NASA Astrophysics Data System (ADS)
Freudenthal, Tim; Bergenthal, Markus; Bohrmann, Gerhard; Pape, Thomas; Kopf, Achim; Huhn-Frehers, Katrin; Gohl, Karsten; Wefer, Gerold
2017-04-01
The MARUM-MeBo (abbreviation for Meeresboden-Bohrgerät, the German expression for seafloor drill rig) is a robotic drilling system that is developed since 2004 at the MARUM Center for Marine Environmental Sciences at the University of Bremen in close cooperation with Bauer Maschinen GmbH and other industry partners. The MARUM-MeBo drill rigs can be deployed from multipurpose research vessel like, RV MARIA S. MERIAN, RV METEOR, RV SONNE and RV POLARSTERN and are used for getting long cores both in soft sediments as well as hard rocks in the deep sea. The first generation drill rig, the MARUM-MeBo70 is dedicated for a drilling depth of more than 70 m (Freudenthal and Wefer, 2013). Between 2005 and 2016 it was deployed on 17 research expeditions and drilled about 3 km into different types of geology including carbonate and crystalline rocks, gas hydrates, glacial tills, sands and gravel, glacial till and hemipelagic mud with an average recovery rate of about 70 %. We used the development and operational experiences of MARUM-MeBo70 for the development of a second generation drill rig MARUM-MeBo200. This drill rig is dedicated for conducting core drilling down to 200 m below sea floor. After successful sea trials in the North Sea in October 2014 the MeBo200 was used on a scientific expedition on the research vessel RV SONNE (SO247) in March/April 2016. During 12 deployments we drilled altogether 514 m in hemipelagic sediments with volcanic ashes as well as in muddy and sandy slide deposits off New Zealand. The average core recovery was about 54%. The maximum drilling depth was 105 m below sea floor. Developments for the MeBo drilling technology include the development of a pressure core barrel that was successfully deployed on two research expeditions so far. Bore hole logging adds to the coring capacity. Several autonomous logging probes have been developed in the last years for a deployment with MeBo in the logging while tripping mode - a sonic probe measuring in situ p-wave velocity being the latest development. Various bore hole monitoring systems where developed and deployed with the MeBo system. They allow for long-term monitoring of pressure variability within the sealed bore holes. References: Freudenthal, T and Wefer, G (2013) Drilling cores on the sea floor with the remote-controlled sea floor drilling rig MeBo. Geoscientific Instrumentation, Methods and Data Systems, 2(2). 329-337. doi:10.5194/gi-2-329-2013
Disposable telemetry cable deployment system
Holcomb, David Joseph
2000-01-01
A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.
1981-01-09
CHALLENGER for an estimated period of six days. The design for the test Borehole Instrumentation Package (BIP) reentry-sub and associated handling...equipment has been completed ard hmi been submitted for vendor bid. Details of the specialized support equipment for installation on the GLOMAR CHALLENGER ...developed under the direction of the Deep Sea Drilling Project (DSDP) by the dynamically positioned drilling vessel GLOMAR CHALLENGER . Deployment of the
Advantages and limitations of remotely operated sea floor drill rigs
NASA Astrophysics Data System (ADS)
Freudenthal, T.; Smith, D. J.; Wefer, G.
2009-04-01
A variety of research targets in marine sciences including the investigation of gas hydrates, slope stability, alteration of oceanic crust, ore formation and palaeoclimate can be addressed by shallow drilling. However, drill ships are mostly used for deep drillings, both because the effort of building up a drill string from a drill ship to the deep sea floor is tremendous and control on drill bit pressure from a movable platform and a vibrating drill string is poor especially in the upper hundred meters. During the last decade a variety of remotely operated drill rigs have been developed, that are deployed on the sea bed and operated from standard research vessels. These developments include the BMS (Bentic Multicoring System, developed by Williamson and Associates, operated by the Japanese Mining Agency), the PROD (Portable Remotely Operated Drill, developed and operated by Benthic Geotech), the Rockdrill 2 (developed and operated by the British geological Survey) and the MeBo (German abbreviation for sea floor drill rig, developed and operated by Marum, University of Bremen). These drill rigs reach drilling depths between 15 and 100 m. For shallow drillings remotely operated drill rigs are a cost effective alternative to the services of drill ships and have the major advantage that the drilling operations are performed from a stable platform independent of any ship movements due to waves, wind or currents. Sea floor drill rigs can be deployed both in shallow waters and the deep sea. A careful site survey is required before deploying the sea floor drill rig. Slope gradient, small scale topography and soil strength are important factors when planning the deployment. The choice of drill bits and core catcher depend on the expected geology. The required drill tools are stored on one or two magazines on the drill rig. The MeBo is the only remotely operated drill rig world wide that can use wire line coring technique. This method is much faster than conventional drilling. It has the advantage that the drill string stays in the drilled hole during the entire drilling process and prevents the drilled hole from collapsing while the inner core barrels comprising the drilled core sections are hooked up inside the drill string using a wire.
NASA Astrophysics Data System (ADS)
Conze, R.; Krysiak, F.; Wallrabe-Adams, H.; Graham, C. C.
2004-12-01
During August/September 2004, the Arctic Coring Expedition (ACEX) was used to trial a new Offshore Drilling Information System (OffshoreDIS). ACEX was the first Mission Specific Platform (MSP) expedition of the Integrated Ocean Drilling Programme (IODP), funded by the European Consortium for Ocean Research Drilling (ECORD). The British Geological Survey in conjunction with the University of Bremen and the European Petrophysics Consortium were the ECORD Science Operator (ESO) for ACEX. IODP MSP expeditions have very similar data management requirements and operate in similar working environments to the lake drilling projects conducted by the International Continental Scientific Drilling Program (ICDP), for example, the GLAD800, which has very restricted space on board and operates in difficult conditions. Both organizations require data capture and management systems that are mobile, flexible and that can be deployed quickly on small- to medium-sized drilling platforms for the initial gathering of data, and that can also be deployed onshore in laboratories where the bulk of the scientific work is conducted. ESO, therefore, decided that an adapted version of the existing Drilling Information System (DIS) used by ICDP projects would satisfy its requirements. Based on the existing DIS, an OffshoreDIS has been developed for MSP expeditions. The underlying data model is compatible with IODP(JANUS), the Bremen Core Repository, WDC-MARE/PANGAEA and the LacCore in Minneapolis. According to the specific expedition platform configuration and on-board workflow requirements for the Arctic, this data model, data pumps and user interfaces were adapted for the ACEX-OffshoreDIS. On the drill ship Vidar Viking the cores were catalogued and petrophysically logged using a GeoTek Multi-Sensor Core Logger System, while further initial measurements, lithological descriptions and biostratigraphic investigations were undertaken on the Oden, which provided laboratory facilities for the expedition. Onboard samples were registered in a corresponding sample archive on both vessels. The ACEX-OffshoreDIS used a local area network covering the two ships of the three icebreaker fleet by wireless LAN between the ships and partly wired LAN on the ships. A DIS-server was installed on each ship. These were synchronized by database replication and linked to a total of 10 client systems and label printers across both ships. The ACEX-OffshoreDIS will also be used for the scientific measurement and analysis phase of the expedition during the post-field operations `shore-party' in November 2004 at the Bremen Core Repository (BCR). The data management system employed in the Arctic will be reconfigured and deployed at the BCR. In addition, an eXtended DIS (XDIS) Web interface will be available. This will allow controlled sample distribution (core curation, sub-sampling) as well as sharing of data (registration, upload and download) with other laboratories which will be undertaking additional sampling and analyses. The OffshoreDIS data management system will be of long-term benefit to both IODP and ICDP, being deployed in forthcoming MSP offshore projects, ICDP lake projects and joint IODP-ICDP projects such as the New Jersey Coastal Plain Drilling Project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Gaither, Katherine N.; Polsky, Yarom
Sandia National Laboratories (Sandia) has a long history in developing compact, mobile, very high-speed drilling systems and this technology could be applied to increasing the rate at which boreholes are drilled during a mine accident response. The present study reviews current technical approaches, primarily based on technology developed under other programs, analyzes mine rescue specific requirements to develop a conceptual mine rescue drilling approach, and finally, proposes development of a phased mine rescue drilling system (MRDS) that accomplishes (1) development of rapid drilling MRDS equipment; (2) structuring improved web communication through the Mine Safety & Health Administration (MSHA) web site;more » (3) development of an improved protocol for employment of existing drilling technology in emergencies; (4) deployment of advanced technologies to complement mine rescue drilling operations during emergency events; and (5) preliminary discussion of potential future technology development of specialized MRDS equipment. This phased approach allows for rapid fielding of a basic system for improved rescue drilling, with the ability to improve the system over time at a reasonable cost.« less
The installation of a sub sea floor observatory using the sea floor drill rig MeBo
NASA Astrophysics Data System (ADS)
Wefer, G.; Freudenthal, T.; Kopf, A.
2012-04-01
Sea floor drill rigs that can be deployed from standard research vessels are bridging the gap between dedicated drill ships that are used for deep drillings in the range of several hundred meters below sea floor and conventional sampling tools like gravity corers, piston corer or dredges that only scratch the surface of the sea floor. A major advantage of such robotic drill rigs is that the drilling action is conducted from a stable platform at the sea bed independent of any ship movements due to waves, wind or currents. At the MARUM Center for Marine Environmental Sciences at the University of Bremen we developed the sea bed drill rig MeBo that can be deployed from standard research vessels. The drill rig is deployed on the sea floor and controlled from the vessel. Drilling tools for coring the sea floor down to 70 m can be stored on two magazines on the rig. A steel-armoured umbilical is used for lowering the rig to the sea bed in water depths up to 2000 m in the present system configuration. It was successfully operated on ten expeditions since 2005 and drilled more than 1000 m in different types of geology including hemipelagic mud, glacial till as well as sedimentary and crystalline rocks. MeBo boreholes be equipped with sensors and used for long term monitoring are planned. Depending on the scientific demands, a MeBoCORK monitoring system will allow in situ measurements of eg. temperature and pressure. The "MeBoCORK" will be equipped with data loggers and data transmission interface for reading out the collected data from the vessel. By additional payload installation on the MeBoCORK with an ROV it will be possible to increase the energy capacity as well as to conduct fluid sampling in the bore hole for geochemical analyses. It is planned to install a prototype of this additional payload with the MARUM ROV QUEST4000M during the following R/V SONNE cruise in July 2012.
