by high Re/Os melts or recent metasomatism by very radiogenic Os plume-derived melts. These processes could be related to the evolution of the peripheral Proterozoic mobile belts, or Cenozoic rifting on the Eastern margin. Collectively, our new Os isotope data demonstrate that Meso-Archean (at least 3.1 Ga old) mantle portions are still retained underneath the rifted Eastern margin of the Craton. This is in line with previous results indicating that Archean cratonic

  19. Depletion of Vandium in Planetary Mantles: Controlled by Metal, Oxide, or Silicate?

    NASA Technical Reports Server (NTRS)

    Righter, Kevin

    2006-01-01

    Vanadium concentrations in planetary mantles can provide information about the conditions during early accretion and differentiation. Because V is a slightly siderophile element, it is usually assumed that any depletion would be due to core formation and metal-silicate equilibrium. However, V is typically more compatible in phases such as spinel, magnesiowuestite and garnet. Fractionation of all of these phases would cause depletions more marked than those from metal. In this paper consideration of depletions due to metal, oxide and silicate are critically evaluated.

  20. Mantle dynamics in Mars and Venus - Influence of an immobile lithosphere on three-dimensional mantle convection

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Bercovici, D.; Glatzmaier, G. A.

    1990-01-01

    The manner of the mantle convection in planets with rigid lids, such as Venus and Mars, is investigated using a numerical method. The effect of the rigid upper boundary condition on mantle convection was examined by comparing the convection in planets with rigid lids with results for planets with shear stress-free upper surfaces. The results for convection in models of the mantles of Mars and Venus show that the cylindrical plume is the prominent form of upwelling as long as sufficient heat enters the mantle from the core.

  1. Layered anisotropy within the crust and lithospheric mantle beneath the Sea of Japan

    NASA Astrophysics Data System (ADS)

    Legendre, C. P.; Zhao, L.; Deschamps, F.; Chen, Q.-F.

    2016-10-01

    Continental rifting during the Oligocene to mid-Miocene caused the opening of the Sea of Japan and the separation between the Japanese Islands and the Eurasian Plate. The tectonic evolution in the Sea of Japan is important for understanding the evolution of back-arc regions in active convergent margins. Here, we use data from the seismic stations surrounding the Sea of Japan to map the Rayleigh-wave azimuthal anisotropy in the crust and lithospheric mantle beneath the Sea of Japan. We explore the variations of Rayleigh-wave phase-velocity beneath the Sea of Japan in a broad period range (30-80 s). Rayleigh-wave dispersion curves are measured by the two-station technique for a total of 231 interstation paths using vertical-component broad-band waveforms at 22 seismic stations around the Sea of Japan from 1411 global earthquakes. The resulting maps of Rayleigh-wave phase velocity and azimuthal anisotropy allow the examination of azimuthal anisotropy at specific periods. They exhibit several regions with different isotropic and anisotropic patterns: the Japan Basin displays fast velocities at shorter periods (30 and 40 s) with NNE-SSW anisotropy, whereas at 60 s and longer, the velocities become slow even if the anisotropy remains NE-SW; the East China Sea shows fast velocities at all periods (30-80 s) with constant NW-SE anisotropy. Trench-normal anisotropy beneath the Japanese Islands is found at short periods (30-40 s) and become trench-parallel at periods of 60 s and longer. Overall, our model resolves two layers of anisotropy, the shallowest and deepest layers being potentially related to frozen deformation due to recent geodynamic events, and asthenospheric flow, respectively.

  2. Lithosphere and Asthenosphere Properties beneath Oceans and Continents and their Relationship with Domains of Partial Melt Stability in the Mantle

    NASA Astrophysics Data System (ADS)

    Dasgupta, R.

    2014-12-01

    The depth of the lithosphere-asthenosphere boundary (LAB) and the change in properties across the lithosphere, asthenosphere, and LAB in various tectonic settings are captured in a variety of geophysical data, including seismic velocities and electrical conductivity. A sharp drop in shear wave velocity and increase in electrical conductivity can potentially be caused by the appearance of partial melt at or below the LAB but the chemical and dynamic stability of partial melt across lithosphere and at LAB remain debated. Here I apply the recent models of mantle melting in the presence of water and carbon [1, 2] to evaluate the domains of stability of partial melt both beneath continents and oceans. The model allows prediction of the possible presence, the fraction, and composition of partial melt as a function of depth, bulk C and H2O content, and fO2 [3] in various geologic/tectonic settings. The results show that while a hydrous, carbonated melt is stable only beneath LAB and in the asthenospheric mantle beneath oceans, continental mantle can contain a carbonate-rich melt within the lithosphere. For geotherms corresponding to surface heat flux (SHF) of 40-50 mW m-2, which also match P-T estimates beneath cratons based on thermo-barometry of peridotite xenoliths [4], the solidus of fertile peridotite with trace amount of CO2 and H2O is crossed at depths as shallow as 80-120 km [5]. If elevated geotherms of the Proterozoic and Phanerozoic terrains are applied, carbonatitic melt becomes stable somewhat shallower. These depths are similar to those argued for a mid-lithospheric discontinuity (MLD) where a negative velocity gradient has been detected much shallower than the proposed depth of LAB in many places. With a drop in oxygen fugacity with depth, a freezing of carbonatitic melt may be expected at intermediate depths (~150-200 km). At 200-250 km a hydrous, carbonated silicate melt may reappear owing to the interplay of fO2 and freezing point depression effect of CO

  3. Subduction- vs- Intraplate-Type Melt Migration in the Alboran Lithospheric Mantle: Insights From the Tallante Xenoliths (Betic Cordillera, SE Spain)

    NASA Astrophysics Data System (ADS)

    Rampone, E.; Vissers, R. L.; Poggio, M.; Scambelluri, M.; Zanetti, A.

    2008-12-01

    The Alboran Sea region has been affected since the late Oligocene by widespread eruption of tholeiitic to calc-alkaline magmas followed by Late Neogene alkaline basalts. These magmatic episodes are related to Neogene lithospheric extension beneath the Alboran domain, as a consequence of slab roll-back. According to recent models, subduction of oceanic lithosphere caused continental-edge delamination of subcontinental lithosphere, associated with upwelling of plume-type mantle sources. The Alboran lithospheric mantle thus constitutes a unique setting to investigate the effects of subduction- and intraplate-type metasomatism. Here we present a microstructural and geochemical study of mantle xenoliths from the Cabezo Tallante Late Neogene alkaline volcanic center (SE Spain). These xenoliths record multiple episodes of reactive porous melt percolation, and melt entrapment, tracking their progressive extension-related uplift from P > 20 Kb to 7-10 Kb. This is documented by i) crystallization of undeformed olivine replacing pyroxene porphyroclasts, and unstrained opx overgrowing undeformed olivine and pyroxene porphyroclasts, in porphyroclastic spinel peridotites, ii) development of annealed equigranular structure, likely enhanced by heating during melt percolation, iii) crystallization of interstitial (plag±ol±opx) aggregates between mantle minerals in porphyroclastic and equigranular xenoliths. Cpx in equigranular peridotites have smooth trace element spectra characterized by slight LREE depletion; computed equilibrium liquids have a tholeiitic-transitional affinity. Diffuse melt percolation was followed by intrusion of melts with distinct chemical affinity. The first event is documented by the intrusion of cm-sized gabbronoritic veins, showing a fine-grained opx reaction rim against the host peridotite. Similar gabbronoritic lithotypes were previously documented and ascribed to slab-derived melts. A quite remarkable textural feature in these veins is the occurrence

  4. Multi-observable thermochemical tomography of the lithosphere and upper mantle beneath the Western/Central US

    NASA Astrophysics Data System (ADS)

    Afonso, J. C.; Yang, Y.; Rawlinson, N.; Schutt, D.; Fullea, J.; Jones, A. G.

    2013-12-01

    We use a novel multi-observable 3D inversion method (Afonso et al., 2013a; b) to study the present-day thermal and compositional structures of the lithosphere and sublithospheric upper mantle beneath the Western and Central US (between 256-246o long and 33-43o lat). We jointly invert Rayleigh wave phase velocity maps for periods up to 150 sec (from ambient noise and earthquake data), P and S teleseismic travel time residuals (>63000 for P-waves and > 28000 for S-waves), geoid and gravity anomalies, surface heat flow, gravity gradients, and absolute elevation. These observables have different sensitivities to deep/shallow, thermal/compositional anomalies and therefore they provide complementary constraints to the inversion. The method is based on a thermodynamically-constrained, nonlinear probabilistic (Bayesian) approach and includes the effect of potential dynamic contributions from density anomalies in the sublithospheric mantle via full solutions of the Stokes-flow problem. From this joint inversion, we obtain the 3D density, compositional, electrical conductivity and thermal structure for the entire lithosphere (including a multi-layer crust) and sublithospheric upper mantle down to 400 km. The resulting models show a number of robust features that carry important implications for supporting or disapproving current evolutionary models for this region. References: - Afonso, J.C., Fullea J., Griffin, W.L., Yang, Y., Jones, A.G., Connolly, J.A.D., O'Reilly, S.Y. (2013a), 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle I: a priori information and geophysical observables. J. Geophys. Res., 118, 2586-2617, doi:10.1002/jgrb.50124. - Afonso, J.C., Fullea J., Yang, Y., Connolly, J.A.D., Jones, A.G. (2013b), 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle II: General methodology and resolution analysis. J. Geophys. Res

  5. The electrical conductivity of the upper mantle and lithosphere from satellite magnetic signal due to ocean tidal flow

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Kuvshinov, A. V.; Grayver, A.; Sabaka, T. J.; Olsen, N.

    2015-12-01

    Global electromagnetic (EM) studies provide information on mantle electrical conductivity with the ultimate aim of understanding the composition, structure, and dynamics of Earth's interior. There is great much interest in mapping the global conductivity of the lithosphere and upper mantle (i.e., depths of 10-400 km) because recent laboratory experiments demonstrate that the electrical conductivity of minerals in these regions are greatly affected by small amounts of water or by partial melt. For decades, studies of lithospheric/mantle conductivity were based on interpretation of magnetic data from a global network of observatories. The recent expansion in magnetic data from low-Earth orbiting satellite missions (Ørsted, CHAMP, SAC-C, and Swarm) has led to a rising interest in probing Earth from space. The largest benefit of using satellite data is much improved spatial coverage. Additionally, and in contrast to ground-based data, satellite data are overall uniform and very high quality. Probing the conductivity of the lithosphere and upper mantle requires EM variations with periods of a few hours. This is a challenging period range for global EM studies since the ionospheric (Sq) source dominates these periods and has a much more complex spatial structure compared to the magnetospheric ring current. Moreover, satellite-based EM induction studies in principle cannot use Sq data since the satellites fly above the Sq source causing the signals to be seen by the satellite as a purely internal source, thus precluding the separation of satellite Sq signals into internal and external parts. Lastly, magnetospheric and ionospheric sources interact inductively with Earth's conducting interior. Fortunately, there exists an alternative EM source in the Sq period range: electric currents generated by oceanic tides. Tides instead interact galvanically with the lithosphere (i.e. by direct coupling of the source currents in the ocean with the underlying substrate), enabling

  6. Modeling the physical properties and composition of the mantle lithosphere using magnetotellurics combined with other information (Invited)

    NASA Astrophysics Data System (ADS)

    Jones, A. G.

    2013-12-01

    There are but two ways of directly sensing the physical properties of the lithosphere, rather than by inference from modeling, and these are seismological techniques and electromagnetic ones. The former primarily yield information on bulk, vibrational properties of the medium, namely compressional and shear velocities, whereas the latter primarily yield information on transport properties of the medium, often dictated by a well-interconnected minor phase, namely electrical conductivity. As such, they are highly complementary and taken together, either informally in co-operative modelling/inversion or formally in joint modelling/inversion, are far more powerful than each in isolation. Further than this, there is a wealth of additional data available virtually everywhere that can be utilized to constrain the thermal structure and composition of the lithosphere, namely gravity, geoid, surface heat flow, and elevation. Examples will be shown of studies in cratons (Southern Africa, Canada) and active regions (Atlas Mountains, Tibet) where magnetotellurics combined with seismological and other information is able to provide firm constraints on the thermal structure, physical properties and composition of the mantle lithosphere. In particular, MT can map the presence or absence of water in the lithospheric column, which is important for the debate on rheological properties and deformation.

  7. Petrology of Early Miocene volcanic rocks from Okushiri Island, Japan: geochemical characteristics of lithospheric mantle beneath the back-arc side of the NE Japan arc.

    NASA Astrophysics Data System (ADS)

    Sato, M.; Shuto, K.; Ishimoto, H.; Yagi, M.; Takazawa, E.

    2004-12-01

    The Sr and Nd isotopic studies on Tertiary to Quaternary basaltic rocks of the NE Japan arc have shown that isotopic characteristics of basaltic rocks found on the back-arc side of the NE Japan arc changed drastically from an undepleted isotopic signature (initial 87Sr/86Sr (SrI)=0.7040-0.7060 and initial 143Nd/144Nd (NdI)=0.51260-0.51284) to a depleted isotopic signature (SrI=0.7030-0.7040 and NdI=0.70284-0.51308) at around 15 Ma (Shuto et., 2004). This feature may have resulted from changes around 15 Ma in the isotopic compositions of the magma source beneath the back-arc side in the NE Japan arc due to the thinning of the undepleted subcontinental lithospheric mantle by upwelling of depleted asthenospheric mantle material during the opening of Japan Sea. Based on major and trace element data as well as SrI and NdI values for Early Miocene basaltic rocks from the back-arc side of the NE Japan arc, we examined geochemical characterization of the magma source (lithospheric mantle) for these basaltic rocks. Early Miocene (23-18 Ma) basalts and associated more felsic volcanic rocks form seven volcanic fields (Okushiri Is., Matsumae Pen., Fukaura, Oga Pen., Honjo, Atsumi and Sado Is.) delineating a 500 km-long array in the back-arc side of the NE Japan arc. In terms of major, trace element and Nd isotopic compositions, two groups of Early Miocene basalts can be distinguished. Group 1 is composed of tholeiitic basalts and alkali basalts, and is characterized by high TiO2 contents (1.5-2.5 %) and high (La/Yb)n ratios (>5.5), and high Zr/Y ratios (>6). These samples show the chondrite-normalized LREE-enriched patterns and have NdI values ranging from 0.51259 to 0.51282. Group 2 is composed of tholeiitic basalts, and is different from Group 1 by lower TiO2 contents (<1.5 %), lower (La/Yb)n ratios (<5) and lower Zr/Y ratios (<5.5). These samples show modelately LREE-enriched patterns and have NdI values ranging from 0.51250 to 0.51278. In contrast, Middle Miocene (after 15

  8. Density heterogeneity of the cratonic mantle and dynamic topography in southern Africa

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina; Vinnik, Lev

    2016-04-01

    An unusually high topography in southern Africa may be caused by the dynamic support of the mantle below the lithosphere base and/or by a low density (high depletion) of the cratonic lithospheric mantle. We use free-board constraints to examine the relative contributions of the both factors to surface topography and present the model of density structure of the lithospheric mantle in southern Africa. The results indicate that 0.5-1.0 km of topography requires contribution from the sublithospheric mantle because it cannot be explained by the lithosphere structure within the petrologically permitted range of mantle densities. We propose that this additional topography may be associated with the low-density region below the depth of isostatic compensation (LAB). A likely candidate is the low velocity layer between the lithospheric base and the mantle transition zone, where a temperature anomaly of 100-200 deg may produce the required extra contribution to regional topographic uplift. The calculated lithospheric mantle density values are in an overall agreement with xenolith-based data for lithospheric terranes of different ages and show an overall trend in mantle density increase from Archean to younger lithospheric terranes. A significant anomaly in mantle depletion beneath the Limpopo belt and the Bushveld Complex may result from regional melt-metasomatism. Density anomalies in the lithospheric mantle show an overall inverse correlation with seismic Vp, Vs velocities at 100-150 km depth; however, density-velocity relationship is strongly non-unique. Manuscripts in revision, Gondwana Research (2016)

  9. Crustal magmatism and lithospheric geothermal state of western North America and their implications for a magnetic mantle

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Li, Chun-Feng

    2015-01-01

    The western North American lithosphere experienced extensive magmatism and large-scale crustal deformation due to the interactions between the Farallon and North American plates. To further understand such subduction-related dynamic processes, we characterize crustal structure, magmatism and lithospheric thermal state of western North America based on various data processing and interpretation of gravimetric, magnetic and surface heat flow data. A fractal exponent of 2.5 for the 3D magnetization model is used in the Curie-point depth inversion. Curie depths are mostly small to the north of the Yellowstone-Snake River Plain hotspot track, including the Steens Mountain and McDermitt caldera that are the incipient eruption locations of the Columbia River Basalts and Yellowstone hotspot track. To the south of the Yellowstone hotspot track, larger Curie depths are found in the Great Basin. The distinct Curie depths across the Yellowstone-Snake River Plain hotspot track can be attributed to subduction-related magmatism induced by edge flow around fractured slabs. Curie depths confirm that the Great Valley ophiolite is underlain by the Sierra Nevada batholith, which can extend further west to the California Coast Range. The Curie depths, thermal lithospheric thickness and surface heat flow together define the western edge of the North American craton near the Roberts Mountains Thrust (RMT). To the east of the RMT, large Curie depths, large thermal lithospheric thickness, and low thermal gradient are found. From the differences between Curie-point and Moho depth, we argue that the uppermost mantle in the oceanic region is serpentinized. The low temperature gradients beneath the eastern Great Basin, Montana and Wyoming permit magnetic uppermost mantle, either by serpentinization/metasomatism or in-situ magnetization, which can contribute to long-wavelength and low-amplitude magnetic anomalies and thereby large Curie-point depths.

  10. Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: Connections with the subcontinental lithospheric mantle?

    NASA Astrophysics Data System (ADS)

    O'Reilly, Suzanne Y.; Zhang, Ming

    1995-08-01

    A large new database of major, trace elements and Sr-Nd isotopic ratios from 11 lava-field provinces in New South Wales and Queensland, eastern Australia allows detailed interpretation of the origin of these basaltic magmas. Isotopic signatures and trace element patterns identify an OIB-type (oceanic island basalt) source as a dominant component for most of these and some provinces appear to have additional significant components derived from the subcontinental lithospheric mantle (SCLM). The SCLM components have geochemical characteristics that overlap those observed in spinel lherzolite xenoliths (samples of shallow lithospheric mantle) from eastern Australia. These SCLM components show geochemical provinciality that indicates the occurrence of distinct geochemical lithospheric domains reflecting the timing and style of tectonic evolution of different regions. One component reflects modification by subduction-related processes during the late Paleozoic and Mesozoic, one records enrichment by fluids during old metasomatic events and another suggests a metasomatic event involving a distinctive amphibole and apatite-style enrichment. The composition and age distribution of volcanic lava-field provinces older than 10 Ma are consistent with a model involving a regional upwelling (elongated N-S along eastern Australia) of deep hot mantle related to marginal rifting and with OIB-type source geochemical characteristics. Thermal inhomogeneities within this plume swath resulted in small diapirs which may have undergone melt segregation at about 100 km and incorporated varying amounts of SCLM components there or from higher levels of the SCLM during ascent. Subsequent hot-spot generated central volcanoes overprinted this lava-field volcanism, tapped a similar OIB-type source component and truncated the thermal events.

  11. Constrained potential field modeling of the crustal architecture of the Musgrave Province in central Australia: Evidence for lithospheric strengthening due to crust-mantle boundary uplift

    NASA Astrophysics Data System (ADS)

    Aitken, Alan R. A.; Betts, Peter G.; Weinberg, Roberto F.; Gray, Daniel

    2009-12-01

    We image the crustal architecture of the Musgrave Province with petrophysically constrained forward models of new potential field data. These models image divergent shallow-dipping crustal scale thrusts that, at depth, link with an axial zone defined by steeper, lithospheric scale transpressional shear zones. They also show that to permit a near-surface density distribution that is consistent with petrophysical and geological observations, approximately 15-20 km of crust-mantle boundary uplift is necessary beneath the axial zone. The long-term preservation of this crust-mantle boundary offset implies a change from relatively weak lithosphere to relatively strong lithosphere during the intraplate Petermann Orogeny. To explain this, we propose a model in which uplift of the axial zone of the orogen leads to local lithospheric strengthening as a result of the uplift of mantle rocks into the lower crust, coupled with long-term lithospheric cooling due to the erosion of a radioactive upper crust. Brace-Goetze lithospheric strength models suggest that these processes may have increased the integrated strength of the lithosphere by a factor of 1.4-2.8. Because of this strengthening, this system is self-limiting, and activity will cease when lithospheric strength is sufficient to resist external forces and support isostatic imbalances. A simple force-balance model demonstrates that the force required to uplift the axial zone is tectonically reasonable and that the system can subsequently withstand significant tensional forces. This example shows that crust-mantle boundary uplift coupled with reduced crustal heat production can profoundly affect the long-term strength of the continental lithosphere and may be a critical process in the tectonic stabilization of intraplate regions.

  12. Seismic imaging of the physical and chemical properties of the mantle: The lithosphere-asthenosphere boundary beneath eastern North America and the mantle wedge beneath Costa Rica and Nicaragua

    NASA Astrophysics Data System (ADS)

    Rychert, Catherine A.

    2007-12-01

    We image the lithosphere-asthenosphere boundary beneath eastern North America using P-to-S and S-to-P converted phases. Modeling the properties of the associated velocity gradient indicates that the boundary is strong, and sharp, a 5-10% velocity drop that occurs over 11 km or less at 85-105 km depth. Therefore, a mechanism besides thermal gradients, such as a boundary in depletion combined with a boundary in dehydration and/or a change in anisotropy, or melting in the asthenosphere is required. We also present attenuation tomography results from the mantle wedge beneath Costa Rica and Nicaragua that illuminate strong along-arc variations between Costa Rica and Nicaragua. The mantle wedge beneath Nicaragua is characterized by larger zones of more intense attenuation than that beneath Costa Rica. These results indicate that the Nicaraguan wedge is more hydrated and/or hotter. Either of these mechanisms are consistent with greater degrees of melting over larger areas beneath Nicaragua. These results are consistent with geochemical indicators in the region, which suggest that melting in Nicaragua is more hydrated, with greater degrees of melting, and perhaps greater depths of melting.

  13. Formation and metasomatism of continental lithospheric mantle in intra-plate and subduction-related tectonic settings

    NASA Astrophysics Data System (ADS)

    Ionov, Dmitri

    2010-05-01

    Our knowledge of the origin and evolution of the continental lithospheric mantle (CLM) remains fragmentary and partly controversial in spite of recent advances in petrologic, geochemical and geophysical studies of the deep Earth and experimental work. Debate continues on a number of essential topics, like relative contributions of partial melting, metasomatism and ‘re-fertilisation' as well as the timing, conditions and tectonic settings of those processes. These topics can be addressed by studies of ultramafic xenoliths in volcanic rocks which arguably provide the least altered samples of modern and ancient CLM. The subcontinental lithosphere is thought to be a mantle region from which melts have been extracted, thus making the lithosphere more refractory. Melting degrees can be estimated from Al contents while the depth of melt extraction can be assessed from Al-Fe (Mg#) relations in unmetasomatized melting residues in comparison with experimental data, e.g. [1]. High silica and opx in the residues may indicate melting in water-rich conditions. High-precision Mg# and Mn for olivine may constrain degrees and conditions of partial melting and/or metasomatism, tectonic settings, modal compositions (e.g. presence of garnet) and equilibration conditions of mantle peridotites [2]. These estimates require both adequate sampling and high-quality major element and modal data; sampling and analytical uncertainties in published work may contribute substantially to chemical heterogeneities (and different origins) inferred for CLM domains [3]. Very fertile peridotite xenolith suites are rare worldwide [3]. They were initially viewed as representing mantle domains that experienced only very small degrees of melt extraction but are attributed by some workers to ‘refertilization' of refractory mantle by percolating asthenospheric melts. Such alternative mechanisms might be valid for some rare hybrid and Fe-enriched peridotites but they fail to comprehensively explain modal

  14. Mantle anisotropy in the lithosphere and asthenosphere beneath the southeastern United States

    NASA Astrophysics Data System (ADS)

    MacDougall, J.; Fischer, K. M.; Wagner, L. S.; Hawman, R. B.

    2014-12-01

    Using teleseismic shear-wave splitting measurements from the SESAME array and EarthScope Transportable Array, we are quantifying sources of seismic anisotropy beneath the southern Appalachians and the adjacent rifted Coastal Plain. SESAME (Southeastern Suture of the Appalachian Margin Experiment; 2010-2014), an EarthScope Flexible Array, consisted of 85 stations that spanned Georgia, northern Florida, and parts of North Carolina and Tennessee. Stations were most densely spaced in southern Georgia across the hypothesized suture between Laurentia and the exotic Suwannee terrane, which is thought to have been part of Gondwana and to have collided with Laurentia in the late Paleozoic. The region experienced rifting in the Mesozoic, leading to the creation of the South Georgia Rift Basin. Shear-wave splitting in SKS and SKKS phases indicates the presence of significant anisotropy in the mantle. Splitting times range from 0.4 s to 3.2 s, but are typically 1.0-1.5 s. SK(K)S splitting fast directions are dominated by an overall NE-SW trend, but significant fast direction differences occur between sub-regions of the array. At stations within the higher topography of the Blue Ridge terrane, fast directions are predominantly NE-ENE, and show little systematic variation with back-azimuth. At stations further to the southeast in the Inner Piedmont and Carolina terranes, fast directions are ENE-ESE. Closer to the Atlantic coast and in a sub-region that experienced significant rifting in the Mesozoic, a strong variation of fast direction with backazimuth is observed. Spatial overlap of paths with different fast directions indicates that the backazimuthal pattern reflects a rotation of azimuthal anisotropy with depth, rather than simple lateral variations. The laterally-rapid spatial variations between these groups indicates that the SK(K)S waves are likely sampling differences in lithospheric anisotropy between adjacent terranes, superimposed on any asthenospheric anisotropy. We

  15. Hydration of the lithospheric mantle by the descending plate in a continent-continent collisional setting and its geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Massonne, Hans-Joachim

    2016-05-01

    At the beginning of continent-continent collision the descending plate dehydrates. The influence of this dehydration on the adjacent lithospheric mantle was studied. For this reason, pressure (P), temperature (T) and T-H2O pseudosections were calculated for an average mantle composition using the computer software PERPLE_X. These pseudosections were contoured by isopleths, for instance, for volumes of amphibole, chlorite, and serpentine. In addition, P-T pseudosections were considered for four psammopelitic rocks, common in the upper portion of the continental crust, in order to quantify the release of H2O in these rocks during prograde metamorphism. At pressures around 1 GPa, a maximum of slightly more than 10 vol.% chlorite, almost 20 vol.% amphibole, and some talc but no serpentine forms when only 1.8 wt.% H2O is added to the dry ultrabasite at temperatures of 600 °C. For example, hydrous phases amount to about 35 vol.% serpentine and 10 vol.% each of chlorite and amphibole at 1 GPa, 550 °C, and 5 wt.% H2O. The modelled psammopelitic rocks can release 0.8-2.5 wt.% H2O between 450 and 650 °C at 0.8-1.4 GPa. On the basis of the above calculations, different collisional scenarios are discussed highlighting the role of hydrated lithospheric mantle. In this context a minimum hydration potential of the front region of the descending continental plate is considered, which amounts to 4.6 × 1016 kg releasable H2O for a 1000 km wide collisional zone, due to a thick sedimentary pile at the continental margin. Further suggestions are that (1) the lower crustal plate in a continent-continent collisional setting penetrates the lithospheric mantle, which is hydrated during the advancement of this plate, (2) the maximum depths of the subduction of upper continental crust is below 70 km and (3) hydrated mantle above the descending crustal plate is thrust onto this continental crust.

  16. Passive rifting of thick lithosphere in the southern East African Rift: Evidence from mantle transition zone discontinuity topography

    NASA Astrophysics Data System (ADS)

    Reed, Cory A.; Liu, Kelly H.; Chindandali, Patrick R. N.; Massingue, Belarmino; Mdala, Hassan; Mutamina, Daniel; Yu, Youqiang; Gao, Stephen S.

    2016-11-01

    To investigate the mechanisms for the initiation and early-stage evolution of the nonvolcanic southernmost segments of the East African Rift System (EARS), we installed and operated 35 broadband seismic stations across the Malawi and Luangwa rift zones over a 2 year period from mid-2012 to mid-2014. Stacking of over 1900 high-quality receiver functions provides the first regional-scale image of the 410 and 660 km seismic discontinuities bounding the mantle transition zone (MTZ) within the vicinity of the rift zones. When a 1-D standard Earth model is used for time-depth conversion, a normal MTZ thickness of 250 km is found beneath most of the study area. In addition, the apparent depths of both discontinuities are shallower than normal with a maximum apparent uplift of 20 km, suggesting widespread upper mantle high-velocity anomalies. These findings suggest that it is unlikely for a low-velocity province to reside within the upper mantle or MTZ beneath the nonvolcanic southern EARS. They also support the existence of relatively thick and strong lithosphere corresponding to the widest section of the Malawi rift zone, an observation that is consistent with strain localization models and fault polarity and geometry observations. We postulate that the Malawi rift is driven primarily by passive extension within the lithosphere attributed to the divergent rotation of the Rovuma microplate relative to the Nubian plate, and that contributions of thermal upwelling from the lower mantle are insignificant in the initiation and early-stage development of rift zones in southern Africa.

  17. Sr-Nd-Pb-C-O isotope systematics of carbonated ultramafic xenoliths from Mafu, Taiwan: Evidence for an extremely enriched lithospheric mantle source beneath the extended margin of the South China block

    NASA Astrophysics Data System (ADS)

    Smith, A. D.; Wen, D.; Chung, S.; Wang, K.; Chiang, H.; Tsai, C.

    2008-12-01

    Deep-seated carbonate melt is widely proposed as an effective agent to metasomatize the lithospheric mantle. However, such carbonate melts may have a great diversity of composition and a mantle or recycled origin remains unclear. Here we present the evidence for unique carbonate metasomatism of the continental lithospheric mantle (CLM) beneath the extended southeast margin of the South China block from severely replaced spinel peridotite xenoliths from Mafu, northwestern Taiwan. The metasomatic calcitic carbonates and whole carbonated xenoliths from Mafu have unusually low trace element abundances (total REE abundance < 6 ppm), except for enrichment in Sr, Ba, Pb, Mn and LREE. A magmatic origin is suggested by textural observation that the chromium diopside is resorbed by carbonate melts. In addition, the carbonate melts are distinguishable from the overlaying Miocene limestone and the amygdaloidal carbonate in the host lava with respect to Sr, Nd, C and O isotopic compositions, thereby precluding a crustal origin or surficial alteration, respectively. Compared with the depleted CLM source(s) represented by the unaltered chromium diopside and/or leach residue (86Sr/87Sr = 0.7041; ɛ Nd = +4.9, one residual sample up to +12; 206Pb/204Pb = 18.3), the Sr-Nd-Pb-C-O isotope systematics of the carbonates (86Sr/87Sr = 0.7044-0.7045; ɛ Nd = -6.9 to -7.7; 206Pb/204Pb = 18.5; δ13C = -4.5 to -5.7; δ18O = +21.8 to +22.9) reveal an extremely enriched and heterogeneous CLM. According to the Nd model age, the enriched component evolved for at least 1 Gyrs after isolation from the depleted CLM, before the Late Miocene entrapment. Coupled with high Sr/Nd, Ba/Th, La/Yb, Zr/Hf, and low Nb/U, Ce/Pb, Th/U, Ti/Eu ratios, this EM1-like metasomatic agent may be one of the most efficient percolating melt to cause disequlibrium interaction or Sr-Nd isotope decoupling. To a broader interpretation, it offers an alternative to account for some enriched signatures in mantle lithosphere, such

  18. Mantle xenocrysts from the Arkhangelskaya kimberlite (Lomonosov mine, NW Russia): Constraints on the composition and thermal state of the diamondiferous lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Lehtonen, M.; O'Brien, H.; Peltonen, P.; Kukkonen, I.; Ustinov, V.; Verzhak, V.

    2009-11-01

    The Arkhangelskaya kimberlite pipe belongs to the Zolotitsa kimberlite field in the Arkhangelsk region, NW Russia. It is the first pipe of the Lomonosov diamond mine to be put into production, with 2 million tons of ore already extracted. In this study major and trace element compositions of garnet, clinopyroxene (Cpx), Mg-ilmenite and chromite xenocrysts from the Arkhangelskaya pipe have been used to infer information about the compositional variability of the mantle underlying the Zolotitsa field. Single-grain thermobarometry of peridotitic Cpx xenocrysts yields a cool cratonic geotherm that follows a ca. 36 mW/m 2 conductive model. Equilibration temperatures of garnet and chromite grains based on Ni- and Zn-thermometry, respectively, indicate a sampling interval of ca. 70-230 km of the lithospheric mantle when projected onto the Cpx-derived geotherm. The major element chemistry of Mg-ilmenite xenocrysts suggests that almost optimal redox conditions for diamond preservation prevailed in the mantle during the time of emplacement of the host kimberlite magmas. Garnet major and trace element compositions combined with the Cpx-geotherm indicate that the peridotitic diamond window extends from 130 to 210 km under Zolotitsa and that the deeper parts of the lithosphere have been affected by metasomatic events. Arkhangelskaya seems to have sampled the bulk of its diamonds from the deepest portion of the diamond stability field, between 190 and 210 km. In comparison, the neighbouring Lomonosova and Pionerskaya pipes are known to have collected their diamonds from 130-160 km. The comparable grade of the three pipes suggests that diamondiferous material is generously distributed within the diamond stability field. The remarkable difference evidenced by garnet composition and thermobarometry between Arkhangelskaya and the two other Zolotitsa pipes probably derives from differences in rheology and eruption rates of the rising kimberlite magmas.

