Technology readiness levels for advanced nuclear fuels and materials development
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...
2016-12-23
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Technology readiness levels for advanced nuclear fuels and materials development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carmack, W. J.; Braase, L. A.; Wigeland, R. A.
The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less
Robotics for Nuclear Material Handling at LANL:Capabilities and Needs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harden, Troy A; Lloyd, Jane A; Turner, Cameron J
Nuclear material processing operations present numerous challenges for effective automation. Confined spaces, hazardous materials and processes, particulate contamination, radiation sources, and corrosive chemical operations are but a few of the significant hazards. However, automated systems represent a significant safety advance when deployed in place of manual tasks performed by human workers. The replacement of manual operations with automated systems has been desirable for nearly 40 years, yet only recently are automated systems becoming increasingly common for nuclear materials handling applications. This paper reviews several automation systems which are deployed or about to be deployed at Los Alamos National Laboratory formore » nuclear material handling operations. Highlighted are the current social and technological challenges faced in deploying automated systems into hazardous material handling environments and the opportunities for future innovations.« less
A roadmap for nuclear energy technology
NASA Astrophysics Data System (ADS)
Sofu, Tanju
2018-01-01
The prospects for the future use of nuclear energy worldwide can best be understood within the context of global population growth, urbanization, rising energy need and associated pollution concerns. As the world continues to urbanize, sustainable development challenges are expected to be concentrated in cities of the lower-middle-income countries where the pace of urbanization is fastest. As these countries continue their trajectory of economic development, their energy need will also outpace their population growth adding to the increased demand for electricity. OECD IEA's energy system deployment pathway foresees doubling of the current global nuclear capacity by 2050 to reduce the impact of rapid urbanization. The pending "retirement cliff" of the existing U.S. nuclear fleet, representing over 60 percent of the nation's emission-free electricity, also poses a large economic and environmental challenge. To meet the challenge, the U.S. DOE has developed the vision and strategy for development and deployment of advanced reactors. As part of that vision, the U.S. government pursues programs that aim to expand the use of nuclear power by supporting sustainability of the existing nuclear fleet, deploying new water-cooled large and small modular reactors to enable nuclear energy to help meet the energy security and climate change goals, conducting R&D for advanced reactor technologies with alternative coolants, and developing sustainable nuclear fuel cycle strategies. Since the current path relying heavily on water-cooled reactors and "once-through" fuel cycle is not sustainable, next generation nuclear energy systems under consideration aim for significant advances over existing and evolutionary water-cooled reactors. Among the spectrum of advanced reactor options, closed-fuel-cycle systems using reactors with fast-neutron spectrum to meet the sustainability goals offer the most attractive alternatives. However, unless the new public-private partnership models emerge to tackle the licensing and demonstration challenges for these advanced reactor concepts, realization of their enormous potential is not likely, at least in the U.S.
Sandia National Laboratories: Advanced Simulation and Computing
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2014 CFR
2014-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2013 CFR
2013-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2011 CFR
2011-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2010 CFR
2010-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
10 CFR 1.42 - Office of Nuclear Material Safety and Safeguards.
Code of Federal Regulations, 2012 CFR
2012-01-01
... responsible for regulation and licensing of recycling technologies intended to reduce the amount of waste to... an appropriate regulatory framework, in recycling during development, demonstration, and deployment of new advanced recycling technologies that recycle nuclear fuel in a manner which does not produce...
Advanced Nuclear Fuel Cycle Transitions: Optimization, Modeling Choices, and Disruptions
NASA Astrophysics Data System (ADS)
Carlsen, Robert W.
Many nuclear fuel cycle simulators have evolved over time to help understan the nuclear industry/ecosystem at a macroscopic level. Cyclus is one of th first fuel cycle simulators to accommodate larger-scale analysis with it liberal open-source licensing and first-class Linux support. Cyclus also ha features that uniquely enable investigating the effects of modeling choices o fuel cycle simulators and scenarios. This work is divided into thre experiments focusing on optimization, effects of modeling choices, and fue cycle uncertainty. Effective optimization techniques are developed for automatically determinin desirable facility deployment schedules with Cyclus. A novel method fo mapping optimization variables to deployment schedules is developed. Thi allows relationships between reactor types and scenario constraints to b represented implicitly in the variable definitions enabling the usage o optimizers lacking constraint support. It also prevents wasting computationa resources evaluating infeasible deployment schedules. Deployed power capacit over time and deployment of non-reactor facilities are also included a optimization variables There are many fuel cycle simulators built with different combinations o modeling choices. Comparing results between them is often difficult. Cyclus flexibility allows comparing effects of many such modeling choices. Reacto refueling cycle synchronization and inter-facility competition among othe effects are compared in four cases each using combinations of fleet of individually modeled reactors with 1-month or 3-month time steps. There are noticeable differences in results for the different cases. The larges differences occur during periods of constrained reactor fuel availability This and similar work can help improve the quality of fuel cycle analysi generally There is significant uncertainty associated deploying new nuclear technologie such as time-frames for technology availability and the cost of buildin advanced reactors. Historically, fuel cycle analysis has focused on answerin questions of fuel cycle feasibility and optimality. However, there has no been much work done to address uncertainty in fuel cycle analysis helpin answer questions of fuel cycle robustness. This work develops an demonstrates a methodology for evaluating deployment strategies whil accounting for uncertainty. Techniques are developed for measuring th hedging properties of deployment strategies under uncertainty. Additionally methods for using optimization to automatically find good hedging strategie are demonstrated.
A retrospective analysis of funding and focus in US advanced fission innovation
NASA Astrophysics Data System (ADS)
Abdulla, A.; Ford, M. J.; Morgan, M. G.; Victor, D. G.
2017-08-01
Deep decarbonization of the global energy system will require large investments in energy innovation and the deployment of new technologies. While many studies have focused on the expenditure that will be needed, here we focus on how government has spent public sector resources on innovation for a key carbon-free technology: advanced nuclear. We focus on nuclear power because it has been contributing almost 20% of total US electric generation, and because the US program in this area has historically been the world’s leading effort. Using extensive data acquired through the Freedom of Information Act, we reconstruct the budget history of the Department of Energy’s program to develop advanced, non-light water nuclear reactors. Our analysis shows that—despite spending 2 billion since the late 1990s—no advanced design is ready for deployment. Even if the program had been well designed, it still would have been insufficient to demonstrate even one non-light water technology. It has violated much of the wisdom about the effective execution of innovative programs: annual funding varies fourfold, priorities are ephemeral, incumbent technologies and fuels are prized over innovation, and infrastructure spending consumes half the budget. Absent substantial changes, the possibility of US-designed advanced reactors playing a role in decarbonization by mid-century is low.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacques V Hugo
This book chapter describes the considerations for the selection of advanced human–system interfaces (HSIs) for the new generation of nuclear power plants. The chapter discusses the technologies that will be needed to support highly automated nuclear power plants, while minimising demands for numbers of operational staff, reducing human error and improving plant efficiency and safety. Special attention is paid to the selection and deployment of advanced technologies in nuclear power plants (NPPs). The chapter closes with an examination of how technologies are likely to develop over the next 10–15 years and how this will affect design choices for the nuclearmore » industry.« less
Remote Sensing Laboratory - RSL
None
2018-01-16
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.
Remote Sensing Laboratory - RSL
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2014-11-06
One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip,more » maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.« less
Report of the Defense Science Board Task Force on Nuclear Deterrence Skills
2008-09-01
entail modeling and simulation capability analogous to that for weapon design. A minimum “national” nuclear weapons effects simulator enterprise...systems programs (design, develop, produce, deploy, and sustain) relies 18 I C HA P TE R 3 upon a variety of management models . For example, the Air...entry vehicle design, modeling and simulation efforts, command and control, launch system infrastructure, intermediate-range missile concepts, advanced
Advanced In-Pile Instrumentation for Materials Testing Reactors
NASA Astrophysics Data System (ADS)
Rempe, J. L.; Knudson, D. L.; Daw, J. E.; Unruh, T. C.; Chase, B. M.; Davis, K. L.; Palmer, A. J.; Schley, R. S.
2014-08-01
The U.S. Department of Energy sponsors the Advanced Test Reactor (ATR) National Scientific User Facility (NSUF) program to promote U.S. research in nuclear science and technology. By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, advancing U.S. energy security needs. A key component of the ATR NSUF effort is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation. This paper describes the strategy developed by the Idaho National Laboratory (INL) for identifying instrumentation needed for ATR irradiation tests and the program initiated to obtain these sensors. New sensors developed from this effort are identified, and the progress of other development efforts is summarized. As reported in this paper, INL researchers are currently involved in several tasks to deploy real-time length and flux detection sensors, and efforts have been initiated to develop a crack growth test rig. Tasks evaluating `advanced' technologies, such as fiber-optics based length detection and ultrasonic thermometers, are also underway. In addition, specialized sensors for real-time detection of temperature and thermal conductivity are not only being provided to NSUF reactors, but are also being provided to several international test reactors.
An Assessment of Integrated Health Management (IHM) Frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. Lybeck; M. Tawfik; L. Bond
In order to meet the ever increasing demand for energy, the United States nuclear industry is turning to life extension of existing nuclear power plants (NPPs). Economically ensuring the safe, secure, and reliable operation of aging nuclear power plants presents many challenges. The 2009 Light Water Reactor Sustainability Workshop identified online monitoring of active and structural components as essential to the better understanding and management of the challenges posed by aging nuclear power plants. Additionally, there is increasing adoption of condition-based maintenance (CBM) for active components in NPPs. These techniques provide a foundation upon which a variety of advanced onlinemore » surveillance, diagnostic, and prognostic techniques can be deployed to continuously monitor and assess the health of NPP systems and components. The next step in the development of advanced online monitoring is to move beyond CBM to estimating the remaining useful life of active components using prognostic tools. Deployment of prognostic health management (PHM) on the scale of a NPP requires the use of an integrated health management (IHM) framework - a software product (or suite of products) used to manage the necessary elements needed for a complete implementation of online monitoring and prognostics. This paper provides a thoughtful look at the desirable functions and features of IHM architectures. A full PHM system involves several modules, including data acquisition, system modeling, fault detection, fault diagnostics, system prognostics, and advisory generation (operations and maintenance planning). The standards applicable to PHM applications are indentified and summarized. A list of evaluation criteria for PHM software products, developed to ensure scalability of the toolset to an environment with the complexity of a NPP, is presented. Fourteen commercially available PHM software products are identified and classified into four groups: research tools, PHM system development tools, deployable architectures, and peripheral tools.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, A.M.; Marra, J.E.; Wilmarth, W.R.
2013-07-01
The Savannah River Site (SRS) is re-purposing its vast array of assets (including H Canyon - a nuclear chemical separation plant) to solve issues regarding advanced nuclear fuel cycle technologies, nuclear materials processing, packaging, storage and disposition. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into SRS facilities but also in other facilities in conjunction with on-goingmore » missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, a center for applied nuclear materials processing and engineering research has been established in SRS.« less
OECD/NEA Ongoing activities related to the nuclear fuel cycle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cornet, S.M.; McCarthy, K.; Chauvin, N.
2013-07-01
As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclearmore » systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)« less
NEET In-Pile Ultrasonic Sensor Enablement-FY 2012 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
JE Daw; JL Rempe; BR Tittmann
2012-09-01
Several Department Of Energy-Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development, Advanced Reactor Concepts, Light Water Reactor Sustainability, and Next Generation Nuclear Plant programs, are investigating new fuels and materials for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials when irradiated. The Nuclear Energy Enabling Technology (NEET) Advanced Sensors and Instrumentation (ASI) in-pile instrumentation development activities are focused upon addressing cross-cutting needs for DOE-NE irradiation testing by providing higher fidelity, real-time data, with increased accuracy and resolution from smaller, compact sensors that are lessmore » intrusive. Ultrasonic technologies offer the potential to measure a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes, under harsh irradiation test conditions. There are two primary issues associated with in-pile deployment of ultrasonic sensors. The first is transducer survivability. The ability of ultrasonic transducer materials to maintain their useful properties during an irradiation must be demonstrated. The second issue is signal processing. Ultrasonic testing is typically performed in a lab or field environment, where the sensor and sample are accessible. Due to the harsh nature of in-pile testing, and the range of measurements that are desired, an enhanced signal processing capability is needed to make in-pile ultrasonic sensors viable. This project addresses these technology deployment issues.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Alice M.; Marra, John E.; Wilmarth, William R.
2013-07-03
The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, radical view of SRS as a united endeavor for ''all things nuclear'' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with on-going missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The Department of Energy, Savannah River Operations Office, Savannah River Nuclear Solutions, the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key proposition of this initiative is to bridge the gap between promising transformational nuclear fuel cycle processing discoveries and large commercial-scale-technology deployment by leveraging SRS assets as facilities for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the research team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform research demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). Thus, the demonstration can be accomplished by leveraging the incremental cost of performing demonstrations without needing to cover the full operational cost of the facility. Current Center activities have been focused on integrating advanced safeguards monitoring technologies demonstrations into the SRS H-Canyon and advanced location technologies demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and customers as well as providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (as well as to offsite venues) so that future demonstrations can be done more efficiently and provide an opportunity to utilize these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs DOE-Nuclear Energy (DOE-NE) to advance the research for next generation fuel cycle technologies. The concept is to install processing equipment on frames. The frames are then positioned into an H-Canyon cell and testing in a relevant radiological environment involving prototypic radioactive materials can be performed.« less
Pointer, William David; Baglietto, Emilio
2016-05-01
Here, in the effort to reinvigorate innovation in the way we design, build, and operate the nuclear power generating stations of today and tomorrow, nothing can be taken for granted. Not even the seemingly familiar physics of boiling water. The Consortium for the Advanced Simulation of Light Water Reactors, or CASL, is focused on the deployment of advanced modeling and simulation capabilities to enable the nuclear industry to reduce uncertainties in the prediction of multi-physics phenomena and continue to improve the performance of today’s Light Water Reactors and their fuel. An important part of the CASL mission is the developmentmore » of a next generation thermal hydraulics simulation capability, integrating the history of engineering models based on experimental experience with the computing technology of the future.« less
Economic Conditions and Factors Affecting New Nuclear Power Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report documents work performed in support of the US Department of Energy Office of Nuclear Energy’s Advanced Small Modular Reactor (AdvSMR) program. The report presents information and results from economic analyses to describe current electricity market conditions and those key factors that may impact the deployment of AdvSMRs or any other new nuclear power plants. Thus, this report serves as a reference document for DOE as it moves forward with its plans to develop advanced reactors, including AdvSMRs. For the purpose of this analysis, information on electricity markets and nuclear power plant operating costs will be combined to examinemore » the current state of the nuclear industry and the process required to successfully move forward with new nuclear power in general and AdvSMRs in particular. The current electricity market is generally unfavorable to new nuclear construction, especially in deregulated markets with heavy competition from natural gas and subsidized renewables. The successful and profitable operation of a nuclear power plant (or any power plant) requires the rate at which the electricity is sold to be sufficiently greater than the cost to operate. The wholesale rates in most US markets have settled into values that provide profits for most operating nuclear power plants but are too low to support the added cost of capital recovery for new nuclear construction. There is a strong geographic dependence on the wholesale rate, with some markets currently able to support new nuclear construction. However, there is also a strong geographic dependence on pronuclear public opinion; the areas where power prices are high tend to have unfavorable views on the construction of new nuclear power plants. The use of government-backed incentives, such as subsidies, can help provide a margin to help justify construction projects that otherwise may not seem viable. Similarly, low interest rates for the project will also add a positive margin to the economic analysis. In both cases, the profitable price point is decreased, making more markets open to profitable entry. Overall, the economic attractiveness of a nuclear power construction project is not only a function of its own costs, but a function of the market into which it is deployed. Many of the market characteristics are out of the control of the potential nuclear power plant operators. The decision-making process for the power industry in general is complicated by the short-term market volatility in both the wholesale electricity market and the commodity (natural gas) market. Decisions based on market conditions today may be rendered null and void in six months. With a multiple-year lead time, nuclear power plants are acutely vulnerable to market corrections.« less
Lighting Studies for Fuelling Machine Deployed Visual Inspection Tool
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoots, Carl; Griffith, George
2015-04-01
Under subcontract to James Fisher Nuclear, Ltd., INL has been reviewing advanced vision systems for inspection of graphite in high radiation, high temperature, and high pressure environments. INL has performed calculations and proof-of-principle measurements of optics and lighting techniques to be considered for visual inspection of graphite fuel channels in AGR reactors in UK.
Submission of FeCrAl Feedstock for Support of AFC ATR-2 Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Barrett, Kristine E.; Sun, Zhiqian
The Advanced Test Reactor (ATR) is currently being used to test accident tolerant fuel (ATF) forms destined for commercial nuclear power plant deployment. One irradiation program using the ATR for ATF concepts, Accident Tolerant Fuel-2 (ATF-2), is a water loop irradiation test using miniaturized fuel pins as test articles. This complicated testing configuration requires a series of pre-test experiments and verification including a flowing loop autoclave test and a sensor qualification test (SQT) prior to full test train deployment within the ATR. In support of the ATF-2 irradiation program, Oak Ridge National Laboratory (ORNL) has supplied two different Generation IImore » FeCrAl alloys in rod stock form to Idaho National Laboratory (INL). These rods will be machined into dummy pins for deployment in the autoclave test and SQT. Post-test analysis of the dummy pins will provide initial insight into the performance of Generation II FeCrAl alloys in the ATF-2 irradiation experiment as well as within a commercial nuclear reactor.« less
Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.E.; Murray, A.M.; McGuire, P.W.
2013-07-01
The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in amore » relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). The demonstration can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current CANMPER activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing CANMPER with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future demonstrations is the use of H-Canyon to demonstrate new nuclear materials separations technologies critical for advancing the mission needs of three major program offices: DOE-EM, DOE-Nuclear Energy (DOE-NE), and the NNSA. Given the modular design of H-Canyon, the demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less
Bytes: Weapons of Mass Disruption
2002-04-01
advances compound the problems of protecting complex global infrastructures from attacks. How should the U.S. integrate the many disparate...deploy and sustain military forces.".16 According to the direst of information warfare theories , all computer systems are vulnerable to attack. The...Crisis Show of Force Punitive Strikes Armed Intervention Regional Conflict Regional War Global Conventional War Strategic Nuclear War IW & C2W area of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anheier, Norman C.; Suter, Jonathan D.; Qiao, Hong
2013-08-06
This report intends to support Department of Energy’s Office of Nuclear Energy (DOE-NE) Nuclear Energy Research and Development Roadmap and industry stakeholders by evaluating optical-based instrumentation and control (I&C) concepts for advanced small modular reactor (AdvSMR) applications. These advanced designs will require innovative thinking in terms of engineering approaches, materials integration, and I&C concepts to realize their eventual viability and deployability. The primary goals of this report include: 1. Establish preliminary I&C needs, performance requirements, and possible gaps for AdvSMR designs based on best available published design data. 2. Document commercial off-the-shelf (COTS) optical sensors, components, and materials in termsmore » of their technical readiness to support essential AdvSMR in-vessel I&C systems. 3. Identify technology gaps by comparing the in-vessel monitoring requirements and environmental constraints to COTS optical sensor and materials performance specifications. 4. Outline a future research, development, and demonstration (RD&D) program plan that addresses these gaps and develops optical-based I&C systems that enhance the viability of future AdvSMR designs. The development of clean, affordable, safe, and proliferation-resistant nuclear power is a key goal that is documented in the Nuclear Energy Research and Development Roadmap. This roadmap outlines RD&D activities intended to overcome technical, economic, and other barriers, which currently limit advances in nuclear energy. These activities will ensure that nuclear energy remains a viable component to this nation’s energy security.« less
Ship-Based Nuclear Energy Systems for Accelerating Developing World Socioeconomic Advance
NASA Astrophysics Data System (ADS)
Petroski, Robert; Wood, Lowell
2014-07-01
Technological, economic, and policy aspects of supplying energy to newly industrializing and developing countries using ship-deployed nuclear energy systems are described. The approach analyzed comprises nuclear installations of up to gigawatt scale deployed within currently mass-produced large ship hulls which are capable of flexibly supplying energy for electricity, water desalination and district heating-&-cooling with low latencies and minimized shoreside capital expenditures. Nuclear energy is uniquely suited for mobile deployment due to its combination of extraordinary energy density and high power density, which enable enormous supplies of energy to be deployed at extremely low marginal costs. Nuclear installations on ships also confer technological advantages by essentially eliminating risk from earthquakes, tsunamis, and floods; taking advantage of assured access to an effectively unlimited amount of cooling water, and involving minimal onshore preparations and commitments. Instances of floating nuclear power stations that have been proposed in the past, some of which are currently being pursued, have generally been based on conventional LWR technology, moreover without flexibility or completeness of power output options. We consider nuclear technology options for their applicability to the unique opportunities and challenges of a marine environment, with special attention given to low-pressure, high thermal margin systems with continuous and assured afterheat dissipation into the ambient seawater. Such systems appear promising for offering an exceptionally high degree of safety while using a maximally simple set of components. We furthermore consider systems tailored to Developing World contexts, which satisfy societal requirements beyond electrification, e.g., flexible sourcing of potable water and HVAC services, servicing time-varying user requirements, and compatibility with the full spectrum of local renewable energy supplies, specifically including those having intermittency characteristics. Consideration is directed to the relative economics of ship-based and land-based nuclear power stations, and the costs of undersea transmission lines and suitable moorings are discussed, as well as station-maintenance expenses. Potential cost savings from reduced seismic engineering, serialized production, and reduction/elimination of site-specific engineering are determined to be likely to enable large floating nuclear energy systems to be deployed at both significantly lower cost and with lower financial risk than comparable land-based systems. Such plants thus appear to be a compelling option for agilely supplying flexible energy-flows to developing regions, especially as they allow major components of the overhead costs and time-delays of large-scale energy systems to be avoided. Finally, the critical set of issues related to appropriately regulating and insuring floating nuclear power plants designed for export is examined. Approaches to ensuring adequate safety and environmental stewardship while properly allocating risks between system owners/operators and host countries of floating nuclear energy systems are discussed, along with possible pathways toward implementation. Robustness of exemplary nuclear energy systems from all forms of misuse, including materials diversion, is noted, thus ensuring suitability for complications-free, non-discriminatory global deployments. Availability of abundant, low-cost nuclear energy which can flexibly satisfy the full spectrum of energy demands of the economies of developing countries will inevitably result in significantly earlier and more environmentally-sound energy intensification of societies enjoying such advantages. This will help spur autocatalytic gains in human well-being and economic development rates similar to those seen in the developed world during the last two-thirds of a century, while avoiding some of the undesirable sideeffects often associated with those gains. Quantitative estimates of these considerations are offered.
Improvements to Nuclear Data and Its Uncertainties by Theoretical Modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Danon, Yaron; Nazarewicz, Witold; Talou, Patrick
2013-02-18
This project addresses three important gaps in existing evaluated nuclear data libraries that represent a significant hindrance against highly advanced modeling and simulation capabilities for the Advanced Fuel Cycle Initiative (AFCI). This project will: Develop advanced theoretical tools to compute prompt fission neutrons and gamma-ray characteristics well beyond average spectra and multiplicity, and produce new evaluated files of U and Pu isotopes, along with some minor actinides; Perform state-of-the-art fission cross-section modeling and calculations using global and microscopic model input parameters, leading to truly predictive fission cross-sections capabilities. Consistent calculations for a suite of Pu isotopes will be performed; Implementmore » innovative data assimilation tools, which will reflect the nuclear data evaluation process much more accurately, and lead to a new generation of uncertainty quantification files. New covariance matrices will be obtained for Pu isotopes and compared to existing ones. The deployment of a fleet of safe and efficient advanced reactors that minimize radiotoxic waste and are proliferation-resistant is a clear and ambitious goal of AFCI. While in the past the design, construction and operation of a reactor were supported through empirical trials, this new phase in nuclear energy production is expected to rely heavily on advanced modeling and simulation capabilities. To be truly successful, a program for advanced simulations of innovative reactors will have to develop advanced multi-physics capabilities, to be run on massively parallel super- computers, and to incorporate adequate and precise underlying physics. And all these areas have to be developed simultaneously to achieve those ambitious goals. Of particular interest are reliable fission cross-section uncertainty estimates (including important correlations) and evaluations of prompt fission neutrons and gamma-ray spectra and uncertainties.« less
The Nuclear Renaissance — Implications on Quantitative Nondestructive Evaluations
NASA Astrophysics Data System (ADS)
Matzie, Regis A.
2007-03-01
The world demand for energy is growing rapidly, particularly in developing countries that are trying to raise the standard of living for billions of people, many of whom do not even have access to electricity. With this increased energy demand and the high and volatile price of fossil fuels, nuclear energy is experiencing resurgence. This so-called nuclear renaissance is broad based, reaching across Asia, the United States, Europe, as well as selected countries in Africa and South America. Some countries, such as Italy, that have actually turned away from nuclear energy are reconsidering the advisability of this design. This renaissance provides the opportunity to deploy more advanced reactor designs that are operating today, with improved safety, economy, and operations. In this keynote address, I will briefly present three such advanced reactor designs in whose development Westinghouse is participating. These designs include the advanced passive PWR, AP1000, which recently received design certification for the US Nuclear Regulatory Commission; the Pebble Bed Modular reactor (PBMR) which is being demonstrated in South Africa; and the International Reactor Innovative and Secure (IRIS), which was showcased in the US Department of Energy's recently announced Global Nuclear Energy Partnership (GNEP), program. The salient features of these designs that impact future requirements on quantitative nondestructive evaluations will be discussed. Such features as reactor vessel materials, operating temperature regimes, and new geometric configurations will be described, and mention will be made of the impact on quantitative nondestructive evaluation (NDE) approaches.
Alert status of nuclear weapons
NASA Astrophysics Data System (ADS)
Kristensen, Hans M.
2017-11-01
Nuclear Alert Forces. Four nuclear-armed states deploy nuclear warheads on alert, ready to be used on relatively short notice: United States, Russia, France and Britain. Combined, the four countries deploy an estimated 1,869 nuclear alert warheads. Russia and the United States deploy 1,749 alert warheads combined, or 94% of all alert warheads. Despite some debate about possible need to increase readiness of nuclear forces (China, Pakistan), the five other nuclear-armed states (China, Pakistan, India, Israel and North Korea) are thought to store their warheads separate from launchers under normal circumstances. The overall number of alert warheads has remained relatively stable during the past five years.
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Roberts, Jeremy A.; Unruh, Troy C.; McGregor, Douglas S.
2018-01-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Measurement of the neutron-flux distribution within the reactor core provides a more complete understanding of the operating conditions in the reactor than typical ex-core sensors. Micro-Pocket Fission Detectors have been developed and tested previously but have been limited to single-node operation and have utilized highly specialized designs. The development of a widely deployable, multi-node Micro-Pocket Fission Detector assembly will enhance nuclear research capabilities. A modular, four-node Micro-Pocket Fission Detector array was designed, fabricated, and tested at Kansas State University. The array was constructed from materials that do not significantly perturb the neutron flux in the reactor core. All four sensor nodes were equally spaced axially in the array to span the fuel-region of the reactor core. The array was filled with neon gas, serving as an ionization medium in the small cavities of the Micro-Pocket Fission Detectors. The modular design of the instrument facilitates the testing and deployment of numerous sensor arrays. The unified design drastically improved device ruggedness and simplified construction from previous designs. Five 8-mm penetrations in the upper grid plate of the Kansas State University TRIGA Mk. II research nuclear reactor were utilized to deploy the array between fuel elements in the core. The Micro-Pocket Fission Detector array was coupled to an electronic support system which has been specially developed to support pulse-mode operation. The Micro-Pocket Fission Detector array composed of four sensors was used to monitor local neutron flux at a constant reactor power of 100 kWth at different axial locations simultaneously. The array was positioned at five different radial locations within the core to emulate the deployment of multiple arrays and develop a 2-dimensional measurement of neutron flux in the reactor core.
Enterprise SRS: leveraging ongoing operations to advance radioactive waste management technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Alice M.; Wilmarth, William; Marra, John E.
2013-07-01
The Savannah River Site (SRS) is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R and D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials. (authors)« less
ARC integration into the NEAMS Workbench
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.; Gaughan, N.; Kim, T.
2017-01-01
One of the objectives of the Nuclear Energy Advanced Modeling and Simulation (NEAMS) Integration Product Line (IPL) is to facilitate the deployment of the high-fidelity codes developed within the program. The Workbench initiative was launched in FY-2017 by the IPL to facilitate the transition from conventional tools to high fidelity tools. The Workbench provides a common user interface for model creation, real-time validation, execution, output processing, and visualization for integrated codes.
Nuclear electric propulsion development and qualification facilities
NASA Technical Reports Server (NTRS)
Dutt, D. S.; Thomassen, K.; Sovey, J.; Fontana, Mario
1991-01-01
This paper summarizes the findings of a Tri-Agency panel consisting of members from the National Aeronautics and Space Administration (NASA), U.S. Department of Energy (DOE), and U.S. Department of Defense (DOD) that were charged with reviewing the status and availability of facilities to test components and subsystems for megawatt-class nuclear electric propulsion (NEP) systems. The facilities required to support development of NEP are available in NASA centers, DOE laboratories, and industry. However, several key facilities require significant and near-term modification in order to perform the testing required to meet a 2014 launch date. For the higher powered Mars cargo and piloted missions, the priority established for facility preparation is: (1) a thruster developmental testing facility, (2) a thruster lifetime testing facility, (3) a dynamic energy conversion development and demonstration facility, and (4) an advanced reactor testing facility (if required to demonstrate an advanced multiwatt power system). Facilities to support development of the power conditioning and heat rejection subsystems are available in industry, federal laboratories, and universities. In addition to the development facilities, a new preflight qualifications and acceptance testing facility will be required to support the deployment of NEP systems for precursor, cargo, or piloted Mars missions. Because the deployment strategy for NEP involves early demonstration missions, the demonstration of the SP-100 power system is needed by the early 2000's.
ENTERPRISE SRS: LEVERAGING ONGOING OPERATIONS TO ADVANCE RADIOACTIVE WASTE MANAGEMENT TECHNOLOGIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, A.; Wilmarth, W.; Marra, J.
2013-05-16
The Savannah River Site (SRS) is repurposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for “all things nuclear” as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate theirmore » technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established a center for applied nuclear materials processing and engineering research (hereafter referred to as the Center). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by using SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. The Center will coordinate the demonstration of R&D technologies and serve as the interface between the engineering-scale demonstration and the R&D programs, essentially providing cradle-to-grave support to the R&D team during the demonstration. While the initial focus of the Center will be on the effective use of SRS assets for these demonstrations, the Center also will work with research teams to identify opportunities to perform R&D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE’s critical nuclear material missions (e.g., processing in H-Canyon and plutonium storage in K-Area). These demonstrations can be accomplished in a more cost-effective manner through the use of existing facilities in conjunction with ongoing missions. Essentially, the R&D program would not need to pay the full operational cost of a facility, just the incremental cost of performing the demonstration. Current Center activities have been focused on integrating advanced safeguards monitoring technology demonstrations into the SRS H-Canyon and advanced location technology demonstrations into K-Area Materials Storage. These demonstrations are providing valuable information to researchers and program owners. In addition these demonstrations are providing the Center with an improved protocol for demonstration management that can be exercised across the entire SRS (and to offsite venues) to ensure that future demonstrations are done efficiently and provide an opportunity to use these unique assets for multiple purposes involving national laboratories, academia, and commercial entities. Key among the envisioned future use of SRS assets is the demonstration of new radioactive waste management technologies critical for advancing the mission needs of the DOE-EM program offices in their efforts to cleanup 107 sites across the United States. Of particular interest is the demonstration of separations technologies in H-Canyon. Given the modular design of H-Canyon, those demonstrations would be accomplished using a process frame. The demonstration equipment would be installed on the process frame and that frame would then be positioned into an H-Canyon cell so that the demonstration is performed in a radiological environment involving prototypic nuclear materials.« less
47 CFR 51.230 - Presumption of acceptability for deployment of an advanced services loop technology.
Code of Federal Regulations, 2010 CFR
2010-10-01
... an advanced services loop technology. 51.230 Section 51.230 Telecommunication FEDERAL COMMUNICATIONS... Carriers § 51.230 Presumption of acceptability for deployment of an advanced services loop technology. (a) An advanced services loop technology is presumed acceptable for deployment under any one of the...
A method to select human-system interfaces for nuclear power plants
Hugo, Jacques Victor; Gertman, David Ira
2015-10-19
The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less
Exploring for oil with nuclear physics
NASA Astrophysics Data System (ADS)
Mauborgne, Marie-Laure; Allioli, Françoise; Stoller, Chris; Evans, Mike; Manclossi, Mauro; Nicoletti, Luisa
2017-09-01
Oil↓eld service companies help identify and assess reserves and future production for oil and gas reservoirs, by providing petrophysical information on rock formations. Some parameters of interest are the fraction of pore space in the rock, the quantity of oil or gas contained in the pores, the lithology or composition of the rock matrix, and the ease with which 'uids 'ow through the rock, i.e. its permeability. Downhole logging tools acquire various measurements based on electromagnetic, acoustic, magnetic resonance and nuclear physics to determine properties of the subsurface formation surrounding the wellbore. This introduction to nuclear measurements applied in the oil and gas industry reviews the most advanced nuclear measurements currently in use, including capture and inelastic gamma ray spectroscopy, neutron-gamma density, thermal neutron capture cross section, natural gamma ray, gamma-gamma density, and neutron porosity. A brief description of the technical challenges associated with deploying nuclear technology in the extreme environmental conditions of an oil well is also presented.
Nuclear Forensics and Attribution: A National Laboratory Perspective
NASA Astrophysics Data System (ADS)
Hall, Howard L.
2008-04-01
Current capabilities in technical nuclear forensics - the extraction of information from nuclear and/or radiological materials to support the attribution of a nuclear incident to material sources, transit routes, and ultimately perpetrator identity - derive largely from three sources: nuclear weapons testing and surveillance programs of the Cold War, advances in analytical chemistry and materials characterization techniques, and abilities to perform ``conventional'' forensics (e.g., fingerprints) on radiologically contaminated items. Leveraging that scientific infrastructure has provided a baseline capability to the nation, but we are only beginning to explore the scientific challenges that stand between today's capabilities and tomorrow's requirements. These scientific challenges include radically rethinking radioanalytical chemistry approaches, developing rapidly deployable sampling and analysis systems for field applications, and improving analytical instrumentation. Coupled with the ability to measure a signature faster or more exquisitely, we must also develop the ability to interpret those signatures for meaning. This requires understanding of the physics and chemistry of nuclear materials processes well beyond our current level - especially since we are unlikely to ever have direct access to all potential sources of nuclear threat materials.
What Happens to Deterrence as Nuclear Weapons Decrease Toward Zero?
NASA Astrophysics Data System (ADS)
Drell, Sidney
2011-04-01
Steps reducing reliance on deployed nuclear weapons en route to zero will be discussed. They include broadly enhancing cooperation and transparency agreements beyond the provisions for verifying limits on deployed strategic nuclear warheads and delivery systems in the New START treaty. Two questions that will be addressed are: What conditions would have to be established in order to maintain strategic stability among nations as nuclear weapons recede in importance? What would nuclear deterrence be like in a world without nuclear weapons?
Radiation Detection for Homeland Security Applications
NASA Astrophysics Data System (ADS)
Ely, James
2008-05-01
In the past twenty years or so, there have been significant changes in the strategy and applications for homeland security. Recently there have been significant at deterring and interdicting terrorists and associated organizations. This is a shift in the normal paradigm of deterrence and surveillance of a nation and the `conventional' methods of warfare to the `unconventional' means that terrorist organizations resort to. With that shift comes the responsibility to monitor international borders for weapons of mass destruction, including radiological weapons. As a result, countries around the world are deploying radiation detection instrumentation to interdict the illegal shipment of radioactive material crossing international borders. These efforts include deployments at land, rail, air, and sea ports of entry in the US and in European and Asian countries. Radioactive signatures of concern include radiation dispersal devices (RDD), nuclear warheads, and special nuclear material (SNM). Radiation portal monitors (RPMs) are used as the main screening tool for vehicles and cargo at borders, supplemented by handheld detectors, personal radiation detectors, and x-ray imaging systems. This talk will present an overview of radiation detection equipment with emphasis on radiation portal monitors. In the US, the deployment of radiation detection equipment is being coordinated by the Domestic Nuclear Detection Office within the Department of Homeland Security, and a brief summary of the program will be covered. Challenges with current generation systems will be discussed as well as areas of investigation and opportunities for improvements. The next generation of radiation portal monitors is being produced under the Advanced Spectroscopic Portal program and will be available for deployment in the near future. Additional technologies, from commercially available to experimental, that provide additional information for radiation screening, such as density imaging equipment, will be reviewed. Opportunities for further research and development to improve the current equipment and methodologies for radiation detection for the important task of homeland security will be the final topic to be discussed.
Reactor power system deployment and startup
NASA Technical Reports Server (NTRS)
Wetch, J. R.; Nelin, C. J.; Britt, E. J.; Klein, G.
1985-01-01
This paper addresses issues that should receive further examination in the near-term as concept selection for development of a U.S. space reactor power system is approached. The issues include: the economics, practicality and system reliability associated with transfer of nuclear spacecraft from low earth shuttle orbits to operational orbits, via chemical propulsion versus nuclear electric propulsion; possible astronaut supervised reactor and nuclear electric propulsion startup in low altitude Shuttle orbit; potential deployment methods for nuclear powered spacecraft from Shuttle; the general public safety of low altitude startup and nuclear safe and disposal orbits; the question of preferred reactor power level; and the question of frozen versus molten alkali metal coolant during launch and deployment. These issues must be considered now because they impact the SP-100 concept selection, power level selection, weight and size limits, use of deployable radiators, reliability requirements, and economics, as well as the degree of need for and the urgency of developing space reactor power systems.
GAIN Technology Workshops Summary Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann
National and global demand for nuclear energy is increasing and United States (U.S.) global leadership is eroding. There is a sense of urgency with respect to the deployment of the innovative nuclear energy technologies. The Gateway for Accelerated Innovation in Nuclear (GAIN) initiative is based on the simultaneous achievement of three strategic goals. The first is maintaining global technology leadership within the U.S. Department of Energy (DOE). The second is enabling global industrial leadership for nuclear vendors and suppliers. The third is focused on utility optimization of nuclear energy within the clean energy portfolio. An effective public-private partnership is requiredmore » to achieve these goals. DOEs recognizes the recent sense of urgency new developers and investors have in getting their concepts to market. They know that time to market for nuclear technology takes too long and the facilities needed to conduct the necessary research, development and demonstration (RD&D) activities are very expensive to develop and maintain. Early technologies, in the lower technology readiness levels (TRL) need materials testing, analysis, modeling, code development, etc., most of which currently exists in the DOE national laboratory system. However, mature technologies typically need large component testing and demonstration facilities, which are expensive and long-lead efforts. By understanding the needs of advanced nuclear technology developers, GAIN will connect DOE national laboratory capabilities (e.g., facilities, expertise, materials, and data) with industry RD&D needs. In addition, GAIN is working with the Nuclear Regulatory Commission (NRC) to streamline processes and increase understanding of the licensing requirements for advanced reactors.« less
Advanced Small Modular Reactor Economics Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrison, Thomas J.
2014-10-01
This report describes the data collection work performed for an advanced small modular reactor (AdvSMR) economics analysis activity at the Oak Ridge National Laboratory. The methodology development and analytical results are described in separate, stand-alone documents as listed in the references. The economics analysis effort for the AdvSMR program combines the technical and fuel cycle aspects of advanced (non-light water reactor [LWR]) reactors with the market and production aspects of SMRs. This requires the collection, analysis, and synthesis of multiple unrelated and potentially high-uncertainty data sets from a wide range of data sources. Further, the nature of both economic andmore » nuclear technology analysis requires at least a minor attempt at prediction and prognostication, and the far-term horizon for deployment of advanced nuclear systems introduces more uncertainty. Energy market uncertainty, especially the electricity market, is the result of the integration of commodity prices, demand fluctuation, and generation competition, as easily seen in deregulated markets. Depending on current or projected values for any of these factors, the economic attractiveness of any power plant construction project can change yearly or quarterly. For long-lead construction projects such as nuclear power plants, this uncertainty generates an implied and inherent risk for potential nuclear power plant owners and operators. The uncertainty in nuclear reactor and fuel cycle costs is in some respects better understood and quantified than the energy market uncertainty. The LWR-based fuel cycle has a long commercial history to use as its basis for cost estimation, and the current activities in LWR construction provide a reliable baseline for estimates for similar efforts. However, for advanced systems, the estimates and their associated uncertainties are based on forward-looking assumptions for performance after the system has been built and has achieved commercial operation. Advanced fuel materials and fabrication costs have large uncertainties based on complexities of operation, such as contact-handled fuel fabrication versus remote handling, or commodity availability. Thus, this analytical work makes a good faith effort to quantify uncertainties and provide qualifiers, caveats, and explanations for the sources of these uncertainties. The overall result is that this work assembles the necessary information and establishes the foundation for future analyses using more precise data as nuclear technology advances.« less
Comparison of Propulsion Options for Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Drake, Bret G.; McGuire, Melissa L.; McCarty, Steven L.
2018-01-01
NASA continues to advance plans to extend human presence beyond low-Earth orbit leading to human exploration of Mars. The plans being laid out follow an incremental path, beginning with initial flight tests followed by deployment of a Deep Space Gateway (DSG) in cislunar space. This Gateway, will serve as the initial transportation node for departing and returning Mars spacecraft. Human exploration of Mars represents the next leap for humankind because it will require leaving Earth on a long mission with very limited return, rescue, or resupply capabilities. Although Mars missions are long, approaches and technologies are desired which can reduce the time that the crew is away from Earth. This paper builds off past analyses of NASA's exploration strategy by providing more detail on the performance of alternative in-space transportation options with an emphasis on reducing total mission duration. Key options discussed include advanced chemical, nuclear thermal, nuclear electric, solar electric, as well as an emerging hybrid propulsion system which utilizes a combination of both solar electric and chemical propulsion.
How I Learned to Stop Worrying and Love 3D Printing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pete, Cassandra; Morrell, Sean; Maloney, Jillian
The nuclear nonproliferation regime has many robust measures in place to prevent the acquisition of a nuclear weapon, a key pillar of which is denying or preventing the transfer of technology to specific actors. Additive manufacturing (AM) is a rapidly advancing, not fully understood technology that could dramatically alter the landscape of the safeguarded fuel cycle. However, many of the benefits of AM could also be used to circumvent or defeat current safeguard practices and controls. Because the AM capability is not fully understood, research and integration is necessary early in the technology development stages in order for nonproliferation tomore » remain on the leading edge of discovery and not the tail end of technology deployment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gehin, Jess C; Oakley, Brian; Worrall, Andrew
2015-01-01
Abstract One of the key objectives of the U.S. Department of Energy (DOE) Nuclear Energy R&D Roadmap is the development of sustainable nuclear fuel cycles that can improve natural resource utilization and provide solutions to the management of nuclear wastes. Recently, an evaluation and screening (E&S) of fuel cycle systems has been conducted to identify those options that provide the best opportunities for obtaining such improvements and also to identify the required research and development activities that can support the development of advanced fuel cycle options. In order to evaluate and screen the E&S study included nine criteria including Developmentmore » and Deployment Risk (D&DR). More specifically, this criterion was represented by the following metrics: Development time, development cost, deployment cost from prototypic validation to first-of-a-kind commercial, compatibility with the existing infrastructure, existence of regulations for the fuel cycle and familiarity with licensing, and existence of market incentives and/or barriers to commercial implementation of fuel cycle processes. Given the comprehensive nature of the study, a systematic approach was needed to determine metric data for the D&DR criterion, and is presented here. As would be expected, the Evaluation Group representing the once-through use of uranium in thermal reactors is always the highest ranked fuel cycle Evaluation Group for this D&DR criterion. Evaluation Groups that consist of once-through fuel cycles that use existing reactor types are consistently ranked very high. The highest ranked limited and continuous recycle fuel cycle Evaluation Groups are those that recycle Pu in thermal reactors. The lowest ranked fuel cycles are predominately continuous recycle single stage and multi-stage fuel cycles that involve TRU and/or U-233 recycle.« less
Idaho National Laboratory Research & Development Impacts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stricker, Nicole
Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and governmentmore » agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.« less
Review of the technical bases of 40 CFR Part 190.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, John E.; McMahon, Kevin A.; Siegel, Malcolm Dean
2010-07-01
The dose limits for emissions from the nuclear fuel cycle were established by the Environmental Protection Agency in 40 CFR Part 190 in 1977. These limits were based on assumptions regarding the growth of nuclear power and the technical capabilities of decontamination systems as well as the then-current knowledge of atmospheric dispersion and the biological effects of ionizing radiation. In the more than thirty years since the adoption of the limits, much has changed with respect to the scale of nuclear energy deployment in the United States and the scientific knowledge associated with modeling health effects from radioactivity release. Sandiamore » National Laboratories conducted a study to examine and understand the methodologies and technical bases of 40 CFR 190 and also to determine if the conclusions of the earlier work would be different today given the current projected growth of nuclear power and the advances in scientific understanding. This report documents the results of that work.« less
Application of Robotics in Decommissioning and Decontamination - 12536
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banford, Anthony; Kuo, Jeffrey A.; Bowen, R.A.
Decommissioning and dismantling of nuclear facilities is a significant challenge worldwide and one which is growing in size as more plants reach the end of their operational lives. The strategy chosen for individual projects varies from the hands-on approach with significant manual intervention using traditional demolition equipment at one extreme to bespoke highly engineered robotic solutions at the other. The degree of manual intervention is limited by the hazards and risks involved, and in some plants are unacceptable. Robotic remote engineering is often viewed as more expensive and less reliable than manual approaches, with significant lead times and capital expenditure.more » However, advances in robotics and automation in other industries offer potential benefits for future decommissioning activities, with the high probability of reducing worker exposure and other safety risks as well as reducing the schedule and costs required to complete these activities. Some nuclear decommissioning tasks and facility environments are so hazardous that they can only be accomplished by exclusive use of robotic and remote intervention. Less hazardous tasks can be accomplished by manual intervention and the use of PPE. However, PPE greatly decreases worker productivity and still exposes the worker to both risk and dose making remote operation preferable to achieve ALARP. Before remote operations can be widely accepted and deployed, there are some economic and technological challenges that must be addressed. These challenges will require long term investment commitments in order for technology to be: - Specifically developed for nuclear applications; - At a sufficient TRL for practical deployment; - Readily available as a COTS. Tremendous opportunities exist to reduce cost and schedule and improve safety in D and D activities through the use of robotic and/or tele-operated systems. - Increasing the level of remote intervention reduces the risk and dose to an operator. Better environmental information identifies hazards, which can be assessed, managed and mitigated. - Tele-autonomous control in a congested unstructured environment is more reliable compared to a human operator. Advances in Human Machine Interfaces contribute to reliability and task optimization. Use of standardized dexterous manipulators and COTS, including standardized communication protocols reduces project time scales. - The technologies identified, if developed to a sufficient TRL would all contribute to cost reductions. Additionally, optimizing a project's position on a Remote Intervention Scale, a Bespoke Equipment Scale and a Tele-autonomy Scale would provide cost reductions from the start of a project. Of the technologies identified, tele-autonomy is arguably the most significant, because this would provide a fundamental positive change for robotic control in the nuclear industry. The challenge for technology developers is to develop versatile robotic technology that can be economically deployed to a wide range of future D and D projects and industrial sectors. The challenge for facility owners and project managers is to partner with the developers to provide accurate systems requirements and an open and receptive environment for testing and deployment. To facilitate this development and deployment effort, the NNL and DOE have initiated discussions to explore a collaborative R and D program that would accelerate development and support the optimum utilization of resources. (authors)« less
Deploying advanced public transportation systems in Birmingham
DOT National Transportation Integrated Search
2003-08-01
Advanced Public Transportation Systems (APTS) technologies have been deployed by many urban transit systems in order to improve efficiency, reduce operating costs, and improve service quality. The majority of : these deployments, however, have been i...