IceBreaker: Mars Drill and Sample Delivery System
NASA Astrophysics Data System (ADS)
Mellerowicz, B. L.; Paulsen, G. L.; Zacny, K.; McKay, C.; Glass, B. J.; Dave, A.; Davila, A. F.; Marinova, M.
2012-12-01
We report on the development and testing of a one meter class prototype Mars drill and cuttings sample delivery system. The IceBreaker drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sam-pling station for moving the augered ice shavings or soil cuttings into a sample cup. The drill is deployed from a 3 Degree of Freedom (DOF) robotic arm. The drill demonstrated drilling in ice-cemented ground, ice, and rocks at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This cor-responds to an average energy of 100 Whr. The drill has been extensively tested in the Mars chamber to a depth of 1 meter, as well as in the Antarctic and the Arctic Mars analog sites. We also tested three sample delivery systems: 1) 4 DOF arm with a custom soil scoop at the end; 2) Pneumatic based, and 3) Drill based enabled by the 3 (DOF) drill deployment boom. In all approaches there is an air-gap between the sterilized drill (which penetrates subsurface) and the sample transfer hardware (which is not going to be sterilized). The air gap satisfies the planetary protection requirements. The scoop acquires cuttings sample once they are augered to the surface, and drops them into an in-strument inlet port. The system has been tested in the Mars chamber and in the Arctic. The pneumatic sample delivery system uses compressed gas to move the sample captured inside a small chamber inte-grated with the auger, directly into the instrument. The system was tested in the Mars chamber. In the third approach the drill auger captures the sample on its flutes, the 3 DOF boom positions the tip of the auger above the instrument, and then the auger discharges the sample into an instrument. This approach was tested in the labolatory (at STP). The above drilling and sample delivery tests have shown that drilling and sample transfer on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in dis-crete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.
Interior Department Suggests Improvements for Offshore Arctic Oil and Gas Drilling
NASA Astrophysics Data System (ADS)
Showstack, Randy
2013-03-01
Shell's "difficulties" during its 2012 program to drill offshore oil and natural gas exploration wells in the Alaskan Arctic Ocean "have raised serious questions regarding its ability to operate safely and responsibly in the challenging and unpredictable conditions offshore Alaska," according to the report "Review of Shell's 2012 Alaska Offshore Oil and Gas Exploration Program," issued by the U.S. Department of the Interior (DOI) on 8 March. Noting the company's lack of adequate preparation for drilling in the Arctic, its failure to deploy a specialized Arctic Containment System, and the grounding of the Kulluk drilling rig near Kodiak Island last December, the report recommends that Shell develop a comprehensive and integrated plan describing its future drilling program and related operations and that it commission a third-party audit of its management systems, including its safety and environmental management systems program.
(EGS) Geothermal resource assessment High pressure, high temperature reaction systems Research Interests EGS demonstration and deployment Advanced drilling systems research Thermodynamics and process Phenomenological Experimental Demonstrations to Quantitative Understanding." Journal of Supercritical Fluids
Sample Acqusition Drilling System for the the Resource Prospector Mission
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; Quinn, J.; Smith, J.; Kleinhenz, J.
2015-12-01
The goal of the Lunar Resource Prospector Mission (RPM) is to capture and identify volatiles species within the top meter of the lunar regolith. The RPM drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RPM drill is based on the Mars Icebreaker drill developed for capturing samples of ice and ice cemented ground on Mars. The drill weighs approximately 10 kg and is rated at ~300 Watt. It is a rotary-percussive, fully autonomous system designed to capture cuttings for analysis. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing station, 4. Z-stage, 5. Deployment stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in ~10 cm intervals. The first generation drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama in 2012. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The third generation drill was tested in NASA GRC's vacuum chamber, VF13, at 10-5 torr and approximately 200 K. It demonstrated successful capture and transfer of icy samples to a crucible. The drill has been modified and integrated onto the NASA JSC RPM rover. It has been undergoing testing in a lab and in the field during the Summer of 2015.
WiFi RFID demonstration for resource tracking in a statewide disaster drill.
Cole, Stacey L; Siddiqui, Javeed; Harry, David J; Sandrock, Christian E
2011-01-01
To investigate the capabilities of Radio Frequency Identification (RFID) tracking of patients and medical equipment during a simulated disaster response scenario. RFID infrastructure was deployed at two small rural hospitals, in one large academic medical center and in two vehicles. Several item types from the mutual aid equipment list were selected for tracking during the demonstration. A central database server was installed at the UC Davis Medical Center (UCDMC) that collected RFID information from all constituent sites. The system was tested during a statewide disaster drill. During the drill, volunteers at UCDMC were selected to locate assets using the traditional method of locating resources and then using the RFID system. This study demonstrated the effectiveness of RFID infrastructure in real-time resource identification and tracking. Volunteers at UCDMC were able to locate assets substantially faster using RFID, demonstrating that real-time geolocation can be substantially more efficient and accurate than traditional manual methods. A mobile, Global Positioning System (GPS)-enabled RFID system was installed in a pediatric ambulance and connected to the central RFID database via secure cellular communication. This system is unique in that it provides for seamless region-wide tracking that adaptively uses and seamlessly integrates both outdoor cellular-based mobile tracking and indoor WiFi-based tracking. RFID tracking can provide a real-time picture of the medical situation across medical facilities and other critical locations, leading to a more coordinated deployment of resources. The RFID system deployed during this study demonstrated the potential to improve the ability to locate and track victims, healthcare professionals, and medical equipment during a region-wide disaster.
Contamination Control of Freeze Shoe Coring System for Collection of Aquifer Sands
NASA Astrophysics Data System (ADS)
Homola, K.; van Geen, A.; Spivack, A. J.; Grzybowski, B.; Schlottenmier, D.
2017-12-01
We have developed and tested an original device, the freeze-shoe coring system, designed to recover undisturbed samples of water contained in sand-dominated aquifers. Aquifer sands are notoriously difficult to collect together with porewater from coincident depths, as high hydraulic permeability leads to water drainage and mixing during retrieval. Two existing corer designs were reconfigured to incorporate the freeze-shoe system; a Hydraulic Piston (HPC) and a Rotary (RC) Corer. Once deployed, liquid CO2 contained in an interior tank is channeled to coils at the core head where it changes phase, rapidly cooling the deepest portion of the core. The resulting frozen core material impedes water loss during recovery. We conducted contamination tests to examine the integrity of cores retrieved during a March 2017 yard test deployment. Perfluorocarbon tracer (PFC) was added to the drill fluid and recovered cores were subsampled to capture the distribution of PFC throughout the core length and interior. Samples were collected from two HPC and one RC core and analyzed for PFC concentrations. The lowest porewater contamination, around 0.01% invasive fluid, occurs in the center of both HPC cores. The greatest contamination (up to 10%) occurs at the disturbed edges where core material contacts drill fluid. There was lower contamination in the core interior than top, bottom, and edges, as well as significantly lower contamination in HPC cores that those recovered with the RC. These results confirm that the freeze-shoe system, proposed for field test deployments in West Bengal, India, can successfully collect intact porewater and sediment material with minimal if any contamination from drill fluid.
Robotic and Human-Tended Collaborative Drilling Automation for Subsurface Exploration
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, Howard; Stoker, Carol; Davis, Kiel
2005-01-01
Future in-situ lunar/martian resource utilization and characterization, as well as the scientific search for life on Mars, will require access to the subsurface and hence drilling. Drilling on Earth is hard - an art form more than an engineering discipline. Human operators listen and feel drill string vibrations coming from kilometers underground. Abundant mass and energy make it possible for terrestrial drilling to employ brute-force approaches to failure recovery and system performance issues. Space drilling will require intelligent and autonomous systems for robotic exploration and to support human exploration. Eventual in-situ resource utilization will require deep drilling with probable human-tended operation of large-bore drills, but initial lunar subsurface exploration and near-term ISRU will be accomplished with lightweight, rover-deployable or standalone drills capable of penetrating a few tens of meters in depth. These lightweight exploration drills have a direct counterpart in terrestrial prospecting and ore-body location, and will be designed to operate either human-tended or automated. NASA and industry now are acquiring experience in developing and building low-mass automated planetary prototype drills to design and build a pre-flight lunar prototype targeted for 2011-12 flight opportunities. A successful system will include development of drilling hardware, and automated control software to operate it safely and effectively. This includes control of the drilling hardware, state estimation of both the hardware and the lithography being drilled and state of the hole, and potentially planning and scheduling software suitable for uncertain situations such as drilling. Given that Humans on the Moon or Mars are unlikely to be able to spend protracted EVA periods at a drill site, both human-tended and robotic access to planetary subsurfaces will require some degree of standalone, autonomous drilling capability. Human-robotic coordination will be important, either between a robotic drill and humans on Earth, or a human-tended drill and its visiting crew. The Mars Analog Rio Tinto Experiment (MARTE) is a current project that studies and simulates the remote science operations between an automated drill in Spain and a distant, distributed human science team. The Drilling Automation for Mars Exploration (DAME) project, by contrast: is developing and testing standalone automation at a lunar/martian impact crater analog site in Arctic Canada. The drill hardware in both projects is a hardened, evolved version of the Advanced Deep Drill (ADD) developed by Honeybee Robotics for the Mars Subsurface Program. The current ADD is capable of 20m, and the DAME project is developing diagnostic and executive software for hands-off surface operations of the evolved version of this drill. The current drill automation architecture being developed by NASA and tested in 2004-06 at analog sites in the Arctic and Spain will add downhole diagnosis of different strata, bit wear detection, and dynamic replanning capabilities when unexpected failures or drilling conditions are discovered in conjunction with simulated mission operations and remote science planning. The most important determinant of future 1unar and martian drilling automation and staffing requirements will be the actual performance of automated prototype drilling hardware systems in field trials in simulated mission operations. It is difficult to accurately predict the level of automation and human interaction that will be needed for a lunar-deployed drill without first having extensive experience with the robotic control of prototype drill systems under realistic analog field conditions. Drill-specific failure modes and software design flaws will become most apparent at this stage. DAME will develop and test drill automation software and hardware under stressful operating conditions during several planned field campaigns. Initial results from summer 2004 tests show seven identifi distinct failure modes of the drill: cuttings-removal issues with low-power drilling into permafrost, and successful steps at executive control and initial automation.