  19. The various styles of metasomatism in the lithospheric mantle beneath SW Poland: the Krzeniów basanite case

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Puziewicz, Jacek; Ntaflos, Theodoros; Grégoire, Michel; Klügel, Andreas

    2013-04-01

    gradually from the REE poor and spoon-shaped to REE richer and more flattened ones. The contents of REE and trace elements content of the REE-poor A1 clinopyroxene suggest that they were produced by reaction with the metasomatic fluid. The MREE and HREE patterns of A2 clinopyroxene are similar to those of the most REE-rich A1 patterns, but inflected at LREE. The inflection is typical for clinopyroxene which equilibrated its REE contents with silicate melt. The A2 clinopyroxene is less magnesian and is significantly enriched in Al and Na and depleted in Ca relative to the A1 one. This suggests that the A1 and A2 clinopyroxenes were affected to a different degree by silicate melt metasomatism. Thus, the REE-poor A1 clinopyroxenes probably represent compositions of the peridotites in the Krzeniów mantle section before silicate melt infiltration. The group B clinopyroxene is similar to the A2 one, but its major element composition is more variable and the forsterite content in coexisting olivine is lower than that in A group, suggesting that it was affected by silicate melt metasomatism ("Fe metasomatism"). This kind of metasomatism seems to be common in the lithospheric mantle beneath Lower Silesia.

  20. Using PP and SS precursors to Image Lithospheric and Upper-mantle Discontinuities Beneath the Line Islands in the Central Pacific Basin

    NASA Astrophysics Data System (ADS)

    Scarbrough, M.; Gurrola, H.

    2013-12-01

    We interpret PP precursors for upper mantle structure beneath the Line Islands (LI), north of French Polynesia. Petrological and geochemical observations, as well as SS precursors, are used to verify our interpretation. Although PP and SS bouncepoint precursors have not hitherto been effective for detailed imaging of the lithosphere, array processing of EarthScope Transportable Array data and simultaneous iterative deconvolution improves frequency content to 4Hz and affords a more detailed view of the upper mantle. Using PP precursors, the 520 is observable beneath the LI region and is shallowest directly beneath the islands. To the SW of the island chain, the 410 is apparent at 430 km, then shallows by 6 km toward the NE. We observe a negative phase underlying a relatively flat 90-km-deep positive phase representing the LAB (Lithosphere-Asthenosphere Boundary. Overlying this is a negative lens-shaped phase that reaches its greatest thickness just NE of the center of the LI, and pinches out with distance from the LI axis. This negative phase suggests either a lens of partial melt or depleted mantle due to a past melt. A strong arch-shaped positive phase (~60 km depth) overlies this lens; it appears to be breached at its apex, and is overlain by a negative phase (~40 km) that is relatively thin to the SW and thickens to the NE. We believe this breached arch to be the vestige of an ancestral LAB that fractured as it became a conduit for ancient melt entering the lithosphere. The mechanism for formation of the LI appears similar to that in continental rifts. Petrological and geochemical observations support this interpretation. The use of PP precursors to investigate upper mantle structure at this scale beneath oceanic crust is novel, as PP data have historically been severely low-pass filtered and PP-waves, which travel through water, require a correction for ocean-bottom response. To do so, we generate a synthetic response for water depth at each bouncepoint and

  1. Constraints on lateral variations of lithospheric thickness and mantle viscosity from GNSS horizontal velocities of the BIFROST project

    NASA Astrophysics Data System (ADS)

    Steffen, Holger; Johansson, Jan; Kierulf, Halfdan Pascal; Kristiansen, Oddgeir; Lidberg, Martin; Tarasov, Lev

    2016-04-01

    The BIFROST (Baseline Inferences for Fennoscandian Rebound Observations Sea Level and Tectonics) project was started in 1993. The primary goal was to establish a new and useful three-dimensional measurement of crustal movement based on Global Navigation Satellite System (GNSS) observations, that is able to constrain models of the glacial isostatic adjustment (GIA) in Fennoscandia. Station velocities derived from analysis of observations at permanent GNSS stations in the Nordic countries and beyond have been published over the last 15 years. The latest GNSS-based 3D velocity field of Fennoscandia is a result of a re-processing of data from 1993 to 2014 from more than two hundred stations in northern Europe. It is computed using a state-of-the-art strategy. In this poster, we analyse the computed station velocities towards identification of lateral variations in lithospheric thickness and mantle viscosity in Fennoscandia. We therefore focus on the horizontal components. We compare observed velocities against velocities from a large set of GIA models. Preliminary results show that inclusion of lateral mantle viscosity variations in the model is necessary to explain distinct horizontal velocity patterns of the observed motion. However, some patterns can also be explained by strong lithospheric thickness variations, which requires an extended analysis in future.

  2. Late Cretaceous - recent lithosphere scale evolution of Turkey: linking the crustal surface evolution to the structure of the mantle

    NASA Astrophysics Data System (ADS)

    Bartol, J.; Govers, R. M. A.; Wortel, M. J. R.

    2015-12-01

    Central Anatolia (Central Turkey) possesses all the characteristics of a plateau. It experienced a period of rapid and substantial uplift (late Miocene, ˜8 Ma) while significant crustal shortening did not occur. Similar to other plateaus, the presence of volcanic ash and tuff within the sediments suggest that uplift was preceded by widespread volcanism (˜14-9Ma). The lithospheric context of these events is, however, unknown. For the Eastern Anatolian plateau, similar events have been attributed to southward retread followed by slab break-off of the northern Neotethys slab. Recent tomographic results indicate that this northern Neotethys slab extended beneath both the Eastern and Central Anatolian plateau prior to late Miocene delamination and possibly even beneath western Anatolia prior to the Eocene (?). We propose a new lithospheric scenario for the regional evolution for the Aegean-Anatolia-Near East region that combines a recent compilation of surface geology data with the structure of the upper mantle imaged with tomography. In our new scenario for the evolution of the Aegean-Anatolia-Near East region, a single continuous subduction zone south of the Pontides (Izmir - Ankara - Erzincan crustal suture zone) accommodated the Africa - Eurasia convergence until the end of the late Cretaceous. In the Late Cretaceous - Eocene the northern Neotethys Ocean closed followed by Anatolide - Taurides (south) and Pontides (north) continental collision along the Izmir - Ankara - Erzincan crustal suture zone. While the trench jumped to the south of Anatolide - Taurides terrane, subduction continued beneath the Izmir-Ankara-Erzincan suture where the northern Neotethys slab continued to sink into the deeper mantle. In the early Miocene (˜20-15Ma), the northern Neotethys slab started to retreat southward towards the trench, resulting in delamination of the lithospheric mantle. The last part of (early Miocene - recent) our scenario is testable. We use a coupled thermal

  3. Sedimentary halogens and noble gases within Western Antarctic xenoliths: Implications of extensive volatile recycling to the sub continental lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Broadley, Michael W.; Ballentine, Chris J.; Chavrit, Déborah; Dallai, Luigi; Burgess, Ray

    2016-03-01

    Recycling of marine volatiles back into the mantle at subduction zones has a profound, yet poorly constrained impact on the geochemical evolution of the Earth's mantle. Here we present a combined noble gas and halogen study on mantle xenoliths from the Western Antarctic Rift System (WARS) to better understand the flux of subducted volatiles to the sub continental lithospheric mantle (SCLM) and assess the impact this has on mantle chemistry. The xenoliths are extremely enriched in the heavy halogens (Br and I), with I concentrations up to 1 ppm and maximum measured I/Cl ratios (85.2 × 10-3) being ∼2000 times greater than mid ocean ridge basalts (MORB). The Br/Cl and I/Cl ratios of the xenoliths span a range from MORB-like ratios to values similar to marine pore fluids and serpentinites, whilst the 84Kr/36Ar and 130Xe/36Ar ratios range from modern atmosphere to oceanic sediments. This indicates that marine derived volatiles have been incorporated into the SCLM during an episode of subduction related metasomatism. Helium isotopic analysis of the xenoliths show average 3He/4He ratios of 7.5 ± 0.5 RA (where RA is the 3He/4He ratio of air = 1.39 × 10-6), similar to that of MORB. The 3He/4He ratios within the xenoliths are higher than expected for the xenoliths originating from the SCLM which has been extensively modified by the addition of subducted volatiles, indicating that the SCLM beneath the WARS must have seen a secondary alteration from the infiltration and rise of asthenospheric fluids/melts as a consequence of rifting and lithospheric thinning. Noble gases and halogens within these xenoliths have recorded past episodes of volatile interaction within the SCLM and can be used to reconstruct a tectonic history of the WARS. Marine halogen and noble gas signatures within the SCLM xenoliths provide evidence for the introduction and retention of recycled volatiles within the SCLM by subduction related metasomatism, signifying that not all volatiles that survive

  4. The depth of sub-lithospheric diamond formation and the redistribution of carbon in the deep mantle

    NASA Astrophysics Data System (ADS)

    Beyer, Christopher; Frost, Daniel J.

    2017-03-01

    Most diamonds form in the Earth's lithosphere but a small proportion contain Si-rich majoritic garnet inclusions that indicate formation in the deeper mantle. The compositions of syngenetic garnet inclusions can potential yield information on both the depth and mantle lithology in which the diamonds formed. Pressure dependent changes in garnet compositions have been calibrated using the results of experiments conducted in a multi-anvil apparatus at pressures between 6 and 16 GPa and temperatures of 1000 to 1400 °C. Using the results of these experiments a barometer was formulated based on an empirical parameterisation of the two major majoritic substitutions, referred to as majorite (Maj; Al3+ =Mg2+ +Si4+), and Na-majorite (Na-Maj; Mg2+ +Al3+ =Na+ +Si4+). Moreover, previously published experimental garnet compositions from basaltic, kimberlite, komatiite and peridotite bulk compositions were included in the calibration, which consequently covers pressures from 6 to 20 GPa and temperatures from 900 to 2100 °C. Experimental pressures are reproduced over these conditions with a standard deviation of 0.86 GPa. The barometer is used to determine equilibration pressures of approximately 500 reported garnet inclusions in diamonds from a range of localities. As the majority of these inclusions are proposed to be syngenetic this allows a detailed picture of diamond formation depths and associated source rocks to be established using inclusion chemistry. Geographic differences in diamond source rocks are mapped within the sub-lithospheric mantle to over 500 km depth. Continuous diamond formation occurs over this depth range within lithologies with eclogitic affinities but also in lithologies that appear transitional between eclogitic and peridotitic bulk compositions, with an affinity to pyroxenites. The geographic differences between eclogitic and pyroxenitic diamond source rocks are rationalised in terms of diamond formation within downwelling and upwelling regimes

  5. Thermal and metasomatic rejuvenation and dunitization in lithospheric mantle beneath Central Europe - The Grodziec (SW Poland) case study

    NASA Astrophysics Data System (ADS)

    Matusiak-Małek, Magdalena; Ćwiek, Mateusz; Puziewicz, Jacek; Ntaflos, Theodoros

    2017-04-01

    The 32 Ma Grodziec nephelinite (Lower Silesia, SW Poland) contains xenolith of peridotite (mostly lherzolite) and clinopyroxenite/olivine clinopyroxenite composition. The forsterite content in olivine classifies these rocks into three groups: groups A and B consist of peridotites, while group C xenoliths are pyroxenitic cumulates. Group A xenoliths contain olivine Fo 87.90-91.8% and pyroxenes with high Mg# ( 0.91-0.92); clinopyroxene is strongly LREE-enriched (LaN/LuN = 2.19-17.74) and strongly impoverished in Zr, Hf and Ti relative to primitive mantle. The group B xenoliths (dunites and wehrlite) are orthopyroxene-free, olivine and clinopyroxene are less magnesian than those in the A group (Fo = 85.2-87.2%, Mg# = 0.86-0.88), clinopyroxene is less LREE-enriched (LaN/LuN = 4.07-4.15) and only slightly impoverished in Zr, Hf and Ti. Group C xenoliths contain olivine with forsterite content from 78.6 to 86.6% and clinopyroxene of Mg# from 0.84 to 0.85, with LREE/trace element characteristics similar to those of B group (LaN/LuN = 1.96-3.10). Group A xenoliths from Grodziec record migration of mixed carbonatite-alkaline silicate melts through the subcontinental lithospheric mantle beneath Lower Silesia, which preceded the migration of melts similar to the Grodziec nephelinite. The peridotitic protoliths were dunitized at the direct contacts with the migrating nephelinite melt and are now represented by group B. Group C pyroxenites originated in mantle conditions by crystal settling in places of transient nephelinite melt stagnation. The mantle section beneath Grodziec was reheated to ca 1000-1100 °C. The Grodziec scenario is similar to that of Księginki (northern extension of Eger Rift, SW Poland), which shares a similar age of xenolith entrainment. Both sites show that the processes of mantle metasomatism and thermal rejuvenation of subcontinental lithospheric mantle were more intense during the Lower Oligocene volcanic climax compared to those recorded in younger

  6. A melt-focusing zone in the lithospheric mantle preserved in the Santa Elena Ophiolite, Costa Rica

    NASA Astrophysics Data System (ADS)

    Madrigal, Pilar; Gazel, Esteban; Denyer, Percy; Smith, Ian; Jicha, Brian; Flores, Kennet E.; Coleman, Drew; Snow, Jonathan

    2015-08-01

    The Santa Elena Ophiolite in Costa Rica is composed of a well-preserved fragment of the lithospheric mantle that formed along a paleo-spreading center. Within its exposed architecture, this ophiolite records a deep section of the melt transport system of a slow/ultra-slow spreading environment, featuring a well-developed melt-focusing system of coalescent diabase dikes that intrude the peridotite in a sub-vertical and sub-parallel arrangement. Here we present an integrated analysis of new structural data, 40Ar/39Ar geochronology, major and trace element geochemistry and radiogenic isotope data from the diabase dikes in order to elucidate the tectonic setting of the Santa Elena Ophiolite. The dikes are basaltic and tholeiitic in composition. Petrological models of fractional crystallization suggest deep pressures of crystallization of > 0.4 GPa for most of the samples, which is in good agreement with similar calculations from slow/ultra-slow spreading ridges and require a relatively hydrated ( 0.5 wt.% H2O) MORB-like source composition. The diabase dikes share geochemical and isotope signatures with both slow/ultra-slow spreading ridges and back-arc basins and indicate mixing of a DMM source and an enriched mantle end-member like EMII. The 40Ar/39Ar geochronology yielded an age of 131 Ma for a previous pegmatitic gabbroic magmatic event that intruded the peridotite when it was hot and plastic and an age of 121 Ma for the diabase intrusions, constraining the cooling from near asthenospheric conditions to lithospheric mantle conditions to 10 Ma. Our findings suggest a complex interplay between oceanic basin and back-arc extension environments during the Santa Elena Ophiolite formation. We propose an alternative hypothesis for the origin of Santa Elena as an obducted fragment of an oceanic core complex (OCC).

  7. Results from SAMTEX: The Southern African lithospheric mantle - electrical structures and geometries and comparison with seismological information

    NASA Astrophysics Data System (ADS)

    G.. Jones, A.; Muller, M. P.; Miensopust, M. P.; Khosa, D.; Share, P.-E.

    2009-04-01

    The Southern African Magnetotelluric Experiment (SAMTEX) is imaging the electrical structures and geometries of the continental lithosphere below Botswana, Namibia and South Africa to depths of 200+ km. Primary geometrical information can readily be obtained from lithospheric-scale MT experiments about the three-dimensional variation in conductivity, and this information can be related to formation and deformation processes. In particular, one important piece of geometrical information easily and relatively precisely (to within 10%) obtained from MT data is the depth to the lithosphere-asthenosphere boundary (LAB), due to the sensitivity of conductivity to small fractions (<1%) of partial melt and/or increased water content. Over four phases of acquisition SAMTEX measurements have been made at a total of more than 700 MT sites in an area of greater than a million square kilometers, making it by far the largest-ever MT project undertaken. In particular, during Phase IV very challenging MT measurements were made in the highly-remote Central Kalahari Game Reserve, completing the coverage of Botswana. One of the most significant results from SAMTEX is the mapping of the LAB beneath the Archean cratons and bounding mobile belts of Southern Africa, particularly beneath Namibia and Botswana for which no prior lithospheric information exists. As would be expected, the electrically-defined LAB is generally shallow (150 km) beneath the mobile belts, deep (250 km) in the centres of the cratons, and transitional at the edges of cratons. Kimberlites are useful in also inferring lithospheric thickness, and diamondiferous kimberlites are located primarily where the electrical lithosphere is transitional in thickness, or where there is a change in its electrical anisotropy properties, both of which are craton edge effects. The electrical properties of the continental mantle derived from SAMTEX data can be compared with seismic ones derived from data from the South African Seismic

  8. Stable isotopic (O, H) evidence for hydration of the central Colorado Plateau lithospheric mantle by slab-derived fluids

    NASA Astrophysics Data System (ADS)

    Marshall, E. W.; Barnes, J.; Lassiter, J. C.

    2013-12-01

    The Colorado Plateau is a tectonically stable, relatively undeformed Proterozoic lithospheric province in the North America Cordillera. Although the stability of the Colorado Plateau suggests that it is rheologically strong, evidence from xenoliths show that the lithospheric mantle is extensively hydrated (e.g., presence of hydrous minerals, 'high' water contents in nominally anhydrous minerals), and therefore weakened. In addition, LREE enrichments in clinopyroxene (cpx) imply that the lithospheric mantle has been metasomatized ([1],[2]). Here we analyze mineral separates from spinel and garnet peridotite xenoliths from the Navajo Volcanic Field (NVF), located in the center of the Plateau, for their oxygen and hydrogen isotope compositions. These compositions are compared to those of xenoliths at the margins of the Plateau: spinel peridotites from the Grand Canyon Volcanic Field (GCVF) in the west and Zuni-Bandera Volcanic Field (ZBVF) in the east. NVF xenoliths are significantly more hydrous than the xenoliths on the margins of the Colorado Plateau based on modal abundances of hydrous minerals and structural water in olivine (e.g. [3]). All hydrous phases have high δD values (antigorite = -71 to -46‰ (n = 6 xenoliths); chlorite = -49 to -31‰ (n=3); amphibole = -47‰ (n=1)) compared to normal mantle (~-80‰), suggesting the addition of a fluid that is enriched in D compared to typical mantle. δ18O values for the same hydrous minerals range from 6.0 to 6.6‰ (n=6). δ18O values of olivine from NVF spinel peridotites have a narrow range, 5.0 to 5.4‰ (n = 4), near mantle olivine values (~5.2‰). Olivines from spinel peridotites from the GCVF and ZBVF also have mantle-like δ18O values (5.1 to 5.2‰ (n=3) and 5.1 to 5.4‰ (n=7), respectively). However, olivines and orthopyroxenes (opx) from NVF garnet peridotites have a slightly larger range and some record 18O enrichment (olivine = 5.1 to 5.6‰ (n = 3); opx = 5.9‰ (n=1)). The high δ18O values of

  9. Crystal chemistry of amphiboles: implications for oxygen fugacity and water activity in lithospheric mantle beneath Victoria Land, Antarctica

    NASA Astrophysics Data System (ADS)

    Bonadiman, C.; Nazzareni, S.; Coltorti, M.; Comodi, P.; Giuli, G.; Faccini, B.

    2014-03-01

    Amphibole is the hydrous metasomatic phase in spinel-bearing mantle xenoliths from Baker Rocks, Northern Victoria Land, Antarctica. It occurs in veins or in disseminated form in spinel lherzolites. Both types derive from reaction between metasomatic melts and the pristine paragenesis of the continental lithospheric mantle beneath Northern Victoria Land. To determine the effective role of water circulation during the metasomatic process and amphibole formation, six amphibole samples were fully characterized. Accurate determination of the site population and the state of dehydrogenation in each of these amphiboles was carried out using single-crystal X-ray diffraction, electron microprobe and secondary ion mass spectroscopy on the same single crystal. The Fe3+/ΣFe ratio was determined by X-ray absorption near edge spectroscopy on amphibole powder. The degree of dehydrogenation determined by SIMS is 0.870-0.994 O3(O2-) a.p.f.u., primary and ascribed to the Ti-oxy component of the amphibole, as indicated by atom site populations; post-crystallization H loss is negligible. Estimates of aH2O (0.014-0.054) were determined from the dehydration equilibrium among end-member components assuming that amphiboles are in equilibrium with the anhydrous peridotitic phases. A difference up to 58 % in determination of aH2O can be introduced if the chemical formula of the amphiboles is calculated based on 23 O a.p.f.u. without knowing the effective amount of dehydrogenation. The oxygen fugacity of the Baker Rocks amphibole-bearing mantle xenoliths calculated based upon the dissociation constant of water (by oxy-amphibole equilibrium) is between -2.52 and -1.32 log units below the fayalite-magnetite-quartz (FMQ) buffer. These results are systematically lower and in a narrow range of values relative to those obtained from anhydrous olivine-orthopyroxene-spinel equilibria ( fO2 between -1.98 and -0.30 log units). A comparative evaluation of the two methods suggests that when amphibole

  10. Oceanic provenance of lithospheric mantle beneath Lower Silesia (SW Poland) and the two kinds of its "Fe-metasomatism"

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Kukuła, Anna; Ćwiek, Mateusz

    2016-04-01

    Our recent studies (Puziewicz et al. 2015, IJES 104:1913-1924, and references therein) show that the subcontinental lithospheric mantle (SCLM) beneath Lower Silesia (SW Poland) and neighbouring part of Upper Lusatia (SE Germany) is dominated by harzburgites. Part of them contain small amounts of clinopyroxene which, despite its primary textural appearance, is a late addition to the protoliths which are residues after extensive (up to 30 %) partial melting. This clinopyroxene was added to the harzburgites in Cenozoic times by alkaline basaltic melts migrating upwards from their asthenospheric sources during rifting in the Variscan foreland of the Alpine-Carpathian chain. The pre-rifting history of the SCLM beneath the region is thus recorded in the olivine and orthopyroxene. The forsterite content in olivine divides the Lower Silesian harzburgites into two groups: A (olivine Fo 90.5 - 92.0), and B (olivine Fo 84.0 - 90.0; for data see Puziewicz et al. 2015, op. cit.). The Al content in orthopyroxene is low and similar in both A and part of B harzburgites, called B1 in the following. The orthopyroxene occurring in the B1 harzburgites contains typically 0.05 - 0.10 atoms of Al per formula unit (corresponding to 0.5 - 2.5 wt. % Al2O3), although slightly lower (down to 0.02 a pfu) and slightly higher (up to 0.13 a pfu) Al contents occur in subordinate number of samples. The Al content in the B1 orthopyroxene is not correlated with forsterite content in coexisting olivine. The B2 harzburgites occur only in one site (Księginki). They contain orthopyroxene which Al content exhibits negative correlation with forsterite content in coexisting olivine. The most Al -rich orthopyroxene (0.24 atoms of Al pfu, corresponding to ca. 5.7 wt % Al2O3) coexists with olivine Fo 86.5 in Księginki. The low contents of Al in orthopyroxene is specific for the Lower Silesian/Upper Lusatian domain of European lithospheric mantle. The Al-poor mantle domain below Lower Silesia and upper

  11. Petrogenesis of fertile mantle peridotites from the Monte del Estado massif (southwest Puerto Rico): a preserved section of Proto-Caribbean oceanic lithospheric mantle?

    NASA Astrophysics Data System (ADS)

    Marchesi, Claudio; Jolly, Wayne T.; Lewis, John F.; Garrido, Carlos J.; Proenza, Joaquín. A.; Lidiak, Edward G.

    2010-05-01

    The Monte del Estado massif is the largest and northernmost serpentinized peridotite belt in southwest Puerto Rico. It is mainly composed of spinel lherzolite and minor harzburgite with variable clinopyroxene modal abundances. Mineral and whole rock major and trace element compositions of peridotites coincide with those of fertile abyssal peridotites from mid ocean ridges. Peridotites lost 2-14 wt% of relative MgO and variable amounts of CaO by serpentinization and seafloor weathering. HREE contents in whole rock indicate that the Monte del Estado peridotites are residues after low to moderate degrees (2-15%) of fractional partial melting in the spinel stability field. However, very low LREE/HREE and MREE/HREE in clinopyroxene cannot be explained by melting models of a spinel lherzolite source and support that the Monte del Estado peridotites experienced initial low fractional melting degrees (~ 4%) in the garnet stability field. The relative enrichment of LREE in whole rock is not due to secondary processes but probably reflects the capture of percolating melt fractions along grain boundaries or as microinclusions in minerals, or the presence of exotic micro-phases in the mineral assemblage. We propose that the Monte del Estado peridotite belt represents a section of ancient Proto-Caribbean (Atlantic) lithospheric mantle originated by seafloor spreading between North and South America in the Late Jurassic-Early Cretaceous. This portion of oceanic lithospheric mantle was subsequently trapped in the forearc region of the Greater Antilles paleo-island arc generated by the northward subduction of the Caribbean plate beneath the Proto-Caribbean ocean. Finally, the Monte del Estado peridotites belt was emplaced in the Early Cretaceous probably as result of the change in subduction polarity of the Greater Antilles paleo-island arc without having been significantly modified by subduction processes.

  12. A detailed view of the crust and lithospheric mantle beneath eastern Australia from transportable seismic array tomography

    NASA Astrophysics Data System (ADS)

    Rawlinson, Nicholas; Pilia, Simone

    2014-05-01

    The WOMBAT transportable seismic array project has been ongoing in eastern Australia since 1998, when a 40 station temporary array of recorders was first installed in western Victoria. To date, 16 consecutive array deployments have taken place with a cumulative total of over 700 stations installed in an area spanning Tasmania, New South Wales, southern Queensland and much of South Australia. Station separation varies between 15 km in Tasmania and 50 km on the mainland, with the majority of stations 3-component 1 Hz instruments, although a number of broadband instruments are interspersed. Although best suited to P-wave tomography, the recorded seismic wavefield has also proven to be useful for ambient noise tomography and crustal receiver functions, thus allowing detailed information on both the crust and lithospheric mantle structure to be retrieved. In order to apply teleseismic tomography using a transportable array of instruments, a robust background model is required which contains the long wavelength features suppressed by the use of relative arrival time residual datasets which are array specific. Here, we use the recently released AuSREM mantle model which is based on regional surface and body wave datasets. Crustal and Moho structure, which is poorly resolved by teleseismic data, is also included (from the AuSREM crustal model) as prior information to minimise smearing of crustal information into the mantle. The final model exhibits a variety of well resolved features, including a low velocity zone associated with Quaternary intraplate volcanism; a pronounced velocity gradient transition zone between the Precambrian shield region of Australia in the west and the Palaeozoic orogens in the east; and the presence of a high velocity salient which extends almost to the east coast in northern New South Wales, which is interpreted to be Precambrian lithosphere. The ambient noise tomography results, which are now continuous between Tasmania and mainland Australia

  13. Formation and Preservation of the Depleted and Enriched Shergottite Isotopic Reservoirs in a Convecting Martian Mantle

    NASA Technical Reports Server (NTRS)

    Kiefer, Walter S.; Jones, John H.

    2015-01-01

    There is compelling isotopic and crater density evidence for geologically recent volcanism on Mars, in the last 100-200 million years and possibly in the last 50 million years. This volcanism is due to adiabatic decompression melting and thus requires some type of present-day convective upwelling in the martian mantle. On the other hand, martian meteorites preserve evidence for at least 3 distinct radiogenic isotopic reservoirs. Anomalies in short-lived isotopic systems (Sm-146, Nd-142, Hf-182, W-182) require that these reservoirs must have developed in the first 50 to 100 million years of Solar System history. The long-term preservation of chemically distinct reservoirs has sometimes been interpreted as evidence for the absence of mantle convection and convective mixing on Mars for most of martian history, a conclusion which is at odds with the evidence for young volcanism. This apparent paradox can be resolved by recognizing that a variety of processes, including both inefficient mantle mixing and geographic separation of isotopic reservoirs, may preserve isotopic heterogeneity on Mars in an actively convecting mantle. Here, we focus on the formation and preservation of the depleted and enriched isotopic and trace element reservoirs in the shergottites. In particular, we explore the possible roles of processes such as chemical diffusion and metasomatism in dikes and magma chambers for creating the isotopically enriched shergottites. We also consider processes that may preserve the enriched reservoir against convective mixing for most of martian history.

  14. Finite-Frequency Seismic Tomography of Body Waves and Surface Waves from Ambient Seismic Noise: Crustal and Mantle Structure Beneath Eastern Eurasia

    DTIC Science & Technology

    2008-09-30

    of the mantle lithosphere and its causal relationship to the formation of the north-south trending rift in southeastern Tibet. In order to improve... lithosphere and its causal relationship to the formation of the north-south trending rift in southeastern Tibet. In order to improve models at shallow depths...depleted mantle is required. These results provide evidence for the mantle lithosphere delamination (Figure 3) and its link to north-south trending rifts

  15. Geochemistry of the Quaternary alkali basalts of Garrotxa (NE Volcanic Province, Spain): a case of double enrichment of the mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Cebriá, J. M.; López-Ruiz, J.; Doblas, M.; Oyarzun, R.; Hertogen, J.; Benito, R.

    2000-11-01

    The area of Garrotxa (also known as the Olot area) represents the most recent (700,000-11,500 y) and better preserved area of magmatic activity in the NE Volcanic Province of Spain (NEVP). This region comprises a suite of intracontinental leucite basanites, nepheline basanites and alkali olivine basalts, which in most cases represent primary or nearly primary liquids. The geochemical characteristics of these lavas are very similar to the analogous petrologic types of other Cenozoic volcanics of Europe, which are intermediate between HIMU, DM and EM1. Quantitative trace element modeling, suggests derivation from an enriched mantle source by degrees of melting that progressively increased from the leucite basanites (˜4%) to the olivine basalts (˜16%). However, the relatively more variable Sr-Nd-Pb isotope signature of the magmas suggests the participation of at least two distinct components in the mantle source: (1) a sublithospheric one with a geochemical signature similar to the magmas of Calatrava (Central Spain) and other basalts of Europe; and (2) an enriched lithospheric component with a K-bearing phase present. The geochemical model proposed here involves the generation of a hybrid mantle lithosphere source produced by the infiltration of the sublithospheric liquids into enriched domains of the mantle lithosphere, shortly before the melting event that generated the Garrotxa lavas. The available geological data suggest that the first enrichment event of the mantle lithosphere under the NEVP could be the result of Late Variscan mantle upwelling triggered by the extensional collapse of the Variscan orogen during the Permo-Carboniferous. By Jurassic/Cretaceous time, large-scale NNE-directed sublithospheric mantle channeling of thermally and chemically anomalous plume material was placed under the Iberian Peninsula and Central Europe. However, the geodynamic conditions in the NEVP did not favor magmatism, which could not take place until the Cenozoic after

  16. 3-D multiobservable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle: III. Thermochemical tomography in the Western-Central U.S.

    NASA Astrophysics Data System (ADS)

    Afonso, Juan Carlos; Rawlinson, Nicholas; Yang, Yingjie; Schutt, Derek L.; Jones, Alan G.; Fullea, Javier; Griffin, William L.

    2016-10-01

    We apply a novel 3-D multiobservable probabilistic tomography method that we have recently developed and benchmarked, to directly image the thermochemical structure of the Colorado Plateau and surrounding areas by jointly inverting P wave and S wave teleseismic arrival times, Rayleigh wave dispersion data, Bouguer anomalies, satellite-derived gravity gradients, geoid height, absolute (local and dynamic) elevation, and surface heat flow data. The temperature and compositional structures recovered by our inversion reveal a high level of correlation between recent basaltic magmatism and zones of high temperature and low Mg# (i.e., refertilized mantle) in the lithosphere, consistent with independent geochemical data. However, the lithospheric mantle is overall characterized by a highly heterogeneous thermochemical structure, with only some features correlating well with either Proterozoic and/or Cenozoic crustal structures. This suggests that most of the present-day deep lithospheric architecture reflects the superposition of numerous geodynamic events of different scale and nature to those that created major crustal structures. This is consistent with the complex lithosphere-asthenosphere system that we image, which exhibits a variety of multiscale feedback mechanisms (e.g., small-scale convection, magmatic intrusion, delamination, etc.) driving surface processes. Our results also suggest that most of the present-day elevation in the Colorado Plateau and surrounding regions is the result of thermochemical buoyancy sources within the lithosphere, with dynamic effects (from sublithospheric mantle flow) contributing only locally up to ˜15-35%.

  17. Geochronology and geochemistry of Eocene-aged volcanic rocks around the Bafra (Samsun, N Turkey) area: Constraints for the interaction of lithospheric mantle and crustal melts

    NASA Astrophysics Data System (ADS)

    Temizel, İrfan; Arslan, Mehmet; Yücel, Cem; Abdioğlu, Emel; Ruffet, Gilles

    2016-08-01

    40Ar-39Ar age, whole-rock chemical, and Sr-Nd isotope data are presented for the post-collisional, Eocene (51.3-44.1 Ma)-aged volcanic rocks from the Bafra (Samsun) area in the western part of the Eastern Pontides (N Turkey) aiming to unravel their sources and evolutionary history. The studied Eocene volcanic rocks can be divided into two groups: analcime-bearing (tephritic lava flows and dykes) and analcime-free (basaltic to trachytic lava flows and basaltic dykes). The analcime-bearing volcanic rocks have a fine-grained porphyritic texture with clinopyroxene phenocrysts, whereas analcime-free volcanic rocks show a variety of textures including hyalo-microlitic microgranular porphyritic, intersertal, trachytic, fluidal, and glomeroporphyritic. The volcanic rocks also show evidence of mineral-melt disequilibrium textures such as sieved, rounded, and corroded plagioclases, partially melted and dissolved clinopyroxenes and poikilitic texture. Petrochemically, the parental magmas of the volcanic rocks evolved from alkaline to calc-alkaline lava suites and include high-K and shoshonitic compositions. They display enrichments in light rare earth and large ion lithophile elements such as Sr, K, and Rb, as well as depletions in high field strength elements such as Nb, Ta, Zr, and Ti, resembling subduction-related magmas. The analcime-bearing and -free volcanic rocks share similar incompatible element ratios and chondrite-normalised rare rearth element patterns, indicating that they originated from similar sources. They also have relatively low to moderate initial 87Sr/86Sr (0.7042-0.7051), high positive εNd(t) values (+ 0.20 to + 3.32), and depleted mantle Nd model ages (TDM1 = 0.63-0.93 Ga, TDM2 = 0.58-0.84 Ga). The bulk-rock chemical and Sr-Nd isotope features as well as the high Rb/Y and Th/Zr, but low Nb/Zr and Nb/Y ratios, indicate that the volcanic rocks were derived from a lithospheric mantle source that had been metasomatised by slab-derived fluids. Trace element

  18. Cyclin D1 depletion induces DNA damage in mantle cell lymphoma lines.

    PubMed

    Mohanty, Suchismita; Mohanty, Atish; Sandoval, Natalie; Tran, Thai; Bedell, Victoria; Wu, Jun; Scuto, Anna; Murata-Collins, Joyce; Weisenburger, Dennis D; Ngo, Vu N

    2017-03-01

    Elevated cyclin D1 (CCND1) expression levels in mantle cell lymphoma (MCL) are associated with aggressive clinical manifestations related to chemoresistance, but little is known about how this important proto-oncogene contributes to the resistance of MCL. Here, we showed that RNA interference-mediated depletion of CCND1 increased caspase-3 activities and induced apoptosis in the human MCL lines UPN-1 and JEKO-1. In vitro and xenotransplant studies revealed that the toxic effect of CCND1 depletion in MCL cells was likely due to increase in histone H2AX phosphorylation, a DNA damage marker. DNA fiber analysis suggested deregulated replication initiation after CCND1 depletion as a potential cause of DNA damage. Finally, in contrast to depletion or inhibition of cyclin-dependent kinase 4, CCND1 depletion increased chemosensitivity of MCL cells to replication inhibitors hydroxyurea and cytarabine. Our findings have an important implication for CCND1 as a potential therapeutic target in MCL patients who are refractory to standard chemotherapy.