Nuclear obligations: Nuremberg law, nuclear weapons, and protest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burroughs, J.R.
1991-01-01
Nuclear weapons use and deployment and nonviolent anti-nuclear protests are evaluated. Use of nuclear weapons would constitute war crimes and crimes against humanity as defined in both the Nuremberg Charter and Allied Control Council Law No. 10 and applied by the International Military Tribunal and other Nuremberg courts. Strategic and atomic bombing during World War 2 did not set a precedent for use of nuclear weapons. The consequentialist argument for World War 2 bombing fails and the bombing has also been repudiated by codification of the law of war in Protocol 1 to the 1949 Geneva Conventions. The legality ofmore » deploying nuclear weapons as instruments of geopolitical policy is questionable when measured against the Nuremberg proscription of planning and preparation of aggressive war, war crimes, and crimes against humanity and the United Nations Charter's proscription of aggressive threat of force. While states' practice of deploying the weapons and the arms-control treaties that regulate but do not prohibit mere possession provide some support for legality, those treaties recognize the imperative of preventing nuclear war, and the Nuclear Non-Proliferation Treaty commits nuclear-armed states to good-faith negotiation of nuclear disarmament.« less
Status Report on Efforts to Enhance Instrumentation to Support Advanced Test Reactor Irradiations
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Rempe; D. Knudson; J. Daw
2014-01-01
The Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF) in April 2007 to support the growth of nuclear science and technology in the United States (US). By attracting new research users - universities, laboratories, and industry - the ATR NSUF facilitates basic and applied nuclear research and development, further advancing the nation's energy security needs. A key component of the ATR NSUF effort at the Idaho National Laboratory (INL) is to design, develop, and deploy new in-pile instrumentation techniques that are capable of providing real-time measurements of key parameters during irradiation.more » To address this need, an assessment of instrumentation available and under-development at other test reactors was completed. Based on this initial review, recommendations were made with respect to what instrumentation is needed at the ATR, and a strategy was developed for obtaining these sensors. In 2009, a report was issued documenting this program’s strategy and initial progress toward accomplishing program objectives. Since 2009, annual reports have been issued to provide updates on the program strategy and the progress made on implementing the strategy. This report provides an update reflecting progress as of January 2014.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hugo, Jacques Victor; Gertman, David Ira
The new generation of nuclear power plants (NPPs) will likely make use of state-of-the-art technologies in many areas of the plant. The analysis, design, and selection of advanced human–system interfaces (HSIs) constitute an important part of power plant engineering. Designers need to consider the new capabilities afforded by these technologies in the context of current regulations and new operational concepts, which is why they need a more rigorous method by which to plan the introduction of advanced HSIs in NPP work areas. Much of current human factors research stops at the user interface and fails to provide a definitive processmore » for integration of end user devices with instrumentation and control (I&C) and operational concepts. The current lack of a clear definition of HSI technology, including the process for integration, makes characterization and implementation of new and advanced HSIs difficult. This paper describes how new design concepts in the nuclear industry can be analyzed and how HSI technologies associated with new industrial processes might be considered. Furthermore, it also describes a basis for an understanding of human as well as technology characteristics that could be incorporated into a prioritization scheme for technology selection and deployment plans.« less
Requirements Definition for ORNL Trusted Corridors Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Randy M; Hill, David E; Smith, Cyrus M
2008-02-01
The ORNL Trusted Corridors Project has several other names: SensorNet Transportation Pilot; Identification and Monitoring of Radiation (in commerce) Shipments (IMR(ic)S); and Southeastern Transportation Corridor Pilot (SETCP). The project involves acquisition and analysis of transportation data at two mobile and three fixed inspection stations in five states (Kentucky, Mississippi, South Carolina, Tennessee, and Washington DC). Collaborators include the State Police organizations that are responsible for highway safety, law enforcement, and incident response. The three states with fixed weigh-station deployments (KY, SC, TN) are interested in coordination of this effort for highway safety, law enforcement, and sorting/targeting/interdiction of potentially non-compliant vehicles/persons/cargo.more » The Domestic Nuclear Detection Office (DNDO) in the U.S. Department of Homeland Security (DHS) is interested in these deployments, as a Pilot test (SETCP) to identify Improvised Nuclear Devices (INDs) in highway transport. However, the level of DNDO integration among these state deployments is presently uncertain. Moreover, DHS issues are considered secondary by the states, which perceive this work as an opportunity to leverage these (new) dual-use technologies for state needs. In addition, present experience shows that radiation detectors alone cannot detect DHS-identified IND threats. Continued SETCP success depends on the level of integration of current state/local police operations with the new DHS task of detecting IND threats, in addition to emergency preparedness and homeland security. This document describes the enabling components for continued SETCP development and success, including: sensors and their use at existing deployments (Section 1); personnel training (Section 2); concept of operations (Section 3); knowledge discovery from the copious data (Section 4); smart data collection, integration and database development, advanced algorithms for multiple sensors, and network communications (Section 5); and harmonization of local, state, and Federal procedures and protocols (Section 6).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, Matt; Hamilton, Chris
This report provides supplemental information to the assessment of target markets provided in Appendix A of the 2012 Next Generation Nuclear Plant (NGNP) Industry Alliance (NIA) business plan [NIA 2012] for deployment of High Temperature Gas-Cooled Reactors (HTGRs) in the 2025 – 2050 time frame. This report largely reiterates the [NIA 2012] assessment for potential deployment of 400 to 800 HTGR modules (100 to 200 HTGR plants with 4 reactor modules) in the 600-MWt class in North America by 2050 for electricity generation, co-generation of steam and electricity, oil sands operations, hydrogen production, and synthetic fuels production (e.g., coal tomore » liquids). As the result of increased natural gas supply from hydraulic fracturing, the current and historically low prices of natural gas remain a significant barrier to deployment of HTGRs and other nuclear reactor concepts in the U.S. However, based on U.S. Department of Energy (DOE) Energy Information Agency (EIA) data, U.S. natural gas prices are expected to increase by the 2030 – 2040 timeframe when a significant number of HTGR modules could be deployed. An evaluation of more recent EIA 2013 data confirms the assumptions in [NIA 2012] of future natural gas prices in the range of approximately $7/MMBtu to $10/MMBtu during the 2030 – 2040 timeframe. Natural gas prices in this range will make HTGR energy prices competitive with natural gas, even in the absence of carbon-emissions penalties. Exhibit ES-1 presents the North American projections in each market segment including a characterization of the market penetration logic. Adjustments made to the 2012 data (and reflected in Exhibit ES-1) include normalization to the slightly larger 625MWt reactor module, segregation between steam cycle and more advanced (higher outlet temperature) modules, and characterization of U.S. synthetic fuel process applications as a separate market segment.« less
2017-02-21
missiles; cruise missiles; and gravity bombs . In contrast with the longer-range “strategic” nuclear weapons, these weapons had a lower profile in policy...States sought to deploy dual-capable aircraft and nuclear bombs at bases on the territories of NATO members in eastern Europe. Neither NATO, as an...ballistic missiles; cruise missiles; and gravity bombs . The United States deployed these weapons with its troops in the field, aboard aircraft, on
The ADVANCE project : formal evaluation of the targeted deployment. Volume 2
DOT National Transportation Integrated Search
1997-01-01
This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabharwall, Piyush; O'Brien, James E.; McKellar, Michael G.
2015-03-01
Hybrid energy system research has the potential to expand the application for nuclear reactor technology beyond electricity. The purpose of this research is to reduce both technical and economic risks associated with energy systems of the future. Nuclear hybrid energy systems (NHES) mitigate the variability of renewable energy sources, provide opportunities to produce revenue from different product streams, and avoid capital inefficiencies by matching electrical output to demand by using excess generation capacity for other purposes when it is available. An essential step in the commercialization and deployment of this advanced technology is scaled testing to demonstrate integrated dynamic performancemore » of advanced systems and components when risks cannot be mitigated adequately by analysis or simulation. Further testing in a prototypical environment is needed for validation and higher confidence. This research supports the development of advanced nuclear reactor technology and NHES, and their adaptation to commercial industrial applications that will potentially advance U.S. energy security, economy, and reliability and further reduce carbon emissions. Experimental infrastructure development for testing and feasibility studies of coupled systems can similarly support other projects having similar developmental needs and can generate data required for validation of models in thermal energy storage and transport, energy, and conversion process development. Experiments performed in the Systems Integration Laboratory will acquire performance data, identify scalability issues, and quantify technology gaps and needs for various hybrid or other energy systems. This report discusses detailed scaling (component and integrated system) and heat transfer figures of merit that will establish the experimental infrastructure for component, subsystem, and integrated system testing to advance the technology readiness of components and systems to the level required for commercial application and demonstration under NHES.« less
Evaluation of advanced air bag deployment algorithm performance using event data recorders.
Gabler, Hampton C; Hinch, John
2008-10-01
This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments.
Evaluation of Advanced Air Bag Deployment Algorithm Performance using Event Data Recorders
Gabler, Hampton C.; Hinch, John
2008-01-01
This paper characterizes the field performance of occupant restraint systems designed with advanced air bag features including those specified in the US Federal Motor Vehicle Safety Standard (FMVSS) No. 208 for advanced air bags, through the use of Event Data Recorders (EDRs). Although advanced restraint systems have been extensively tested in the laboratory, we are only beginning to understand the performance of these systems in the field. Because EDRs record many of the inputs to the advanced air bag control module, these devices can provide unique insights into the characteristics of field performance of air bags. The study was based on 164 advanced air bag cases extracted from NASS/CDS 2002-2006 with associated EDR data. In this dataset, advanced driver air bags were observed to deploy with a 50% probability at a longitudinal delta-V of 9 mph for the first stage, and at 26 mph for both inflator stages. In general, advanced air bag performance was as expected, however, the study identified cases of air bag deployments at delta-Vs as low as 3-4 mph, non-deployments at delta-Vs over 26 mph, and possible delayed air bag deployments. PMID:19026234
Structural materials issues for the next generation fission reactors
NASA Astrophysics Data System (ADS)
Chant, I.; Murty, K. L.
2010-09-01
Generation-IV reactor design concepts envisioned thus far cater to a common goal of providing safer, longer lasting, proliferation-resistant, and economically viable nuclear power plants. The foremost consideration in the successful development and deployment of Gen-W reactor systems is the performance and reliability issues involving structural materials for both in-core and out-of-core applications. The structural materials need to endure much higher temperatures, higher neutron doses, and extremely corrosive environments, which are beyond the experience of the current nuclear power plants. Materials under active consideration for use in different reactor components include various ferritic/martensitic steels, austenitic stainless steels, nickel-base superalloys, ceramics, composites, etc. This article addresses the material requirements for these advanced fission reactor types, specifically addressing structural materials issues depending on the specific application areas.
47 CFR 51.233 - Significant degradation of services caused by deployment of advanced services.
Code of Federal Regulations, 2010 CFR
2010-10-01
... deployment of advanced services. 51.233 Section 51.233 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... relevant state commission that a particular technology deployment is causing the significant degradation..., the relevant state commission, must be supported with specific and verifiable information. (d) Where a...
Planning U.S. General Purpose Forces: The Theater Nuclear Forces
1977-01-01
usefulness in combat. All U.S. nuclear weapons deployed in Europe are fitted with Permissive Action Links (PAL), coded devices designed to impede...may be proposed. The Standard Missile 2, the Harpoon missile, the Mk48 tor- pedo , and the SUBROC anti-submarine rocket are all being considered for...Permissive Action Link . A coded device attached to nuclear weapons deployed abroad that impedes the unauthorized arming or firing of the weapon. Pershing
GEM*STAR: Time for an Alternative Way Forward
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2011-10-01
The presumption that nuclear reactors will retain their role in global energy production is constantly being challenged - even more so following recent events at Fukushima. Nuclear energy, despite being ``green,'' has inexorably been coupled in the public mind with three paramount concerns: safety, weapons proliferation, and waste (and then ultimately cost). Over the past four decades, the safety of deployed fleets has greatly improved, yet the capital and political costs of a ``nuclear energy option'' appear insurmountable in several countries. The US approach to civilian nuclear energy has become deeply entrenched, first through choices made by the military, and then by the deployed nuclear reactor fleet. This extends to the research agencies as well, to the point where basic sciences and nuclear energy operate in separate spheres. But technologies and priorities have changed, and the time has arrived where a transformative re-think of nuclear energy is not only possible, but urgent. And nuclear physicists are uniquely positioned to accomplish this. This talk will show that by asking, and answering,``what would an accelerator-driven civilian nuclear energy program look like,'' ADNA Corporation's GEM*STAR design directly addresses all three fundamental concerns: safety, proliferation, and waste - and also the final hurdle: cost. GEM*STAR is not an ``add-on'' (to either Project-X, or GEN III+), but rather a base-line energy production capacity, for either electricity or transport fuel production. It integrates and advances the molten-salt reactor technology developed at ORNL, the MW beam accelerator technologies developed by basic sciences, and a reactor/target design optimized for accelerator driven-systems. The results include: the ability to use LWR spent fuel without reprocessing or additional waste; the ability to use natural uranium; no critical mass ever present; orders-of-magnitude less volatile radioactivity in the core; more efficient use of, and deeper burn of actinides, without additional waste; proliferation resistance (no enrichment or reprocessing); high-tolerance to ``beam-trips'' and ultimately, and perhaps most importantly, lower cost electricity or diesel fuel than any currently envisioned new energy source.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Pavel V. Tsvetkov
2009-05-20
This project assessed the advantages and limitations of using minor actinides as a fuel component to achieve ultra-long life Very High Temperature Reactor (VHTR) configurations. Researchers considered and compared the capabilities of pebble-bed and prismatic core designs with advanced actinide fuels to achieve ultra-long operation without refueling. Since both core designs permit flexibility in component configuration, fuel utilization, and fuel management, it is possible to improve fissile properties of minor actinides by neutron spectrum shifting through configuration adjustments. The project studied advanced actinide fuels, which could reduce the long-term radio-toxicity and heat load of high-level waste sent to a geologicmore » repository and enable recovery of the energy contained in spent fuel. The ultra-long core life autonomous approach may reduce the technical need for additional repositories and is capable to improve marketability of the Generation IV VHTR by allowing worldwide deployment, including remote regions and regions with limited industrial resources. Utilization of minor actinides in nuclear reactors facilitates developments of new fuel cycles towards sustainable nuclear energy scenarios.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfaltzgraff, R.L.; Davis, J.K.; Dougherty, J.E.
1984-05-16
A survey of contemporary West European perspectives on defense, deterrence, and strategy, with special emphasis on the role of nuclear weapons deployed in, or assigned to, the NATO area. Changes have occurred during the past decade in the relative military strength of NATO and the Warsaw Pact, particularly as a result of the substantial growth in Soviet nuclear-capable systems and conventional forces assigned to Europe, and the momentum manifested by the Soviet Union in its deployments of intercontinental ballistic missiles. There has also been a substantial shift in West European thinking and attitudes about security and strategy. Together, these trendsmore » have created a need to reassess the posture of NATO forces generally, and especially nuclear weapons, both in a broader Euro-strategic framework and on the Central Front in the 1980s. The survey is on such issues as the future of the British and French national strategic nuclear forces; the role of the U.S.-strategic nuclear forces in the deterrence of conflict in Europe; the prospects of raising the nuclear threshold by the deployment of new conventional technologies; the impact of strategic defense initiatives on U.S.-NATO security; and the modernization of NATO intermediate-range nuclear capabilities, especially in light of the continuing deployment of the Soviet Union of new generation Euro-strategic forces targeted against Western Europe.« less
Ion traps for precision experiments at rare-isotope-beam facilities
NASA Astrophysics Data System (ADS)
Kwiatkowski, Anna
2016-09-01
Ion traps first entered experimental nuclear physics when the ISOLTRAP team demonstrated Penning trap mass spectrometry of radionuclides. From then on, the demand for ion traps has grown at radioactive-ion-beam (RIB) facilities since beams can be tailored for the desired experiment. Ion traps have been deployed for beam preparation, from bunching (thereby allowing time coincidences) to beam purification. Isomerically pure beams needed for nuclear-structure investigations can be prepared for trap-assisted or in-trap decay spectroscopy. The latter permits studies of highly charged ions for stellar evolution, which would be impossible with traditional experimental nuclear-physics methods. Moreover, the textbook-like conditions and advanced ion manipulation - even of a single ion - permit high-precision experiments. Consequently, the most accurate and precise mass measurements are now performed in Penning traps. After a brief introduction to ion trapping, I will focus on examples which showcase the versatility and utility of the technique at RIB facilities. I will demonstrate how this atomic-physics technique has been integrated into nuclear science, accelerator physics, and chemistry. DOE.
Challenges to deployment of twenty-first century nuclear reactor systems
2017-01-01
The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors. PMID:28293142
Challenges to deployment of twenty-first century nuclear reactor systems.
Ion, Sue
2017-02-01
The science and engineering of materials have always been fundamental to the success of nuclear power to date. They are also the key to the successful deployment and operation of a new generation of nuclear reactor systems and their associated fuel cycles. This article reflects on some of the historical issues, the challenges still prevalent today and the requirement for significant ongoing materials R&D and discusses the potential role of small modular reactors.
Automated Deployment of Advanced Controls and Analytics in Buildings
NASA Astrophysics Data System (ADS)
Pritoni, Marco
Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.
Needs for Robotic Assessments of Nuclear Disasters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Victor Walker; Derek Wadsworth
Following the nuclear disaster at the Fukushima nuclear reactor plant in Japan, the need for systems which can assist in dynamic high-radiation environments such as nuclear incidents has become more apparent. The INL participated in delivering robotic technologies to Japan and has identified key components which are needed for success and obstacles to their deployment. In addition, we are proposing new work and methods to improve assessments and reactions to such events in the future. Robotics needs in disaster situations include phases such as: Assessment, Remediation, and Recovery Our particular interest is in the initial assessment activities. In assessment wemore » need collection of environmental parameters, determination of conditions, and physical sample collection. Each phase would require key tools and efforts to develop. This includes study of necessary sensors and their deployment methods, the effects of radiation on sensors and deployment, and the development of training and execution systems.« less
Advanced Instrumentation and Control Methods for Small and Medium Reactors with IRIS Demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Wesley Hines; Belle R. Upadhyaya; J. Michael Doster
2011-05-31
Development and deployment of small-scale nuclear power reactors and their maintenance, monitoring, and control are part of the mission under the Small Modular Reactor (SMR) program. The objectives of this NERI-consortium research project are to investigate, develop, and validate advanced methods for sensing, controlling, monitoring, diagnosis, and prognosis of these reactors, and to demonstrate the methods with application to one of the proposed integral pressurized water reactors (IPWR). For this project, the IPWR design by Westinghouse, the International Reactor Secure and Innovative (IRIS), has been used to demonstrate the techniques developed under this project. The research focuses on three topicalmore » areas with the following objectives. Objective 1 - Develop and apply simulation capabilities and sensitivity/uncertainty analysis methods to address sensor deployment analysis and small grid stability issues. Objective 2 - Develop and test an autonomous and fault-tolerant control architecture and apply to the IRIS system and an experimental flow control loop, with extensions to multiple reactor modules, nuclear desalination, and optimal sensor placement strategy. Objective 3 - Develop and test an integrated monitoring, diagnosis, and prognosis system for SMRs using the IRIS as a test platform, and integrate process and equipment monitoring (PEM) and process and equipment prognostics (PEP) toolboxes. The research tasks are focused on meeting the unique needs of reactors that may be deployed to remote locations or to developing countries with limited support infrastructure. These applications will require smaller, robust reactor designs with advanced technologies for sensors, instrumentation, and control. An excellent overview of SMRs is described in an article by Ingersoll (2009). The article refers to these as deliberately small reactors. Most of these have modular characteristics, with multiple units deployed at the same plant site. Additionally, the topics focus on meeting two of the eight needs outlined in the recently published 'Technology Roadmap on Instrumentation, Control, and Human-Machine Interface (ICHMI) to Support DOE Advanced Nuclear Energy Programs' which was created 'to provide a systematic path forward for the integration of new ICHMI technologies in both near-term and future nuclear power plants and the reinvigoration of the U.S. nuclear ICHMI community and capabilities.' The research consortium is led by The University of Tennessee (UT) and is focused on three interrelated topics: Topic 1 (simulator development and measurement sensitivity analysis) is led by Dr. Mike Doster with Dr. Paul Turinsky of North Carolina State University (NCSU). Topic 2 (multivariate autonomous control of modular reactors) is led by Dr. Belle Upadhyaya of the University of Tennessee (UT) and Dr. Robert Edwards of Penn State University (PSU). Topic 3 (monitoring, diagnostics, and prognostics system development) is led by Dr. Wes Hines of UT. Additionally, South Carolina State University (SCSU, Dr. Ken Lewis) participated in this research through summer interns, visiting faculty, and on-campus research projects identified throughout the grant period. Lastly, Westinghouse Science and Technology Center (Dr. Mario Carelli) was a no-cost collaborator and provided design information related to the IRIS demonstration platform and defining needs that may be common to other SMR designs. The results of this research are reported in a six-volume Final Report (including the Executive Summary, Volume 1). Volumes 2 through 6 of the report describe in detail the research and development under the topical areas. This volume serves to introduce the overall NERI-C project and to summarize the key results. Section 2 provides a summary of the significant contributions of this project. A list of all the publications under this project is also given in Section 2. Section 3 provides a brief summary of each of the five volumes (2-6) of the report. The contributions of SCSU are described in Section 4, including a summary of undergraduate research experience. The project management organizational chart is provided as Figure 1. Appendices A, B, and C contain the reports on the summer research performed at the University of Tennessee by undergraduate students from South Carolina State University.« less
Exploring the Deployment Potential of Small Modular Reactors
NASA Astrophysics Data System (ADS)
Abdulla, Ahmed Y.
This thesis reports the results of several investigations into the viability of an emergent technology. Due to the lack of data in such cases, and the sensitivity surrounding nuclear power, exploring the potential of small modular reactors (SMRs) proved challenging. Moreover, these reactors come in a wide range of sizes and can employ a number of technologies, which made investigating the category as a whole difficult. We started by looking at a subset of SMRs that were the most promising candidates for near to mid-term deployment: integral light water SMRs. We conducted a technically detailed elicitation of expert assessments of their capital costs and construction duration, focusing on five reactor deployment scenarios that involved a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants varied by more than a factor of 2.5. Expert judgments about likely SMR costs displayed an even wider range. There was consensus that an SMR plant's construction duration would be shorter than a large reactor's. Experts identified more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable, though these reactors do not constitute a paradigm shift when it comes to nuclear power's safety and security. Using these expert assessments of cost and construction duration, we calculated levelized cost of electricity values for four of the five scenarios. For the large plant, median levelized cost estimates ranged from 56 to 120 per MWh. Median estimates of levelized cost ranged from 77 to 240 per MWh for a 45MWe SMR, and from 65 to 120 per MWh for a 225MWe unit. We concluded that controlling construction duration is important, though not as important a factor in the analysis as capital cost, and, given the price of electricity in some parts of the U.S., it is possible to construct an argument for deploying SMRs in certain locations. We then decided to investigate the technical and institutional barriers hampering the development and deployment of a subset of six SMRs, including two light water designs and four non-light water advanced designs. We organized an invitational workshop that became an integrated assessment of various designs and of the institutional innovations required to bring SMRs to market. Some valuable insights were gleaned from the workshop: there is consensus that many of the challenges facing advanced SMRs are rooted in institutional biases in favor of the light water economy, as opposed to technical ones. The institutional factors that are judged to pose the greatest challenge to the mass deployment of SMRs are: the lack of a greenhouse gas control regime; political and financial instability; public concerns about nuclear safety and waste; and inadequate national and international institutions. When asked what factors most help promote SMR adoption in OECD and developing countries, economic factors dominate the list of characteristics that most contribute to their promotion in OECD countries but, when it comes to developing countries, institutional factors are regarded as being of highest import. Safety of design and safety in operation are judged the most important characteristic on both lists.
Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.
Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclearmore » Energy Partnership (GNEP) as an emerging nuclear energy country.« less
Poland becoming a member of the Global Nuclear Energy Partnership, Vol. 1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koritarov, V. K.; Conzelmann, G.; Cirillo, R. R.
Within a constrained carbon environment, the risks of future natural gas supply, and the need to move to market-based electricity prices, the study team found: (1) the deployment of new nuclear energy in Poland itself is very competitive in the next decade or two; (2) if such generation could be made available to Poland prior to deployment of its own nuclear generation facilities, Poland would benefit from partnering with its Baltic neighbors to import electricity derived from new nuclear generation facilities sited in Lithuania; and (3) Poland appears to be a good candidate for a partnership in the Global Nuclearmore » Energy Partnership (GNEP) as an emerging nuclear energy country.« less
ASC-AD penetration modeling FY05 status report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kistler, Bruce L.; Ostien, Jakob T.; Chiesa, Michael L.
2006-04-01
Sandia currently lacks a high fidelity method for predicting loads on and subsequent structural response of earth penetrating weapons. This project seeks to test, debug, improve and validate methodologies for modeling earth penetration. Results of this project will allow us to optimize and certify designs for the B61-11, Robust Nuclear Earth Penetrator (RNEP), PEN-X and future nuclear and conventional penetrator systems. Since this is an ASC Advanced Deployment project the primary goal of the work is to test, debug, verify and validate new Sierra (and Nevada) tools. Also, since this project is part of the V&V program within ASC, uncertaintymore » quantification (UQ), optimization using DAKOTA [1] and sensitivity analysis are an integral part of the work. This project evaluates, verifies and validates new constitutive models, penetration methodologies and Sierra/Nevada codes. In FY05 the project focused mostly on PRESTO [2] using the Spherical Cavity Expansion (SCE) [3,4] and PRESTO Lagrangian analysis with a preformed hole (Pen-X) methodologies. Modeling penetration tests using PRESTO with a pilot hole was also attempted to evaluate constitutive models. Future years work would include the Alegra/SHISM [5] and AlegrdEP (Earth Penetration) methodologies when they are ready for validation testing. Constitutive models such as Soil-and-Foam, the Sandia Geomodel [6], and the K&C Concrete model [7] were also tested and evaluated. This report is submitted to satisfy annual documentation requirements for the ASC Advanced Deployment program. This report summarizes FY05 work performed in the Penetration Mechanical Response (ASC-APPS) and Penetration Mechanics (ASC-V&V) projects. A single report is written to document the two projects because of the significant amount of technical overlap.« less
DOT National Transportation Integrated Search
2016-07-01
The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...
Advanced Fusion Reactors for Space Propulsion and Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, John J.
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Protonmore » triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles' exhaust momentum can be used directly to produce high Isp thrust and also offer possibility of power conversion into electricity. p-11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.« less
Advanced Fusion Reactors for Space Propulsion and Power Systems
NASA Technical Reports Server (NTRS)
Chapman, John J.
2011-01-01
In recent years the methodology proposed for conversion of light elements into energy via fusion has made steady progress. Scientific studies and engineering efforts in advanced fusion systems designs have introduced some new concepts with unique aspects including consideration of Aneutronic fuels. The plant parameters for harnessing aneutronic fusion appear more exigent than those required for the conventional fusion fuel cycle. However aneutronic fusion propulsion plants for Space deployment will ultimately offer the possibility of enhanced performance from nuclear gain as compared to existing ionic engines as well as providing a clean solution to Planetary Protection considerations and requirements. Proton triggered 11Boron fuel (p- 11B) will produce abundant ion kinetic energy for In-Space vectored thrust. Thus energetic alpha particles "exhaust" momentum can be used directly to produce high ISP thrust and also offer possibility of power conversion into electricity. p- 11B is an advanced fusion plant fuel with well understood reaction kinematics but will require some new conceptual thinking as to the most effective implementation.
Stochastic Optimization for Nuclear Facility Deployment Scenarios
NASA Astrophysics Data System (ADS)
Hays, Ross Daniel
Single-use, low-enriched uranium oxide fuel, consumed through several cycles in a light-water reactor (LWR) before being disposed, has become the dominant source of commercial-scale nuclear electric generation in the United States and throughout the world. However, it is not without its drawbacks and is not the only potential nuclear fuel cycle available. Numerous alternative fuel cycles have been proposed at various times which, through the use of different reactor and recycling technologies, offer to counteract many of the perceived shortcomings with regards to waste management, resource utilization, and proliferation resistance. However, due to the varying maturity levels of these technologies, the complicated material flow feedback interactions their use would require, and the large capital investments in the current technology, one should not deploy these advanced designs without first investigating the potential costs and benefits of so doing. As the interactions among these systems can be complicated, and the ways in which they may be deployed are many, the application of automated numerical optimization to the simulation of the fuel cycle could potentially be of great benefit to researchers and interested policy planners. To investigate the potential of these methods, a computational program has been developed that applies a parallel, multi-objective simulated annealing algorithm to a computational optimization problem defined by a library of relevant objective functions applied to the Ver ifiable Fuel Cycle Simulati on Model (VISION, developed at the Idaho National Laboratory). The VISION model, when given a specified fuel cycle deployment scenario, computes the numbers and types of, and construction, operation, and utilization schedules for, the nuclear facilities required to meet a predetermined electric power demand function. Additionally, it calculates the location and composition of the nuclear fuels within the fuel cycle, from initial mining through to eventual disposal. By varying the specifications of the deployment scenario, the simulated annealing algorithm will seek to either minimize the value of a single objective function, or enumerate the trade-off surface between multiple competing objective functions. The available objective functions represent key stakeholder values, minimizing such important factors as high-level waste disposal burden, required uranium ore supply, relative proliferation potential, and economic cost and uncertainty. The optimization program itself is designed to be modular, allowing for continued expansion and exploration as research needs and curiosity indicate. The utility and functionality of this optimization program are demonstrated through its application to one potential fuel cycle scenario of interest. In this scenario, an existing legacy LWR fleet is assumed at the year 2000. The electric power demand grows exponentially at a rate of 1.8% per year through the year 2100. Initially, new demand is met by the construction of 1-GW(e) LWRs. However, beginning in the year 2040, 600-MW(e) sodium-cooled, fast-spectrum reactors operating in a transuranic burning regime with full recycling of spent fuel become available to meet demand. By varying the fraction of new capacity allocated to each reactor type, the optimization program is able to explicitly show the relationships that exist between uranium utilization, long-term heat for geologic disposal, and cost-of-electricity objective functions. The trends associated with these trade-off surfaces tend to confirm many common expectations about the use of nuclear power, namely that while overall it is quite insensitive to variations in the cost of uranium ore, it is quite sensitive to changes in the capital costs of facilities. The optimization algorithm has shown itself to be robust and extensible, with possible extensions to many further fuel cycle optimization problems of interest.
Medical implications of enhanced radiation weapons.
Reeves, Glen I
2010-12-01
During the 1960s through 1980s the United States and several other nations developed, and even considered deploying, enhanced-radiation warheads (ERWs). The main effect of ERWs (sometimes called "neutron bombs"), as compared to other types of nuclear weapons, is to enhance radiation casualties while reducing blast and thermal damage to the infrastructure. Five nations were reported to have developed and tested ERWs during this period, but since the termination of the "Cold War" there have been no threats of development, deployment, or use of such weapons. However, if the technology of a quarter of a century ago has been developed, maintained, or even advanced since then, it is conceivable that the grim possibility of future ERW use exists. The type of destruction, initial triage of casualties, distribution of patterns of injury, and medical management of ERWs will be shown to significantly differ from that of fission weapons. Emergency response planners and medical personnel, civilian or military, must be aware of these differences to reduce the horrible consequences of ERW usage and appropriately treat casualties.
Geokinetic environment investigations
NASA Astrophysics Data System (ADS)
Hartnett, E. B.; Carleen, E. D.; Blaney, J. I.
1981-03-01
This report covers the development and implementation of special concepts, techniques and instrumentation for the collection, analysis and application of geokinetic data. The Geokinetic Data Acquisition System (GDAS) was modified, maintained and operationally deployed to various sites designated by AFGL. Tests were conducted at the Defense Nuclear Agency (DNA) CASINO Facility in Maryland; Central Inertial Guidance Test Facility (CIGTF), Holloman AFB, N.M.; Space Transportation System (STS) Launch Complex, Vandenberg AFB, Ca. and the SAC Wing V Minuteman Complex at Cheyenne, Wy. The CASINO data contributed to SAMSO's MX/TGG Advanced Development Bridge II Program for radiation hardening of third generation hardware. The CIGTF investigation supported USAF requirements for highly precise azimuth reference. The Hill AFB the performance of a minuteman III missile guidance system in an engineering silo. The STS program at Vandenberg AFB was to assist in determining the nature of a Titan III-D pressure load. The SAC Wing V deployment was to investigate plateau/valley basin geologic characteristics in respect to motion response.
A revolute joint with linear load-displacement response for a deployable lidar telescope
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research Center is developing concepts for an advanced spacecraft, called LidarTechSat, to demonstrate key structures and mechanisms technologies necessary to deploy a segmented telescope reflector. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design, such as the revolute joint presented herein. The joint exhibits load-cycling response that is essentially linear with less than 2% hysteresis, and the joint rotates with less than 7 mN-m (1 in-oz) of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repected deployment and impulse loading. No other mechanically deployment structure found in the literature has been demonstrated to be this kinematically accurate.
Online Monitoring To Enable Improved Diagnostics, Prognostics and Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bond, Leonard J.
2011-08-31
Only time will tell what the implications of the Fukushima incident will be. Discussions are on-going with regard to continued operation and life extension of the existing fleet, new build, and the wider policy issues including technologies needed to address spent fuel storage and ensure energy security, and the related desires to provide sustainable energy systems while at the same time limiting greenhouse gas emissions. The science base for advanced diagnostics and prognostics to support its use in nuclear power plants (NPPs) for active components (pumps, valves etc) has been demonstrated. A challenge is enabling adaption of these technologies formore » NPP deployment and the validation of the data from these technologies. Advanced diagnostics, monitoring and prognostics applied to passive structures, which in the USA context of longer term operation is up to 80 years, are being researched. Early laboratory work is demonstrating the potential for these methods, although technical challenges remain. It can be expected that there will be an increased need for and use of on-line monitoring for a wide range of both active and passive systems in all types of nuclear power plants.« less
Soviet objectives in the INF negotiations and European security. Master's thesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgardner, H.J.
1987-12-01
On 12 December 1979, NATO officials announced the decision to deploy 108 Pershing II nuclear missiles and 464 Ground Launched Cruise Missiles, in response to the Soviet deployment of SS-20 nuclear missiles. The NATO decision was met by a determined Soviet effort to prevent the deployment of the new missiles. The Soviet effort consisted of negotiations, diplomatic propaganda, and covert measures. When it was clear that the deployment was not going to be stopped, the Soviets agreed to formal INF arms-reduction talks. It is this author's opinion that the Soviet negotiation tactics, during the INF talks, supported the long-range goalmore » of reducing the military effectiveness of NATO, and also supported the goal of reducing U.S. influence in Europe.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosemann, Peter; Kaoumi, Djamel
Nuclear materials are an essential aspect of nuclear engineering. While great effort is spent on designing more advanced reactors or enhancing a reactor’s safety, materials have been the bottleneck of most new developments. The designs of new reactor concepts are driven by neutronic and thermodynamic aspects, leading to unusual coolants (liquid metal, liquid salt, gases), higher temperatures, and higher radiation doses than conventional light water reactors have. However, any (nuclear) engineering design must consider the materials used in the anticipated application in order to ever be realized. Designs which may look easy, simple and efficient considering thermodynamics or neutronic aspectsmore » can show their true difficulty in the materials area, which then prevents them from being deployed. In turn, the materials available are influencing the neutronic and thermodynamic designs and therefore must be considered from the beginning, requiring close collaborations between different aspects of nuclear engineering. If a particular design requires new materials, the licensing of the reactor must be considered, but licensing can be a costly and time consuming process that results in long lead times to realize true materials innovation.« less
The Carrier Strike Group: Examining Approaches to Forward Presence
2016-09-01
capped at 8 months. This distrust represented in the study may continue to adversely affect retention rates especially if the current O-FRP exceeds...the 8 month proposed deployment cap .22 Another disadvantage of longer deployments is the increase in maintenance periods and the associated costs...establishing the requisite support facilities to maintain a nuclear powered aircraft carrier.31 For example, a port that is not nuclear carrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G; Yamamoto, Yukinori; Pint, Bruce A
2016-01-01
A large effort is underway under the leadership of US DOE Fuel Cycle R&D program to develop advanced FeCrAl alloys as accident tolerant fuel (ATF) cladding to replace Zr-based alloys in light water reactors. The primary motivation is the excellent oxidation resistance of these alloys in high-temperature steam environments right up to their melting point (roughly three orders of magnitude slower oxidation kinetics than zirconium). A multifaceted effort is ongoing to rapidly advance FeCrAl alloys as a mature ATF concept. The activities span the broad spectrum of alloy development, environmental testing (high-temperature high-pressure water and elevated temperature steam), detailed mechanicalmore » characterization, material property database development, neutron irradiation, thin tube production, and multiple integral fuel test campaigns. Instead of off-the-shelf commercial alloys that might not prove optimal for the LWR fuel cladding application, a large amount of effort has been placed on the alloy development to identify the most optimum composition and microstructure for this application. The development program is targeting a cladding that offers performance comparable to or better than modern Zr-based alloys under normal operating and off-normal conditions. This paper provides a comprehensive overview of the systematic effort to advance nuclear-grade FeCrAl alloys as an ATF cladding in commercial LWRs.« less
ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marra, J.
2010-09-29
Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) formore » construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and proliferation), the worldwide community is working to develop and deploy new nuclear energy systems and advanced fuel cycles. These new nuclear systems address the key challenges and include: (1) extracting the full energy value of the nuclear fuel; (2) creating waste solutions with improved long term safety; (3) minimizing the potential for the misuse of the technology and materials for weapons; (4) continually improving the safety of nuclear energy systems; and (5) keeping the cost of energy affordable.« less
The Future of Energy from Nuclear Fission
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Son H.; Taiwo, Temitope
Nuclear energy is an important part of our current global energy system, and contributes to supplying the significant demand for electricity for many nations around the world. There are 433 commercial nuclear power reactors operating in 30 countries with an installed capacity of 367 GWe as of October 2011 (IAEA PRIS, 2011). Nuclear electricity generation totaled 2630 TWh in 2010 representing 14% the world’s electricity generation. The top five countries of total installed nuclear capacity are the US, France, Japan, Russia and South Korea at 102, 63, 45, 24, and 21 GWe, respectively (WNA, 2012a). The nuclear capacity of thesemore » five countries represents more than half, 68%, of the total global nuclear capacity. The role of nuclear power in the global energy system today has been motivated by several factors including the growing demand for electric power, the regional availability of fossil resources and energy security concerns, and the relative competitiveness of nuclear power as a source of base-load electricity. There is additional motivation for the use of nuclear power because it does not produce greenhouse gas (GHG) emissions or local air pollutants during its operation and contributes to low levels of emissions throughout the lifecycle of the nuclear energy system (Beerten, J. et. al., 2009). Energy from nuclear fission primarily in the form of electric power and potentially as a source of industrial heat could play a greater role for meeting the long-term growing demand for energy worldwide while addressing the concern for climate change from rising GHG emissions. However, the nature of nuclear fission as a tremendously compact and dense form of energy production with associated high concentrations of radioactive materials has particular and unique challenges as well as benefits. These challenges include not only the safety and cost of nuclear reactors, but proliferation concerns, safeguard and storage of nuclear materials associated with nuclear fuel cycles. In March of 2011, an unprecedented earthquake of 9 magnitude and ensuing tsunami off the east coast of Japan caused a severe nuclear accident in Fukushima, Japan (Prime Minister of Japan and His Cabinet, 2011). The severity of the nuclear accident in Japan has brought about a reinvestigation of nuclear energy policy and deployment activities for many nations around the world, most notably in Japan and Germany (BBC, 2011; Reuter, 2011). The response to the accident has been mixed and its full impact may not be realized for many years to come. The nuclear accident in Fukushima, Japan has not directly affected the significant on-going nuclear deployment activities in many countries. China, Russia, India, and South Korea, as well as others, are continuing with their deployment plans. As of October 2011, China had the most reactors under construction at 27, while Russia, India, and South Korea had 11, 6, and 5 reactors under construction, respectively (IAEA PRIS, 2011). Ten other nations have one or two reactors currently under construction. Many more reactors are planned for future deployment in China, Russia, and India, as well as in the US. Based on the World Nuclear Association’s data, the realization of China’s deployment plan implies that China will surpass the US in total nuclear capacity some time in the future.« less
Sensitivity Analysis and Optimization of the Nuclear Fuel Cycle: A Systematic Approach
NASA Astrophysics Data System (ADS)
Passerini, Stefano
For decades, nuclear energy development was based on the expectation that recycling of the fissionable materials in the used fuel from today's light water reactors into advanced (fast) reactors would be implemented as soon as technically feasible in order to extend the nuclear fuel resources. More recently, arguments have been made for deployment of fast reactors in order to reduce the amount of higher actinides, hence the longevity of radioactivity, in the materials destined to a geologic repository. The cost of the fast reactors, together with concerns about the proliferation of the technology of extraction of plutonium from used LWR fuel as well as the large investments in construction of reprocessing facilities have been the basis for arguments to defer the introduction of recycling technologies in many countries including the US. In this thesis, the impacts of alternative reactor technologies on the fuel cycle are assessed. Additionally, metrics to characterize the fuel cycles and systematic approaches to using them to optimize the fuel cycle are presented. The fuel cycle options of the 2010 MIT fuel cycle study are re-examined in light of the expected slower rate of growth in nuclear energy today, using the CAFCA (Code for Advanced Fuel Cycle Analysis). The Once Through Cycle (OTC) is considered as the base-line case, while advanced technologies with fuel recycling characterize the alternative fuel cycle options available in the future. The options include limited recycling in L WRs and full recycling in fast reactors and in high conversion LWRs. Fast reactor technologies studied include both oxide and metal fueled reactors. Additional fuel cycle scenarios presented for the first time in this work assume the deployment of innovative recycling reactor technologies such as the Reduced Moderation Boiling Water Reactors and Uranium-235 initiated Fast Reactors. A sensitivity study focused on system and technology parameters of interest has been conducted to test the robustness of the conclusions presented in the MIT Fuel Cycle Study. These conclusions are found to still hold, even when considering alternative technologies and different sets of simulation assumptions. Additionally, a first of a kind optimization scheme for the nuclear fuel cycle analysis is proposed and the applications of such an optimization are discussed. Optimization metrics of interest for different stakeholders in the fuel cycle (economics, fuel resource utilization, high level waste, transuranics/proliferation management, and environmental impact) are utilized for two different optimization techniques: a linear one and a stochastic one. Stakeholder elicitation provided sets of relative weights for the identified metrics appropriate to each stakeholder group, which were then successfully used to arrive at optimum fuel cycle configurations for recycling technologies. The stochastic optimization tool, based on a genetic algorithm, was used to identify non-inferior solutions according to Pareto's dominance approach to optimization. The main tradeoff for fuel cycle optimization was found to be between economics and most of the other identified metrics. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)
DOT National Transportation Integrated Search
2001-06-01
One hundred seventy five fatalities - primarily children and small women - have been attributed to the deployment of an air bag in relatively low-speed crashes as of April 2001. Advanced air bag systems tailor the deployment of the bags to the charac...
Fuel Reforming Technologies (BRIEFING SLIDES)
2009-09-01
Heat and Mass Transfer , Catalysis...Gallons Of Fuel/Day/1100men Deployment To Reduce Noise/Thermal Signature And 4 Environmental Emissions Advanced Heat and Mass Transfer 5 Advanced... Heat and Mass & Transfer Technologies Objective Identify And Develop New Technologies To Enhance Heat And Mass Transfer In Deployed Energy
A Strategy for Nuclear Energy Research and Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ralph G. Bennett
2008-12-01
The United States is facing unprecedented challenges in climate change and energy security. President-elect Obama has called for a reduction of CO2 emissions to 1990 levels by 2020, with a further 80% reduction by 2050. Meeting these aggressive goals while gradually increasing the overall energy supply requires that all non-emitting technologies must be advanced. The development and deployment of nuclear energy can, in fact, help the United States meet several key challenges: 1) Increase the electricity generated by non-emitting sources to mitigate climate change, 2) Foster the safe and proliferation-resistant use of nuclear energy throughout the world, 3) Reduce themore » transportation sector’s dependence on imported fossil fuels, and 4) Reduce the demand on natural gas for process heat and hydrogen production. However, because of the scale, cost, and time horizons involved, increasing nuclear energy’s share will require a coordinated research effort—combining the efforts of industry and government, supported by innovation from the research community. This report outlines the significant nuclear energy research and development (R&D) necessary to create options that will allow government and industrial decision-makers to set policies and create nuclear energy initiatives that are decisive and sustainable. The nuclear energy R&D strategy described in this report adopts the following vision: Safe and economical nuclear energy in the United States will expand to address future electric and non-electric needs, significantly reduce greenhouse gas emissions and provide energy diversity, while providing leadership for safe, secure and responsible expansion of nuclear energy internationally.« less
2012-12-19
full scope” life extension program for the B61 bomb, the weapon that is currently deployed in Europe, “to ensure its functionality with the F-35...This life extension program will consolidate four versions of the B61 bomb, including the B61 -3 and B61 - 4 that are currently deployed in Europe, into...one version, the B61 -12. Reports indicate that this new version will reuse the nuclear components of the older bombs, but will include enhanced
2014-01-03
NPR also indicated that the United States would conduct a “full scope” life extension program for the B61 bomb, the weapon that is currently deployed...in Europe, “to ensure its functionality with the F-35.” This life extension program will consolidate four versions of the B61 bomb, including the B61 ...3 and B61 - 4 that are currently deployed in Europe, into one version, the B61 -12. Reports indicate that this new version will reuse the nuclear
An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion
DOE Office of Scientific and Technical Information (OSTI.GOV)
James Werner; Sam Bhattacharyya; Mike Houts
Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuelmore » and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reynolds, Adam F.; Steinfeldt, Bradley Alexander; Lafleur, Jarret Marshall
The U.S. nuclear stockpile hedge is an inventory of non-deployed nuclear warheads and a force structure capable of deploying those warheads. Current guidance is to retain this hedge to mitigate the risk associated with the technical failure of any single warhead type or adverse geopolitical developments that could require augmentation of the force. The necessary size of the hedge depends on the composition of the nuclear stockpile and assumed constraints. Knowing the theoretical minimum hedge given certain constraints is useful when considering future weapons policy. HedgeHOGS, an Excel-based tool, was developed to enable rapid calculation of the minimum hedge sizemore » associated with varying active stockpile composition and hedging strategies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, G.N.; Ride, S.K.; Townsend, J.S.