NASA Astrophysics Data System (ADS)
Shinmoto, Y.; Wada, K.; Miyazaki, E.; Sanada, Y.; Sawada, I.; Yamao, M.
2010-12-01
The Nankai-Trough Seismogenic Zone Experiment (NanTroSEIZE) has carried out several drilling expeditions in the Kumano Basin off the Kii-Peninsula of Japan with the deep-sea scientific drilling vessel Chikyu. Core sampling runs were carried out during the expeditions using an advanced multiple wireline coring system which can continuously core into sections of undersea formations. The core recovery rate with the Rotary Core Barrel (RCB) system was rather low as compared with other methods such as the Hydraulic Piston Coring System (HPCS) and Extended Shoe Coring System (ESCS). Drilling conditions such as hole collapse and sea conditions such as high ship-heave motions need to be analyzed along with differences in lithology, formation hardness, water depth and coring depth in order to develop coring tools, such as the core barrel or core bit, that will yield the highest core recovery and quality. The core bit is especially important in good recovery of high quality cores, however, the PDC cutters were severely damaged during the NanTroSEIZE Stages 1 & 2 expeditions due to severe drilling conditions. In the Stage 1 (riserless coring) the average core recovery was rather low at 38 % with the RCB and many difficulties such as borehole collapse, stick-slip and stuck pipe occurred, causing the damage of several of the PDC cutters. In Stage 2, a new design for the core bit was deployed and core recovery was improved at 67 % for the riserless system and 85 % with the riser. However, due to harsh drilling conditions, the PDC core bit and all of the PDC cutters were completely worn down. Another original core bit was also deployed, however, core recovery performance was low even for plate boundary core samples. This study aims to identify the influence of the RCB system specifically on the recovery rates at each of the holes drilled in the NanTroSEIZE coring expeditions. The drilling parameters such as weight-on-bit, torque, rotary speed and flow rate, etc., were analyzed and conditions such as formation, tools, and sea conditions which directly affect core recovery have been categorized. Also discussed will be the further development of such coring equipment as the core bit and core barrel for the NanTroSEIZE Stage 3 expeditions, which aim to reach a depth of 7000 m-below the sea floor into harder formations under extreme drilling conditions.
NASA Astrophysics Data System (ADS)
Gohl, K.; Freudenthal, T.; Hillenbrand, C.-D.; Klages, J.; Larter, R.; Bickert, T.; Bohaty, S.; Ehrmann, W.; Esper, O.; Frederichs, T.; Gebhardt, C.; Küssner, K.; Kuhn, G.; Pälike, H.; Ronge, T.; Simões Pereira, P.; Smith, J.; Uenzelmann-Neben, G.; van de Flierdt, C.
2017-11-01
A multibarrel seabed drill rig was used for the first time to drill unconsolidated sediments and consolidated sedimentary rocks from an Antarctic shelf with core recoveries between 7% and 76%. We deployed the MARUM-MeBo70 drill device at nine drill sites in the Amundsen Sea Embayment. Three sites were located on the inner shelf of Pine Island Bay from which soft sediments, presumably deposited at high sedimentation rates in isolated small basins, were recovered from drill depths of up to 36 m below seafloor. Six sites were located on the middle shelf of the eastern and western embayment. Drilling at five of these sites recovered consolidated sediments and sedimentary rocks from dipping strata spanning ages from Cretaceous to Miocene. This report describes the initial coring results, the challenges posed by drifting icebergs and sea ice, and technical issues related to deployment of the MeBo70. We also present recommendations for similar future drilling campaigns on polar continental shelves.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raymond, David W.; Blankenship, Douglas A.; Buerger, Stephen
The dynamic stability of deep drillstrings is challenged by an inability to impart controllability with ever-changing conditions introduced by geology, depth, structural dynamic properties and operating conditions. A multi-organizational LDRD project team at Sandia National Laboratories successfully demonstrated advanced technologies for mitigating drillstring vibrations to improve the reliability of drilling systems used for construction of deep, high-value wells. Using computational modeling and dynamic substructuring techniques, the benefit of controllable actuators at discrete locations in the drillstring is determined. Prototype downhole tools were developed and evaluated in laboratory test fixtures simulating the structural dynamic response of a deep drillstring. A laboratory-basedmore » drilling applicability demonstration was conducted to demonstrate the benefit available from deployment of an autonomous, downhole tool with self-actuation capabilities in response to the dynamic response of the host drillstring. A concept is presented for a prototype drilling tool based upon the technical advances. The technology described herein is the subject of U.S. Patent Application No. 62219481, entitled "DRILLING SYSTEM VIBRATION SUPPRESSION SYSTEMS AND METHODS", filed September 16, 2015.« less
NASA Astrophysics Data System (ADS)
Stewart, H. A.; Stevenson, A.; Wilson, M.; Pheasant, I.
2014-12-01
The British Geological Survey (BGS) have developed a number of coring and drilling systems for use in science projects in the UK and internationally. These include 3m and 6m vibrocoring systems; a 5m combined rockdrill and vibrocorer system; an oriented drill designed specifically to recover samples for use in palaeomagnetic studies; and a 55m rockdrill (RockDrill2). Recently, BGS have developed an autonomous, battery-operated vibrocoring system compatible with both the 3m and 6m vibrocorers, which can be used in water depths up to 6000m. Use of a battery system negates the use of an umbilical power cable to operate the vibrocorer, which instead can be deployed using the vessels A-frame and winch. The autonomous battery system comprises six 48V 19Ah batteries connected in series to give a 288V power source, a microprocessor and real-time clock. Data from the sensors are recorded with a time-stamp, giving diagnostic information that can be downloaded once the system is returned to the deck. The vibrocorer is operated via a pre-set program which is set up before deployment.The new system not only allows vibrocoring in greater water depths, but can also be used on smaller vessels where deck space is limited as a separate winch and umbilical is not required. The autonomous system was used for the first time in June 2014 on-board the RV Belgica to acquire samples from 20 sites in the Dangeard and Explorer canyon heads, off the southwest of England in 430m water depth.Another development is the BGS 55m rockdrill (RockDrill2), a remotely operated sampling system capable of coring up to 55m below sea floor in water depths up to 4000m. The rockdrill can be operated via its own launch and recovery system and can be outfitted with additional sensors such as gas flow meters, which have been designed by the BGS for assessing volume of gas hydrate, and down-hole logging tools. The 55m rockdrill has recently been used to sample hydrate-entrained sediments in the Sea of Japan. The maximum coring depth achieved was 32m below sea floor and the system can operate for more than 50 hours on a single deployment. The BGS system will be used in conjunction with the Bremen University (MARUM) MeBo sea-floor rockdrill on future International Ocean Discovery Program (IODP) expeditions.
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Renken, J.; Zabel, M.; Wefer, G.
2011-12-01
State of the art technology for long-term monitoring of fluid migration within the sea floor is the sealing of a borehole with a Circulation Obviation Retrofit Kit (CORK) after sensor installation and/or fluid sampling devices within the drill string. However, the combined used of a drilling vessels and a remotely operated drilling (ROV) required for a CORK installation in the deep sea is a costly exercise that limits the number of monitoring stations installed. Robotic sea floor drill rigs are a cost effective alternative for shallow drillings down to 50-100 m below sea floor. Here we present a Mini-CORK system that is developed for installation with the sea floor drill rig MeBo. This rig was developed at MARUM Research Centre, University of Bremen in 2005 and can sample the sea floor in water depths up to 2000 m. The MeBo is deployed on the seabed and remotely controlled from the vessel. All required drill tools for wire-line core drilling down to 70 m below sea floor are stored on two rotating magazines and can be loaded below the top drive drill head for assembling the drill string. For one of the upcoming cruises with RV Sonne offshore Japan (Nankai Trough accretionary prism), MeBo will be used for the first time to place observatories. Two different designs have been developed. The first, relatively simple long-term device resembles a MeBo drill rod in its geometry, and contains a pressure and temperature transducer in the borehole plus an identical pair of transducers for seafloor reference. The device also contains a data logger, battery unit, and an acoustic modem so that data can be downloaded at any time from a ship of opportunity. The key element at the base of the observatory rod is a seal at the conical thread to separate the borehole hydraulically from the overlying water body. It is realized by an adapter, which also contains a hotstab hydraulic connection and an electrical connection. The second observatory device is a seafloor unit, which replaces part of the first unit and which is deployed by ROV. In essence, the upper portion of the former observatory is taken away by ROV, and an umbilical containing hydraulic lines and tubing to withdraw formation water from the borehole is plugged into the hotstab female adapter by ROV. At the far end, the umbilical is connected to a seafloor unit with battery power, data logger, P and T transducers, and the same acoustic modem as the former one. In addition, the latter contains osmo samplers and biological chambers (FLOCS) for in situ sampling and experiments. After the envisaged deployment period, the entire unit is replaced while an identical one is prepared on deck and lowered from the vessel. In theory, the MeBo hole infinitely serves as an access to depth since no electronic, but only tubing is lowered into the (open) hole. In summary, long-term borehole installations with MeBo offer an affordable way to measure key physical properties over time and sample the formation fluids for geochemistry and microbiology (in case of the second, ROV-deployed CORK).
Recent Developments and Adaptations in Diamond Wireline Core Drilling Technology
NASA Astrophysics Data System (ADS)
Thomas, D. M.; Nielson, D. L.; Howell, B. B.; Pardey, M.