  19. Helium Isotopic Compositions of Antarctic High-Mg Rocks Related to the Karoo Continental Flood Basalts: Evidence for a Depleted Upper Mantle Source?

    NASA Astrophysics Data System (ADS)

    Heinonen, J. S.; Kurz, M. D.

    2014-12-01

    The isotopic composition of helium is often considered to be one of the key elements in resolving deep mantle plume vs. upper mantle origin of hotspot-related volcanic rocks. High 3He/4He values, greater than 10 times atmospheric (Ra), are generally thought to indicate plume-related sources in the lower mantle. The use of helium isotopes in continental flood basalt (CFB) provinces has been limited by the lack of fresh rock material, poor exposures, time-integrated ingrowth of radiogenic 4He, and strong lithospheric overprinting. Vestfjella mountain range at western Dronning Maud Land, Antarctica, is comprised of lava flows and intrusive rocks that belong to the Jurassic (~180 Ma) Karoo continental flood basalt province, the bulk of which is exposed in southern Africa. The Karoo CFBs and related rocks show strong lithospheric influence in their geochemistry in general, but some high-Mg dikes from Vestfjella show geochemical evidence of derivation from sublithospheric sources. In an attempt to determine the first estimate for the helium isotopic composition of the Karoo mantle sources, we performed He isotopic measurements on six primitive Vestfjella dike samples collected from variably exposed nunataks. Helium was extracted by in-vacuo stepwise crushing and melting of separated and carefully hand-picked olivine phenocrysts (Ø = 0.25-1 mm; ~10 000 grains in total; abraded and unabraded fractions). The results of coupled crushing and melting measurements show evidence of both cosmogenic and radiogenic helium contributions within the olivines (i.e. by having high He contents and anomalously low or high 3He/4He released by melting), which complicates interpretation of the data. As a best estimate for the mantle isotopic composition, we use the sample with the highest amount of He released (> 50%) during the first crushing step of an abraded coarse fraction, which gave 3He/4He of 7.03 ± 0.23 (2σ) Ra. This value is indistinguishable from those measured from Southwest

  20. Pre-subduction metasomatic enrichment of the oceanic lithosphere induced by plate flexure

    NASA Astrophysics Data System (ADS)

    Pilet, S.; Abe, N.; Rochat, L.; Kaczmarek, M.-A.; Hirano, N.; Machida, S.; Buchs, D. M.; Baumgartner, P. O.; Müntener, O.

    2016-12-01

    Oceanic lithospheric mantle is generally interpreted as depleted mantle residue after mid-ocean ridge basalt extraction. Several models have suggested that metasomatic processes can refertilize portions of the lithospheric mantle before subduction. Here, we report mantle xenocrysts and xenoliths in petit-spot lavas that provide direct evidence that the lower oceanic lithosphere is affected by metasomatic processes. We find a chemical similarity between clinopyroxene observed in petit-spot mantle xenoliths and clinopyroxene from melt-metasomatized garnet or spinel peridotites, which are sampled by kimberlites and intracontinental basalts respectively. We suggest that extensional stresses in oceanic lithosphere, such as plate bending in front of subduction zones, allow low-degree melts from the seismic low-velocity zone to percolate, interact and weaken the oceanic lithospheric mantle. Thus, metasomatism is not limited to mantle upwelling zones such as mid-ocean ridges or mantle plumes, but could be initiated by tectonic processes. Since plate flexure is a global mechanism in subduction zones, a significant portion of oceanic lithospheric mantle is likely to be metasomatized. Recycling of metasomatic domains into the convecting mantle is fundamental to understanding the generation of small-scale mantle isotopic and volatile heterogeneities sampled by oceanic island and mid-ocean ridge basalts.

  1. The lithosphere

    SciTech Connect

    Not Available

    1983-01-01

    This document is the report of a week-long workshop on problems relating to the interpretations of the composition and dynamics of the lithosphere. A wide range of topics was discussed, dealing not only with the lithosphere itself, but also with possible interactions between the lithosphere and underlying mantle, down to and including the core-mantle boundary zone. Emphasis, very broadly, was on the physical and chemical properties of the lower crust and the subcrustal lithosphere: the physical and chemical characteristics of the prominent seismic discontinuities down to the core-mantle boundary; the nature and patterns of possible convection within the mantle and its relation to the generation, subduction, and intermixing of lithospheric and mantle material; the location and nature and evolution of reservoirs supplying magmas to the crust; and the various models that have been proposed to account for the location, nature, and geological history of these magma reservoirs. The general applicability of the plate tectonics model was assumed, but virtually every widely accepted explanation for the dynamics of that model and of possible unrelated phenomena such as deep-mantle plumes and hot spots was brought into question. 83 refs., 19 figs.

  2. Paleo-Asian oceanic subduction-related modification of the lithospheric mantle under the North China Craton: evidence from peridotite xenoliths in the Datong basalts

    NASA Astrophysics Data System (ADS)

    Wang, C.; Liu, Y.; Min, N.; Zong, K.; Hu, Z.; Gao, S.

    2015-12-01

    In-situ major and trace elements and Sr isotopic compositions of peridotite xenoliths carried by the Datong Quaternary alkaline basalt were analyzed. These peridotite xenoliths were classified into three groups. The type 1 peridotites preserve depleted trace element and Sr isotopic signatures and record the lowest temperature (930 - 980 °C). Clinopyroxenes in these peridotites exhibit LREE-depleted REE patterns, and have the lowest 87Sr/86Sr ratios of 0.70243 - 0.70411. The types 2 and 3 peridotites are featured by enriched trace element and Sr isotopic signatures and record a higher temperature (1003 - 1032 °C). Clinopyroxenes in the type 2 peridotite have U-shaped REE patterns and relatively higher 87Sr/86Sr ratios of 0.70418 - 0.70465. Clinopyroxenes in the type 3 peridotite have concave-downward REE patterns and unusually high 87Sr/86Sr ratios of 0.70769 - 0.70929. Carbonatitic veinlets are found in the type 1 peridotites. They show steep LREE-enriched REE patterns with enrichments in LILE and depletions in HFSE, and have the highest 87Sr/86Sr ratios of 0.71147 - 0.71285. The types 2 and 3 peridotites suffered latter cryptic carbonatitic metasomatism, as indicated by the decreased Ti/Eu and increased Zr/Hf and CaO/Al2O3 ratios of clinopyroxenes. The carbonatitic veinlets have generally consistent trace element patterns and Sr isotopic ratios with the calculated melts being equilibrated with the clinopyroxenes in the type 3 peridotite, and may represent the metasoamtic agent solidified in the relatively cold and shallow mantle. The negative Eu anomalies (0.37 - 0.61) and high 87Sr/86Sr ratios of the calculated melts indicate a crustal sedimentary origin. It is speculated that the REE-rich and high-87Sr/86Sr metasoamtic agent should be carbonatitic melt derived from the carbonated pelite carried by the subducted PAOP, which could have contributed to the transformation of the lithospheric mantle beneath the NCC.

  3. Lithospheric stress and uppermantle dynamics in mainland China due to mantle flow based on combination of global- and regional-scale seismic tomography

    NASA Astrophysics Data System (ADS)

    Zhu, Tao

    2016-12-01

    In order to explore the importance of mantle flow to lithospheric stress field in mainland China, seismic tomography_based mantle flow models are used to predict the most compressive principal horizontal stress directions (MCPHSDs). Considered that regional-scale seismic tomography models have higher horizontal resolution to map the mantle structure, while global-scale models can present the information out of the imaging domains of regional-scale models although this information has relatively poor horizontal resolution, the combined global- and regional-scale seismic tomography_based mantle flow models (hereafter called combined models) are mainly used in this paper. After the comparison of the observed and our predicted MCPHSDs, it is suggested that (1) a combined model, compared with a only global-scale seismic tomography_based model, could improve greatly the predictions in some regions of mainland China such as Sichuan-Yunnan, South China and North China blocks; (2) the mantle flow model driven by both plate motions and mantle density heterogeneity (hereafter called plate-density-driven model), compared with the flow model driven only by mantle density heterogeneity (hereafter called density-driven model), has much better predictions in the eastern China; (3) the presence of density variations above 250 km could better dramatically the predictions in the eastern China; and (4) sublithospheric mantle flow causes the lithosphere under compression in mainland China, and plays an important role in forming the lithospheric stress in Alashan, Qaidam, western Tibetan and eastern Tarim blocks as well as the east of the eastern China.

  4. Nature of the lithospheric mantle beneath the Arabian Shield and genesis of Al-spinel micropods: Evidence from the mantle xenoliths of Harrat Kishb, Western Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Ahmed, Ahmed H.; Moghazi, Abdel Kader M.; Moufti, Mohamed R.; Dawood, Yehia H.; Ali, Kamal A.

    2016-01-01

    The Harrat Kishb area of western Saudi Arabia is part of the Cenozoic volcanic fields in the western margin of the Arabian Shield. Numerous fresh ultramafic xenoliths are entrained in the basanite lava of Harrat Kishb, providing an opportunity to study the nature and petrogenetic processes involved in the evolution of the lithospheric mantle beneath the Arabian Shield. Based on the petrological characteristics and mineralogical compositions, the majority of the mantle xenoliths ( 92%) are peridotites (lherzolites and pyroxene-bearing harzburgites); the remaining xenoliths ( 8%) are unusual spinel-rich wehrlites containing black Al-spinel micropods. The two types of mantle xenoliths display magmatic protogranular texture. The peridotite xenoliths have high bulk-rock Mg#, high forsterite (Fo90-Fo92) and NiO (0.24-0.46 wt.%) contents of olivine, high clinopyroxene Mg# (0.91-0.93), variable spinel Cr# (0.10-0.49, atomic ratio), and approximately flat chondrite-normalized REE patterns. These features indicate that the peridotite xenoliths represent residues after variable degrees of melt extraction from fertile mantle. The estimated P (9-16 kbar) and T (877-1227 °C) as well as the oxidation state (∆logfO2 = - 3.38 to - 0.22) under which these peridotite xenoliths originated are consistent with formation conditions similar to most sub-arc abyssal-type peridotites worldwide. The spinel-rich wehrlite xenoliths have an unusual amount ( 30 vol.%) of Al-spinel as peculiar micropods with very minor Cr2O3 content (< 1 wt.%). Olivines of the spinel-rich wehrlites have low-average Fo (Fo81) and NiO (0.18 wt.%) contents, low-average cpx Mg# (0.79), high average cpx Al2O3 content (8.46 wt.%), and very low-average spinel Cr# (0.01). These features characterize early mantle cumulates from a picritic melt fraction produced by low degrees of partial melting of a garnet-bearing mantle source. The relatively high Na2O and Al2O3 contents of cpx suggest that the spinel-rich wehrlites

  5. Lithosphere and upper-mantle structure of the southern Baltic Sea estimated from modelling relative sea-level data with glacial isostatic adjustment

    NASA Astrophysics Data System (ADS)

    Steffen, H.; Kaufmann, G.; Lampe, R.

    2014-06-01

    During the last glacial maximum, a large ice sheet covered Scandinavia, which depressed the earth's surface by several 100 m. In northern central Europe, mass redistribution in the upper mantle led to the development of a peripheral bulge. It has been subsiding since the begin of deglaciation due to the viscoelastic behaviour of the mantle. We analyse relative sea-level (RSL) data of southern Sweden, Denmark, Germany, Poland and Lithuania to determine the lithospheric thickness and radial mantle viscosity structure for distinct regional RSL subsets. We load a 1-D Maxwell-viscoelastic earth model with a global ice-load history model of the last glaciation. We test two commonly used ice histories, RSES from the Australian National University and ICE-5G from the University of Toronto. Our results indicate that the lithospheric thickness varies, depending on the ice model used, between 60 and 160 km. The lowest values are found in the Oslo Graben area and the western German Baltic Sea coast. In between, thickness increases by at least 30 km tracing the Ringkøbing-Fyn High. In Poland and Lithuania, lithospheric thickness reaches up to 160 km. However, the latter values are not well constrained as the confidence regions are large. Upper-mantle viscosity is found to bracket [2-7] × 1020 Pa s when using ICE-5G. Employing RSES much higher values of 2 × 1021 Pa s are obtained for the southern Baltic Sea. Further investigations should evaluate whether this ice-model version and/or the RSL data need revision. We confirm that the lower-mantle viscosity in Fennoscandia can only be poorly resolved. The lithospheric structure inferred from RSES partly supports structural features of regional and global lithosphere models based on thermal or seismological data. While there is agreement in eastern Europe and southwest Sweden, the structure in an area from south of Norway to northern Germany shows large discrepancies for two of the tested lithosphere models. The lithospheric

  6. Rift induced delamination of mantle lithosphere and crustal uplift: a new mechanism for explaining Rwenzori Mountains' extreme elevation?

    NASA Astrophysics Data System (ADS)

    Wallner, Herbert; Schmeling, Harro

    2010-10-01

    With heights of 4-5 km, the topography of Rwenzori Mountains, a large horst of old crustal rocks located inside a young passive rift system, poses the question “Why are the Rwenzori Mountains so high?”. The Cenozoic Western Rift branch of the East African Rift System is situated within the Late Proterozoic mobile belts between the Archean Tanzania Craton and Congo Craton. The special geological setting of the massif at a rift node encircled by the ends of the northern Western Rift segments of Lake Albert and Lake Edward suggests that the mechanism responsible for the high elevation of the Rwenzoris is related to the rifting process. Our hypothesis is based on the propagation of the rift tips, surrounding the stiff old lithosphere at Rwenzori region, thereby triggering the delamination of the cold and dense mantle lithosphere (ML) root by reducing viscosity and strength of the undermost lower crust. As a result, this unloading induces fast isostatic pop-up of the less dense crustal Rwenzori block. We term this RID—“ rift induced delamination of Mantle Lithosphere”. The physical consistency of the RID hypothesis is tested numerically. Viscous flow of 2D models is approximated by a Finite Difference Method with markers in an Eulerian formulation. The equations of conservation of mass, momentum and energy are solved for a multi-component system. Based on laboratory data of appropriate rock samples, a temperature-, pressure- and stress-dependent rheology is assumed. Assuming a simple starting model with a locally heated ML, the ML block between the weakened zones becomes unstable and sinks into the asthenosphere, while the overlying continental crust rises up. Thus, RID seems to be a viable mechanism to explain geodynamically the extreme uplift. Important conditions are a thermal anomaly within the ML, a ductile lower crust with visco-plastic rheology allowing significant strength reduction and lateral density variations. The special situation of a two

  7. Sensing the Electrical Conductivity of the Upper Mantle and Lithosphere Using Satellite Magnetic Signal Due to Ocean Tidal Flow

    NASA Astrophysics Data System (ADS)

    Schnepf, N. R.; Kuvshinov, A. V.; Sabaka, T. J.; Olsen, N.

    2014-12-01

    A few scientific groups convincingly demonstrated that the magnetic fields induced by the lunar semidiurnal (M2) ocean flow can be identified in magnetic satellite observations. These results support the idea to recover M2 magnetic signals from Swarm data, and to use these data for constraining lithosphere and upper mantle electrical conductivity in oceanic regions. Induction studies using ionospheric and magnetospheric primary sources with periods of about one day are sensitive to mantle conductivity at a few hundred kilometers depth because of the inductive coupling between primary and induced sources. In contrast, using oceanic tides as a signal allows studying shallower regions since the coupling is galvanic. This corresponds to global electric sounding. In this study we perform global 3-D EM numerical simulations in order to investigate the sensitivity of M2 signals to conductivity distributions at different depths. The results of sensitivity analysis are discussed, and comparison of the modelled M2 signals with those recovered by Comprehensive Inversion from one year of Swarm data is presented.

  8. Small-scale lithospheric foundering beneath the Peruvian Altiplano: evidence from back arc potassic volcanic rocks and lower crustal and mantle xenoliths

    NASA Astrophysics Data System (ADS)

    Chapman, A. D.; Ducea, M. N.

    2013-12-01

    Small-volume, Pliocene to Quaternary back arc high-K calc-alkaline to shoshonitic volcanic rocks and entrained xenoliths of southeastern Peru permit evaluation of models for the removal of crustal and mantle lithosphere beneath the northwestern Altiplano. Two distinct subsets of volcanic samples are apparent based on sample location, eruption age, geochemistry, and xenolith types. Suite 1 Quaternary mafic extrusives show: high K2O (1.3-8.4%), steep rare earth element patterns with La/Yb ranging from 17 to 161 and lacking Eu anomalies, and Sr-Nd isotope decoupling with 143Nd/144Nd from 0.5124 to 0.5129 at 87Sr/86Sr of 0.7095 to 0.7038. A second Plio-Quaternary suite shows small Eu anomalies, lower K2O (2.3-3.4%), a lower and narrower range of La/Yb (from 28 to 50), and Nd and Sr isotopic data follow an array from 143Nd/144Nd = 0.5125 to 0.5123 with corresponding range in 87Sr/86Sr from 0.7059 to 0.7072. Xenoliths from suite 2 lavas consist almost exclusively of clinopyroxene and plagioclase, whereas suite 1 inclusions are more diverse, containing clinopyroxenite (× garnet × plagioclase), garnet-bearing gabbro and diorite, aluminous garnet granulite gneiss; and rare spinel harzburgite. Thermobarometric, geochronologic, and Sr-Nd isotopic relations suggest a melting link between suite 1 xenoliths and volcanic rocks. Geochemical differences between back arc suites and frontal arc volcanic rocks strongly suggest that each was derived from a different source. Most notably, higher Nd isotopic values, younger depleted mantle model ages, and higher La/Yb in suite 1 vs. suite 2 lavas suggest an increased contribution of asthenospheric material and an increase in the depth to melting in the back arc region from Pliocene to Quaternary time. Variations in transition element ratios from the back arc to the frontal arc suggest a larger contribution of pyroxenitic material in the source of the former. Interactions between a downgoing lower crustal drip structure and upwelling

  9. Compositional variations and heterogeneity in fertile lithospheric mantle: peridotite xenoliths in basalts from Tariat, Mongolia

    NASA Astrophysics Data System (ADS)

    Rubolini, Diego; Ambrosini, Roberto; Caffi, Mario; Brichetti, Pierandrea; Armiraglio, Stefano; Saino, Nicola

    2007-10-01

    Clinopyroxene-rich, poorly metasomatised spinel lherzolites are rare worldwide but predominate among xenoliths in five Quaternary basaltic eruption centres in Tariat, central Mongolia. High-precision analyses of the most fertile Tariat lherzolites are used to evaluate estimates of primitive mantle compositions; they indicate Mg#PM = 0.890 while lower Mg# in the mantle are likely related to metasomatic enrichments in iron. Within a 10 × 20 km area, and between ~45 and ≥60 km depth, the sampled xenoliths suggest that the Tariat mantle does not show km-scale chemical heterogeneities and mainly consists of residues after low-degree melt extraction at 1 3 GPa. However, accessory (<1%) amphibole and phlogopite are unevenly distributed beneath the eruption centres. Ca abundances in olivine are controlled by temperature whereas Al and Cr abundances also depend on Cr/Al in coexisting spinel. Comparisons of conventional and high-precision analyses obtained for 30 xenoliths show that high-quality data, in particular for whole-rocks and olivines, are essential to constrain the origin of mantle peridotites.

  10. Recrystallisation, phase mixing and strain localisation in peridotite during rapid extrusion of sub-arc mantle lithosphere

    NASA Astrophysics Data System (ADS)

    Czertowicz, T. A.; Toy, V. G.; Scott, J. M.

    2016-07-01

    The Anita Peridotite, in southwestern New Zealand, is a ∼1 × 20 km ultramafic massif that was rapidly extruded from beneath a Cretaceous arc within the 4 km wide mylonitic Anita Shear Zone. The peridotitic body contains a spectacular array of textures that preserve evidence for changing temperature, stress, and deformation mechanisms during the exhumation process. Olivine and orthopyroxene microstructures and lattice-preferred orientations (LPO) record a three-phase deformation history. Dislocation glide on the C- and E-type slip systems is recorded by coarse pre-mylonitised olivine grains, and occurred under hydrous conditions at T ∼650 °C, stress ∼200-700 MPa and strain rate ∼10-15 s-1, probably within hydrated sub-arc mantle lithosphere. Rare protomylonite pods record deformation by dislocation creep in porphyroclasts and dislocation-accommodated grain boundary sliding in the matrix on {0kl}[100] in olivine and (100)[001] in orthopyroxene, under conditions of T ∼730-770 °C, stress ∼52-700 MPa and strain rate ∼10-15 s-1. The massif, however, is dominated by mylonite and ultramylonite that wrap the protomylonite pods, comprising mostly fine-grained olivine neoblasts that lack internal distortions and have uniform LPOs. These textures indicate deformation occurred by grain-size sensitive (GSS) creep at T ∼650 °C, stress ∼69-137 MPa and strain rate ∼10-15 s-1, and thus during conditions of cooling and decreasing stress. GSS creep became more dominant with time, as the proportion of randomly-oriented neoblasts increased and formed interlinked networks that accommodated much of the strain. Grain boundary pinning allowed GSS creep to be maintained in polyphase regions, following mixing of olivine and orthopyroxene, which may have occurred by grain boundary transport in a fluid phase during a "creep cavitation" process. The results indicate that the Anita Peridotite recrystallised and underwent rheological weakening at a constant strain rate

  11. Geochemistry of basalts from small eruptive centers near Villarrica stratovolcano, Chile: Evidence for lithospheric mantle components in continental arc magmas

    NASA Astrophysics Data System (ADS)

    Hickey-Vargas, R.; Sun, M.; Holbik, S.

    2016-07-01

    In the Central Southern Volcanic Zone (CSVZ) of the Andes, the location of stratovolcanoes and monogenetic small eruptive centers (SEC) is controlled by the Liquiñe-Ofqui Fault Zone (LOFZ), a trench-parallel strike-slip feature of over 1000 km length. The geochemistry of basalts from SEC is different from those of stratovolcanoes, and are termed Type 2 and Type 1 basalts, respectively. In the region of Villarrica stratovolcano, contemporaneous SEC are more MgO-rich, and have greater light rare earth element (LREE) enrichment, lower 87Sr/86Sr and 143Nd/144Nd, and lower ratios of large ion lithophile elements (LILE) to LREE and high field strength elements (HFSE). A unique finding in this region is that basalts from one SEC, San Jorge, has Type 1 character, similar to basalts from Villarrica stratovolcano. Type 1 basalts from Villarrica and San Jorge SEC have strong signals from time-sensitive tracers of subduction input, such as high 10Be/9Be and high (238U/230Th), while Type 2 SEC have low 10Be/9Be and (238U/230Th) near secular equilibrium. Based on new trace element, radiogenic isotope and mineral analyses, we propose that Type 1 basaltic magma erupted at San Jorge SEC and Villarrica stratovolcano forms by melting of the ambient actively subduction-modified asthenosphere, while Type 2 SEC incorporate melts of pyroxenite residing in the supra-subduction zone mantle lithosphere. This scenario is consistent with the close proximity of the volcanic features and their inferred depths of magma separation. The pyroxenite forms from arc magma produced during earlier episodes of subduction modification and magmatism, which extend back >300 Ma along this segment of the western South American margin. Type 2 basaltic magmas may reach the surface during LOFZ-related decompression events, and they may also be a normal but episodic part of the magma supply to large stratovolcanoes, resulting in cryptic geochemical variations over time. The presence and mobilization of stored

  12. Silicon Isotope Geochemistry of Ocean Island Basalts: Mantle Heterogeneities and Contribution of Recycled Oceanic Crust and Lithosphere

    NASA Astrophysics Data System (ADS)

    Pringle, E. A.; Moynier, F.; Savage, P. S.; Jackson, M. G.; Moreira, M. A.; Day, J. M.

    2015-12-01

    The study of Silicon (Si) isotopes in Ocean Island Basalts (OIB) has the potential to elucidate between possible heterogeneities in the mantle. Relatively large (~several per mil per atomic mass unit) Si isotope fractionation occurs in low-temperature environments during biochemical and geochemical precipitation of dissolved Si, where the precipitate is preferentially enriched in the lighter isotopes [1]. In contrast, only a limited range (~tenths of a per mil) of Si isotope fractionation has been observed in high-temperature igneous processes [2]. Therefore, Si isotopes may be useful as tracers for the presence of crustal material (derived from low-temperature surface processes) in OIB source regions in a manner similar to more conventional stable isotope systems, such as O. Here we present the first comprehensive set of high-precision Si isotope data obtained by MC-ICP-MS for a diverse suite of OIBs, including new data for the Canary Islands. Samples represent the Pacific, Atlantic, and Indian Ocean basins and include representative end-members for the EM-1, EM-2, and HIMU mantle components. Average δ30Si values for OIBs representing the EM-1 (-0.32 ± 0.06‰, 2 sd), EM-2 (-0.30 ± 0.01‰, 2 sd), and HIMU (-0.34 ± 0.09‰, 2 sd) mantle components are all in general agreement with previous estimates for the δ30Si value of Bulk Silicate Earth [3]. However, small systematic variations are present; HIMU (Mangaia, Cape Verde, La Palma) and Iceland OIBs are enriched in the lighter isotopes of Si (δ30Si values lower than MORB). Further, the difference in Si isotope composition between La Palma and El Heirro (Canary Islands) has previously been observed for O isotopes [4], suggesting a relationship between the Si and O isotope mantle systematics. The Si isotope variations among OIBs may be explained by the sampling of a primitive mantle reservoir enriched in the light isotopes of Si, as suggested by [5], but most likely reflects the incorporation of recycled

  13. Water in cratonic lithosphere: Calibrating laboratory-determined models of electrical conductivity of mantle minerals using geophysical and petrological observations

    NASA Astrophysics Data System (ADS)

    Jones, Alan G.; Fullea, Javier; Evans, Rob L.; Muller, Mark R.

    2012-06-01

    Measurements of electrical conductivity of "slightly damp" mantle minerals from different laboratories are inconsistent, requiring geophysicists to make choices between them when interpreting their electrical observations. These choices lead to dramatically different conclusions about the amount of water in the mantle, resulting in conflicting conclusions regarding rheological conditions; this impacts on our understanding of mantle convection, among other processes. To attempt to reconcile these differences, we test the laboratory-derived proton conduction models by choosing the simplest petrological scenario possible - cratonic lithosphere - from two locations in southern Africa where we have the most complete knowledge. We compare and contrast the models with field observations of electrical conductivity and of the amount of water in olivine and show that none of the models for proton conduction in olivine proposed by three laboratories are consistent with the field observations. We derive statistically model parameters of the general proton conduction equation that satisfy the observations. The pre-exponent dry proton conduction term (σ0) and the activation enthalpy (ΔHwet) are derived with tight bounds, and are both within the broader 2σ errors of the different laboratory measurements. The two other terms used by the experimentalists, one to describe proton hopping (exponent ron pre-exponent water contentCw) and the other to describe H2O concentration-dependent activation enthalpy (termαCw1/3 added to the activation energy), are less well defined and further field geophysical and petrological observations are required, especially in regions of higher temperature and higher water content.

  14. Can LREE Enriched Patterns in Clinopyroxenes in Abyssal Peridotites be Produced by Melting of a Depleted Mantle Source?

    NASA Astrophysics Data System (ADS)

    LIU, B.; Liang, Y.

    2015-12-01

    The enrichment of LREE in clinopyroxenes in abyssal peridotites has often been attributed to shallow level melt refertilization. Here we show an alternative mechanism that involves diffusive fractionation of REE during disequilibrium mantle melting. We present a simple model for trace element fractionation during disequilibrium melting in an upwelling steady-state column. We use linear kinetics to approximate crystal-melt mass exchange rate and obtain analytical solutions for cases of perfect fractional melting and batch melting. A key parameter determining the extent of chemical disequilibrium during partial melting is an element specific dimensionless ratio (ɛ) defined as the melting rate relative to the solid-melt chemical exchange rate for the trace element of interest. In the case of diffusion in mineral limited exchange, ɛ is inversely proportional to diffusivity of the element of interest. Disequilibrium melting is important for the trace element when e is comparable to or greater than the bulk solid-melt partition coefficient for the element (k). The disequilibrium fractional melting model is reduced to the equilibrium perfect fractional melting model when e is much smaller than k. Hence highly incompatible trace elements with slower mobilities in minerals are more susceptible to disequilibrium melting than moderately incompatible elements. Effect of chemical disequilibrium is to hinder the extent of fractionation between residual solid and partial melt, making the residual solid less depleted and the accumulated melt more enriched in incompatible trace element abundances relative the case of equilibrium melting. Application of the disequilibrium fractional melting model to REE abundances in clinopyroxene in abyssal peridotites from the Central Indian Ridge and the Vema Lithospheric Section, Mid-Atlantic Ridge revealed a positive correlation between the disequilibrium parameter ɛ and the degree of melting, which can be explained by an increase in melting

  15. Recycled dehydrated lithosphere observed in plume-influenced mid-ocean-ridge basalt.

    PubMed

    Dixon, Jacqueline Eaby; Leist, Loretta; Langmuir, Charles; Schilling, Jean-Guy

    2002-11-28

    A substantial uncertainty in the Earth's global geochemical water cycle is the amount of water that enters the deep mantle through the subduction and recycling of hydrated oceanic lithosphere. Here we address the question of recycling of water into the deep mantle by characterizing the volatile contents of different mantle components as sampled by ocean island basalts and mid-ocean-ridge basalts. Although all mantle plume (ocean island) basalts seem to contain more water than mid-ocean-ridge basalts, we demonstrate that basalts associated with mantle plume components containing subducted lithosphere--'enriched-mantle' or 'EM-type' basalts--contain less water than those associated with a common mantle source. We interpret this depletion as indicating that water is extracted from the lithosphere during the subduction process, with greater than 92 per cent efficiency.

  16. Distribution and transport of hydrogen in the lithospheric mantle: A review

    NASA Astrophysics Data System (ADS)

    Demouchy, Sylvie; Bolfan-Casanova, Nathalie

    2016-01-01

    The minerals constituting the Earth's upper mantle are nominally anhydrous silicates (NAMs). However they do contain hydrogen as a trace element, decorating point defects in their crystalline structure. Experimental petrology and mineralogy have quantified the maximum concentration under several compositional and thermodynamic conditions, but systematic studies on the hydrogen concentration in minerals from mantle-derived rocks have only recently been carried out. Here, we have compiled the distribution of hydrogen in upper mantle peridotite xenoliths, from which several conclusions can be drawn. NAMs from peridotite xenoliths contain a few ppm wt. H2O in their structure. From the current database, the hydrogen concentrations in olivine regularly increase with increasing depth. The amount of hydrogen in NAMs from peridotite xenoliths from subduction contexts is not higher than in other geological context for similar temperature and pressure conditions. The highest hydrogen concentrations is found in peridotitic olivines from cratonic mantle, and are likely due to the depth of origin. The increasing hydrogen concentration in olivine with increasing depth is likely controlled by the increase of H partitioning into olivine at the expense of orthopyroxene as imposed by a decrease in Al content in opx with depth. However, the sparse data could also indicate that the bulk hydrogen concentration slightly increases with depth > 150 km. In this case, it would suggest, locally (Udachnaya for example), a possible increase in water fugacity due to fluid saturation. Even if the most abundant mineral in mantle rocks is olivine, the bulk hydrogen concentration in peridotites is controlled by the amount of hydrogen stored in pyroxenes. However, hydrogen concentration in olivine remains crucial for consequences on physical properties such as rheology and electrical conductivity. Kinetics of hydrogen transport is reviewed and hydrous melt/fluid percolation appears necessary to

  17. Topography and geoid induced by a convecting mantle beneath an elastic lithosphere

    NASA Astrophysics Data System (ADS)

    Golle, O.; Dumoulin, C.; Choblet, G.; Cadek, O.

    2011-10-01

    Thermal convection that occurs in terrestrial planetary bodies induces density anomalies but also dynamic topographies of the main interfaces. Both contribute to the shape of the geoid. While a classical approach now is to combine gravity and altimetry measurements to infer the internal structure of a planet [1], our complementary approach consists in computing synthetic dynamic topography and geoid from thermal convection calculations in order to understand their relationship. Here, we couple the deformation of an elastic shell (mimicking a planetary lithosphere) with the viscous convective flow below it. The viscous flow is computed using a 3D numerical tool for a spherical shell (OEDIPUS [2]) using a finite difference method that allows large lateral viscosity variations. The deformation of the elastic layer is computed using a semispectral method. We show that introducing the total traction force (instead of a simplified coupling involving only the radial component of the traction force as often assumed in earlier studies) results in a larger filtering effect caused by the elastic lithosphere (especially for thin elastic layers). In a last step, we will apply our hybrid tool to simple thermal convection calculations and compute the associated topography and geoid maps. Spectral characteristics of these synthetic signals are presented and discussed.