It is widely believed that an arms control limit on nuclear-armed sea-launched cruise missiles would be nearly impossible to verify. Among the reasons usually given are: these weapons are small, built in nondistinctive industrial facilities, deployed on a variety of ships and submarines, and difficult to distinguish from their conventionally armed counterparts. In this article, it is argued that the covert production and deployment of nuclear-armed sea-launched cruise missiles would not be so straightforward. A specific arms control proposed is described, namely a total ban on nuclear-armed sea-launched cruise missiles. This proposal is used to illustrate how an effective verificationmore » scheme might be constructed. 9 refs., 6 figs.« less
Dispelling myths about verification of sea-launched cruise missiles.
Lewis, G N; Ride, S K; Townsend, J S
1989-11-10
It is widely believed that an arms control limit on nuclear-armed sea-launched cruise missiles would be nearly impossible to verify. Among the reasons usually given are: these weapons are small, built in nondistinctive industrial facilities, deployed on a variety of ships and submarines, and difficult to distinguish from their conventionally armed counterparts. In this article, it is argued that the covert production and deployment of nuclear-armed sealaunched cruise missiles would not be so straightforward. A specific arms control proposal is described, namely a total ban on nuclear-armed sea-launched cruise missiles. This proposal is used to illustrate how an effective verification scheme might be constructed.
The Next Century Astrophysics Program
NASA Technical Reports Server (NTRS)
Swanson, Paul N.
1991-01-01
The Astrophysics Division within the NASA Office of Space Science and Applications (OSSA) has defined a set of major and moderate missions that are presently under study for flight sometime within the next 20 years. These programs include the: Advanced X Ray Astrophysics Facility; X Ray Schmidt Telescope; Nuclear Astrophysics Experiment; Hard X Ray Imaging Facility; Very High Throughput Facility; Gamma Ray Spectroscopy Observatory; Hubble Space Telescope; Lunar Transit Telescope; Astrometric Interferometer Mission; Next Generation Space Telescope; Imaging Optical Interferometer; Far Ultraviolet Spectroscopic Explorer; Gravity Probe B; Laser Gravity Wave Observatory in Space; Stratospheric Observatory for Infrared Astronomy; Space Infrared Telescope Facility; Submillimeter Intermediate Mission; Large Deployable Reflector; Submillimeter Interferometer; and Next Generation Orbiting Very Long Baseline Interferometer.
DOT National Transportation Integrated Search
2008-03-14
This report contains the results, findings and conclusions generated from the evaluation and field testing of a specific subset of ITS Standards applicable to the center-to-center exchange of advanced traveler information as deployed by the Nebraska ...
DOT National Transportation Integrated Search
This report demonstrates the benefits of deploying and operating an integrated highway/rail system, along with the potential barriers to implementation. In particular, it discusses the lessons learned associated with the Advanced Warning to Avoid Rai...
Long-Term Planning for Nuclear Energy Systems Under Deep Uncertainty
NASA Astrophysics Data System (ADS)
Kim, Lance Kyungwoo
Long-term planning for nuclear energy systems has been an area of interest for policy planners and systems designers to assess and manage the complexity of the system and the long-term, wide-ranging societal impacts of decisions. However, traditional planning tools are often poorly equipped to cope with the deep parametric, structural, and value uncertainties in long-term planning. A more robust, multiobjective decision-making method is applied to a model of the nuclear fuel cycle to address the many sources of complexity, uncertainty, and ambiguity inherent to long-term planning. Unlike prior studies that rely on assessing the outcomes of a limited set of deployment strategies, solutions in this study arise from optimizing behavior against multiple incommensurable objectives, utilizing goal-seeking multiobjective evolutionary algorithms to identify minimax regret solutions across various demand scenarios. By excluding inferior and infeasible solutions, the choice between the Pareto optimal solutions depends on a decision-maker's preferences for the defined outcomes---limiting analyst bias and increasing transparency. Though simplified by the necessity of reducing computational burdens, the nuclear fuel cycle model captures important phenomena governing the behavior of the nuclear energy system relevant to the decision to close the fuel cycle---incorporating reactor population dynamics, material stocks and flows, constraints on material flows, and outcomes of interest to decision-makers. Technology neutral performance criteria are defined consistent with the Generation IV International Forum goals of improved security and proliferation resistance based on structural features of the nuclear fuel cycle, natural resource sustainability, and waste production. A review of safety risks and the economic history of the development of nuclear technology suggests that safety and economic criteria may not be decisive criteria as the safety risks posed by alternative fuel cycles may be comparable in aggregate and economic performance is uncertain and path dependent. Technology strategies impacting reactor lifetimes and advanced reactor introduction dates are evaluated against a high, medium, and phaseout scenarios of nuclear energy demand. Non-dominated, minimax regret solutions are found with the NSGA-II multiobjective evolutionary algorithm. Results suggest that more aggressive technology strategies featuring the early introduction of breeder and burner reactors, possibly combined with lifetime extension of once-through systems, tend to dominate less aggressive strategies under more demanding growth scenarios over the next century. Less aggressive technology strategies that delay burning and breeding tend to be clustered in the minimax regret space, suggesting greater sensitivity to shifts in preferences. Lifetime extension strategies can unexpectedly result in fewer deployments of once-through systems, permitting the growth of advanced systems to meet demand. Both breeders and burners are important for controlling plutonium inventories with breeders achieving lower inventories in storage by locking material in reactor cores while burners can reduce the total inventory in the system. Other observations include the indirect impacts of some performance measures, the relatively small impact of technology strategies on the waste properties of all material in the system, and the difficulty of phasing out nuclear energy while meeting all objectives with the specified technology options.
Energy Innovation Hubs: A Home for Scientific Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Steven
Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computermore » modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.« less
Energy Innovation Hubs: A Home for Scientific Collaboration
Chu, Steven
2017-12-11
Secretary Chu will host a live, streaming Q&A session with the directors of the Energy Innovation Hubs on Tuesday, March 6, at 2:15 p.m. EST. The directors will be available for questions regarding their teams' work and the future of American energy. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@hq.doe.gov, prior or during the live event. Dr. Hank Foley is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Consortium for Advanced Simulation of Light Water Reactors, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis, which focuses on how to produce fuels from sunlight, water, and carbon dioxide. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Ask your questions in the comments below, or submit them on Facebook, Twitter (@energy), or send an e-mail to newmedia@energy.gov, prior or during the live event. The Energy Innovation Hubs are major integrated research centers, with researchers from many different institutions and technical backgrounds. Each Hub is focused on a specific high priority goal, rapidly accelerating scientific discoveries and shortening the path from laboratory innovation to technological development and commercial deployment of critical energy technologies. Dr. Hank Holey is the director of the Greater Philadelphia Innovation Cluster for Energy-Efficient Buildings, which is pioneering new data intensive techniques for designing and operating energy efficient buildings, including advanced computer modeling. Dr. Douglas Kothe is the director of the Modeling and Simulation for Nuclear Reactors Hub, which uses powerful supercomputers to create "virtual" reactors that will help improve the safety and performance of both existing and new nuclear reactors. Dr. Nathan Lewis is the director of the Joint Center for Artificial Photosynthesis Hub, which focuses on how to produce biofuels from sunlight, water, and carbon dioxide.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... processes are more akin to fuel cycle processes. This framework was established in the 1970's to license the... nuclear power globally and close the nuclear fuel cycle through reprocessing spent fuel and deploying fast... Accounting;'' and a Nuclear Energy Institute white [[Page 34009
Johnson Noise Thermometry for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton Jr, Charles L; Roberts, Michael; Bull, Nora D
Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor s physical condition. In and near core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small, Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of this project is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less
NASA Astrophysics Data System (ADS)
Khalid Rivai, Abu; Mardiyanto; Agusutrisno; Suharyadi, Edi
2017-01-01
Development of high temperature materials are one of the key issues for the deployment of advanced nuclear reactors due to higher temperature operation. One of the candidate materials for that purpose is ceramic-coated ferritic steel that one of the functions is to be a thermal barrier coating (TBC). Thin films of YSZ (Ytrria-Stabilized Zirconia) ceramic have been deposited on a SS430 ferritic steel using Pulsed Laser Deposition (PLD) at Center For Science and Technology of Advanced Materials laboratory - National Nuclear Energy Agency of Indonesia (BATAN). The thin film was deposited with the chamber pressure range of 200-225 mTorr, the substrate temperature of 800oC, and the number of laser shots of 3×104, 6×104 and 9×104. Afterward, the samples were analyzed using Scanning Electron Microscope - Energy Dispersive X-ray Spectroscope (SEM-EDS), X-Ray Diffractometer (XRD), Atomic Force Microscope (AFM) and Vickers hardness tester. The results showed that the YSZ could homogeneously and sticky deposited on the surface of the ferritic steel. The surfaces were very smoothly formed with the surface roughness was in the range of 70 nm. Furthermore, thickness, composition of Zr4+ dan Y3+, the crystallinity, and hardness property was increased with the increasing the number of the shots.
Connected Vehicle Pilot Deployment Program Phase 1, Outreach Plan – Tampa (THEA).
DOT National Transportation Integrated Search
2016-07-06
This document presents the Outreach Plan for the Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment. The goal of the pilot deployment is to advance and enable safe, interoperable, networked wireless communications ...
Evaluation of Three Sites for the Global Nuclear Energy Partnership
DOE Office of Scientific and Technical Information (OSTI.GOV)
Magette, T.E.; Turner, S.; Smalley, R.
The Global Nuclear Energy Partnership (GNEP) is an initiative managed by the United States Department of Energy (DOE) to work with other nations to develop and deploy advanced nuclear recycling and reactor technologies. The purpose of this initiative is to help provide reliable, emission-free energy with less waste burden of older technologies and without making available separated plutonium that could be used by rogue states or terrorists for nuclear weapons. In November 2006, DOE awarded multiple contracts to EnergySolutions to prepare separate siting studies to determine the possibility of hosting a Consolidated Fuel Treatment Center (CFTC) and/or an Advanced Burnermore » Reactor (ABR) at three proposed sites: The Atomic City Site in Bingham County, Idaho; the Roswell Site in Chaves County, New Mexico, and the Barnwell Site in Barnwell County, South Carolina. EnergySolutions prepared Detailed Siting Reports (DSRs) that describe the overall character of each site and its local environment in sufficient detail to understand how it could be affected by the proposed GNEP facilities. A comprehensive review of the potentially affected environment showed that there were no foreseeable environmental impacts or regulatory prohibitions that would prevent each of the sites from serving as an effective host for GNEP. Each site was found to be of sufficient size to locate either or both of the planned GNEP Demonstration Facilities and to have sufficient room to provide suitably sized feed buffer and interim waste product storage capability. All three sites had water rights and access to a reliable source of water to support site operations. In each case, there is strong local and state interest in and support for siting the proposed GNEP facilities. (authors)« less
Preliminary Framework for Human-Automation Collaboration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Le Blanc, Katya Lee; Spielman, Zachary Alexander
The Department of Energy’s Advanced Reactor Technologies Program sponsors research, development and deployment activities through its Next Generation Nuclear Plant, Advanced Reactor Concepts, and Advanced Small Modular Reactor (aSMR) Programs to promote safety, technical, economical, and environmental advancements of innovative Generation IV nuclear energy technologies. The Human Automation Collaboration (HAC) Research Project is located under the aSMR Program, which identifies developing advanced instrumentation and controls and human-machine interfaces as one of four key research areas. It is expected that the new nuclear power plant designs will employ technology significantly more advanced than the analog systems in the existing reactor fleetmore » as well as utilizing automation to a greater extent. Moving towards more advanced technology and more automation does not necessary imply more efficient and safer operation of the plant. Instead, a number of concerns about how these technologies will affect human performance and the overall safety of the plant need to be addressed. More specifically, it is important to investigate how the operator and the automation work as a team to ensure effective and safe plant operation, also known as the human-automation collaboration (HAC). The focus of the HAC research is to understand how various characteristics of automation (such as its reliability, processes, and modes) effect an operator’s use and awareness of plant conditions. In other words, the research team investigates how to best design the collaboration between the operators and the automated systems in a manner that has the greatest positive impact on overall plant performance and reliability. This report addresses the Department of Energy milestone M4AT-15IN2302054, Complete Preliminary Framework for Human-Automation Collaboration, by discussing the two phased development of a preliminary HAC framework. The framework developed in the first phase was used as the basis for selecting topics to be investigated in more detail. The results and insights gained from the in-depth studies conducted during the second phase were used to revise the framework. This report describes the basis for the framework developed in phase 1, the changes made to the framework in phase 2, and the basis for the changes. Additional research needs are identified and presented in the last section of the report.« less
47 CFR 51.231 - Provision of information on advanced services deployment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... rejection; and (3) Information with respect to the number of loops using advanced services technology within... incumbent LEC information on the type of technology that the requesting carrier seeks to deploy. (1) Where... spectral density (PSD) mask, it also must provide Spectrum Class information for the technology. (2) Where...
47 CFR 51.231 - Provision of information on advanced services deployment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the requesting carrier asserts that the technology it seeks to deploy fits within a generic power... technology, it must provide the incumbent LEC with information on the speed and power at which the signal... rejection; and (3) Information with respect to the number of loops using advanced services technology within...
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A., E-mail: turnerja@ornl.gov; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL). CASL was established for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both software and numerical perspectives, along with the goalsmore » and constraints that drove major design decisions, and their implications. We explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the use of VERA tools for a variety of challenging applications within the nuclear industry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yong-Hoon, E-mail: chaotics@snu.ac.kr; Park, Sangrok; Kim, Byong Sup
Since the first nuclear power was engaged in Korean electricity grid in 1978, intensive research and development has been focused on localization and standardization of large pressurized water reactors (PWRs) aiming at providing Korean peninsula and beyond with economical and safe power source. With increased priority placed on the safety since Chernobyl accident, Korean nuclear power R and D activity has been diversified into advanced PWR, small modular PWR and generation IV reactors. After the outbreak of Fukushima accident, inherently safe small modular reactor (SMR) receives growing interest in Korea and Europe. In this paper, we will describe recent statusmore » of evolving designs of SMR, their advantages and challenges. In particular, the conceptual design of lead-bismuth cooled SMR in Korea, URANUS with 40∼70 MWe is examined in detail. This paper will cover a framework of the program and a strategy for the successful deployment of small modular reactor how the goals would entail and the approach to collaboration with other entities.« less
Connected vehicle pilot deployment program phase 1, safety management plan – Tampa (THEA).
DOT National Transportation Integrated Search
2016-04-01
This document presents the Safety Management Plan for the THEA Connected Vehicle (CV) Pilot Deployment. The THEA CV Pilot Deployment goal is to advance and enable safe, interoperable, networked wireless communications among vehicles, the infrastructu...
Orbital transfer of large space structures with nuclear electric rockets
NASA Technical Reports Server (NTRS)
Silva, T. H.; Byers, D. C.
1980-01-01
This paper discusses the potential application of electric propulsion for orbit transfer of a large spacecraft structure from low earth orbit to geosynchronous altitude in a deployed configuration. The electric power was provided by the spacecraft nuclear reactor space power system on a shared basis during transfer operations. Factors considered with respect to system effectiveness included nuclear power source sizing, electric propulsion thruster concept, spacecraft deployment constraints, and orbital operations and safety. It is shown that the favorable total impulse capability inherent in electric propulsion provides a potential economic advantage over chemical propulsion orbit transfer vehicles by reducing the number of Space Shuttle flights in ground-to-orbit transportation requirements.
Qvist, Staffan A; Brook, Barry W
2015-01-01
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.
Deploying Nuclear Detection Systems: A Proposed Strategy for Combating Nuclear Terrorism
2007-07-01
lower cost than other gamma radiation detectors (if increased count rate is all one is looking for). Low cost makes plastic scintillation detectors...material, particularly enriched uranium and plutonium, the basic fuel for nuclear bombs. • Measures to strengthen international institutions to... uranium to specifications required for a nuclear weapon.1 This illicit shipment of centrifuges was part of an international nuclear materials
Powering the Nuclear Navy (U.S. Department of Energy)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Secretary Perry toured the USS Harry Truman with Admiral Caldwell. The Truman is powered by the Department of Energy’s Nuclear Propulsion Program. These ships can run 25 years with a single nuclear-powered reactor. Secretary Perry was briefed on the importance of nuclear propulsion to the carrier’s capabilities. The Naval Nuclear Propulsion Program provides power plants that ensure safety, reliability, and extended deployment capacity.
DOT National Transportation Integrated Search
2010-03-17
The attempted bombing of Northwest flight 253 highlighted the importance of detecting improvised explosive devices on passengers. This testimony focuses on (1) the Transportation Security Administrations (TSA) efforts to procure and deploy advance...
NASA Astrophysics Data System (ADS)
Mattoni, Carlo
2017-01-01
The financial services industry presents an interesting alternative career path for nuclear physicists. Careers in finance typically offer intellectual challenge, a fast pace, high caliber colleagues, merit-based compensation with substantial upside, and an opportunity to deploy skills learned as a physicist. Physicists are employed at a wide range of financial institutions on both the ``buy side'' (hedge fund managers, private equity managers, mutual fund managers, etc.) and the ``sell side'' (investment banks and brokerages). Historically, physicists in finance were primarily ``quants'' tasked with applying stochastic calculus to determine the price of financial derivatives. With the maturation of the field of derivative pricing, physicists in finance today find work in a variety of roles ranging from quantification and management of risk to investment analysis to development of sophisticated software used to price, trade, and risk manage securities. Only a small subset of today's finance careers for physicists require the use of advanced math and practically none provide an opportunity to tinker with an apparatus, yet most nevertheless draw on important skills honed during the training of a nuclear physicist. Intellectually rigorous critical thinking, sophisticated problem solving, an attention to minute detail and an ability to create and test hypotheses based on incomplete information are key to both disciplines.
Dose Rate Calculation of TRU Metal Ingot in Pyroprocessing - 12202
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Yoon Hee; Lee, Kunjai
Spent fuel management has been a main problem to be solved for continuous utilization of nuclear energy. Spent fuel management policy of Korea is 'Wait and See'. It is focused on Pyro-process and SFR (Sodium-cooled Fast Reactor) for closed-fuel cycle research and development in Korea. For peaceful use of nuclear facilities, the proliferation resistance has to be proved. Proliferation resistance is one of key constraints in the deployment of advanced nuclear energy systems. Non-proliferation and safeguard issues have been strengthening internationally. Barriers to proliferation are that reduces desirability or attractiveness as an explosive and makes it difficult to gain accessmore » to the materials, or makes it difficult to misuse facilities and/or technologies for weapons applications. Barriers to proliferation are classified into intrinsic and extrinsic barriers. Intrinsic barrier is inherent quality of reactor materials or the fuel cycle that is built into the reactor design and operation such as material and technical barriers. As one of the intrinsic measures, the radiation from the material is considered significantly. Therefore the radiation of TRU metal ingot from the pyro-process was calculated using ORIGEN and MCNP code. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pointer, William David; Shaver, Dillon; Liu, Yang
The U.S. Department of Energy, Office of Nuclear Energy charges participants in the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program with the development of advanced modeling and simulation capabilities that can be used to address design, performance and safety challenges in the development and deployment of advanced reactor technology. The NEAMS has established a high impact problem (HIP) team to demonstrate the applicability of these tools to identification and mitigation of sources of steam generator flow induced vibration (SGFIV). The SGFIV HIP team is working to evaluate vibration sources in an advanced helical coil steam generator using computational fluidmore » dynamics (CFD) simulations of the turbulent primary coolant flow over the outside of the tubes and CFD simulations of the turbulent multiphase boiling secondary coolant flow inside the tubes integrated with high resolution finite element method assessments of the tubes and their associated structural supports. This report summarizes the demonstration of a methodology for the multiphase boiling flow analysis inside the helical coil steam generator tube. A helical coil steam generator configuration has been defined based on the experiments completed by Polytecnico di Milano in the SIET helical coil steam generator tube facility. Simulations of the defined problem have been completed using the Eulerian-Eulerian multi-fluid modeling capabilities of the commercial CFD code STAR-CCM+. Simulations suggest that the two phases will quickly stratify in the slightly inclined pipe of the helical coil steam generator. These results have been successfully benchmarked against both empirical correlations for pressure drop and simulations using an alternate CFD methodology, the dispersed phase mixture modeling capabilities of the open source CFD code Nek5000.« less
Nagata, Takashi; Kimura, Yoshinari; Ishii, Masami
2012-04-01
The Great East Japan Earthquake occurred on March 11, 2011. In the first 10 days after the event, information about radiation risks from the Fukushima Daiichi nuclear plant was unavailable, and the disaster response, including deployment of disaster teams, was delayed. Beginning on March 17, 2011, the Japan Medical Association used a geographic information system (GIS) to visualize the risk of radiation exposure in Fukushima. This information facilitated the decision to deploy disaster medical response teams on March 18, 2011.
High-energy synchrotron x-ray techniques for studying irradiated materials
Park, Jun-Sang; Zhang, Xuan; Sharma, Hemant; ...
2015-03-20
High performance materials that can withstand radiation, heat, multiaxial stresses, and corrosive environment are necessary for the deployment of advanced nuclear energy systems. Nondestructive in situ experimental techniques utilizing high energy x-rays from synchrotron sources can be an attractive set of tools for engineers and scientists to investigate the structure–processing–property relationship systematically at smaller length scales and help build better material models. In this paper, two unique and interconnected experimental techniques, namely, simultaneous small-angle/wide-angle x-ray scattering (SAXS/WAXS) and far-field high-energy diffraction microscopy (FF-HEDM) are presented. Finally, the changes in material state as Fe-based alloys are heated to high temperatures ormore » subject to irradiation are examined using these techniques.« less
Enhanced In-Pile Instrumentation at the Advanced Test Reactor
NASA Astrophysics Data System (ADS)
Rempe, Joy L.; Knudson, Darrell L.; Daw, Joshua E.; Unruh, Troy; Chase, Benjamin M.; Palmer, Joe; Condie, Keith G.; Davis, Kurt L.
2012-08-01
Many of the sensors deployed at materials and test reactors cannot withstand the high flux/high temperature test conditions often requested by users at U.S. test reactors, such as the Advanced Test Reactor (ATR) at the Idaho National Laboratory. To address this issue, an instrumentation development effort was initiated as part of the ATR National Scientific User Facility in 2007 to support the development and deployment of enhanced in-pile sensors. This paper provides an update on this effort. Specifically, this paper identifies the types of sensors currently available to support in-pile irradiations and those sensors currently available to ATR users. Accomplishments from new sensor technology deployment efforts are highlighted by describing new temperature and thermal conductivity sensors now available to ATR users. Efforts to deploy enhanced in-pile sensors for detecting elongation and real-time flux detectors are also reported, and recently-initiated research to evaluate the viability of advanced technologies to provide enhanced accuracy for measuring key parameters during irradiation testing are noted.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melin, Alexander M.; Kisner, Roger A.; Drira, Anis
Embedded instrumentation and control systems that can operate in extreme environments are challenging due to restrictions on sensors and materials. As a part of the Department of Energy's Nuclear Energy Enabling Technology cross-cutting technology development programs Advanced Sensors and Instrumentation topic, this report details the design of a bench-scale embedded instrumentation and control testbed. The design goal of the bench-scale testbed is to build a re-configurable system that can rapidly deploy and test advanced control algorithms in a hardware in the loop setup. The bench-scale testbed will be designed as a fluid pump analog that uses active magnetic bearings tomore » support the shaft. The testbed represents an application that would improve the efficiency and performance of high temperature (700 C) pumps for liquid salt reactors that operate in an extreme environment and provide many engineering challenges that can be overcome with embedded instrumentation and control. This report will give details of the mechanical design, electromagnetic design, geometry optimization, power electronics design, and initial control system design.« less
2014-02-11
ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Sandia National Laboratories: News
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Locations
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Careers
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Mission
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Research
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Feedback
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles
NASA Astrophysics Data System (ADS)
Djokic, Denia
The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.
NASA Astrophysics Data System (ADS)
Labare, Mathieu
2017-09-01
SoLid is a reactor anti-neutrino experiment where a novel detector is deployed at a minimum distance of 5.5 m from a nuclear reactor core. The purpose of the experiment is three-fold: to search for neutrino oscillations at a very short baseline; to measure the pure 235U neutrino energy spectrum; and to demonstrate the feasibility of neutrino detectors for reactor monitoring. This report presents the unique features of the SoLid detector technology. The technology has been optimised for a high background environment resulting from low overburden and the vicinity of a nuclear reactor. The versatility of the detector technology is demonstrated with a 288 kg detector prototype which was deployed at the BR2 nuclear reactor in 2015. The data presented includes both reactor on, reactor off and calibration measurements. The measurement results are compared with Monte Carlo simulations. The 1.6t SoLid detector is currently under construction, with an optimised design and upgraded material technology to enhance the detector capabilities. Its deployement on site is planned for the begin of 2017 and offers the prospect to resolve the reactor anomaly within about two years.
Qvist, Staffan A.; Brook, Barry W.
2015-01-01
There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shawn St. Germain; Ronald Farris; Heather Medeman
2013-09-01
This research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. The LWRS program serves to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. The long term viability of existing nuclear power plants in the U.S.more » will depend upon maintaining high capacity factors, avoiding nuclear safety issues and reducing operating costs. The slow progress in the construction on new nuclear power plants has placed in increased importance on maintaining the output of the current fleet of nuclear power plants. Recently expanded natural gas production has placed increased economic pressure on nuclear power plants due to lower cost competition. Until recently, power uprate projects had steadily increased the total output of the U.S. nuclear fleet. Errors made during power plant upgrade projects have now removed three nuclear power plants from the U.S. fleet and economic considerations have caused the permanent shutdown of a fourth plant. Additionally, several utilities have cancelled power uprate projects citing economic concerns. For the past several years net electrical generation from U.S. nuclear power plants has been declining. One of few remaining areas where significant improvements in plant capacity factors can be made is in minimizing the duration of refueling outages. Managing nuclear power plant outages is a complex and difficult task. Due to the large number of complex tasks and the uncertainty that accompanies them, outage durations routinely exceed the planned duration. The ability to complete an outage on or near schedule depends upon the performance of the outage management organization. During an outage, the outage control center (OCC) is the temporary command center for outage managers and provides several critical functions for the successful execution of the outage schedule. Essentially, the OCC functions to facilitate information inflow, assist outage management in processing information and to facilitate the dissemination of information to stakeholders. Currently, outage management activities primarily rely on telephone communication, face to face reports of status and periodic briefings in the OCC. Much of the information displayed in OCCs is static and out of date requiring an evaluation to determine if it is still valid. Several advanced communication and collaboration technologies have shown promise for facilitating the information flow into, across and out of the OCC. Additionally, advances in the areas of mobile worker technologies, computer based procedures and electronic work packages can be leveraged to improve the availability of real time status to outage managers.« less
Johnson Noise Thermometry for Advanced Small Modular Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Britton, C.L.,Jr.; Roberts, M.; Bull, N.D.
Temperature is a key process variable at any nuclear power plant (NPP). The harsh reactor environment causes all sensor properties to drift over time. At the higher temperatures of advanced NPPs the drift occurs more rapidly. The allowable reactor operating temperature must be reduced by the amount of the potential measurement error to assure adequate margin to material damage. Johnson noise is a fundamental expression of temperature and as such is immune to drift in a sensor’s physical condition. In and near the core, only Johnson noise thermometry (JNT) and radiation pyrometry offer the possibility for long-term, high-accuracy temperature measurementmore » due to their fundamental natures. Small Modular Reactors (SMRs) place a higher value on long-term stability in their temperature measurements in that they produce less power per reactor core and thus cannot afford as much instrument recalibration labor as their larger brethren. The purpose of the current ORNL-led project, conducted under the Instrumentation, Controls, and Human-Machine Interface (ICHMI) research pathway of the U.S. Department of Energy (DOE) Advanced SMR Research and Development (R&D) program, is to develop and demonstrate a drift free Johnson noise-based thermometer suitable for deployment near core in advanced SMR plants.« less
Sandia National Laboratories: Search Results
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Social Media
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Visiting Research Scholars
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Videos
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: About Sandia
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Image Gallery
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Research: Biodefense
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Privacy and Security
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Sandia Digital Media
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Careers: Special Programs
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Cooperative Monitoring Center
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Research: Bioscience
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Integrated Military Systems
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Image Gallery
Environmental Management System Pollution Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers
Advanced Deployable Structural Systems for Small Satellites
NASA Technical Reports Server (NTRS)
Belvin, W. Keith; Straubel, Marco; Wilkie, W. Keats; Zander, Martin E.; Fernandez, Juan M.; Hillebrandt, Martin F.
2016-01-01
One of the key challenges for small satellites is packaging and reliable deployment of structural booms and arrays used for power, communication, and scientific instruments. The lack of reliable and efficient boom and membrane deployment concepts for small satellites is addressed in this work through a collaborative project between NASA and DLR. The paper provides a state of the art overview on existing spacecraft deployable appendages, the special requirements for small satellites, and initial concepts for deployable booms and arrays needed for various small satellite applications. The goal is to enhance deployable boom predictability and ground testability, develop designs that are tolerant of manufacturing imperfections, and incorporate simple and reliable deployment systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Germain, Shawn St.; Thomas, Kenneth; Farris, Ronald
2014-09-01
The long-term viability of existing nuclear power plants (NPPs) in the United States (U.S.) is dependent upon a number of factors, including maintaining high capacity factors, maintaining nuclear safety, and reducing operating costs, particularly those associated with refueling outages. Refueling outages typically take 20-30 days, and for existing light water NPPs in the U.S., the reactor cannot be in operation during the outage. Furthermore, given that many NPPs generate between $1-1.5 million/day in revenue when in operation, there is considerable interest in shortening the length of refueling outages. Yet, refueling outages are highly complex operations, involving multiple concurrent and dependentmore » activities that are difficult to coordinate. Finding ways to improve refueling outage performance while maintaining nuclear safety has proven to be difficult. The Advanced Outage Control Center project is a research and development (R&D) demonstration activity under the Light Water Reactor Sustainability (LWRS) Program. LWRS is a R&D program which works with industry R&D programs to establish technical foundations for the licensing and managing of long-term, safe, and economical operation of current NPPs. The Advanced Outage Control Center project has the goal of improving the management of commercial NPP refueling outages. To accomplish this goal, this INL R&D project is developing an advanced outage control center (OCC) that is specifically designed to maximize the usefulness of communication and collaboration technologies for outage coordination and problem resolution activities. This report describes specific recent efforts to develop a capability called outage Micro-Scheduling. Micro-Scheduling is the ability to allocate and schedule outage support task resources on a sub-hour basis. Micro-Scheduling is the real-time fine-tuning of the outage schedule to react to the actual progress of the primary outage activities to ensure that support task resources are optimally deployed with the least amount of delay and unproductive use of resources. The remaining sections of this report describe in more detail the scheduling challenges that occur during outages, how a Micro-Scheduling capability helps address those challenges, and provides a status update on work accomplished to date and the path forward.« less
The Future Nuclear Arms Control Agenda and Its Potential Implications for the Air Force
2015-08-01
triad of delivery systems will need to be replaced. Nuclear warhead life-cycle extension also will need to continue, assuming it remains too difficult...U.S. and Russian strategic nuclear forces. Thus, formal U.S.-Russian arms control negotiations for strategic nuclear systems will almost certainly...reductions in numbers of deployed systems to a more far-reaching agreement that would begin a process of verified elimination of nuclear warheads. The
Assessing the impact of nuclear retirements on the U.S. power sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richards, James; Cole, Wesley J.
This work utilizes the Regional Energy Deployment System (ReEDS) model to analyze the impacts of four nuclear retirement scenarios of the U.S. electricity sector, from nuclear plant lifetimes of 50 to 80 years. The analysis finds that longer nuclear lifetimes decrease the amount of renewable and natural gas capacity. Longer nuclear lifetimes also resulted in lower cumulative and annual carbon emissions, lower transmission builds, and higher energy curtailment and water usage.
Sandia National Laboratories: News: Publications: Environmental Reports
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Sandia National Laboratories: News: Events
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: About Sandia: Environmental Responsibility
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: About Sandia: Community Involvement
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Publications: HPC Reports
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Community Involvement: Volunteer Programs
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Search Sandia Publications
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Working with Sandia: Small Business
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Microsystems Science & Technology Center
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Publications: Strategic Plan
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Media Resources: Media Contacts
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Employee & Retiree Resources: Technical
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Z Pulsed Power Facility
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: News: Publications: Annual Report
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Employee & Retiree Resources: Remote Access
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: National Security Missions: International
Prevention History 60 impacts Diversity Locations Facts & Figures Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Defense Systems & Assessments About Directed Research & Development Technology Deployment Centers Working With Sandia Working With Sandia
Intelligent video storage of visual evidences on site in fast deployment
NASA Astrophysics Data System (ADS)
Desurmont, Xavier; Bastide, Arnaud; Delaigle, Jean-Francois
2004-07-01
In this article we present a generic, flexible, scalable and robust approach for an intelligent real-time forensic visual system. The proposed implementation could be rapidly deployable and integrates minimum logistic support as it embeds low complexity devices (PCs and cameras) that communicate through wireless network. The goal of these advanced tools is to provide intelligent video storage of potential video evidences for fast intervention during deployment around a hazardous sector after a terrorism attack, a disaster, an air crash or before attempt of it. Advanced video analysis tools, such as segmentation and tracking are provided to support intelligent storage and annotation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ingersoll, Daniel T
2007-01-01
Technical Requirements For Reactors To Be Deployed Internationally For the Global Nuclear Energy Partnership Robert Price U.S. Department of Energy, 1000 Independence Ave, SW, Washington, DC 20585, Daniel T. Ingersoll Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6162, INTRODUCTION The Global Nuclear Energy Partnership (GNEP) seeks to create an international regime to support large-scale growth in the worldwide use of nuclear energy. Fully meeting the GNEP vision may require the deployment of thousands of reactors in scores of countries, many of which do not use nuclear energy currently. Some of these needs will be met by large-scalemore » Generation III and III+ reactors (>1000 MWe) and Generation IV reactors when they are available. However, because many developing countries have small and immature electricity grids, the currently available Generation III(+) reactors may be unsuitable since they are too large, too expensive, and too complex. Therefore, GNEP envisions new types of reactors that must be developed for international deployment that are "right sized" for the developing countries and that are based on technologies, designs, and policies focused on reducing proliferation risk. The first step in developing such systems is the generation of technical requirements that will ensure that the systems meet both the GNEP policy goals and the power needs of the recipient countries. REQUIREMENTS Reactor systems deployed internationally within the GNEP context must meet a number of requirements similar to the safety, reliability, economics, and proliferation goals established for the DOE Generation IV program. Because of the emphasis on deployment to nonnuclear developing countries, the requirements will be weighted differently than with Generation IV, especially regarding safety and non-proliferation goals. Also, the reactors should be sized for market conditions in developing countries where energy demand per capita, institutional maturity and industrial infrastructure vary considerably, and must utilize fuel that is compatible with the fuel recycle technologies being developed by GNEP. Arrangements are already underway to establish Working Groups jointly with Japan and Russia to develop requirements for reactor systems. Additional bilateral and multilateral arrangements are expected as GNEP progresses. These Working Groups will be instrumental in establishing an international consensus on reactor system requirements. GNEP CERTIFICATION After establishing an accepted set of requirements for new reactors that are deployed internationally, a mechanism is needed that allows capable countries to continue to market their reactor technologies and services while assuring that they are compatible with GNEP goals and technologies. This will help to preserve the current system of open, commercial competition while steering the international community to meet common policy goals. The proposed vehicle to achieve this is the concept of GNEP Certification. Using objective criteria derived from the technical requirements in several key areas such as safety, security, non-proliferation, and safeguards, reactor designs could be evaluated and then certified if they meet the criteria. This certification would ensure that reactor designs meet internationally approved standards and that the designs are compatible with GNEP assured fuel services. SUMMARY New "right sized" power reactor systems will need to be developed and deployed internationally to fully achieve the GNEP vision of an expanded use of nuclear energy world-wide. The technical requirements for these systems are being developed through national and international Working Groups. The process is expected to culminate in a new GNEP Certification process that enables commercial competition while ensuring that the policy goals of GNEP are adequately met.« less
Large Bilateral Reductions in Superpower Nuclear Weapons.
1985-07-01
missile ( ABM ) systems were deployed, e.g., the current Soviet ABM system around Moscow. Although there have been no further wartime uses of nuclear...have placed more emphasis on strategic defense than the U.S.; however, by agreeing to the ABM Treaty, the 6Soviets implicitly accepted the fundamental...required for the reliability testing of existing nuclear weapons and the development of future nuclear weapons. The ABM Treaty of 1972 was a
Emergency EDAPTS retainer support.
DOT National Transportation Integrated Search
2007-06-01
The Efficient Deployment of Advanced Transportation Systems (EDAPTS) Smart Transit System Project : required various quick-response deployment support activities over the 26-month period from April 18, 2005 : to June 30, 2007. These activities requir...
An advanced technique for the prediction of decelerator system dynamics.
NASA Technical Reports Server (NTRS)
Talay, T. A.; Morris, W. D.; Whitlock, C. H.
1973-01-01
An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Taiping; Khangaonkar, Tarang; Long, Wen
2014-02-07
In recent years, with the rapid growth of global energy demand, the interest in extracting uranium from seawater for nuclear energy has been renewed. While extracting seawater uranium is not yet commercially viable, it serves as a “backstop” to the conventional uranium resources and provides an essentially unlimited supply of uranium resource. With recent advances in seawater uranium extraction technology, extracting uranium from seawater could be economically feasible when the extraction devices are deployed at a large scale (e.g., several hundred km2). There is concern however that the large scale deployment of adsorbent farms could result in potential impacts tomore » the hydrodynamic flow field in an oceanic setting. In this study, a kelp-type structure module was incorporated into a coastal ocean model to simulate the blockage effect of uranium extraction devices on the flow field. The module was quantitatively validated against laboratory flume experiments for both velocity and turbulence profiles. The model-data comparison showed an overall good agreement and validated the approach of applying the model to assess the potential hydrodynamic impact of uranium extraction devices or other underwater structures in coastal oceans.« less
Evaluating the Cost, Safety, and Proliferation Risks of Small Floating Nuclear Reactors.
Ford, Michael J; Abdulla, Ahmed; Morgan, M Granger
2017-11-01
It is hard to see how our energy system can be decarbonized if the world abandons nuclear power, but equally hard to introduce the technology in nonnuclear energy states. This is especially true in countries with limited technical, institutional, and regulatory capabilities, where safety and proliferation concerns are acute. Given the need to achieve serious emissions mitigation by mid-century, and the multidecadal effort required to develop robust nuclear governance institutions, we must look to other models that might facilitate nuclear plant deployment while mitigating the technology's risks. One such deployment paradigm is the build-own-operate-return model. Because returning small land-based reactors containing spent fuel is infeasible, we evaluate the cost, safety, and proliferation risks of a system in which small modular reactors are manufactured in a factory, and then deployed to a customer nation on a floating platform. This floating small modular reactor would be owned and operated by a single entity and returned unopened to the developed state for refueling. We developed a decision model that allows for a comparison of floating and land-based alternatives considering key International Atomic Energy Agency plant-siting criteria. Abandoning onsite refueling is beneficial, and floating reactors built in a central facility can potentially reduce the risk of cost overruns and the consequences of accidents. However, if the floating platform must be built to military-grade specifications, then the cost would be much higher than a land-based system. The analysis tool presented is flexible, and can assist planners in determining the scope of risks and uncertainty associated with different deployment options. © 2017 Society for Risk Analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barefield Ii, James E; Clegg, Samuel M; Lopez, Leon N
2010-01-01
Advanced methodologies and improvements to current measurements techniques are needed to strengthen the effectiveness and efficiency of international safeguards. This need was recognized and discussed at a Technical Meeting on 'The Application of Laser Spectrometry Techniques in IAEA Safeguards' held at IAEA headquarters (September 2006). One of the principal recommendations from that meeting was the need to pursue the development of novel complementary access instrumentation based on Laser Induced Breakdown Spectroscopy (UBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials'. Pursuant to this recommendation the Department of Safeguards (SG) undermore » the Division of Technical Support (SGTS) convened the 'Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications' also held at IAEA headquarters (July 2008). This meeting was attended by 12 LlBS experts from the Czech Republic, the European Commission, France, the Republic of South Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. Following a presentation of the needs of the IAEA inspectors, the LIBS experts agreed that needs as presented could be partially or fully fulfilled using LIBS instrumentation. Inspectors needs were grouped into the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activities in Hot Cells; (3) Verify status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. The primary tool employed by the IAEA to detect undeclared processes and activities at special nuclear material facilities and sites is environmental sampling. One of the objectives of the Next Generation Safeguards Initiative (NGSI) Program Plan calls for the development of advanced tools and methodologies to detect and analyze undeclared processing or production of special nuclear material. Los Alamos National Laboratory is currently investigating potential uses of LIBS for safeguards applications, including (1) a user-friendly man-portable LIBS system to characterize samples in real to near-real time (typical analysis time are on the order of minutes) across a wide range of elements in the periodic table from hydrogen up to heavy elements like plutonium and uranium, (2) a LIBS system that can be deployed in harsh environments such as hot cells and glove boxes providing relative compositional analysis of process streams for example ratios like Cm/Up and Cm/U, (3) an inspector field deployable system that can be used to analyze the elemental composition of microscopic quantities of samples containing plutonium and uranium, and (4) a high resolution LIBS system that can be used to determine the isotopic composition of samples containing for example uranium, plutonium... etc. In this paper, we will describe our current development and performance testing results for LIBS instrumentation both in a fixed lab and measurements in field deployable configurations.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A.; Clarno, Kevin; Sieger, Matt
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
The Virtual Environment for Reactor Applications (VERA): Design and architecture
Turner, John A.; Clarno, Kevin; Sieger, Matt; ...
2016-09-08
VERA, the Virtual Environment for Reactor Applications, is the system of physics capabilities being developed and deployed by the Consortium for Advanced Simulation of Light Water Reactors (CASL), the first DOE Hub, which was established in July 2010 for the modeling and simulation of commercial nuclear reactors. VERA consists of integrating and interfacing software together with a suite of physics components adapted and/or refactored to simulate relevant physical phenomena in a coupled manner. VERA also includes the software development environment and computational infrastructure needed for these components to be effectively used. We describe the architecture of VERA from both amore » software and a numerical perspective, along with the goals and constraints that drove the major design decisions and their implications. As a result, we explain why VERA is an environment rather than a framework or toolkit, why these distinctions are relevant (particularly for coupled physics applications), and provide an overview of results that demonstrate the application of VERA tools for a variety of challenging problems within the nuclear industry.« less
Alternative nuclear technologies
NASA Astrophysics Data System (ADS)
Schubert, E.
1981-10-01
The lead times required to develop a select group of nuclear fission reactor types and fuel cycles to the point of readiness for full commercialization are compared. Along with lead times, fuel material requirements and comparative costs of producing electric power were estimated. A conservative approach and consistent criteria for all systems were used in estimates of the steps required and the times involved in developing each technology. The impact of the inevitable exhaustion of the low- or reasonable-cost uranium reserves in the United States on the desirability of completing the breeder reactor program, with its favorable long-term result on fission fuel supplies, is discussed. The long times projected to bring the most advanced alternative converter reactor technologies the heavy water reactor and the high-temperature gas-cooled reactor into commercial deployment when compared to the time projected to bring the breeder reactor into equivalent status suggest that the country's best choice is to develop the breeder. The perceived diversion-proliferation problems with the uranium plutonium fuel cycle have workable solutions that can be developed which will enable the use of those materials at substantially reduced levels of diversion risk.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scribner, R.A.
Sea-launched cruise missiles (SLCMs) present some particularly striking problems for both national security and arms control. These small, dual-purpose, difficult to detect weapons present some formidable challenges for verification in any scheme that attempts to limit rather than eliminate them. Conventionally armed SLCMs offer to the navies of both superpowers important offensive and defensive capabilities. Nuclear armed, long-range, land-attack SLCMs, on the other hand, seem to pose destabilizing threats and otherwise have questionable value, despite strong US support for extensive deployment of them. If these weapons are not constrained, their deployment could circumvent gains which might be made in agreementsmore » directly reducing of strategic nuclear weapons. This paper reviews the technology and planned deployments of SLCMs, the verification schemes which have been discussed and are being investigated to try to deal with the problem, and examines the proposed need for and possible uses of SLCMs. It presents an overview of the problem technically, militarily, and politically.« less
Iran’s Nuclear Future: Critical U.S. Policy Choices
2011-01-01
embargo as an act of war, and it could respond by attempting to close the Strait of Hormuz, using mines , antiship cruise missiles, or fast patrol boats...even it means we have to compromise on sovereignty by having U.S. troops deployed here” (quoted in Barbara Opall -Rome, “U.S. to Deploy Radar, Troops...2009. As of January 13, 2011: http://handle.dtic.mil/100.2/ADA510110 Opall -Rome, Barbara, “U.S. to Deploy Radar, Troops in Israel,” Defense News, August
Space station structures development
NASA Technical Reports Server (NTRS)
Teller, V. B.
1986-01-01
A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.
Sandia National Laboratories: What Sandia Looks For In Our Suppliers
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
Sandia National Laboratories: Working with Sandia: What Does Sandia Buy?
Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & Technology Robotics R&D 100 Awards Laboratory Directed Research & Development Technology Deployment Centers Audit Sandia's Economic Impact Licensing & Technology Transfer Browse Technology Portfolios
2014-02-11
ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Cladding and duct materials for advanced nuclear recycle reactors
NASA Astrophysics Data System (ADS)
Allen, T. R.; Busby, J. T.; Klueh, R. L.; Maloy, S. A.; Toloczko, M. B.
2008-01-01
The expanded use of nuclear energy without risk of nuclear weapons proliferation and with safe nuclear waste disposal is a primary goal of the Global Nuclear Energy Partnership (GNEP). To achieve that goal the GNEP is exploring advanced technologies for recycling spent nuclear fuel that do not separate pure plutonium, and advanced reactors that consume transuranic elements from recycled spent fuel. The GNEP’s objectives will place high demands on reactor clad and structural materials. This article discusses the materials requirements of the GNEP’s advanced nuclear recycle reactors program.
Nuclear cycler: An incremental approach to the deflection of asteroids
NASA Astrophysics Data System (ADS)
Vasile, Massimiliano; Thiry, Nicolas
2016-04-01
This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.
Keeping Nuclear Materials Secure
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
For 50 years, Los Alamos National Laboratory has been helping to keep nuclear materials secure. We do this by developing instruments and training inspectors that are deployed to other countries to make sure materials such as uranium are being used for peaceful purposes and not diverted for use in weapons. These measures are called “nuclear safeguards,” and they help make the world a safer place.
Advanced public transportation system deployment in the United States
DOT National Transportation Integrated Search
1999-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...