2001-05-01
Scientific drilling using diamond wireline technology is presently undergoing a significant expansion and extension of activities that has allowed us to recover geologic samples that have heretofore been technically or financially unattainable. Under the direction and management of DOSECC, a high-capacity hybrid core drilling system was designed and fabricated for the Hawaii Scientific Drilling Project (HSDP) in 1998. This system, the DOSECC Hybrid Coring System (DHCS), has the capacity to recover H-sized core from depths of more than 6 km. In 1999, the DHCS completed the first phase of the HSDP to a depth of 3100 m at a substantially lower cost per foot than any previous scientific borehole to comparable depths and, in the process, established a new depth record for recovery of H-sized wireline core. This system has been offered for use in the Unzen Scientific Drilling Project, the Chicxulub (impact crater) Scientific Drilling Project, and the Geysers Deep Geothermal Reservoir Project. More recently, DOSECC has developed a smaller barge-mounted wireline core drilling system, the GLAD800, that is capable of recovering P-sized sediment core to depths of up to 800 m. The GLAD800 has been successfully deployed on Great Salt Lake and Bear Lake in Utah and is presently being mobilized to Lake Titicaca in South America for an extensive core recovery effort there. The coring capabilities of the GLAD800 system will be available to the global lakes drilling community for acquisition of sediment cores from many of the world's deep lakes for use in calibrating and refining global climate models. Presently under development by DOSECC is a heave-compensation system that will allow us to expand the capabilities of the moderate depth coring system to allow us to collect sediment and bottom core from the shallow marine environment. The design and capabilities of these coring systems will be presented along with a discussion of their potential applications for addressing a range of earth sciences questions.
Use of the ROC anchor in foot and ankle surgery. A retrospective study.
Kuwada, G T
1999-05-01
A retrospective study was conducted on the use of the ROC (Radial Osteo Compression) soft-tissue anchor in foot and ankle surgery. This article describes how the anchor is deployed, problematic aspects of using the anchor, and complications and success rates associated with the anchor in ankle stabilizations, posterior tibial tendon reconstruction, peroneus brevis tendon reconstruction after fracture of the base of the fifth metatarsal, and detachment and reattachment of the Achilles tendon. The ROC anchor consists of the anchor with nonabsorbable suture attached to the shaft, the deployment handle, and drill bits. The anchor and shaft are snapped into the deployment handle and inserted into the drill hole. Compression of the trigger deploys the anchor into the hole. The ROC anchor was found to be reliable, useful, and relatively easy to deploy, with outcomes similar to those of other soft-tissue anchors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehra, S.; Bryce, T.
Sedco Forex has recently completed a new land drilling rig, currently deployed in Gabon, that integrates well construction activities with multiskilling to create cost savings across the board in drilling operations. Historically, operators have produced a comprehensive tender package specifying strictly the type and size of individual rig components and the number of personnel required to drill. In this case, the drilling contractor provides a fit-for-purpose rig, consistent with field location, well profile, operator`s priorities, and local constraints.
Astronaut John Young stands at ALSEP deployment site during first EVA
NASA Technical Reports Server (NTRS)
1972-01-01
Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA-1) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of Young. The drill's rack and bore stems are to the left. The three sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by Astronaut Charles M. Duke Jr., lunar module pilot.
Astronaut John Young stands at ALSEP deployment site during first EVA
1972-04-21
AS16-114-18388 (21 April 1972) --- Astronaut John W. Young, commander of the Apollo 16 lunar landing mission, stands at the Apollo Lunar Surface Experiments Package (ALSEP) deployment site during the first Apollo 16 extravehicular activity (EVA) at the Descartes landing site. The components of the ALSEP are in the background. The lunar surface drill is just behind and to the right of astronaut Young. The drill's rack and bore stems are to the left. The three-sensor Lunar Surface Magnetometer is beyond the rack. The dark object in the right background is the Radioisotope Thermoelectric Generator (RTG). Between the RTG and the drill is the Heat Flow Experiment. A part of the Central Station is at the right center edge of the picture. This photograph was taken by astronaut Charles M. Duke Jr., lunar module pilot.
Nano-Scale Sample Acquisition Systems for Small Class Exploration Spacecraft
NASA Astrophysics Data System (ADS)
Paulsen, G.
2015-12-01
The paradigm for space exploration is changing. Large and expensive missions are very rare and the space community is turning to smaller, lighter, and less expensive missions that could still perform great exploration. These missions are also within reach of commercial companies such as the Google Lunar X Prize teams that develop small scale lunar missions. Recent commercial endeavors such as "Planet Labs inc." and Sky Box Imaging, inc. show that there are new benefits and business models associated with miniaturization of space hardware. The Nano-Scale Sample Acquisition System includes NanoDrill for capture of small rock cores and PlanetVac for capture of surface regolith. These two systems are part of the ongoing effort to develop "Micro Sampling" systems for deployment by the small spacecraft with limited payload capacities. The ideal applications include prospecting missions to the Moon and Asteroids. The MicroDrill is a rotary-percussive coring drill that captures cores 7 mm in diameter and up to 2 cm long. The drill weighs less than 1 kg and can capture a core from a 40 MPa strength rock within a few minutes, with less than 10 Watt power and less than 10 Newton of preload. The PlanetVac is a pneumatic based regolith acquisition system that can capture surface sample in touch-and-go maneuver. These sampling systems were integrated within the footpads of commercial quadcopter for testing. As such, they could also be used by geologists on Earth to explore difficult to get to locations.
Drilling Polar Oceans with the European Research Icebreaker AURORA BOREALIS: the IODP Context
NASA Astrophysics Data System (ADS)
Lembke-Jene, Lester; Wolff-Boenisch, Bonnie; Azzolini, Roberto; Thiede, Joern; Biebow, Nicole; Eldholm, Olav; Egerton, Paul
2010-05-01
Polar oceans are characterized by extreme environmental conditions for humans and materials, and have remained the least accessible regions to scientists of the IODP. DSDP and ODP have for long faced specific technical and logistical problems when attempting to drill in ice-covered polar deep-sea basins. The Arctic Ocean and large areas of the high-latitude Southern Ocean remained largely un-sampled by ODP and remain one of the major scientific and technological challenges for IODP. Drilling in these regions has been discussed and anticipated for decades and the scientific rationales are reflected in the science plans of the international Nansen Arctic Drilling Program (NAD) or the Arctic Program Planning Group (APPG) of ODP/IODP, amongst others. More recently, the rationale to investigate the polar oceans in a holistic approach has been outlined by workshops, leading to strategic assessments of the scientific potential and new drilling proposals. The European Polar Board took the initiative to develop a plan for a novel and dedicated research icebreaker with technical capabilities hitherto unrealised. This research icebreaker will enable autonomous operations in the central Arctic Ocean and the Southern Ocean, even during the severest ice conditions in the deep winter, serving all marine disciplines of polar research including scientific drilling: The European Research Icebreaker and Deep-Sea Drilling Vessel AURORA BOREALIS. AURORA BOREALIS is presently planned as a multi-purpose vessel. The ship can be deployed as a research icebreaker in all polar waters during any season of the year, as it shall meet the specifications of the highest ice-class attainable (IACS Polar Code 1) for icebreakers. During the times when it is not employed for drilling, it will operate as the most technically advanced multi-disciplinary research vessel in the Arctic or polar Southern Ocean. AURORA BOREALIS will be a "European scientific flagship facility" (fully open to non-European partners), a multidisciplinary platform for studies ranging from the sub-seafloor into the atmosphere. AURORA BOREALIS was planned for her role in deep-sea drilling in consultation with engineers and technical experts familiar with the program and the operation of these vessels. All techniques currently deployed on IODP expeditions can be implemented onboard the vessel under polar weather and ice conditions, including the full range of re-entry, casing and cementing, and instrumentation options and the entire suite of downhole logging tools. Due to sufficient laboratory space, a full analytical workflow can be easily established comparable to existing permanent platforms, including clean rooms, diverse scanning and logging or incubation facilities. While the vessel is equipped with a dedicated deep-sea drilling rig, other coring and drilling techniques can be employed if needed (e.g. Rockdrill, MEBO, large diameter Kasten cores). AURORA BOREALIS is fitted to operate a CALYPSO Piston Coring System in polar waters. Future mud-return systems under consideration and testing for IODP to provide controlled borehole conditions in difficult facies are compatible with the layout of AURORA BOREALIS. The berthing capacity of 120 personnel total (scientists, technical support and crew) allows to accommodate a sufficient number of science party members offshore. The present scientific implementation documents plan for about one polar scientific drilling expedition per year in a to-be-determined configuration. As the vessel is a multi-dsiciplinary platform, operations for the entire year are not dependant on drilling operations alone. While principal access to the vessel will be based on a competitive proposal review and evaluation system, the allocation of timeslots specifically for drilling would preferably be given over to IODP handling and planning systems in a cooperative mode using the strengths and capacitites of the future program. Depending on interests and needs of the scientific communities a preferential focus in non-drilling expedition planning could be established e.g. for dedicated geophysical pre-site survey works in areas inaccessible by other vessels to secure critical data needed for later drilling expeditions. Based on ongoing expert consultations, it is safe to assume that the average costs for an Arctic or polar drilling expedition will be considerably lower than with an otherwise necessary multi-ship setup based on modelled expedition scenarios and annual operational cost calculations. Still, AURORA BOREALIS shall provide substantially enhanced scientific, operational, personnel and technical capacities offshore.
49 CFR Appendix A to Part 194 - Guidelines for the Preparation of Response Plans
Code of Federal Regulations, 2010 CFR
2010-10-01
...) Oil spill removal organization field equipment deployment drills conducted yearly. (5) A drill that... PLANS FOR ONSHORE OIL PIPELINES Pt. 194, App. A Appendix A to Part 194—Guidelines for the Preparation of... substantial harm to the environment; (4) A list of line sections contained in the response zone, identified by...
49 CFR Appendix A to Part 194 - Guidelines for the Preparation of Response Plans
Code of Federal Regulations, 2012 CFR
2012-10-01
...) Oil spill removal organization field equipment deployment drills conducted yearly. (5) A drill that... PLANS FOR ONSHORE OIL PIPELINES Pt. 194, App. A Appendix A to Part 194—Guidelines for the Preparation of... substantial harm to the environment; (4) A list of line sections contained in the response zone, identified by...