  18. Deformation and seismic anisotropy of the subcontinental lithospheric mantle in NE Spain: EBSD data on xenoliths from the Catalan Volcanic Zone

    NASA Astrophysics Data System (ADS)

    Fernández-Roig, Mercè; Galán, Gumer; Mariani, Elisabetta

    2017-02-01

    Mantle xenoliths in Neogene-Quaternary basaltic rocks related to the European Cenozoic Rift System serve to assess the evolution of the subcontinental lithospheric mantle beneath the Catalan Volcanic Zone in NE Spain. Crystallographic preferred orientations, major element composition of minerals, and temperature and pressure estimates have been used to this end. The mantle consists of spinel lherzolites, harzburgites and subordinate websterites. Protogranular microstructures are found in all peridotites and websterites, but lherzolites also display finer-grained porphyroclastic and equigranular microstructures. The dominant olivine deformation fabric is [010] fiber, but subordinate orthorhombic and [100]-fiber types are also present, especially in porphyroclastic and equigranular lherzolites. The fabric strength (J index = 10.12-1.91), equilibrium temperature and pressure are higher in xenoliths with [010]-fiber fabric and decrease in those with orthorhombic and [100]-fiber type. Incoherence between olivine and pyroxene deformation fabric is mostly found in porphyroclastic and equigranular lherzolites. Seismic anisotropy, estimated from the crystal preferred orientations, also decreases (AVp = 10.2-2.60%; AVs max = 7.95-2.19%) in porphyroclastic and equigranular lherzolites. The olivine [010]-fiber fabric points to deformation by simple shear or transpression which is likely to have occured during the development of late-Hercynian strike-slip shear zones, and to subsequent annealing during late Hercynian decompression, Permian and Cretaceous rifting. Also, it cannot be excluded that the percolation of mafic magmas during these extensional events provoked the refertilization of the lithospheric mantle. However, no clear relationship has been observed between fabric strength and mineral mode and composition. Later transtensional deformation during late Alpine orogenesis, at higher stress and decreasing temperature and pressure, transformed the earlier fabric into

  19. Peridotitic mantle xenoliths from kimberlites on the Ekati Diamond Mine property, N.W.T., Canada: major element compositions and implications for the lithosphere beneath the central Slave craton

    NASA Astrophysics Data System (ADS)

    Menzies, Andrew; Westerlund, Kalle; Grütter, Herman; Gurney, John; Carlson, Jon; Fung, Agnes; Nowicki, Tom

    2004-09-01

    The composition, structure and thermal state of the lithosphere beneath the Slave craton have been studied by analysing over 300 peridotitic mantle xenoliths or multiphase xenocrysts entrained within kimberlites in the Lac de Gras area. These xenoliths are derived from seven kimberlites located on the Ekati Diamond Mine™ property and define a detailed stratigraphic profile through the central Slave lithosphere from less than 120 km down to ˜200 km. Two dominant peridotite types are present, namely garnet-bearing harzburgite and lherzolite with rare occurrences of chromite-facies peridotite, websterite and wehrlite. The pressures and temperatures ( P- T's) defined by the entire data-set range from 28 to 62 kbar and 650 to 1250 °C, respectively, and approximately intersect the diamond stability field at 900 °C and 42 kbar. There is no apparent change in the geotherm with depth that is discernable beyond the resolution of the various thermobarometers. The peridotites can be divided into two compositional zones—a shallow layer dominated by garnet harzburgite that straddles the diamond-graphite boundary and a deeper layer that is strongly dominated by garnet lherzolite. Compositionally, the harzburgites (and to a lesser extent, the shallow lherzolites) are ultra-depleted relative to the more fertile deeper layer, irrespective of whether they reside within the graphite or diamond stability field. This ultra-depleted layer beneath Ekati continues to ˜150 km.

  20. Understanding the interplays between Earth's shallow- and deep- rooted processes through global, quantitative model of the coupled brittle-lithosphere/viscous mantle system

    NASA Astrophysics Data System (ADS)

    Stotz, Ingo; Iaffaldano, Giampiero; Rhodri Davies, D.

    2016-04-01

    The volume of geophysical datasets has grown substantially, over recent decades. Our knowledge of continental evolution has increased due to advances in interpreting the records of orogeny and sedimentation. Ocean-floor observations now allow one to resolve past plate motions (e.g. in the North Atlantic and Indian Ocean over the past 20 Myr) at temporal resolutions of about 1 Myr. Altogether, these ever-growing datasets permit reconstructing the past evolution of Earth's lithospheric plates in greater detail. This is key to unravelling the dynamics of geological processes, because plate motions and their temporal changes are a powerful probe into the evolving force balance between shallow- and deep-rooted processes. However, such a progress is not yet matched by the ability to quantitatively model past plate-motion changes and, therefore, to test hypotheses on the dominant controls. The main technical challenge is simulating the rheological behaviour of the lithosphere/mantle system, which varies significantly from viscous to brittle. Traditionally computer models for viscous mantle flow and on the one hand, and for the motions of the brittle lithosphere on the other hand, have been developed separately. Coupling of these two independent classes of models has been accomplished only for neo-tectonic scenarios and with some limitations as to accounting for the impact of time-evolving mantle-flow and lithospheric slabs. Here we present results in this direction that permit simulating the coupled plates/mantle system through geological time. We build on previous work aimed at coupling two sophisticated codes for mantle flow and lithosphere dynamics: TERRA and SHELLS. TERRA is a global spherical finite-element code for mantle convection. It has been developed by Baumgardner (1985) and Bunge et al. (1996), and further advanced by Yang (1997; 2000) and Davies et al. (2013), among others. SHELLS is a thin-sheet finite-element code for lithosphere dynamics, developed by

  1. The longevity of Archean mantle residues in the convecting upper mantle and their role in young continent formation

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Scott, James M.; Martin, Candace E.; Pearson, D. Graham

    2015-08-01

    The role played by ancient melt-depleted lithospheric mantle in preserving continental crust through time is critical in understanding how continents are built, disrupted and recycled. While it has become clear that much of the extant Archean crust is underpinned by Archean mantle roots, reports of Proterozoic melt depletion ages for peridotites erupted through Phanerozoic terranes raise the possibility that ancient buoyant lithospheric mantle acts as a "life-raft" for much of the Earth's continental crust. Here we report the largest crust-lithospheric mantle age decoupling (∼2.4 Ga) so far observed on Earth and examine the potential cause for such extreme age decoupling. The Phanerozoic (<300 Ma) continental crust of West Otago, New Zealand, is intruded by Cenozoic diatremes that have erupted cratonic mantle-like highly depleted harzburgites and dunites. These peridotites have rhenium depletion Os model ages that vary from 0.5 to 2.7 Ga, firmly establishing the record of an Archean depletion event. However, the vast range in depletion ages does not correlate with melt depletion or metasomatic tracer indices, providing little support for the presence of a significant volume of ancient mantle root beneath this region. Instead, the chemical and isotopic data are best explained by mixing of relict components of Archean depleted peridotitic mantle residues that have cycled through the asthenosphere over Ga timescales along with more fertile convecting mantle. Extensive melt depletion associated with the "docking" of these melt residues beneath the young continental crust of the Zealandia continent explains the decoupled age relationship that we observe today. Hence, the newly formed lithospheric root incorporates a mixture of ancient and modern mantle derived from the convecting mantle, cooled and accreted in recent times. We argue that in this case, the ancient components played no earlier role in continent stabilization, but their highly depleted nature along with

  2. Carbonatite melt-peridotite interaction at 5.5-7.0 GPa: Implications for metasomatism in lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Sokol, Alexander G.; Kruk, Alexey N.; Chebotarev, Dimity A.; Palyanov, Yury N.

    2016-04-01

    Interaction between carbonatite melt and peridotite is studied experimentally by melting samples of interlayered peridotite-carbonatite-peridotite in graphite containers at 1200-1350 °C and 5.5-7.0 GPa in a split-sphere multianvil apparatus. Starting compositions are lherzolite and harzburgite, as well as carbonatite which may form in the upper part of a slab or in a plume-related source. Most experimental runs were of 150 h duration in order for equilibrium to be achieved. The interaction produced carbonatitic melts with low SiO2 (≤ 7 wt.%) and high alkalis. At 1200 °C, melt-peridotite interaction occurs through Mg-Ca exchange, resulting in elimination of orthopyroxene and crystallization of magnesite and clinopyroxene. At 1350 °C hybridization of the carbonatite and magnesite-bearing peridotite melts occurred with consumption of clinopyroxene and magnesite, and crystallization of orthopyroxene at MgO/CaO ≥ 4.3. The resulting peridotite-saturated melt has Ca# (37-50) depending on primary carbonatite composition. Compositions of silicate phases are similar to those of high-temperature peridotite but are different from megacrysts in kimberlites. CaO and Cr2O3 changes in garnet produced from the melt-harzburgite interaction at 1200 and 1350 °C perfectly match the observed trend in garnet from metasomatized peridotite of the Siberian subcontinental lithospheric mantle. K-rich carbonatite melts equilibrated with peridotite at 5.5-7.0 GPa and 1200-1350 °C correspond to high-Mg inclusions in fibrous diamond. Carbonatite melt is a weak solvent of entrained xenoliths and therefore cannot produce kimberlitic magma if temperatures are ~ 1350 °C on separation from the lithospheric peridotite source and ~ 1000 °C on eruption.

  3. Multiple episodes of partial melting, depletion, metasomatism and enrichment processes recorded in the heterogeneous upper mantle sequence of the Neotethyan Eldivan ophiolite, Turkey

    NASA Astrophysics Data System (ADS)

    Uysal, Ibrahim; Ersoy, E. Yalçın; Dilek, Yildirim; Kapsiotis, Argyrios; Sarıfakıoğlu, Ender

    2016-03-01

    The Eldivan ophiolite along the Izmir-Ankara-Erzincan suture zone in north-central Anatolia represents a remnant of the Neotethyan oceanic lithosphere. Its upper mantle peridotites include three lithologically and compositionally distinct units: clinopyroxene (cpx)-harzburgite and lherzolite (Group-1), depleted harzburgite (Group-2), and dunite (Group-3). Relics of primary olivine and pyroxene occur in the less refractory harzburgites, and fresh chromian spinel (Cr-spinel) is ubiquitous in all peridotites. The Eldivan peridotites reflect a petrogenetic history evolving from relatively fertile (lherzolite and cpx-harzburgite) toward more depleted (dunite) compositions through time, as indicated by (i) a progressive decrease in the modal cpx distribution, (ii) a progressive increase in the Cr#s [Cr / (Cr + Al)] of Cr-spinel (0.15-0.78), and (iii) an increased depletion in the whole-rock abundances of some magmaphile major oxides (Al2O3, CaO, SiO2 and TiO2) and incompatible trace elements (Zn, Sc, V and Y). The primitive mantle-normalized REE patterns of the Group-1 and some of the Group-2 peridotites display LREE depletions. Higher YbN and lower SmN/YbN ratios of these rocks are compatible with their formation after relatively low degrees (9-25%) of open-system dynamic melting (OSDM) of a Depleted Mid-ocean ridge Mantle (DMM) source, which was then fluxed with small volumes of oceanic mantle-derived melt [fluxing ratio (β): 0.7-1.2%]. Accessory Cr-spinel compositions (Cr# = 015-0.53) of these rocks are consistent with their origin as residual peridotites beneath a mid-ocean ridge axis. Part of the Group-2 harzburgites exhibit lower YbN and higher SmN/YbN ratios, LREE-enriched REE patterns, and higher Cr-spinel Cr#s ranging between 0.54 and 0.61. Trace element compositions of these peridotites can be modeled by approximately 15% OSDM of a previously 17% depleted DMM, which was then fluxed (β: 0.4%) with subduction-influenced melt. The Group-3 dunite samples contain

  4. Cobalt and precious metals in sulphides of peridotite xenoliths and inferences concerning their distribution according to geodynamic environment: A case study from the Scottish lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Hughes, Hannah S. R.; McDonald, Iain; Faithfull, John W.; Upton, Brian G. J.; Loocke, Matthew

    2016-01-01

    Abundances of precious metals and cobalt in the lithospheric mantle are typically obtained by bulk geochemical analyses of mantle xenoliths. These elements are strongly chalcophile and the mineralogy, texture and trace element composition of sulphide phases in such samples must be considered. In this study we assess the mineralogy, textures and trace element compositions of sulphides in spinel lherzolites from four Scottish lithospheric terranes, which provide an ideal testing ground to examine the variability of sulphides and their precious metal endowments according to terrane age and geodynamic environment. Specifically we test differences in sulphide composition from Archaean-Palaeoproterozoic cratonic sub-continental lithospheric mantle (SCLM) in northern terranes vs. Palaeozoic lithospheric mantle in southern terranes, as divided by the Great Glen Fault (GGF). Cobalt is consistently elevated in sulphides from Palaeozoic terranes (south of the GGF) with Co concentrations > 2.9 wt.% and Co/Ni ratios > 0.048 (chondrite). In contrast, sulphides from Archaean cratonic terranes (north of the GGF) have low abundances of Co (< 3600 ppm) and low Co/Ni ratios (< 0.030). The causes for Co enrichment remain unclear, but we highlight that globally significant Co mineralisation is associated with ophiolites (e.g., Bou Azzer, Morocco and Outokumpu, Finland) or in oceanic peridotite-floored settings at slow-spreading ridges. Thus we suggest an oceanic affinity for the Co enrichment in the southern terranes of Scotland, likely directly related to the subduction of Co-enriched oceanic crust during the Caledonian Orogeny. Further, we identify a distinction between Pt/Pd ratio across the GGF, such that sulphides in the cratonic SCLM have Pt/Pd ≥ chondrite whilst Palaeozoic sulphides have Pt/Pd < chondrite. We observe that Pt-rich sulphides with discrete Pt-minerals (e.g., PtS) are associated with carbonate and phosphates in two xenolith suites north of the GGF. This three

  5. Physiognomy and timing of metasomatism in the southern Vourinos ultramafic suite, NW Greece: a chronicle of consecutive episodes of melt extraction and stagnation in the Neotethyan lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Kapsiotis, Argyrios N.

    2016-04-01

    The southern Vourinos massif, located in the Hellenides orogenic belt, forms part of the mantle section of the homonymous Neotethyan ophiolite complex in the NW Greek mainland. The southern domain of the massif is comprised voluminous and strained peridotite outcrops with variable pyroxene and olivine modal abundances, ranging from harzburgite (sensu stricto) to olivine-rich harzburgite and fine- to coarse-grained dunite. These peridotites are intruded by a complex network of undeformed websterite to olivine-rich websterite dykes. The peridotite lithologies are characterized by high Cr# [=Cr/(Cr + Al)] values in Cr-spinel (0.54-0.80), elevated Mg# [=Mg/(Mg + Fe2+)] ratios in olivine (0.91-0.94), poor Al2O3 content in clinopyroxene (up to 1.85 wt%) and very low bulk-rock abundances of Al2O3 (up to 0.66 wt%), CaO (up to 0.84 wt%), V (up to 45 ppm), Sc (up to 11 ppm) and REE, which are suggestive of their strongly depleted nature. They also display a wide range of fO2 values that vary between the fayalite-magnetite-quartz (FMQ-2) and FMQ+1 buffers, signifying their genesis under anoxic to oxidizing conditions. Simple batch and fractional melting models cannot satisfactorily explain their ultradepleted composition, whereas whole-rock Ni/Yb versus Yb systematics can be simulated by up to 27 % closed-system, non-modal, dynamic melting of a primitive mantle source, implying their multifarious origin in a progressively changing, in space and time, geotectonic setting. Chromian spinel chemistry (Cr# vs. TiO2) provides evidence for two consecutive melt-peridotite interaction events pertaining to patent metasomatism. The first incident is related to the release of IAT melts from the deep parts of the southern Vourinos mantle segment, which reacted with harzburgites transforming them into olivine-rich harzburgites and replacive dunites, whereas mixing of different pulses of IAT melts with distinct SiO2 activities generated heterogeneously deformed, cumulitic dunites. The

  6. Oceanic lavas sampling the high 3He/4He mantle reservoir: Primitive, depleted, or re-enriched?

    NASA Astrophysics Data System (ADS)

    Garapic, G.; Mallik, A.; Dasgupta, R.; Jackson, M. G.

    2014-12-01

    Helium isotopes are used as a tracer for primitive reservoirs that have persisted in the Earth's mantle. Basalts erupted at several intraplate oceanic islands, including Hawaii, Iceland, Galapagos and Samoa, have hosted the highest 3He/4He ratios (> 30 Ra, where Ra is atmospheric 3He/4He ratio) globally that are far in excess of the 3He/4He typical of the upper mantle sampled at mid-ocean ridges (8 Ra). These lavas have been suggested to be melts of a primitive, or possibly slightly depleted, mantle reservoir, i.e., either fertile or a depleted peridotite. We report evidence for geochemical enrichment in the high 3He/4He mantle sampled by lavas with the highest 3He/4He from Hawaii, Samoa and possibly Galapagos. The titanium concentrations in high 3He/4He lavas from Samoa are too high to be explained by melts of a mantle peridotite, even at infinitesimally small degrees of melting, and the elevated Ti corresponds to elevated Pb-isotopic ratios. The highest 3He/4He lavas from Loihi, Hawaii have Ti concentrations that are too high to be melts of primitive mantle peridotite at the degrees of melt extraction proposed for those ocean islands. Thus, Ti-rich material must have been added to the high 3He/4He mantle reservoir, and this material is likely to be recycled mafic crust similar to MORB-like eclogite, which is consistent with the elevated Pb-isotopic ratios. We show that fractionation corrected, major element compositions of high 3He/4He alkalic lavas can be satisfactorily modeled by melting and melt-rock interaction scenario in a fertile peridotite-MORB-eclogite hybrid system. Primitive peridotitic and recycled eclogitic reservoirs are suggested to be intimately associated in the deepest mantle and far from being primitive, the high 3He/4He lavas may sample a mantle source that hosts a component of recycled oceanic crust.

  7. Is there a remnant Variscan subducted slab in the mantle beneath the Paris basin? Implications for the late Variscan lithospheric delamination process and the Paris basin formation

    NASA Astrophysics Data System (ADS)

    Averbuch, O.; Piromallo, C.

    2012-08-01

    The Paris basin (northern France) is a Late Paleozoic-Mesozoic intracratonic basin that settled upon the collapsed Variscan collisional belt. The lithospheric roots of the Variscan orogenic system, below the Paris basin, have been investigated using a European-scale P-wave velocity tomographic model. Tomography points out the existence of a significant high velocity anomaly in the upper mantle below the western part of the basin. At ~ 150-200 km depth, the anomaly extends with a NW-SE trend along the buried Northern France trace of the Northern Variscan Suture Zone i.e. the Bray segment of the Upper Carboniferous Lizard-Rhenohercynian (LRH) suture. Moreover, the high-velocity anomaly is spatially correlated with the prominent Paris Basin Magnetic Anomaly. Its downdip extent reaches depths greater than 200 km below the southern margin of the Paris basin. As suggested in previous tomographic studies below ancient suture zones, these data argue for such anomaly being the remnant of a Variscan subducted slab that escaped the extensive late orogenic delamination process affecting the lithospheric roots by Late Carboniferous-Early Permian times and that was preserved stable over 300 Ma at the base of the lithosphere. On a general geodynamical perspective, these results provide a new insight into the long-term evolution of subducted lithosphere into the mantle. In the case of the Western European Variscan orogenic belt, they suggest that the subduction of the LRH slab below the previously thickened Variscan crust, and its final detachment from the orogenic root, have played an important role in the collapse of the belt, inducing thermal erosion and extension of the overriding lithosphere. The spatial evolution of late orogenic extension across the belt and of subsequent thermal subsidence in the Paris basin is suggested to result from the heterogeneous delamination of the lithospheric roots along strike and from the resultant pattern of asthenospheric rise.

  8. Effect of graphite on the electrical conductivity of the lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Zhang, Baohua; Yoshino, Takashi

    2017-01-01

    Graphite is considered as one of candidate to explain the high-conductivity anomalies revealed through magnetotelluric (MT) observations. To investigate the effect of interfacial energy on the interconnection of graphite in olivine matrix, we measured the electrical conductivity of polycrystalline San Carlos olivine mixed with 0.8 vol % graphite on the grain boundaries via impedance spectroscopy at 1 GPa and 300-1700 K in a cubic multianvil apparatus. The olivine-graphite dihedral angle of the recovered sample was also measured to determine interfacial energy between graphite and olivine. The bulk electrical conductivities and large activation enthalpy (˜1.32 eV) of the carbon-bearing sample were consistent with those of dry polycrystalline olivine. This behavior implies that graphite cannot be interconnected on olivine grain boundaries, which is also supported by the large dihedral angle (98°) of the olivine/graphite system. Impedance spectroscopy measurements were performed at 3 GPa and a temperature of up to 1700 K for carbon-coated olivine bicrystal samples to investigate the stability of graphite films on the grain boundaries of silicate minerals under upper-mantle conditions. The conductivities rapidly or slowly dropped as a function of time and graphite film thickness during annealing at the target temperature. This phenomenon exhibits that graphite film on the olivine grain boundary is readily destroyed under upper-mantle conditions as supported by microstructural observations on the recovered carbon-coated olivine bicrystal samples. Higher interfacial energy and larger dihedral angle (˜98°) between graphite and olivine would not allow the maintenance of graphite film on olivine grain boundaries. The activation enthalpy for the apparent disconnection rate of a graphite film on olivine grain boundaries is close to that of carbon diffusion in olivine grain boundaries, which suggests that the disconnection of the graphite film is likely to be controlled by

  9. A common Pan-African Lithospheric Mantle (PALM) source for HIMU-like Pb-isotope signatures in circum-Mediterranean magmas

    NASA Astrophysics Data System (ADS)

    Young, H. P.; Wang, Z.; Brandon, M. T.

    2013-12-01

    Isotopic compositions of widely distributed basaltic rocks of Europe and North Africa are clustered around a point that is displaced from modern MORB in 208Pb/204Pb vs. 206Pb/204Pb, pointing to the 'HIMU' component proposed by Zindler and Hart (1986). This observation was originally highlighted in an abstract by Cebria and Wilson (1995), who suggested that a reservoir of unknown origin exists in the convecting upper mantle of the Mediterranean and coin it the 'European asthenospheric reservoir' or EAR in order to distinguish it from the apparent influence of an additional 'lithospheric' component having a Sr-Nd isotope composition similar to continental crust that is observed in some, but not all, Cenozoic igneous rocks. While this study and most authors agree that the 'lithospheric' component in the model of Cebria and Wilson (1995) is crustal material associated with Cenozoic subduction, explanations for the origin of the HIMU-like EAR reservoir, however, are diverse, ranging from deep plumes to recently subducted slabs. These explanations are problematic. For example, neither plumes nor recent subduction are spatially broad enough to explain all of the EAR occurrences. Alternatively, we argue that both components (lithospheric and EAR) observed by Cebria and Wilson are lithospheric in origin. We propose that the origin of the HIMU-like Pb component is metasomatized sub-continental lithospheric mantle (SCLM). Comparison with synthetic evolution models of a veined mantle show the HIMU-like composition of European Cenozoic igneous rocks can be generated after ~500 Ma (Pilet et al., 2011). Major and trace element compositions of the European alkalic-basalts are similar to experimental melts of amphibole-pyroxenite veins in peridotite (a common feature of the SCLM) (Médard et al., 2006). A likely candidate for a veined 500 Ma SCLM in this region is the 'Pan-African' age terrane that is currently widely distributed from England to the Sahara as well as on the

  10. Osmium isotopes and mantle convection.

    PubMed

    Hauri, Erik H

    2002-11-15

    The decay of (187)Re to (187)Os (with a half-life of 42 billion years) provides a unique isotopic fingerprint for tracing the evolution of crustal materials and mantle residues in the convecting mantle. Ancient subcontinental mantle lithosphere has uniquely low Re/Os and (187)Os/(188)Os ratios due to large-degree melt extraction, recording ancient melt-depletion events as old as 3.2 billion years. Partial melts have Re/Os ratios that are orders of magnitude higher than their sources, and the subduction of oceanic or continental crust introduces into the mantle materials that rapidly accumulate radiogenic (187)Os. Eclogites from the subcontinental lithosphere have extremely high (187)Os/(188)Os ratios, and record ages as old as the oldest peridotites. The data show a near-perfect partitioning of Re/Os and (187)Os/(188)Os ratios between peridotites (low) and eclogites (high). The convecting mantle retains a degree of Os-isotopic heterogeneity similar to the lithospheric mantle, although its amplitude is modulated by convective mixing. Abyssal peridotites from the ocean ridges have low Os isotope ratios, indicating that the upper mantle had undergone episodes of melt depletion prior to the most recent melting events to produce mid-ocean-ridge basalt. The amount of rhenium estimated to be depleted from the upper mantle is 10 times greater than the rhenium budget of the continental crust, requiring a separate reservoir to close the mass balance. A reservoir consisting of 5-10% of the mantle with a rhenium concentration similar to mid-ocean-ridge basalt would balance the rhenium depletion of the upper mantle. This reservoir most likely consists of mafic oceanic crust recycled into the mantle over Earth's history and provides the material that melts at oceanic hotspots to produce ocean-island basalts (OIBs). The ubiquity of high Os isotope ratios in OIB, coupled with other geochemical tracers, indicates that the mantle sources of hotspots contain significant quantities

  11. Lattice-preferred Orientation and Volatile Content of Olivine in Arc Mantle Lithosphere, Based on Xenoliths from the Sierra Nevada Batholith, California

    NASA Astrophysics Data System (ADS)

    Chin, E. J.; Hirth, G.; Saal, A. E.; Eiler, J. M.

    2014-12-01

    Peridotite xenoliths from the Mesozoic Sierra Nevada Batholith, California, USA record the origin and growth of arc mantle lithosphere. The peridotites vary from coarse-grained, clinopyroxene-poor spinel peridotite to fine-grained, recrystallized, clinopyroxene-rich garnet peridotite. Garnet coronas around spinel and garnet exsolution indicate cooling and/or increasing pressure. Previous thermobarometry (Chin et al., 2012) interpreted these peridotites as originally shallow (<3 GPa), melt-depleted residues that were subsequently refertilized by basaltic melt, transported to final pressures ~3 GPa, and cooled to 650 - 845 C. Here, we investigate deformation microstructures and volatile content of Sierran peridotites. Owing to the dependence of olivine lattice preferred orientation (LPO) on stress, temperature, and water content, we can gain new constraints on the relative chronology of deformation and introduction of volatiles, which may be related to the refertilization event. Olivine LPOs were determined using the electron backscatter diffraction (EBSD) technique with the HKL Channel 5 software. Measurements were done manually on a grain-by-grain basis along 3 mm-spacing profiles parallel to the long axis of each thin section. We analyzed three garnet peridotites and one mylonitic spinel peridotite. Of the garnet peridotites, one sample shows alignment of [001] parallel to lineation with [010] aligned normal to the foliation (B-type fabric), while the other samples display a girdle distribution of [100] and [001] parallel to lineation (possibly suggesting axial compression). The mylonitic spinel peridotite is also characterized by a B-type fabric. The B-type fabric is associated with low temperatures, high stress, and hydrous conditions, and could be the dominant fabric type in the cold part of the mantle wedge. The presence of B-type fabric in the Sierran peridotites is consistent with their equilibration at cold temperatures and high pressures, conditions that

  12. Observation of the Lithosphere and upper mantle structure from Greenland to the Mid Atlantic ridge using PP-precursors

    NASA Astrophysics Data System (ADS)

    Alvarado, D. R.; Gurrola, H.

    2012-12-01

    Observations based on PP and SS bounce point precursors have long been used to image the 410 and 660 km discontinuities. Because of noise (largely caused by scattering near the seismic stations) these data are generally low pass filtered and only offer resolution of the major transition zone discontinuities. Array processing, made possible by the EarthScope transportable array, have enabled us to improve the frequency content to 2Hz (depending on the richness of data in the area to be imaged). This study will focus on using PP-precursors to image lithospheric and upper-mantle discontinuities beneath the northern mid-Atlantic ridge (MAR) and the southern continental shelf of Greenland. Seismic images produced from the PP-precursor data were processed at frequencies ranging from 0.25 Hz to 2 Hz using different beam radii (BR) of 60, 150, and 250 km. The images using 0.25 Hz with a BR of 250 km were the least noisy but smeared features over a large region. The 2 Hz images with 60 km radii showed more localized features but must be used together with the low resolution images to separate noise from signal. The lithosphere-asthenosphere boundary (LAB) beneath the Southern continental shelf of Greenland was imaged at a depth of ~70 km. The LAB appears to shallow to a depth of ~50 km near the MAR. A low velocity body (a warm body, possibly partial melt) from the ridge was also imaged near the ridge at ~70 km depth beneath the LAB. The length of the low velocity body extended ~300 km west of the ridge before disappearing. Another low velocity body was observed at depths varying between 180 and 200 km, which may indicate the presence of a shallow 220 km discontinuity. Global tomography show low velocities from the surface to transition zone depths beneath the northern Atlantic (near Iceland). The resolution of our data at the 410 km depth is questionable, but this discontinuity appears to be 410 km beneath Greenland and deepens to ~430 km toward the MAR.

  13. The evaluation of the statistical monomineral thermobarometric methods for the reconstruction of the lithospheric mantle structure

    NASA Astrophysics Data System (ADS)

    Ashchepkov, I.; Vishnyakova, E.

    2009-04-01

    The modified versions of the thermobarometers for the mantle assemblages were revised sing statistical calibrations on the results of Opx thermobarometry. The modifications suggest the calculation of the Fe# of coexisting olivine Fe#Ol according to the statistical approximations by the regressions obtained from the xenoliths from kimberlite data base including >700 associations. They allow reproduces the Opx based TP estimates and to receive the complete set of the TP values for mantle xenoliths and xenocrysts. For GARNET Three variants of barometer give similar results. The first is published (Ashchepkov, 2006). The second is calculating the Al2O3 from Garnet for Orthopyroxene according to procedure: xCrOpx=Cr2O3/CaO)/FeO/MgO/500 xAlOpx=1/(3875*(exp(Cr2O3^0.2/CaO)-0.3)*CaO/989+16)-XcrOpx Al2O3=xAlOp*24.64/Cr2O3^0.2*CaO/2.+FeO*(ToK-501)/1002 And then it suppose using of the Al2O3 in Opx barometer (McGregor, 1974). The third variant is transformation of the G. Grutter (2006) method by introducing of the influence of temperature. P=40+(Cr2O3)-4.5)*10/3-20/7*CaO+(ToC)*0.0000751*MgO)*CaO+2.45*Cr2O3*(7-xv(5,8)) -Fe*0.5 with the correction for P>55: P=55+(P-55)*55/(1+0.9*P) Average from this three methods give appropriate values comparable with determined with (McGregor,1974) barometer. Temperature are estimating according to transformed Krogh thermometer Fe#Ol_Gar=Fe#Gar/2+(T(K)-1420)*0.000112+0.01 For the deep seated associations P>55 kbar T=T-(0.25/(0.4-0.004*(20-P))-0.38/Ca)*275+51*Ca*Cr2-378*CaO-0.51)-Cr/Ca2*5+Mg/(Fe+0.0001)*17.4 ILMENITE P= ((TiO2-23.)*2.15-(T0-973)/20*MgO*Cr2O3 and next P=(60-P)/6.1+P ToK is determined according to (Taylor et al , 1998) Fe#Ol_Chr =(Fe/(Fe+Mg)ilm -0.35)/2.252-0.0000351*(T(K)-973) CHROMITE The equations for PT estimates with chromite compositions P=Cr/(Cr+Al)*T(K)/14.+Ti*0.10 with the next iteration P=-0.0053*P^2+1.1292*P+5.8059 +0.00135*T(K)*Ti*410-8.2 For P> 57 P=P+(P-57)*2.75 Temperature estimates are according to the O

  14. Lithospheric processes

    SciTech Connect

    Baldridge, W.

    2000-12-01

    The authors used geophysical, geochemical, and numerical modeling to study selected problems related to Earth's lithosphere. We interpreted seismic waves to better characterize the thickness and properties of the crust and lithosphere. In the southwestern US and Tien Shari, crust of high elevation is dynamically supported above buoyant mantle. In California, mineral fabric in the mantle correlate with regional strain history. Although plumes of buoyant mantle may explain surface deformation and magmatism, our geochemical work does not support this mechanism for Iberia. Generation and ascent of magmas remains puzzling. Our work in Hawaii constrains the residence of magma beneath Hualalai to be a few hundred to about 1000 years. In the crust, heat drives fluid and mass transport. Numerical modeling yielded robust and accurate predictions of these processes. This work is important fundamental science, and applies to mitigation of volcanic and earthquake hazards, Test Ban Treaties, nuclear waste storage, environmental remediation, and hydrothermal energy.

  15. Mixing of mantle melts recorded in Icelandic phenocrysts: The significance of clinopyroxene stability in depleted compositions

    NASA Astrophysics Data System (ADS)

    Winpenny, B.; Maclennan, J.

    2009-12-01

    Mixing of chemically heterogeneous mantle melts in the lower oceanic crust has been invoked to explain the large ranges of incompatible trace element ratios observed in olivine-hosted melt inclusions in primitive Icelandic basalts, and the decrease in this variability with degree of crystal fractionation. We show that before mixing is completed, these melts, sourced from different regions of the melting column, can influence the crystallization and chemistry of phenocryst phases hosted in the erupted basalt. Ion microprobe and LA-ICPMS trace element analyses were performed on high Mg# (85-92) clinopyroxene and high An content (80-90) plagioclase from the primitive Borgarhraun flow, N. Iceland. Major and trace element compositions were used to search for cpx-melt pairs close to equilibrium and thus suitable for thermobarometry. Thermobarometry results indicate that clinopyroxene crystallized at ~9(±2) kbar, close to the Moho. The forsterite content of olivine in Mg-Fe equilibrium with the clinopyroxene and the trace element content of the equilibrium melt were estimated using crystal-crystal and crystal-melt partition coefficients. This conversion allows the compositions of clinopyroxene point analyses to be compared with those of melt inclusions and their host crystals. Both converted clinopyroxene compositions and olivine-hosted melt inclusion data show a wide range in incompatible trace element ratios close to Mg#~90, requiring mixing of mantle melts during crystal fractionation. However, the trace element enriched part of the range observed in the olivine-hosted melt inclusions is absent from clinopyroxene compositions. While the range in La/Yb of 92 olivine-hosted melt inclusions is 0.09-3.23, that for 167 converted clinopyroxene compositions is 0.11-1.29. Phase relations can explain this observation: deep-sourced, enriched melts have a long olivine-only crystallization path and so cannot form high Mg# clinopyroxene prior to mixing with more depleted melts

  16. Tomographic image of the crust and upper mantle beneath the western Tien Shan from the MANAS broadband deployment: Possible evidence for lithospheric delamination

    NASA Astrophysics Data System (ADS)

    Zhiwei, Li; Roecker, Steve; Zhihai, Li; Bin, Wei; Haitao, Wang; Schelochkov, Gennady; Bragin, Vitaly

    2009-11-01

    We combine teleseismic P arrival times from the recent MANAS deployment of broadband sensors with P and S arrival times from local events recorded by the GENGHIS deployment and analog observations from the Kyrgyz Institute of Seismology to generate a high resolution (~ 20 km) image of elastic wavespeeds in the crust and upper mantle beneath the western Tien Shan. The total data set consists of 29,006 P and 21,491 S arrivals from 2176 local events recorded at 144 stations along with 5202 P arrivals from 263 teleseismic events recorded at 40 stations. The most significant feature in our image of the mantle beneath the Tien Shan is a pair of large, elongated high wavespeed regions dipping in opposite directions from the near surface to depths of at least 400 km. These regions appear to be continuous and extend upwards to bounding range fronts where the Tarim Basin is being overthrust by the Kokshal range on the south side, and the Kazach shield underthrusts the Kyrgyz range on the north side. While it is tempting to interpret these high wavespeed anomalies as evidence for contemporary subduction of continental lithosphere, such a scenario is difficult to reconcile with both the timing of the orogen and the size of the wavespeed anomaly. We suggest instead that they represent downwelling side-limbs of a lithospheric delamination beneath the central part of the Tien Shan, possibly by siphoning of the bordering continental lithosphere as the central part descends.