Advanced Opto-Electronics (LIDAR and Microsensor Development)
NASA Technical Reports Server (NTRS)
Vanderbilt, Vern C. (Technical Monitor); Spangler, Lee H.
2005-01-01
Our overall intent in this aspect of the project were to establish a collaborative effort between several departments at Montana State University for developing advanced optoelectronic technology for advancing the state-of-the-art in optical remote sensing of the environment. Our particular focus was on development of small systems that can eventually be used in a wide variety of applications that might include ground-, air-, and space deployments, possibly in sensor networks. Specific objectives were to: 1) Build a field-deployable direct-detection lidar system for use in measurements of clouds, aerosols, fish, and vegetation; 2) Develop a breadboard prototype water vapor differential absorption lidar (DIAL) system based on highly stable, tunable diode laser technology developed previously at MSU. We accomplished both primary objectives of this project, in developing a field-deployable direct-detection lidar and a breadboard prototype of a water vapor DIAL system. Paper summarizes each of these accomplishments.
The USAID-NREL Partnership: Delivering Clean, Reliable, and Affordable Power in the Developing World
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, Andrea C; Leisch, Jennifer E
The U.S. Agency for International Development (USAID) and the National Renewable Energy Laboratory (NREL) are partnering to support clean, reliable, and affordable power in the developing world. The USAID-NREL Partnership helps countries with policy, planning, and deployment support for advanced energy technologies. Through this collaboration, USAID is accessing advanced energy expertise and analysis pioneered by the U.S. National Laboratory system. The Partnership addresses critical aspects of advanced energy systems including renewable energy deployment, grid modernization, distributed energy resources and storage, power sector resilience, and the data and analytical tools needed to support them.
ADVANCED SEISMIC BASE ISOLATION METHODS FOR MODULAR REACTORS
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Blanford; E. Keldrauk; M. Laufer
2010-09-20
Advanced technologies for structural design and construction have the potential for major impact not only on nuclear power plant construction time and cost, but also on the design process and on the safety, security and reliability of next generation of nuclear power plants. In future Generation IV (Gen IV) reactors, structural and seismic design should be much more closely integrated with the design of nuclear and industrial safety systems, physical security systems, and international safeguards systems. Overall reliability will be increased, through the use of replaceable and modular equipment, and through design to facilitate on-line monitoring, in-service inspection, maintenance, replacement,more » and decommissioning. Economics will also receive high design priority, through integrated engineering efforts to optimize building arrangements to minimize building heights and footprints. Finally, the licensing approach will be transformed by becoming increasingly performance based and technology neutral, using best-estimate simulation methods with uncertainty and margin quantification. In this context, two structural engineering technologies, seismic base isolation and modular steel-plate/concrete composite structural walls, are investigated. These technologies have major potential to (1) enable standardized reactor designs to be deployed across a wider range of sites, (2) reduce the impact of uncertainties related to site-specific seismic conditions, and (3) alleviate reactor equipment qualification requirements. For Gen IV reactors the potential for deliberate crashes of large aircraft must also be considered in design. This report concludes that base-isolated structures should be decoupled from the reactor external event exclusion system. As an example, a scoping analysis is performed for a rectangular, decoupled external event shell designed as a grillage. This report also reviews modular construction technology, particularly steel-plate/concrete construction using factory prefabricated structural modules, for application to external event shell and base isolated structures.« less
The ADVANCE project : formal evaluation of the targeted deployment. Volume 1
DOT National Transportation Integrated Search
1997-01-01
The Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE) was an in-vehicle advanced traveler information system (ATIS) that operated in the northwest suburbs of Chicago, Illinois. It was designed to provide origin-destination shortest-ti...
Development of a verification program for deployable truss advanced technology
NASA Technical Reports Server (NTRS)
Dyer, Jack E.
1988-01-01
Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.
NASA Astrophysics Data System (ADS)
Bernstein, A.; Allen, M.; Bowden, N.; Brennan, J.; Carr, D. J.; Estrada, J.; Hagmann, C.; Lund, J. C.; Madden, N. W.; Winant, C. D.
2005-09-01
Our Lawrence Livermore National Laboratory/Sandia National Laboratories collaboration has deployed a cubic-meter-scale antineutrino detector to demonstrate non-intrusive and automatic monitoring of the power levels and plutonium content of a nuclear reactor. Reactor monitoring of this kind is required for all non-nuclear weapons states under the Nuclear Nonproliferation Treaty (NPT), and is implemented by the International Atomic Energy Agency (IAEA). Since the antineutrino count rate and energy spectrum depend on the relative yields of fissioning isotopes in the reactor core, changes in isotopic composition can be observed without ever directly accessing the core. Data from a cubic meter scale antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. Our group has deployed a detector at the San Onofre reactor site in California to demonstrate this concept. This paper describes the concept and shows preliminary results from 8 months of operation.
Nuclear reactor power for a space-based radar. SP-100 project
NASA Technical Reports Server (NTRS)
Bloomfield, Harvey; Heller, Jack; Jaffe, Leonard; Beatty, Richard; Bhandari, Pradeep; Chow, Edwin; Deininger, William; Ewell, Richard; Fujita, Toshio; Grossman, Merlin
1986-01-01
A space-based radar mission and spacecraft, using a 300 kWe nuclear reactor power system, has been examined, with emphasis on aspects affecting the power system. The radar antenna is a horizontal planar array, 32 X 64 m. The orbit is at 61 deg, 1088 km. The mass of the antenna with support structure is 42,000 kg; of the nuclear reactor power system, 8,300 kg; of the whole spacecraft about 51,000 kg, necessitating multiple launches and orbital assembly. The assembly orbit is at 57 deg, 400 km, high enough to provide the orbital lifetime needed for orbital assembly. The selected scenario uses six Shuttle launches to bring the spacecraft and a Centaur G upper-stage vehicle to assembly orbit. After assembly, the Centaur places the spacecraft in operational orbit, where it is deployed on radio command, the power system started, and the spacecraft becomes operational. Electric propulsion is an alternative and allows deployment in assembly orbit, but introduces a question of nuclear safety.
Demonstrations of Deployable Systems for Robotic Precursor Missions
NASA Technical Reports Server (NTRS)
Dervan, J.; Johnson, L.; Lockett, T.; Carr, J.; Boyd, D.
2017-01-01
NASA is developing thin-film based, deployable propulsion, power, and communication systems for small spacecraft that serve as enabling technologies for exploration of the solar system. By leveraging recent advancements in thin films, photovoltaics, deployment systems, and miniaturized electronics, new mission-level capabilities will be demonstrated aboard small spacecraft enabling a new generation of frequent, inexpensive, and highly capable robotic precursor missions with goals extensible to future human exploration. Specifically, thin-film technologies are allowing the development and use of solar sails for propulsion, small, lightweight photovoltaics for power, and omnidirectional antennas for communication as demonstrated by recent advances on the Near Earth Asteroid (NEA) Scout and Lightweight Integrated Solar Array and anTenna (LISA-T) projects.
2014-02-11
ISS038-E-044883 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it begins the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-11
ISS038-E-044994 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station prior to the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
Advanced public transportation systems deployment in the United States : year 2002 update
DOT National Transportation Integrated Search
2003-06-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced public transportation systems deployment in the United States : year 2000 update
DOT National Transportation Integrated Search
2002-05-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced public transportation systems deployment in the United States : year 2004 update
DOT National Transportation Integrated Search
2005-06-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced Public Transportation Systems Deployment in the United States, Year 2000, Update
DOT National Transportation Integrated Search
2002-05-01
This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...
Advanced Public Transportation Systems Deployment in the United States. Update, January 1999
DOT National Transportation Integrated Search
1999-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...
Advanced public transportation systems deployment in the United States : update, January 1999
DOT National Transportation Integrated Search
1999-01-01
This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advances navigation, information, and communication techn...
Global climate change: the quantifiable sustainability challenge.
Princiotta, Frank T; Loughlin, Daniel H
2014-09-01
Population growth and the pressures spawned by increasing demands for energy and resource-intensive goods, foods, and services are driving unsustainable growth in greenhouse gas (GHG) emissions. Recent GHG emission trends are consistent with worst-case scenarios of the previous decade. Dramatic and near-term emission reductions likely will be needed to ameliorate the potential deleterious impacts of climate change. To achieve such reductions, fundamental changes are required in the way that energy is generated and used. New technologies must be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear and transportation technologies are particularly important; however, global research and development efforts related to these technologies currently appear to fall short relative to needs. Even with a proactive and international mitigation effort, humanity will need to adapt to climate change, but the adaptation needs and damages will be far greater if mitigation activities are not pursued in earnest. In this review, research is highlighted that indicates increasing global and regional temperatures and ties climate changes to increasing GHG emissions. GHG mitigation targets necessary for limiting future global temperature increases are discussed, including how factors such as population growth and the growing energy intensity of the developing world will make these reduction targets more challenging. Potential technological pathways for meeting emission reduction targets are examined, barriers are discussed, and global and US. modeling results are presented that suggest that the necessary pathways will require radically transformed electric and mobile sectors. While geoengineering options have been proposed to allow more time for serious emission reductions, these measures are at the conceptual stage with many unanswered cost, environmental, and political issues. Implications: This paper lays out the case that mitigating the potential for catastrophic climate change will be a monumental challenge, requiring the global community to transform its energy system in an aggressive, coordinated, and timely manner. If this challenge is to be met, new technologies will have to be developed and deployed at a rapid rate. Advances in carbon capture and storage, renewable, nuclear, and transportation technologies are particularly important. Even with an aggressive international mitigation effort, humanity will still need to adapt to significant climate change.
Required Assets for a Nuclear Energy Applied R&D Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harold F. McFarlane; Craig L. Jacobson
2009-03-01
This report is one of a set of three documents that have collectively identified and recommended research and development capabilities that will be required to advance nuclear energy in the next 20 to 50 years. The first report, Nuclear Energy for the Future: Required Research and Development Capabilities—An Industry Perspective, was produced by Battelle Memorial Institute at the request of the Assistant Secretary of Nuclear Energy. That report, drawn from input by industry, academia, and Department of Energy laboratories, can be found in Appendix 5.1. This Idaho National Laboratory report maps the nuclear-specific capabilities from the Battelle report onto facilitymore » requirements, identifying options from the set of national laboratory, university, industry, and international facilities. It also identifies significant gaps in the required facility capabilities. The third document, Executive Recommendations for Nuclear R&D Capabilities, is a letter report containing a set of recommendations made by a team of senior executives representing nuclear vendors, utilities, academia, and the national laboratories (at Battelle’s request). That third report can be found in Appendix 5.2. The three reports should be considered as set in order to have a more complete picture. The basis of this report was drawn from three sources: previous Department of Energy reports, workshops and committee meetings, and expert opinion. The facilities discussed were winnowed from several hundred facilities that had previously been catalogued and several additional facilities that had been overlooked in past exercises. The scope of this report is limited to commercial nuclear energy and those things the federal government, or more specifically the Office of Nuclear Energy, should do to support its expanded deployment in order to increase energy security and reduce carbon emissions. In the context of this report, capabilities mean innovative, well-structured research and development programs, a viable work force, and well-equipped specialized facilities.« less
Biomorphic Explorers Leading Towards a Robotic Ecology
NASA Technical Reports Server (NTRS)
Thakoor, Sarita; Miralles, Carlos; Chao, Tien-Hsin
1999-01-01
This paper presents viewgraphs of biomorphic explorers as they provide extended survival and useful life of robots in ecology. The topics include: 1) Biomorphic Explorers; 2) Advanced Mobility for Biomorphic Explorers; 3) Biomorphic Explorers: Size Based Classification; 4) Biomorphic Explorers: Classification (Based on Mobility and Ambient Environment); 5) Biomorphic Flight Systems: Vision; 6) Biomorphic Glider Deployment Concept: Larger Glider Deploy/Local Relay; 7) Biomorphic Glider Deployment Concept: Balloon Deploy/Dual Relay; 8) Biomorphic Exlplorer: Conceptual Design; 9) Biomorphic Gliders; and 10) Applications.
Global Combat Support System Army Increment 1 (GCSS-A Inc 1)
2016-03-01
Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year...another economic anaylsis was completed on November 14, 2012, in advance of a successful FDD . The program is now in the O&S Phase. GCSS-A Inc 1 2016...Increment I Feb 2011 Aug 2011 Full Deployment Decision ( FDD )1 Feb 2012 Dec 2012 Full Deployment (FD)2 Sep 2017 Mar 2018 Memo 1/ GCSS-A Increment 1
High-Capacity Communications from Martian Distances Part 2: Spacecraft Antennas and Power Systems
NASA Technical Reports Server (NTRS)
Hodges, Richard E.; Kodis, Mary Anne; Epp, Larry W.; Orr, Richard; Schuchman, Leonard; Collins, Michael; Sands, O. Scott; Vyas, Hemali; Williams, W. Dan
2006-01-01
This paper summarizes recent advances in antenna and power systems technology to enable a high data rate Ka-band Mars-to-Earth telecommunications system. Promising antenna technologies are lightweight, deployable space qualified structures at least 12-m in diameter (potentially up to 25-m). These technologies include deployable mesh reflectors, inflatable reflectarray and folded thermosetting composite. Advances in 1kW-class RF power amplifiers include both TWTA and SSPA technologies.
DOT National Transportation Integrated Search
1997-01-01
Intelligent transportation systems (ITS) are systems that utilize advanced technologies, including computer, communications and process control technologies, to improve the efficiency and safety of the transportation system. These systems encompass a...
Recommendations of the National Mayday Readiness Initiative
DOT National Transportation Integrated Search
2000-10-23
Automobile companies are rapidly deploying millions of vehicles with increasingly advanced : abilities to detect, collect and wirelessly transmit crisis-related voice and crash data at the push of a button or the deployment of an airbag. The next gen...
Intelligent transportation systems for work zones : deployment benefits and lessons learned
DOT National Transportation Integrated Search
2000-12-01
This paper presents what has been learned in four principal areas of arterial management: 1) adaptive control strategies; 2) advanced traveler information systems; 3) automated enforcement; and 4) integration. The levels of deployment, benefits, depl...
Energy storage deployment and innovation for the clean energy transition
NASA Astrophysics Data System (ADS)
Kittner, Noah; Lill, Felix; Kammen, Daniel M.
2017-09-01
The clean energy transition requires a co-evolution of innovation, investment, and deployment strategies for emerging energy storage technologies. A deeply decarbonized energy system research platform needs materials science advances in battery technology to overcome the intermittency challenges of wind and solar electricity. Simultaneously, policies designed to build market growth and innovation in battery storage may complement cost reductions across a suite of clean energy technologies. Further integration of R&D and deployment of new storage technologies paves a clear route toward cost-effective low-carbon electricity. Here we analyse deployment and innovation using a two-factor model that integrates the value of investment in materials innovation and technology deployment over time from an empirical dataset covering battery storage technology. Complementary advances in battery storage are of utmost importance to decarbonization alongside improvements in renewable electricity sources. We find and chart a viable path to dispatchable US$1 W-1 solar with US$100 kWh-1 battery storage that enables combinations of solar, wind, and storage to compete directly with fossil-based electricity options.
A Revolute Joint With Linear Load-Displacement Response for Precision Deployable Structures
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Warren, Peter A.; Peterson, Lee D.
1996-01-01
NASA Langley Research center is developing key structures and mechanisms technologies for micron-accuracy, in-space deployment of future space instruments. Achieving micron-accuracy deployment requires significant advancements in deployment mechanism design such as the revolute joint presented herein. The joint presented herein exhibits a load-cycling response that is essentially linear with less than two percent hysteresis, and the joint rotates with less than one in.-oz. of resistance. A prototype reflector metering truss incorporating the joint exhibits only a few microns of kinematic error under repeated deployment and impulse loading. No other mechanically deployable structure found in literature has been demonstrated to be this kinematically accurate.
Expanding the role of the nurse practitioner in the deployed setting.
Dargis, Julie; Horne, Theresa; Tillman-Ortiz, Sophie; Scherr, Diane; Yackel, Edward E
2006-08-01
Today's military is experiencing rapid advances in technology and in manpower utilization. The Army Medical Department is redesigning the structure and function of deployable hospital systems as part of this effort. The transformation of deployable hospital systems requires that a critical analysis of manpower utilization be undertaken to optimize the employment of soldier-medics. The objective of this article was to describe the use of nurse practitioners as primary care providers during deployment. The lived experiences of five nurse practitioners deployed to Operation Iraqi Freedom are presented. Data gathered during the deployment and an analysis of the literature clearly support expanded and legitimized roles for these health care professionals in future conflicts and peacekeeping operations.
Navy Pre-Deployment Training at Eglin AFB, Florida Final Environmental Assessment
2004-02-10
Only-Radar ROW Rest of the World RUR Range Utilization Report SACEX Supporting Arms Coordination Exercise LIST OF ACRONYMS AND ABBREVIATIONS...Wildlife Service USGS U.S. Geological Survey UXO Unexploded Ordnance VOC Volatile Organic Compounds WHO World Health Organization Purpose and...Assessment While most deployments are scheduled long in advance, short-notice deployments often occur in response to world crises. The Atlantic Fleet’s
Mechanism Design and Testing of a Self-Deploying Structure Using Flexible Composite Tape Springs
NASA Technical Reports Server (NTRS)
Footdale, Joseph N.; Murphey, Thomas W.
2014-01-01
The detailed mechanical design of a novel deployable support structure that positions and tensions a membrane optic for space imagining applications is presented. This is a complex three-dimensional deployment using freely deploying rollable composite tape spring booms that become load bearing structural members at full deployment. The deployment tests successfully demonstrate a new architecture based on rolled and freely deployed composite tape spring members that achieve simultaneous deployment without mechanical synchronization. Proper design of the flexible component mounting interface and constraint systems, which were critical in achieving a functioning unit, are described. These flexible composite components have much potential for advancing the state of the art in deployable structures, but have yet to be widely adopted. This paper demonstrates the feasibility and advantages of implementing flexible composite components, including the design details on how to integrate with required traditional mechanisms.
In-Situ Characterization of Underwater Radioactive Sludge
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpson, A.P.; Clapham, M.J.; Swinson, B.
2008-07-01
A fundamental requirement underpinning safe clean-up technologies for legacy spent nuclear fuel (SNF) ponds, pools and wet silos is the ability to characterize the radioactive waste form prior to retrieval. The corrosion products resulting from the long term underwater storage of spent nuclear fuel, reactor components and reprocessing debris present a major hazard to facility decontamination and decommissioning in terms of their radioactive content and physical / chemical reactivity. The ability to perform in-situ underwater non-destructive characterization of sludge and debris in a safe and cost-effective manner offers significant benefits over traditional destructive sampling methods. Several techniques are available formore » underwater measurements including (i) Gross gamma counting, (ii) Low-, Medium- and High- Resolution Gamma Spectroscopy, (iii) Passive neutron counting and (iv) Active Neutron Interrogation. The optimum technique depends on (i) the radioactive inventory (ii) mechanical access restrictions for deployment of the detection equipment, interrogation sources etc. (iii) the integrity of plant records and (iv) the extent to which Acceptable Knowledge which may be used for 'fingerprinting' the radioactive contents to a marker nuclide. Prior deployments of underwater SNF characterization equipment around the world have been reviewed with respect to recent developments in gamma and neutron detection technologies, digital electronics advancements, data transfer techniques, remote operation capabilities and improved field ruggedization. Modeling and experimental work has been performed to determine the capabilities, performance envelope and operational limitations of the future generation of non-destructive underwater sludge characterization techniques. Recommendations are given on the optimal design of systems and procedures to provide an acceptable level of confidence in the characterization of residual sludge content of legacy wet storage facilities such that retrieval and repackaging of SNF sludges may proceed safely and efficiently with support of the regulators and the public. (author)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Benjamin S.; Hamilton, Steven P.; Stimpson, Shane
The development of VERA-CS in recent years has focused on developing the capability to simulate multiple cycles of operating commercial nuclear power plants. Now that these capabilities have advanced to the point where it is being deployed to users, the focus is on improving the computational performance of various components in VERA-CS. In this work, the focus is on the Coarse Mesh Finite Difference (CMFD) solution in MPACT. CMFD serves multiple purposes in the 2D/1D solution methodology. First, it is a natural mechanism to tie together the radial MOC transport and the axial SP3 solution. Because the CMFD system solvesmore » the multigroup three-dimensional core in one system, it pulls together the global response of the system. In addition, the CMFD solution provides a framework to accelerate the convergence of the eigenvalue problem.« less
NEET Micro-Pocket Fission Detector. Final Project report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unruh, T.; Rempe, Joy; McGregor, Douglas
2014-09-01
A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Alternative Energies and Atomic Energy Commission, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), is funded by the Nuclear Energy Enabling Technologies (NEET) program to develop and test Micro-Pocket Fission Detectors (MPFDs), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package. When deployed, these sensors will significantly advance flux detection capabilities for irradiation tests in US Material Test Reactors (MTRs). Ultimately, evaluations may lead to a more compact, more accurate, andmore » longer lifetime flux sensor for critical mock-ups, and high performance reactors, allowing several Department of Energy Office of Nuclear Energy (DOE-NE) programs to obtain higher accuracy/higher resolution data from irradiation tests of candidate new fuels and materials. Specifically, deployment of MPFDs will address several challenges faced in irradiations performed at MTRs: Current fission chamber technologies do not offer the ability to measure fast flux, thermal flux and temperature within a single compact probe; MPFDs offer this option. MPFD construction is very different than current fission chamber construction; the use of high temperature materials allow MPFDs to be specifically tailored to survive harsh conditions encountered in-core of high performance MTRs. The higher accuracy, high fidelity data available from the compact MPFD will significantly enhance efforts to validate new high-fidelity reactor physics codes and new multi-scale, multi-physics codes. MPFDs can be built with variable sensitivities to survive the lifetime of an experiment or fuel assembly in some MTRs, allowing for more efficient and cost effective power monitoring. The small size of the MPFDs allows multiple sensors to be deployed, offering the potential to accurately measure the flux and temperature profiles in the reactor. This report summarizes the status at the end of year two of this three year project. As documented in this report, all planned accomplishments for developing this unique new, compact, multipurpose sensor have been completed.« less
Environmental Detection of Clandestine Nuclear Weapon Programs
NASA Astrophysics Data System (ADS)
Kemp, R. Scott
2016-06-01
Environmental sensing of nuclear activities has the potential to detect nuclear weapon programs at early stages, deter nuclear proliferation, and help verify nuclear accords. However, no robust system of detection has been deployed to date. This can be variously attributed to high costs, technical limitations in detector technology, simple countermeasures, and uncertainty about the magnitude or behavior of potential signals. In this article, current capabilities and promising opportunities are reviewed. Systematic research in a variety of areas could improve prospects for detecting covert nuclear programs, although the potential for countermeasures suggests long-term verification of nuclear agreements will need to rely on methods other than environmental sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Leary, Patrick
The framework created through the Open-Source Integrated Design-Analysis Environment (IDAE) for Nuclear Energy Advanced Modeling & Simulation grant has simplify and democratize advanced modeling and simulation in the nuclear energy industry that works on a range of nuclear engineering applications. It leverages millions of investment dollars from the Department of Energy's Office of Nuclear Energy for modeling and simulation of light water reactors and the Office of Nuclear Energy's research and development. The IDEA framework enhanced Kitware’s Computational Model Builder (CMB) while leveraging existing open-source toolkits and creating a graphical end-to-end umbrella guiding end-users and developers through the nuclear energymore » advanced modeling and simulation lifecycle. In addition, the work deliver strategic advancements in meshing and visualization for ensembles.« less
Hedge math: Theoretical limits on minimum stockpile size across nuclear hedging strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lafleur, Jarret Marshall; Roesler, Alexander W.
2016-09-01
In June 2013, the Department of Defense published a congressionally mandated, unclassified update on the U.S. Nuclear Employment Strategy. Among the many updates in this document are three key ground rules for guiding the sizing of the non-deployed U.S. nuclear stockpile. Furthermore, these ground rules form an important and objective set of criteria against which potential future stockpile hedging strategies can be evaluated.
Roadmap to an Engineering-Scale Nuclear Fuel Performance & Safety Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, John A; Clarno, Kevin T; Hansen, Glen A
2009-09-01
Developing new fuels and qualifying them for large-scale deployment in power reactors is a lengthy and expensive process, typically spanning a period of two decades from concept to licensing. Nuclear fuel designers serve an indispensable role in the process, at the initial exploratory phase as well as in analysis of the testing results. In recent years fuel performance capabilities based on first principles have been playing more of a role in what has traditionally been an empirically dominated process. Nonetheless, nuclear fuel behavior is based on the interaction of multiple complex phenomena, and recent evolutionary approaches are being applied moremore » on a phenomenon-by-phenomenon basis, targeting localized problems, as opposed to a systematic approach based on a fundamental understanding of all interacting parameters. Advanced nuclear fuels are generally more complex, and less understood, than the traditional fuels used in existing reactors (ceramic UO{sub 2} with burnable poisons and other minor additives). The added challenges are primarily caused by a less complete empirical database and, in the case of recycled fuel, the inherent variability in fuel compositions. It is clear that using the traditional approach to develop and qualify fuels over the entire range of variables pertinent to the U.S. Department of Energy (DOE) Office of Nuclear Energy on a timely basis with available funds would be very challenging, if not impossible. As a result the DOE Office of Nuclear Energy has launched the Nuclear Energy Advanced Modeling and Simulation (NEAMS) approach to revolutionize fuel development. This new approach is predicated upon transferring the recent advances in computational sciences and computer technologies into the fuel development program. The effort will couple computational science with recent advances in the fundamental understanding of physical phenomena through ab initio modeling and targeted phenomenological testing to leapfrog many fuel-development activities. Realizing the full benefits of this approach will likely take some time. However, it is important that the developmental activities for modeling and simulation be tightly coupled with the experimental activities to maximize feedback effects and accelerate both the experimental and analytical elements of the program toward a common objective. The close integration of modeling and simulation and experimental activities is key to developing a useful fuel performance simulation capability, providing a validated design and analysis tool, and understanding the uncertainties within the models and design process. The efforts of this project are integrally connected to the Transmutation Fuels Campaign (TFC), which maintains as a primary objective to formulate, fabricate, and qualify a transuranic-based fuel with added minor actinides for use in future fast reactors. Additional details of the TFC scope can be found in the Transmutation Fuels Campaign Execution Plan. This project is an integral component of the TFC modeling and simulation effort, and this multiyear plan borrowed liberally from the Transmutation Fuels Campaign Modeling and Simulation Roadmap. This document provides the multiyear staged development plan to develop a continuum-level Integrated Performance and Safety Code (IPSC) to predict the behavior of the fuel and cladding during normal reactor operations and anticipated transients up to the point of clad breach.« less
on how to understand and plan for transportation advancements, including the increasing deployment of topics: Transportation electrification and the infrastructure necessary to support the increasing increasing deployment of these technologies; Impact of on-demand transit and mobility services on public
Cell-tower deployment of counter-sniper sensors
NASA Astrophysics Data System (ADS)
Storch, Michael T.
2004-09-01
Cellular telephone antenna towers are evaluated as sites for rapid, effective & efficient deployment of counter-sniper sensors, especially in urban environments. They are expected to offer a suitable density, excellent LOS, and a generally limited variety of known or readily-characterized mechanical interfaces. Their precise locations are easily mapped in advance of deployment, are easily accessible by ground and air, and are easily spotted by deployment teams in real-time. We survey issues of EMI & RFI, susceptibility to denial & ambush in military scenarios, and the impact of trends in cell tower design & construction.
Developing a Nuclear Global Health Workforce Amid the Increasing Threat of a Nuclear Crisis.
Burkle, Frederick M; Dallas, Cham E
2016-02-01
This study argues that any nuclear weapon exchange or major nuclear plant meltdown, in the categories of human systems failure and conflict-based crises, will immediately provoke an unprecedented public health emergency of international concern. Notwithstanding nuclear triage and management plans and technical monitoring standards within the International Atomic Energy Agency and the World Health Organization (WHO), the capacity to rapidly deploy a robust professional workforce with the internal coordination and collaboration capabilities required for large-scale nuclear crises is profoundly lacking. A similar dilemma, evident in the early stages of the Ebola epidemic, was eventually managed by using worldwide infectious disease experts from the Global Outbreak Alert and Response Network and multiple multidisciplinary WHO-supported foreign medical teams. This success has led the WHO to propose the development of a Global Health Workforce. A strategic format is proposed for nuclear preparedness and response that builds and expands on the current model for infectious disease outbreak currently under consideration. This study proposes the inclusion of a nuclear global health workforce under the technical expertise of the International Atomic Energy Agency and WHO's Radiation Emergency Medical Preparedness and Assistance Network leadership and supported by the International Health Regulations Treaty. Rationales are set forth for the development, structure, and function of a nuclear workforce based on health outcomes research that define the unique health, health systems, and public health challenges of a nuclear crisis. Recent research supports that life-saving opportunities are possible, but only if a rapidly deployed and robust multidisciplinary response component exists.
China Moves Out: Stepping Stones Toward a New Maritime Strategy
2015-04-01
that participated in the exercise deployed to Pakistan without replenishing food stores, although they did take on fuel.59 Press reporting on the...carried out more than 10 combat-realistic training tasks, including the anti-pirate, joint search and rescue, anti- nuclear and anti-chemical contamination ... Malaysia ) Taiwan Senkaku (Japan) Scarborough (Philippines) James Shoal ( Malaysia ) Table 4. Evolution of PLAN Western Pacific Deployments 36 China
DOT National Transportation Integrated Search
1995-12-01
This final report is a synthesis of the findings, conclusions, and recommendations of a series of task reports prepared under a major study that addresses how to overcome the institutional barriers to the deployment of Advanced Traffic Management Sys...
DOT National Transportation Integrated Search
1998-11-01
This document describes the strategy used to evaluate the Intelligent Transportation Systems (ITS) Joint Program Offices Metropolitan Model Deployment Initiative (MMDI). The MMDI is an aggressive deployment of ITS at four urban sites: New York/New...
Nuclear Thermal Propulsion for Advanced Space Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
NASA Astrophysics Data System (ADS)
Labak, P.; Ford, S. R.; Sweeney, J. J.; Smith, A. T.; Spivak, A.
2011-12-01
One of four elements of CTBT verification regime is On-site inspection (OSI). Since the sole purpose of an OSI shall be to clarify whether a nuclear weapon test explosion or any other nuclear explosion has been carried out, inspection activities can be conducted and techniques used in order to collect facts to support findings provided in inspection reports. Passive seismological monitoring, realized by the seismic aftershock monitoring (SAMS) is one of the treaty allowed techniques during an OSI. Effective planning and deployment of SAMS during the early stages of an OSI is required due to the nature of possible events recorded and due to the treaty related constrains on size of inspection area, size of inspection team and length of an inspection. A method, which may help in planning the SAMS deployment is presented. An estimate of aftershock activity due to a theoretical underground nuclear explosion is produced using a simple aftershock rate model (Ford and Walter, 2010). The model is developed with data from the Nevada Test Site and Semipalatinsk Test Site, which we take to represent soft- and hard-rock testing environments, respectively. Estimates of expected magnitude and number of aftershocks are calculated using the models for different testing and inspection scenarios. These estimates can help to plan the SAMS deployment for an OSI by giving a probabilistic assessment of potential aftershocks in the Inspection Area (IA). The aftershock assessment combined with an estimate of the background seismicity in the IA and an empirically-derived map of threshold magnitude for the SAMS network could aid the OSI team in reporting. We tested the hard-rock model to a scenario similar to the 2008 Integrated Field Exercise 2008 deployment in Kazakhstan and produce an estimate of possible recorded aftershock activity.
Red China’s Capitalist Bomb: Inside the Chinese Neutron Bomb Program
2015-01-01
developed an enhanced radiation weapon (ERW) but did not deploy it. ERWs, better known as “ neutron bombs,” are specialized nuclear weapons with...contemporary systems of concern. An ERW is a specialized nuclear weapon optimized to produce prompt radiation. Such a device emits neutrons with high...Council stated that China mastered “in succession the neutron bomb design technology and the nuclear weapon miniaturization technology.”10 This statement
I3Mote: An Open Development Platform for the Intelligent Industrial Internet
Martinez, Borja; Vilajosana, Xavier; Kim, Il Han; Zhou, Jianwei; Tuset-Peiró, Pere; Xhafa, Ariton; Poissonnier, Dominique; Lu, Xiaolin
2017-01-01
In this article we present the Intelligent Industrial Internet (I3) Mote, an open hardware platform targeting industrial connectivity and sensing deployments. The I3Mote features the most advanced low-power components to tackle sensing, on-board computing and wireless/wired connectivity for demanding industrial applications. The platform has been designed to fill the gap in the industrial prototyping and early deployment market with a compact form factor, low-cost and robust industrial design. I3Mote is an advanced and compact prototyping system integrating the required components to be deployed as a product, leveraging the need for adopting industries to build their own tailored solution. This article describes the platform design, firmware and software ecosystem and characterizes its performance in terms of energy consumption. PMID:28452945
75 FR 12807 - Agency Information Collection Activity Under OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-17
... and advanced propulsion technologies. The Federal Register notice with a 60-day comment period... program supports the development and deployment of clean fuel and advanced propulsion technologies for...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Bo-Young; Choi, Daewoong; Park, Se Hwan
Korea Atomic Energy Research Institute (KAERI) have been developing the design and deployment methodology of Laser- Induced Breakdown Spectroscopy (LIBS) instrument for safeguards application within the argon hot cell environment at Advanced spent fuel Conditioning Process Facility (ACPF), where ACPF is a facility being refurbished for the laboratory-scaled demonstration of advanced spent fuel conditioning process. LIBS is an analysis technology used to measure the emission spectra of excited elements in the local plasma of a target material induced by a laser. The spectra measured by LIBS are analyzed to verify the quality and quantity of the specific element in themore » target matrix. Recently LIBS has been recognized as a promising technology for safeguards purposes in terms of several advantages including a simple sample preparation and in-situ analysis capability. In particular, a feasibility study of LIBS to remotely monitor the nuclear material in a high radiation environment has been carried out for supporting the IAEA safeguards implementation. Fiber-Optic LIBS (FO-LIBS) deployment was proposed by Applied Photonics Ltd because the use of fiber optics had benefited applications of LIBS by delivering the laser energy to the target and by collecting the plasma light. The design of FO-LIBS instrument for the measurement of actinides in the spent fuel and high temperature molten salt at ACPF had been developed in cooperation with Applied Photonics Ltd. FO-LIBS has some advantages as followings: the detectable plasma light wavelength range is not limited by the optical properties of the thick lead-glass shield window and the potential risk of laser damage to the lead-glass shield window is not considered. The remote LIBS instrument had been installed at ACPF and then the feasibility study for monitoring actinide elements such as uranium, plutonium, and curium in process materials has been carried out. (authors)« less
DOT National Transportation Integrated Search
1997-01-01
This document reports on the formal evaluation of the targeted (limited but highly focused) deployment of the Advanced Driver and Vehicle Advisory Navigation ConcEpt (ADVANCE), an in-vehicle advanced traveler information system designed to provide sh...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendenhall, M.; Bowden, N.; Brodsky, J.
Electron anti-neutrino ( e) detectors can support nuclear safeguards, from reactor monitoring to spent fuel characterization. In recent years, the scientific community has developed multiple detector concepts, many of which have been prototyped or deployed for specific measurements by their respective collaborations. However, the diversity of technical approaches, deployment conditions, and analysis techniques complicates direct performance comparison between designs. We have begun development of a simulation framework to compare and evaluate existing and proposed detector designs for nonproliferation applications in a uniform manner. This report demonstrates the intent and capabilities of the framework by evaluating four detector design concepts, calculatingmore » generic reactor antineutrino counting sensitivity, and capabilities in a plutonium disposition application example.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tome, Carlos N; Caro, J A; Lebensohn, R A
2010-01-01
Advancing the performance of Light Water Reactors, Advanced Nuclear Fuel Cycles, and Advanced Reactors, such as the Next Generation Nuclear Power Plants, requires enhancing our fundamental understanding of fuel and materials behavior under irradiation. The capability to accurately model the nuclear fuel systems to develop predictive tools is critical. Not only are fabrication and performance models needed to understand specific aspects of the nuclear fuel, fully coupled fuel simulation codes are required to achieve licensing of specific nuclear fuel designs for operation. The backbone of these codes, models, and simulations is a fundamental understanding and predictive capability for simulating themore » phase and microstructural behavior of the nuclear fuel system materials and matrices. In this paper we review the current status of the advanced modeling and simulation of nuclear reactor cladding, with emphasis on what is available and what is to be developed in each scale of the project, how we propose to pass information from one scale to the next, and what experimental information is required for benchmarking and advancing the modeling at each scale level.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
RAJEN,GAURAV
2000-04-01
Several existing nuclear-related agreements already require India and Pakistan, as members, to share information. The agreements are bilateral, regional, and international. Greater nuclear transparency between India and Pakistan could be promoted by first understanding the information flows required by existing agreements. This understanding is an essential step for developing projects that can incrementally advance the sensitivity of the information being shared. This paper provides a survey of existing nuclear-related agreements involving India and Pakistan, and suggests future confidence-building projects using the frameworks provided by these agreements. The Bilateral Agreement on the Prohibition of Attack against Nuclear Reactors and Nuclear Facilitiesmore » is discussed as a basis for creating further agreements on restricting the use and deployment of nuclear weapons. The author suggests options for enhancing the value of the list of nuclear facilities exchanged annually as a part of this agreement. The International Atomic Energy Agency's regional cooperation agreement among countries in the Asia-Pacific region is an opportunity for greater subregional nuclear cooperation in South Asia. Linking the regional agreement with South Asian environmental cooperation and marine pollution protection efforts could provide a framework for projects involving Indian and Pakistani coastal nuclear facilities. Programs of the Food and Agriculture Organization of the United Nations that use nuclear techniques to increase food and crop production and optimize water management in arid areas also provide similar opportunities for nuclear cooperation. Other frameworks for nuclear cooperation originate from international conventions related to nuclear safety, transportation of nuclear wastes, worker protection against ionizing radiation, and the nondeployment of nuclear weapons in certain areas. The information shared by existing frameworks includes: laws and regulations (including internal inspection procedures that enforce compliance); lists of nuclear facilities; emergency response procedures and available resources; information related to the transportation of nuclear wastes (particularly via shipping); understanding and notification of accidental releases; and radionuclide release data from select coastal facilities. Incremental increases in the sensitivity of the information being shared could strengthen norms for Indian and Pakistani nuclear transparency. This paper suggests seven technology-based Indian and Pakistani nuclear transparency projects for consideration. Existing nuclear-related agreements provide an information-sharing framework within which the projects could occur. Eventually, as confidence increases and new agreements are negotiated, future projects could begin to deal with the accounting of fissile materials and nuclear weapons disposition and control.« less
Laboratory-Directed Research and Development 2016 Summary Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pillai, Rekha Sukamar; Jacobson, Julie Ann
The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclearmore » Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean energy deployment, and secure and modernize critical infrastructure. INL’s research, development, and demonstration capabilities, its resources, and its unique geography enable integration of scientific discovery, innovation, engineering, operations, and controls into complex large-scale testbeds for discovery, innovation, and demonstration of transformational clean energy and security concepts. These attributes strengthen INL’s leadership as a demonstration laboratory. As a national resource, INL also applies its capabilities and skills to the specific needs of other federal agencies and customers through DOE’s Strategic Partnership Program.« less
Small-scale nuclear reactors for remote military operations: opportunities and challenges
2015-08-25
study – Report was published in March 2011 CNA study identified challenges to deploy small modular reactors (SMRs) at a base – Identified First-of...forward operating bases. The availability of deployable, cost-effective, regulated, and secure small modular reactors with a modest output electrical...defense committees on the challenges, operational requirements, constraints, cost, and life cycle analysis for a small modular reactor of less than 10
Nukes in the Post-Cold War Era A View of the World from Inside the US Nuclear Weapons Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Blake Philip
Why do we have nuclear weapons? What is in the US stockpile, how is it deployed and controlled, and how it has changed over the years? What is in the “nuclear weapons complex” and what does each lab and plant do? How do the DOE/NNSA Design Labs interact with the Intelligence Community? How does the US stockpile, NW complex, and NW policy compare with those of other countries? What is easy and hard about designing nuclear weapons?
Cyber security evaluation of II&C technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken
The Light Water Reactor Sustainability (LWRS) Program is a research and development program sponsored by the Department of Energy, which is conducted in close collaboration with industry to provide the technical foundations for licensing and managing the long-term, safe and economical operation of current nuclear power plants The LWRS Program serves to help the US nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Within the LWRS Program, the Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway conducts targeted research and development (R&D) tomore » address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. The II&C Pathway is conducted by Idaho National Laboratory (INL). Cyber security is a common concern among nuclear utilities and other nuclear industry stakeholders regarding the digital technologies that are being developed under this program. This concern extends to the point of calling into question whether these types of technologies could ever be deployed in nuclear plants given the possibility that the information in them can be compromised and the technologies themselves can potentially be exploited to serve as attack vectors for adversaries. To this end, a cyber security evaluation has been conducted of these technologies to determine whether they constitute a threat beyond what the nuclear plants already manage within their regulatory-required cyber security programs. Specifically, the evaluation is based on NEI 08-09, which is the industry’s template for cyber security programs and evaluations, accepted by the Nuclear Regulatory Commission (NRC) as responsive to the requirements of the nuclear power plant cyber security regulation found in 10 CFR 73.54. The evaluation was conducted by a cyber security team with expertise in nuclear utility cyber security programs and experience in conducting these evaluations. The evaluation has determined that, for the most part, cyber security will not be a limiting factor in the application of these technologies to nuclear power plant applications.« less
DOT National Transportation Integrated Search
2016-11-01
The U.S. Department of Transportation Integrated Corridor Management (ICM) Initiative aims to advance the state of the practice in transportation corridor operations to manage congestion. Through the deployment of ICM at the two selected Demonstratio...
DOT National Transportation Integrated Search
2016-12-01
The U.S. Department of Transportation Integrated Corridor Management (ICM) Initiative aims to advance the state of the practice in transportation corridor operations to manage congestion. Through the deployment of ICM at the two selected Demonstratio...
Affordable Development of a Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. The foundation provided by development and utilization of a NCPS could enable development of extremely high performance systems. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Origins of the Tactical Nuclear Weapons Modernization Program: 1969-1979
NASA Astrophysics Data System (ADS)
Yaffe, Michael David
On December 12, 1979, the North Atlantic Treaty Organization decided to deploy new long-range theater nuclear forces, Pershing II and Ground-Launched Cruise Missiles. This marked the first major change in NATO's nuclear stockpile since the adoption of the flexible response strategy in 1967. The decision was controversial inasmuch as the Allies disagreed on the fundamental role of nuclear weapons in this strategy and, thereby, the types and number of weapons required for an effective deterrent posture. Europeans generally preferred long-range weapons capable of striking the Soviet Union and small conventional forces while Americans preferred shorter-range nuclear weapons and a stalwart conventional defense. Thus, the December decision is often described as purely politically motivated, in which the Americans reluctantly acquiesced to a European initiative for long-range weapons, prominently expressed by West German Chancellor Helmut Schmidt in 1977. Recently declassified US government documents reveal, however, that long-range missiles were part of a long-term comprehensive nuclear modernization program conceived in the Pentagon under Defense Secretary James Schlesinger during the period of 1973 through 1975, and presented to skeptical European elites who favored arms control negotiations over costly new deployments. This program was motivated as much by changes in the American national security culture as by an increase in the Soviet military threat to Europe. It was grounded on a clear military rationale: "that a feasible and affordable conventional defense is only possible if NATO has modern nuclear forces" that can effectively hold at risk Warsaw Pact ground and air forces throughout the depth of their employment from the inner-German border to the western military districts of the Soviet Union. When the new US administration in 1977 disagreed with the modernization plan and its rationale, opting instead for more conventional forces, the Allies in a reversal of roles lobbied the US President to deploy the long-range weapons being developed by the Defense Department. In the course of deliberations, political preferences suppressed military considerations of deterrence and only a small portion of the original modernization program was implemented.
2014-02-11
ISS038-E-045009 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. Station solar array panels, Earth's horizon and the blackness of space provide the backdrop for the scene.
Advances in modeling aerodynamic decelerator dynamics.
NASA Technical Reports Server (NTRS)
Whitlock, C. H.
1973-01-01
The Viking entry vehicle uses a lines-first type of deployment in which the parachute, packed in a deployment bag, gets ejected rearward from the vehicle by a mortar. As the bag moves rearward, first the lines are unfurled and then the canopy. An analysis of the unfurling process is conducted, giving attention to longitudinal and rotational dynamics. It is shown that analytical modeling of aerodynamic systems provides significant information for a better understanding of the physics of the deployment process.
Phenomenology of microwave coupling, part 1
NASA Astrophysics Data System (ADS)
King, R. J.; Breakall, J. K.; Hudson, H. G.; Morrison, J. J.; McGevna, V. G.; Kunz, K. S.; Ludwigsen, A. P.; Gnade, D. K.
1984-11-01
Advances in the development of high power microwave sources have increased the potential for future deployment of microwave weapons. A key ingredient in being able to predict the vulnerability of military systems to such threats involves understanding the phenomenology of how electromagnetic energy couples into cavity like objects, or the so called back door coupling. A similar but much longer standing problem is that of nuclear electromagnetic pulses (EMP) in which the frequencies extend up to several hundreds of MHz. However, compared to EMP coupling, microwave coupling is distinctively different because the wavelength is comparable to the size of the ports of entry. Coupling paths can be highly resonant at certain microwave frequencies, making the shielding against microwave threats difficult. The initial efforts at Lawrence Livermore National Laboratory to study the phenomenology of back door coupling at the low microwave frequencies (up to 2.5 GHz) are summarized.
NASA Astrophysics Data System (ADS)
Reichenberger, Michael A.; Nichols, Daniel M.; Stevenson, Sarah R.; Swope, Tanner M.; Hilger, Caden W.; Unruh, Troy C.; McGregor, Douglas S.; Roberts, Jeremy A.
2017-08-01
Advancements in nuclear reactor core modeling and computational capability have encouraged further development of in-core neutron sensors. Micro-Pocket Fission Detectors (MPFDs) have been fabricated and tested previously, but successful testing of these prior detectors was limited to single-node operation with specialized designs. Described in this work is a modular, four-node MPFD array fabricated and tested at Kansas State University (KSU). The four sensor nodes were equally spaced to span the length of the fuel-region of the KSU TRIGA Mk. II research nuclear reactor core. The encapsulated array was filled with argon gas, serving as an ionization medium in the small cavities of the MPFDs. The unified design improved device ruggedness and simplified construction over previous designs. A 0.315-in. (8-mm) penetration in the upper grid plate of the KSU TRIGA Mk. II research nuclear reactor was used to deploy the array between fuel elements in the core. The MPFD array was coupled to an electronic support system which has been developed to support pulse-mode operation. Neutron-induced pulses were observed on all four sensor channels. Stable device operation was confirmed by testing under steady-state reactor conditions. Each of the four sensors in the array responded to changes in reactor power between 10 kWth and full power (750 kWth). Reactor power transients were observed in real-time including positive transients with periods of 5, 15, and 30 s. Finally, manual reactor power oscillations were observed in real-time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2013-07-01
The Global conference is a forum for the discussion of the scientific, technical, social and regulatory aspects of the nuclear fuel cycle. Relevant topics include global utilization of nuclear energy, current fuel cycle technologies, advanced reactors, advanced fuel cycles, nuclear nonproliferation and public acceptance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mello, G.