49 CFR Appendix A to Part 194 - Guidelines for the Preparation of Response Plans
Code of Federal Regulations, 2013 CFR
2013-10-01
...) Oil spill removal organization field equipment deployment drills conducted yearly. (5) A drill that... PLANS FOR ONSHORE OIL PIPELINES Pt. 194, App. A Appendix A to Part 194—Guidelines for the Preparation of... substantial harm to the environment; (4) A list of line sections contained in the response zone, identified by...
49 CFR Appendix A to Part 194 - Guidelines for the Preparation of Response Plans
Code of Federal Regulations, 2014 CFR
2014-10-01
...) Oil spill removal organization field equipment deployment drills conducted yearly. (5) A drill that... PLANS FOR ONSHORE OIL PIPELINES Pt. 194, App. A Appendix A to Part 194—Guidelines for the Preparation of... substantial harm to the environment; (4) A list of line sections contained in the response zone, identified by...
49 CFR Appendix A to Part 194 - Guidelines for the Preparation of Response Plans
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Oil spill removal organization field equipment deployment drills conducted yearly. (5) A drill that... PLANS FOR ONSHORE OIL PIPELINES Pt. 194, App. A Appendix A to Part 194—Guidelines for the Preparation of... substantial harm to the environment; (4) A list of line sections contained in the response zone, identified by...
Drilling Automation Demonstrations in Subsurface Exploration for Astrobiology
NASA Technical Reports Server (NTRS)
Glass, Brian; Cannon, H.; Lee, P.; Hanagud, S.; Davis, K.
2006-01-01
This project proposes to study subsurface permafrost microbial habitats at a relevant Arctic Mars-analog site (Haughton Crater, Devon Island, Canada) while developing and maturing the subsurface drilling and drilling automation technologies that will be required by post-2010 missions. It builds on earlier drilling technology projects to add permafrost and ice-drilling capabilities to 5m with a lightweight drill that will be automatically monitored and controlled in-situ. Frozen cores obtained with this drill under sterilized protocols will be used in testing three hypotheses pertaining to near-surface physical geology and ground H2O ice distribution, viewed as a habitat for microbial life in subsurface ice and ice-consolidated sediments. Automation technologies employed will demonstrate hands-off diagnostics and drill control, using novel vibrational dynamical analysis methods and model-based reasoning to monitor and identify drilling fault states before and during faults. Three field deployments, to a Mars-analog site with frozen impact crater fallback breccia, will support science goals, provide a rigorous test of drilling automation and lightweight permafrost drilling, and leverage past experience with the field site s particular logistics.
Griffiths, Jane L; Kirby, Neil R; Waterson, James A
2014-01-01
Delineation of the advantages and problems related to the use of forward-site operating room-, Intensive Care Unit (ICU)-, radiography-, and mass casualty-enabled disaster vehicles for site evacuation, patient stabilization, and triage. The vehicles discussed have six ventilated ICU spaces, two ORs, on-site radiography, 21 intermediate acuity spaces with stretchers, and 54 seated minor acuity spaces. Each space has piped oxygen with an independent vehicle-loaded supply. The vehicles are operated by the Dubai Corporate Ambulance Services. Their support hospital is the main trauma center for the Emirate of Dubai and provides the vehicles' surgical, intensivist, anesthesia, and nursing staff. The disaster vehicles have been deployed 264 times in the last 5 years (these figures do not include deployments for drills). Introducing this new service required extensive initial planning and ongoing analysis of the performance of the disaster vehicles that offer ambulance services and receiving hospitals a large array of possibilities in terms of triage, stabilization of priority I and II patients, and management of priority III patients. In both drills and in disasters, the vehicles were valuable in forward triage and stabilization and in the transport of large numbers of priority III patients. This has avoided the depletion of emergency transport available for priority I and II patients. The successful utilization of disaster vehicles requires seamless cooperation between the hospital staffing the vehicles and the ambulance service deploying them. They are particularly effective during preplanned deployments to high-risk situations. These vehicles also potentially provide self-sufficient refuges for forward teams in hostile environments.
Development and Testing of The Lunar Resource Prospector Drill
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; Kleinhenz, J.; Smith, J. T.; Quinn, J.
2017-12-01
The goal of the Lunar Resource Prospector (RP) mission is to capture and identify volatiles species within the top one meter layer of the lunar surface. The RP drill has been designed to 1. Generate cuttings and place them on the surface for analysis by the Near InfraRed Volatiles Spectrometer Subsystem (NIRVSS), and 2. Capture cuttings and transfer them to the Oxygen and Volatile Extraction Node (OVEN) coupled with the Lunar Advanced Volatiles Analysis (LAVA) subsystem. The RP drill is based on the TRL4 Mars Icebreaker drill and TRL5 LITA drill developed for capturing samples of ice and ice cemented ground on Mars, and represents over a decade of technology development effort. The TRL6 RP drill weighs approximately 15 kg and is rated at just over 500 Watt. The drill consists of: 1. Rotary-Percussive Drill Head, 2. Sampling Auger, 3. Brushing Station, 4. Feed Stage, and 5. Deployment Stage. To reduce sample handling complexity, the drill auger is designed to capture cuttings as opposed to cores. High sampling efficiency is possible through a dual design of the auger. The lower section has deep and low pitch flutes for retaining of cuttings. The upper section has been designed to efficiently move the cuttings out of the hole. The drill uses a "bite" sampling approach where samples are captured in 10 cm depth intervals. The first generation, TRL4 Icebreaker drill was tested in Mars chamber as well as in Antarctica and the Arctic. It demonstrated drilling at 1-1-100-100 level (1 meter in 1 hour with 100 Watt and 100 N Weight on Bit) in ice, ice cemented ground, soil, and rocks. The second generation, TRL5 LITA drill was deployed on a Carnegie Mellon University rover, called Zoe, and tested in Atacama, Antarctica, the Arctic, and Greenland. The tests demonstrated fully autonomous sample acquisition and delivery to a carousel. The modified LITA drill was tested in NASA GRC's lunar vacuum chamber at <10^-5 torr and <200 K. It demonstrated successful capture and transfer of volatile rich frozen samples to a crucible for analysis. The modified LITA drill has also been successfully vibration tested at NASA KSC. The drill was integrated with RP rover at NASA JSC and successfully tested in a lab and in the field, as well as on a large vibration table and steep slope. The latest TRL6 RP drill is currently undergoing testing at NASA GRC lunar chamber facilities.
The IceCube Neutrino Observatory: instrumentation and online systems
NASA Astrophysics Data System (ADS)
Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Andeen, K.; Anderson, T.; Ansseau, I.; Anton, G.; Archinger, M.; Argüelles, C.; Auer, R.; Auffenberg, J.; Axani, S.; Baccus, J.; Bai, X.; Barnet, S.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; Bendfelt, T.; BenZvi, S.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blot, S.; Boersma, D.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Bouchta, A.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Bron, S.; Burgman, A.; Burreson, C.; Carver, T.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Collin, G. H.; Conrad, J. M.; Cowen, D. F.; Cross, R.; Day, C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Descamps, F.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dujmovic, H.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Edwards, W. R.; Ehrhardt, T.; Eichmann, B.; Eller, P.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Flis, S.; Fösig, C.-C.; Franckowiak, A.; Frère, M.; Friedman, E.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Giang, W.; Gladstone, L.; Glauch, T.; Glowacki, D.; Glüsenkamp, T.; Goldschmidt, A.; Gonzalez, J. G.; Grant, D.; Griffith, Z.; Gustafsson, L.; Haack, C.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, T.; Hanson, K.; Haugen, J.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Heller, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Hoshina, K.; Huang, F.; Huber, M.; Hulth, P. O.; Hultqvist, K.; In, S.; Inaba, M.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jones, A.; Jones, B. J. P.; Joseph, J.; Kang, W.; Kappes, A.; Karg, T.; Karle, A.; Katz, U.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kim, J.; Kim, M.; Kintscher, T.; Kiryluk, J.; Kitamura, N.; Kittler, T.; Klein, S. R.; Kleinfelder, S.; Kleist, M.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Krings, K.; Kroll, M.; Krückl, G.; Krüger, C.; Kunnen, J.; Kunwar, S.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Lanfranchi, J. L.; Larson, M. J.; Lauber, F.; Laundrie, A.; Lennarz, D.; Leich, H.; Lesiak-Bzdak, M.; Leuermann, M.; Lu, L.; Ludwig, J.; Lünemann, J.; Mackenzie, C.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mancina, S.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H.; Maunu, R.; McNally, F.; McParland, C. P.; Meade, P.; Meagher, K.; Medici, M.; Meier, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Minor, R. H.; Montaruli, T.; Moulai, M.; Murray, T.; Nahnhauer, R.; Naumann, U.; Neer, G.; Newcomb, M.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Patton, S.; Peiffer, P.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pettersen, C.; Pieloth, D.; Pinat, E.; Price, P. B.; Przybylski, G. T.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relethford, B.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rongen, M.; Roucelle, C.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Rysewyk, D.; Sabbatini, L.; Sanchez Herrera, S. E.; Sandrock, A.; Sandroos, J.; Sandstrom, P.; Sarkar, S.; Satalecka, K.; Schlunder, P.; Schmidt, T.; Schoenen, S.; Schöneberg, S.; Schukraft, A.; Schumacher, L.; Seckel, D.; Seunarine, S.; Solarz, M.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stanev, T.; Stasik, A.; Stettner, J.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sulanke, K.-H.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Tenholt, F.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Thollander, L.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Rossem, M.; van Santen, J.; Vehring, M.; Voge, M.; Vogel, E.; Vraeghe, M.; Wahl, D.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Weiss, M. J.; Wendt, C.; Westerhoff, S.; Wharton, D.; Whelan, B. J.; Wickmann, S.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wills, L.; Wisniewski, P.; Wolf, M.; Wood, T. R.; Woolsey, E.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.
2017-03-01
The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.
NASA Astrophysics Data System (ADS)
Kitada, K.; Wu, H. Y.; Miyazaki, J.; Akiyama, K.; Nozaki, T.; Ishibashi, J. I.; Kumagai, H.; Maeda, L.