  17. Lithospheric deformation and mantle/crust coupling related to slab roll-back and tearing processes: the role of magma-related rheological weakening highlighted by 3D numerical modeling

    NASA Astrophysics Data System (ADS)

    Menant, Armel; Jolivet, Laurent; Guillou-Frottier, Laurent; Sternai, Pietro; Gerya, Taras

    2016-04-01

    Active convergent margins are the locus of various large-scale lithospheric processes including subduction, back-arc opening, lithospheric delamination, slab tearing and break-off. Coexistence of such processes results in a complex lithospheric deformation pattern through the rheological stratification of the overriding lithosphere. In this context, another major feature is the development of an intense arc- and back-arc-related magmatism whose effects on lithospheric deformation by rheological weakening are largely unknown. Quantifying this magma-related weakening effect and integrating the three-dimensional (3D) natural complexity of subduction system is however challenging because of the large number of physico-chemical processes involved (e.g. heat advection, dehydration of subducted material, partial melting of the mantle wedge). We present here a set of 3D high-resolution petrological and thermo-mechanical numerical experiments to assess the role of low-viscosity magmatic phases on lithospheric deformation associated with coeval oceanic and continental subduction, followed by slab retreat and tearing processes. Results in terms of crustal kinematics, patterns of lithospheric deformation and distribution and composition of magmatic phases are then compared to a natural example displaying a similar geodynamical evolution: the eastern Mediterranean subduction zone. Our modeling results suggest that the asthenospheric flow controls the ascending trajectories of mantle-derived magmatic sources developed in the mantle wedge in response to dehydration of oceanic slab. Once stored at the base of the overriding continental crust, low-viscosity mantle- and crustal-derived magmatic phases allow to decrease the lithospheric strength. This weakening then enhances the propagation of localized extensional and strike-slip deformation in response to slab roll-back and extrusion tectonics respectively. In addition, we show that storage of large amounts of low-viscosity magmas

  18. Eocene melting of Precambrian lithospheric mantle: Analcime-bearing volcanic rocks from the Challis-Kamloops belt of south central British Columbia

    NASA Astrophysics Data System (ADS)

    Dostal, J.; Breitsprecher, K.; Church, B. N.; Thorkelson, D.; Hamilton, T. S.

    2003-08-01

    Potassic silica-undersaturated mafic volcanic rocks form a minor portion of the predominantly calc-alkaline Eocene Challis-Kamloops volcanic belt, which extends from the northwestern United States into central British Columbia (Canada). Their major occurrence is in the Penticton Group in south central British Columbia, where they reach a thickness of up to 500 m and form the northwestern edge of the Montana alkaline province. These analcime-bearing rocks (˜53-52 Ma old) are typically rhomb porphyries of ternary feldspar (An 28Ab 52Or 20). Additional phenocryst phases include clinopyroxene, analcime, phlogopite and rare olivine. The rocks are characterized by high total alkalis, particularly K 2O (>4.5 wt%) as well as by a distinct enrichment of large-ion lithophile elements versus heavy rare-earth elements and high-field-strength elements. They have unusual isotopic compositions compared to most other rocks of the Challis-Kamloops belt, particularly high negative ɛNd values and elevated but relatively uniform initial 87Sr/ 86Sr ratios (˜0.7065). The potassic silica-undersaturated rocks overlie Precambrian crust and lithosphere and were at least in part derived from ancient metasomatized subcontinental mantle lithosphere, which was modified in a Precambrian subduction setting. The alkaline rocks of the Challis-Kamloops belt are related to a slab-window environment. In particular, they were formed above the southern edge of the Kula plate adjacent to the Kula-Farallon slab window, whereas the Montana alkaline province situated well to the southeast was formed directly above the Kula-Farallon slab window. Upwelling of the hotter asthenospheric mantle may have been the thermal trigger necessary to induce melting of fertile and metasomatized lithospheric mantle.

  19. The role of mantle temperature and lithospheric thickness during initial oceanic crust production: numerical modelling constraints from the southern South Atlantic

    NASA Astrophysics Data System (ADS)

    Taposeea, C.; Armitage, J. J.; Collier, J.

    2015-12-01

    Evidence from seaward dipping reflector distributions has recently suggested that segmentation plays a major role in the pattern of volcanism during breakup, particularly in the South Atlantic. At a larger scale, variations in mantle temperature and lithosphere thickness can enhance or reduce volcanism. To understand what generates along strike variation of volcanism at conjugate margins, we measure the thickness of earliest oceanic crust in the South Atlantic, south of the Walvis and Rio Grande ridges. We use data from 29 published wide-angle and multichannel seismic profiles and at least 14 unpublished multichannel seismic profiles. A strong linear trend between initial oceanic crustal thickness and distance from hotspot centres, defined as the commencement of Walvis and Rio Grande ridges, with a regression coefficient of 0.7, is observed. At 450km south of the Walvis Ridge, earliest oceanic crustal thickness is found to be 11.7km. This reduces to 7.0km in the south at a distance of 1,420km. Such a linear trend suggests rift segmentation plays a secondary role on volcanism during breakup. To explore the cause of this trend, we use a 2D numerical model of extension capable of predicting the volume and composition of melt generated by decompressional melting during extension to steady state seafloor spreading. We explore the effect of both mantle temperature and lithosphere thickness on melt production with a thermal anomaly (hot layer) 100km thick located below the lithosphere with an excess temperature of 50-200°C, and lithospheric thickness ranging from 125-140km, covering the thickness range estimated from tomographic studies. By focusing on a set of key seismic profiles, we show a reduction in hot layer temperature is needed in order to match observed oceanic crustal thickness, even when the effect of north to south variations in lithosphere thickness are included. This model implies that the observed oceanic thickness requires the influence of a hot layer up

  20. Production of carbonatite-source regions in depleted upper mantle: metasomatism by alkaline magmas

    SciTech Connect

    Meen, J.K.

    1985-01-01

    The peridotite-H/sub 2/O-CO/sub 2/ solidus displays a cusp at approximately 22 kbar (corresponding to the intersection of the amphibole-out curve and the solidus). Low-temperature alkaline melts formed near the solidus at P>22 kbar will recross the solidus along the line of the cusp and, at lower pressures, react with wall-rocks. Depleted periodotite of the upper mantle may thus be enriched in low-melting components. Experimental studies on a join between carbonated alkaline rock and harzburgite at P=20 kbar demonstrate that carbonate is a supersolidus phase, except at high ratios of H/sub 2/O to CO/sub 2/, and that amphibole forms at temperatures very close to that of the solidus. Interaction of carbonated alkaline magma and harzburgite produces, with decreasing temperature, clinopyroxene, carbonate, and hornblende. Thus, two different kinds of carbonated 1herzolite source region may be formed. In the first case, a carbonated 1herzolite is formed in equilibrium with a residual magma. This 1herzolite will be enriched in Sr over Rb and in Nd over Sm, but not in U over Pb. Total consumption of the magma will produce a carbonate-amphibole-1herzolite and this will also be enriched in U over Pb. These two source regions will develop, with time, similar Sr-Nd isotopic characteristics (low /sup 87/Sr//sup 86/Sr and low /sup 143/Nd//sup 144/Nd), but will have very different Pb-isotopic ratios. The effects of minor minerals on the partitioning of trace elements may, however, by important, and these will also be discussed.

  1. Evidence for extreme mantle fractionation in early Archaean ultramafic rocks from northern Labrador

    NASA Technical Reports Server (NTRS)

    Collerson, Kenneth D.; Campbell, Lisa M.; Weaver, Barry L.; Palacz, Zenon A.

    1991-01-01

    Samarium-neodymium isotope data for tectonically interleaved fragments of lithospheric mantle and meta-komatiite from the North Atlantic craton provide the first direct record of mantle differentiation before 3,800 Myr ago. The results confirm the magnitude of light-rare-earth-element depletion in the early mantle, and also its depleted neodymium isotope composition. The mantle fragments were able to retain these ancient geochemical signatures by virtue of having been tectonically incorporated in buoyant felsic crust, thus escaping recycling and homogenization by mantle convection.

  2. A taxonomy of three species of negative velocity arrivals in the lithospheric mantle beneath the United States using Sp receiver functions

    NASA Astrophysics Data System (ADS)

    Foster, K.; Dueker, K.; McClenahan, J.; Hansen, S. M.; Schmandt, B.

    2012-12-01

    The Transportable Array, with significant supplement from past PASSCAL experiments, provides an unprecedented opportunity for a holistic view over the geologically and tectonically diverse continent. New images from 34,000 Sp Receiver Functions image lithospheric and upper mantle structure that has not previously been well constrained, significant to our understanding of upper mantle processes and continental evolution. The negative velocity gradient (NVG) found beneath the Moho has been elusive and is often loosely termed the "Lithosphere-Asthenosphere Boundary" (LAB).This label is used by some researchers to indicate a rheological boundary, a thermal gradient, an anisotropic velocity contrast, or a compositional boundary, and much confusion has arisen around what observed NVG arrivals manifest. Deconvolution across up to 400 stations simultaneously has enhanced the source wavelet estimation and allowed for more accurate receiver functions. In addition, Sdp converted phases are precursory to the direct S phase arrival, eliminating the issue of contamination from reverberated phases that add noise to Ps receiver functions in this lower-lithospheric and upper mantle depth range. We present taxonomy of the NVG arrivals beneath the Moho across the span of the Transportable Array (125° - 85° W). The NVG is classified into three different categories, primarily distinguished by the estimated temperature at the depth of the arrival. The first species of Sp NVG arrivals is found to be in the region west of the Precambrian rift hinge line, at a depth range of 70 - 90 km, corresponding to a temperature of >1150° C. This temperature and depth is predicted to be supersolidus for a 0.02% weight H2O Peridotite (Katz et al., 2004), supporting the theory that these arrivals are due to a melt-staging area (MSA), which could be correlated with the base of the thermal lithosphere. The current depth estimate of the cratonic US thermal LAB ranges from 150-220 km (Yuan and Romanowitz

  3. New Insights into the Lithospheric Mantle Carbon Storage in an Intra-Continental Area: A Geochemical and 3D X-Ray Micro-Tomography Study

    NASA Astrophysics Data System (ADS)

    Creon, L.; Rouchon, V.; Rosenberg, E.; Delpech, G.; Youssef, S.; Guyot, F. J.; Szabo, C.

    2014-12-01

    The Pannonian Basins situated in a context of lithospheric fluxing by mantle CO2-rich fluids, as evidenced by Plio-Pleistocene alkaline basalts and Basin gas geochemical data [1]. Such type of intracontinental CO2-fluxes remain poorly constrained at the scale of the global C-cycle. We report here the first quantification of the CO2 volumes stored in the lithospheric mantle, by coupling geochemical and 3D micro-tomography studies of lherzolitic and harzburgitic mantle xenoliths. The Pannonian Basin xenolith peridotites present numerous signs of melt/fluid migration. The compositions of glasses found in the peridotites vary from sub-alkaline (Na2O + K2O = 3.8 wt. %) to alkaline (Na2O + K2O = 12.6 wt. %) and from mafic (SiO2 = 48.2 wt. %) to more felsic (SiO2 = 62.1 wt. %) compositions and differ markedly from the host basalts of the xenoliths. Microthermometric and Raman spectroscopic studies on fluid inclusions (n = 115) show pure CO2 compositions with densities range between 0.6 and 0.9 g.cm3 [290 to 735 MPa (PCO2)], corresponding to deep fluid trapping on both sides of the Moho. High-resolution synchrotron X-ray micro-tomography (Micro-CT), together with laboratory micro-CT were performed to obtain information about structure, volume and density of each phase (minerals, melts and fluids). Fluids and melts are mainly located at grain boundaries and secondary trails cut off the grain boundaries, which implies a contemporary introduction of such fluids [Figure 1]. The amount of fluid inclusions in xenoliths is heterogeneous and varied from 0.79 ± 0.15 to 4.58 ± 0.54 vol % of the peridotite. The carbon-dioxide content stored in the lithospheric mantle, due to the percolation of asthenospheric melts produced in the mantle beneath the Pannonian Basin, can be estimated by the combination of 3D reconstruction (Micro-CT) and CO2 pressures from inclusions. [1] B. Sherwood Lollar et al., 1997. Geochim. Cosmochim. Acta, vol. 61, no. 11, pp. 2295-2307

  4. Rifting Thick Lithosphere - Canning Basin, Western Australia

    NASA Astrophysics Data System (ADS)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the <300 km wide and <6 km thick western Canning Basin is adequately explained by mild Ordovician extension (β≈1.2) of ~120 km thick lithosphere followed by post-rift thermal subsidence. This is consistent with the established model, described above, albeit with perturbations due to transient dynamic topography support which are expressed as basin-wide unconformities. In contrast the <150 km wide and ~15 km thick Fitzroy Trough of the eastern Canning Basin reveals an almost continuous period of normal faulting between the Ordovician and Carboniferous (β<2.0) followed by negligible post-rift thermal subsidence. These features cannot be readily explained by the established model of rift basin development. We attribute the difference in basin architecture between the western and eastern Canning Basin to rifting of thick lithosphere beneath the eastern part, verified by the presence of ~20 Ma diamond-bearing lamproites intruded into the basin depocentre. In order to account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic

  5. Petrogenesis of postcollisional magmatism at Scheelite Dome, Yukon, Canada: Evidence for a lithospheric mantle source for magmas associated with intrusion-related gold systems

    USGS Publications Warehouse

    Mair, John L.; Farmer, G. Lang; Groves, David I.; Hart, Craig J.R.; Goldfarb, Richard J.

    2011-01-01

    The type examples for the class of deposits termed intrusion-related gold systems occur in the Tombstone-Tungsten belt of Alaska and Yukon, on the eastern side of the Tintina gold province. In this part of the northern Cordillera, extensive mid-Cretaceous postcollisional plutonism took place following the accretion of exotic terranes to the continental margin. The most cratonward of the resulting plutonic belts comprises small isolated intrusive centers, with compositionally diverse, dominantly potassic rocks, as exemplified at Scheelite Dome, located in central Yukon. Similar to other spatially and temporally related intrusive centers, the Scheelite Dome intrusions are genetically associated with intrusion-related gold deposits. Intrusions have exceptional variability, ranging from volumetrically dominant clinopyroxene-bearing monzogranites, to calc-alkaline minettes and spessartites, with an intervening range of intermediate to felsic stocks and dikes, including leucominettes, quartz monzonites, quartz monzodiorites, and granodiorites. All rock types are potassic, are strongly enriched in LILEs and LREEs, and feature high LILE/HFSE ratios. Clinopyroxene is common to all rock types and ranges from salite in felsic rocks to high Mg augite and Cr-rich diopside in lamprophyres. Less common, calcic amphibole ranges from actinolitic hornblende to pargasite. The rocks have strongly radiogenic Sr (initial 87Sr/86Sr from 0.711-0.714) and Pb isotope ratios (206Pb/204Pb from 19.2-19.7), and negative initial εNd values (-8.06 to -11.26). Whole-rock major and trace element, radiogenic isotope, and mineralogical data suggest that the felsic to intermediate rocks were derived from mafic potassic magmas sourced from the lithospheric mantle via fractional crystallization and minor assimilation of metasedimentary crust. Mainly unmodified minettes and spessartites represent the most primitive and final phases emplaced. Metasomatic enrichments in the underlying lithospheric mantle

  6. Selenium and tellurium systematics of the Earth’s mantle from high precision analyses of ultra-depleted orogenic peridotites

    NASA Astrophysics Data System (ADS)

    König, Stephan; Luguet, Ambre; Lorand, Jean-Pierre; Wombacher, Frank; Lissner, Moritz

    2012-06-01

    Selenium and tellurium, like the highly siderophile elements, may constitute key tracers for planetary processes such as formation of the Earth’s core and the Late Veneer composition, provided that their geochemical behavior and abundances in the primitive upper mantle (PUM) are well constrained. Within this scope, we have developed a high precision analytical method for the simultaneous determination of selenium and tellurium concentrations from a single sample aliquot and for various rock matrices, including ultra-depleted peridotites. The technique employs isotope dilution, thiol cotton fiber (TCF) separation and hydride generation ICP-MS. A selection of international mafic and ultramafic rock reference materials BIR-1, BE-N, TDB-1, UB-N, FON B 93 and BHVO-2 with a range of 30-350 ppb Se and 0.7-12 ppb Te show external reproducibilities that generally range from 3% to 8% for Se and 0.4% to 11% for Te (two relative standard deviations (r.s.d.)). We have applied this method to a suite of refractory mantle peridotites (Al2O3 <1.5 wt.%) from Lherz, previously shown to be strongly and uniformly depleted in Se, Te and incompatible elements by high degree of partial melting (20 ± 5%). While some fertile lherzolites display broadly chondritic values (Se/Te = 9), the ultra-depleted harzburgites show highly fractionated Se/Te (up to 31), which correlate with the Te concentrations. The fractionation trend is displayed by the depleted peridotites and also observed within multiple analyses of a single Lherz harzburgitic sample (64-3) and altogether results from the very heterogeneous distribution of Te trace phases present in the aliquot analyzed. Our results are in agreement with experimental studies that predict a more incompatible behavior of Te compared to Se during incongruent partial melting of mantle sulfides. In addition to re-fertilized lherzolites, depleted harzburgites therefore provide new insights into the geochemical behavior of Se and Te in the Earth

  7. P/n/ velocity and cooling of the continental lithosphere. [upper mantle compression waves in North America

    NASA Technical Reports Server (NTRS)

    Black, P. R.; Braile, L. W.

    1982-01-01

    The average upper mantle compressional wave velocity and heat flow figures presently computed for continental physiographic provinces in North America exhibit an inverse relationship, and possess a statistically significant correlation coefficient. A correlation is also demonstrated between compressional wave velocity and material temperature by estimating crust-mantle boundary temperatures from heat flow values. The dependency of compressional wave velocity on temperature implies that the observed geographical distribution in upper mantle seismic velocity may be due to the temperature effect character of upper mantle compressional wave velocity variation.

  8. Evidence for an abrupt transition in the mantle-derived source to the Long Valley Caldera rhyolites after the climactic eruption: from subduction-modified lithosphere to asthenosphere

    NASA Astrophysics Data System (ADS)

    Waters, L.; Lange, R. A.

    2014-12-01

    Shortly after the climactic eruption of ~600 km3 of Bishop Tuff zoned rhyolitic magma, ~100 km3 of crystal-poor Early Rhyolite erupted inside Long Valley Caldera between ~750-650 ka as domes, glassy lavas, and tuffs (Hildreth, 2004). Despite similarities in bulk composition (e.g., 73-75 wt% SiO2; ~100 ppm Sr), there are marked differences between the Late (≥ 790°C) Bishop Tuff and postcaldera Early Rhyolites. Although crystal-poor (<5%), the Early Rhyolites are often saturated with 7-8 mineral phases (plag + opx + ilm + tmte + biotite + apatite + zircon ± pyrrhotite), but without the quartz, sanidine, and cpx additionally found in the more crystal-rich (12-24%) Late Bishop Tuff. Pre-eruptive temperatures, on the basis of two Fe-Ti oxides, range from 720-860°C, and ∆NNO values range from-0.4 to -0.9 (consistent with abundant ilmenite). Thus the Early Rhyolites record fO2 values that are nearly two orders of magnitude lower than those in the Late Bishop Tuff (∆NNO = +1; Hildreth and Wilson, 2007). Application of the plagioclase-liquid hygrometer to Early Rhyolites gives pre-eruptive water contents ≤ 4.4 wt% H2O. The phenocrysts in Early Rhyolite obsidians often display euhedral and/or diffusion-limited growth textures, suggesting degassing-induced crystallization during rapid ascent. Isotopic data from the literature (e.g., Simon et al., 2014 and references therein) show that Long Valley rhyolites were derived from both crustal and mantle sources. We hypothesize that the drop in fO2 between the Late Bishop Tuff and Early Rhyolites may reflect a transition in their respective mantle source, from subduction-modified lithosphere to asthenosphere. Such a time-progressive transition in the mantle source of erupted basalts is seen throughout the Great Basin, occurring earliest in its central region and more recently toward its western margin (e.g. Cousens et al., 2012). Although the geochemistry of Quaternary basalts erupted around Long Valley indicate a

  9. Tracking the Depleted Mantle Signature in Melt Inclusions and Residual Glass of Basaltic Martian Shergottites using Secondary Ionization Mass Spectrometry

    NASA Technical Reports Server (NTRS)

    Peters, Timothy J.; Simon, Justin I.; Jones, John H.; Usui, Tomohiro; Economos, Rita C.; Schmitt, Axel K.; McKeegan, Kevin D.

    2013-01-01

    Trace element abundances of depleted shergottite magmas recorded by olivine-hosted melt inclusions (MI) and interstitial mesostasis glass were measured using the Cameca ims-1270 ion microprobe. Two meteorites: Tissint, an olivine-­phyric basaltic shergottite which fell over Morocco July 18th 2001; and the Antarctic meteorite Yamato 980459 (Y98), an olivine-phyric basaltic shergottite with abundant glassy mesostasis have been studied. Chondrite-­normalized REE patterns for MI in Tissint and Y98 are characteristically LREE depleted and, within analytical uncertainty, parallel those of their respective whole rock composition; supporting each meteorite to represent a melt composition that has experienced closed-­system crystallization. REE profiles for mesostasis glass in Y98 lie about an order of magnitude higher than those from the MI; with REE profiles for Tissint MI falling in between. Y98 MI have the highest average Sm/Nd and Y/Ce ratios, reflecting their LREE depletion and further supporting Y98 as one of our best samples to probe the depleted shergotitte mantle. In general, Zr/Nb ratios overlap between Y98 and Tissint MI, Ce/Nb ratios overlap between Y98 MI and mesostasis glass, and Sm/Nd ratios overlap between Y98 mesostasis glass and Tissint MI. These features support similar sources for both, but with subtle geochemical differences that may reflect different melting conditions or fractionation paths during ascent from the mantle. Interestingly, the REE patterns for both Y98 bulk and MI analyses display a flattening of the LREE that suggests a crustal contribution to the Y98 parent melt. This observation has important implications for the origins of depleted and enriched shergottites.

  10. Melt-rock interactions, deformation, hydration and seismic properties in the sub-arc lithospheric mantle inferred from xenoliths from seamounts near Lihir, Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Soustelle, Vincent; Tommasi, Andréa; Demouchy, Sylvie; Franz, Leander

    2013-11-01

    This study analyses the interactions between deformation and reactive fluid and melt percolation, and their effects on sub-arc mantle seismic properties based on microstructural observations on mantle xenoliths extracted by the Tubaf and Edison seamounts close to the Lihir Island, in the Papua New Guinea archipelago. These xenoliths sample an oceanic lithosphere, which has experienced high-temperature deformation in the presence of fluids or melts. This was followed by metasomatism under static conditions. Syn-kinematic percolation of reactive Si-rich melts or fluids in peridotites has produced pyroxene-enrichment, grain size reduction, and dispersion of olivine crystal preferred orientation (CPO). Fourier transform infrared spectroscopy analyses show that olivine has very low water contents (1-4 wt. ppm H2O), similar to spinel peridotites from other subduction zones. These low values may record both low water solubility in olivine at low pressure and dehydration during transport and exhumation. Water contents in pyroxenes are highly variable and likely result from spatially heterogeneous melt or fluid percolation. Analysis of olivine CPO indicates dominant activation of both (010)[100] and (001)[100] slip systems, which are characteristic of deformation under high temperature, low stress, low pressure and low to moderate hydrous conditions. Fast S-wave polarization and P- and Rayleigh propagation directions are thus parallel to the mantle flow direction. The pyroxene enrichment by melt-rock reactions is accompanied by dispersion of olivine CPO and induces a significant decrease of the maximum S-wave and P-wave anisotropy in the peridotites. The calculated seismic properties also show that the lowest Vp/Vs ratios (< 1.7) mapped in fore-arc mantle may only be explained by taking in consideration the CPO-induced elastic anisotropy of the peridotites.

  11. Isotopic and trace element compositions of upper mantle and lower crustal xenoliths, Cima volcanic field, California: Implications for evolution of the subcontinental lithospheric mantle

    USGS Publications Warehouse

    Mukasa, S.B.; Wilshire, H.G.

    1997-01-01

    Ultramafic and mafic xenoliths from the Cima volcanic field, southern California, provide evidence of episodic modification of the upper mantle and underplating of the crust beneath a portion of the southern Basin and Range province. The upper mantle xenoliths include spinel peridotite and anhydrous and hydrous pyroxenite, some cut by igneous-textured pyroxenite-gabbro veins and dikes and some by veins of amphibole ?? plagioclase. Igneous-textured pyroxenites and gabbros like the dike rocks also occur abundantly as isolated xenoliths inferred to represent underplated crust. Mineral and whole rock trace element compositions among and within the different groups of xenoliths are highly variable, reflecting multiple processes that include magma-mantle wall rock reactions, episodic intrusion and it filtration of basaltic melts of varied sources into the mantle wall rock, and fractionation. Nd, Sr, and Pb isotopic compositions mostly of clinopyroxene and plagioclase mineral separates show distinct differences between mantle xenoliths (??Nd = -5.7 to +3.4; 87Sr/86Sr = 0.7051 - 0.7073; 206Pb/204Pb = 19.045 - 19.195) and the igneous-textured xenoliths (??Nd = +7.7 to +11.7; 87Sr/86Sr = 0.7027 - 0.7036 with one carbonate-affected outlier at 0.7054; and 206Pb/204Pb = 18.751 - 19.068), so that they cannot be related. The igneous-textured pyroxenites and gabbros are similar in their isotopic compositions to the host basaltic rocks, which have ??Nd of+5.1 to +9.3; 87Sr/86Sr of 0.7028 - 0.7050, and 206Pb/204Pb of 18.685 - 21.050. The igneous-textured pyroxenites and gabbros are therefore inferred to be related to the host rocks as earlier cogenetic intrusions in the mantle and in the lower crust. Two samples of peridotite, one modally metasomatized by amphibole and the other by plagioclase, have isotopic compositions intermediate between the igneous-textured xenoliths and the mantle rock, suggesting mixing, but also derivation of the metasomatizing magmas from two separate and

  12. Redox state of earth's upper mantle from kimberlitic ilmenites

    NASA Technical Reports Server (NTRS)

    Haggerty, S. E.; Tompkins, L. A.

    1983-01-01

    Temperatures and oxygen fugacities are reported on discrete ilmenite nodules in kimberlites from West Africa which demonstrate that the source region in the upper mantle is moderately oxidized, consistent with other nodule suites in kimberlites from southern Africa and the United States. A model is presented for a variety of tectonic settings, proposing that the upper mantle is profiled in redox potential, oxidized in the fertile asthenosphere but reduced in the depleted lithosphere.

  13. Water in Mantle Sources of Oceanic Basalts

    NASA Astrophysics Data System (ADS)

    Dixon, J. E.

    2006-12-01

    This talk will review estimates of water partitioning during subduction as determined by studies of mantle- derived melts. A major uncertainty in the earth's water cycle is the effect of subduction and recycling of hydrated lithosphere on deep mantle water concentrations. The problem with quantifying the variablility of mantle volatiles is that their concentrations are easily modified by shallow crystallization and degassing processes. Careful examination of volatile data from submarine basalts is required to select only those that have not degassed water. For example, even basalts collected deep on a submarine rift zone are not immune because basaltic volcanoes that have breached the sea surface are like champagne bottles; once the cork is popped, the entire bottle goes flat (e.g., Dixon et al., 1991). Once degassing effects have been eliminated, mantle water concentrations show systematic variations. Mantle sources for mid-ocean ridge basalts contain about 120 ppm water, with the most depleted MORB end-member having about 60 ppm. Source regions for mantle plumes are wetter than MORB sources. The wettest mantle is found in plumes dominated by the "common mantle plume component" (FOZO; 700 to 800 ppm H2O, H2O /Ce=210 to 300). Mantle sources for plumes enriched in recycled lithosphere (EM1, EM2, LOMU, and HIMU) have about half as much water (300 to 400 ppm H2O) and lower ratios of water to similarly incompatible elements (H2O/Ce<=100). High H2O /Ce in FOZO plumes cannot be derived from recycled lithosphere; therefore, a significant amount of water must be juvenile, left over from planetary accretion. Thus, dehydration during subduction effectively partitions water into the exosphere (mantle wedge, crust, ocean, atmosphere) resulting in time-integrated depletion of water relative to other incompatible elements in recycled (deeply subducted) lithosphere and sediments and, ultimately, the majority of the mantle. These results are consistent with a global water cycle

  14. Chalcophile and Siderophile Element Abundances in Kilbourne Hole Lherzolites: Distinguishing the Signature of Melt Depleted Primitive Mantle from Metasomatic Overprints

    NASA Astrophysics Data System (ADS)

    Harvey, J.; König, S.; Luguet, A.

    2013-12-01

    Selenium, tellurium and the highly siderophile elements in peridotites have the potential to illustrate planetary scale processes that are opaque to lithophile elements. However, the interpretation of chalcophile and siderophile element abundances relies heavily on the selection of representative mantle material and the determination of what processes have affected these elements since melt depletion. Whole rock and in-situ sulfide data demonstrate that chalcophile and HSE systematics of the upper mantle could be significantly modified through sulfide-metasomatism, particularly by C-O-H-S × Cl fluids[1] or sulfide melts[2] i.e., chalcophile and siderophile element abundances result from a complex interplay between sulfide addition and alteration of pre-existing sulfide. Here we present new bulk-rock S-Se-Te-PGE abundances on a suite (n = 17) of lherzolite and harzburgite xenoliths from Kilbourne Hole, USA[3, 4]. Mineral modal abundances, major element contents and LREE/HREE ratios for 10 of these xenoliths are consistent with varying degrees of melt depletion (≤ 20 %) whereas the remainder appear to have been affected by cryptic metasomatism, refertilization, or melt-rock interaction which affected lithophile element abundances [4]. While sulfur, Se and PGE budgets are primarily controlled by sulfides, 50 × 30% of Te in peridotite may be accounted for by Pt-Pd tellurides[5]. Although most Kilbourne Hole peridotite xenoliths have PGE characteristics consistent with varying degrees of melt depletion and somewhat scattered Se/Te ratios, KH96-24 has Pt-Pd-Te abundances consistent with Pt-Pd-telluride precipitation, in addition to petrographic evidence for alteration by secondary processes[4]. S/Se are well correlated within the suite. However, lherzolites that retain a strong melt-depletion signature have distinctly lower abundances of both S and Se (<65 ppm and <31 ppm respectively) compared to peridotites that have had their lithophile element budgets perturbed

  15. Sub-continental lithospheric mantle structure beneath the Adamawa plateau inferred from the petrology of ultramafic xenoliths from Ngaoundéré (Adamawa plateau, Cameroon, Central Africa)

    NASA Astrophysics Data System (ADS)

    Nkouandou, Oumarou F.; Bardintzeff, Jacques-Marie; Fagny, Aminatou M.

    2015-11-01

    Ultramafic xenoliths (lherzolite, harzburgite and olivine websterite) have been discovered in basanites close to Ngaoundéré in Adamawa plateau. Xenoliths exhibit protogranular texture (lherzolite and olivine websterite) or porphyroclastic texture (harzburgite). They are composed of olivine Fo89-90, orthopyroxene, clinopyroxene and spinel. According to geothermometers, lherzolites have been equilibrated at 880-1060 °C; equilibrium temperatures of harzburgite are rather higher (880-1160 °C), while those of olivine websterite are bracketed between 820 and 1010 °C. The corresponding pressures are 1.8-1.9 GPa, 0.8-1.0 GPa and 1.9-2.5 GPa, respectively, which suggests that xenoliths have been sampled respectively at depths of 59-63 km, 26-33 km and 63-83 km. Texture and chemical compositional variations of xenoliths with temperature, pressure and depth on regional scale may be ascribed to the complex history undergone by the sub-continental mantle beneath the Adamawa plateau during its evolution. This may involve a limited asthenosphere uprise, concomitantly with plastic deformation and partial melting due to adiabatic decompression processes. Chemical compositional heterogeneities are also proposed in the sub-continental lithospheric mantle under the Adamawa plateau, as previously suggested for the whole Cameroon Volcanic Line.

  16. Peridotites from a ductile shear zone within back-arc lithospheric mantle, southern Mariana Trench: Results of a Shinkai 6500 dive

    NASA Astrophysics Data System (ADS)

    Michibayashi, K.; Ohara, Y.; Stern, R. J.; Fryer, P.; Kimura, J.-I.; Tasaka, M.; Harigane, Y.; Ishii, T.

    2009-05-01

    Two N-S fault zones in the southern Mariana fore arc record at least 20 km of left-lateral displacement. We examined the eastward facing slope of one of the fault zones (the West Santa Rosa Bank fault) from 6469 to 5957 m water depth using the submersible Shinkai 6500 (YK06-12 Dive 973) as part of a cruise by the R/V Yokosuka in 2006. The dive recovered residual but still partly fertile lherzolite, residual lherzolite, and dunite; the samples show mylonitic, porphyroclastic, and coarse, moderately deformed secondary textures. Crystal-preferred orientations of olivine within the peridotites show a typical [100](010) pattern, with the fabric intensity decreasing from rocks with coarse secondary texture to mylonites. The sampled peridotites therefore represent a ductile shear zone within the lithospheric mantle of the overriding plate. Peridotites were probably exposed in association with a tear in the subducting slab, previously inferred from bathymetry and seismicity. Furthermore, although the dive site is located in the fore arc close to the Mariana Trench, spinel compositions within the sampled peridotites are comparable to those from the Mariana Trough back arc, suggesting that back-arc basin mantle is exposed along the West Santa Rosa Bank fault.