1997-05-01
The cold war may be over, but the nuclear arms race has not quite ended. The United States is fielding a new nuclear weapon-a bomb that was used to threaten Libya, a non-nuclear nation, even before it was deployed. The B61 {open_quotes}mod-11{close_quotes} gravity bomb is the first nuclear capability added to the US arsenal since 1989. It was developed and deployed secretly, without public or congressional debate, and in apparent contradiction to official domestic and international assurances that no new nuclear weapons were being developed in the United States. The B61-11`s unique earth-penetrating characteristic and wide range of yields allowmore » it to threaten otherwide indestructible targets from the air-or, in Pentagonese, to hold such targets {open_quotes}at risk.{close_quotes} That makes the B61-11 a uniquely useful warfighting tool. The 1,200-pound B61-11 replaces the B53, a 8,900-pound, nine-megaton bomb that was developed as a {open_quotes}city buster{close_quotes} and was later designated as a substitute for an earth-penetrating weapon. The B53 was deliverable only by vulnerable B-52s; in contrast, the smaller and lighter B61-11 can be delivered the the stealthier B-2A bomber, or even by F16 fighters.« less
Art concept of Magellan spacecraft and inertial upper stage (IUS) deployment
NASA Technical Reports Server (NTRS)
1988-01-01
Magellan spacecraft mounted on inertial upper stage drifts above Atlantis, Orbiter Vehicle (OV) 104, after its deployment during mission STS-30 in this artist concept. Solar panels are deployed and in OV-104's open payload bay (PLB) the airborne support equipment (ASE) is visible. Both spacecraft are orbiting the Earth. Magellan, named after the 16th century Portuguese explorer, will orbit Venus about once every three hours, acquiring radar data for 37 minutes of each orbit when it is closest to the surface. Using an advanced instrument called a synthetic aperture radar (SAR), it will map more than 90 per cent of the surface with resolution ten times better than the best from prior spacecraft. Magellan is managed by the Jet Propulsion Laboratory (JPL); Martin Marietta Aerospace is developing the spacecraft and Hughes Aircraft Company, the advanced imaging radar.
Impacts of an advanced public transportation system : demonstration project
DOT National Transportation Integrated Search
1999-10-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying a set of integrated : advanced public transportation system technologies in its vehicles, stations and control center. This paper summarizes selected findings of a multidimens...
Early deployment of ATMS/ATIS for metropolitan Detroit
DOT National Transportation Integrated Search
1994-09-26
The Michigan Department of Transportation (MDOT) is currently planning for the expansion of their current Advanced Traffic Management and Advanced Traveler Information Systems (ATMS and ATIS, respectively). Current ATMS and ATIS coverage include 3...
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
U.S. Strategic Nuclear Forces: Background, Developments, and Issues
2016-03-10
Strategic Offensive Reduction Treaty (known as the Moscow Treaty) between the United States and Russia, this number was to decline to no more than 2,200...the 2002 Moscow Treaty. According to the Bush Administration, operationally deployed warheads were those deployed on missiles and stored near bombers...given time. The warheads that could be carried on those submarines would not count against the Moscow Treaty limits because they would not be
1985-04-01
Australia and New Zealand force of SS-18s and SS-19s, their plans to reload preserves peace and stability in a region that is ICBM silos, and the extensive...Defense Ministry announced that the USSR was beginning to deploy a new generation of nuclear-armed, air-launched and sea-launched cruise missiles. The...increasingly ambitious Soviet procurement and deployment of ma- jor categories of new armaments. The success that the Soviets have achieved in both
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuninetti, G.; Botta, E.; Criscuolo, C.
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less
Science Programs Applied Energy Programs Civilian Nuclear Energy Programs Laboratory Directed Research of the nuclear energy age, scientists and engineers have conceived and developed advanced
Status of Wrought FeCrAl-UO 2 Capsules Irradiated in the Advanced Test Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Harp, J.; Core, G.
2017-07-01
Candidate cladding materials for accident tolerant fuel applications require extensive testing and validation prior to commercial deployment within the nuclear power industry. One class of cladding materials, FeCrAl alloys, is currently undergoing such effort. Within these activities is a series of irradiation programs within the Advanced Test Reactor. These programs are developed to aid in commercial maturation and understand the fundamental mechanisms controlling the cladding performance during normal operation of a typical light water reactor. Three different irradiation programs are on-going; one designed as a simple proof-of-principle concept, the other to evaluate the susceptibility of FeCrAl to fuel-cladding chemical interaction,more » and the last to fully simulate the conditions of a pressurized water reactor experimentally. To date, nondestructive post-irradiation examination has been completed on the rodlet deemed FCA-L3 from the simple proof-of-concept irradiation program. Initial results show possible breach of the rodlet under irradiation but further studies are needed to conclusively determine whether breach has occurred and the underlying reasons for such a possible failure. Further work includes characterizing additional rodlets following irradiation.« less
sCO2 Brayton Cycle: Roadmap to sCO2 Power Cycles NE Commercial Applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendez Cruz, Carmen Margarita; Rochau, Gary E.
The mission of the Energy Conversion (EC) area of the Advanced Reactor Technology (ART) program is to commercialize the sCO2 Brayton cycle for Advance Reactors and for the Supercritical Transformational Electric Production (STEP) program. The near-term objective of the EC team efforts is to support the development of a commercially scalable Recompression Closed Brayton Cycle (RCBC) to be constructed for the first STEP demonstration system with the lowest risk possible. This document details the status of technology, policy and market considerations, documentation of gaps and needs, and outlines the steps necessary for the successful development and deployment of commercial sCO2more » Brayton Power Systems along the path to nuclear reactor applications. Document Control Version Creation Date Revisions Created By Release Date 1.0 2/29/2016 Preliminary Draft Mendez, C. 3/2/2016 2.0 7/29/2016 Preliminaty/Partial Report -- updated Focus Area structure, added commercial path forward Mendez, C. 8/10/16 3.0 5/1/2018 Updated Roadmap supports timeline changes and inclusion of grid qualification goals Mendez, C. 6/6/18« less
Shuttle performance enhancements using an OMS payload bay kit
NASA Technical Reports Server (NTRS)
Templin, Kevin C.; Mallini, Charles J.
1991-01-01
The study focuses on the use of an orbital maneuvering system (OMS) payload bay kit (PBK) designed to utilize OMS tanks identical to those currently employed in the Orbiter OMS pods. Emphasis is placed on payload deployment capability and payload servicing/reboost capability augmentation from the point of view of payload mass, maximum deployment altitudes, and initial retrieval and final deployment altitudes. The deployment, servicing, and reboost requirements of the Hubble Space Telescope and Advanced X-ray and Astrophysics Facility are analyzed in order to show the benefits an OMS PBK can provide for these missions. It is shown that OMS PBKs can provide the required capability enhancement necessary to support deployment, reboost, and servicing of payloads requiring altitudes greater than 325 nautical miles.
Digital Architecture Planning Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oxstrand, Johanna Helene; Al Rashdan, Ahmad Yahya Mohammad; Bly, Aaron Douglas
As part of the U.S. Department of Energy’s Light Water Reactor Sustainability Program, the Digital Architecture (DA) Project focuses on providing a model that nuclear utilities can refer to when planning deployment of advanced technologies. The digital architecture planning model (DAPM) is the methodology for mapping power plant operational and support activities into a DA that unifies all data sources needed by the utilities to operate their plants. The DA is defined as a collection of information technology capabilities needed to support and integrate a wide spectrum of real-time digital capabilities for performance improvements of nuclear power plants. DA canmore » be thought of as integration of the separate instrumentation and control and information systems already in place in nuclear power plants, which are brought together for the purpose of creating new levels of automation in plant work activities. A major objective in DAPM development was to survey all key areas that needed to be reviewed in order for a utility to make knowledgeable decisions regarding needs and plans to implement a DA at the plant. The development was done in two steps. First, researchers surveyed the nuclear industry in order to learn their near-term plans for adopting new advanced capabilities and implementing a network (i.e., wireless and wire) infrastructure throughout the plant, including the power block. Secondly, a literature review covering regulatory documents, industry standards, and technical research reports and articles was conducted. The objective of the review was to identify key areas to be covered by the DAPM, which included the following: 1. The need for a DA and its benefits to the plant 2. Resources required to implement the DA 3. Challenges that need to be addressed and resolved to implement the DA 4. Roles and responsibilities of the DA implementation plan. The DAPM was developed based on results from the survey and the literature review. Model development, including the survey results and conclusions made about the key areas during the literature review, are described in this report.« less
Safe, Affordable, Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Houts, M. G.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Doughty, G. E.
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progres made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
Nuclear Cryogenic Propulsion Stage for Mars Exploration
NASA Technical Reports Server (NTRS)
Houts, M. G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP).
AAFE large deployable antenna development program: Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.
Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwok, Kwan S.
Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This papermore » presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.« less
Cyber security best practices for the nuclear industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Badr, I.
2012-07-01
When deploying software based systems, such as, digital instrumentation and controls for the nuclear industry, it is vital to include cyber security assessment as part of architecture and development process. When integrating and delivering software-intensive systems for the nuclear industry, engineering teams should make use of a secure, requirements driven, software development life cycle, ensuring security compliance and optimum return on investment. Reliability protections, data loss prevention, and privacy enforcement provide a strong case for installing strict cyber security policies. (authors)
The (de)politicisation of nuclear power: The Finnish discussion after Fukushima.
Ylönen, Marja; Litmanen, Tapio; Kojo, Matti; Lindell, Pirita
2017-04-01
When the Fukushima accident occurred in March 2011, Finland was at the height of a nuclear renaissance, with the Government's decision-in-principle in 2010 to allow construction of two new nuclear reactors. This article examines the nuclear power debate in Finland after Fukushima. We deploy the concepts of (de)politicisation and hyperpoliticisation in the analysis of articles in the country's main newspaper. Our analysis indicates that Finnish nuclear exceptionalism manifested in the safety-related depoliticising and the nation's prosperity-related hyperpoliticisation arguments of the pro-nuclear camp. The anti-nuclear camp used politicisation strategies, such as economic arguments, to show the unprofitability of nuclear power. The Fukushima accident had a clear effect on Finnish nuclear policy: the government programme of 2011 excluded the nuclear new build. However, in 2014 the majority of Parliament again supported nuclear power. Hence, the period after Fukushima until 2014 could be described as continued but undermined loyalty to nuclear power.
2014-02-13
ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
2014-02-13
ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.
DOT National Transportation Integrated Search
1996-12-20
IT IS WIDELY BELIEVED THAT BARRIERS TO AN AUTOMATED HIGHWAY SYSTEM (AHS) : DEPLOYMENT ARE DUE MORE TO INSTITUTIONAL, ECONOMIC, AND LEGAL ISSUES THAN TECHNOLOGY LIMITATIONS. IN ORDER TO SUSTAIN AND ACCELERATE THE AHS DEPLOYMENT PROCESS, IT IS DESIRABL...
Evaluation of the advanced operating system of the Ann Arbor Transit Authority
DOT National Transportation Integrated Search
1999-10-01
These reports constitute an evaluation of the intelligent transportation system deployment efforts of the Ann Arbor Transportation Authority. These efforts, collectively termed "Advanced Operating System" (AOS), represent a vision of an integrated ad...
2017-01-01
The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies. PMID:29075430
Gonzalez, Enrique; Peña, Raul; Avila, Alfonso; Vargas-Rosales, Cesar; Munoz-Rodriguez, David
2017-01-01
The continuous technological advances in favor of mHealth represent a key factor in the improvement of medical emergency services. This systematic review presents the identification, study, and classification of the most up-to-date approaches surrounding the deployment of architectures for mHealth. Our review includes 25 articles obtained from databases such as IEEE Xplore, Scopus, SpringerLink, ScienceDirect, and SAGE. This review focused on studies addressing mHealth systems for outdoor emergency situations. In 60% of the articles, the deployment architecture relied in the connective infrastructure associated with emergent technologies such as cloud services, distributed services, Internet-of-things, machine-to-machine, vehicular ad hoc network, and service-oriented architecture. In 40% of the literature review, the deployment architecture for mHealth considered traditional connective infrastructure. Only 20% of the studies implemented an energy consumption protocol to extend system lifetime. We concluded that there is a need for more integrated solutions specifically for outdoor scenarios. Energy consumption protocols are needed to be implemented and evaluated. Emergent connective technologies are redefining the information management and overcome traditional technologies.
Advanced Commercial Buildings Initiative Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Sydney G.
The Southface Advanced Commercial Buildings Initiative has developed solutions to overcome market barriers to energy reductions in small commercial buildings by building on the success of four local and Southeast regional energy efficiency deployment programs. These programs address a variety of small commercial building types, efficiency levels, owners, facility manager skills and needs for financing. The deployment programs also reach critical private sector, utility, nonprofit and government submarkets, and have strong potential to be replicated at scale. During the grant period, 200 small commercial buildings participated in Southface-sponsored energy upgrade programs, saving 166,736,703 kBtu of source energy.
Nuclear Radiation Tolerance of Single Crystal Aluminum Nitride Ultrasonic Transducer
NASA Astrophysics Data System (ADS)
Reinhard, Brian; Tittmann, Bernhard R.; Suprock, Andrew
Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models, (Rempe et al., 2011; Kazys et al., 2005). These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The irradiation is also supported by a multi-National Laboratory collaboration funded by the Nuclear Energy Enabling Technologies Advanced Sensors and Instrumentation (NEET ASI) program. The results from this irradiation, which started in February 2014, offer the potential to enable the development of novel radiation tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. Hence, results from this irradiation offer the potential to bridge the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, very encouraging results have been attained as several transducers have continued to operate under irradiation. The irradiation is ongoing and will continue to approximately mid-2015.
NASA Astrophysics Data System (ADS)
Dehne, Hans J.
1991-05-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
NASA Technical Reports Server (NTRS)
Dehne, Hans J.
1991-01-01
NASA has initiated technology development programs to develop advanced solar dynamic power systems and components for space applications beyond 2000. Conceptual design work that was performed is described. The main efforts were the: (1) conceptual design of self-deploying, high-performance parabolic concentrator; and (2) materials selection for a lightweight, shape-stable concentrator. The deployment concept utilizes rigid gore-shaped reflective panels. The assembled concentrator takes an annular shape with a void in the center. This deployable concentrator concept is applicable to a range of solar dynamic power systems of 25 kW sub e to in excess of 75 kW sub e. The concept allows for a family of power system sizes all using the same packaging and deployment technique. The primary structural material selected for the concentrator is a polyethyl ethylketone/carbon fiber composite also referred to as APC-2 or Vitrex. This composite has a nearly neutral coefficient of thermal expansion which leads to shape stable characteristics under thermal gradient conditions. Substantial efforts were undertaken to produce a highly specular surface on the composite. The overall coefficient of thermal expansion of the composite laminate is near zero, but thermally induced stresses due to micro-movement of the fibers and matrix in relation to each other cause the surface to become nonspecular.
Deployable System for Crash-Load Attenuation
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.
2007-01-01
An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.
Communication of military couples during deployment predicting generalized anxiety upon reunion.
Knobloch, Leanne K; Knobloch-Fedders, Lynne M; Yorgason, Jeremy B
2018-02-01
This study draws on the emotional cycle of deployment model (Pincus, House, Christenson, & Adler, 2001) to consider how the valence of communication between military personnel and at-home partners during deployment predicts their generalized anxiety upon reunion. Online survey data were collected from 555 military couples (N = 1,110 individuals) once per month for 8 consecutive months beginning at homecoming. Dyadic growth curve modeling results indicated that people's anxiety declined across the transition. For at-home partners, constructive communication during deployment predicted a steeper decline in anxiety over time. For both returning service members and at-home partners, destructive communication during deployment predicted more anxiety upon reunion but a steeper decline in anxiety over time. Results were robust beyond the frequency of communication during deployment and a host of individual, relational, and military variables. These findings advance the emotional cycle of deployment model, highlight the importance of the valence of communication during deployment, and illuminate how the effects of communication during deployment can endure after military couples are reunited. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moriarty, M.P.
1993-01-15
The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.
NASA Astrophysics Data System (ADS)
Moriarty, Michael P.
1993-01-01
The heat transport subsystem for a liquid metal cooled thermionic space nuclear power system was modelled using algorithms developed in support of previous nuclear power system study programs, which date back to the SNAP-10A flight system. The model was used to define the optimum dimensions of the various components in the heat transport subsystem subjected to the constraints of minimizing mass and achieving a launchable package that did not require radiator deployment. The resulting design provides for the safe and reliable cooling of the nuclear reactor in a proven lightweight design.
Innovative energy technologies and climate policy in Germany
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schumacher, Katja; Sands, Ronald D.
2006-12-01
Due to the size and structure of its economy, Germany is one of the largest carbon emitters in the European Union. However, Germany is facing a major renewal and restructuring process in electricity generation. Within the next two decades, up to 50% of current electricity generation capacity may retire because of end-of-plant lifetime and the nuclear phase-out pact of 1998. Substantial opportunities therefore exist for deployment of advanced electricity generating technologies in both a projected baseline and in alternative carbon policy scenarios. We simulate the potential role of coal integrated gasification combined cycle (IGCC), natural gas combined cycle (NGCC), carbonmore » dioxide capture and storage (CCS), and wind power within a computable general equilibrium of Germany from the present through 2050. These advanced technologies and their role within a future German electricity system are the focus of this paper. We model the response of greenhouse gas emissions in Germany to various technology and carbon policy assumptions over the next few decades. In our baseline scenario, all of the advanced technologies except CCS provide substantial contributions to electricity generation. We also calculate the carbon price where each fossil technology, combined with CCS, becomes competitive. Constant carbon price experiments are used to characterize the model response to a carbon policy. This provides an estimate of the cost of meeting an emissions target, and the share of emissions reductions available from the electricity generation sector.« less
An economic evaluation of alternative biofuel deployment scenarios in the USA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oladosu, Gbadebo
Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less
An economic evaluation of alternative biofuel deployment scenarios in the USA
Oladosu, Gbadebo
2017-05-03
Energy market conditions have shifted dramatically since the USA renewable fuel standards (RFS1 in 2005; RFS2 in 2007) were enacted. The USA has transitioned from an increasing dependence on oil imports to abundant domestic oil production. In addition, increases in the use of ethanol, the main biofuel currently produced in the USA, is now limited by the blend wall constraint. Given this, the current study evaluates alternative biofuel deployment scenarios in the USA, accounting for changes in market conditions. The analysis is performed with a general equilibrium model that reflects the structure of the USA biofuel market as the transitionmore » to advanced biofuel begins. Results suggest that ethanol consumption would increase, albeit slowly, if current biofuel deployment rates of about 10% are maintained as persistently lower oil prices lead to a gradual increase in the consumption of liquid transportation fuels. Without the blend wall constraint, this study finds that the overall economic impact of a full implementation of the USA RFS2 policy is largely neutral before 2022. However, the economic impacts become slightly negative under the blend wall constraint since more expensive bio-hydrocarbons are needed to meet the RFS2 mandates. Results for a scenario with reduced advanced biofuel deployment based on current policy plans show near neutral economic impacts up to 2027. This scenario is also consistent with another scenario where the volume of bio-hydrocarbons deployed is reduced to adjust for its higher cost and energy content relative to deploying the mandated RFS2 advanced biofuel volumes as ethanol. The important role of technological change is demonstrated under pioneer and accelerated technology scenarios, with the latter leading to neutral or positive economic effects up to 2023 under most blend wall scenarios. Here, all scenarios evaluated in this study are found to have positive long-term economic benefits for the USA economy.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... NUCLEAR REGULATORY COMMISSION 10 CFR Parts 71 and 73 RIN 3150-AG41 [NRC-1999-0005] Advance Notification to Native American Tribes of Transportation of Certain Types of Nuclear Waste AGENCY: Nuclear Regulatory Commission. ACTION: Final rule. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is amending...
Structural Design Considerations for a 50 kW-Class Solar Array for NASA's Asteroid Redirect Mission
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Kraft, Thomas G.; Yim, John T.; Le, Dzu K.
2016-01-01
NASA is planning an Asteroid Redirect Mission (ARM) to take place in the 2020s. To enable this multi-year mission, a 40 kW class solar electric propulsion (SEP) system powered by an advanced 50 kW class solar array will be required. Powered by the SEP module (SEPM), the ARM vehicle will travel to a large near-Earth asteroid, descend to its surface, capture a multi-metric ton (t) asteroid boulder, ascend from the surface and return to the Earth-moon system to ultimately place the ARM vehicle and its captured asteroid boulder into a stable distant orbit. During the years that follow, astronauts flying in the Orion multipurpose crew vehicle (MPCV) will dock with the ARM vehicle and conduct extra-vehicular activity (EVA) operations to explore and sample the asteroid boulder. This paper will review the top structural design considerations to successfully implement this 50 kW class solar array that must meet unprecedented performance levels. These considerations include beyond state-of-the-art metrics for specific mass, specific volume, deployed area, deployed solar array wing (SAW) keep in zone (KIZ), deployed strength and deployed frequency. Analytical and design results are presented that support definition of stowed KIZ and launch restraint interface definition. An offset boom is defined to meet the deployed SAW KIZ. The resulting parametric impact of the offset boom length on spacecraft moment of inertias and deployed SAW quasistatic and dynamic load cases are also presented. Load cases include ARM spacecraft thruster plume impingement, asteroid surface operations and Orion docking operations which drive the required SAW deployed strength and damping. The authors conclude that to support NASA's ARM power needs, an advanced SAW is required with mass performance better than 125 W/kg, stowed volume better than 40 kW/cu m, a deployed area of 200 sq m (100 sq m for each of two SAWs), a deployed SAW offset distance of nominally 3-4 m, a deployed SAW quasistatic strength of nominally 0.1 g in any direction, a deployed loading displacement under 2 m, a deployed fundamental frequency above 0.1 Hz and deployed damping of at least 1%. These parameters must be met on top of challenging mission environments and ground testing requirements unique to the ARM project.
Code of Federal Regulations, 2013 CFR
2013-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT... question, including on the development and deployment of new communications technologies; (3) The type of... features, and offered at differing price points. (c) The term advanced communications services shall mean...
Code of Federal Regulations, 2012 CFR
2012-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT... question, including on the development and deployment of new communications technologies; (3) The type of... features, and offered at differing price points. (c) The term advanced communications services shall mean...
Code of Federal Regulations, 2014 CFR
2014-10-01
... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT... question, including on the development and deployment of new communications technologies; (3) The type of... features, and offered at differing price points. (c) The term advanced communications services shall mean...
Freight Advanced Traveler Information System (FRATIS) impact assessment.
DOT National Transportation Integrated Search
2016-01-01
This report is an independent assessment of three prototype Freight Advanced Traveler Information System (FRATIS) tests at Los Angeles, Dallas/Fort Worth, and South Florida. The FRATIS technologies deployed at one or two drayage companies in each tes...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less
A seismic study of Yucca Mountain and vicinity, southern Nevada; data report and preliminary results
Hoffman, L.R.; Mooney, W.D.
1983-01-01
From 1980 to 1982, the U.S. Geological Survey conducted seismic refraction studies at the Nevada Test Site to aid in an investigation of the regional crustal structure at a possible nuclear waste repository site near Yucca Mountain. Two regionally distributed deployments and one north-south deployment recorded nuclear events. First arrival times from these deployments were plotted on a location map and contoured to determine traveltime delays. The results indicate delays as large as 0.5 s in the Yucca Mountain and Crater Flat areas relative to the Jackass Flats area. A fourth east-west deployment recorded a chemical explosion and was interpreted using a two-dimensional computer raytracing technique. Delays as high as 0.7 s were observed over Crater Flat and Yucca Mountain. The crustal model derived from this profile indicates that Paleozoic rocks, which outcrop to the east at Skull Mountain and the Calico Hills, and to the west at Bare Mountain, lie at a minimum depth of 3 km beneath part of Yucca Mountain. These results confirm earlier estimates based on the modeling of detailed gravity data. A mid-crustal boundary at 15 ? 2 km beneath Yucca Mountain is evidenced by a prominent reflection recorded beyond 43 km range at 1.5 s reduced time. Other mid-crustal boundaries have been identified at 24 and 30 km and the total crustal thickness is 35 km.
CE-ACCE: The Cloud Enabled Advanced sCience Compute Environment
NASA Astrophysics Data System (ADS)
Cinquini, L.; Freeborn, D. J.; Hardman, S. H.; Wong, C.
2017-12-01
Traditionally, Earth Science data from NASA remote sensing instruments has been processed by building custom data processing pipelines (often based on a common workflow engine or framework) which are typically deployed and run on an internal cluster of computing resources. This approach has some intrinsic limitations: it requires each mission to develop and deploy a custom software package on top of the adopted framework; it makes use of dedicated hardware, network and storage resources, which must be specifically purchased, maintained and re-purposed at mission completion; and computing services cannot be scaled on demand beyond the capability of the available servers.More recently, the rise of Cloud computing, coupled with other advances in containerization technology (most prominently, Docker) and micro-services architecture, has enabled a new paradigm, whereby space mission data can be processed through standard system architectures, which can be seamlessly deployed and scaled on demand on either on-premise clusters, or commercial Cloud providers. In this talk, we will present one such architecture named CE-ACCE ("Cloud Enabled Advanced sCience Compute Environment"), which we have been developing at the NASA Jet Propulsion Laboratory over the past year. CE-ACCE is based on the Apache OODT ("Object Oriented Data Technology") suite of services for full data lifecycle management, which are turned into a composable array of Docker images, and complemented by a plug-in model for mission-specific customization. We have applied this infrastructure to both flying and upcoming NASA missions, such as ECOSTRESS and SMAP, and demonstrated deployment on the Amazon Cloud, either using simple EC2 instances, or advanced AWS services such as Amazon Lambda and ECS (EC2 Container Services).
Organizing safety: conditions for successful information assurance programs.
Collmann, Jeff; Coleman, Johnathan; Sostrom, Kristen; Wright, Willie
2004-01-01
Organizations must continuously seek safety. When considering computerized health information systems, "safety" includes protecting the integrity, confidentiality, and availability of information assets such as patient information, key components of the technical information system, and critical personnel. "High Reliability Theory" (HRT) argues that organizations with strong leadership support, continuous training, redundant safety mechanisms, and "cultures of high reliability" can deploy and safely manage complex, risky technologies such as nuclear weapons systems or computerized health information systems. In preparation for the Health Insurance Portability and Accountability Act (HIPAA) of 1996, the Office of the Assistant Secretary of Defense (Health Affairs), the Offices of the Surgeons General of the United States Army, Navy and Air Force, and the Telemedicine and Advanced Technology Research Center (TATRC), US Army Medical Research and Materiel Command sponsored organizational, doctrinal, and technical projects that individually and collectively promote conditions for a "culture of information assurance." These efforts include sponsoring the "P3 Working Group" (P3WG), an interdisciplinary, tri-service taskforce that reviewed all relevant Department of Defense (DoD), Miliary Health System (MHS), Army, Navy and Air Force policies for compliance with the HIPAA medical privacy and data security regulations; supporting development, training, and deployment of OCTAVE(sm), a self-directed information security risk assessment process; and sponsoring development of the Risk Information Management Resource (RIMR), a Web-enabled enterprise portal about health information assurance.
Department of Energy Recovery Act Investment in Biomass Technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-11-01
The American Recovery and Reinvestment Act of 2009 (Recovery Act) provided more than $36 billion to the Department of Energy (DOE) to accelerate work on existing projects, undertake new and transformative research, and deploy clean energy technologies across the nation. Of this funding, $1029 million is supporting innovative work to advance biomass research, development, demonstration, and deployment.
MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walkowicz, K.; Ramroth, L.; Duran, A.
2012-01-01
This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.
REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swegle, J.; Tincher, D.
This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as somemore » closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. The Small ICBM (SICBM), or Midgetman, a road-mobile, single-warhead missile for which per-unit costs were climbing when it was eliminated under the PNIs. Although there were liabilities associated with each of these systems, there were also unique capabilities; this paper lays out the pros and cons for each. Further, we articulate the capabilities that were eliminated with these systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Mer, J.; Garzenne, C.; Lemasson, D.
In the frame of the French Act of June 28, 2006 on 'a sustainable management of nuclear materials and radioactive waste' EDF R and D assesses various research scenarios of transition between the actual French fleet and a Generation IV fleet with a closed fuel cycle where plutonium is multi-recycled. The basic scenarios simulate a deployment of 60 GWe of Sodium-cooled Fast Reactors (SFRs) in two steps: one third from 2040 to 2050 and the rest from 2080 to 2100 (scenarios 2040). These research scenarios assume that SFR technology will be ready for industrial deployment in 2040. One of themore » many sensitivity analyses that EDF, as a nuclear power plant operator, must evaluate is the impact of a delay of SFR technology in terms of uranium consumptions, plutonium needs and fuel cycle utilities gauging. The sensitivity scenarios use the same assumptions as scenarios 2040 but they simulate a different transition phase: SFRs are deployed in one step between 2080 and 2110 (scenarios 2080). As the French Act states to conduct research on minor actinides (MA) management, we studied different options for 2040 and 2080 scenarios: no MA transmutation, americium transmutation in heterogeneous mode based on americium Bearing Blankets (AmBB) in SFRs and all MA transmutation in heterogeneous mode based on MA Bearing Blankets (MABB). Moreover, we studied multiple parameters that could impact the deployment of these reactors (SFR load factor, increase of the use of MOX in Light Water Reactors, increase of the cooling time in spent nuclear fuel storage...). Each scenario has been computed with the EDF R and D fuel cycle simulation code TIRELIRE-STRATEGIE and optimized to meet various fuel cycle constraints such as using the reprocessing facility with long period of constant capacity, keeping the temporary stored mass of plutonium and MA under imposed limits, recycling older assemblies first... These research scenarios show that the transition from the current PWR fleet to an equivalent fleet of Generation IV SFR can follow different courses. The design of SFR-V2B that we used in our studies needs a high inventory of plutonium resulting in tension on this resource. Several options can be used in order to loosen this tension: our results lead to favour the use of axial breeding blanket in SFR. Load factor of upcoming reactors has to be regarded with attention as it has a high impact on plutonium resource for a given production of electricity. The deployment of SFRs beginning in 2080 instead of 2040 following the scenarios we described creates higher tensions on reprocessing capacity, separated plutonium storage and spent fuel storage. In the frame of the French Act, we studied minor actinides transmutation. The flux of MA in all fuel cycle plants is really high, which will lead to decay heat, a and neutron emission related problems. In terms of reduction of MA inventories, the deployment of MA transmutation cycle must not delay the installation of SFRs. The plutonium production in MABB and AmBB does not allow reducing the use of axial breeding blankets. The impact of MA or Am transmutation over the high level waste disposal is more important if the SFRs are deployed later. Transmutation option (americium or all MA) does not have a significant impact on the number of canister produced nor on its long-term thermal properties. (authors)« less
Test Frame for Gravity Offload Systems
NASA Technical Reports Server (NTRS)
Murray, Alexander R.
2005-01-01
Advances in space telescope and aperture technology have created a need to launch larger structures into space. Traditional truss structures will be too heavy and bulky to be effectively used in the next generation of space-based structures. Large deployable structures are a possible solution. By packaging deployable trusses, the cargo volume of these large structures greatly decreases. The ultimate goal is to three dimensionally measure a boom's deployment in simulated microgravity. This project outlines the construction of the test frame that supports a gravity offload system. The test frame is stable enough to hold the gravity offload system and does not interfere with deployment of, or vibrations in, the deployable test boom. The natural frequencies and stability of the frame were engineered in FEMAP. The test frame was developed to have natural frequencies that would not match the first two modes of the deployable beam. The frame was then modeled in Solidworks and constructed. The test frame constructed is a stable base to perform studies on deployable structures.
Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail
NASA Technical Reports Server (NTRS)
Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy
2004-01-01
This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.
Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Borowski, S. K.; George, J. A.; Kim, T.; Emrich, W. J.; Hickman, R. R.; Broadway, J. W.; Gerrish, H. P.; Adams, R. B.
2012-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced NEP.
Extended Deterrence, Nuclear Proliferation, and START III
DOE Office of Scientific and Technical Information (OSTI.GOV)
Speed, R.D.
2000-06-20
Early in the Cold War, the United States adopted a policy of ''extended nuclear deterrence'' to protect its allies by threatening a nuclear strike against any state that attacks these allies. This threat can (in principle) be used to try to deter an enemy attack using conventional weapons or one using nuclear, chemical, or biological weapons. The credibility of a nuclear threat has long been subject to debate and is dependent on many complex geopolitical factors, not the least of which is the military capabilities of the opposing sides. The ending of the Cold War has led to a significantmore » decrease in the number of strategic nuclear weapons deployed by the United States and Russia. START II, which was recently ratified by the Russian Duma, will (if implemented) reduce the number deployed strategic nuclear weapons on each side to 3500, compared to a level of over 11,000 at the end of the Cold War in 1991. The tentative limit established by Presidents Clinton and Yeltsin for START III would reduce the strategic force level to 2000-2500. However, the Russians (along with a number of arms control advocates) now argue that the level should be reduced even further--to 1500 warheads or less. The conventional view is that ''deep cuts'' in nuclear weapons are necessary to discourage nuclear proliferation. Thus, as part of the bargain to get the non-nuclear states to agree to the renewal of the Nuclear Non-Proliferation Treaty, the United States pledged to work towards greater reductions in strategic forces. Without movement in the direction of deep cuts, it is thought by many analysts that some countries may decide to build their own nuclear weapons. Indeed, this was part of the rationale India used to justify its own nuclear weapons program. However, there is also some concern that deep cuts (to 1500 or lower) in the U.S. strategic nuclear arsenal could have the opposite effect. The fear is that such cuts might undermine extended deterrence and cause a crisis in confidence among U.S. allies to such an extent that they could seek nuclear weapons of their own to protect themselves.« less
The Nuclear Cryogenic Propulsion Stage
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Broadway, Jeramie W.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Borowski, Stanley K.; Scott, John
2014-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation Nuclear Cryogenic Propulsion Stage (NCPS) based on NTP could provide high thrust at a specific impulse above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of the NCPS in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation. Progress made under the NCPS project could help enable both advanced NTP and advanced Nuclear Electric Propulsion (NEP). Nuclear propulsion can be affordable and viable compared to other propulsion systems and must overcome a biased public fear due to hyper-environmentalism and a false perception of radiation and explosion risk.
The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation
Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.
2013-01-01
Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938
REDUCTIONS WITHOUT REGRET: DETAILS - AVOIDING BOX CANYONS, ROACH MOTELS, AND WRONG TURNS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swegle, John A.; Tincher, Douglas J.
The United States is concurrently pursuing the goals of reducing the size of its nuclear weapons force – strategic and non-strategic, deployed and non-deployed – and of modernizing the weapons it continues to possess. Many of the existing systems were deployed 30 to 50 years ago, and the modernization process can be expected to extend over the next decade or more. Given the impossibility of predicting the future over the lifetime of systems that could extend to the end of this century, it is essential that dead ends in force development be avoided, and the flexibility and availability of optionsmore » be retained that allow for • Scalability downward in the event that further reductions are agreed upon; • Reposturing to respond to changes in threat levels and to new nuclear actors; and • Breakout response in the event that a competitor significantly increases its force size or force capability, In this paper, we examine the current motivations for reductions and modernization; review a number of historical systems and the attendant capabilities that have been eliminated in recent decades; discuss the current path forward for the U.S. nuclear force; provide a view of the evolving deterrence situation and our assessment of the uncertainties involved; and present examples of possibly problematic directions in force development. We close with our thoughts on how to maintain flexibility and the availability of options for which a need might recur in the future.« less
PaR Tensile Truss for Nuclear Decontamination and Decommissioning - 12467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebler, Gary R.
2012-07-01
Remote robotics and manipulators are commonly used in nuclear decontamination and decommissioning (D and D) processes. D and D robots are often deployed using rigid telescoping masts in order to apply and counteract side loads. However, for very long vertical reaches (15 meters or longer) and high lift capacities, a telescopic is usually not practical due to the large cross section and weight required to make the mast stiff and resist seismic forces. For those long vertical travel applications, PaR Systems has recently developed the Tensile Truss, a rigid, hoist-driven 'structure' that employs six independent wire rope hoists to achievemore » long vertical reaches. Like a mast, the Tensile Truss is typically attached to a bridge-mounted trolley and is used as a platform for robotic manipulators and other remotely operated tools. For suspended, rigid deployment of D and D tools with very long vertical reaches, the Tensile Truss can be a better alternative than a telescoping mast. Masts have length limitations that can make them impractical or unworkable as lengths increase. The Tensile Truss also has the added benefits of increased safety, ease of decontamination, superior stiffness and ability to withstand excessive side loading. A Tensile Truss system is currently being considered for D and D operations and spent fuel recovery at the Fukushima Daiichi Nuclear Power Plant in Japan. This system will deploy interchangeable tools such as underwater hydraulic manipulators, hydraulic shears and crushers, grippers and fuel grapples. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1993-09-15
This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.
Jaïdi, Faouzi; Labbene-Ayachi, Faten; Bouhoula, Adel
2016-12-01
Nowadays, e-healthcare is a main advancement and upcoming technology in healthcare industry that contributes to setting up automated and efficient healthcare infrastructures. Unfortunately, several security aspects remain as main challenges towards secure and privacy-preserving e-healthcare systems. From the access control perspective, e-healthcare systems face several issues due to the necessity of defining (at the same time) rigorous and flexible access control solutions. This delicate and irregular balance between flexibility and robustness has an immediate impact on the compliance of the deployed access control policy. To address this issue, the paper defines a general framework to organize thinking about verifying, validating and monitoring the compliance of access control policies in the context of e-healthcare databases. We study the problem of the conformity of low level policies within relational databases and we particularly focus on the case of a medical-records management database defined in the context of a Medical Information System. We propose an advanced solution for deploying reliable and efficient access control policies. Our solution extends the traditional lifecycle of an access control policy and allows mainly managing the compliance of the policy. We refer to an example to illustrate the relevance of our proposal.
NASA Astrophysics Data System (ADS)
Acín, V.; Bird, I.; Boccali, T.; Cancio, G.; Collier, I. P.; Corney, D.; Delaunay, B.; Delfino, M.; dell'Agnello, L.; Flix, J.; Fuhrmann, P.; Gasthuber, M.; Gülzow, V.; Heiss, A.; Lamanna, G.; Macchi, P.-E.; Maggi, M.; Matthews, B.; Neissner, C.; Nief, J.-Y.; Porto, M. C.; Sansum, A.; Schulz, M.; Shiers, J.
2015-12-01
Several scientific fields, including Astrophysics, Astroparticle Physics, Cosmology, Nuclear and Particle Physics, and Research with Photons, are estimating that by the 2020 decade they will require data handling systems with data volumes approaching the Zettabyte distributed amongst as many as 1018 individually addressable data objects (Zettabyte-Exascale systems). It may be convenient or necessary to deploy such systems using multiple physical sites. This paper describes the findings of a working group composed of experts from several
10 CFR 75.44 - Timing of advance notification.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 10 Energy 2 2011-01-01 2011-01-01 false Timing of advance notification. 75.44 Section 75.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Advanced Notification and Expenses § 75.44 Timing of advance notification. (a) Except as provided...
10 CFR 75.44 - Timing of advance notification.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 10 Energy 2 2010-01-01 2010-01-01 false Timing of advance notification. 75.44 Section 75.44 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) SAFEGUARDS ON NUCLEAR MATERIAL-IMPLEMENTATION OF US/IAEA AGREEMENT Advanced Notification and Expenses § 75.44 Timing of advance notification. (a) Except as provided...
MICRO-SEISMOMETERS VIA ADVANCED MESO-SCALE FABRICATION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garcia, Caesar A; Onaran, Guclu; Avenson, Brad
The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) seek revolutionary sensing innovations for the monitoring of nuclear detonations. Performance specifications are to be consistent with those obtainable by only an elite few products available today, but with orders of magnitude reduction in size, weight, power, and cost. The proposed commercial innovation calls upon several technologies including the combination of meso-scale fabrication and assembly, photonics-based displacement / motion detection methods, and the use of digital control electronics . Early Phase II development has demonstrated verified and repeatable sub 2ng noise floor from 3Hz to 100Hz, compact integrationmore » of 3-axis prototypes, and robust deployment exercises. Ongoing developments are focusing on low frequency challenges, low power consumption, ultra-miniature size, and low cross axis sensitivity. We are also addressing the rigorous set of specifications required for repeatable and reliable long-term explosion monitoring, including thermal stability, reduced recovery time from mass re-centering and large mechanical shocks, sensitivity stability, and transportability. Successful implementation will result in small, hand-held demonstration units with the ability to address national security needs of the DOE/NNSA. Additional applications envisioned include military/defense, scientific instrumentation, oil and gas exploration, inertial navigation, and civil infrastructure monitoring.« less
LWRS ATR Irradiation Testing Readiness Status
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kristine Barrett
2012-09-01
The Light Water Reactor Sustainability (LWRS) Program was established by the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors. The LWRS Program is divided into four R&D Pathways: (1) Materials Aging and Degradation; (2) Advanced Light Water Reactor Nuclear Fuels; (3) Advanced Instrumentation, Information and Control Systems; and (4) Risk-Informed Safety Margin Characterization. This report describes an irradiation testing readiness analysis in preparation of LWRS experiments for irradiation testing at the Idaho National Laboratory (INL) Advanced Testmore » Reactor (ATR) under Pathway (2). The focus of the Advanced LWR Nuclear Fuels Pathway is to improve the scientific knowledge basis for understanding and predicting fundamental performance of advanced nuclear fuel and cladding in nuclear power plants during both nominal and off-nominal conditions. This information will be applied in the design and development of high-performance, high burn-up fuels with improved safety, cladding integrity, and improved nuclear fuel cycle economics« less
Nuclear Terrorism - Dimensions, Options, and Perspectives in Moldova
NASA Astrophysics Data System (ADS)
Vaseashta, Ashok; Susmann, P.; Braman, Eric W.; Enaki, Nicolae A.
Securing nuclear materials, controlling contraband and preventing proliferation is an international priority to resolve using technology, diplomacy, strategic alliances, and if necessary, targeted military exercises. Nuclear security consists of complementary programs involving international legal and regulatory structure, intelligence and law enforcement agencies, border and customs forces, point and stand-off radiation detectors, personal protection equipment, preparedness for emergency and disaster, and consequence management teams. The strategic goal of UNSCR 1540 and the GICNT is to prevent nuclear materials from finding their way into the hands of our adversaries. This multi-jurisdictional and multi-agency effort demands tremendous coordination, technology assessment, policy development and guidance from several sectors. The overall goal envisions creating a secured environment that controls and protects nuclear materials while maintaining the free flow of commerce and individual liberty on international basis. Integral to such efforts are technologies to sense/detect nuclear material, provide advance information of nuclear smuggling routes, and other advanced means to control nuclear contraband and prevent proliferation. We provide an overview of GICNT and several initiatives supporting such efforts. An overview is provided of technological advances in support of point and stand-off detection and receiving advance information of nuclear material movement from perspectives of the Republic of Moldova.
Science, Technology and the Nuclear Arms Race
NASA Astrophysics Data System (ADS)
Schroeer, Dietrich
1984-09-01
A comprehensive survey of the nuclear arms race from a technological point of view, which will appeal to the scientist and non-scientist alike. Provides information for the layman on this current topic and is designed for undergraduate courses in political science, history, international studies, as well as physics courses on the subject. Explores the motivation behind the development of various nuclear arms technologies and their deployment and examines the effects these technologies have on military, political and social strategies. Discusses the nature of deterrence and alternatives to it, arms control, and disarmament.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-05-01
This table lists quantities of warheads (in stockpile, peak number per year, total number built, number of known test explosions), weapon development milestones (developers of the atomic bomb and hydrogen bomb, date of first operational ICBM, first nuclear-powered naval SSN in service, first MIRVed missile deployed), and testing milestones (first fission test, type of boosted fission weapon, multistage thermonuclear test, number of months from fission bomb to multistage thermonuclear bomb, etc.), and nuclear infrastructure (assembly plants, plutonium production reactors, uranium enrichment plants, etc.). Countries included in the tally are the United States, Soviet Union, Britain, France, and China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khalifa, Hesham
Advanced ceramic materials exhibit properties that enable safety and fuel cycle efficiency improvements in advanced nuclear reactors. In order to fully exploit these desirable properties, new processing techniques are required to produce the complex geometries inherent to nuclear fuel assemblies and support structures. Through this project, the state of complex SiC-SiC composite fabrication for nuclear components has advanced significantly. New methods to produce complex SiC-SiC composite structures have been demonstrated in the form factors needed for in-core structural components in advanced high temperature nuclear reactors. Advanced characterization techniques have been employed to demonstrate that these complex SiC-SiC composite structures providemore » the strength, toughness and hermeticity required for service in harsh reactor conditions. The complex structures produced in this project represent a significant step forward in leveraging the excellent high temperature strength, resistance to neutron induced damage, and low neutron cross section of silicon carbide in nuclear applications.« less
Advances in Mechanical Architectures of Large Precision Space Apertures
NASA Astrophysics Data System (ADS)
Datashvili, Leri; Maghaldadze, Nikoloz; Endler, Stephan; Pauw, Julian; He, Peng; Baier, Horst; Ihle, Alexander; Santiago Prowlad, Julian
2014-06-01
Recent advances in development of mechanical architectures of large deployable reflectors (LDRs) through the projects of the European Space Agency are addressed in this paper. Two different directions of LDR architectures are being investigated and developed at LSS and LLB. These are LDRs with knitted metal mesh and with flexible shell-membrane reflecting surfaces. The first direction is matured and required advancing of the novel architecture of the supporting structure that provides deployment and final shape accuracy of the metal mesh is underway. The second direction is rather new and its current development stage is focused on investigations of dimensional stability of the flexible shell-membrane reflecting surface. In both directions 5 m diameter functional models will be built to demonstrate achieved performances, which shall prepare the basis for further improvement of their technology readiness levels.
Advanced GPS Technologies (AGT)
2015-05-01
Distribution A GPS Ill Developmental Optical Clock Deployable Antenna Concept 3 \\.J Science and Technology for GPS •:• Spacecraft • AFRL has funded a...Digital Waveform Generators New antenna concepts Supporting electronics Algorithms and new signal combining methods Satellite bus technologies...GPS Military High Gain Antenna Developing Options for Ground Testing 1) Deployable phased array • Low profile element • High efficiency phase
Will crown ideotype help determine optimum varietal silviculture?
Timothy J. Albaugh; Thomas R. Fox; Marco A. Yanez; Rafael A. Rubilar; Barry Goldfarb
2016-01-01
Recent advances in somatic embryogenesis permit large numbers of clonal loblolly pine (Pinus taeda L.) to be produced and deployed. Clones may have greater growth (mean annual increment exceeding 30 cubic meters per hectare per year), greater stand uniformity and may be more susceptible to genotype by environment interactions when they are deployed in intensively...