2016-12-01
The Okinawa trough is an active backarc basin behind the Ryukyu subduction zone and exhibits active rifting associated with extension of the continental margin. The temperature measurement in this area is essential for understanding hydrothermal system and hydraulic structure. During the CK16-01 cruise this March, we have conducted the in-situ temperature measurements by the newly developed downhole tool, TRDT (Thermo-Resistant Downhole Thermometer) in hydrothermal fields of the mid-Okinawa Trough. The purpose of this measurement is to investigate the in-situ temperature structure in deep-hot zones and its variation after coring and/or drilling. TRDT was designed by JAMSTEC as a memory downhole tool to measure in-situ borehole temperature under the extreme high temperature environment. First trial was conducted in the CK14-04 cruise by the free fall deployment to reduce the operation time. However, there was no temperature data recorded due to the strong vibration during the operation. After CK14-04 cruise, TRDT was modified to improve the function against vibration and shock. The improved TRDT passed the high temperature, vibration and shock tests to ensure the data acquisition of borehole logging. During the CK16-01 cruise, we have first successfully collected the in-situ temperature data from hydrothermal borehole in the Iheya North Knoll with wireline system. The temperature at depth of 187mbsf continued to increase almost linearly from 220 to 245°C during the 20 minute measurements time. This suggests that the inside borehole was cooled down by pumping seawater through drill pipes during the coring and lowering down the TRDT tool to the bottom hole. The in-situ temperature were extrapolated with exponential curve using nonlinear least squares fitting and the estimated equilibrium temperature was 278°C. To recover the in-situ temperature more precisely, the measurement time should kept as long as possible by considering the temperature rating. The operational procedure is also important to succeed in temperature logging. TRDT was deployed by wireline system to avoid damage from the strong vibration and shock. In order to get in-situ temperature data, the key factors are: 1) keeping the borehole for recovering the in-situ temperature after the coring; 2) TRDT sensor deployment without pumping seawater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckers, Koenraad J; Young, Katherine R
Geothermal district heating (GDH) systems have limited penetration in the U.S., with an estimated installed capacity of only 100 MWth for a total of 21 sites. We see higher deployment in other regions, for example, in Europe with an installed capacity of more than 4,700 MWth for 257 GDH sites. The U.S. Department of Energy Geothermal Vision (GeoVision) Study is currently looking at the potential to increase the deployment in the U.S. and to understand the impact of this increased deployment. This paper reviews 31 performance, cost, and financial parameters as input for numerical simulations describing GDH system deployment inmore » support of the GeoVision effort. The focus is on GDH systems using hydrothermal and Enhanced Geothermal System resources in the U.S.; ground-source heat pumps and heat-to-electricity conversion technology were excluded. Parameters investigated include 1) capital and operation and maintenance costs for both subsurface and surface equipment; 2) performance factors such as resource recovery factors, well flow rates, and system efficiencies; and 3) financial parameters such as inflation, interest, and tax rates. Current values as well as potential future improved values under various scenarios are presented. Sources of data considered include academic and popular literature, software tools such as GETEM and GEOPHIRES, industry interviews, and analysis conducted by other task forces for the GeoVision Study, e.g., on the drilling costs and reservoir performance.« less
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Stevens, T.; Amils, R.; Fernandez, D.
2005-12-01
Biological systems on Earth require three key ingredients-- liquid water, an energy source, and a carbon source, that are found in very few extraterrestrial environments. Previous examples of independent subsurface ecosystems have been found only in basalt aquifers. Such lithotrophic microbial ecosystems (LME) have been proposed as models for steps in the early evolution of Earth's biosphere and for potential biospheres on other planets where the surface is uninhabitable, such as Mars and Europa.. The Mars Analog Rio Tinto Experiment (MARTE) has searched in a volcanic massive sulfide deposit in Rio Tinto Spain for a subsurface biosphere capable of living without sunlight or oxygen and found a subsurface ecosystem driven by the weathering of the massive sulfide deposit (VMS) in which the rock matrix provides sufficient resources to support microbial metabolism, including the vigorous production of H2 by water-rock interactions. Microbial production of methane and sulfate occurred in the sulfide orebody and microbial production of methane and hydrogen sulfide continued in an anoxic plume downgradient from the sulfide ore. Organic carbon concentrations in the parent rock were too low to support microbes. The Rio Tinto system thus represents a new type of subsurface ecosystem with strong relevance for exobiological studies. Commercial drilling was used to reach the aquifer system at 100 m depth and conventional laboratory techniques were used to identify and characterize the biosphere. Then, the life search strategy that led to successful identification of this biosphere was applied to the development of a robotic drilling, core handling, inspection, subsampling, and life detection system built on a prototype planetary lander that was deployed in Rio Tinto Spain in September 2005 to test the capability of a robotic drilling system to search for subsurface life. A remote science team directed the simulation and analyzed the data from the MARTE robotic drill. The results of this experiment have important implications for the strategy for searching for life on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leishear, R.; Thaxton, D.; Minichan, R.
A sampling tool was required to evaluate residual activity ({mu}Curies per square foot) on the inner wall surfaces of underground nuclear waste storage tanks. The tool was required to collect a small sample from the 3/8 inch thick tank walls. This paper documents the design, testing, and deployment of the remotely operated sampling device. The sampler provides material from a known surface area to estimate the overall surface contamination in the tank prior to closure. The sampler consisted of a sampler and mast assembly mast assembly, control system, and the sampler, or end effector, which is defined as the operatingmore » component of a robotic arm. The mast assembly consisted of a vertical 30 feet long, 3 inch by 3 inch, vertical steel mast and a cantilevered arm hinged at the bottom of the mast and lowered by cable to align the attached sampler to the wall. The sampler and mast assembly were raised and lowered through an opening in the tank tops, called a riser. The sampler is constructed of a mounting plate, a drill, springs to provide a drive force to the drill, a removable sampler head to collect the sample, a vacuum pump to draw the sample from the drill to a filter, and controls to operate the system. Once the sampler was positioned near the wall, electromagnets attached it to the wall, and the control system was operated to turn on the drill and vacuum to remove and collect a sample from the wall. Samples were collected on filters in removable sampler heads, which were readily transported for further laboratory testing.« less
Sample Acquisition and Caching architecture for the Mars Sample Return mission
NASA Astrophysics Data System (ADS)
Zacny, K.; Chu, P.; Cohen, J.; Paulsen, G.; Craft, J.; Szwarc, T.
This paper presents a Mars Sample Return (MSR) Sample Acquisition and Caching (SAC) study developed for the three rover platforms: MER, MER+, and MSL. The study took into account 26 SAC requirements provided by the NASA Mars Exploration Program Office. For this SAC architecture, the reduction of mission risk was chosen by us as having greater priority than mass or volume. For this reason, we selected a “ One Bit per Core” approach. The enabling technology for this architecture is Honeybee Robotics' “ eccentric tubes” core breakoff approach. The breakoff approach allows the drill bits to be relatively small in diameter and in turn lightweight. Hence, the bits could be returned to Earth with the cores inside them with only a modest increase to the total returned mass, but a significant decrease in complexity. Having dedicated bits allows a reduction in the number of core transfer steps and actuators. It also alleviates the bit life problem, eliminates cross contamination, and aids in hermetic sealing. An added advantage is faster drilling time, lower power, lower energy, and lower Weight on Bit (which reduces Arm preload requirements). Drill bits are based on the BigTooth bit concept, which allows re-use of the same bit multiple times, if necessary. The proposed SAC consists of a 1) Rotary-Percussive Core Drill, 2) Bit Storage Carousel, 3) Cache, 4) Robotic Arm, and 5) Rock Abrasion and Brushing Bit (RABBit), which is deployed using the Drill. The system also includes PreView bits (for viewing of cores prior to caching) and Powder bits for acquisition of regolith or cuttings. The SAC total system mass is less than 22 kg for MER and MER+ size rovers and less than 32 kg for the MSL-size rover.
Carbonate system at Iheya North in Okinawa Trough~IODP drilling and post drilling environment~
NASA Astrophysics Data System (ADS)
Noguchi, T.; Hatta, M.; Sunamura, M.; Fukuba, T.; Suzue, T.; Kimoto, H.; Okamura, K.
2012-12-01
The Iheya North hydrothermal field in middle Okinawa Trough is covered with thick hemipelagic and volcanic sediment. Geochemical characteristics of Okinawa Trough is to provide abundant of CO2, CH4, NH4, H2, and H2S which originated from magmatic gases, sedimentary organic matters. On this hydrothermal field, a scientific drilling by Integrated Ocean Drilling Program (IODP) Expedition 331 was conducted to investigate metabolically diverse subseafloor microbial ecosystem and their physical and chemical settings. To clarify the spatial distribution of physical condition beneath seafloor around the hydrothermal filed, we focus on the carbonate species analysis to reconstruct in-situ pH, which regulate the diversities of microbial community and mineral composition. We developed the small sample volume dissolved total inorganic carbon (DIC) analyzer and conducted the onboard analysis for the interstitial water during IODP Exp.331. Total alkalinity, boron, phosphate, and ammonium also analyzed for thermodynamic calculation. In this presentation, we represent the spatial distribution of pH beneath the Iheya North hydrothermal field. In addition, we developed a 128 bottles multiple water sampler (ANEMONE) for post drilling environmental monitoring. ANEMONE sampler was deployed on the manned submersible Shinkai 6500 with other chemical sensors (CTD, turbidity, pH, ORP, and H2S), and collected the hydrothermal plume samples every 5 minutes during YK12-05 cruise by R/V Yokosuka (Japan Agency for Marine-Earth Science and Technology, JAMSTEC). DIC concentration of plume samples collected by ANEMONE sampler were analyzed just after submersible retrieve, and nutrients, manganese, density, and total cell counts determination were conducted onshore analysis. Based on these results, we describe the spatial distribution of DIC and carbonate system on Iheya North hydrothermal field (interstitial water, hydrothermal fluid, and hydrothermal plume).
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Squyres, S. W.; Baumgartner, E. T.; Schenker, P. S.; Niebur, C. S.; Larsen, K. W.; SeelosIV, F. P.; Snider, N. O.; Jolliff, B. L.