  17. Lithospheric 3D gravity modelling using upper-mantle density constraints: Towards a characterization of the crustal configuration in the North Patagonian Massif area, Argentina

    NASA Astrophysics Data System (ADS)

    Gómez Dacal, María Laura; Tocho, Claudia; Aragón, Eugenio; Sippel, Judith; Scheck-Wenderoth, Magdalena; Ponce, Alexis

    2017-03-01

    The North Patagonian Massif is an Argentinean plateau that has an average height of 1200 m and stands from 500 to 700 m above the neighboring areas. During Paleogene, it suffered a sudden uplift of more than 1200 m without noticeable internal deformation; thus, it could be related to isostatic disequilibrium. To shed light on the geodynamic development of the area it is necessary to characterize the present-day configuration of the crust. In this study, a lithospheric-scale 3D density model was developed by integrating all the available data of the area with the objective of assessing the depth of the crust-mantle discontinuity (Moho). During the construction of the initial density model, we tested different mantle density scenarios obtained using P- and S-wave velocities from tomographic models, converting them into densities and comparing the conversions with densities obtained from xenoliths. Below the North Patagonian Massif plateau, we have derived a Moho depth between 40 and 50 km which is from 2 to 7 km deeper than its surroundings. There is an evident correlation between high topography and deep Moho that would indicate isostatic equilibrium at present. The model results provide a new approach to the Moho depth in an area where there is no seismic constraining information about this discontinuity. In addition, we found a spatial correlation between the variation of the mean crustal density and the location of the Paleozoic terranes that were proposed to constitute the basement of Argentina.

  18. Origin of geochemical mantle components: Role of spreading ridges and thermal evolution of mantle

    NASA Astrophysics Data System (ADS)

    Kimura, Jun-Ichi; Gill, James B.; van Keken, Peter E.; Kawabata, Hiroshi; Skora, Susanne

    2017-02-01

    We explore the element redistribution at mid-ocean ridges (MOR) using a numerical model to evaluate the role of decompression melting of the mantle in Earth's geochemical cycle, with focus on the formation of the depleted mantle component. Our model uses a trace element mass balance based on an internally consistent thermodynamic-petrologic computation to explain the composition of MOR basalt (MORB) and residual peridotite. Model results for MORB-like basalts from 3.5 to 0 Ga indicate a high mantle potential temperature (Tp) of 1650-1500°C during 3.5-1.5 Ga before decreasing gradually to ˜1300°C today. The source mantle composition changed from primitive (PM) to depleted as Tp decreased, but this source mantle is variable with an early depleted reservoir (EDR) mantle periodically present. We examine a two-stage Sr-Nd-Hf-Pb isotopic evolution of mantle residues from melting of PM or EDR at MORs. At high-Tp (3.5-1.5 Ga), the MOR process formed extremely depleted DMM. This coincided with formation of the majority of the continental crust, the subcontinental lithospheric mantle, and the enriched mantle components formed at subduction zones and now found in OIB. During cooler mantle conditions (1.5-0 Ga), the MOR process formed most of the modern ocean basin DMM. Changes in the mode of mantle convection from vigorous deep mantle recharge before ˜1.5 Ga to less vigorous afterward is suggested to explain the thermochemical mantle evolution.

  19. New thermal and gravity models of the North American lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, M.; Kaban, M. K.; Cloetingh, S.; Mooney, W. D.

    2011-12-01

    We present a new thermal model for the North American lithosphere obtained from inversion of NA07 tomography model, following the method described in Cammarano et al. (2003). The advantage of using this seismic model is that it was calculated using an a priori crustal model, which minimizes trade-offs between the velocity structure in the crust and the upper mantle. We first estimate the mantle temperature distribution using a uniform composition and anelasticity model for the entire North American continent. The new results are in contrast with those obtained by previous studies based on interpretation of mantle xenoliths, predicting higher temperature and stronger thermal variability beneath the North American cratons. The reason of this disagreement might be related to the composition assumed and in particular to the iron depletion, characterizing the shallow mantle lithosphere of the cratons, which is neglected in this model. Furthermore, the comparison between the thermal model and the gravity mantle anomalies, which are obtained after removing the crustal effect from the observed gravity field, demonstrates that mantle density heterogeneity is controlled not only by temperature variations but also by compositional changes. We use the new thermal model to estimate the pure thermal component of the mantle gravity anomalies. In the next step we obtain the compositional component, subtracting the former field from the latter. The compositional gravity anomalies are used to estimate lateral and vertical compositional changes of the mantle lithosphere (e.g., percentage of iron depletion beneath the cratons), which are considered in the implementation of more robust thermal models.

  20. Water in the Lithospheric Mantle Beneath a Phanerozoic Continental Belt: FTIR Analyses of Alligator Lake Xenoliths (Yukon, Canada)

    NASA Technical Reports Server (NTRS)

    Gelber, McKensie; Peslier, Ann H.; Brandon, Alan D.

    2015-01-01

    Water in the mantle influences melting, metasomatism, viscosity and electrical conductivity. The Alligator Lake mantle xenolith suite is one of three bimodal peridotite suites from the northern Canadian Cordillera brought to the surface by alkali basalts, i.e., it consists of chemically distinct lherzolites and harzburgites. The lherzolites have equilibration temperatures about 50 C lower than the harzburgites and are thought to represent the fertile upper mantle of the region. The harzburgites might have come from slightly deeper in the mantle and/or be the result of a melting event above an asthenospheric upwelling detected as a seismic anomaly at 400-500 km depth. Major and trace element data are best interpreted as the lherzolite mantle having simultaneously experienced 20-25% partial melting and a metasomatic event to create the harzburgites. Well-characterized xenoliths are being analyzed for water by FTIR. Harzburgites contain 29-52 ppm H2O in orthopyroxene (opx) and (is) approximately140 ppm H2O in clinopyroxene (cpx). The lherzolites have H2O contents of 27-150 ppm in opx and 46-361 ppm in cpx. Despite correlating with enrichments in LREE, the water contents of the harzburgite pyroxenes are low relative to those of typical peridotite xenoliths, suggesting that the metasomatic agents were water-poor, contrarily to what has been suggested before. The water content of cpx is about double that of opx indicating equilibrium. Olivine water contents are low ((is) less than 5 ppm H2O) and out of equilibrium with those of opx and cpx, which may be due to H loss during xenolith ascent. This is consistent with olivines containing more water in their cores than their rims. Olivines exclusively exhibit water bands in the 3400-3000 cm-1 range, which may be indicative of a reduced environment.

  1. Primary differentiation in the early Earth: Nd and Sr isotopic evidence from diamondiferous eclogites for both old depleted and old enriched mantle, Yakutia, Siberia

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Jerde, Eric A.; Taylor, Lawrence A.; Halliday, Alex N.; Sobolev, Vladimir N.; Sobolev, Nickolai V.; Clayton, Robert N.; Mayeda, Toshiko K.; Deines, Peter

    1993-01-01

    Ancient, stable, continental cratons possess thick, subcontinental-lithospheric mantle 'keels' which favor particularly the emplacement of diamondiferous kimberlites and included peridotites and eclogites. These refractory mantle samples of the roots provide hard constraints on the theories of formation, growth, and evolution of these cratons. Xenoliths containing only primary garnet and clinopyroxene (eclogites), although rare in most kimberlites, can retain the geochemical signatures of their parent protoliths (e.g., subducted oceanic crust, ancient mantle) thus offering the opportunity to address mantle processes which may have taken place at earlier times in the Earth's history. In fact, it has been postulated that some eclogites are residues from the accretion of the early Earth. Nd and Sr isotopic data are presented which may be interpreted as evidence of an early (greater than 4 Ga) mantle differentiation event. The kimberlites of Yakutia are located both marginal and central to the Siberian craton, and a wide variety of xenoliths are present within them. The Siberian mantle samples have received little attention in the western world, largely because suitable suites of Yakutian samples have not been readily available. Importantly, there is evidence that metasomatism of the Siberian lithosphere has been considerably less intense or extensive than for the Kaapvaal craton. Therefore, it should be considerably easier to elicit the igneous/metamorphic histories of Siberian kimberlitic xenoliths. One of the notable features of the Siberian eclogites is the common appearance of diamonds, especially in the Mir and Udachnaya pipes. In all, eight eclogite samples (eight garnet separates and eight clinopyroxene separates) have been analyzed to date on the Udachnaya pipe, seven from our group.

  2. Lithosphere thickness and mantle viscosity estimated from joint inversion of GPS and GRACE-derived radial deformation and gravity rates in North America

    NASA Astrophysics Data System (ADS)

    Zhao, S.

    2013-09-01

    The Global Positioning System (GPS) and the Gravity Recovery and Climate Experiment (GRACE) have been used to respectively determine the Earth's surface deformation and gravity changes associated with glacial isostatic adjustment, which is caused by ongoing stress release of the viscoelastic mantle after removal of the Late Pleistocene ice sheets. Here we present a joint inversion analysis of GPS-derived radial (vertical) deformation and GRACE-derived gravity rates in North America to examine whether the ice sheets (ICE-3G and ICE-5G) and earth models can fit the satellite based observations. The results of joint inversion give an effective lithosphere thickness of 150 km (110-180 km under a statistical confidence level of 80 per cent), an upper-mantle viscosity of 3.7 (2.0-5.0; 90 per cent confidence level) × 1020 Pa s, and a lower-mantle viscosity of 1.9 (1.3-2.6; 90 per cent confidence level) × 1021 Pa s. More sophisticated models such as introducing a transition zone of 400-670 km are not fully resolved with current data sets because there is no significant improvement in fitting observations. Tests of modifying ICE-5G show that a reduction of ice thickness by ˜20 per cent in the area west of Hudson Bay and an increase by ˜40 per cent in the southeast (Quebec region) are required to fit both observed vertical deformation and gravity changes. An additional test from inversion analysis of GRACE-derived geoid rates confirms possible signal loss in the GRACE-derived gravity rates, which could be due to noise reduction methods used in data processing stages.

  3. Zircon U-Pb dating, geochemical and Sr-Nd-Hf isotopic characteristics of the Jintonghu monzonitic rocks in western Fujian Province, South China: Implication for Cretaceous crust-mantle interactions and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong; Lu, An-Huai; Zhao, Hai-Xiang; Yang, Tang-Li; Hou, Ming-Lan

    2016-09-01

    Comprehensive petrological, in situ zircon U-Pb dating, Ti-in-zircon temperature and Hf isotopic compositions, whole rock geochemical and Sr-Nd isotopic data are reported for the Jintonghu monzonitic intrusions in the western Fujian Province (Interior Cathaysia Block), South China. The Jintonghu monzonitic intrusions were intruded at 95-96 Ma. Their Sr-Nd-Hf isotopic compositions are similar to the coeval and nearby enriched lithospheric mantle-derived mafic and syenitic rocks, indicating that the Jintonghu monzonitic rocks were likely derived from partial melting of the enriched mantle sources. Their high Nb/Ta ratios (average 21.6) suggest that the metasomatically enriched mantle components were involved, which was attributed to the modification of slab-derived fluid and melt by the subduction of the paleo-Pacific Plate. The presence of mafic xenoliths, together with geochemical and isotopic features indicates a mafic-felsic magma mixing. Furthermore, the Jintonghu intrusions may have experienced orthopyroxene-, biotite- and plagioclase-dominated crystallization. Crust-mantle interaction can be identified as two stages, including that the Early Cretaceous mantle metasomatism and lithospheric extension resulted from the paleo-Pacific slab subduction coupled with slab rollback, and the Late Cretaceous crustal activation and enhanced extension induced by dip-angle subduction and the underplating of mantle-derived mafic magma.

  4. Quantitative constraints on the lithospheric mantle discontinuity structure in eastern Canada from joint analysis of receiver function and surface wave data

    NASA Astrophysics Data System (ADS)

    Bailey, I. W.; Miller, M. S.; Darbyshire, F. A.

    2011-12-01

    Previous work has suggested that the Archean craton of central and eastern Canada contains a number of relict slabs, frozen in and radiating out from the center. This observation has been used to suggest that the craton's existence is due to the formation and dying out of ancient (~2 Ga) subduction zones at the craton edges in progressive Wilson cycles, leaving a chemically depleted and buoyant slab after each stage. Miller & Eaton (2010) used teleseismic S receiver functions to image a deep (200-260 km) sharp lithosphere-asthenosphere boundary and a number of negative polarity shallower, mid-lithospheric discontinuities. However, noise in the data and insufficient sampling from only 8 seismic stations meant that the discontinuities could only be interpreted using comparisons with results based on surface wave and heat flow analyses. To better understand the discontinuity structure across central and eastern Canada, we utilise data from a combination of 32 permanent and temporary broadband stations including those from the HuBLE experiment. From this extended dataset we attempt to constrain evidence for the observed discontinuities more quantitatively by combining both P and S receiver functions with Rayleigh wave phase velocity data in Monte Carlo based joint inversions for shear wave velocity structure. The crustal thickness and velocity is initially constrained by results from active source experiments and stacking of receiver functions. Our Monte Carlo approach allows us to investigate uncertainty in the Vp, density and attenuation parameters on the inferred Vs result and discontinuities, allowing for better constraints on recently reported internal structure of continental lithosphere in both Canada and other cratonic regions.

  5. Subduction zone mantle enrichment by fluids and Zr-Hf-depleted crustal melts as indicated by backarc basalts of the Southern Volcanic Zone, Argentina

    NASA Astrophysics Data System (ADS)

    Holm, Paul M.; Søager, Nina; Alfastsen, Mads; Bertotto, Gustavo W.

    2016-10-01

    We aim to identify the components metasomatizing the mantle above the subducting Nazca plate under part of the Andean Southern Volcanic Zone (SVZ). We present new major and ICP-MS trace element and Sr, Nd and high-precision Pb isotope analyses of primitive olivine-phyric alkali basalts from the Northern Segment Volcanic Field, part of the Payenia province in the backarc of the Transitional SVZ. One new 40Ar-39Ar age determination confirms the Late Pleistocene age of this most northerly part of the province. All analysed rocks have typical subduction zone type incompatible element enrichment, and the rocks of the Northern Segment, together with the neighbouring Nevado Volcanic Field, have isotopic compositions intermediate between adjacent Transitional SVZ arc rocks and southern Payenia OIB-type basaltic rocks. Modelling the Ba-Th-Sm variation we demonstrate that fluids as well as 1-2% melts of upper continental crust (UCC) enriched their mantle sources, and La-Nb-Sm variations additionally indicate that the pre-metasomatic sources ranged from strongly depleted to undepleted mantle. Low Eu/Eu* and Sr/Nd also show evidence for a UCC component in the source. The contribution of Chile Trench sediments to the magmas seems insignificant. The Zr/Sm and Hf/Sm ratios are relatively low in many of the Northern Segment rocks, ranging down to 17 and 0.45, respectively, which, together with relatively high Th/U, is argued to indicate that the metasomatizing crustal melts were derived by partial melting of subducted UCC that had residual zircon, in contrast to the UCC melts added to Transitional SVZ arc magmas. Mixing between depleted and undepleted mantle, enriched by UCC and fluids, is suggested by Sr, Nd and Pb isotopes of the Northern Segment and Nevado magmas. The metasomatized undepleted mantle south of the Northern Segment is suggested to be part of upwelling OIB-type mantle, whereas the pre-metasomatically depleted mantle also can be found as a component in some arc

  6. Teleseismic P wave tomography of South Island, New Zealand upper mantle: Evidence of subduction of Pacific lithosphere since 45 Ma

    NASA Astrophysics Data System (ADS)

    Zietlow, Daniel W.; Molnar, Peter H.; Sheehan, Anne F.

    2016-06-01

    A P wave speed tomogram produced from teleseismic travel time measurements made on and offshore the South Island of New Zealand shows a nearly vertical zone with wave speeds that are 4.5% higher than the background average reaching to depths of approximately 450 km under the northwestern region of the island. This structure is consistent with oblique west-southwest subduction of Pacific lithosphere since about 45 Ma, when subduction beneath the region began. The high-speed zone reaches about 200-300 km below the depths of the deepest intermediate-depth earthquakes (subcrustal to ~200 km) and therefore suggests that ~200-300 km of slab below them is required to produce sufficient weight to induce the intermediate-depth seismicity. In the southwestern South Island, high P wave speeds indicate subduction of the Australian plate at the Puysegur Trench to approximately 200 km depth. A band with speeds ~2-3.5% lower than the background average is found along the east coast of the South Island to depths of ~150-200 km and underlies Miocene or younger volcanism; these low speeds are consistent with thinned lithosphere. A core of high speeds under the Southern Alps associated with a convergent margin and mountain building imaged in previous investigations is not well resolved in this study. This could suggest that such high speeds are limited in both width and depth and not resolvable by our data.

  7. Water in the lithospheric mantle beneath a Phanerozoic continental belt: FTIR analyses of Alligator Lake Xenoliths (Yukon, Canada)

    NASA Astrophysics Data System (ADS)

    Gelber, M.; Peslier, A. H.; Brandon, A. D.

    2015-12-01

    Water in the mantle influences melting, metasomatism, viscosity and electrical conductivity. The Alligator Lake mantle xenolith suite is one of three bimodal peridotite suites from the northern Canadian Cordillera brought to the surface by alkali basalts, i.e., it consists of chemically distinct lherzolites and harzburgites [1-2]. The lherzolites have equilibration temperatures about 50 °C lower than the harzburgites and are thought to represent the fertile upper mantle of the region. The harzburgites might have come from slightly deeper in the mantle and/or be the result of a melting event above an asthenospheric upwelling detected as a seismic anomaly at 400-500 km depth [3]. Major and trace element data are best interpreted as the lherzolite mantle having simultaneously experienced 20-25% partial melting and a metasomatic event to create the harzburgites [3]. Well-characterized xenoliths are being analyzed for water by FTIR. Harzburgites contain 29-52 ppm H2O in orthopyroxene (opx) and ~140 ppm H2O in clinopyroxene (cpx). The lherzolites have H2O contents of 27-150 ppm in opx and 46-361 ppm in cpx. Despite correlating with enrichments in LREE, the water contents of the harzburgite pyroxenes are low relative to those of typical peridotite xenoliths [4], suggesting that the metasomatic agents were water-poor, contrarily to what has been suggested before [3]. The water content of cpx is about double that of opx indicating equilibrium. Olivine water contents are low (< 5 ppm H2O) and out of equilibrium with those of opx and cpx, which may be due to H loss during xenolith ascent. This is consistent with olivines containing more water in their cores than their rims. Olivines exclusively exhibit water bands in the 3400-3000 cm-1 range, which may be indicative of a reduced environment [5]. [1] Francis. 1987 JP 28, 569-97. [2] Eiche et al. 1987 CMP 95, 191-201. [3] Shi et al. 1997 CMP 131, 39-53. [4] Peslier et al. 2015 GGG 154, 98-117. [5] Bai et al. 1993 PCM 19, 460-71.

  8. Lithospheric processes

    SciTech Connect

    Baldridge, W.S.; Wohletz, K.; Fehler, M.C.

    1997-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The main objective was to improve understanding of the origin and evolution of the Earth`s lithosphere by studying selected processes, such as deformation and magmatic intrusion during crustal extension, formation and extraction of mantle melts, fluid transport of heat and mass, and surface processes that respond to deep-seated events. Additional objectives were to promote and develop innovative techniques and to support relevant educational endeavors. Seismic studies suggest that underplating of crust by mantle melts is an important crustal-growth mechanism, that low-angle faults can be seismogenic, and that shear deformation creates mantle anisotropy near plate boundaries. Results of geochemical work determined that magmas from oceanic intraplate islands are derived from a uniform depth in the upper mantle, whereas melts erupted at mid-ocean ridges are mixed from a range of depths. The authors have determined the extent and style of fluid infiltration and trace-element distribution in natural magmatic systems, and, finally, investigated {sup 21}Ne as a tool for dating of surficial materials.

  9. Evolution of the depleted mantle and growth of the continental crust: An early beginning or a slow start?

    NASA Astrophysics Data System (ADS)

    Vervoort, Jeff

    2014-05-01

    A fundamental principle of the geochemical evolution of the Earth holds that continental crust formed by extraction of melts from the mantle leaving part of the mantle depleted in incompatible elements. Nd and Hf isotopes have long been used to show that this process has been an essential feature of the Earth throughout its history, but the details of the record—and its implications for for addressing questions of the mechanisms, timing, and volumes of crustal production—remain hotly debated, particularly for the early Earth. One reason for the uncertainty in the isotopic record is a paucity of Archean rocks > 3.5 Ga and the ones that have survived often have had complex geologic histories, resulting in either compromised isotopic systematics and/or complicated mixtures of components with different ages and isotopic compositions. To address these potential complexities two approaches have been used to constrain the isotopic record: 1) Nd and Hf isotopic compositions of least altered rocks with well-constrained crystallization ages; and 2) Hf isotope composition of zircons in both magmatic rocks and in clastic sediments. The latter approach has found great utility by virtue of coupling U-Pb age constraints with Lu-Hf tracer isotopic information. A further advantage of the integrated U-Pb and Hf approach has been to examine zircons bereft of their corresponding whole rock. This has allowed the extension of the Hf isotopic record to the Hadean by examining detrital zircons from places like the Jack Hills. One unintended consequence of two different (Nd, Hf) approaches has been the creation of isotopic records not in agreement with each other, resulting in different interpretations. The Nd isotopic record, based solely on whole-rock analyses, shows evidence for the development of a depleted mantle signature in the oldest mantle-derived rocks. These data appear to correlate with positive 142 Nd anomalies, consistent with very early development of depleted and

  10. Dynamic evolution of continental and oceanic lithosphere in global mantle convection model with plate-like tectonics and one sided subduction.

    NASA Astrophysics Data System (ADS)

    Ulvrova, Martina; Coltice, Nicolas; Tackley, Paul

    2015-04-01

    Drifting of continents, spreading of the seafloor and subduction at convergent boundaries shape the surface of the Earth. On the timescales of several hundreds of millions of years, divergent boundaries at mid-ocean ridges are created and destroyed in within the Wilson cycle. This controls the evolution of the Earth as it determines the heat loss out. Presence of floating continents facilitates the Earth-like mobile lid style of convection as convective stresses are concentrated on the rheological boundary between oceanic and continental lithosphere. Subducting slabs allow for the surface material to be buried down into the mantle and have an important effect on surface tectonics. The main feature of the subduction zones observed on Earth is that it is single-sided forming the deep trenches. Recently, different numerical models were successful in reproducing one-sided subduction by allowing for the vertical deformation of the Earth surface (Crameri and Tackley 2014). In the meantime, advances were made in modelling continental break-up and formation (Rolf et al. 2014). In this study we perform numerical simulations of global mantle convection in spherical annulus geometry with strongly depth and temperature dependent rheology using StagYY code (Tackley 2008). In these models plate tectonics is generated self-consistently and features one-sided subduction on ocean-ocean plate boundary as well as floating continents. We focus on determining (1) the influence of one-sided subduction on the dynamics of the system (2) formation and breakup of continents. Rerefences: Crameri, F. and P. J. Tackley, Spontaneous development of arcuate single-sided subduction in global 3-D mantle convection models with a free surface, J. Geophys. Res., 119(7), 5921-5942, 2014. Rolf, T., N. Coltice and P. J. Tackley (2014), Statistical cyclicity of the supercontinent cycle, Geophys. Res. Lett. 41, 2014. Tackley, P. J., Modellng compressible mantle convection with large viscosity contrasts in

  11. Cretaceous potassic intrusives with affinities to aillikites from Jharia area: Magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum Craton, Eastern India

    NASA Astrophysics Data System (ADS)

    Srivastava, Rajesh K.; Chalapathi Rao, N. V.; Sinha, Anup K.

    2009-11-01

    Cretaceous potassic dykes and sills at the Jharia area intrude the Permo-carboniferous coal-bearing Gondwana sediments of the Eastern Damodar Valley, Singhbhum craton. These intrusives are widely regarded as a part of the Mesozoic alkaline and Rajmahal flood basalt magmatism in the Eastern Indian shield. Jharia intrusives display a wide petrographic diversity; olivine, phlogopite and carbonate are the predominant phases whereas apatite and rutile constitute important accessories. Impoverishment in sodium, silica and alumina and enrichment in potassium, titanium and phosphorous are the hallmark of these rocks and in this aspect they are strikingly similar to the rift-related aillikites (ultramafic lamprophyres) of Aillik Bay, Labrador. Crustal contamination of the Jharia magmas is minimal and the incompatible trace element ratios demonstrate (i) their generation by greater degrees of partial melting of a sub-continental lithospheric mantle (SCLM) source similar to that of the kimberlites of Dharwar craton, southern India, and (ii) retention of long-term memories of ancient (Archaean) subduction experienced by their source regions. We infer that a metasomatically veined and thinned lithosphere located at the margin of the Singhbhum craton and the inheritance of an ancient (Archaean) subducted component has played a significant role in deciding the diverging petrological and geochemical characters displayed by the Jharia potassic intrusives: those of kimberlites (orangeites) and lamproites (cratonic signature) and those of aillikites (rift-related signature). A substantial melt component of Jharia potassic intrusives was derived from the SCLM and the melt contribution of the Kerguelen plume is inferred to be minimal.

  12. Geochemical constraints on the origin of serpentinization of oceanic mantle

    NASA Astrophysics Data System (ADS)

    Li, Z.; Lee, C. A.

    2004-12-01

    The lower seismic zone of double seismic zones in subducting oceanic lithosphere is suggested to be a result of serpentine or chlorite dehydration in the lithospheric mantle (Hacker et al., 2003). However, the mechanism by which oceanic lithospheric mantle is serpentinized is unclear. One way is through hydrothermal circulation where the lithospheric mantle represents part of the circuit through which seawater passes and then returns to the ocean. Another way is to inject seawater into the lithospheric mantle through fractures in the overlying crust without having a return path of water to the ocean. The two mechanisms differ in that the former is an open system process whereas the latter is a closed system process in which the mantle serves as a ¡°sponge¡± for water. Identifying the dominant process is important. For example, if the mantle is part of a hydrothermal circulation cell, the interaction of seawater with the mantle will influence the composition of seawater. This also has important implications for the heat flow out of seafloor. On the other hand, if serpentinization occurs by a closed system process, there will be no influence on seawater composition. Previous studies have suggested that serpentinization of ophiolite bodies was an isochemical process, hence closed system, but it was not clear in these studies whether serpentinization occurred in situ in the oceanic lithosphere. To better understand serpentinization processes in the oceanic lithosphere, we investigated a continuous transition zone of relatively unaltered harzburgite to completely serpentinized harzburgite in the Feather River Ophiolite in northern California. These samples are highly enriched in Na, K, Rb, Cs, U, and Sr, which strongly suggests that serpentinization occurred while the oceanic lithosphere was beneath the ocean. All samples (n=19) have Al2O3 contents ranging from 0.6 to 2.5 wt.% and have extremely depleted light rare-earth element abundances, indicating that these

  13. 187Os/188Os in Spinel Peridotites from Borée, Massif Central, France: Seeing through the Effects of Melt Infiltration in the Sub-continental Lithospheric Mantle

    NASA Astrophysics Data System (ADS)

    Barnett, C. J.; Harvey, J.

    2015-12-01

    The Re-Os isotope system can be used to model the timing of melt extraction in peridotites, although secondary metasomatic processes can obscure primary melt depletion signatures, implying that bulk-rock Os model ages should be treated with caution.1Spinel peridotites from the volcanic Maar de Borée (French Massif Central) have equigranular to protogranular and occasionally poikilitic textures. Their bulk-rock chemistry are consistent with moderate degrees of partial melting, but elevated incompatible trace element ratios (e.g. La/YbN) are indicative of subsequent secondary processes. Petrographic observation reveals no infiltration of host basalt, but melt infiltration unrelated to the host basalt has occurred, most likely within the sub-continental lithospheric mantle prior to entrainment as xenoliths. The peridotites have a mean [Os] concentration of 2.35 ng g-1 and 187Os/188Os values from 0.12081 ± 16 to 0.12639 ± 14 (cf. PUM = 0.1296 ± 00082), with rhenium depletion model ages (TRD) ranging from 0.48 to 1.30 Ga. Silicate melt contains up to 2 orders of magnitude less Os than peridotites3 but the 187Os/188Os of melt infiltrated peridotite can be skewed by the precipitation of immiscible sulfide when an infiltrating melt reaches S-saturation4. The Borée peridotites retain an unradiogenic Os-isotope signature despite silicate melt infiltration; this may be due to primary base metal sulfides enclosed in silicate minerals and therefore protected from interaction with infiltrating melts. TRD of enclosed sulphides should therefore be able to 'see through' any secondary metasomatic events and reveal melt depletion ages significantly older than those obtained from bulk-rock analyses (cf. 4). 1. Rudnick & Walker (2009) Lithos 112S, 1083-1095. 2. Meisel et al. (2001) Geochim Cosmochim Ac 65, 1311-1323. 3. Day, J.M.D. (2013) Chem Geol 341, 50-74. 4. Harvey et al. (2010) Geochim Cosmochim Acta 74, 293-320.

  14. Oxo-amphiboles in mantle xenoliths: evidence for H2O-rich melt interacting with the lithospheric mantle of Harrow Peaks (Northern Victoria Land, Antarctica)

    NASA Astrophysics Data System (ADS)

    Gentili, S.; Bonadiman, C.; Biagioni, C.; Comodi, P.; Coltorti, M.; Zucchini, A.; Ottolini, L.

    2015-12-01

    Amphiboles are the most widespread hydrous metasomatic phases in spinel-bearing mantle peridotites from Harrow Peaks (HP), Northern Victoria Land (Antarctica). They occur both in veinlets and disseminated in the peridotite matrix (preferentially associated with clinopyroxene and spinel grains). Four amphibole crystals were investigated by single-crystal X-ray diffraction (SC-XRD), electron microprobe analysis (EMPA), secondary ion mass spectrometry (SIMS) and micro-Mössbauer spectroscopy; these crystal-chemical data allow to constrain upper mantle conditions during growth of these amphiboles and the role of volatile circulation during metasomatic processes in the Antarctic region. The HP amphiboles have low Mg# values (69.3-84.1), high TiO2 (2.74-5.30 wt%) and FeOtot contents (3.40 to 6.90 wt%). The Fe3+/Fetot ratios are significantly high (0.53-0.66). The W-site is mainly occupied by O2- (0.984-1.187 apfu) plus OH (H2O: 0.70-1.01 wt%) and minor F (0.04-0.24 wt%) and Cl (0.03-0.08 wt%). Consequently, HP amphiboles are actually characterized by a significant oxo component. The aH2O values were calculated at 1.5 GPa by dehydration equilibrium equations written as H2O-buffering equilibria among end-member components of amphibole and coexisting peridotite phases. Three out of four HP amphibole-bearing peridotites have values of aH2O ranging from 0.122 to 0.335; whereas one sample has aH2O remarkably higher (0.782) approaching an ideal H2O basalt solubility. The HP fO2 values, determined by the olivine-spinel-orthopyroxene oxygeobarometer (ΔQFM = -1.77 : +0.01), are remarkably different from those calculated on the basis of the amphibole dehydration equilibrium and the application of the dissociation reaction (ΔQFM = -2.60 : +6.8). The high aH2O and the extremely high fO2 values, determined by the oxy-amphibole equilibrium with respect to the redox conditions recorded by the co-existing anhydrous minerals (close to QFM buffer), revealed that: i) the amphibole

  15. Geochemical evidence for pre- and syn-rifting lithospheric foundering in the East African Rift System

    NASA Astrophysics Data System (ADS)

    Nelson, W. R.; Furman, T.; Elkins-Tanton, L. T.

    2015-12-01

    The East African Rift System (EARS) is the archetypal active continental rift. The rift branches cut through the elevated Ethiopian and Kenyan domes and are accompanied by a >40 Myr volcanic record. This record is often used to understand changing mantle dynamics, but this approach is complicated by the diversity of spatio-temporally constrained, geochemically unique volcanic provinces. Various sources have been invoked to explain the geochemical variability across the EARS (e.g. mantle plume(s), both enriched and depleted mantle, metasomatized or pyroxenitic lithosphere, continental crust). Mantle contributions are often assessed assuming adiabatic melting of mostly peridotitic material due to extension or an upwelling thermal plume. However, metasomatized lithospheric mantle does not behave like fertile or depleted peridotite mantle, so this model must be modified. Metasomatic lithologies (e.g. pyroxenite) are unstable compared to neighboring peridotite and can founder into the underlying asthenosphere via ductile dripping. As such a drip descends, the easily fusible metasomatized lithospheric mantle heats conductively and melts at increasing T and P; the subsequent volcanic products in turn record this drip magmatism. We re-evaluated existing data of major mafic volcanic episodes throughout the EARS to investigate potential evidence for lithospheric drip foundering that may be an essential part of the rifting process. The data demonstrate clearly that lithospheric drip melting played an important role in pre-flood basalt volcanism in Turkana (>35 Ma), high-Ti "mantle plume-derived" flood basalts and picrites (HT2) from NW Ethiopia (~30 Ma), Miocene shield volcanism on the E Ethiopian Plateau and in Turkana (22-26 Ma), and Quaternary volcanism in Virunga (Western Rift) and Chyulu Hills (Eastern Rift). In contrast, there is no evidence for drip melting in "lithosphere-derived" flood basalts (LT) from NW Ethiopia, Miocene volcanism in S Ethiopia, or Quaternary

  16. Osmium isotope compositions of detrital Os-rich alloys from the Rhine River provide evidence for a global late Mesoproterozoic mantle depletion event

    NASA Astrophysics Data System (ADS)

    Dijkstra, Arjan H.; Dale, Christopher W.; Oberthür, Thomas; Nowell, Geoffrey M.; Graham Pearson, D.