A Summary of Proceedings for the Advanced Deployable Day/Night Simulation Symposium
2009-07-01
initiated to design , develop, and deliver transportable visual simulations that jointly provide night-vision and high-resolution daylight capability. The...Deployable Day/Night Simulation (ADDNS) Technology Demonstration Project was initiated to design , develop, and deliver transportable visual...was Dr. Richard Wildes (York University); Mr. Vitaly Zholudev (Department of Computer Science, York University), Mr. X. Zhu (Neptec Design Group), and
2015-02-01
Centralization . . . . . . . . . . . . . . . . . . . . . . 43 “Anonymity”: A Bitcoin Case Study...been a case of x National Security Implications of Virtual Currency such a non-state actor deployment; in this report, we aim to high- light...development of VCs may advance, including a gen- eral increased sophistication in cryptographic applications. More gen- erally, we make the case that the main
The Astarita Report: A Military Strategy for the Multipolar World
1981-04-30
With some latitude because of the current lack of black African unity, the United States should expect increasing domestic ,political pressure to "do...clearer. Strategic nuclear retaliatory foecas are the keystone of American military strategy, and United States nuclear "sufficiency" is an absolute...assurance?" Current forward deployments -- like elephant bane -- must be assumed to represdnt the upper limits, since the alliances have endured. The lower
Recommendations for portable supplemental meteorological instrumentation for incident response
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, R.M.; Tichler, J.L.
The Nuclear Regulatory Commission (NRC) staff requested technical assistance in recommending portable supplementary meteorological instrumentation which can be deployed to nuclear power plant sites in response to incidents. A supplementary meteorological system (SMS), whose primary function is to collect, analyze and disseminate supplemental meteorological information, is recommended. Instrument specifications are discussed along with maintenance and staffing requirements. A cost evaluation of the components is made. 5 refs., 1 fig.
Siegel, Jonas; Gilmore, Elisabeth A; Gallagher, Nancy; Fetter, Steve
2018-02-01
To facilitate the use of nuclear energy globally, small modular reactors (SMRs) may represent a viable alternative or complement to large reactor designs. One potential benefit is that SMRs could allow for more proliferation resistant designs, manufacturing arrangements, and fuel-cycle practices at widespread deployment. However, there is limited work evaluating the proliferation resistance of SMRs, and existing proliferation assessment approaches are not well suited for these novel arrangements. Here, we conduct an expert elicitation of the relative proliferation resistance of scenarios for future nuclear energy deployment driven by Generation III+ light-water reactors, fast reactors, or SMRs. Specifically, we construct the scenarios to investigate relevant technical and institutional features that are postulated to enhance the proliferation resistance of SMRs. The experts do not consistently judge the scenario with SMRs to have greater overall proliferation resistance than scenarios that rely on conventional nuclear energy generation options. Further, the experts disagreed on whether incorporating a long-lifetime sealed core into an SMR design would strengthen or weaken proliferation resistance. However, regardless of the type of reactor, the experts judged that proliferation resistance would be enhanced by improving international safeguards and operating several multinational fuel-cycle facilities rather than supporting many more national facilities. © 2017 Society for Risk Analysis.
Outlooks for Wind Power in the United States: Drivers and Trends under a 2016 Policy Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, Trieu; Lantz, Eric; Ho, Jonathan
Over the past decade, wind power has become one of the fastest growing electricity generation sources in the United States. Despite this growth, the U.S. wind industry continues to experience year-to-year fluctuations across the manufacturing and supply chain as a result of dynamic market conditions and changing policy landscapes. Moreover, with advancing wind technologies, ever-changing fossil fuel prices, and evolving energy policies, the long-term future for wind power is highly uncertain. In this report, we present multiple outlooks for wind power in the United States, to explore the possibilities of future wind deployment. The future wind power outlooks presented relymore » on high-resolution wind resource data and advanced electric sector modeling capabilities to evaluate an array of potential scenarios of the U.S. electricity system. Scenario analysis is used to explore drivers, trends, and implications for wind power deployment over multiple periods through 2050. Specifically, we model 16 scenarios of wind deployment in the contiguous United States. These scenarios span a wide range of wind technology costs, natural gas prices, and future transmission expansion. We identify conditions with more consistent wind deployment after the production tax credit expires as well as drivers for more robust wind growth in the long run. Conversely, we highlight challenges to future wind deployment. We find that the degree to which wind technology costs decline can play an important role in future wind deployment, electric sector CO 2 emissions, and lowering allowance prices for the Clean Power Plan.« less
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
The 'Room within a Room' Concept for Monitored Warhead Dismantlement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanner, Jennifer E.; Benz, Jacob M.; White, Helen
2014-12-01
Over the past 10 years, US and UK experts have engaged in a technical collaboration with the aim of improving scientific and technological abilities in support of potential future nuclear arms control and non-proliferation agreements. In 2011 a monitored dismantlement exercise provided an opportunity to develop and test potential monitoring technologies and approaches. The exercise followed a simulated nuclear object through a dismantlement process and looked to explore, with a level of realism, issues surrounding device and material monitoring, chain of custody, authentication and certification of equipment, data management and managed access. This paper focuses on the development and deploymentmore » of the ‘room-within-a-room’ system, which was designed to maintain chain of custody during disassembly operations. A key challenge for any verification regime operating within a nuclear weapon complex is to provide the monitoring party with the opportunity to gather sufficient evidence, whilst protecting sensitive or proliferative information held by the host. The requirement to address both monitoring and host party concerns led to a dual function design which: • Created a controlled boundary around the disassembly process area which could provide evidence of unauthorised diversion activities. • Shielded sensitive disassembly operations from monitoring party observation. The deployed room-within-a-room was an integrated system which combined a number of chain of custody technologies (i.e. cameras, tamper indicating panels and enclosures, seals, unique identifiers and radiation portals) and supporting deployment procedures. This paper discusses the bounding aims and constraints identified by the monitoring and host parties with respect to the disassembly phase, the design of the room-within-a-room system, lessons learned during deployment, conclusions and potential areas of future work. Overall it was agreed that the room-within-a-room approach was effective but the individual technologies used to create the system deployed during this exercise required further development.« less
ERIC Educational Resources Information Center
Jakubowski, Henry; Xie, Jianping; Kumar Mitra, Arup; Ghooi, Ravindra; Hosseinkhani, Saman; Alipour, Mohsen; Hajipour, Behnam; Obiero, George
2017-01-01
The profound advances in the biomolecular sciences over the last decades have enabled similar advances in biomedicine. These advances have increasingly challenged our abilities to deploy them in an equitable and ethically acceptable manner. As such, it has become necessary and important to teach biomedical and scientific ethics to our students who…
Advanced Demonstration and Test Reactor Options Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petti, David Andrew; Hill, R.; Gehin, J.
Global efforts to address climate change will require large-scale decarbonization of energy production in the United States and elsewhere. Nuclear power already provides 20% of electricity production in the United States (U.S.) and is increasing in countries undergoing rapid growth around the world. Because reliable, grid-stabilizing, low emission electricity generation, energy security, and energy resource diversity will be increasingly valued, nuclear power’s share of electricity production has a potential to grow. In addition, there are non electricity applications (e.g., process heat, desalination, hydrogen production) that could be better served by advanced nuclear systems. Thus, the timely development, demonstration, and commercializationmore » of advanced nuclear reactors could diversify the nuclear technologies available and offer attractive technology options to expand the impact of nuclear energy for electricity generation and non-electricity missions. The purpose of this planning study is to provide transparent and defensible technology options for a test and/or demonstration reactor(s) to be built to support public policy, innovation and long term commercialization within the context of the Department of Energy’s (DOE’s) broader commitment to pursuing an “all of the above” clean energy strategy and associated time lines. This planning study includes identification of the key features and timing needed for advanced test or demonstration reactors to support research, development, and technology demonstration leading to the commercialization of power plants built upon these advanced reactor platforms. This planning study is consistent with the Congressional language contained within the fiscal year 2015 appropriation that directed the DOE to conduct a planning study to evaluate “advanced reactor technology options, capabilities, and requirements within the context of national needs and public policy to support innovation in nuclear energy”. Advanced reactors are defined in this study as reactors that use coolants other than water. Advanced reactor technologies have the potential to expand the energy applications, enhance the competitiveness, and improve the sustainability of nuclear energy.« less
Advanced Ceramics for Use as Fuel Element Materials in Nuclear Thermal Propulsion Systems
NASA Technical Reports Server (NTRS)
Valentine, Peter G.; Allen, Lee R.; Shapiro, Alan P.
2012-01-01
With the recent start (October 2011) of the joint National Aeronautics and Space Administration (NASA) and Department of Energy (DOE) Advanced Exploration Systems (AES) Nuclear Cryogenic Propulsion Stage (NCPS) Program, there is renewed interest in developing advanced ceramics for use as fuel element materials in nuclear thermal propulsion (NTP) systems. Three classes of fuel element materials are being considered under the NCPS Program: (a) graphite composites - consisting of coated graphite elements containing uranium carbide (or mixed carbide), (b) cermets (ceramic/metallic composites) - consisting of refractory metal elements containing uranium oxide, and (c) advanced carbides consisting of ceramic elements fabricated from uranium carbide and one or more refractory metal carbides [1]. The current development effort aims to advance the technology originally developed and demonstrated under Project Rover (1955-1973) for the NERVA (Nuclear Engine for Rocket Vehicle Application) [2].
The contribution of physics to Nuclear Medicine: physicians' perspective on future directions.
Mankoff, David A; Pryma, Daniel A
2014-12-01
Advances in Nuclear Medicine physics enabled the specialty of Nuclear Medicine and directed research in other aspects of radiotracer imaging, ultimately leading to Nuclear Medicine's emergence as an important component of current medical practice. Nuclear Medicine's unique ability to characterize in vivo biology without perturbing it will assure its ongoing role in a practice of medicine increasingly driven by molecular biology. However, in the future, it is likely that advances in molecular biology and radiopharmaceutical chemistry will increasingly direct future developments in Nuclear Medicine physics, rather than relying on physics as the primary driver of advances in Nuclear Medicine. Working hand-in-hand with clinicians, chemists, and biologists, Nuclear Medicine physicists can greatly enhance the specialty by creating more sensitive and robust imaging devices, by enabling more facile and sophisticated image analysis to yield quantitative measures of regional in vivo biology, and by combining the strengths of radiotracer imaging with other imaging modalities in hybrid devices, with the overall goal to enhance Nuclear Medicine's ability to characterize regional in vivo biology.
An epidemiological approach to mass casualty incidents in the Principality of Asturias (Spain).
Castro Delgado, Rafael; Naves Gómez, Cecilia; Cuartas Álvarez, Tatiana; Arcos González, Pedro
2016-02-24
Mass Casualty Incidents (MCI) have been rarely studied from epidemiological approaches. The objective of this study is to establish the epidemiological profile of MCI in the autonomous region of the Principality of Asturias (Spain) and analyse ambulance deployment and severity of patients. This is a population-based prospective study run in 2014. Inclusion criteria for MCI is "every incident with four or more people affected that requires ambulance mobilisation". Thirty-nine MCI have been identified in Asturias in 2014. Thirty-one (79%) were road traffic accidents, three (7.5%) fires and five (12.8%) other types. Twenty-one incidents (56.7%) had four patients, and only three of them (8%) had seven or more patients. An average of 2.41 ambulances per incident were deployed (standard error = 0.18). Most of the patients per incident were minor injured patients (mean = 4; standard error = 0.2), and 0,26 were severe patients (standard error = 0.08). There was a positive significant correlation (p < 0.01) between the total number of patients and the total number of ambulances deployed and between the total number of patients and Advanced Life Support (ALS) ambulances deployed (p < 0.001). The total number of non-ALS ambulances was not related with the total number of patients. Population based research in MCI is essential to define MCI profile. Quantitative definition of MCI, adapted to resources, avoid selection bias and present a more accurate profile of MCI. As espected, road traffic accidents are the most frequent MCI in our region. This aspect is essential to plan training and response to MCI. Analysis of total response to MCI shows that for almost an hour, we should plan extra resources for daily emergencies. This data is an important issue to bear in mind when planning MCI response. The fact that most patients are classified as minor injured and more advanced life support units than needed are deployed shows that analysis of resources deployment and patient severity helps us to better plan future MCI response. Road traffic accidents with minor injured patients are the most frequent MCI in our region. More advanced life support units than needed have been initially deployed, which might compromise response to daily emergencies during an MCI.
Fox, Annie B; Walker, Brian E; Smith, Brian N; King, Daniel W; King, Lynda A; Vogt, Dawne
2016-03-01
Despite increased attention to the evolving nature of war, the unique challenges of contemporary deployment, and women's changing role in warfare, few studies have examined differences in deployment stressors across eras of service or evaluated how gender differences in deployment experiences have changed over time. Using data collected from two national survey studies, we examined war cohort and gender differences in veterans' reports of both mission-related and interpersonal stressors during deployment. Although Operation Enduring Freedom and Operation Iraqi Freedom veterans reported more combat experiences and greater preparedness for deployment compared to Gulf War veterans, Gulf War veterans reported higher levels of other mission-related stressors, including difficult living and working environment, perceived threat, and potential exposure to nuclear, biological, and chemical weapons. Gender differences also emerged, with men reporting greater exposure to mission-related stressors and women reporting higher levels of interpersonal stressors. However, the size and nature of gender differences did not differ significantly when comparing veterans of the two eras. By understanding how risk factors for PTSD differ based on war era and gender, veterans' experiences can be better contextualized. (c) 2016 APA, all rights reserved).
AP1000{sup R} licensing and deployment in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jordan, R. P.; Russ, P. A.; Filiak, P. P.
2012-07-01
In recent years, both domestic and foreign utilities have turned to the standardized Westinghouse AP1000 plant design in satisfying their near - and long-term - sustainable energy needs. As direct support to these actions, licensing the AP1000 design has played a significant role by providing one of the fundamental bases in clearing regulatory hurdles leading to the start of new plant construction. Within the U.S. alone, Westinghouse AP1000 licensing activities have reached unprecedented milestones with the approvals of both AP1000 Design Certification and Southern Company's combined construction permit and operating license (COL) application directly supporting the construction of two newmore » nuclear plants in Georgia. Further COL application approvals are immediately pending for an additional two AP1000 plants in South Carolina. And, across the U.S. nuclear industry spectrum, there are 10 other COL applications under regulatory review representing some 16 new plants at 10 sites. In total, these actions represent the first wave of new plant licensing under the regulatory approval process since 1978. Fundamental to the Nuclear Regulatory Commission's AP1000 Design Certification is the formal recognition of the AP1000 passive safety design through regulatory acceptance rulemaking. Through recognition and deployment of the AP1000 Design Certification, the utility licensee / operator of this reactor design are now offered an opportunity to use a simplified 'one-step' combined license process, thereby managing substantial back-end construction schedule risk from regulatory and intervention delays. Application of this regulatory philosophy represents both acceptance and encouragement of standardized reactor designs like the AP1000. With the recent AP1000 Design Certification and utility COL acceptances, the fundamental licensing processes of this philosophy have successfully proven the attainment of significant milestones with the next stage licensing actions directed towards deployment. AP1000 Design Certification and COL deployment, and management of the plant construction in accordance with the conditions within these approvals, remain as significant site and corporate responsibilities. These licensing-construction integrated activities must now focus on identifying and resolving 'as-built' departures from the standardized design as assessed against the certified AP1000 technical and licensing basis. Within this paper, significant aspects of the AP1000 U.S. licensing will be discussed, including identifying systems and processes used in ensuring compliance while deploying the standardized design. Critical licensing steps, licensing deployment actions as plant construction progresses and defining the road forward to a successful completion of licensing actions will be addressed. (authors)« less
Advanced consequence management program: challenges and recent real-world implementations
NASA Astrophysics Data System (ADS)
Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.
2002-08-01
The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.
Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Hachkowski, M. Roman
2000-01-01
This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.
The Value Proposition for Fractionated Space Architectures
2006-09-01
transmission relying on electrostatic forces has been proposed for use in GEO by Parker et al.37 Demonstration Program The Defense Advanced...capability of the original monolithic system.6 One can envision the fractionation trade space to be defined by three high-level metrics. First, the ... by deploying additional modules. Thus, for instance, one could envision deploying an initial communications capability in the form of a power
ERIC Educational Resources Information Center
National Telecommunications and Information Administration (DOC), Washington, DC.
This report, in response to a request by 10 U.S. Senators examines the status of broadband deployment in the United States. The rate of deployment of broadband services will be key to future economic growth, particularly in rural areas far from urban and world markets. This report finds that rural areas, especially remote areas outside of towns,…
NASA Technical Reports Server (NTRS)
Donakowski, T. D.; Escher, W. J. D.; Gregory, D. P.
1977-01-01
The concept of an advanced-technology (viz., 1985 technology) nuclear-electrolytic water electrolysis facility was assessed for hydrogen production cost and efficiency expectations. The facility integrates (1) a high-temperature gas-cooled nuclear reactor (HTGR) operating a binary work cycle, (2) direct-current (d-c) electricity generation via acyclic generators, and (3) high-current-density, high-pressure electrolyzers using a solid polymer electrolyte (SPE). All subsystems are close-coupled and optimally interfaced for hydrogen production alone (i.e., without separate production of electrical power). Pipeline-pressure hydrogen and oxygen are produced at 6900 kPa (1000 psi). We found that this advanced facility would produce hydrogen at costs that were approximately half those associated with contemporary-technology nuclear electrolysis: $5.36 versus $10.86/million Btu, respectively. The nuclear-heat-to-hydrogen-energy conversion efficiency for the advanced system was estimated as 43%, versus 25% for the contemporary system.
Haas, Derek A; Eslinger, Paul W; Bowyer, Theodore W; Cameron, Ian M; Hayes, James C; Lowrey, Justin D; Miley, Harry S
2017-11-01
The Comprehensive Nuclear-Test-Ban Treaty bans all nuclear tests and mandates development of verification measures to detect treaty violations. One verification measure is detection of radioactive xenon isotopes produced in the fission of actinides. The International Monitoring System (IMS) currently deploys automated radioxenon systems that can detect four radioxenon isotopes. Radioxenon systems with lower detection limits are currently in development. Historically, the sensitivity of radioxenon systems was measured by the minimum detectable concentration for each isotope. In this paper we analyze the response of radioxenon systems using rigorous metrics in conjunction with hypothetical representative releases indicative of an underground nuclear explosion instead of using only minimum detectable concentrations. Our analyses incorporate the impact of potential spectral interferences on detection limits and the importance of measuring isotopic ratios of the relevant radioxenon isotopes in order to improve discrimination from background sources particularly for low-level releases. To provide a sufficient data set for analysis, hypothetical representative releases are simulated every day from the same location for an entire year. The performance of three types of samplers are evaluated assuming they are located at 15 IMS radionuclide stations in the region of the release point. The performance of two IMS-deployed samplers and a next-generation system is compared with proposed metrics for detection and discrimination using representative releases from the nuclear test site used by the Democratic People's Republic of Korea. Copyright © 2017 Elsevier Ltd. All rights reserved.
Flexible Robotic Entry Device for nuclear materials production reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heckendorn, F.M.
1988-01-01
The Savannah River Laboratory (SRL) has developed and is implementing a Flexible Robotic Entry Device (FRED) for the nuclear materials production reactors at the Savannah River Plant (SRP). FRED is designed for rapid deployment into confinement areas of operating reactors to assess unknown conditions. A unique ''smart tether'' method has been incorporated into FRED for simultaneous bidirectional transmission of multiple video/audio/control/power signals over a single coaxial cable. 3 figs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonzogni, A.A.
2005-05-24
A package of computer codes has been developed to process and display nuclear structure and decay data stored in the ENSDF (Evaluated Nuclear Structure Data File) library. The codes were written in an object-oriented fashion using the java language. This allows for an easy implementation across multiple platforms as well as deployment on web pages. The structure of the different java classes that make up the package is discussed as well as several different implementations.
Self-Deployable Membrane Structures
NASA Technical Reports Server (NTRS)
Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.
2010-01-01
Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems that can use up the majority of the mass budget
Knebel, Ann R; Martinelli, Angela M; Orsega, Susan; Doss, Thomas L; Balingit-Wines, Ana Marie; Konchan, Carol L
2010-06-01
The events of September 11, 2001, set in motion the broadest emergency response ever conducted by the US Department of Health and Human Services. In this article, some of the nurses who deployed to New York City in the aftermath of that horrific attack on the United States offer their recollections of the events. Although Public Health Service Commissioned Corps (PHS CC) officers participated in deployments before 9/11, this particular deployment accelerated the transformation of the PHS CC, because people came to realize the tremendous potential of a uniformed service of 6,000 health care professionals. When not responding to emergencies, PHS CC nurses daily serve the mission of the PHS to protect, promote, and advance the health and safety of the nation. In times of crisis, the PHS CC nurses stand ready to deploy in support of those in need of medical assistance. Published by Elsevier Inc.
Profiling microbial lignocellulose degradation and utilization by emergent omics technologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosnow, Joshua J.; Anderson, Lindsey N.; Nair, Reji N.
2016-07-20
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emergent technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzymemore » activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint to advance biofuel production.« less
Manning, H Charles; Buck, Jason R; Cook, Rebecca S
2016-02-01
Representing an enormous health care and socioeconomic challenge, breast cancer is the second most common cancer in the world and the second most common cause of cancer-related death. Although many of the challenges associated with preventing, treating, and ultimately curing breast cancer are addressable in the laboratory, successful translation of groundbreaking research to clinical populations remains an important barrier. Particularly when compared with research on other types of solid tumors, breast cancer research is hampered by a lack of tractable in vivo model systems that accurately recapitulate the relevant clinical features of the disease. A primary objective of this article was to provide a generalizable overview of the types of in vivo model systems, with an emphasis primarily on murine models, that are widely deployed in preclinical breast cancer research. Major opportunities to advance precision cancer medicine facilitated by molecular imaging of preclinical breast cancer models are discussed. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Profiling microbial lignocellulose degradation and utilization by emergent omics technologies.
Rosnow, Joshua J; Anderson, Lindsey N; Nair, Reji N; Baker, Erin S; Wright, Aaron T
2017-08-01
The use of plant materials to generate renewable biofuels and other high-value chemicals is the sustainable and preferable option, but will require considerable improvements to increase the rate and efficiency of lignocellulose depolymerization. This review highlights novel and emerging technologies that are being developed and deployed to characterize the process of lignocellulose degradation. The review will also illustrate how microbial communities deconstruct and metabolize lignocellulose by identifying the necessary genes and enzyme activities along with the reaction products. These technologies include multi-omic measurements, cell sorting and isolation, nuclear magnetic resonance spectroscopy (NMR), activity-based protein profiling, and direct measurement of enzyme activity. The recalcitrant nature of lignocellulose necessitates the need to characterize the methods microbes employ to deconstruct lignocellulose to inform new strategies on how to greatly improve biofuel conversion processes. New technologies are yielding important insights into microbial functions and strategies employed to degrade lignocellulose, providing a mechanistic blueprint in order to advance biofuel production.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adkisson, Mary A.; Qualls, A. L.
The Southeast United States consumes approximately one billion megawatt-hours of electricity annually; roughly two-thirds from carbon dioxide (CO 2) emitting sources. The balance is produced by non-CO 2 emitting sources: nuclear power, hydroelectric power, and other renewables. Approximately 40% of the total CO 2 emissions come from the electric grid. The CO 2 emitting sources, coal, natural gas, and petroleum, produce approximately 372 million metric tons of CO 2 annually. The rest is divided between the transportation sector (36%), the industrial sector (20%), the residential sector (3%), and the commercial sector (2%). An Energy Mix Modeling Analysis (EMMA) tool wasmore » developed to evaluate 100-year energy mix strategies to reduce CO 2 emissions in the southeast. Current energy sector data was gathered and used to establish a 2016 reference baseline. The spreadsheet-based calculation runs 100-year scenarios based on current nuclear plant expiration dates, assumed electrical demand changes from the grid, assumed renewable power increases and efficiency gains, and assumed rates of reducing coal generation and deployment of new nuclear reactors. Within the model, natural gas electrical generation is calculated to meet any demand not met by other sources. Thus, natural gas is viewed as a transitional energy source that produces less CO 2 than coal until non-CO 2 emitting sources can be brought online. The annual production of CO 2 and spent nuclear fuel and the natural gas consumed are calculated and summed. A progression of eight preliminary scenarios show that nuclear power can substantially reduce or eliminate demand for natural gas within 100 years if it is added at a rate of only 1000 MWe per year. Any increases in renewable energy or efficiency gains can offset the need for nuclear power. However, using nuclear power to reduce CO 2 will result in significantly more spent fuel. More efficient advanced reactors can only marginally reduce the amount of spent fuel generated in the next 100 years if they are assumed to be available beginning around 2040. Thus closing the nuclear fuel cycle to reduce nuclear spent fuel inventories should be considered. Future work includes the incorporation of economic features into the model and the extension of the evaluation to the industrial sector. It will also be necessary to identify suitable sites for additional reactors.« less
Supporting U.S. Response to the Japanese Nuclear Crisis | ORAU
Crapo, John; Jakubowski, Ted
2018-05-01
When an earthquake and tsunami hit off the coast of Japan on March 11, 2011, and triggered a nuclear crisis, the U.S. immediately offered support. Among those tapped to assist was ORAU's National Security and Emergency Management team, which provided NNSA with technical and analytical nuclear incident support. Within 48 hours of the earthquake, ORAU emergency management experts accompanied the DOE Office of Emergency Response in deploying to Japan to support the U.S. Air Force Base in Yokota and the U.S. Embassy. A separate team from ORAU supported the NNSA Nuclear Incident Team, which served as the point of coordination for all support activities both in Japan and in the U.S.
DOT National Transportation Integrated Search
2006-08-02
In 2000, the Treasure Valley area of the State of Idaho received a federal earmark of $390,000 to develop an Advanced Transportation Management System (ATMS) for the Treasure Valley region of Idaho. The Ada County Highway District (ACHD), located in ...
An Investigation of Pronunciation Learning Strategies of Advanced EFL Learners
ERIC Educational Resources Information Center
Hismanoglu, Murat
2012-01-01
This paper aims at investigating the kinds of strategies deployed by advanced EFL learners at English Language Teaching Department to learn or improve English pronunciation and revealing whether there are any significant differences between the strategies of successful pronunciation learners and those of unsuccessful pronunciation learners. After…
Nuclear Technology, Global Warming, and the Politicization of Science
NASA Astrophysics Data System (ADS)
Weart, Spencer
2016-03-01
Since the mid 20th century physical scientists have engaged in two fierce public debates on issues that posed existential risks to modern society: nuclear weapons and global warming. The two overlapped with a third major debate over the deployment of nuclear power reactors. Each controversy included technical disagreements raised by a minority among the scientists themselves. Despite efforts to deal with the issues objectively, the scientists became entangled in left vs. right political polarization. All these debates, but particularly the one over climate change, resulted in a deterioration of public faith in the objectivity and integrity of scientists.
SPINDLE: A 2-Stage Nuclear-Powered Cryobot for Ocean World Exploration
NASA Astrophysics Data System (ADS)
Stone, W.; Hogan, B.; Siegel, V. L.; Howe, T.; Howe, S.; Harman, J.; Richmond, K.; Flesher, C.; Clark, E.; Lelievre, S.; Moor, J.; Rothhammer, B.
2016-12-01
SPINDLE (Sub-glacial Polar Ice Navigation, Descent, and Lake Exploration) is a 2-stage autonomous vehicle system consisting of a robotic ice-penetrating carrier vehicle (cryobot) and a marsupial, hovering autonomous underwater vehicle (HAUV). The cryobot will descend through an ice body into a sub-ice aqueous environment and deploy the HAUV to conduct long range reconnaissance, life search, and sample collection. The HAUV will return to, and auto-dock with, the cryobot at the conclusion of the mission for subsequent data uplink and sample return to the surface. The SPINDLE cryobot has been currently designed for a 1.5 kilometer penetration through a terrestrial ice sheet and the HAUV has been designed for persistent exploration and science presence in for deployments up to a kilometer radius from the cryobot. Importantly, the cryobot is bi-directional and vertically controllable both in an ice sheet as well as following breakthrough into a subglacial water cavity / ocean. The vehicle has been designed for long-duration persistent science in subglacial cavities and to allow for subsequent return-to-surface at a much later date or subsequent season. Engineering designs for the current SPINDLE cryobot will be presented in addition to current designs for autonomous rendezvous, docking, and storing of the HAUV system into the cryobot for subsequent recovery of the entire system to the surface. Taken to completion in a three-phase program, SPINDLE will deliver an integrated and field-tested system that will be directly transferable into a Flagship-class mission to either the hypothesized shallow lakes of Europa, the sub-surface ocean of Ganymede, or the geyser/plume sources on both Europa and Enceladus. We present the results of several parallel laboratory investigations into advanced power transmission systems (laser, high voltage) as well as onboard systems that enable the SPINDLE vehicle to access any subglacial lake on earth while using non-nuclear surrogate, surface-based power systems and accounting for full re-freeze of the hole behind the cryobot. We additionally present new designs for a compatible nuclear drop-in power source and include preliminary design results for both radio-thermal and compact fission power plant designs that would be used for actual ocean world missions.
NRC Licensing Status Summary Report for NGNP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moe, Wayne Leland; Kinsey, James Carl
2014-11-01
The Next Generation Nuclear Plant (NGNP) Project, initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy (DOE) pursuant to provisions of the Energy Policy Act of 2005, is based on research and development activities supported by the Department of Energy Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. The NGNP will be licensed for construction andmore » operation by the Nuclear Regulatory Commission (NRC). However, not all elements of current regulations (and their related implementation guidance) can be applied to HTGR technology at this time. Certain policies established during past LWR licensing actions must be realigned to properly accommodate advanced HTGR technology. A strategy for licensing HTGR technology was developed and executed through the cooperative effort of DOE and the NRC through the NGNP Project. The purpose of this report is to provide a snapshot of the current status of the still evolving pre-license application regulatory framework relative to commercial HTGR technology deployment in the U.S. The following discussion focuses on (1) describing what has been accomplished by the NGNP Project up to the time of this report, and (2) providing observations and recommendations concerning actions that remain to be accomplished to enable the safe and timely licensing of a commercial HTGR facility in the U.S.« less
Seismic isolation of nuclear power plants using elastomeric bearings
NASA Astrophysics Data System (ADS)
Kumar, Manish
Seismic isolation using low damping rubber (LDR) and lead-rubber (LR) bearings is a viable strategy for mitigating the effects of extreme earthquake shaking on safety-related nuclear structures. Although seismic isolation has been deployed in nuclear structures in France and South Africa, it has not seen widespread use because of limited new build nuclear construction in the past 30 years and a lack of guidelines, codes and standards for the analysis, design and construction of isolation systems specific to nuclear structures. The nuclear accident at Fukushima Daiichi in March 2011 has led the nuclear community to consider seismic isolation for new large light water and small modular reactors to withstand the effects of extreme earthquakes. The mechanical properties of LDR and LR bearings are not expected to change substantially in design basis shaking. However, under shaking more intense than design basis, the properties of the lead cores in lead-rubber bearings may degrade due to heating associated with energy dissipation, some bearings in an isolation system may experience net tension, and the compression and tension stiffness may be affected by the horizontal displacement of the isolation system. The effects of intra-earthquake changes in mechanical properties on the response of base-isolated nuclear power plants (NPPs) were investigated using an advanced numerical model of a lead-rubber bearing that has been verified and validated, and implemented in OpenSees and ABAQUS. A series of experiments were conducted at University at Buffalo to characterize the behavior of elastomeric bearings in tension. The test data was used to validate a phenomenological model of an elastomeric bearing in tension. The value of three times the shear modulus of rubber in elastomeric bearing was found to be a reasonable estimate of the cavitation stress of a bearing. The sequence of loading did not change the behavior of an elastomeric bearing under cyclic tension, and there was no significant change in the shear modulus, compressive stiffness, and buckling load of a bearing following cavitation. Response-history analysis of base-isolated NPPs was performed using a two-node macro model and a lumped-mass stick model. A comparison of responses obtained from analysis using simplified and advanced isolator models showed that the variation in buckling load due to horizontal displacement and strength degradation due to heating of lead cores affect the responses of a base-isolated NPP most significantly. The two-node macro model can be used to estimate the horizontal displacement response of a base-isolated NPP, but a three-dimensional model that explicitly considers all of the bearings in the isolation system will be required to estimate demands on individual bearings, and to investigate rocking and torsional responses. The use of the simplified LR bearing model underestimated the torsional and rocking response of the base-isolated NPP. Vertical spectral response at the top of containment building was very sensitive to how damping was defined for the response-history analysis.
Nuclear Smuggling Detection and Deterrence FY 2016 Data Analysis Annual Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Enders, Alexander L.; Harris, Tyrone C.; Pope, Thomas C.
The National Nuclear Security Administration’s Office of Nuclear Smuggling Detection and Deterrence (NSDD) has facilitated the installation of more than 3,500 radiation portal monitors (RPMs) at 606 sites in 56 countries worldwide. This collection of RPMs represents the world’s largest network of radiation detectors and provides one element in the defense-in-depth approach that supports the Global Nuclear Detection Architecture. These systems support NSDD’s mission to build partner country capability to deter, detect, and interdict the illicit transport of radiological and fissile material through strategic points of entry and exit at seaports, airports, and border crossings. NSDD works collaboratively with partnermore » countries and international organizations to optimize the operation of these RPMs. The large amount of data provided by NSDD partner countries highlights the close cooperation and partnerships NSDD has built with 56 countries around the world. Thirty-seven of these countries shared at least some RPM-related data with NSDD in fiscal year 2016. This significant level of data sharing is a key element that distinguishes the NSDD office as unique among nuclear nonproliferation programs and initiatives: NSDD can provide specific, objective, data-driven decisions and support for sustaining the radiation detection systems it helped deploy. This data analysis report summarizes and aggregates the RPM data provided to the NSDD office for analysis and review in fiscal year 2016. The data can be used to describe RPM performance and characterize the wide diversity of NSDD deployment sites. For example, NSDD deploys detector systems across sites with natural background radiation levels that can vary by a factor of approximately six from site to site. Some lanes have few occupancies, whereas others have approximately 8,000 occupancies per day and the different types of cargo that travel through a site can result in site-wide alarm rates that range from near 0% at some sites to above 3% at others. Based on the data received, the global average uptime for NSDD RPMs was above 96% for fiscal year 2016. NSDD takes all of these factors into account in making recommendations to partner countries on how to most effectively manage and maintain site operations. NSDD utilizes reports and other information products created by data analysts to efficiently allocate the resources needed to detect and ultimately interdict illicit nuclear and radiological material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donald D Dudenhoeffer; Burce P Hallbert
Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functionalmore » obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.« less
The Navy at a Tipping Point: Maritime Dominance at Stake?
2010-03-01
Navy" USN Deployment Strategy Future Global Environment for USN Operations External and Internal Drivers on USN Options Five Means for a "Global...Defense CARAT Deployment HCA cruises Counter-Dnjg oPs NAVSO/4 ,h Fleet Patmi NAVCENT/5,h Fleet GFS . . „ Horn of Global Fleet Station ...against advanced air defenses, conduct and enable littoral/amphibious operations in opposed environments , and establish blue-water dominance against
10 CFR 37.77 - Advance notification of shipment of category 1 quantities of radioactive material.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Policy, Office of Nuclear Security and Incident Response, U.S. Nuclear Regulatory Commission, Washington... 10 Energy 1 2014-01-01 2014-01-01 false Advance notification of shipment of category 1 quantities of radioactive material. 37.77 Section 37.77 Energy NUCLEAR REGULATORY COMMISSION PHYSICAL PROTECTION...
NGNP Infrastructure Readiness Assessment: Consolidation Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brian K Castle
2011-02-01
The Next Generation Nuclear Plant (NGNP) project supports the development, demonstration, and deployment of high temperature gas-cooled reactors (HTGRs). The NGNP project is being reviewed by the Nuclear Energy Advisory Council (NEAC) to provide input to the DOE, who will make a recommendation to the Secretary of Energy, whether or not to continue with Phase 2 of the NGNP project. The NEAC review will be based on, in part, the infrastructure readiness assessment, which is an assessment of industry's current ability to provide specified components for the FOAK NGNP, meet quality assurance requirements, transport components, have the necessary workforce inmore » place, and have the necessary construction capabilities. AREVA and Westinghouse were contracted to perform independent assessments of industry's capabilities because of their experience with nuclear supply chains, which is a result of their experiences with the EPR and AP-1000 reactors. Both vendors produced infrastructure readiness assessment reports that identified key components and categorized these components into three groups based on their ability to be deployed in the FOAK plant. The NGNP project has several programs that are developing key components and capabilities. For these components, the NGNP project have provided input to properly assess the infrastructure readiness for these components.« less
Physics and technology of the arms race
NASA Astrophysics Data System (ADS)
Garwin, R. L.
1983-10-01
Traditional military concepts of superiority and effectiveness (as embodied in Lanchester's law) have little relevance to thermonuclear weapons, with their enormous effectiveness in destruction of society. Few are needed to saturate their deterrent effect, but their military effectiveness is limited. The evolution and future of strategic nuclear forces is discussed, and their declining marginal utility emphasized. Some calculatons relevant to the nuclear confrontation are presented (Lanchester's Law; skin effect of VLF and ELF signals to submarines; the rocket equation; simple radar-range equation) and recommendations presented for future strategic forces and arms control initiatives. Recommended programs include a silo-based 12-ton single-warhead missile (SICM), the development of buried-bomb defense of individual Minuteman silos, the completion of the deployment of air-launched cruise missiles on the B-52 fleet, and the development of small (1000-ton) submarines for basing ICBM-range missiles. Limiting the threat by arms control should include ratification of SALT II, followed by negotiation of a protrocool to allow a SICM and dedicated silo to be deployed for each two, SALT-II-allowed warheads given up; a ban on weapons in space and anti-satellite tests; and an eventual reduction to 1000 nuclear warheads in U.S. and Soviet inventories.
Russia and Arms Control: Are There Opportunities for the Obama Administration
2009-03-01
and aircraft.9 Moscow will also spend $35.3 billion on serial production of all weapons in 2009-11 (1 trillion rubles) and virtually double the...of the government is maintenance of its nuclear forces and is a condition of fighting ability and readiness, i.e., deterrence.32 However, U.S...keep weapons in reserve, and will only limit actual deployments. Russia wants to subject the total volume and quantity of nuclear arms on both sides
Portable Neutron Sensors for Emergency Response Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
,
2012-06-24
This article presents the experimental work performed in the area of neutron detector development at the Remote Sensing Laboratory–Andrews Operations (RSL-AO) sponsored by the U.S. Department of Energy, National Nuclear Security Administration (NNSA) in the last four years. During the 1950s neutron detectors were developed mostly to characterize nuclear reactors where the neutron flux is high. Due to the indirect nature of neutron detection via interaction with other particles, neutron counting and neutron energy measurements have never been as precise as gamma-ray counting measurements and gamma-ray spectroscopy. This indirect nature is intrinsic to all neutron measurement endeavors (except perhaps formore » neutron spin-related experiments, viz. neutron spin-echo measurements where one obtains μeV energy resolution). In emergency response situations generally the count rates are low, and neutrons may be scattered around in inhomogeneous intervening materials. It is also true that neutron sensors are most efficient for the lowest energy neutrons, so it is not as easy to detect and count energetic neutrons. Most of the emergency response neutron detectors are offshoots of nuclear device diagnostics tools and special nuclear materials characterization equipment, because that is what is available commercially. These instruments mostly are laboratory equipment, and not field-deployable gear suited for mobile teams. Our goal is to design and prototype field-deployable, ruggedized, lightweight, efficient neutron detectors.« less
Law enforcement tools available at the Savannah River Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hofstetter, K.J.
A number of nuclear technologies developed and applied at the Savannah River Site in support of nuclear weapons material production and environmental remediation can be applied to problems in law enforcement. Techniques and equipment for high-sensitivity analyses of samples are available to identify and quantify trace elements and establish origins and histories of forensic evidence removed from crime scenes. While some of theses capabilities are available at local crime laboratories, state-of-the-art equipment and breakthroughs in analytical techniques are continually being developed at DOE laboratories. Extensive experience with the handling of radioactive samples at the DOE labs minimizes the chances ofmore » cross-contamination of evidence received from law enforcement. In addition to high-sensitivity analyses, many of the field techniques developed for use in a nuclear facility can assist law enforcement personnel in detecting illicit materials and operations, in retrieving of pertinent evidence and in surveying crime scenes. Some of these tools include chemical sniffers, hand-held detectors, thermal imaging, etc. In addition, mobile laboratories can be deployed to a crime scene to provide field screening of potential evidence. A variety of portable sensors can be deployed on vehicle, aerial, surface or submersible platforms to assist in the location of pertinent evidence or illicit operations. Several specific nuclear technologies available to law enforcement and their potential uses are discussed.« less
Deploying Solid Targets in Dense Plasma Focus Devices for Improved Neutron Yields
NASA Astrophysics Data System (ADS)
Podpaly, Y. A.; Chapman, S.; Povilus, A.; Falabella, S.; Link, A.; Shaw, B. H.; Cooper, C. M.; Higginson, D.; Holod, I.; Sipe, N.; Gall, B.; Schmidt, A. E.
2017-10-01
We report on recent progress in using solid targets in dense plasma focus (DPF) devices. DPFs have been observed to generate energetic ion beams during the pinch phase; these beams interact with the dense plasma in the pinch region as well as the background gas and are believed to be the primary neutron generation mechanism for a D2 gas fill. Targets can be placed in the beam path to enhance neutron yield and to shorten the neutron pulse if desired. In this work, we measure yields from placing titanium deuteride foils, deuterated polyethylene, and non-deuterated control targets in deuterium filled DPFs at both megajoule and kilojoule scales. Furthermore, we have deployed beryllium targets in a helium gas-filled, kilojoule scale DPF for use as a potential AmBe radiological source replacement. Neutron yield, neutron time of flight, and optical images are used to diagnose the effectiveness of target deployments relative to particle-in-cell simulation predictions. A discussion of target holder engineering for material compatibility and damage control will be shown as well. Prepared by LLNL under Contract DE-AC52-07NA27344. Supported by the Office of Defense Nuclear Nonproliferation Research and Development within U.S. DOE's National Nuclear Security Administration and the LLNL Institutional Computing Grand Challenge program.
Performance of 3-Component Nodes in the IRIS Community Wavefield Demonstration Experiment
NASA Astrophysics Data System (ADS)
Sweet, J. R.; Anderson, K. R.; Woodward, R.
2017-12-01
In June 2016, a field crew of 50 students, faculty, industry personnel, and IRIS staff deployed a total of 390 stations as part of a community seismic experiment above an active seismic lineament in north-central Oklahoma. The goals of the experiment were to test new instrumentation and deployment strategies that record the full seismic wavefield, and to advance understanding of earthquake source processes and regional lithospheric structure. The crew deployed 363 3-component, 5Hz Generation 2 Fairfield Z-Land nodes along three seismic lines and in a seven-layer nested gradiometer array. The seismic lines spanned a region 13 km long by 5 km wide. A broadband, 18 station "Golay 3x6" array with an aperture of approximately 5 km was deployed around the gradiometer and seismic lines to collect waveform data from local and regional events. In addition, 9 infrasound stations were deployed in order to capture and identify acoustic events that might be recorded by the seismic array. The variety and geometry of instrumentation deployed was intended to capture the full seismic wavefield generated by the local and regional seismicity beneath the array and the surrounding region. Additional details on the instrumentation and how it was deployed can be found by visiting our website www.iris.edu/wavefields. We present a detailed analysis of noise across the array—including station performance, as well as noise from nearby sources (wind turbines, automobiles, etc.). We report a clear reduction in noise for buried 3-component nodes compared to co-located surface nodes (see Figure). Using the IRIS DMC's ISPAQ client, we present a variety of metrics to evaluate the network's performance. We also present highlights from student projects at the recently-held IRIS advanced data processing short course, which focused on analyzing the wavefield dataset using array processing techniques.
Glass, Deborah C; Sim, Malcolm R; Kelsall, Helen L; Ikin, Jill F; McKenzie, Dean; Forbes, Andrew; Ittak, Peter
2006-07-01
This study identified chemical and environmental exposures specifically associated with the 1991 Persian Gulf War. Exposures were self-reported in a postal questionnaire, in the period of 2000-2002, by 1,424 Australian male Persian Gulf War veterans in relation to their 1991 Persian Gulf War deployment and by 625 Persian Gulf War veterans and 514 members of a military comparison group in relation to other active deployments. Six of 28 investigated exposures were experienced more frequently during the Persian Gulf War than during other deployments; these were exposure to smoke (odds ratio [OR], 4.4; 95% confidence interval, 3.0-6.6), exposure to dust (OR, 3.7; 95% confidence interval, 2.6-5.3), exposure to chemical warfare agents (OR, 3.9; 95% confidence interval, 2.1-7.9), use of respiratory protective equipment (OR, 13.6; 95% confidence interval, 7.6-26.8), use of nuclear, chemical, and biological protective suits (OR, 8.9; 95% confidence interval, 5.4-15.4), and entering/inspecting enemy equipment (OR, 3.1; 95% confidence interval, 2.1-4.8). Other chemical and environmental exposures were not specific to the Persian Gulf War deployment but were also reported in relation to other deployments. The number of exposures reported was related to service type and number of deployments but not to age or rank.
Monteiro Gil, Octávia; Vaz, Pedro; Romm, Horst; De Angelis, Cinzia; Antunes, Ana Catarina; Barquinero, Joan-Francesc; Beinke, Christina; Bortolin, Emanuela; Burbidge, Christopher Ian; Cucu, Alexandra; Della Monaca, Sara; Domene, Mercedes Moreno; Fattibene, Paola; Gregoire, Eric; Hadjidekova, Valeria; Kulka, Ulrike; Lindholm, Carita; Meschini, Roberta; M'Kacher, Radhia; Moquet, Jayne; Oestreicher, Ursula; Palitti, Fabrizio; Pantelias, Gabriel; Montoro Pastor, Alegria; Popescu, Irina-Anca; Quattrini, Maria Cristina; Ricoul, Michelle; Rothkamm, Kai; Sabatier, Laure; Sebastià, Natividad; Sommer, Sylwester; Terzoudi, Georgia; Testa, Antonella; Trompier, François; Vral, Anne
2017-01-01
To identify and assess, among the participants in the RENEB (Realizing the European Network of Biodosimetry) project, the emergency preparedness, response capabilities and resources that can be deployed in the event of a radiological or nuclear accident/incident affecting a large number of individuals. These capabilities include available biodosimetry techniques, infrastructure, human resources (existing trained staff), financial and organizational resources (including the role of national contact points and their articulation with other stakeholders in emergency response) as well as robust quality control/assurance systems. A survey was prepared and sent to the RENEB partners in order to acquire information about the existing, operational techniques and infrastructure in the laboratories of the different RENEB countries and to assess the capacity of response in the event of radiological or nuclear accident involving mass casualties. The survey focused on several main areas: laboratory's general information, country and staff involved in biological and physical dosimetry; retrospective assays used, the number of assays available per laboratory and other information related to biodosimetry and emergency preparedness. Following technical intercomparisons amongst RENEB members, an update of the survey was performed one year later concerning the staff and the available assays. The analysis of RENEB questionnaires allowed a detailed assessment of existing capacity of the RENEB network to respond to nuclear and radiological emergencies. This highlighted the key importance of international cooperation in order to guarantee an effective and timely response in the event of radiological or nuclear accidents involving a considerable number of casualties. The deployment of the scientific and technical capabilities existing within the RENEB network members seems mandatory, to help other countries with less or no capacity for biological or physical dosimetry, or countries overwhelmed in case of a radiological or nuclear accident involving a large number of individuals.