2002-08-01
The Field Integration Design and Operations (FIDO) prototype Mars rover was deployed and operated remotely for 2 weeks in May 2000 in the Black Rock Summit area of Nevada. The blind science operation trials were designed to evaluate the extent to which FIDO-class rovers can be used to conduct traverse science and collect samples. FIDO-based instruments included stereo cameras for navigation and imaging, an infrared point spectrometer, a color microscopic imager for characterization of rocks and soils, and a rock drill for core acquisition. Body-mounted ``belly'' cameras aided drill deployment, and front and rear hazard cameras enabled terrain hazard avoidance. Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, a high spatial resolution IKONOS orbital image, and a suite of descent images were used to provide regional- and local-scale terrain and rock type information, from which hypotheses were developed for testing during operations. The rover visited three sites, traversed 30 m, and acquired 1.3 gigabytes of data. The relatively small traverse distance resulted from a geologically rich site in which materials identified on a regional scale from remote-sensing data could be identified on a local scale using rover-based data. Results demonstrate the synergy of mapping terrain from orbit and during descent using imaging and spectroscopy, followed by a rover mission to test inferences and to make discoveries that can be accomplished only with surface mobility systems.
NASA Astrophysics Data System (ADS)
Fruh-Green, G. L.; Orcutt, B.; Green, S.; Cotterill, C.
2016-12-01
We present an overview of IODP Expedition 357, which successfully used two seabed rock drills to core 17 shallow holes at 9 sites across Atlantis Massif (Mid-Atlantic Ridge 30°N). A major goal of this expedition is to investigate serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. More than 57 m of core were recovered, with borehole penetration ranging from 1.3 to 16.4 meters below seafloor, and core recovery as high as 75% of total penetration. The cores show highly heterogeneous rock type, bulk rock chemistry and alteration that reflect multiple phases of magmatism and fluid-rock interaction within the detachment fault zone. In cores along an E-W transect of the southern wall, recovered mantle peridotites are locally intruded by gabbroic and doleritic dikes and veins. The proportion of mafic rocks are volumetrically less than the amount of mafic rocks recovered previously in the central dome at IODP Site U1309, suggesting a lower degree of melt infiltration into mantle peridotite at the ridge-transform intersection. New technologies were developed and successfully applied for the first time: (1) an in-situ sensor package and water sampling system on each seabed drill measured real-time variations in dissolved methane, oxygen, pH, oxidation reduction potential, temperature, and conductivity during drilling and took water samples after drilling; (2) a borehole plug system to seal the boreholes was successfully deployed at two sites to allow access for future sampling; and (3) delivery of chemical tracers into the drilling fluids for contamination testing. We will provide an overview of the drilling strategy and preliminary results of Expedition 357, and highlight the role of serpentinization in sustaining microbial communities in a region of active serpentinization and low temperature hydrothermal alteration.
A novel passive/active hybrid robot for orthopaedic trauma surgery.
Kuang, Shaolong; Leung, Kwok-sui; Wang, Tianmiao; Hu, Lei; Chui, Elvis; Liu, Wenyong; Wang, Yu
2012-12-01
Image guided navigation systems (IGNS) have been implemented successfully in orthopaedic trauma surgery procedures because of their ability to help surgeons position and orient hand-held drills at optimal entry points. However, current IGNS cannot prevent drilling tools or instruments from slipping or deviating from the planned trajectory during the drilling process. A method is therefore needed to overcome such problems. A novel passive/active hybrid robot (the HybriDot) for positioning and supporting surgical tools and instruments while drilling and/or cutting in orthopaedic trauma surgery is presented in this paper. This new robot, consisting of a circular prismatic joint and five passive/active back-drivable joints, is designed to fulfill clinical needs. In this paper, a system configuration and three operational modes are introduced and analyzed. Workspace and layout in the operating theatre (OT) are also analyzed in order to validate the structure design. Finally, experiments to evaluate the feasibility of the robot system are described. Analysis, simulation, and experimental results show that the novel structure of the robot can provide an appropriate workspace without risk of collision within OT environments during operation. The back-drivable joint mechanism can provide surgeons with more safety and flexibility in operational modes. The mean square value of the positional accuracy of this robot is 0.811 mm, with a standard deviation (SD) of 0.361 mm; the orientation is accurate to within 2.186º, with a SD of 0.932º. Trials on actual patients undergoing surgery for distal locking of intramedullary nails were successfully conducted in one pass using the robot. This robot has the advantages of having an appropriate workspace, being well designed for human-robot cooperation, and having high accuracy, sufficient rigidity, and easy deployability within the OT for use in common orthopaedic trauma surgery tasks such as screw fixation and drilling assistance. Copyright © 2012 John Wiley & Sons, Ltd.
Support of EarthScope GPS Campaigns at the UNAVCO Facility
NASA Astrophysics Data System (ADS)
Boyce, E.; Blume, F.; Normandeau, J.
2008-12-01
In order to support portable GPS deployments funded by the NSF's EarthScope Science panel, PBO has purchased 100 campaign GPS systems. Based Topcon GB-1000 equipment, the systems have been designed for stand-alone temporary or semi-permanent deployment that will be used for densifying areas not sufficiently covered by continuous GPS, and responding to volcanic and tectonic crises. UNAVCO provides support for all aspects of these projects, including proposal and budget development, project planning, equipment design, field support, and data archiving. Ten of the 100 systems have been equipped with real-time kinematic (RTK) capability requiring additional radio and data logging equipment. RTK systems can be used to rapidly map fault traces and profile fault escarpments and collect precise position information for GIS based geologic mapping. Each portable self-contained campaign systems include 18 Ah batteries, a regulated 32 watt solar charging system, and a low-power dual frequency GPS receiver and antenna in a waterproof case with security enhancements. The receivers have redundant memory sufficient for storing over a year's worth of data as well as IP and serial communications capabilities for longer-term deployments. Monumentation options are determined on a project-by-project basis, with options including Tech2000 masts, low-profile spike mounts, and traditional tripods and optical tribrachs. Drilled-braced monuments or masts can be installed for "semi- permanent" style occupations. The systems have been used to support several projects to date, including the University of Washington's 30-unit deployment to monitor the Episodic Tremor and Slip event in November, 2005 and the ongoing Rio Grande Rift experiment, run by the Universities of Colorado, Utah State, and New Mexico, which has seen the construction of 25 permanent monuments in 2006 and 2007 and a 26-site campaign reoccupation in 2008.
Support of EarthScope GPS Campaigns at the UNAVCO Facility
NASA Astrophysics Data System (ADS)
Boyce, E.; Blume, F.; Normandeau, J.
2007-12-01
In order to support portable GPS deployments funded by the NSF's EarthScope Science panel, PBO has purchased 100 campaign GPS systems. Based Topcon GB-1000 equipment, the systems have been designed for stand-alone temporary or semi-permanent deployment that will be used for densifying areas not sufficiently covered by continuous GPS, and responding to volcanic and tectonic crises. UNAVCO provides support for all aspects of these projects, including proposal and budget development, project planning, equipment design, field support, and data archiving. Ten of the 100 systems will be purchased with real-time kinematic (RTK) capability requiring additional radio and data logging equipment. RTK systems can be used to rapidly map fault traces and profile fault escarpments and collect precise position information for GIS based geologic mapping. Each portable self-contained campaign systems include 18 Ah batteries, a regulated 32 watt solar charging system, and a low-power dual frequency GPS receiver and antenna in a waterproof case with security enhancements. The receivers have redundant memory sufficient for storing over a year's worth of data as well as IP and serial communications capabilities for longer-term deployments. Monumentation options are determined on a project-by-project basis, with options including Tech2000 masts, low-profile spike mounts, and traditional tripods and optical tribrachs. Drilled-braced monuments or masts can be installed for "semi-permanent" style occupations. The systems have been used to support several projects to date, including the University of Washington's 30- unit deployment to monitor the Episodic Tremor and Slip event in November, 2005 and the ongoing Rio Grande Rift experiment, run by the Universities of Colorado, Utah State, and New Mexico, which has seen the construction of 25 permanent monuments in 2006 and 2007.
NASA Astrophysics Data System (ADS)
Toy, V. G.; Maeda, L.; Toczko, S.; Eguchi, N.; Chester, F. M.; Mori, J. J.; Sawada, I.; Saruhashi, T.
2014-12-01
During IODP Expedition 343: The Japan Trench Fast Drilling Project (JFAST), two main boreholes were drilled from the D/V Chikyu in ~7000 m water depth. An uncored hole that penetrated to 850.5 meters below seafloor (mbsf) (total depth [TD] = 7740 meters below sea level [mbsl]) was documented using logging while drilling (LWD) tools. From an adjacent partially cored hole drilled to 844.5 mbsf (TD = 7734 mbsl) 21 cores were acquired that spanned the two main fault targets. The operations lasted 88 days. The drilling operation was very technically challenging. The drill string had to be withdrawn a number of times due to high seas, and technical issues; five holes were drilled (one abandoned after spud-in) and reoccupied in >6800 m water depth. A simple observatory was deployed in the wellhead installed during Exp 343 during the follow-up Exp 343T. In certain intervals during coring we mostly recovered loose, subrounded fine gravel clasts of the two major lithologies penetrated to those depths (silt and mudstones). We have performed particle shape and size analysis on these gravel aggregates. Particle shape variations apparent visually are not clearly quantified by conventional 'shape descriptors'. Variations in particle size distributions are apparent and we will discuss whether these relate to variations in drilling parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temple, Brian Allen; Pimentel, David A.
This document covers the various testing and modifications of the Device Modeler Tool Kit (DMTK) for project LANL12-RS-108J in FY14. The testing has been comprised of different device modelers and trainees for device modeling using DMTK on the secure network for a few test problems. Most of these problems have been synthetic data problems. There has been a local secure network training drill where one of the trainees has used DMTK for real data. DMTK has also been used on a laptop for a deployed real data training drill. Once DMTK gets into the home team, it will be usedmore » for more training drills (TDs) which will contain real data in the future.« less
NASA Astrophysics Data System (ADS)
Lee, S. M.; Parq, J. H.; Kim, H.; Moe, K.; Lee, C. S.; Kanamatsu, T.; Kim, K. J.; Bahk, K. S.