    2016-10-01

    We report osmium isotopic compositions for 297 mantle-derived detrital Ru-Os-Ir alloy grains found in gold and platinum-group mineral bearing placers of the Rhine River. These alloys were likely formed as a result of high degree melting in the convective mantle and derived from residual Paleozoic mantle peridotites in the Alps of Central Europe that were accreted as part of a collage of Gondwana-derived 'Armorican' terranes before the Variscan Orogeny. The 187Os/188Os isotope ratios of the Os-rich alloys show a wide distribution, with two modes at 0.1244 and 0.1205. These two modes correspond to rhenium depletion ages, interpreted to correspond with episodes of high-degree mantle melting, at ∼0.5 and ∼1.1 Ga. The data confirm the ability of the oceanic mantle to preserve evidence of ancient melting events. Our new data, in combination with published data on Os-rich alloys from the Urals and Tasmania and with data for abyssal peridotites, indicate a geographically widespread record of a major global Late Mesoproterozoic (1.0-1.2 Ga) high-degree melting event in Paleozoic oceanic mantle rocks. This model age peak is essentially absent from the crustal record of Central-Western Europe, but does coincide with the apparent peak in global continental crust zircon ages at this time. Thus, high-degree mantle melting peaking in the 1.0-1.2 Ga interval may have affected a large part of Earth's mantle. This interval occurred during a period of relative super-continental stability, which may have been accompanied in the oceanic realm by rapid seafloor spreading and extensive subduction, and by unusually high activity of mantle plumes forming two active mantle superswells.

  17. Sr-Nd-Pb isotopic systematics of crustal rocks from the western Betics (S. Spain): Implications for crustal recycling in the lithospheric mantle beneath the westernmost Mediterranean

    NASA Astrophysics Data System (ADS)

    Varas-Reus, María Isabel; Garrido, Carlos J.; Marchesi, Claudio; Bosch, Delphine; Acosta-Vigil, Antonio; Hidas, Károly; Barich, Amel; Booth-Rea, Guillermo

    2017-04-01

    We present new Sr-Nd-Pb isotope data of the western Alpujárride metamorphic basement and the pre-Miocene Flysch sediments of the Betic Cordillera (southern Spain). Nd model ages are consistent with an increasing detrital input from the Alborán domain to the Flysch Trough in the western Mediterranean during the late Oligocene. The Alpujárride metamorphic crustal rocks derived from Archean-Paleoproterozoic terranes located along the northern margin of Gondwana in the Neoproterozoic. The heterogeneous isotopic signatures of the Alpujárride units indicate that they have different sedimentary protoliths and underwent contrasted Variscan and pre-Variscan tectono-magmatic evolutions. Melts/fluids derived from the western Alpujárride gneisses contaminated the mantle source of the Ronda high-Mg pyroxenite dykes, implying that the Alpujárride lower crust underthrusted the subcontinental lithospheric mantle of the Alborán domain generating subduction-like magmatism in the late Oligocene. The western Alpujárride upper crust is involved in the Neogene volcanism of the Alborán Sea basin, but only contaminated some LREE-enriched calc-alkaline lavas erupted along the continental margins. On the other hand, tholeiitic lavas in the center of the basin show no isotopic evidence of crustal assimilation. This indicates that most of the crust in the central Alborán Sea accreted by Miocene tholeiitic magmatism and that Alpujárride lower crust is absent and likely foundered close to the continental margins of the basin.

  18. The lithosphere-asthenosphere and crust-mantle boundaries in the region of the Upper Rhine Graben as seen by S-wave receiver functions

    NASA Astrophysics Data System (ADS)

    Ritter, J. R. R.; Seiberlich, C.; Wawerzinek, B.

    2012-04-01

    The Upper Rhine Graben is a branch of the European Cenozoic Rift System and is characterised by a clear rift structure which stretches more than 300 km from Basel to Frankfurt. Since 2004 we study the deep structure of the Upper Rhine Graben within the TIMO project, using the mobile seismic broadband stations of the KArlsruhe BroadBand Array (KABBA). The data are complemented with recordings from permanent stations (BFO, ECH, STU, TNS and WLF). Here we present the results from shear wave receiver function (S-RF) modelling. S-RF are waveforms which should contain only S-to-P converted phases which were generated at seismic discontinuities inside the Earth. The stacked S-RF contain clear signals from the crust-mantle boundary (Moho) under the study region. After a depth migration the Moho topography varies between 25 km and 28 km underneath the Upper Rhine Graben region; within the error limits of 5 km there is no difference between the graben itself and its shoulders. In the southern part of the graben there is an indication for a thinning of the crust to about 23 km. After the Moho signals there is a second phase with opposite polarity in the S-RF. We interpret this signal as conversion from the lithosphere-asthenosphere boundary (LAB). A depth migration results in LAB depths of 70-80 km under the Upper Rhine Graben; the graben itself does not show a specific anomaly. The most shallow LAB depths are found in the region of the Eifel (about 60 km), where a small mantle plume is active.

  19. Interaction of extended mantle plume head with ancient lithosphere: evidence from deep-seated xenoliths in basalts and lamprophyre diatremes in Western Syria

    NASA Astrophysics Data System (ADS)

    Sharkov, Evgenii

    2016-04-01

    . Formation of clinopyroxene-hornblende rocks (analogs of the "black series" of mantle xenoliths in basalt) occurred at close P-T parameters: 12.6 kbar, 1100°C. Judging from the absence of deformations in the rocks, their parental melts were intruded into the stabilized lower crust. Hence, it follows that the ancient continental lower crust existed there in the mid-Cretaceous, but in the Late Cenozoic it was replaced by the spreading mantle plume head. In other words, the deep structure of the region was reconstructed radically in the Late Cenozoic, and only the uppermost horizon of the ancient lithosphere (sialic crust) was not changed. According to the geological and petrological data, the heads of mantle plumes reached the base of the upper sialic crust, and the level of the lower crust of the continents (30-40 km) is optimal for abundant adiabatic melting of the mantle plume head. If this level was not reached, melting was limited, and an excess of volatile components appeared, which resulted in the formation of lamprophyric and even kimberlitic diatremes. The work was supported by grant RFBR # 14-05-00468 and Project of ONZ RAS # 8.

  20. Continental crust subducted deeply into lithospheric mantle: the driving force of Early Carboniferous magmatism in the Variscan collisional orogen (Bohemian Massif)

    NASA Astrophysics Data System (ADS)

    Janoušek, Vojtěch; Schulmann, Karel; Lexa, Ondrej; Holub, František; Franěk, Jan; Vrána, Stanislav

    2014-05-01

    relamination mechanisms. The presence of refractory light material rich in radioactive elements under the denser upper plate would eventually result in gravity-driven overturns in the thickened crust. The contaminated lithospheric mantle domains yielded, soon thereafter, ultrapotassic magmas whose major- and compatible-trace element signatures point to equilibration with the mantle peridotite, while their LILE contents and radiogenic isotope signatures are reminiscent of the subducted continental crust. This research was financially supported by the GAČR Project P210-11-2358 (to VJ) and Ministry of Education of the Czech Republic program LK11202 (to KS). Becker, H. 1996. Journal of Petrology 37, 785-810. Kotková, J. et al. 2011. Geology 39, 667-670. Massonne, H.-J. 2001. European Journal of Mineralogy 13, 565-570. Naemura, K. et al. 2009. Journal of Petrolology 50, 1795-1827. Schulmann, K., et al., 2014. Geology, in print. Vrána, S. 2013. Journal of Geosciences 58, 347-378. Zheng, Y. F. 2012. Chemical Geology 328, 5-48.

  1. Thermal thickness and evolution of Precambrian lithosphere: A global study

    USGS Publications Warehouse

    Artemieva, I.M.; Mooney, W.D.

    2001-01-01

    The thermal thickness of Precambrian lithosphere is modeled and compared with estimates from seismic tomography and xenolith data. We use the steady state thermal conductivity equation with the same geothermal constraints for all of the Precambrian cratons (except Antarctica) to calculate the temperature distribution in the stable continental lithosphere. The modeling is based on the global compilation of heat flow data by Pollack et al. [1993] and more recent data. The depth distribution of heat-producing elements is estimated using regional models for ???300 blocks with sizes varying from 1?? ?? 1?? to about 5?? ?? 5?? in latitude and longitude and is constrained by laboratory, seismic and petrologic data and, where applicable, empirical heat flow/heat production relationships. Maps of the lateral temperature distribution at depths 50, 100, and 150 km are presented for all continents except Antarctica. The thermal thickness of the lithosphere is calculated assuming a conductive layer overlying the mantle with an adiabat of 1300??C. The Archean and early Proterozoic lithosphere is found to have two typical thicknesses, 200-220 km and 300-350 km. In general, thin (???220 km) roots are found for Archean and early Proterozoic cratons in the Southern Hemisphere (South Africa, Western Australia, South America, and India) and thicker (>300 km) roots are found in the Northern Hemisphere (Baltic Shield, Siberian Platform, West Africa, and possibly the Canadian Shield). We find that the thickness of continental lithosphere generally decreases with age from >200 km beneath Archean cratons to intermediate values of 200 ?? 50 km in early Proterozoic lithosphere, to about 140 ?? 50 km in middle and late Proterozoic cratons. Using known crustal thickness, our calculated geotherms, and assuming that isostatic balance is achieved at the base of the lithosphere, we find that Archean and early Proterozoic mantle lithosphere is 1.5% less dense (chemically depleted) than the

  2. The fate of sulfide during decompression melting of peridotite - implications for sulfur inventory of the MORB-source depleted upper mantle

    NASA Astrophysics Data System (ADS)

    Ding, Shuo; Dasgupta, Rajdeep

    2017-02-01

    Magmatism at mid ocean ridges is one of the main pathways of S outflux from deep Earth to the surface reservoirs and is a critical step in the global sulfur cycle, yet our understanding of the behavior of sulfide during decompression melting of the upper mantle is incomplete. In order to constrain the sulfur budget of the mantle and reconcile the sulfur and chalcophile element budget of mantle partial melts parental to primitive mid-ocean ridge basalts (MORBs), here we developed a model to describe the behavior of sulfide and Cu during decompression melting by combining the pMELTS thermodynamic model and empirical sulfur contents at sulfide concentration (SCSS) models, taking into account the effect of the presence of Ni and Cu in sulfides on SCSS of mantle-derived melts. Calculation of SCSS along melting adiabat at mantle potential temperature of 1380 °C with variable initial S content in the mantle indicates that the complete consumption or partial survival of sulfide in the melting residue depends on initial S content and degree of melting. Primitive MORBs (Mg# > 60) with S and Cu mostly concentrated in 800-1000 ppm and 80-120 ppm are likely mixture of sulfide undersaturated high degree melts and sulfide saturated low degree melts derived from depleted peridotite containing 100-200 ppm S. Model calculations to capture the effects of variable mantle potential temperatures (1280-1420 °C) indicate that for a given abundance of sulfide in the mantle, hotter mantle consumes sulfide more efficiently than colder mantle owing to the effect of temperature in enhancing sulfide solubility in silicate melt, and higher mantle temperature stabilizing partial melt with higher FeO* and lower SiO2 and Al2O3, all of which generally enhance sulfide solubility. However, sulfide can still be exhausted by ∼ 10- 15% melting with bulk S of 100-150 ppm in the mantle when TP is as low as 1300 °C. We also show that although variation of DCuperidotite/ melt and initial Cu in the

  3. Siderophile Element Depletion in the Angrite Parent Body (APB) Mantle: Due to Core Formation?

    NASA Technical Reports Server (NTRS)

    Righter, K.

    2008-01-01

    The origin of angrites has evaded scientists due in part to unusual mineralogy, oxidized character, and small numbers of samples. Increased interest in the origin of angrites has stemmed from the recovery of approximately 10 new angrites in the past decade. These new samples have allowed meteoriticists to recognize that angrites are compositionally diverse, old, and record very early differentiation. Also, a magma ocean has been proposed to have been involved in APB early differentiation, but this remains untested for siderophile elements which are commonly cited as one of the main lines of evidence for magma oceans on the early Earth, Moon, Mars and eucrite parent body (e.g., [6]). And recent suggestions that angrites may or may not be from Mercury have also peaked interest in these achondrites. Given all of this background, a detailed understanding of the early differentiation process is desired. Previous efforts at examining siderophile element (SE) concentrations with respect to core formation processes in the APB have not resulted in any definite conclusions regarding segregation of a metallic core. The goal of this study is to summarize what is known about SE concentrations in the suite, estimate depletions of SE compared to chondrites, and apply metal/silicate experimental partition coefficients to assess whether the APB had a core.

  4. Multistage metasomatism in lithospheric mantle beneath V. Grib pipe (Arkhangelsk diamondiferous province, Russia): evidence from REE patterns in garnet xenocrysts.

    NASA Astrophysics Data System (ADS)

    Shchukina, Elena; Alexei, Agashev; Nikolai, Pokhilenko

    2015-04-01

    these peridotite samples and the geochemical modeling results show that clinopyroxenes are also in equilibrium with carbonatite melt. Formation of garnet with the sinusoidal REE pattern could also occurs during carbonatite stage of mantle metasomatism. The 2- nd stage - is formation of garnets of group 3 from the melt of composition close to Izhmozero field picrites. Garnets of group 3 are of lherzolite paragenesis on the content of CaO and Cr2O3, but their REE patterns are close to sinusoidal patterns. The final stage of mantle metasomatism is the formation of garnets of group 2 exposed to the melt of composition close to Turyino field basalts. Garnets of group 2 have low Cr2O3 that indicate the significant amounts of basaltic component in the resulting melt composition or direct crystallization from the melt in case of most low-chromium garnets and megacrysts garnets. Modeling results show that the formation of the garnets of group 2 in peridotites associated with crystallization of the clinopyroxenes. At this stage of mantle metasomatism garnets have typical major and trace element lherzolite composition.

  5. How thick is the lithosphere?

    PubMed

    Kanamori, H; Press, F

    1970-04-25

    A rapid decrease in shear velocity in the suboceanic mantle is used to infer the thickness of the lithosphere. It is proposed that new and highly precise group velocity data constrain the solutions and imply a thickness near 70 km.

  6. Including the effects of elastic compressibility and volume changes in geodynamical modeling of crust-lithosphere-mantle deformation

    NASA Astrophysics Data System (ADS)

    de Monserrat, Albert; Morgan, Jason P.

    2016-04-01

    Materials in Earth's interior are exposed to thermomechanical (e.g. variations in stress/pressure and temperature) and chemical (e.g. phase changes, serpentinization, melting) processes that are associated with volume changes. Most geodynamical codes assume the incompressible Boussinesq approximation, where changes in density due to temperature or phase change effect buoyancy, yet volumetric changes are not allowed, and mass is not locally conserved. Elastic stresses induced by volume changes due to thermal expansion, serpentinization, and melt intrusion should cause 'cold' rocks to brittlely fail at ~1% strain. When failure/yielding is an important rheological feature, we think it plausible that volume-change-linked stresses may have a significant influence on the localization of deformation. Here we discuss a new Lagrangian formulation for "elasto-compressible -visco-plastic" flow. In this formulation, the continuity equation has been generalised from a Boussinesq incompressible formulation to include recoverable, elastic, volumetric deformations linked to the local state of mean compressive stress. This formulation differs from the 'anelastic approximation' used in compressible viscous flow in that pressure- and temperature- dependent volume changes are treated as elastic deformation for a given pressure, temperature, and composition/phase. This leads to a visco-elasto-plastic formulation that can model the effects of thermal stresses, pressure-dependent volume changes, and local phase changes. We use a modified version of the (Miliman-based) FEM code M2TRI to run a set of numerical experiments for benchmarking purposes. Three benchmarks are being used to assess the accuracy of this formulation: (1) model the effects on density of a compressible mantle under the influence of gravity; (2) model the deflection of a visco-elastic beam under the influence of gravity, and its recovery when gravitational loading is artificially removed; (3) Modelling the stresses

  7. Coexistence of compositionally heterogeneous chromitites in the Antalya-Isparta ophiolitic suite, SW Turkey: A record of sequential magmatic processes in the sub-arc lithospheric mantle

    NASA Astrophysics Data System (ADS)

    Uysal, Ibrahim; Akmaz, Recep Melih; Saka, Samet; Kapsiotis, Argyrios

    2016-04-01

    The Antalya-Isparta region in southwestern Turkey is well known for its large ophiolitic peridotite exposures, which host various chromite orebodies. These are small-sized, massive to disseminated in texture chromitites occurring in the form of lenses or veinlets, and commonly surrounded by dunite envelopes of variable thickness. Chromitite seams from the Antalya mantle suite are both high- and intermediate-Cr varieties (Cr# = 0.56-0.83), whereas chromitites in the Isparta mantle sequence are exclusively Cr-rich (Cr# = 0.75-0.85). In situ minor and trace element abundances obtained by LA-ICP-MS analyses of unaltered Cr-spinel from the Cr-rich chromitites are comparable to those reported in Cr-spinel of chromitites from typical fore-arc peridotite complexes. However, minor and trace element concentrations in Cr-spinel from intermediate chromitites are dissimilar to those acquired from Cr-spinels of chromitites from well-known back-arc basin-derived ultramafic massifs. Calculation of parental magma compositions indicates that both types of chromitites share a common parentage with progressively fractionating arc-related melts. The studied chromitites are characterized by a systematic enrichment in IPGE [Os, Ir, and Ru (41-317 ppb)] with respect to PPGE [Rh, Pt, and Pd (3-49 ppb)], resulting in negatively-sloping chondrite-normalized PGE patterns that are less fractionated in intermediate chromitites. Their noble mineral assemblage is vastly dominated by tiny (≥ 10 μm) euhedral laurite crystals, followed by subsidiary irarsite and trivial amounts of Os-Ir alloy grains. PGM grains are not encountered in the intermediate chromitites, potentially due to crystallization resulting from PGE-poor melt. Laurite is Os-poor and exhibits a narrow range of Os-for-Ru substitution [Ru/(Ru + Os) = 0.75-0.99]. However, the concomitance of laurite and millerite in the Cr-rich chromitites of the mutual Antalya-Isparta mantle suite is in favour of their precipitation from an Os-depleted

  8. 3D Integrated geophysical-petrological modelling of the Iranian lithosphere

    NASA Astrophysics Data System (ADS)

    Mousavi, Naeim; Ardestani, Vahid E.; Ebbing, Jörg; Fullea, Javier

    2016-04-01

    The present-day Iranian Plateau is the result of complex tectonic processes associated with the Arabia-Eurasia Plate convergence at a lithospheric scale. In spite of previous mostly 2D geophysical studies, fundamental questions regarding the deep lithospheric and sub-lithospheric structure beneath Iran remain open. A robust 3D model of the thermochemical lithospheric structure in Iran is an important step toward a better understanding of the geological history and tectonic events in the area. Here, we apply a combined geophysical-petrological methodology (LitMod3D) to investigate the present-day thermal and compositional structure in the crust and upper mantle beneath the Arabia-Eurasia collision zone using a comprehensive variety of constraining data: elevation, surface heat flow, gravity potential fields, satellite gravity gradients, xenoliths and seismic tomography. Different mantle compositions were tested in our model based on local xenolith samples and global data base averages for different tectonothermal ages. A uniform mantle composition fails to explain the observed gravity field, gravity gradients and surface topography. A tectonically regionalized lithospheric mantle compositional model is able to explain all data sets including seismic tomography models. Our preliminary thermochemical lithospheric study constrains the depth to Moho discontinuity and intra crustal geometries including depth to sediments. We also determine the depth to Curie isotherm which is known as the base of magnetized crustal/uppermost mantle bodies. Discrepancies with respect to previous studies include mantle composition and the geometry of Moho and Lithosphere-Asthenosphere Boundary (LAB). Synthetic seismic Vs and Vp velocities match existing seismic tomography models in the area. In this study, depleted mantle compositions are modelled beneath cold and thick lithosphere in Arabian and Turan platforms. A more fertile mantle composition is found in collision zones. Based on our 3

  9. Geochronology and geochemistry of Cretaceous Nanshanping alkaline rocks from the Zijinshan district in Fujian Province, South China: Implications for crust-mantle interaction and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Li, Bin; Jiang, Shao-Yong

    2014-10-01

    biotite-dominated assemblages coupled with a lesser amount of crustal contamination, thereby forming the Nanshanping alkaline rocks. The Nanshanping alkaline rocks appear to be associated with an extensional environment in the Cathaysia Block. This extensional regime could have resulted in the slab break-off and rollback of the subducting paleo-Pacific plate and the upwelling of the asthenospheric mantle, which induced partial melting of the enriched lithospheric mantle in the Cretaceous.

  10. Geophysical data on the cratonic lithosphere structure and composition in the Northern Eurasia

    NASA Astrophysics Data System (ADS)

    Pavlenkova, Ninel; Pavlenkova, Galina; Yegorova, Tamara

    2014-05-01

    The seismic profiles made in Russia with Peaceful Nuclear Explosions (PNE), were interpreted with the purpose of constructing the upper mantle velocity models of the Northern Eurasia. The profiles show that the horizontal inhomogeneity of the upper mantle correlates with tectonics and geophysical fields. Higher velocities (8.2-8.4 km/s) are characteristic of the uppermost mantle of the cold East European and Siberian cratons, the velocities of 8.0-8.1 km/s are observed in the young plates with higher heat flows. The PNE data show a clear velocity and rheology stratification of the craton lithospheres. The asthenosphere is not traced as a low velocity layer, on the contrary, the 10-20 km thick velocity inversion zone is revealed at a depth of around 100 km. Several seismic boundaries are traced along all the profiles at depths of 100, 150, 200 and 300 km. The boundaries are not simple discontinuities. The reflections from these boundaries are complicated many-phase groups which may be explained by the reflective zones with alternation of the high- and low-velocity layers. The most important boundaries are the N boundary (depth of 80-120 km) which underlies the lithosphere brittle part, and the L boundary (depth of 200-250 km) which is the lithosphere bottom. The 2D gravity modelling for the PNE profiles shows differences in the lithosphere composition of the East European and of the Siberian cratons. The Siberian Craton is characterized by the decreased densities which may be a result of the lithosphere material depletion. These data are in good agreement with the petrophysical modelling based on the xsenolite and thermal data. The higher densities are characteristic of the fertile matter of the primitive mantle, the lower densities - of the depleted mantle represented mainly by the garnet peridotites. The seismic boundary L may be a transition from the depleted to the fertile upper mantle. The obtained data show that an important role in the mantle dynamics belongs

  11. Olivine water contents in the continental lithosphere and the longevity of cratons.

    PubMed

    Peslier, Anne H; Woodland, Alan B; Bell, David R; Lazarov, Marina

    2010-09-02

    Cratons, the ancient cores of continents, contain the oldest crust and mantle on the Earth (>2 Gyr old). They extend laterally for hundreds of kilometres, and are underlain to depths of 180-250 km by mantle roots that are chemically and physically distinct from the surrounding mantle. Forming the thickest lithosphere on our planet, they act as rigid keels isolated from the flowing asthenosphere; however, it has remained an open question how these large portions of the mantle can stay isolated for so long from mantle convection. Key physical properties thought to contribute to this longevity include chemical buoyancy due to high degrees of melt-depletion and the stiffness imparted by the low temperatures of a conductive thermal gradient. Geodynamic calculations, however, suggest that these characteristics are not sufficient to prevent the lithospheric mantle from being entrained during mantle convection over billions of years. Differences in water content are a potential source of additional viscosity contrast between cratonic roots and ambient mantle owing to the well-established hydrolytic weakening effect in olivine, the most abundant mineral of the upper mantle. However, the water contents of cratonic mantle roots have to date been poorly constrained. Here we show that olivine in peridotite xenoliths from the lithosphere-asthenosphere boundary region of the Kaapvaal craton mantle root are water-poor and provide sufficient viscosity contrast with underlying asthenosphere to satisfy the stability criteria required by geodynamic calculations. Our results provide a solution to a puzzling mystery of plate tectonics, namely why the oldest continents, in contrast to short-lived oceanic plates, have resisted recycling into the interior of our tectonically dynamic planet.

  12. Forced relative displacements of the core and mantle as the basic mechanism of secular changes of the Earth shape and lithosphere plates tectonics

    NASA Astrophysics Data System (ADS)

    Barkin, Yury

    2010-05-01

    The summary. In the work planetary changes of a figure of the Earth and geoid in present epoch are discussed. Contrast and asymmetric geodetic changes of northern and southern hemispheres are revealed. The phenomenon of lengthening of latitude circles of a southern hemisphere and shortening of lengths of latitude circles of northern hemisphere, the phenomenon of expansion of a southern hemisphere and, accordingly, compression of northern hemisphere in relation to the center of mass of the Earth have been predicted. The reasons of the planetary tendency of displacement (drift) of plates in northern direction are studied. The geodynamic model is developed, on which the basic moving force in tectonics of plates is a gravitational influence of a moveable core of the Earth on all layers of the mantle, and also on blocks of the crust and lithosphere plates. In a base of all tectonic and geological reorganizations the mechanism of the forced relative oscillations and swings of the core and the mantle of the Earth in various time scales, including geological timescale lays. 1 Mechanism of formation and changes of the pear-shaped form of the Earth. According to developed geodynamic model a pear-shaped form of planets is not their given property for all time (as believed before scientists), and is the dynamic response to the slow forced relative displacements of the core and mantle [1]. Than more a relative displacement of the core and mantle (eccentricity of the core in some geology epoch), is especially clearly expressed pear-shaped form. The planet Mars possesses a big pear-shaped form and by our estimations the core of this planet is displaced in northern direction (to latitude in approximately 60° N) on 20-25 km [2]. An eccentricity of the Earth core is less (estimations give displacement about 3-4 km in direction to Brazil [3]) and it pear-shaped form is much less. 2 The phenomenon of asymmetric lengthening of latitude circles of southern and northern hemispheres of

  13. Hafnium-neodymium isotope systematics of the 2.7 Ga Gadwal greenstone terrane, Eastern Dharwar craton, India: Implications for the evolution of the Archean depleted mantle

    NASA Astrophysics Data System (ADS)

    Khanna, Tarun C.; Bizimis, Michael; Yogodzinski, Gene M.; Mallick, Soumen

    2014-02-01

    The Neoarchean Gadwal greenstone belt in the eastern Dharwar craton, India, hosts a well preserved metavolcanic sequence that is dominated by tholeiitic and calc-alkaline basalt-andesite-dacite-rhyolite series, which includes boninitic geochemical varieties. Bulk-rock Lu-Hf and Sm-Nd isotope systematics of these apparently arc-related volcanic rocks yield indistinguishable ages of 2.701 ± 0.024 Ga and 2.702 ± 0.026 Ga, respectively. On the basis of the close spatial association and identical ages of the different rock types we suggest 2.70 ± 0.03 Ga as the age of crystallization of the different rock types within the Gadwal metavolcanic sequence. In contrast, bulk-rock Pb-Pb isotope systematics of the same samples yield a significantly younger and less precise age of 2.466 Ga (+0.068/-0.110 Ga). We tentatively interpret this younger age to represent a metallogenic and crustal reworking event in the Dharwar craton, which disturbed the U-Pb system but not the Lu-Hf or Sm-Nd systems. The Gadwal metavolcanic rocks have positive initial ɛHf(2.70Ga) = + 1.6 to + 8.7 and slightly negative to positive ɛNd(2.70Ga) = -0.1 to + 3.0 values, consistent with an origin from a long term depleted source relative to a chondritic reservoir at ˜2.7 Ga. Lack of correlation between initial isotopic compositions and major or trace element indices of fractionation and alteration suggest that the observed isotope variability probably reflects compositional variation in the Gadwal source, similar to that observed in modern day island arcs. Two boninitic samples of the Gadwal sequence have ɛHf ˜ 8.3 and 8.7, and are more radiogenic than average depleted mantle for the time period 3.2 to 2.5 Ga (ɛHf = 4 to 6). Early (perhaps Hadean) differentiation events that led to a depleted and heterogeneous mantle are apparent in the Nd and Hf isotope systematics of 3.7-3.8 Ga Isua supracrustal rocks. The radiogenic Hf isotopes of the Gadwal boninites and the Hf, Nd isotope systematics of rocks

  14. The really "stealth" mantle metasomatism

    NASA Astrophysics Data System (ADS)

    Puziewicz, Jacek; Matusiak-Małek, Magdalena; Ntaflos, Theodoros; Grégoire, Michel; Kukuła, Anna; Wojtulek, Piotr

    2015-04-01

    The Lower Silesian/Upper Lusatian domain of European subcontinental lithospheric mantle is dominated by two kinds of harzburgites: A - not affected or slightly affected by silicate melt metasomatism related to migration of lavas during formation of Cenozoic Central European Volcanic Province, and B - strongly overprinted by those lavas (Puziewicz et al. 2015, IJES, DOI 10.1007/s00531-014-1134-2). The study of Matusiak-Małek et al. (2014, J Petrol 55, 1799-1828) shows that the A harzburgites untouched by metasomatic events contain no clinopyroxene. Part of the A harzburgites contains clinopyroxene which has "primary" appearance but was added to the host during metasomatic event(s) overprinting the primary mineral assemblage. The metasomatic nature of this clinopyroxene can be recognized by its major and trace element chemical composition, and the mineral is a good example of the "stealth" metasomatic phase (O'Reilly & Griffin 2013, Springer). One of the typical features of this kind of clinopyroxene are LREE enriched REE patterns. We have discovered single xenoliths containing clinopyroxene with LREE depleted patterns in Steinberg near Görlitz (Lower Silesian/Upper Lusatian Region) and in Feldstein near Suhl (Heldburger Gangschar in Thuringia). Usually these kind of REE patterns is considered to be a relic of primary mineral assemblage subjected to strong melt-depletion. However, clinopyroxene from Steinberg is texturally late phase. Its major element chemical composition suggests that it is not a residue after partial melting, but a late silicate-melt metasomatic addition to the host rock which preceded the xenolith entrainment in the erupting lava. Thus, the metasomatising melt must have had characteristics enabling the precipitation of LREE depleted clinopyroxene. The existence of such the melts is clearly shown by the clinopyroxene from websterite cumulate from Dobkovičky in Eger Rift (Ackerman et al. 2012, J Geosci 58, 199-219), which has LREE depleted

  15. Petrogenesis of basaltic volcanic rocks from the Pribilof Islands, Alaska, by melting of metasomatically enriched depleted lithosphere, crystallization differentiation, and magma mixing

    USGS Publications Warehouse

    Chang, J.M.; Feeley, T.C.; Deraps, M.R.

    2009-01-01

    trace element characteristics are similar to those of ocean island basalts (OIB), including enrichment in alkalis and incompatible trace elements. These characteristics are interpreted to indicate that their mantle source experienced an ancient melt-removal event that is reflected in depleted radiogenic isotopic compositions and was then re-enriched by metasomatism that elevated incompatible trace element contents, but was too young to produce a time-integrated change in radiogenic isotopic ratios. Evidence suggests that the Pribilof Island basalts did not form in either a plume or a back-arc basin tectonic setting. Rather, they were produced by melting of metasomatically hydrated upper mantle peridotite at relatively low temperatures and were able to erupt at the surface through extensional or transtensional faults that served as conduits for the magmas. ?? The Author 2009. Published by Oxford University Press.

  16. Metasomatism and current state of the lithospheric mantle beneath the Nógrád-Gömör Volcanic Field constrained by trace element modelling and magnetotelluric survey

    NASA Astrophysics Data System (ADS)

    Klébesz, Rita; Patkó, Levente; Novák, Attila; Wesztergom, Viktor; Szabó, Csaba

    2016-04-01

    The Nógrád-Gömör Volcanic Field (NGVF) is one of the five mantle xenolith bearing alkali basalt locations in the Carpathian-Pannonian Region, where Plio-Pleistocene alkali basalt brought to the surface lherzolite and wehrlite xenoliths. Petrographic and geochemical signature (i.e. newly formed clinopyroxene and olivine grains, Ti, Al, Fe, Mn and LRRE enrichment in rock-forming minerals) of the wehrlite xenoliths suggest that a portion of the upper mantle was transformed to wehrlite beneath the NGVF by upward migrating mafic melt agents. Based on trace element modelling, we argue that the metasomatic agent had an OIB-like trace element composition, similar to the host alkali basalts. In order to study the current state of the lithospheric mantle and to test whether the spatial distribution of the metasomatism can be imaged, magnetotelluric (MT) survey was carried out. Long period MT data were collected at 14 locations along a ~50 km long NNW-SSE profile in the NGVF. The lithosphere-asthenosphere boundary was detected at 70-90 km of depth. A low resistivity anomaly (~5-10 Ωm) was observed at 30-45 km in depth below the central part of the NNW-SSE profile, indicating the presence of a conductive body barely below the Moho. We suggest that the low resistivity body is related to the presence of residual, connected melt and/or the conductivity differences between the lherzolitic and wehrlitic mantle domain due to different chemical composition and ratio of the rock-forming minerals.

  17. Paleoproterozoic Collisional Structures in the Hudson Bay Lithosphere Constrained by Multi-Observable Probabilistic Inversion

    NASA Astrophysics Data System (ADS)

    Darbyshire, F. A.; Afonso, J. C.; Porritt, R. W.