NASA Technical Reports Server (NTRS)
George, Jeffrey A.
2012-01-01
A strategy for "Solid-State" Nuclear Power is proposed to guide development of technologies and systems into the second 50 years of nuclear spaceflight. The strategy emphasizes a simple and highly integrated system architecture with few moving parts or fluid loops; the leverage of modern advances in materials, manufacturing, semiconductors, microelectromechanical and nanotechnology devices; and the targeted advancement of high temperature nuclear fuels, materials and static power conversion to enable high performance from simple system topologies.
Advanced Networks in Motion Mobile Sensorweb
NASA Technical Reports Server (NTRS)
Ivancic, William D.; Stewart, David H.
2011-01-01
Advanced mobile networking technology applicable to mobile sensor platforms was developed, deployed and demonstrated. A two-tier sensorweb design was developed. The first tier utilized mobile network technology to provide mobility. The second tier, which sits above the first tier, utilizes 6LowPAN (Internet Protocol version 6 Low Power Wireless Personal Area Networks) sensors. The entire network was IPv6 enabled. Successful mobile sensorweb system field tests took place in late August and early September of 2009. The entire network utilized IPv6 and was monitored and controlled using a remote Web browser via IPv6 technology. This paper describes the mobile networking and 6LowPAN sensorweb design, implementation, deployment and testing as well as wireless systems and network monitoring software developed to support testing and validation.
STS-93 Crew Interview: Michel Tognini
NASA Technical Reports Server (NTRS)
1999-01-01
This NASA Johnson Space Center (JSC) video release presents a one-on-one interview with Mission Specialist 3, Michel Tognini (Col., French Air Force and Centre Nacional Etudes Spatiales (CNES) Astronaut). Subjects discussed include early influences that made Michel want to be a pilot and astronaut, his experience as a French military pilot and his flying history. Also discussed were French participation in building the International Space Station (ISS), the STS-93 primary mission objective, X-ray observation using the Advanced X-ray Astrophysics Facility (AXAF), and failure scenarios associated with AXAF deployment. The STS-93 mission objective was to deploy the Advanced X-ray Astrophysics Facility (AXAF), later renamed the Chandra X-Ray Observatory in honor of the late Indian-American Nobel Laureate Subrahmanyan Chandrasekhar.
Modern Advances in Ablative TPS
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj
2013-01-01
Topics covered include: Physics of Hypersonic Flow and TPS Considerations. Destinations, Missions and Requirements. State of the Art Thermal Protection Systems Capabilities. Modern Advances in Ablative TPS. Entry Systems Concepts. Flexible TPS for Hypersonic Inflatable Aerodynamic Decelerators. Conformal TPS for Rigid Aeroshell. 3-D Woven TPS for Extreme Entry Environment. Multi-functional Carbon Fabric for Mechanically Deployable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The U.S. Department of Energy’s (DOE’s) Wind Energy Technologies Office (WETO) works to accelerate the development and deployment of wind power. The office provides information for researchers, developers,businesses, manufacturers, communities, and others seeking various types of federal assistance available for advancing wind projects.
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such technolog...
DOT National Transportation Integrated Search
1999-01-01
In 1997, the Ann Arbor (Michigan) Transportation Authority (AATA) began deploying advanced public transportation systems (APTS) technologies in its fixed route and paratransit operations. The project's concept is the integration of a range of such te...
NREL Facilitates Installment of Advanced Hydrogen Fuel Station in
. Department of Energy's (DOE's) Fuel Cell Technologies Office and Department of Interior's National Park the first phase of their collaborative efforts to accelerate deployment of advanced hydrogen fuel cell experience by showcasing and using fuel cell electric vehicle (FCEV) technologies throughout the D.C. metro
NASA Astrophysics Data System (ADS)
Dunn, Michael
2008-10-01
For over 30 years, the Oak Ridge National Laboratory (ORNL) has performed research and development to provide more accurate nuclear cross-section data in the resonance region. The ORNL Nuclear Data (ND) Program consists of four complementary areas of research: (1) cross-section measurements at the Oak Ridge Electron Linear Accelerator; (2) resonance analysis methods development with the SAMMY R-matrix analysis software; (3) cross-section evaluation development; and (4) cross-section processing methods development with the AMPX software system. The ND Program is tightly coupled with nuclear fuel cycle analyses and radiation transport methods development efforts at ORNL. Thus, nuclear data work is performed in concert with nuclear science and technology needs and requirements. Recent advances in each component of the ORNL ND Program have led to improvements in resonance region measurements, R-matrix analyses, cross-section evaluations, and processing capabilities that directly support radiation transport research and development. Of particular importance are the improvements in cross-section covariance data evaluation and processing capabilities. The benefit of these advances to nuclear science and technology research and development will be discussed during the symposium on Nuclear Physics Research Connections to Nuclear Energy.
Miley, Don
2017-12-21
The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmintier, Bryan; Broderick, Robert; Mather, Barry
2016-05-01
This report analyzes distribution-integration challenges, solutions, and research needs in the context of distributed generation from PV (DGPV) deployment to date and the much higher levels of deployment expected with achievement of the U.S. Department of Energy's SunShot targets. Recent analyses have improved estimates of the DGPV hosting capacities of distribution systems. This report uses these results to statistically estimate the minimum DGPV hosting capacity for the contiguous United States using traditional inverters of approximately 170 GW without distribution system modifications. This hosting capacity roughly doubles if advanced inverters are used to manage local voltage and additional minor, low-cost changesmore » could further increase these levels substantially. Key to achieving these deployment levels at minimum cost is siting DGPV based on local hosting capacities, suggesting opportunities for regulatory, incentive, and interconnection innovation. Already, pre-computed hosting capacity is beginning to expedite DGPV interconnection requests and installations in select regions; however, realizing SunShot-scale deployment will require further improvements to DGPV interconnection processes, standards and codes, and compensation mechanisms so they embrace the contributions of DGPV to system-wide operations. SunShot-scale DGPV deployment will also require unprecedented coordination of the distribution and transmission systems. This includes harnessing DGPV's ability to relieve congestion and reduce system losses by generating closer to loads; minimizing system operating costs and reserve deployments through improved DGPV visibility; developing communication and control architectures that incorporate DGPV into system operations; providing frequency response, transient stability, and synthesized inertia with DGPV in the event of large-scale system disturbances; and potentially managing reactive power requirements due to large-scale deployment of advanced inverter functions. Finally, additional local and system-level value could be provided by integrating DGPV with energy storage and 'virtual storage,' which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Together, continued innovation across this rich distribution landscape can enable the very-high deployment levels envisioned by SunShot.« less
NASA Astrophysics Data System (ADS)
Parker, Tim; Devanney, Peter; Bainbridge, Geoff; Townsend, Bruce
2017-04-01
The march to make every type of seismometer, weak to strong motion, reliable and economically deployable in any terrestrial environment continues with the availability of three new sensors and seismic systems including ones with over 200dB of dynamic range. Until recently there were probably 100 pier type broadband sensors for every observatory type pier, not the types of deployments geoscientists are needing to advance science and monitoring capability. Deeper boreholes are now the recognized quieter environments for best observatory class instruments and these same instruments can now be deployed in direct burial environments which is unprecedented. The experiences of facilities in large deployments of broadband seismometers in continental scale rolling arrays proves the utility of packaging new sensors in corrosion resistant casings and designing in the robustness needed to work reliably in temporary deployments. Integrating digitizers and other sensors decreases deployment complexity, decreases acquisition and deployment costs, increases reliability and utility. We'll discuss the informed evolution of broadband pier instruments into the modern integrated field tools that enable economic densification of monitoring arrays along with supporting new ways to approach geoscience research in a field environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Qi; Aguila, Briana; Earl, Lyndsey D.
The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid-phase sorbents to provide enhanced protection. In this paper, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groupsmore » in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime-functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF-TpAb-AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g -1. Finally, these results delineate important synthetic advances toward the implementation of COFs in environmental remediation.« less
Economic and Environmental Assessment of Natural Gas ...
The CO2 intensity of electricity produced by state-of-the-art natural gas combined-cycle turbines (NGCC) isapproximately one-third that of the U.S. fleet of existing coal plants. Compared to new nuclear plants and coal plantswith integrated carbon capture, NGCC has a lower investment cost, shorter construction time, and new plants canmore easily be sited. NGCC can also be fitted with carbon capture equipment either during construction or as aretrofit. As a result, NGCC is seen as a potential bridge to a low-CO2 future, which would increasingly rely ontechnologies such as wind, solar, advanced nuclear, and carbon capture as those technologies mature [Cole et al.(2016), Nichols and Victor (2015), and C2ES (2013)]. A logical approach may be to displace coal with new NGCCin the near-term, building NGCC near geological storage sites. Later the NGCC could be retrofit with CO2 capture(NGCC-CCS) when the regulatory or economic drivers are in place [IEA (2007)]. There are, however, technicalchallenges to widespread deployment of NGCC-CCS. First, fugitive methane emissions associated with natural gasproduction, transmission, and distribution processes could offset some of the climate benefits of using natural gas[McJeon et al. (2014)]. Second, applying carbon capture retrofit technologies to NGCC results in cost and energypenalties [Teir et al. (2010)], both of which affect its competitiveness. Third, the lower carbon content of natural gasmay yield difficulties in captur
Molecular Diagnosis of Infantile Mitochondrial Disease with Targeted Next-Generation Sequencing
Calvo, Sarah E.; Compton, Alison G.; Hershman, Steven G.; Lim, Sze Chern; Lieber, Daniel S.; Tucker, Elena J.; Laskowski, Adrienne; Garone, Caterina; Liu, Shangtao; Jaffe, David B.; Christodoulou, John; Fletcher, Janice M.; Bruno, Damien L; Goldblatt, Jack; DiMauro, Salvatore; Thorburn, David R.; Mootha, Vamsi K.
2012-01-01
Advances in next-generation sequencing (NGS) promise to facilitate diagnosis of inherited disorders. While in research settings NGS has pinpointed causal alleles using segregation in large families, the key challenge for clinical diagnosis is application to single individuals. To explore its diagnostic utility, we performed targeted NGS in 42 unrelated infants with clinical and biochemical evidence of mitochondrial oxidative phosphorylation disease, who were refractory to traditional molecular diagnosis. These devastating mitochondrial disorders are characterized by phenotypic and genetic heterogeneity, with over 100 causal genes identified to date. We performed “MitoExome” sequencing of the mitochondrial DNA (mtDNA) and exons of ~1000 nuclear genes encoding mitochondrial proteins and prioritized rare mutations predicted to disrupt function. Since patients and controls harbored a comparable number of such heterozygous alleles, we could not prioritize dominant acting genes. However, patients showed a five-fold enrichment of genes with two such mutations that could underlie recessive disease. In total, 23/42 (55%) patients harbored such recessive genes or pathogenic mtDNA variants. Firm diagnoses were enabled in 10 patients (24%) who had mutations in genes previously linked to disease. 13 patients (31%) had mutations in nuclear genes never linked to disease. The pathogenicity of two such genes, NDUFB3 and AGK, was supported by cDNA complementation and evidence from multiple patients, respectively. The results underscore the immediate potential and challenges of deploying NGS in clinical settings. PMID:22277967
Sun, Qi; Aguila, Briana; Earl, Lyndsey D.; ...
2018-03-27
The potential consequences of nuclear events and the complexity of nuclear waste management motivate the development of selective solid-phase sorbents to provide enhanced protection. In this paper, it is shown that 2D covalent organic frameworks (COFs) with unique structures possess all the traits to be well suited as a platform for the deployment of highly efficient sorbents such that they exhibit remarkable performance, as demonstrated by uranium capture. The chelating groups laced on the open 1D channels exhibit exceptional accessibility, allowing significantly higher utilization efficiency. In addition, the 2D extended polygons packed closely in an eclipsed fashion bring chelating groupsmore » in adjacent layers parallel to each other, which may facilitate their cooperation, thereby leading to high affinity toward specific ions. As a result, the amidoxime-functionalized COFs far outperform their corresponding amorphous analogs in terms of adsorption capacities, kinetics, and affinities. Specifically, COF-TpAb-AO is able to reduce various uranium contaminated water samples from 1 ppm to less than 0.1 ppb within several minutes, well below the drinking water limit (30 ppb), as well as mine uranium from spiked seawater with an exceptionally high uptake capacity of 127 mg g -1. Finally, these results delineate important synthetic advances toward the implementation of COFs in environmental remediation.« less
Satellite services system analysis study. Volume 4: Service equipment concepts
NASA Technical Reports Server (NTRS)
1981-01-01
Payload deployment equipment is discussed, including payload separation, retention structures, the remote manipulator system, tilt tables, the payload installation and deployment aid, the handling and positioning aid, and spin tables. Close proximity retrieval, and on-orbit servicing equipment is discussed. Backup and contingency equipment is also discussed. Delivery and retrieval of high-energy payloads are considered. Earth return equipment, the aft flight deck, optional, and advanced equipment are also discussed.
The Test and Evaluation of Unmanned and Autonomous Systems
2008-12-01
robotic/ intelli - gent machines for the U.S. Department of Defense (DoD). Although the technology is still nascent and advancing, we are faced with the...evolutionary nature of UAS acquisition must be met with evolutionary test capabilities yet to be discovered and developed. Test capabilities must be deployed...at a faster pace than UAS deployment to satisfy the demand for warfighter improvements. The DoD is stimulating this new area of innovation with
ALFA MHK Biological Monitoring Stationary deployment
Horne, John
2016-10-01
Acoustic backscatter data from a WBAT operating at 70kHz deployed at PMEC-SETS from April to September of 2016. 180 pings were collected at 1Hz every two hours, as part of the Advanced Laboratory and Field Arrays (ALFA) for Marine Energy project. Data was subject to preliminary processing (noise removal, a threshold of -75dB was applied, surface turbulence and data below 0.5m from the bottom was removed).
Propulsion Research at the Propulsion Research Center of the NASA Marshall Space Flight Center
NASA Technical Reports Server (NTRS)
Blevins, John; Rodgers, Stephen
2003-01-01
The Propulsion Research Center of the NASA Marshall Space Flight Center is engaged in research activities aimed at providing the bases for fundamental advancement of a range of space propulsion technologies. There are four broad research themes. Advanced chemical propulsion studies focus on the detailed chemistry and transport processes for high-pressure combustion, and on the understanding and control of combustion stability. New high-energy propellant research ranges from theoretical prediction of new propellant properties through experimental characterization propellant performance, material interactions, aging properties, and ignition behavior. Another research area involves advanced nuclear electric propulsion with new robust and lightweight materials and with designs for advanced fuels. Nuclear electric propulsion systems are characterized using simulated nuclear systems, where the non-nuclear power source has the form and power input of a nuclear reactor. This permits detailed testing of nuclear propulsion systems in a non-nuclear environment. In-space propulsion research is focused primarily on high power plasma thruster work. New methods for achieving higher thrust in these devices are being studied theoretically and experimentally. Solar thermal propulsion research is also underway for in-space applications. The fourth of these research areas is advanced energetics. Specific research here includes the containment of ion clouds for extended periods. This is aimed at proving the concept of antimatter trapping and storage for use ultimately in propulsion applications. Another activity in this involves research into lightweight magnetic technology for space propulsion applications.
Return to contingency: developing a coherent strategy for future R2E/R3 land medical capabilities.
Ingram, Mike; Mahan, J
2015-03-01
Key to deploying forces in the future will be the provision of a rapidly deployable Deployed Hospital Capability. Developing this capability has been the focus of 34 Field Hospital and 2nd Medical Brigade over the last 18 months and this paper describes a personal account of this development work to date. Future contingent Deployed Hospital Capability must meet the requirements of Defence; that is to be rapidly deployable delivering a hospital standard of care. The excellence seen in clinical delivery on recent operations is intensive; in personnel, equipment, infrastructure and sustainment. The challenge in developing a coherent capability has been in balancing the clinical capability and capacity against strategic load in light of recent advances in battlefield medicine. This paper explores the issues encountered and solutions found to date in reconstituting a Very High Readiness Deployed Hospital Capability. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Advanced Fuels Campaign FY 2015 Accomplishments Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braase, Lori Ann; Carmack, William Jonathan
2015-10-29
The mission of the Advanced Fuels Campaign (AFC) is to perform research, development, and demonstration (RD&D) activities for advanced fuel forms (including cladding) to enhance the performance and safety of the nation’s current and future reactors; enhance proliferation resistance of nuclear fuel; effectively utilize nuclear energy resources; and address the longer-term waste management challenges. This report is a compilation of technical accomplishment summaries for FY-15. Emphasis is on advanced accident-tolerant LWR fuel systems, advanced transmutation fuels technologies, and capability development.
The Impact of CCS Readiness on the Evolution of China's Electric Power Sector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dahowski, Robert T.; Davidson, Casie L.; Yu, Sha
In this study, GCAM-China is exercised to examine the impact of CCS availability on the projected evolution of China’s electric power sector under the Paris Increased Ambition policy scenario developed by Fawcett et al. based on the Intended Nationally Determined Contributions (INDCs) submitted under the COP-21 Paris Agreement. This policy scenario provides a backdrop for understanding China’s electric generation mix over the coming century under several CCS availability scenarios: CCS is fully available for commercial-scale deployment by 2025; by 2050; by 2075; and CCS is unavailable for use in meeting the modelled mitigation targets through 2100. Without having CCS available,more » the Chinese electric power sector turns to significant use of nuclear, wind, and solar to meet growing demands and emissions targets, at a cost. Should large-scale CCS deployment be delayed in China by 25 years, the modeled per-ton cost of climate change mitigation is projected to be roughly $420/tC (2010 US dollars) by 2050, relative to $360/tC in the case in which CCS is available to deploy by 2025, a 16% increase. Once CCS is available for commercial use, mitigation costs for the two cases converge, equilibrating by 2085. However, should CCS be entirely unavailable to deploy in China, the mitigation cost spread, compared to the 2025 case, doubles by 2075 ($580/tC and $1130/tC respectively), and triples by 2100 ($1050/tC vs. $3200/tC). However, while delays in CCS availability may have short-term impacts on China’s overall per-ton cost of meeting the emissions reduction target evaluated here, as well as total mitigation costs, the carbon price is likely to approach the price path associated with the full CCS availability case within a decade of CCS deployment. Having CCS available before the end of the century, even under the delays examined here, could reduce the total amount of nuclear and renewable energy that must deploy, reducing the overall cost of meeting the emissions mitigation targets.« less
Recent advances in understanding nuclear size and shape
Mukherjee, Richik N.; Chen, Pan; Levy, Daniel L.
2016-01-01
ABSTRACT Size and shape are important aspects of nuclear structure. While normal cells maintain nuclear size within a defined range, altered nuclear size and shape are associated with a variety of diseases. It is unknown if altered nuclear morphology contributes to pathology, and answering this question requires a better understanding of the mechanisms that control nuclear size and shape. In this review, we discuss recent advances in our understanding of the mechanisms that regulate nuclear morphology, focusing on nucleocytoplasmic transport, nuclear lamins, the endoplasmic reticulum, the cell cycle, and potential links between nuclear size and size regulation of other organelles. We then discuss the functional significance of nuclear morphology in the context of early embryonic development. Looking toward the future, we review new experimental approaches that promise to provide new insights into mechanisms of nuclear size control, in particular microfluidic-based technologies, and discuss how altered nuclear morphology might impact chromatin organization and physiology of diseased cells. PMID:26963026
2006-12-01
of providing nuclear power. Once you have the nuclear weapons, they require a delivery system resulting in a missile program. It is afforded higher...out that some domestic advancements may be made in certain sectors, such as nuclear bombs and missiles, because resources may be spent on narrowly...capital, fighter, aviation, nuclear weapons, missiles 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION
2007-04-23
The United States faces serious public health threats from the deliberate use of weapons of mass destruction (WMD)--chemical, biological, radiological, or nuclear (CBRN)--by hostile States or terrorists, and from naturally emerging infectious diseases that have a potential to cause illness on a scale that could adversely impact national security. Effective strategies to prevent, mitigate, and treat the consequences of CBRN threats is an integral component of our national security strategy. To that end, the United States must be able to rapidly develop, stockpile, and deploy effective medical countermeasures to protect the American people. The HHS Public Health Emergency Medical Countermeasures Enterprise (PHEMCE) has taken a holistic, end-to-end approach that considers multiple aspects of the medical countermeasures mission including research, development, acquisition, storage, maintenance, deployment, and guidance for utilization. Phase one of this approach established the HHS PHEMCE Strategy for Chemical, Biological, Radiological, and Nuclear Threats (HHS PHEMCE Strategy). The HHS PHEMCE Strategy, published in the Federal Register on March 20, 2007, described a framework of strategic policy goals and objectives for identifying medical countermeasure requirements and establishing priorities for medical countermeasure evaluation, development and acquisition. These strategic policy goals and objectives were used to establish the Four Pillars upon which this HHS Public Health Emergency Medical Countermeasures Enterprise Implementation Plan (HHS PHEMCE Implementation Plan) is based. The HHS PHEMCE Implementation Plan considers the full spectrum of medical countermeasures-related activities, including research, development, acquisition, storage/maintenance, deployment, and utilization. The HHS PHEMCE Implementation Plan is consistent with the President's Biodefense for the 21st Century and is aligned with the National Strategy for Medical Countermeasures against Weapons of Mass Destruction.
Integrated cloud infrastructure of the LIT JINR, PE "NULITS" and INP's Astana branch
NASA Astrophysics Data System (ADS)
Mazhitova, Yelena; Balashov, Nikita; Baranov, Aleksandr; Kutovskiy, Nikolay; Semenov, Roman
2018-04-01
The article describes the distributed cloud infrastructure deployed on the basis of the resources of the Laboratory of Information Technologies of the Joint Institute for Nuclear Research (LIT JINR) and some JINR Member State organizations. It explains a motivation of that work, an approach it is based on, lists of its participants among which there are private entity "Nazarbayev University Library and IT services" (PE "NULITS") Autonomous Education Organization "Nazarbayev University" (AO NU) and The Institute of Nuclear Physics' (INP's) Astana branch.
The Satellite Telescope Nina for Nuclear and Isotopic Investigations in Space
NASA Astrophysics Data System (ADS)
Circella, M.; Bidoli, V.; Casolino, M.; de Pascale, M. P.; Morselli, A.; Furano, G.; Picozza, P.; Scoscini, A.; Sparvoli, R.; Barbiellini, G.; Bonvicini, W.; Cirami, R.; Schiavon, P.; Vacchi, A.; Zampa, N.; Ambriola, M.; Bellotti, R.; Cafagna, F.; Ciacio, F.; de Marzo, C.; Bartalucci, S.; Giuntoli, S.; Ricci, M.; Papini, P.; Piccardi, S.; Spillantini, P.; Bakaldin, A.; Batishev, A.; Galper, A. M.; Koldashov, S.; Mikhailov, V.; Murashov, A.; Voronov, S.; Boezio, M.
2000-09-01
NINA is a satellite silicon detector designed to perform measurements of the nuclear and isotopic composition of the galactic and anomalous components of cosmic rays, as well as of the energetic particles associated with solar flares. It has been orbiting the Earth onboard the Russian satellite Resource 01 n. 4 since July 1998. It can perform nuclear discrimination from hydrogen to iron as well as isotopic analyses at least up to the beryllium isotopes in a large energy range. NINA is the first step of the wide scientific program WiZard-RIM, which includes the design and deployment of the PAMELA magnet spectrometer.
Economic Globalization and a Nuclear Renaissance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Thomas W; Johnson, Wayne L; Parker, Brian M
2001-10-22
The phenomenon of globalization has become increasingly well recognized, documented, and analyzed in the last several years. Globalization, the integration of markets and intra-firm competition on a worldwide basis, involves complex behavioral and mindset changes within a firm that facilitate global competition. The changes revolve around efficient information flow and rapid deployment of technology. The objective of this report is to examine the probable characteristics of a global nuclear renaissance and its broad implications for industry structure and export control relative to nuclear technology. The question of how a modern renaissance would affect the trend toward globalization of the nuclearmore » industry is addressed.« less
NASA Astrophysics Data System (ADS)
Van Liew, Seth; Bertozzi, William; D'Olympia, Nathan; Franklin, Wilbur A.; Korbly, Stephen E.; Ledoux, Robert J.; Wilson, Cody M.
A x-ray inspection system utilizing a continuous-wave 9 MeV rhodotron x-ray source for scanning cargo containers is presented. This system scans for contraband, anomalies, stowaway passengers, and nuclear threats for trucks and towed cargo containers. A transmission image is generated concurrently with a 3D image of the cargo, the latter presenting material information in the form of atomic number and density. Neutrons from photofission are also detected during each scan. In addition, nuclear resonance fluorescence detectors are capable of identifying specific isotopes. This system has recently been deployed at the Port of Boston.
NASA Astrophysics Data System (ADS)
Thoreson, E. J.; Stievater, T. H.; Rabinovich, W. S.; Ferraro, M. S.; Papanicolaou, N. A.; Bass, R.; Boos, J. B.; Stepnowski, J. L.; McGill, R. A.
2008-10-01
Low cost passive detection of Chemical Warfare Agents (CWA) and being able to distinguish them from interferents is of great interest in the protection of human capital. If CWA sensors could be made cheaply enough, they could be deployed profusely throughout the environment intended for protection. NRL (Naval Research Labs) has demonstrated a small sensor with potentially very low unit cost and compatible with high volume production which has the ability to distinguish between H2O, DMMP, and Toluene. Additionally, they have measured concentrations as low as 17 ppb passively in a package the size of a quarter. Using the latest MEMS technology coupled with advanced chemical identification algorithms we propose a development path for a low cost, highly integrated chemical sensor capable of detecting CWA's, Explosives, VOC's (Volatile Organic Chemicals), and TIC's (Toxic Industrial Chemicals). ITT AES (Advanced Engineering & Sciences) has partnered with NRL (Naval Research Labs) to develop this ``microharp'' technology into a field deployable sensor that will be capable of remote communication with a central server.
Tien, Col Homer; Beckett, Maj Andrew; Garraway, LCol Naisan; Talbot, LCol Max; Pannell, Capt Dylan; Alabbasi, Thamer
2015-01-01
Medical support to deployed field forces is increasingly becoming a shared responsibility among allied nations. National military medical planners face several key challenges, including fiscal restraints, raised expectations of standards of care in the field and a shortage of appropriately trained specialists. Even so, medical services are now in high demand, and the availability of medical support may become the limiting factor that determines how and where combat units can deploy. The influence of medical factors on operational decisions is therefore leading to an increasing requirement for multinational medical solutions. Nations must agree on the common standards that govern the care of the wounded. These standards will always need to take into account increased public expectations regarding the quality of care. The purpose of this article is to both review North Atlantic Treaty Organization (NATO) policies that govern multinational medical missions and to discuss how recent scientific advances in prehospital battlefield care, damage control resuscitation and damage control surgery may inform how countries within NATO choose to organize and deploy their field forces in the future. PMID:26100784
Lifecycle Prognostics Architecture for Selected High-Cost Active Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
N. Lybeck; B. Pham; M. Tawfik
There are an extensive body of knowledge and some commercial products available for calculating prognostics, remaining useful life, and damage index parameters. The application of these technologies within the nuclear power community is still in its infancy. Online monitoring and condition-based maintenance is seeing increasing acceptance and deployment, and these activities provide the technological bases for expanding to add predictive/prognostics capabilities. In looking to deploy prognostics there are three key aspects of systems that are presented and discussed: (1) component/system/structure selection, (2) prognostic algorithms, and (3) prognostics architectures. Criteria are presented for component selection: feasibility, failure probability, consequences of failure,more » and benefits of the prognostics and health management (PHM) system. The basis and methods commonly used for prognostics algorithms are reviewed and summarized. Criteria for evaluating PHM architectures are presented: open, modular architecture; platform independence; graphical user interface for system development and/or results viewing; web enabled tools; scalability; and standards compatibility. Thirteen software products were identified and discussed in the context of being potentially useful for deployment in a PHM program applied to systems in a nuclear power plant (NPP). These products were evaluated by using information available from company websites, product brochures, fact sheets, scholarly publications, and direct communication with vendors. The thirteen products were classified into four groups of software: (1) research tools, (2) PHM system development tools, (3) deployable architectures, and (4) peripheral tools. Eight software tools fell into the deployable architectures category. Of those eight, only two employ all six modules of a full PHM system. Five systems did not offer prognostic estimates, and one system employed the full health monitoring suite but lacked operations and maintenance support. Each product is briefly described in Appendix A. Selection of the most appropriate software package for a particular application will depend on the chosen component, system, or structure. Ongoing research will determine the most appropriate choices for a successful demonstration of PHM systems in aging NPPs.« less
The AP1000{sup R} China projects move forward to construction completion and equipment installation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrop, G.
2012-07-01
The AP1000 design is the only Generation III+ technology to receive design certification from the U.S. Nuclear Regulatory Commission. This evolutionary design provides the highest safety and performance standards and has several distinct advantages over other designs, including improved operations and reduced construction schedule risks through the use of modern, modular, engineering principles that allow construction and fabrication tasks traditionally performed in sequence to be undertaken in parallel. Since the first granting of Design Certification in 2005 by the NRC, the AP1000 design has been modified to meet emergent NRC requirements such as those requiring the design to withstand themore » impact of an aircraft crash. Both domestic and foreign utilities have turned to the Westinghouse AP1000 plant design to meet their near - and long-term sustainable energy needs. The first ever deployment of this advanced U.S. nuclear power technology began in China in 2007 with the award of a contract to build four AP1000 units, constructed in pairs at the coastal sites of Sanmen (Zhejiang Province) and Haiyang (Shandong Province). Currently, all four units are at an advanced stage of construction. The commercial operation date for Sanmen Unit 1 is November 2013 followed by Haiyang Unit 1 being operational in May 2014. Construction and equipment manufacture is at an advanced stage. Sanmen Unit 1 equipment that has been delivered includes the reactor vessel, the reactor vessel closure head, the passive residual heat removal heat exchanger, the integrated head package, the polar crane, and the refueling machine. The steam generators are also completed. The RV was installed within the containment vessel building in September 2011. The installation of this major equipment will allow the setting of the containment vessel top head. Haiyang Unit 1 is also achieving significant progress. Significant benefits continue to be realized as a result of lessons learned and experience gained from the first-of-a-kind activities for Sanmen Unit 1 and AP1000 equipment design and manufacturing. For example, the nuclear island basemat at Haiyang Units 1 and 2 and Sanmen Unit 2 was laid in less time than that of Sanmen Unit 1, the ultra-large steam generator and RV forging lead times were reduced for the follow on units, and the fabrication of the auxiliary building module for Haiyang Unit 1 took less time than for the Sanmen first unit. These benefits are also being realized by the United States AP1000 project construction and fabrication modules, and equipment. Some difficulties arise from building this first-of-a-kind (advanced passive) type of plant; however, these difficulties are being overcome and the overall schedule remains achievable. (authors)« less
Recent advances in nuclear cardiology Hot-spot and cold-spot myocardial scintigraphy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willerson, J.T.; Lewis, S.E.; Buja, L.M.
1981-09-01
Nuclear cardiology is a comparatively new field of cardiovascular medicine in which technologic advances have provided relatively noninvasive means of evaluating cardiovascular abnormalities. The purpose of this two-part review is to emphasize some important recent advances and to place in perspective the advantages and disadvantages of those new techniques that are particularly useful clinically.
Engineering challenges of operating year-round portable seismic stations at high-latitude
NASA Astrophysics Data System (ADS)
Beaudoin, Bruce; Carpenter, Paul; Hebert, Jason; Childs, Dean; Anderson, Kent
2017-04-01
Remote portable seismic stations are, in most cases, constrained by logistics and cost. High latitude operations introduce environmental, technical and logistical challenges that require substantially more engineering work to ensure robust, high quality data return. Since 2006, IRIS PASSCAL has been funded by NSF to develop, deploy, and maintain a pool of polar specific seismic stations. Here, we describe our latest advancements to mitigate the challenges of high-latitude, year-round station operation. The IRIS PASSCAL program has supported high-latitude deployments since the late 1980s. These early deployments were largely controlled source, summer only experiments. In early 2000 PASSCAL users began proposing year-round deployments of broadband stations in some of the harshest environments on the planet. These early year-round deployments were stand-alone (no telemetry) stations largely designed to operate during summer months and then run as long as possible during the winter with hopes the stations would revive come following summer. In 2006 and in collaboration with UNAVCO, we began developing communications, power systems, and enclosures to extend recording to year-round. Since this initial effort, PASSCAL continued refinement to power systems, enclosure design and manufacturability, and real-time data communications. Several sensor and data logger manufacturers have made advances in cold weather performance and delivered newly designed instruments that have furthered our ability to successfully run portable stations at high-latitude with minimal logistics - reducing size and weight of instruments and infrastructure. All PASSCAL polar engineering work is openly shared through our website: www.passcal.nmt.edu/content/polar
Deploying Darter A Cray XC30 System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fahey, Mark R; Budiardja, Reuben D; Crosby, Lonnie D
TheUniversityofTennessee,KnoxvilleacquiredaCrayXC30 supercomputer, called Darter, with a peak performance of 248.9 Ter- aflops. Darter was deployed in late March of 2013 with a very aggressive production timeline - the system was deployed, accepted, and placed into production in only 2 weeks. The Spring Experiment for the Center for Analysis and Prediction of Storms (CAPS) largely drove the accelerated timeline, as the experiment was scheduled to start in mid-April. The Consortium for Advanced Simulation of Light Water Reactors (CASL) project also needed access and was able to meet their tight deadlines on the newly acquired XC30. Darter s accelerated deployment and op-more » erations schedule resulted in substantial scientific impacts within the re- search community as well as immediate real-world impacts such as early severe tornado warnings« less
NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY16 Status Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unruh, Troy; Reichenberger, Michael; Stevenson, Sarah
2016-09-01
A collaboration between the Idaho National Laboratory (INL), the Kansas State University (KSU), and the French Atomic Energy Agency, Commissariat à l'Énergie Atomique et aux Energies Alternatives, (CEA), has been initiated by the Nuclear Energy Enabling Technologies (NEET) Advanced Sensors and Instrumentation (ASI) program for developing and testing High Temperature Micro-Pocket Fission Detectors (HT MPFD), which are compact fission chambers capable of simultaneously measuring thermal neutron flux, fast neutron flux and temperature within a single package for temperatures up to 800 °C. The MPFD technology utilizes a small, multi-purpose, robust, in-core fission chambers and thermocouple. As discussed within this report,more » the small size, variable sensitivity, and increased accuracy of the MPFD technology represent a revolutionary improvement over current methods used to support irradiations in US Material Test Reactors (MTRs). Previous research conducted through NEET ASI1-3 has shown that the MPFD technology could be made robust and was successfully tested in a reactor core. This new project will further the MPFD technology for higher temperature regimes and other reactor applications by developing a HT MPFD suitable for temperatures up to 800 °C. This report summarizes the research progress for year two of this three year project. Highlights from research accomplishments include: • Continuation of a joint collaboration between INL, KSU, and CEA. Note that CEA is participating at their own expense because of interest in this unique new sensor. • An updated parallel wire HT MPFD design was developed. • Program support for HT MPFD deployments was given to Accident Tolerant Fuels (ATF) and Advanced Gas-cooled Reactor (AGR) irradiation test programs. • Quality approved materials for HT MPFD construction were procured by irradiation test programs for upcoming deployments. • KSU improved and performed electrical contact and fissile material plating. • KSU delivered fissile HT MPFD parts to INL for final construction of HT MPFD prototype. • A prototype HT MPFD was constructed and analyzed at INL. • The HT MPFD has been modeled in MCNP to optimize the amount of fissile material deposition. • The HT MPFD has been modeled in MCNP to optimize the sensor location in the irradiation test. • The fissile material deposition is undergoing independent verifications. • Detector amplifier electronics have been revised and tested by KSU. • Several project meetings were held at INL and KSU to discuss the roles and responsibilities between INL, KSU, and CEA for development and deployment of the HT MPFDs. As documented in this report, FY16 funding has allowed the project to meet year two planned accomplishments to develop a HT MPFD. In addition, the accomplishments of this project have attracted independent funding from other Department of Energy Office of Nuclear Energy (DOE-NE) programs for MTR irradiations of the MPFD technology. These are significant opportunities for this NEET Enhanced Micro-Pocket Fission Detector for High Temperature Reactors project because the irradiation expense of these experiments could not be included in the original project scope.« less
Overview of the U.S. DOE Accident Tolerant Fuel Development Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jon Carmack; Frank Goldner; Shannon M. Bragg-Sitton
2013-09-01
The United States Fuel Cycle Research and Development Advanced Fuels Campaign has been given the responsibility to conduct research and development on enhanced accident tolerant fuels with the goal of performing a lead test assembly or lead test rod irradiation in a commercial reactor by 2022. The Advanced Fuels Campaign has defined fuels with enhanced accident tolerance as those that, in comparison with the standard UO2-Zircaloy system currently used by the nuclear industry, can tolerate loss of active cooling in the reactor core for a considerably longer time period (depending on the LWR system and accident scenario) while maintaining ormore » improving the fuel performance during normal operations and operational transients, as well as design-basis and beyond design-basis events. This paper provides an overview of the FCRD Accident Tolerant Fuel program. The ATF attributes will be presented and discussed. Attributes identified as potentially important to enhance accident tolerance include reduced hydrogen generation (resulting from cladding oxidation), enhanced fission product retention under severe accident conditions, reduced cladding reaction with high-temperature steam, and improved fuel-cladding interaction for enhanced performance under extreme conditions. To demonstrate the enhanced accident tolerance of candidate fuel designs, metrics must be developed and evaluated using a combination of design features for a given LWR design, potential improvements to that design, and the design of an advanced fuel/cladding system. The aforementioned attributes provide qualitative guidance for parameters that will be considered for fuels with enhanced accident tolerance. It may be unnecessary to improve in all attributes and it is likely that some attributes or combination of attributes provide meaningful gains in accident tolerance, while others may provide only marginal benefits. Thus, an initial step in program implementation will be the development of quantitative metrics. A companion paper in these proceedings provides an update on the status of establishing these quantitative metrics for accident tolerant LWR fuel.1 The United States FCRD Advanced Fuels Campaign has embarked on an aggressive schedule for development of enhanced accident tolerant LWR fuels. The goal of developing such a fuel system that can be deployed in the U.S. LWR fleet in the next 10 to 20 years supports the sustainability of clean nuclear power generation in the United States.« less
Code of Federal Regulations, 2011 CFR
2011-01-01
... shipments of nuclear material from countries that are not party to the Convention on the Physical Protection... PROTECTION OF PLANTS AND MATERIALS Records and Reports § 73.74 Requirement for advance notice and protection of import shipments of nuclear material from countries that are not party to the Convention on the...
Code of Federal Regulations, 2010 CFR
2010-01-01
... shipments of nuclear material from countries that are not party to the Convention on the Physical Protection... PROTECTION OF PLANTS AND MATERIALS Records and Reports § 73.74 Requirement for advance notice and protection of import shipments of nuclear material from countries that are not party to the Convention on the...
Plant maintenance and advanced reactors issue, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agnihotri, Newal
The focus of the September-October issue is on plant maintenance and advanced reactors. Major articles/reports in this issue include: Technologies of national importance, by Tsutomu Ohkubo, Japan Atomic Energy Agency, Japan; Modeling and simulation advances brighten future nuclear power, by Hussein Khalil, Argonne National Laboratory, Energy and desalination projects, by Ratan Kumar Sinha, Bhabha Atomic Research Centre, India; A plant with simplified design, by John Higgins, GE Hitachi Nuclear Energy; A forward thinking design, by Ray Ganthner, AREVA; A passively safe design, by Ed Cummins, Westinghouse Electric Company; A market-ready design, by Ken Petrunik, Atomic Energy of Canada Limited, Canada;more » Generation IV Advanced Nuclear Energy Systems, by Jacques Bouchard, French Commissariat a l'Energie Atomique, France, and Ralph Bennett, Idaho National Laboratory; Innovative reactor designs, a report by IAEA, Vienna, Austria; Guidance for new vendors, by John Nakoski, U.S. Nuclear Regulatory Commission; Road map for future energy, by John Cleveland, International Atomic Energy Agency, Vienna, Austria; and, Vermont's largest source of electricity, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovation article is titled Intelligent monitoring technology, by Chris Demars, Exelon Nuclear.« less
Large-N Seismic Deployment at the Source Physics Experiment (SPE) Site
NASA Astrophysics Data System (ADS)
Chen, T.; Snelson, C. M.; Mellors, R. J.; Pitarka, A.
2015-12-01
The Source Physics Experiment (SPE) is multi-institutional and multi-disciplinary project that consists of a series of chemical explosion experiments at the Nevada National Security Site. The goal of SPE is to understand the complicated effect of earth structures on source energy partitioning and seismic wave propagation, develop and validate physics-based monitoring, and ultimately better discriminate low-yield nuclear explosions from background seismicity. Deployment of a large number of seismic sensors is planned for SPE to image the full 3-D wavefield with about 500 three-component sensors and 500 vertical component sensors. This large-N seismic deployment will operate near the site of SPE-5 shot for about one month, recording the SPE-5 shot, ambient noise, and additional controlled-sources. This presentation focuses on the design of the large-N seismic deployment. We show how we optimized the sensor layout based on the geological structure and experiment goals with a limited number of sensors. In addition, we will also show some preliminary record sections from deployment. This work was conducted under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy.
JPRS Report, Proliferation Issues
1992-12-11
with the U.S. on the elimination of nuclear weapons be used to produce weapons. Great Britain and Kaz- deployed in the republic. Konstantin Grishenko ...cooperation and partnership. missiles would be sold to the American side. That is why, said Grishenko , Washington believes that the transfer of Observers
50 years of Global Seismic Observations
NASA Astrophysics Data System (ADS)
Anderson, K. R.; Butler, R.; Berger, J.; Davis, P.; Derr, J.; Gee, L.; Hutt, C. R.; Leith, W. S.; Park, J. J.
2007-12-01
Seismological recordings have been made on Earth for hundreds of years in some form or another, however, global monitoring of earthquakes only began in the 1890's when John Milne created 40 seismic observatories to measure the waves from these events. Shortly after the International Geophysical Year (IGY), a concerted effort was made to establish and maintain a more modern standardized seismic network on the global scale. In the early 1960's, the World-Wide Standardized Seismograph Network (WWSSN) was established through funding from the Advanced Research Projects Agency (ARPA) and was installed and maintained by the USGS's Albuquerque Seismological Laboratory (then a part of the US Coast and Geodetic Survey). This network of identical seismic instruments consisted of 120 stations in 60 countries. Although the network was motivated by nuclear test monitoring, the WWSSN facilitated numerous advances in observational seismology. From the IGY to the present, the network has been upgraded (High-Gain Long-Period Seismograph Network, Seismic Research Observatories, Digital WWSSN, Global Telemetered Seismograph Network, etc.) and expanded (International Deployment of Accelerometers, US National Seismic Network, China Digital Seismograph Network, Joint Seismic Project, etc.), bringing the modern day Global Seismographic Network (GSN) to a current state of approximately 150 stations. The GSN consists of state-of-the-art very broadband seismic transducers, continuous power and communications, and ancillary sensors including geodetic, geomagnetic, microbarographic, meteorological and other related instrumentation. Beyond the GSN, the system of global network observatories includes contributions from other international partners (e.g., GEOSCOPE, GEOFON, MEDNET, F-Net, CTBTO), forming an even larger backbone of permanent seismological observatories as a part of the International Federation of Digital Seismograph Networks. 50 years of seismic network operations have provided valuable data for earth science research. Developments in communications and other technological advances have expanded the role of the GSN in rapid earthquake analysis, tsunami warning, and nuclear test monitoring. With such long-term observations, scientists are now getting a glimpse of Earth structure changes on human time scales, such as the rotation of the inner core, as well as views into climate processes. Continued observations for the next 50 years will enhance our image of the Earth and its processes.
Entine, F; Bensimon Etzol, J; Bettencourt, C; Dondey, M; Michel, X; Gagna, G; Gellie, G; Corre, Y; Ugolin, N; Chevillard, S; Amabile, J-C
2018-07-01
Estimation of the dose received by accidentally irradiated victims is based on a tripod: clinical, biological, and physical dosimetry. The DosiKit system is an operational and mobile biodosimetry device allowing the measurement of external irradiation directly on the site of a radiological accident. This tool is based on capillary blood sample and hair follicle collection. The aim is to obtain a whole-body and local-surface dose assessment. This paper is about the technical evaluation of the DosiKit; the analytical process and scientific validation are briefly described. The Toulon exercise scenario was based on a major accident involving the reactor of a nuclear attack submarine. The design of the scenario made it impossible for several players (firefighters, medical team) to leave the area for a long time, and they were potentially exposed to high dose rates. The DosiKit system was fully integrated into a deployable radiological emergency laboratory, and the response to operational needs was very satisfactory.
NASA Astrophysics Data System (ADS)
Silva, James
2017-09-01
The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CE νNS) using metallic superconducting and germanium semi-conducting detectors with sub-keV thresholds placed near a neutrino source such as the Chooz Nuclear Reactor Complex. In this poster, we present an estimate of the flux of cosmic-ray induced neutrons, which represent an important background in any (CE νNS) search, based on reconstructed cosmic ray data from the Chooz Site. We have simulated a possible Ricochet deployment at the Chooz site in GEANT4 focusing on the spallation neutrons generated when cosmic rays interact with the water tank veto that would surround our detector. We further simulate and discuss the effectiveness of various shielding configurations for optimizing the background levels for a future Ricochet deployment.
Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Ken; Lawrie, Sean; Hart, Adam
The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systemsmore » of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on demonstrating actual cost reductions that can be credited to budgets and thereby truly reduce O&M or capital costs. Technology enhancements, while enhancing work methods and making work more efficient, often fail to eliminate workload such that it changes overall staffing and material cost requirements. It is critical to demonstrate cost reductions or impacts on non-cost performance objectives in order for the business case to justify investment by nuclear operators. The Business Case Methodology (BCM) addresses the “benefit” side of the analysis—as opposed to the cost side—and how the organization evaluates discretionary projects (net present value (NPV), accounting effects of taxes, discount rates, etc.). The cost and analysis side is not particularly difficult for the organization and can usually be determined with a fair amount of precision (not withstanding implementation project cost overruns). It is in determining the "benefits" side of the analysis that utilities have more difficulty in technology projects and that is the focus of this methodology.« less
2014-10-01
applications of present nano-/ bio -technology include advanced health and fitness monitoring, high-resolution imaging, new environmental sensor platforms...others areas where nano-/ bio -technology development is needed: • Sensors : Diagnostic and detection kits (gene-chips, protein-chips, lab-on-chips, etc...studies on chemo- bio nano- sensors , ultra-sensitive biochips (“lab-on-a-chip” and “cells-on-chips” devices) have been prepared for routine medical
Fukushima nuclear incident: the challenges of risk communication.