    2015-12-01

    The Paleozoic Hudson Bay intracratonic basin conceals a Paleoproterozoic Himalayan-scale continental collision, the Trans-Hudson Orogen (THO), which marks an important milestone in the assembly of the Canadian Shield. The geometry of the THO is complex due to the double-indentor geometry of the collision between the Archean Superior and Western Churchill cratons. Seismic observations at regional scale show a thick, seismically fast lithospheric keel beneath the entire region; an intriguing feature of recent models is a 'curtain' of slightly lower wavespeeds trending NE-SW beneath the Bay, which may represent the remnants of more juvenile material trapped between the two Archean continental cores. The seismic models alone, however, cannot constrain the nature of this anomaly. We investigate the thermal and compositional structure of the Hudson Bay lithosphere using a multi-observable probabilistic inversion technique. This joint inversion uses Rayleigh wave phase velocity data from teleseismic earthquakes and ambient noise, geoid anomalies, surface elevation and heat flow to construct a pseudo-3D model of the crust and upper mantle. Initially a wide range of possible mantle compositions is permitted, and tests are carried out to ascertain whether the lithosphere is stratified with depth. Across the entire Hudson Bay region, low temperatures and a high degree of chemical depletion characterise the mantle lithosphere. Temperature anomalies within the lithosphere are modest, as may be expected from a tectonically-stable region. The base of the thermal lithosphere lies at depths of >250 km, reaching to ~300 km depth in the centre of the Bay. Lithospheric stratification, with a more-depleted upper layer, is best able to explain the geophysical data sets and surface observables. Some regions, where intermediate-period phase velocities are high, require stronger mid-lithospheric depletion. In addition, a narrow region of less-depleted material extends NE-SW across the Bay

  18. Thermomechanical model of the North American lithosphere

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Cloetingh, Sierd; Mooney, Walter

    2014-05-01

    An integrated thermomechanical model of the lithosphere has been constructed based on various data sets and method. A consistent 3D model of the North American crust is based on the most recent seismic data from the USGS database. To this aim, we (1) defined the geometry of the main geological provinces of North America, (2) selected and evaluated the reliability of seismic crustal models in the database, (3) estimated the P-wave seismic velocity and thickness of the upper, middle and lower crust for each geological province. Temperature variations in the upper mantle have been estimated, taking into account compositional changes in cratonic regions, by applying a new inversion technique, which jointly interpret seismic velocities and gravity data. First, we inverted two tomography models into temperatures, using a uniform composition representative of a 'Primitive' mantle, which was affected by a small amount of melt extraction. In the next step, the thermal component of the density was estimated according to these initial thermal fields and was subtracted from the total density, to obtain the compositional component. These preliminary results might be affected by compositional changes of the cratonic upper mantle, usually depleted in heavy constituents. Then, the gravity effect of temperature variations is estimated and removed from the mantle gravity anomalies. The residual (temperature free) mantle anomalies are used to evaluate compositional changes in the cratonic mantle. We re-estimated the temperatures, using this new composition, and repeat calculations of the thermal and compositional density variations. These steps are reiterated until the convergence is reached. The results show that the upper mantle of the Archean North American cratons is characterized by temperatures higher than ~150°C compared to the initial thermal model, and by strong negative compositional density anomalies (-0.03 g/cm3), corresponding to Mg # (100xMg/(Mg+Fe)) >92. In turn, in

  19. Mid-Tertiary (25-21 Ma) lamprophyres in NW Mexico derived from subduction-modified subcontinental lithospheric mantle in an extensional backarc environment following steepening of the Benioff zone

    NASA Astrophysics Data System (ADS)

    Orozco-Garza, Alberto; Dostal, Jaroslav; Keppie, J. Duncan; Paz-Moreno, Francisco A.

    2013-04-01

    The mid-Tertiary lamprophyre dike swarm (~ 8 km × 2.5 km in size) from Hermosillo (Sonora, NW Mexico) has calc-alkaline characteristics and includes NNW-striking, amphibole-phyric spessartite (~ 85% of the swarm) and NNE-striking, phlogopite-phyric kersantite. The 40Ar/39Ar geochronology of amphibole and phlogopite gives overlapping plateau ages ranging from 25 to 21 Ma. Although all the lamprophyres are enriched in incompatible elements and display negative Nb-Ta and Ti anomalies on the primitive mantle-normalized plots, kersantite has higher K/Na, La/Yb, P, Ti and incompatible trace elements (e.g., Zr) compared to spessartite. The lamprophyres have radiogenic Sr and Nd isotopic signatures (87Sr/86Sr ~ 0.7057-0.7065 and ɛNd ~- 1 to - 2.3) suggesting derivation from the subcontinental lithospheric mantle that was previously modified by subduction-related fluids. This mantle is similar to that beneath the southern Grenvillian orogen, which has younger TDM ages than the 1.6-1.7 Ga TDM ages of the Caborca block. The lamprophyric magmas were generated at various mantle depths at the southwestern edge of North America. Intrusion of the lamprophyres was synchronous with extension that produced normal faults and core complexes with WSW-vergence. Extension occurred immediately following steepening of the Benioff zone, during which the magmatic arc migrated from east to west of Hermosillo, and the lamprophyres were intruded just behind the contemporaneous arc.

  20. Episodic, Multi-staged Lithospheric Delamination Responsible for Destruction of the North China Craton

    NASA Astrophysics Data System (ADS)

    Huang, J.; Wang, Y.; Zhong, S.

    2013-12-01

    Archean cratons represent the oldest tectonic units on the Earth and most of them are tectonically stable for >3 Ga. The North China Craton (NCC), however, had undergone extensive destruction during the Mesozoic to Cenozoic as seen from surface volcanism, magmatism, and tectonic deformation and geochemical and seismic observations suggesting removal and replacement of thick, old, and fertile cratonic lithosphere with thin, young, and depleted oceanic-type lithosphere [Griffin et al., 1998; Xu, 2001; Menzies et al., 2007; Zhu et al., 2012; Zhang et al., 2012]. Lithospheric delamination has been proposed to explain different episodes of volcanism in the Jurassic [Gao et al., 2004; 2008] and Cretaceous [Yang et al., 2003; Wu et al., 2003] on NCC and hence as a mechanism for destruction of NCC. However, the relatively long period (~100 Myr) of volcanism associated with the destruction of NCC was considered as a challenge to the delamination process [Menzies et al., 2007] which typically lasts for several Myr [Conrad and Molnar, 1999]. Here we show that delamination for cratonic lithosphere with chemically buoyant root and non-Newtonian rheology, different from that for normal lithosphere that was considered in most previous geodynamic studies, is episodic and multi-staged and may last for tens to 100 Myrs. For cratonic lithosphere with non-Newtonian rheology with relatively large chemical buoyancy, the cold, shallow part of the lithosphere goes unstable first, causing significant stirring and mixing of asthenospheric mantle and cratonic lithosphere. This delamination process may explain the main geochemical signatures in the Jurassic and Cretaceous volcanic rocks found in the NCC including their eclogite component [Gao et al., 2004, 2008] and sourcing both cratonic lithosphere and asthenosphere [Zheng et al., 2000]. Subduction process, by increasing tectonic stress and water content, helps reduce the lithospheric viscosity sufficiently to delaminate the entire

  1. The Marion and Bouvet Rises: Remelting Gondwana's Mantle

    NASA Astrophysics Data System (ADS)

    Dick, H. J.; Zhou, H.; Standish, J. J.

    2014-12-01

    Major, trace element and isotopic data along the SW Indian Ridge identify two major geochemical provinces centered on the Marion and Bouvet Hotspots with prominent correlations between the isotopic and major element composition of basalts, ridge depth, and mineralogy of spatially associated mantle peridotites. Both consist of axial rises with elevated ridge topography. Both the Bouvet and Marion Hotspots have small volcanic fluxes, while the associated axial-rises contrast sharply in size and geochemistry. The Bouvet Rise is small, proportional to the size of the hotspot, while the Marion, with Iceland, is one of the two largest oceanic rises. A mantle plume associated with the Marion Hotspot is incapable of supporting the rise; rather it appears to be supported by a large region of anomalously depleted mantle1. The Bouvet Plume, which likely originates above the mantle transition zone, appears to have had a direct control on the geometry of the western SWIR through time and thus likely does support the short Bouvet Rise. The bathymetric contrast between these two rises corresponds to notable differences in isotopic geochemistry: while the Marion Rise basalts exhibit a complex pattern of variability - it is a region where the classic 'Dupal' anomaly is well expressed, consistent with a major Archean mantle source that likely represents delaminated metasomatized sub-continental lithosphere entrained in the shallow mantle beneath the Ridge during formation of the central and SW Indian Ridges with the breakup of Gondwana. This is supported by a similar isotopic anomaly along the Rodriguez Rise on the Central Indian Ridge that also appears related to Gondwana breakup. By contrast, the mantle beneath the Bouvet Rise appears to represent largely post-Archean asthenosphere pulled from beneath the Gondwana lithosphere, interacting with a local small plume reflecting a local heterogeneity in the upper mantle. 1. Zhou, H.-y., Dick, H.J.B., 2013. Thin crust as evidence for

  2. Lithospheric models of the North American continent

    NASA Astrophysics Data System (ADS)

    Tesauro, Magdala; Kaban, Mikhail; Mooney, Walter; Cloetingh, Sierd

    2015-04-01

    We constructed NACr14, a 3D model of the North American (NA) crust, based on the most recent seismic data from the USGS database. In comparison with the global crustal model CRUST 1.0, NACr14 is more heterogeneous, showing a larger spatial variability of the thickness and average velocities of the crustal layers. Velocities of the lower crust vary in a larger range than those of the other layers, while the thickness of all the three layers is on average between 11 and 13 km. The largest velocities of the crystalline crust (>6.6 km/s) reflect the presence of a 7.x layer (>7.0 km/s) in the lowermost part of the crust. Using NACr2014, a regional (NA07) and a global (SL201sv) tomography model, and gravity data, we apply an iterative technique, which jointly interprets seismic tomography and gravity data, to estimate temperature and compositional variations in the NA upper mantle. The results obtained demonstrate that temperature of the cratonic mantle is up to 150°C higher than when using a uniform compositional model. The differences between the two tomography models influence the results more strongly than possible changes of the depth distribution of compositional variations. Strong negative compositional density anomalies, corresponding to Mg # >92, characterize the upper mantle of the northwestern part of the Superior craton and the central part of the Slave and Churchill craton. The Proterozoic upper mantle of the western and more deformed part of the NA cratons, appears weakly depleted (Mg# ~91) when NA07 is used, in agreement with the results based on the interpretation of xenolith data. When we use SL2013sv, the same areas are locally characterized by high density bodies, which might be interpreted as the effect due to fragments of subducted slabs, as those close to the suture of the Appalachians and Grenville province. We used the two thermal models to estimate the integrated strength and the effective elastic thickness (Te) of the lithosphere. In the

  3. Heterogeneous distribution of H2O in the Martian interior: Implications for the abundance of H2O in depleted and enriched mantle sources

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis M.; Boyce, Jeremy W.; Srinivasan, Poorna; Santos, Alison R.; Elardo, Stephen M.; Filiberto, Justin; Steele, Andrew; Shearer, Charles K.

    2016-11-01

    We conducted a petrologic study of apatite within 12 Martian meteorites, including 11 shergottites and one basaltic regolith breccia. These data were combined with previously published data to gain a better understanding of the abundance and distribution of volatiles in the Martian interior. Apatites in individual Martian meteorites span a wide range of compositions, indicating they did not form by equilibrium crystallization. In fact, the intrasample variation in apatite is best described by either fractional crystallization or crustal contamination with a Cl-rich crustal component. We determined that most Martian meteorites investigated here have been affected by crustal contamination and hence cannot be used to estimate volatile abundances of the Martian mantle. Using the subset of samples that did not exhibit crustal contamination, we determined that the enriched shergottite source has 36-73 ppm H2O and the depleted source has 14-23 ppm H2O. This result is consistent with other observed geochemical differences between enriched and depleted shergottites and supports the idea that there are at least two geochemically distinct reservoirs in the Martian mantle. We also estimated the H2O, Cl, and F content of the Martian crust using known crust-mantle distributions for incompatible lithophile elements. We determined that the bulk Martian crust has 1410 ppm H2O, 450 ppm Cl, and 106 ppm F, and Cl and H2O are preferentially distributed toward the Martian surface. The estimate of crustal H2O results in a global equivalent surface layer (GEL) of 229 m, which can account for at least some of the surface features on Mars attributed to flowing water and may be sufficient to support the past presence of a shallow sea on Mars' surface.

  4. Temporal variations of the segmentation of slow to intermediate spreading mid-ocean ridges 2. A three-dimensional model in terms of lithosphere accretion and convection within the partially molten mantle beneath the ridge axis

    NASA Astrophysics Data System (ADS)

    Rabinowicz, Michel; Briais, Anne

    2002-06-01

    We present three-dimensional numerical models of convection within the partially molten mantle beneath the ridge axis. The modeling takes into account the cavity flow driven by plate spreading, the diffuse upwelling due to plate accretion, and the shearing movement generated by large-scale mantle flow. The ridge axis is free to move in the spreading direction to adjust to the maxima of tension at the lithosphere-mantle interface induced by the convective circulation. The melt distribution in the mantle and the crustal production at the ridge axis are estimated using the formalism of McKenzie and Bickle [1988]. During the experiments the record of the ridge axis positions and crustal production is used to compute synthetic maps of the isochrons and oceanic crustal thickness. Close to the ridge, the ascending convective flow consists of 80- to 100-km-long hot sheets oriented either roughly parallel or orthogonal to spreading. Most ridge segments fit with the top of hot upwelling sheets, while transient transform faults coincide with the top of cold downwelling flows. The crustal maps display lineations subparallel or slightily oblique to spreading, a few tens of million years long, and separated by ~60-50 km, resulting from the lithospheric record of the excess crust produced at the junction of hot sheets. When a junction of two hot sheets migrates outside the ridge axial plane, the crustal thickness maximum splits into two maxima along axis, and the induced lineation in the crustal map splits into two branches. The merging of lineations occurs when the ridge plane traps the junction of hot sheets. When the large-scale mantle circulation moves parallel to the ridge crest, it slowly pushs the spreading-parallel convective sheets. The resulting lineations form V shapes pointing in the same direction as the large-scale flow. When the large-scale flow parallels spreading, it slowly pushes the ridge-parallel hot sheets in the upflow direction. Thus the ridge segments

  5. 186Os/188Os Isotopic Compositions of Peridotites: Constraints on Melt Depletion and Pt/Os Evolution of the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Chatterjee, R. N.; Lassiter, J. C.

    2014-12-01

    Global correlations between Al2O3 and Pt/Os in mantle peridotites suggest that Pt behaves incompatibly relative to Os during partial melting [c.f., 1]. Because 190Pt decays to 186Os (t1/2 = 468 Ga), correlations between 186Os/188Os and peridotite fertility can be used to constrain the long-term Pt/Os evolution of the depleted mantle and the initial Pt/Os ratio of the primitive upper mantle (PUM). We examined 186Os/188Os in mantle peridotites from continental (Rio Grande Rift/Colorado Plateau) and oceanic (Lena Trough, Hawaiian Islands) settings that span a wide range in fertility (Al2O3 ~0.67-4.42 %) and 187Os/188Os ratios (0.1138-0.1305). The new data define a narrow range in 186Os/188Os (0.1198338 to 0.1198393, 2 SD~24 ppm), placing constraints on long-term Pt/Os variability in the DMM. 186Os/188Os is broadly correlated with indices of melt depletion including spinel Cr#, clinopyroxene Cr#, and clinopyroxene Yb content, consistent with the inferred relative compatibility of Pt and Os during partial melting. Extrapolation of the alumina-186Os/188Os trend to PUM alumina content (~4.5 wt% Al2O3; [2]) suggests a PUM 186Os/188Os of ~0.1198380±15, similar to the 186Os/188Os of H chondrites (~0.1198398±16; [3]). This 186Os/188Os value is consistent with a PUM Pt/Os of 1.8±0.3, similar to Pt/Os values measured in several classes of chondrites (Carbonaceous ~1.9±0.2, Ordinary ~2.0±0.3 and Enstatite ~1.9±0.2; [3]). Whereas ~84% of peridotites worldwide [excluding low-[Os] samples (<1 ppb Os) that may have been compromised by melt-rock reaction and/or weathering and alteration] with measured Pt/Os ratios have Pt/Os between 0.3 and 3.1 (the range permissible from 186Os/188Os variations for melt extraction from PUM at ~1.5 Ga), only ~36% fall between 1.3 and 2.2 (a narrower range consistent with an older ~4.5 Ga melt depletion age). This suggests that much of the observed Pt/Os variability in mantle peridotites is relatively recent. Close agreement between our inferred

  6. Geochemical Systematics of Hotspots and Mid-Ocean Ridges Arising from Melting of a Non-Layered Heterogeneous Mantle

    NASA Astrophysics Data System (ADS)

    Ito, G.; Mahoney, J. J.

    2003-12-01

    Many fundamental geochemical differences between ocean island basalts (OIBs) and mid-ocean ridge basalts (MORBs) are often explained by a chemically layered mantle, with lower mantle material delivered to the surface by mantle plumes forming ocean islands, and a compositionally distinct upper mantle feeding mid-ocean ridges. A dilemma arises from geophysical evidence for whole mantle convection, which is predicted to efficiently stir the mantle and prevent any long-lasting, global chemical layering. We present models of decompression melting in which mantle heterogeneities are present as veins or small blobs, equally numerous in plume mantle as they are in the ambient mantle. Three different components are considered. Enriched mantle (EM) is highly concentrated in the most incompatible trace elements, has isotopic characteristics reflecting long-term enrichment, and begins melting deepest. Pyroxenite (PX) is relatively depleted in the most incompatible trace elements, has Pb isotope compositions reflecting a high U/Pb ratio, and begins melting at intermediate depths. Depleted mantle (DM), the most abundant (90%) component, is depleted in the most incompatible elements, has corresponding isotope signatures, and begins melting shallowest. Models predict the deeper melting, EM and PX components to be preferentially extracted at intraplate settings where thick lithosphere limits melting to large depths and low extents. In contrast, DM is more heavily sampled at mid-ocean ridges where thinner lithosphere allows for shallower and more extensive melting. Besides lithospheric thickness, differences in mantle flow also contribute to compositional contrasts between OIBs and MORBs. Plume-driven upwelling is most rapid at depth, decreases to the base of the lithosphere, and therefore enhances the extraction of EM and PX. In contrast, seafloor spreading at mid-ocean ridges allows for more uniform upwelling with depth and more even sampling of all mantle components, including DM

  7. On the nature and origin of garnet in highly-refractory Archean lithosphere: implications for continent stabilisation

    NASA Astrophysics Data System (ADS)

    Gibson, Sally

    2014-05-01

    The nature and timescales of garnet formation in the Earth's subcontinental lithospheric mantle (SCLM) are important to our understanding of how this rigid outer shell has evolved and stabilised since the Archean. Nevertheless, the widespread occurrence of pyrope garnet in the sub-cratonic mantle remains one of the 'holy grails' of mantle petrology. The paradox is that garnet often occurs in mantle lithologies (dunites and harzburgites) which represent residues of major melting events (up to 40 %) whereas experimental studies on fertile peridotite suggest this phase should be exhausted by <20 % melting. Furthermore, garnets commonly found in mantle peridotite suites have diverse compositions that are typically in equilibrium with high-pressure, small-fraction, mantle melts suggesting they formed as a result of enrichment of the lithospheric mantle following cratonisation. This refertilisation -- which typically involves addition of Fe, incompatible trace elements and volatiles -- affects the lower 30 km of the lithosphere and potentially leads to negative buoyancy and destabilisation. Pyrope garnets found in mantle xenoliths from the eastern margin of the Tanzanian Craton (Lashaine) have diverse compositions and provide major constraints on how the underlying deep (120 to 160 km) mantle stabilised and evolved during the last 3 billion years. The garnets display systematic trends from ultra-depleted to enriched compositions that have not been recognised in peridotite suites from elsewhere (Gibson et al., 2013). Certain harzburgite members of the xenolith suite contain the first reported occurrence of pyrope garnets with rare-earth element (REE) patterns similar to hypothetical garnets proposed by Stachel et al. (2004) to have formed in the Earth's SCLM during the Archean, prior to metasomatism. These rare ultra-depleted low-Cr garnets occur in low temperature (~1050 oC) xenoliths derived from depths of ~120 km and coexist in chemical and textural equilibrium with

  8. Refertilization of oceanic mantle by old depleted melts beneath a slow spreading ridge: An Os isotope study of the peridotites drilled at ODP Site 1274 (15°20 FZ, Mid-Atlantic Ridge)

    NASA Astrophysics Data System (ADS)

    Alard, O.; Gréau, Y.; Godard, M.; Lorand, J.-P.; O'Reilly, S. Y.

    2009-04-01

    , trapped under lithospheric conditions and post-dating the crystallization of Sulf-2. Despite its obvious metasomatic origin, the extremely low light REE content of the Cpx2 suggests that they crystallized from an ultra depleted melt not in equilibrium with melt produced locally. 187Os/188Os obtained by LA-MC-ICPMS on c.a. 60 individual sulphide grain vary between 0.1097 and 0.1396 encompassing the range obtained on separated sulphide grains and whole-rocks (Harvey et al., 2006). Thanks to the spatial resolution of the LA-MC-ICPMS we were able to recognize that the sulphide populations described above are characterized by distinct 187Re/188Os -187Os/188Os systematics. Sulf-1 and Sulf-2 define a broadly positive correlation between 187Re/188Os and 187Os/188Os similar to the one described for the sulphides in Kane FZ abyssal peridotites (Alard et al., 2005). We interpret this relationship as a mixing line between sulphides residual after melting (Sulf-1) and sulphide (Sulf-2A) precipitated from a partial melt. The age of the first melting increment of this mantle section is thus given by the TRD model ages obtained on Sulf-1 (2.16 ±0.30 Ga). Sulf-3 shows constant non-radiogenic Os-isotope compositions (weighed mean = 0.11044±0.00019, n = 27) despite extremely variable 187Re/188Os (0.15-1.05). This indicates that Sulf-3 crystallization was recent, as no significant in-situ ingrowth of 187Os by 187Re decay has taken place. This is consistent with the microstructural occurrence of Sulf-3 and the quenched microstructure of Spl2-Cpx2 intergrowths. Although Sulf-3 are clearly metasomatic, they are significantly less radiogenic than Sulf-1. Such unradiogenic Os compositions require a long-term evolution in a Re-depleted reservoir (in agreement with the Cpx2'REE patterns). The minimum time required to develop such compositions is given by the TRD model ages of Sulf-3, c.a. 2.5±0.1 Ga. Thus in the case of Leg 209 the oldest ages and most depleted signature are found in the

  9. Mechanical heterogeneities and lithospheric extension

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Petri, Benoit; Mohn, Geoffroy; Schenker, Filippo L.; Schmalholz, Stefan

    2016-04-01

    Detailed geological and geophysical studies of passive margins have highlighted the multi-stage and depth-dependent aspect of lithospheric thinning. Lithospheric thinning involves a variety of structures (normal faults, low angle detachments, extensional shear zones, extraction faults) and leads to a complex architecture of passive margins (with e.g. necking zone, mantle exhumation, continental allochthons). The processes controlling the generation and evolution of these structures as well as the impact of pre-rift inheritance are so far incompletely understood. In this study, we investigate the impact of pre-rift inheritance on the development of rifted margins using two-dimensional thermo-mechanical models of lithospheric thinning. To first order, we represent the pre-rift mechanical heterogeneities with lithological layering. The rheologies are kept simple (visco-plastic) and do not involve any strain softening mechanism. Our models show that mechanical layering causes multi-stage and depth-dependent extension. In the initial rifting phase, lithospheric extension is decoupled: as the crust undergoes thinning by brittle (frictional-plastic) faults, the lithospheric mantle accommodates extension by symmetric ductile necking. In a second rifting phase, deformation in the crust and lithospheric mantle is coupled and marks the beginning of an asymmetric extension stage. Low angle extensional shear zones develop across the lithosphere and exhume subcontinental mantle. Furthemore, crustal allochthons and adjacent basins develop coevally. We describe as well the thermal evolution predicted by the numerical models and discuss the first-order implications of our results in the context of the Alpine geological history.

  10. A numerical study of forced lithospheric thinning

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Anderson, A.; Fishbein, E.

    1985-01-01

    Subsolidus lithospheric thinning by mantle plumes may be involved in the creation of swells, hotspots, and rifts. Among the major questions concerning this process are the timescale on which it occurs and the structure of the plumes. The lithosphere is known to have been substantially thinned in 10 Ma or less. Current studies are focused on the lithospheric thinning by time-dependent plumes hypothesized to have large temperature differences across them.

  11. Pb, Sr, Nd, and Hf isotopic constraints on the origin of Hawaiian basalts and evidence for a unique mantle source

    NASA Technical Reports Server (NTRS)

    Stille, P.; Unruh, D. M.; Tatsumoto, M.

    1986-01-01

    The isotopic Pb, Sr, Nd, and Hf compositions of rocks from nine Hawaiian volcanos are determined using the analytical procedures described by Tatsumoto and Unruh (1976) and Patchett and Tatsumoto (1980). The results are presented in graphs, tables, and maps and characterized in detail. The mantle plume, the oceanic lithosphere, and the depleted mantle are identified as distinct sources of the Hawaiian basalts, with different mechanisms responsible for the formation of shield-building tholeiites, late-stage alkalic rocks, and posterosional basalts. The uniqueness of the Hawaiian basalts and the possibility that the Koolau end member represents an undepleted 'primitive' mantle reservoir are considered.

  12. Formation and evolution of a metasomatized lithospheric root at the motionless Antarctic plate: the case of East Island, Crozet Archipelago (Indian Ocean)

    NASA Astrophysics Data System (ADS)

    Meyzen, Christine; Marzoli, Andrea; Bellieni, Giuliano; Levresse, Gilles

    2016-04-01

    Sitting atop the nearly stagnant Antarctic plate (ca. 6.46 mm/yr), the Crozet archipelago midway between Madagascar and Antarctica constitutes a region of unusually shallow (1543-1756 m below sea level) and thickened oceanic crust (10-16.5 km), high geoid height, and deep low-velocity zone, which may reflect the surface expression of a mantle plume. Here, we present new major and trace element data for Quaternary sub-aerial alkali basalts from East Island, the easterly and oldest island (ca. 9 Ma) of the Crozet archipelago. Crystallization at uppermost mantle depth and phenocryst accumulation have strongly affected their parental magma compositions. Their trace element patterns show a large negative K anomaly relative to Ta-La, moderate depletions in Rb and Ba with respect to Th-U, and heavy rare earth element (HREE) depletions relative to light REE. These characteristics allow limits to be placed upon the composition and mineralogy of their mantle source. The average trace element spectrum of East Island basalts can be matched by melting of about 2 % of a garnet-phlogopite-bearing peridotite source. The stability field of phlogopite restricts melting depth to lithospheric levels. The modelled source composition requires a multistage evolution, where the mantle has been depleted by melt extraction before having been metasomatized by alkali-rich plume melts. The depleted mantle component may be sourced by residual mantle plume remnants stagnated at the melting locus due to a weak lateral flow velocity inside the melting regime, whose accumulation progressively edifies a depleted lithospheric root above the plume core. Low-degree alkali-rich melts are likely derived from the plume source. Such a mantle source evolution may be general to both terrestrial and extraterrestrial environments where the lateral component velocity of the mantle flow field is extremely slow.

  13. Partial melting of an ancient sub-continental lithospheric mantle in the early Paleozoic intracontinental regime and its contribution to petrogenesis of the coeval peraluminous granites in South China

    NASA Astrophysics Data System (ADS)

    Zhong, Yufang; Wang, Lianxun; Zhao, Junhong; Liu, Lei; Ma, Changqian; Zheng, Jianping; Zhang, Zejun; Luo, Biji

    2016-11-01

    The appinite-granite association has been found in various tectonic regimes related to recent subduction, arc-continent or continent-continent collision and post-collision (orogen), and appinites generally originate from recently subduction-modified lithospheric mantle. We conducted a study on a rarely reported appinite-granite association formed in an intracontinental regime, the Zhangjiafang-Qinglongshan complex (ZQC), in which the appinites were derived from an ancient sub-continental lithospheric mantle (SCLM). The ZQC is located in the western Wugongshan domain, and consists of basaltic to intermediate appinites and granitoids. Ten dated samples (including massive and gneissoid granitoids, hornblende gabbro, and diorite) give zircon 206Pb/238U ages ranging from 444 ± 3 Ma to 452 ± 4 Ma, indicating that these various lithologies were emplaced synchronously. The basaltic appinites show radiogenic 87Sr/86Sri (0.71016-0.71431) and negative εNd(t) (- 6.1 to - 8.9) and zircon εHf(t) (- 4.2 to - 7.5) values. Combined with regional geological background, an origin from the Neoproterozoic metasomatised SCLM can be inferred for the appinites in the Wugongshan domain. The granitoids are peraluminous and almost high-K calc-alkaline to shoshonitic. They exhibit a wide range of isotopic compositions (87Sr/86Sri = 0.70828-0.71857, εNd(t) = - 6.2 to - 10.5, zircon εHf(t) = - 9.5 to - 26.6). Some of the granitoids display the most evolved Sr-Nd isotopic signatures among all the studied lithologies, which are consistent with those of the middle to upper crust, suggesting a pure crustal origin. Other granitoids show relatively mafic composition and less evolved isotopic signature. The intermediate appinites have intermediate chemical compositions between those of the basaltic appinites and granitoids, and similar Sr-Nd isotopic compositions to those of the basaltic appinites that have relatively evolved composition and isotopic signature. The petrographical and the

  14. Recycling of Oceanic Lithosphere: Water, fO2 and Fe-isotope Constraints

    NASA Technical Reports Server (NTRS)

    Bizmis, M.; Peslier, A. H.; McCammon, C. A.; Keshav, S.; Williams, H. M.

    2014-01-01

    Spinel peridotite and garnet pyroxenite xenoliths from Hawaii provide important clues about the composition of the oceanic lithosphere, and can be used to assess its contribution to mantle heterogeneity upon recycling. The peridotites have lower bulk H2O (approximately 70-114 ppm) than the MORB source, qualitatively consistent with melt depletion. The garnet pyroxenites (high pressure cumulates) have higher H2O (200-460 ppm, up to 550 ppm accounting for phlogopite) and low H2O/Ce ratios (less than 100). The peridotites have relatively light Fe-isotopes (delta Fe -57 = -0.34 to 0.13) that decrease with increasing depletion, while the pyroxenites are significantly heavier (delta Fe-57 up to 0.3). The observed xenolith, as well as MORB and OIB total Fe-isotope variability is larger that can be explained by existing melting models. The high H2O and low H2O/Ce ratios of pyroxenites are similar to estimates of EM-type OIB sources, while their heavy delta Fe-57 are similar to some Society and Cook-Austral basalts. Therefore, recycling of mineralogically enriched oceanic lithosphere (i.e. pyroxenites) may contribute to OIB sources and mantle heterogeneity. The Fe(3+)/Sigma? systematics of these xenoliths also suggest that there might be lateral redox gradients within the lithosphere, between juxtaposed oxidized spinel peridotites (deltaFMQ = -0.7 to 1.6, at 15 kb) and more reduced pyroxenites (deltaFMQ = -2 to -0.4, at 20-25kb). Such mineralogically and compositionally imposed fO2 gradients may generate local redox melting due to changes in fluid speciation (e.g. reduced fluids from pyroxenite encountering more oxidized peridotite). Formation of such incipient, small degree melts could further contribute to metasomatic features seen in peridotites, mantle heterogeneity, as well as the low velocity and high electrical conductivity structures near the base of the lithosphere and upper mantle.

  15. Unravelling the effects of melt depletion and secondary infiltration on mantle Re-Os isotopes beneath the French Massif Central

    NASA Astrophysics Data System (ADS)

    Harvey, J.; Gannoun, A.; Burton, K. W.; Schiano, P.; Rogers, N. W.; Alard, O.

    2010-01-01

    Spinel lherzolite xenoliths from Mont Briançon, French Massif Central, retain evidence for multiple episodes of melt depletion and melt/fluid infiltration (metasomatism). Evidence for primary melt depletion is still preserved in the co-variation of bulk-rock major elements (MgO 38.7-46.1 wt.%; CaO 0.9-3.6 wt.%), and many samples yield unradiogenic bulk-rock Os isotope ratios ( 187Os/ 188Os = 0.11541-0.12626). However, many individual xenoliths contain interstitial glasses and melt inclusions that are not in equilibrium with the major primary minerals. Incompatible trace element mass balance calculations demonstrate that metasomatic components comprise a significant proportion of the bulk-rock budget for these elements in some rocks, ranging to as much as 25% of Nd and 40% of Sr Critically, for Re-Os geochronology, melt/fluid infiltration is accompanied by the mobilisation of sulfide. Consequently, bulk-rock isotope measurements, whether using lithophile (e.g. Rb-Sr, Sm-Nd) or siderophile (Re-Os) based isotope systems, may only yield a perturbed and/or homogenised average of these multiple events. Osmium mass balance calculations demonstrate that bulk-rock Os in peridotite is dominated by contributions from two populations of sulfide grain: (i) interstitial, metasomatic sulfide with low [Os] and radiogenic 187Os/ 188Os, and (ii) primary sulfides with high [Os] and unradiogenic 187Os/ 188Os, which have been preserved within host silicate grains and shielded from interaction with transient melts and fluid. The latter can account for >97% of bulk-rock Os and preserve geochronological information of the melt from which they originally precipitated as an immiscible liquid. The Re-depletion model ages of individual primary sulfide grains preserve evidence for melt depletion beneath the Massif Central from at least 1.8 Gyr ago despite the more recent metasomatic event(s).

  16. A Nd and Sr isotopic study of the Trinity peridotite Implications for mantle evolution

    NASA Technical Reports Server (NTRS)

    Jacobsen, S. B.; Quick, J. E.; Wasserburg, G. J.

    1984-01-01

    Field evidence is reported which indicates that the Trinity peridotite in Northern California was partially melted during its rise as part of the upwelling convecting mantle at a spreading center. A Sm-Nd mineral isochron for a plagioclase Iherzolite yielded an age of about 427 Ma which is significantly higher than that expected for depleted mantle during this period. The age is interpreted as the time of crystallization of trapped melt in the plagioclase Iherzolite P-T field, and probably represents the time when the massif was incorporated as a part of the oceanic lithosphere. The Sm-Nd model age of the plagioclase Iherzolite total rock is 3.4 AE. This suggests that the peridotite was derived from a mantle that was depleted early in earth history. Although most available data indicate that the depleted upper mantle has been relatively well stirred through time, the Trinity data suggest that very ancient Nd isotropic values are preserved and chemical and physical heterogeneities are sometimes preserved in the depleted source of midocean ridge basalts as well as the oceanic lithosphere which they intrude.

  17. 3D density model of the upper mantle of Asia based on inversion of gravity and seismic tomography data

    NASA Astrophysics Data System (ADS)

    Kaban, Mikhail K.; Stolk, Ward; Tesauro, Magdala; El Khrepy, Sami; Al-Arifi, Nassir; Beekman, Fred; Cloetingh, Sierd A. P. L.

    2016-11-01

    We construct a new-generation 3D density model of the upper mantle of Asia and its surrounding areas based on a joint interpretation of several data sets. A recent model of the crust combining nearly all available seismic data is employed to calculate the impact of the crust on the gravity anomalies and observed topography and to estimate the residual mantle anomalies and residual topography. These fields are jointly inverted to calculate the density variations in the lithosphere and upper mantle down to 325 km. As an initial approximation, we estimate density variations using a seismic tomography model. Seismic velocity variations are converted into temperatures and then to density variations based on mineral physics constraints. In the Occam-type inversion, we fit both the residual mantle gravity anomalies and residual topography by finding deviations to the initial model. The obtained corrections improve the resolution of the initial model and reflect important features of the mantle structure that are not well resolved by the seismic tomography. The most significant negative corrections of the upper mantle density, found in the Siberian and East European cratons, can be associated with depleted mantle material. The most pronounced positive density anomalies are found beneath th