Robertson, Andrew G; Pengilley, Andrew
2012-07-01
On March 11, 2011, a magnitude 9.0 earthquake occurred off the Sanriku coast of Japan, which resulted in multiple tsunamis. The earthquake and tsunami damaged several nuclear power stations, with the Fukushima Dai-ichi Nuclear Power Plant being the worst affected, which led Japan to declare a State of Nuclear Emergency. As of November 9, 2011, the National Police Agency of Japan reported a death toll of 15 836 people, with 3664 people still reported missing, following the earthquake and tsunami. Australian radiation health advisers were deployed to Tokyo early in the nuclear emergency to assist the Australian Embassy in assessing the radiological threat, to provide risk advice to Embassy staff and Australian citizens in Japan, and to plan for any further deterioration in the nuclear situation. This article explores the challenges of risk assessment, risk communication, and contingency planning for expatriate staff in the worst nuclear incident since Chernobyl, outlines what measures were successful in addressing heightened perceived risks, and identifies areas where further research is required, particularly in a radiological context.
Radiation safety audit of a high volume Nuclear Medicine Department.
Jha, Ashish Kumar; Singh, Abhijith Mohan; Shetye, Bhakti; Shah, Sneha; Agrawal, Archi; Purandare, Nilendu Chandrakant; Monteiro, Priya; Rangarajan, Venkatesh
2014-10-01
Professional radiation exposure cannot be avoided in nuclear medicine practices. It can only be minimized up to some extent by implementing good work practices. The aim of our study was to audit the professional radiation exposure and exposure rate of radiation worker working in and around Department of nuclear medicine and molecular imaging, Tata Memorial Hospital. We calculated the total number of nuclear medicine and positron emission tomography/computed tomography (PET/CT) procedures performed in our department and the radiation exposure to the radiation professionals from year 2009 to 2012. We performed an average of 6478 PET/CT scans and 3856 nuclear medicine scans/year from January 2009 to December 2012. The average annual whole body radiation exposure to nuclear medicine physician, technologist and nursing staff are 1.74 mSv, 2.93 mSv and 4.03 mSv respectively. Efficient management and deployment of personnel is of utmost importance to optimize radiation exposure in a high volume nuclear medicine setup in order to work without anxiety of high radiation exposure.
NASA Technical Reports Server (NTRS)
Lockett, Tiffany Russell; Martinez, Armando; Boyd, Darren; SanSouice, Michael; Farmer, Brandon; Schneider, Todd; Laue, Greg; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans.
NASA Technical Reports Server (NTRS)
Russell, Tiffany; Martinez, Armando; Boyd, Darren; SanSoucie, Michael; Farmer, Brandon; Schneider, Todd; Fabisinski, Leo; Johnson, Les; Carr, John A.
2015-01-01
This paper describes recent advancements of the Lightweight Integrated Solar Array and Transceiver (LISA-T) currently being developed at NASA's Marshall Space Flight Center. The LISA-T array comprises a launch stowed, orbit deployed structure on which thin-film photovoltaic (PV) and antenna devices are embedded. The system provides significant electrical power generation at low weights, high stowage efficiency, and without the need for solar tracking. Leveraging high-volume terrestrial-market PVs also gives the potential for lower array costs. LISA-T is addressing the power starvation epidemic currently seen by many small-scale satellites while also enabling the application of deployable antenna arrays. Herein, an overview of the system and its applications are presented alongside sub-system development progress and environmental testing plans/initial results.
Final Scientific Report - Wireless and Sensing Solutions Advancing Industrial Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budampati, Rama; McBrady, Adam; Nusseibeh, Fouad
2009-09-28
The project team's goal for the Wireless and Sensing Solution Advancing Industrial Efficiency award (DE-FC36-04GO14002) was to develop, demonstrate, and test a number of leading edge technologies that could enable the emergence of wireless sensor and sampling systems for the industrial market space. This effort combined initiatives in advanced sensor development, configurable sampling and deployment platforms, and robust wireless communications to address critical obstacles in enabling enhanced industrial efficiency.
Air Force SBIR/STTR Advantage. 2nd Quarter, 2011
2011-01-01
modem military aircraft. One structure of particular concern is the vertical stabilizer of the F-15 aircraft, with the bonding between the boron/ epoxy ...fiber brushes are currently deployed in the U.S. Navy submarine fleet in critical nuclear propulsion plant components on three separate submarine
Neutron and Gamma Imaging for National Security Applications
NASA Astrophysics Data System (ADS)
Hornback, Donald
2017-09-01
The Department of Energy, National Nuclear Security Administration (NNSA), Office of Defense Nuclear Nonproliferation Research and Development (DNN R&D/NA-22) possesses, in part, the mission to develop technologies in support of nuclear security efforts in coordination with other U.S. government entities, such as the Department of Defense and the Department of Homeland Security. DNN R&D has long supported research in nuclear detection at national labs, universities, and through the small business innovation research (SBIR) program. Research topics supported include advanced detector materials and electronics, detection algorithm development, and advanced gamma/neutron detection systems. Neutron and gamma imaging, defined as the directional detection of radiation as opposed to radiography, provides advanced detection capabilities for the NNSA mission in areas of emergency response, international safeguards, and nuclear arms control treaty monitoring and verification. A technical and programmatic overview of efforts in this field of research will be summarized.
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan
2015-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed. Unique elements of the local planetary environments are discussed and included in the analyses and assessments. Using historical studies of space exploration, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many way. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions will be presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Titan exploration with chemical propulsion options are discussed.
manage the portfolio of projects funded by non-DOE partners in the Deployment & Market Transformation Advanced and Renewable Technologies group. Education Executive MBA, University of Colorado, Denver B.S
The NASA Advanced Exploration Systems Nuclear Thermal Propulsion Project
NASA Technical Reports Server (NTRS)
Houts, Michael G.; Mitchell, Doyce P.; Kim, Tony; Emrich, William J.; Hickman, Robert R.; Gerrish, Harold P.; Doughty, Glen; Belvin, Anthony; Clement, Steven; Borowski, Stanley K.;
2015-01-01
The fundamental capability of Nuclear Thermal Propulsion (NTP) is game changing for space exploration. A first generation NTP system could provide high thrust at a specific impulse (Isp) above 900 s, roughly double that of state of the art chemical engines. Characteristics of fission and NTP indicate that useful first generation systems will provide a foundation for future systems with extremely high performance. The role of a first generation NTP in the development of advanced nuclear propulsion systems could be analogous to the role of the DC-3 in the development of advanced aviation systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirk Gombert; Jay Roach
The U. S. Department of Energy (DOE) Global Nuclear Energy Partnership (GNEP) was announced in 2006. As currently envisioned, GNEP will be the basis for growth of nuclear energy worldwide, using a closed proliferation-resistant fuel cycle. The Integrated Waste Management Strategy (IWMS) is designed to ensure that all wastes generated by fuel fabrication and recycling will have a routine disposition path making the most of feedback to fuel and recycling operations to eliminate or minimize byproducts and wastes. If waste must be generated, processes will be designed with waste treatment in mind to reduce use of reagents that complicate stabilizationmore » and minimize volume. The IWMS will address three distinct levels of technology investigation and systems analyses and will provide a cogent path from (1) research and development (R&D) and engineering scale demonstration, (Level I); to (2) full scale domestic deployment (Level II); and finally to (3) establishing an integrated global nuclear energy infrastructure (Level III). The near-term focus of GNEP is on achieving a basis for large-scale commercial deployment (Level II), including the R&D and engineering scale activities in Level I that are necessary to support such an accomplishment. Throughout these levels is the need for innovative thinking to simplify, including regulations, separations and waste forms to minimize the burden of safe disposition of wastes on the fuel cycle.« less
Leith, William S.; Benz, Harley M.; Herrmann, Robert B.
2011-01-01
Evaluation of seismic monitoring capabilities in the central and eastern United States for critical facilities - including nuclear powerplants - focused on specific improvements to understand better the seismic hazards in the region. The report is not an assessment of seismic safety at nuclear plants. To accomplish the evaluation and to provide suggestions for improvements using funding from the American Recovery and Reinvestment Act of 2009, the U.S. Geological Survey examined addition of new strong-motion seismic stations in areas of seismic activity and addition of new seismic stations near nuclear power-plant locations, along with integration of data from the Transportable Array of some 400 mobile seismic stations. Some 38 and 68 stations, respectively, were suggested for addition in active seismic zones and near-power-plant locations. Expansion of databases for strong-motion and other earthquake source-characterization data also was evaluated. Recognizing pragmatic limitations of station deployment, augmentation of existing deployments provides improvements in source characterization by quantification of near-source attenuation in regions where larger earthquakes are expected. That augmentation also supports systematic data collection from existing networks. The report further utilizes the application of modeling procedures and processing algorithms, with the additional stations and the improved seismic databases, to leverage the capabilities of existing and expanded seismic arrays.
Atmospheric Radioxenon Measurements in North Las Vegas, NV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milbrath, Brian D.; Cooper, Matthew W.; Lidey, Lance S.
2006-07-31
PNNL deployed the ARSA radioxenon measurement system in North Las Vegas for two weeks in February and March 2006 for the purpose of measuring the radioxenon background at a level of sensitivity much higher than previously done in the vicinity of the NTS. The measurements establish what might be expected if future measurements are taken at NTS itself. The measurements are also relevant to test site readiness. A second detector, the PEMS, built and operated by DRI, was deployed in conjunction with the ARSA and contained a PIC, aerosol collection filters, and meteorological sensors. Originally, measurements were also to bemore » performed at Mercury, NV on the NTS, but these were canceled due to initial equipment problems with the ARSA detector. Some of the radioxenon measurements detected 133Xe at levels up to 3 mBq/m3. This concentration of radioxenon is consistent with the observation of low levels of radioxenon emanating from distance nuclear reactors. Previous measurements in areas of high nuclear reactor concentration have shown similar results, but the western US, in general, does not have many nuclear reactors. Measurements of the wind direction indicate that the air carrying the radioxenon came from south of the detector and not from the NTS.« less
An Update on Improvements to NiCE Support for PROTEUS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bennett, Andrew; McCaskey, Alexander J.; Billings, Jay Jay
2015-09-01
The Department of Energy Office of Nuclear Energy's Nuclear Energy Advanced Modeling and Simulation (NEAMS) program has supported the development of the NEAMS Integrated Computational Environment (NiCE), a modeling and simulation workflow environment that provides services and plugins to facilitate tasks such as code execution, model input construction, visualization, and data analysis. This report details the development of workflows for the reactor core neutronics application, PROTEUS. This advanced neutronics application (primarily developed at Argonne National Laboratory) aims to improve nuclear reactor design and analysis by providing an extensible and massively parallel, finite-element solver for current and advanced reactor fuel neutronicsmore » modeling. The integration of PROTEUS-specific tools into NiCE is intended to make the advanced capabilities that PROTEUS provides more accessible to the nuclear energy research and development community. This report will detail the work done to improve existing PROTEUS workflow support in NiCE. We will demonstrate and discuss these improvements, including the development of flexible IO services, an improved interface for input generation, and the addition of advanced Fortran development tools natively in the platform.« less
Above-ground Antineutrino Detection for Nuclear Reactor Monitoring
Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...
2014-08-01
Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less
Environmental Cracking and Irradiation Resistant Stainless Steels by Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rebak, Raul B.; Lou, Xiaoyuan
Metal additive manufacturing (AM), or metal 3D printing is an emergent advanced manufacturing method that can create near net shape geometries directly from computer models. This technology can provide the capability to rapidly fabricate complex parts that may be required to enhance the integrity of reactor internals components. Such opportunities may be observed during a plant refueling outage and AM parts can be rapidly custom designed, manufactured and deployed within the outage interval. Additive manufacturing of stainless steel (SS) components can add business benefits on fast delivery on repair hardware, installation tooling, new design prototypes tests, etc. For the nuclearmore » industry, the supply chain is always an issue for reactor service. AM can provide through-life supply chain (40-60 years) for high-value low-volume components. In the meantime, the capability of generating complex geometries and functional gradient materials will improve the performance, reduce the overall component cost, plant asset management cost and increase the plant reliability by the improvement in materials performance in nuclear environments. While extensive work has been conducted regarding additively manufacturing of austenitic SS parts, most efforts focused only on basic attributes such as porosity, residual stress, basic tensile properties, along with components yield and process monitoring. Little work has been done to define and evaluate the material requirements for nuclear applications. Technical gaps exist, which limit this technology adoption in the nuclear industry, which includes high manufacturing cost, unknown risks, limited nuclear related data, lack of specification and qualification methods, and no prior business experience. The main objective of this program was to generate research data to address all these technical gaps and establish a commercial practice to use AM technology in the nuclear power industry. The detailed objectives are listed as follows: (1) Evaluate nuclear related properties of AM 316L SS, including microstructure, tensile properties, impact toughness, stress corrosion cracking (SCC), corrosion fatigue (CF), irradiation effects, and irradiation assisted stress corrosion cracking (IASCC). (2) Understand the correlations among laser processing, heat treatment, microstructure and SCC/irradiation properties; (3) Optimize and improve the manufacturing process to achieve enhanced nuclear application properties; (4) Fabricate, evaluate, qualify and test a prototype reactor component to demonstrate the commercial viability and cost benefit; (5) Create regulatory approval path and commercialization plans for the production of a commercial reactor component.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walker, Matthew; Kruizenga, Alan Michael; Withey, Elizabeth Ann
2017-08-01
The supercritical carbon dioxide (S-CO2) Brayton Cycle has gained significant attention in the last decade as an advanced power cycle capable of achieving high efficiency power conversion. Sandia National Laboratories, with support from the U.S. Department of Energy Office of Nuclear Energy (US DOE-NE), has been conducting research and development in order to deliver a technology that is ready for commercialization. Root cause analysis has been performed on the Recompression Loop at Sandia National Laboratories. It was found that particles throughout the loop are stainless steel, likely alloy 316 based upon the elemental composition. Deployment of a filter scheme ismore » underway to both protect the turbomachinery and also for purposes of determining the specific cause for the particulate. Shake down tests of electric resistance (ER) as a potential in-situ monitoring scheme shows promise in high temperature systems. A modified instrument was purchased and held at 650°C for more than 1.5 months to date without issue. Quantitative measurements of this instrument will be benchmarked against witness samples in the future, but all qualitative trends to date are as to be expected. ER is a robust method for corrosion monitoring, but very slow at responding and can take several weeks under conditions to see obvious changes in behavior. Electrochemical noise was identified as an advanced technique that should be pursued for the ability to identify transients that would lead to poor material performance.« less
NASA Technical Reports Server (NTRS)
McClure, Mark B.; Greene, Benjamin
2014-01-01
All spacecraft require propulsion systems for thrust and maneuvering. Propulsion systems can be chemical, nuclear, electrical, cold gas or combinations thereof. Chemical propulsion has proven to be the most reliable technology since the deployment of launch vehicles. Performance, storability, and handling are three important aspects of liquid chemical propulsion. Bipropellant systems require a fuel and an oxidizer for propulsion, but monopropellants only require a fuel and a catalyst for propulsion and are therefore simpler and lighter. Hydrazine is the state of the art propellant for monopropellant systems, but has drawbacks because it is highly hazardous to human health, which requires extensive care in handling, complex ground ops due to safety and environmental considerations, and lengthy turnaround times for reusable spacecraft. All users of hydrazine monopropellant must contend with these issues and their associated costs. The development of a new monopropellant, intended to replace hydrazine, has been in progress for years. This project will apply advanced techniques to characterize the engineering properties of materials used in AF-M315E propulsion systems after propellant exposure. AF-M315E monopropellant has been selected HQ's Green Propellant Infusion Mission (GPIM) to replace toxic hydrazine for improved performance and reduce safety and health issues that will shorten reusable spacecraft turn-around time. In addition, this project will fundamentally strengthen JSC's core competency to evaluate, use and infuse liquid propellant systems.
Nuclear Diagnostics at the National Ignition Facility, 2013-2015
NASA Astrophysics Data System (ADS)
Yeamans, C. B.; Cassata, W. S.; Church, J. A.; Fittinghoff, D. N.; Gatu Johnson, M.; Gharibyan, N.; Határik, R.; Sayre, D. B.; Sio, H. W.; Bionta, R. M.; Bleuel, D. L.; Caggiano, J. A.; Cerjan, C. J.; Cooper, G. W.; Eckart, M. J.; Edwards, E. R.; Faye, S. A.; Forrest, C. J.; Frenje, J. A.; Glebov, V. Yu; Grant, P. M.; Grim, G. P.; Hartouni, E. P.; Herrmann, H. W.; Kilkenny, J. D.; Knauer, J. P.; Mackinnon, A. J.; Merrill, F. E.; Moody, K. J.; Moran, M. J.; Petrasso, R. D.; Phillips, T. W.; Rinderknecht, H. G.; Schneider, D. H. G.; Sepke, S. M.; Shaughnessy, D. A.; Stoeffl, W.; Velsko, C. A.; Volegov, P.
2016-05-01
The National Ignition Facility (NIF) relies on a suite of nuclear diagnostics to measure the neutronic output of experiments. Neutron time-of-flight (NTOF) and neutron activation diagnostics (NAD) provide performance metrics of absolute neutron yield and neutron spectral content: spectral width and non-thermal content, from which implosion physical quantities of temperature and scattering mass are inferred. Spatially-distributed flange- mounted NADs (FNAD) measure, with nearly identical systematic uncertainties, primary DT neutron emission to infer a whole-sky neutron field. An automated FNAD system is being developed. A magnetic recoil spectrometer (MRS) shares few systematics with comparable NTOF and NAD devices, and as such is deployed for independent measurement of the primary neutronic quantities. The gas-Cherenkov Gamma Reaction History (GRH) instrument records four energy channels of time-resolved gamma emission to measure nuclear bang time and burn width, as well as to infer carbon areal density in experiments utilizing plastic or diamond capsules. A neutron imaging system (NIS) takes two images of the neutron source, typically gated to create coregistered 13-15 MeV primary and 6-12 MeV downscattered images. The radiochemical analysis of gaseous samples (RAGS) instrument pumps target chamber gas to a chemical reaction and fractionation system configured with gamma counters, allowing measurement of radionuclides with half-lives as short as 8 seconds. Solid radiochemistry collectors (SRC) with backing NAD foils collect target debris, where activated materials from the target assembly are used as indicators of neutron spectrum content, and also serve as the primary diagnostic for nuclear forensic science experiments. Particle time-of-flight (PTOF) measures compression-bang time using DT- or DD-neutrons, as well as shock bang-time using D3He-protons for implosions with lower x-ray background. In concert, these diagnostics serve to measure the basic and advanced quantities required to understand NIF experimental results.
Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Spacecraft
NASA Technical Reports Server (NTRS)
Rehnmark, Fredrik; Pryor, Mark; Holmes, Buck; Schaechter, David; Pedreiro, Nelson; Carrington, Connie
2007-01-01
In 2005, NASA commenced Phase 1 of the Modular Reconfigurable High Energy Technology Demonstrator (MRHE) program to investigate reconfigurable systems of small spacecraft. During that year, Lockheed Martin's Advanced Technology Center (ATC) led an accelerated effort to develop a 1-g MRHE concept demonstration featuring robotic spacecraft simulators equipped with docking mechanisms and deployable booms. The deployable boom built for MRHE was the result of a joint effort in which ATK was primarily responsible for developing and fabricating the Collapsible Rollable Tube (CRT patent pending) boom while Lockheed Martin designed and built the motorized Boom Deployment Mechanism (BDM) under a concurrent but separate IR&D program. Tight coordination was necessary to meet testbed integration and functionality requirements. This paper provides an overview of the CRT boom and BDM designs and presents preliminary results of integration and testing to support the MRHE demonstration.
NASA Technical Reports Server (NTRS)
Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.
1998-01-01
The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).
Survey of advanced nuclear technologies for potential applications of sonoprocessing.
Rubio, Floren; Blandford, Edward D; Bond, Leonard J
2016-09-01
Ultrasonics has been used in many industrial applications for both sensing at low power and processing at higher power. Generally, the high power applications fall within the categories of liquid stream degassing, impurity separation, and sonochemical enhancement of chemical processes. Examples of such industrial applications include metal production, food processing, chemical production, and pharmaceutical production. There are many nuclear process streams that have similar physical and chemical processes to those applications listed above. These nuclear processes could potentially benefit from the use of high-power ultrasonics. There are also potential benefits to applying these techniques in advanced nuclear fuel cycle processes, and these benefits have not been fully investigated. Currently the dominant use of ultrasonic technology in the nuclear industry has been using low power ultrasonics for non-destructive testing/evaluation (NDT/NDE), where it is primarily used for inspections and for characterizing material degradation. Because there has been very little consideration given to how sonoprocessing can potentially improve efficiency and add value to important process streams throughout the nuclear fuel cycle, there are numerous opportunities for improvement in current and future nuclear technologies. In this paper, the relevant fundamental theory underlying sonoprocessing is highlighted, and some potential applications to advanced nuclear technologies throughout the nuclear fuel cycle are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.
Survivability of intelligent transportation systems
DOT National Transportation Integrated Search
1999-10-01
Intelligent Transportation Systems (ITS) are being deployed around the world to improve the safety and efficiency of surface transportation through the application of advanced information technology. The introduction of ITS exposes the transportation...
transformational technologies that reduce the nation's dependence on foreign energy imports; reduce U.S. energy ; and ensure that the United States maintains its leadership in developing and deploying advanced energy
Can 100Gb/s wavelengths be deployed using 10Gb/s engineering rules?
NASA Astrophysics Data System (ADS)
Saunders, Ross; Nicholl, Gary; Wollenweber, Kevin; Schmidt, Ted
2007-09-01
A key challenge set by carriers for 40Gb/s deployments was that the 40Gb/s wavelengths should be deployable over existing 10Gb/s DWDM systems, using 10Gb/s link engineering design rules. Typical 10Gb/s link engineering rules are: 1. Polarization Mode Dispersion (PMD) tolerance of 10ps (mean); 2. Chromatic Dispersion (CD) tolerance of +/-700ps/nm 3. Operation at 50GHz channel spacing, including transit through multiple cascaded [R]OADMs; 4. Optical reach up to 2,000km. By using a combination of advanced modulation formats and adaptive dispersion compensation (technologies rarely seen at 10Gb/s outside of the submarine systems space), vendors did respond to the challenge and broadly met this requirement. As we now start to explore feasible technologies for 100Gb/s optical transport, driven by 100GE port availability on core IP routers, the carrier challenge remains the same. 100Gb/s links should be deployable over existing 10Gb/s DWDM systems using 10Gb/s link engineering rules (as listed above). To meet this challenge, optical transport technology must evolve to yet another level of complexity/maturity in both modulation formats and adaptive compensation techniques. Many clues as to how this might be achieved can be gained by first studying sister telecommunications industries, e.g. satellite (QPSK, QAM, LDCP FEC codes), wireless (advanced DSP, MSK), HDTV (TCM), etc. The optical industry is not a pioneer of new ideas in modulation schemes and coding theory, we will always be followers. However, we do have the responsibility of developing the highest capacity "modems" on the planet to carry the core backbone traffic of the Internet. As such, the key to our success will be to analyze the pros and cons of advanced modulation/coding techniques and balance this with the practical limitations of high speed electronics processing speed and the challenges of real world optical layer impairments. This invited paper will present a view on what advanced technologies are likely candidates to support 100GE optical IP transport over existing 10Gb/s DWDM systems, using 10Gb/s link engineering rules.
2006-01-01
enabling technologies such as built-in-test, advanced health monitoring algorithms, reliability and component aging models, prognostics methods, and...deployment and acceptance. This framework and vision is consistent with the onboard PHM ( Prognostic and Health Management) as well as advanced... monitored . In addition to the prognostic forecasting capabilities provided by monitoring system power, multiple confounding errors by electronic
Advanced Civilian Aeronautical Concepts
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M.
1996-01-01
Paper discusses alternatives to currently deployed systems which could provide revolutionary improvements in metrics applicable to civilian aeronautics. Specific missions addressed include subsonic transports, supersonic transports and personal aircraft. These alternative systems and concepts are enabled by recent and envisaged advancements in electronics, communications, computing and Designer Fluid Mechanics in conjunction with a design approach employing extensive synergistic interactions between propulsion, aerodynamics and structures.
ERIC Educational Resources Information Center
Mukolwe, Joseph O.; Okwara, Michael; Ajowi, O. Jack
2016-01-01
Worldwide, women representation in management and leadership positions is marginal. Despite immense academic advancement by women, few of them do advance to management positions. In Kenya, women make up a critical portion of human resource base. However, they are grossly underrepresented at leadership positions. This situation is reflected in…
Baseline Assessment and Prioritization Framework for IVHM Integrity Assurance Enabling Capabilities
NASA Technical Reports Server (NTRS)
Cooper, Eric G.; DiVito, Benedetto L.; Jacklin, Stephen A.; Miner, Paul S.
2009-01-01
Fundamental to vehicle health management is the deployment of systems incorporating advanced technologies for predicting and detecting anomalous conditions in highly complex and integrated environments. Integrated structural integrity health monitoring, statistical algorithms for detection, estimation, prediction, and fusion, and diagnosis supporting adaptive control are examples of advanced technologies that present considerable verification and validation challenges. These systems necessitate interactions between physical and software-based systems that are highly networked with sensing and actuation subsystems, and incorporate technologies that are, in many respects, different from those employed in civil aviation today. A formidable barrier to deploying these advanced technologies in civil aviation is the lack of enabling verification and validation tools, methods, and technologies. The development of new verification and validation capabilities will not only enable the fielding of advanced vehicle health management systems, but will also provide new assurance capabilities for verification and validation of current generation aviation software which has been implicated in anomalous in-flight behavior. This paper describes the research focused on enabling capabilities for verification and validation underway within NASA s Integrated Vehicle Health Management project, discusses the state of the art of these capabilities, and includes a framework for prioritizing activities.
2007-04-30
surface combatant. Take, for instance, the tumblehome hull design of the new Zumwalt-class destroyer. If some critical issues were to arise with the ...more aggressive target is selected, there will be a greater increase in capability for each new system deployed. However, the expected duration of...push for the most advanced technology they can get into each new system. • This behavior exacerbates the problem and leads to even longer acquisition
Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velundur, Vijay
This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Timothy M.; Kadavil, Rahul; Palmintier, Bryan
The 21st century electric power grid is transforming with an unprecedented increase in demand and increase in new technologies. In the United States Energy Independence and Security Act of 2007, Title XIII sets the tenets for modernizing the electricity grid through what is known as the 'Smart Grid Initiative.' This initiative calls for increased design, deployment, and integration of distributed energy resources, smart technologies and appliances, and advanced storage devices. The deployment of these new technologies requires rethinking and re-engineering the traditional boundaries between different electric power system domains.
Wind deployment in the United States: states, resources, policy, and discourse.
Wilson, Elizabeth J; Stephens, Jennie C
2009-12-15
A transformation in the way the United States produces and uses energy is needed to achieve greenhouse gas reduction targets for climate change mitigation. Wind power is an important low-carbon technology and the most rapidly growing renewable energy technology in the U.S. Despite recent advances in wind deployment, significant state-by-state variation in wind power distribution cannot be explained solely by wind resource patterns nor by state policy. Other factors embedded within the state-level socio-political context also contribute to wind deployment patterns. We explore this socio-political context in four U.S. states by integrating multiple research methods. Through comparative state-level analysis of the energy system, energy policy, and public discourse as represented in the media, we examine variation in the context for wind deployment in Massachusetts, Minnesota, Montana, and Texas. Our results demonstrate that these states have different patterns of wind deployment, are engaged in different debates about wind power, and appear to frame the risks and benefits of wind power in different ways. This comparative assessment highlights the complex variation of the state-level socio-political context and contributes depth to our understanding of energy technology deployment processes, decision-making, and outcomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapo, John; Jakubowski, Ted
When an earthquake and tsunami hit off the coast of Japan on March 11, 2011, and triggered a nuclear crisis, the U.S. immediately offered support. Among those tapped to assist was ORAU's National Security and Emergency Management team, which provided NNSA with technical and analytical nuclear incident support. Within 48 hours of the earthquake, ORAU emergency management experts accompanied the DOE Office of Emergency Response in deploying to Japan to support the U.S. Air Force Base in Yokota and the U.S. Embassy. A separate team from ORAU supported the NNSA Nuclear Incident Team, which served as the point of coordinationmore » for all support activities both in Japan and in the U.S.« less
Indian Nuclear Command and Control Dilemma
2006-09-01
Submarine Communications .............................................................53 a. ELF Communications ...system is activated and deployed. The crews of submarines are informed through this system and other long wave ( ELF and VLF) radio communication ...through connectivity links of ELF , VLF and TACAMO airborne VLF communication systems. a. ELF Communications The U.S. Navy’s ELF Communication
U.S. Strategic Nuclear Forces: Background, Developments, and Issues
2017-02-10
This program area is specifically seeking to support the solid rocket motor research and development industrial base , so that it will have the...... Research Service Summary Even though the United States is in the process of reducing the number of warheads deployed on its long-range missiles and
Bonnet, Stéphane; Gonzalez, F; Mathieu, L; Boddaert, G; Hornez, E; Bertani, A; Avaro, J-P; Durand, X; Rongieras, F; Balandraud, P; Rigal, S; Pons, F
2016-10-01
The composition of a French Forward Surgical Team (FST) has remained constant since its creation in the early 1950s: 12 personnel, including a general and an orthopaedic surgeon. The training of military surgeons, however, has had to evolve to adapt to the growing complexities of modern warfare injuries in the context of increasing subspecialisation within surgery. The Advanced Course for Deployment Surgery (ACDS)-called Cours Avancé de Chirurgie en Mission Extérieure (CACHIRMEX)-has been designed to extend, reinforce and adapt the surgical skill set of the FST that will be deployed. Created in 2007 by the French Military Health Service Academy (Ecole du Val-de-Grâce), this annual course is composed of five modules. The surgical knowledge and skills necessary to manage complex military trauma and give medical support to populations during deployment are provided through a combination of didactic lectures, deployment experience reports and hands-on workshops. The course is now a compulsory component of initial surgical training for junior military surgeons and part of the Continuous Medical Education programme for senior military surgeons. From 2012, the standardised content of the ACDS paved the way for the development of two more team-training courses: the FST and the Special Operation Surgical Team training. The content of this French military original war surgery course is described, emphasising its practical implications and future prospects. The military surgical training needs to be regularly assessed to deliver the best quality of care in an context of evolving modern warfare casualties. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinbiz, Mahmut N; Brown, Nicholas R; Terrani, Kurt A
2017-01-01
This study investigates the failure mechanisms of advanced nuclear fuel cladding of FeCrAl at high-strain rates, similar to design basis reactivity initiated accidents (RIA). During RIA, the nuclear fuel cladding was subjected to the plane-strain to equibiaxial tension strain states. To achieve those accident conditions, the samples were deformed by the expansion of high strength Inconel alloy tube under pre-specified pressure pulses as occurring RIA. The mechanical response of the advanced claddings was compared to that of hydrided zirconium-based nuclear fuel cladding alloy. The hoop strain evolution during pressure pulses were collected in situ; the permanent diametral strains of bothmore » accident tolerant fuel (ATF) claddings and the current nuclear fuel alloys were determined after rupture.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2012-05-01
Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.
Boosting Manufacturing through Modular Chemical Process Intensification
None
2018-06-12
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
Boosting Manufacturing through Modular Chemical Process Intensification
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2016-12-09
Manufacturing USA's Rapid Advancement in Process Intensification Deployment Institute will focus on developing breakthrough technologies to boost domestic energy productivity and energy efficiency by 20 percent in five years through manufacturing processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karp, A.
Observers of Third World security watch for new weapon systems that promise to make the poor the military equals of the rich. Ballistic missiles, which combine the nuclear weapon and precision-guided munition, are a disturbing possibility that warrants regulation of the flow of ballistic missile technology. It is imperative to have a policy delineating the risks involved with ballistic missiles as a basis for action and consistency and for working with other technology suppliers. The US should initiate discussions aimed at establishing a missile technology suppliers' regime before Third World countries actually deploy nuclear missiles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodgers, A
2008-01-16
In this report we describe the data sets used to evaluate ground motion hazards in Las Vegas from nuclear tests at the Nevada Test Site. This analysis is presented in Rodgers et al. (2005, 2006) and includes 13 nuclear explosions recorded at the John Blume and Associates network, the Little Skull Mountain earthquake and a temporary deployment of broadband station in Las Vegas. The data are available in SAC format on CD-ROM as an appendix to this report.
Final Technical Report: Commercial Advanced Lighting Control (ALC) Demonstration and Deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnold, Gabe
This three-year demonstration and deployment project sought to address market barriers to accelerating the adoption of Advanced Lighting Controls (ALCs), an underutilized technology with low market penetration. ALCs are defined as networked, addressable lighting control systems that utilize software or intelligent controllers to combine multiple energy-saving lighting control strategies in a single space (e.g., smart-time scheduling, daylight harvesting, task tuning, occupancy control, personal control, variable load-shedding, and plug-load control). The networked intelligent aspect of these systems allows applicable lighting control strategies to be combined in a single space, layered over one another, maximizing overall energy-savings. The project included five realmore » building demonstrations of ALCs across the Northeast US region. The demonstrations provided valuable data and experience to support deployment tasks that are necessary to overcome market barriers. These deployment tasks included development of training resources for building designers, installers, and trades, as well as development of new energy efficiency rebates for the technology from Efficiency Forward’s utility partners. Educating designers, installers, and trades on ALCs is a critical task for reducing the cost of the technology that is currently inflated due to perceived complexity and unfamiliarity with how to design and install the systems. Further, utility and non-utility energy efficiency programs continue to relegate the technology to custom or ill-suited prescriptive program designs that do not effectively deploy the technology at scale. This project developed new, scalable rebate approaches for the technology. Efficiency Forward utilized their DesignLights Consortium® (DLC) brand and network of 81 DLC member utilities to develop and deploy the results of the project. The outputs of the project have included five published case studies, a six-hour ALC technology training curriculum that has already been deployed in five US states, and new rebates offered for the technology that have been deployed by a dozen utilities across the US. Widespread adoption of ALC technology in commercial buildings would provide tremendous benefits. The current market penetration of ALC systems is estimated at <0.1% in commercial buildings. If ALC systems were installed in all commercial buildings, approximately 1,051 TBtu of energy could be saved. This would translate into customer cost savings of approximately $10.7 billion annually.« less
Code of Federal Regulations, 2012 CFR
2012-01-01
... quantities of strategic special nuclear material, special nuclear material of moderate strategic significance, or irradiated reactor fuel. 73.72 Section 73.72 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED... shipment of formula quantities of strategic special nuclear material, special nuclear material of moderate...
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pocoima, CA; Benander, Robert E [Pacoima, CA
2010-02-23
Methods for manufacturing porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's). Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, a thin coating of nuclear fuel may be deposited inside of a highly porous skeletal structure made, for example, of reticulated vitreous carbon foam.
Porous nuclear fuel element for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L [Albuquerque, NM; Williams, Brian E [Pacoima, CA; Benander, Robert E [Pacoima, CA
2011-03-01
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
Porous nuclear fuel element with internal skeleton for high-temperature gas-cooled nuclear reactors
Youchison, Dennis L.; Williams, Brian E.; Benander, Robert E.
2013-09-03
Porous nuclear fuel elements for use in advanced high temperature gas-cooled nuclear reactors (HTGR's), and to processes for fabricating them. Advanced uranium bi-carbide, uranium tri-carbide and uranium carbonitride nuclear fuels can be used. These fuels have high melting temperatures, high thermal conductivity, and high resistance to erosion by hot hydrogen gas. Tri-carbide fuels, such as (U,Zr,Nb)C, can be fabricated using chemical vapor infiltration (CVI) to simultaneously deposit each of the three separate carbides, e.g., UC, ZrC, and NbC in a single CVI step. By using CVI, the nuclear fuel may be deposited inside of a highly porous skeletal structure made of, for example, reticulated vitreous carbon foam.
NASA Astrophysics Data System (ADS)
Larson, Michael
2012-03-01
This presentation will describe the history of the Nuclear Emergency Support Team (NEST) and its evolution over the years. NEST was formed due to a number of nuclear extortion threats received in the early 1970s. From the beginning NEST developed an extensive exercise program to test and expand capabilities. The Nuclear Assessment Program (NAP) was developed, in part, to determine if NEST deployments were required. A major revamp of the NEST program occurred in 1994. Many other organizations work in conjunction with NEST in particular the FBI and DOD. Considerable research and development has been performed in the areas of Access, Search, Diagnostics, Device Assessment, and Disablement. Extensive searches of material appearing in the unclassified literature have been and are being performed to see what is being said about nuclear materials and devices. A comprehensive study of Improvised Nuclear Devices (IND) is ongoing to determine what a terrorist can and cannot do. NEST now consists of four phases with the latest additions of Phase III, Disposition and Phase IV, Nuclear Forensics. LLNL-ABS-521775
76 FR 46892 - Agency Information Collection Activity Under OMB Review
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-03
... development and deployment of clean fuel and advanced propulsion technologies for transit buses. To meet... propulsion technologies for transit buses by providing funds for clean fuel vehicles and facilities. To meet...
Clean Cities Now Vol. 17, No. 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-05-24
Biannual newsletter for the U.S. Department of Energy's Clean Cities initiative. The newsletter includes feature stories on advanced vehicle deployment, idle reduction, and articles on Clean Cities coalition successes across the country.
NASA Astrophysics Data System (ADS)
Stacey, Weston M.
2001-02-01
An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.
RF Technologies for Advancing Space Communication Infrastructure
NASA Technical Reports Server (NTRS)
Romanofsky, Robert R.; Bibyk, Irene K.; Wintucky, Edwin G.
2006-01-01
This paper will address key technologies under development at the NASA Glenn Research Center designed to provide architecture-level impacts. Specifically, we will describe deployable antennas, a new type of phased array antenna and novel power amplifiers. The evaluation of architectural influence can be conducted from two perspectives where said architecture can be analyzed from either the top-down to determine the areas where technology improvements will be most beneficial or from the bottom-up where each technology s performance advancement can affect the overall architecture s performance. This paper will take the latter approach with focus on some technology improvement challenges and address architecture impacts. For example, using data rate as a performance metric, future exploration scenarios are expected to demand data rates possibly exceeding 1 Gbps. To support these advancements in a Mars scenario, as an example, Ka-band and antenna aperture sizes on the order of 10 meters will be required from Mars areostationary platforms. Key technical challenges for a large deployable antenna include maximizing the ratio of deployed-to-packaged volume, minimizing aerial density, maintaining RMS surface accuracy to within 1/20 of a wavelength or better, and developing reflector rigidization techniques. Moreover, the high frequencies and large apertures manifest a new problem for microwave engineers that are familiar to optical communications specialists: pointing. The fine beam widths and long ranges dictate the need for electronic or mechanical feed articulation to compensate for spacecraft attitude control limitations.
Earth sensing: from ice to the Internet of Things
NASA Astrophysics Data System (ADS)
Martinez, K.
2017-12-01
The evolution of technology has led to improvements in our ability to use sensors for earth science research. Radio communications have improved in terms of range and power use. Miniaturisation means we now use 32 bit processors with embedded memory, storage and interfaces. Sensor technology makes it simpler to integrate devices such as accelerometers, compasses, gas and biosensors. Programming languages have developed so that it has become easier to create software for these systems. This combined with the power of the processors has made research into advanced algorithms and communications feasible. The term environmental sensor networks describes these advanced systems which are designed specifically to take sensor measurements in the natural environment. Through a decade of research into sensor networks, deployed mainly in glaciers, many areas of this still emerging technology have been explored. From deploying the first subglacial sensor probes with custom electronics and protocols we learnt tuning to harsh environments and energy management. More recently installing sensor systems in the mountains of Scotland has shown that standards have allowed complete internet and web integration. This talk will discuss the technologies used in a range of recent deployments in Scotland and Iceland focussed on creating new data streams for cryospheric and climate change research.
Dynamic analysis of the large deployable reflector
NASA Technical Reports Server (NTRS)
Calleson, Robert E.; Scott, A. Don
1987-01-01
The Large Deployable Reflector (LDR) is to be an astronomical observatory orbiting above Earth's obscuring atmosphere and operating in the spectral range between 30 microns and 1000 microns wavelength. The LDR will be used to study such astronomical phenomena as stellar and galactic formation, cosmology, and planetary atmospheres. The LDR will be the first observatory to be erected and assembled in space. This distinction brings with it several major technological challenges such as the development of ultra-lightweight deployable mirrors, advanced mirror fabrication techniques, advanced structures, and control of vibrations due to various sources of excitation. The purpose of this analysis is to provide an assessment of the vibrational response due to secondary mirror chopping and LDR slewing. The dynamic response of two 20-m LDR configurations was studied. Two mirror support configurations were investigated for the Ames concept, the first employs a six-strut secondary mirror support structure, while the second uses a triple-bipod support design. All three configurations were modeled using a tetrahedral truss design for the primary mirror support structure. Response resulting from secondary mirror chopping was obtained for the two Ames configurations, and the response of the primary mirror from slewing was obtained for all three configurations.
Non-traditional Infrasound Deployment
NASA Astrophysics Data System (ADS)
McKenna, M. H.; McComas, S.; Simpson, C. P.; Diaz-Alvarez, H.; Costley, R. D.; Hayward, C.; Golden, P.; Endress, A.
2017-12-01
Historically, infrasound arrays have been deployed in rural environments where anthropological noise sources are limited. As interest in monitoring low energy sources at local distances grows in the infrasound community, it will be vital to understand how to monitor infrasound sources in an urban environment. Arrays deployed in urban centers have to overcome the decreased signal-to-noise ratio and reduced amount of real estate available to deploy an array. To advance the understanding of monitoring infrasound sources in urban environments, local and regional infrasound arrays were deployed on building rooftops on the campus at Southern Methodist University (SMU), and data were collected for one seasonal cycle. The data were evaluated for structural source signals (continuous-wave packets), and when a signal was identified, the back azimuth to the source was determined through frequency-wavenumber analysis. This information was used to identify hypothesized structural sources; these sources were verified through direct measurement and dynamic structural analysis modeling. In addition to the rooftop arrays, a camouflaged infrasound sensor was installed on the SMU campus and evaluated to determine its effectiveness for wind noise reduction. Permission to publish was granted by Director, Geotechnical and Structures Laboratory.
Nuclear Technology Series. Course 22: Advanced Radionuclide Analysis.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This technical specialty course is one of thirty-five courses designed for use by two-year postsecondary institutions in five nuclear technician curriculum areas: (1) radiation protection technician, (2) nuclear instrumentation and control technician, (3) nuclear materials processing technician, (4) nuclear quality-assurance/quality-control…
NASA Technical Reports Server (NTRS)
Palaszewski, Bryan A.
2017-01-01
Human and robotic missions to Mercury and Saturn are presented and analyzed with a range of propulsion options. Historical studies of space exploration, planetary spacecraft, and astronomy, in-situ resource utilization (ISRU), and industrialization all point to the vastness of natural resources in the solar system. Advanced propulsion benefitted from these resources in many ways. While advanced propulsion systems were proposed in these historical studies, further investigation of nuclear options using high power nuclear thermal and nuclear pulse propulsion as well as advanced chemical propulsion can significantly enhance these scenarios. Updated analyses based on these historical visions are presented. Nuclear thermal propulsion and ISRU enhanced chemical propulsion landers are assessed for Mercury missions. At Saturn, nuclear pulse propulsion with alternate propellant feed systems and Saturn moon exploration with chemical propulsion and nuclear electric propulsion options are discussed. Issues with using in-situ resource utilization on Mercury missions are discussed. At Saturn, the best locations for exploration and the use of the moons Titan and Enceladus as central locations for Saturn moon exploration is assessed.
NASA Astrophysics Data System (ADS)
Whittle, Karl
2016-06-01
Concerns around global warming have led to a nuclear renaissance in many countries, meanwhile the nuclear industry is warning already of a need to train more nuclear engineers and scientists, who are needed in a range of areas from healthcare and radiation detection to space exploration and advanced materials as well as for the nuclear power industry. Here Karl Whittle provides a solid overview of the intersection of nuclear engineering and materials science at a level approachable by advanced students from materials, engineering and physics. The text explains the unique aspects needed in the design and implementation of materials for use in demanding nuclear settings. In addition to material properties and their interaction with radiation the book covers a range of topics including reactor design, fuels, fusion, future technologies and lessons learned from past incidents. Accompanied by problems, videos and teaching aids the book is suitable for a course text in nuclear materials and a reference for those already working in the field.
Effects of Deployment Investment on the Growth of the Biofuels Industry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vimmerstedt, Laura J.; Bush, Brian W.
2013-12-01
In support of the national goals for biofuel use in the United States, numerous technologies have been developed that convert biomass to biofuels. Some of these biomass to biofuel conversion technology pathways are operating at commercial scales, while others are in earlier stages of development. The advancement of a new pathway toward commercialization involves various types of progress, including yield improvements, process engineering, and financial performance. Actions of private investors and public programs can accelerate the demonstration and deployment of new conversion technology pathways. These investors (both private and public) will pursue a range of pilot, demonstration, and pioneer scalemore » biorefinery investments; the most cost-effective set of investments for advancing the maturity of any given biomass to biofuel conversion technology pathway is unknown. In some cases, whether or not the pathway itself will ultimately be technically and financially successful is also unknown. This report presents results from the Biomass Scenario Model -- a system dynamics model of the biomass to biofuels system -- that estimate effects of investments in biorefineries at different maturity levels and operational scales. The report discusses challenges in estimating effects of such investments and explores the interaction between this deployment investment and a volumetric production incentive. Model results show that investments in demonstration and deployment have a substantial positive effect on the development of the biofuels industry. Results also show that other conditions, such as supportive policies, have major impacts on the effectiveness of such investments.« less
Biomass enables the transition to a carbon-negative power system across western North America
NASA Astrophysics Data System (ADS)
Sanchez, Daniel L.; Nelson, James H.; Johnston, Josiah; Mileva, Ana; Kammen, Daniel M.
2015-03-01
Sustainable biomass can play a transformative role in the transition to a decarbonized economy, with potential applications in electricity, heat, chemicals and transportation fuels. Deploying bioenergy with carbon capture and sequestration (BECCS) results in a net reduction in atmospheric carbon. BECCS may be one of the few cost-effective carbon-negative opportunities available should anthropogenic climate change be worse than anticipated or emissions reductions in other sectors prove particularly difficult. Previous work, primarily using integrated assessment models, has identified the critical role of BECCS in long-term (pre- or post-2100 time frames) climate change mitigation, but has not investigated the role of BECCS in power systems in detail, or in aggressive time frames, even though commercial-scale facilities are starting to be deployed in the transportation sector. Here, we explore the economic and deployment implications for BECCS in the electricity system of western North America under aggressive (pre-2050) time frames and carbon emissions limitations, with rich technology representation and physical constraints. We show that BECCS, combined with aggressive renewable deployment and fossil-fuel emission reductions, can enable a carbon-negative power system in western North America by 2050 with up to 145% emissions reduction from 1990 levels. In most scenarios, the offsets produced by BECCS are found to be more valuable to the power system than the electricity it provides. Advanced biomass power generation employs similar system design to advanced coal technology, enabling a transition strategy to low-carbon energy.