2017-12-01
Determining the azimuthal orientation of core samples obtained from deep drilling is extremely difficult because the core itself could have rotated during drilling operations. Several indirect methods have been devised to address this issue, but have certain limitations. Thus it is still a challenge to determine the azimuthal orientation consistently over the entire length of the hole. Provided that the recovery rate is high and thus all the other magnetic properties such as magnetization intensity and inclination are measured from the recovered cores, one possible method for ascertaining magnetic declination information is to measure the magnetic field inside the empty borehole and invert for the best fitting declination. However, there are two major problems: one is that present-day borehole magnetometers are not precise enough to resolve changes in direction of magnetization, and the other is that in most rock drilling experiments the rate of recovery is low. To overcome the first major problem which is technical, scientists from Korea and Japan jointly conducted the development for the next-generation borehole magnetometer, namely 3GBM (3rd Generation Borehole Magnetometer). The borehole magnetometer which uses fiber-optic laser gyro promises to provide accurate information on not only the magnetic field itself but also the orientation of the instrument inside the borehole. Our goal is to deploy this borehole magnetometer in the ICDP Oman Drilling Project Phase 2 drilling experiment early 2018. The site may be suitable for the investigation because, as recent Phase 1 of the Oman Samail Ophiolite drilling has demonstrated, the recovery rate was very high. Also the post-drilling measurements onboard DV Chikyu have shown that much of the recovered samples has moderate magnetization intensity on the order of 0.1 and 1 A/m. Here, we present the results of numerical simulation of magnetic field inside the borehole using finite element method to show that magnetic declination may be obtained systematically from the top to the bottom of the holes. The results will help us to fine tune the magnetometer before the actual deployment. It will also be useful in interpreting the obtained results together with resistivity images from conventional wireline logging and post-drilling paleomagnetic lab measurements results.
Persistent Identifiers for Field Deployments: A Missing Link in the Provenance Chain
NASA Astrophysics Data System (ADS)
Arko, R. A.; Ji, P.; Fils, D.; Shepherd, A.; Chandler, C. L.; Lehnert, K.
2016-12-01
Research in the geosciences is characterized by a wide range of complex and costly field deployments including oceanographic cruises, submersible dives, drilling expeditions, seismic networks, geodetic campaigns, moored arrays, aircraft flights, and satellite missions. Each deployment typically produces a mix of sensor and sample data, spanning a period from hours to decades, that ultimately yields a long tail of post-field products and publications. Publishing persistent, citable identifiers for field deployments will facilitate 1) preservation and reuse of the original field data, 2) reproducibility of the resulting publications, and 3) recognition for both the facilities that operate the platforms and the investigators who secure funding for the experiments. In the ocean domain, sharing unique identifiers for field deployments is a familiar practice. For example, the Biological and Chemical Oceanography Data Management Office (BCO-DMO) routinely links datasets to cruise identifiers published by the Rolling Deck to Repository (R2R) program. In recent years, facilities have started to publish formal/persistent identifiers, typically Digital Object Identifiers (DOIs), for field deployments including seismic networks, oceanographic cruises, and moored arrays. For example, the EarthChem Library (ECL) publishes a DOI for each dataset which, if it derived from an oceanographic research cruise on a US vessel, is linked to a DOI for the cruise published by R2R. Work is underway to create similar links for the IODP JOIDES Resolution Science Operator (JRSO) and the Continental Scientific Drilling Coordination Office (CSDCO). We present results and lessons learned including a draft schema for publishing field deployments as DataCite DOI records; current practice for linking these DOIs with related identifiers such as Open Researcher and Contributor IDs (ORCIDs), Open Funder Registry (OFR) codes, and International Geo Sample Numbers (IGSNs); and consideration of other identifier types for field deployments such as UUIDs and Handles.
NASA Astrophysics Data System (ADS)
Pape, Thomas; Hohnberg, Hans-Jürgen; Wunsch, David; Anders, Erik; Freudenthal, Tim; Huhn, Katrin; Bohrmann, Gerhard
2017-11-01
Pressure barrels for sampling and preservation of submarine sediments under in situ pressure with the robotic sea-floor drill rig MeBo (Meeresboden-Bohrgerät) housed at the MARUM (Bremen, Germany) were developed. Deployments of the so-called MDP
(MeBo pressure vessel) during two offshore expeditions off New Zealand and off Spitsbergen, Norway, resulted in the recovery of sediment cores with pressure stages equaling in situ hydrostatic pressure. While initially designed for the quantification of gas and gas-hydrate contents in submarine sediments, the MDP also allows for analysis of the sediments under in situ pressure with methods typically applied by researchers from other scientific fields (geotechnics, sedimentology, microbiology, etc.). Here we report on the design and operational procedure of the MDP and demonstrate full functionality by presenting the first results from pressure-core degassing and molecular gas analysis.
AURORA BOREALIS - European Research Icebreaker With Drilling Capability
NASA Astrophysics Data System (ADS)
Biebow, N.; Lembke-Jene, L.; Kunz-Pirrung, M.; Thiede, J.
2008-12-01
The polar oceans are the least known areas of the globe, in although they hold the key to many of our climate´s secrets. How does the sea ice coverage and the sea water properties change? How do plants and animals survive under the most extreme conditions of the earth? Which information of past climate change can be read from the sediments at the sea-floor and how can the future changing climate be predicted? In order to answer such and further questions, for the moment a hypermodern research vessel, the AURORA BOREALIS, is planned, which can handle the cool summers and freezing winters of the polar oceans and which can drill deep into the sea floor. AURORA BOREALIS will be the most advanced Research Icebreaker in the world with a multi-functional role of drilling in deep ocean basins and supporting climate/environmental research and decision support for stakeholder governments for the next 35-40 years. It will have a high icebreaking capacity to penetrate autonomously (single ship operation) into the central Arctic Ocean with more than 2.5 meters of ice cover, during all seasons of the year. The new technological features will include dynamic positioning in closed sea- ice cover, satellite navigation and ice-management support and the deployment and operation of Remotely Operated Vehicles (ROV) and Autonomous Underwater Vehicles (AUVs) from the twin moon-pools. A unique feature of the vessel is the deep-sea drilling rig, which will enable sampling of the ocean floor and sub-sea up to 5000 m water and 1000 m penetration at the most inhospitable places on earth. The drilling capability will be deployed in both Polar Regions on the long run and AURORA BOREALIS will be the only vessel worldwide that could undertake this type of scientific investigation.
The Subglacial Access and Fast Ice Research Experiment - SAFIRE - on Store Glacier, West Greenland
NASA Astrophysics Data System (ADS)
Christoffersen, P.; Hubbard, B. P.; Doyle, S. H.; Young, T. J.; Hofstede, C. M.; Bougamont, M. H.; Todd, J.; Toberg, N.; Nicholls, K. W.; Box, J.; Walter, J. I.; Hubbard, A.
2015-12-01
Marine-terminating outlet glaciers drain 90 percent of the Greenland Ice Sheet and are responsible for about half of the ice sheet's net annual mass loss, which currently raises global sea level by 1 mm per year. The basal controls on these fast-flowing glaciers are, however, poorly understood, with the implication that numerical ice sheet models needed to predict future dynamic ice loss from Greenland relies on uncertain and often untested basal parameterizations. The Subglacial Access and Fast Ice Research Experiment - SAFIRE - is addressing this paucity of observational constraints by drilling to the bed of Store Glacier, a fast-flowing outlet glacier terminating in Uummannaq Fjord, West Greenland. In 2014, we gained access to the bed in four boreholes drilled to depths of 603-616 m near the center of the glacier, 30 km inland from the calving terminus where ice flows at a rate of 700 m/year. A seismic survey showed the glacier bed to consist of water-saturated, soft sediment. The water level in all four boreholes nevertheless dropped rapidly to 80 m below the ice surface when the drill connected with a basal water system, indicating effective drainage over a sedimentary bed. We were able to install wired sensor strings at the bed (water pressure, temperature, electrical conductivity and turbidity) and within the glacier (temperature and tilt) in three boreholes. The sensors operated for up to 80+ days before cables stretched and ultimately snapped due to high internal strain. The data collected during this sensor deployment show ice as cold as -21 degrees Celcius; yet, temperature of water in the basal water system was persistently above the local freezing point. With diurnal variations detected in several sensor records, we hypothesise that surface water lubricates the ice flow while also warming basal ice. The fast basal motion of Store Glacier not only occurs by basal sliding, but from high rates of concentrated strain in the bottom third of the glacier. Deployment of an autonomous phase-sensitive radar near the drill site complements the data collected by sensors installed in boreholes, as internal reflectors measured at hourly timescale show very high, and highly variable internal strain within the glacier. In 2016, we plan to install new sensors while also sampling cores from the bed.
Marheineke, Nadine; Scherer, Uta; Rücker, Martin; von See, Constantin; Rahlf, Björn; Gellrich, Nils-Claudius; Stoetzer, Marcus
2018-06-01
Dental implant failure and insufficient osseointegration are proven results of mechanical and thermal damage during the surgery process. We herein performed a comparative study of a less invasive single-step drilling preparation protocol and a conventional multiple drilling sequence. Accuracy of drilling holes was precisely analyzed and the influence of different levels of expertise of the handlers and additional use of drill template guidance was evaluated. Six experimental groups, deployed in an osseous study model, were representing template-guided and freehanded drilling actions in a stepwise drilling procedure in comparison to a single-drill protocol. Each experimental condition was studied by the drilling actions of respectively three persons without surgical knowledge as well as three highly experienced oral surgeons. Drilling actions were performed and diameters were recorded with a precision measuring instrument. Less experienced operators were able to significantly increase the drilling accuracy using a guiding template, especially when multi-step preparations are performed. Improved accuracy without template guidance was observed when experienced operators were executing single-step versus multi-step technique. Single-step drilling protocols have shown to produce more accurate results than multi-step procedures. The outcome of any protocol can be further improved by use of guiding templates. Operator experience can be a contributing factor. Single-step preparations are less invasive and are promoting osseointegration. Even highly experienced surgeons are achieving higher levels of accuracy by combining this technique with template guidance. Hereby template guidance enables a reduction of hands-on time and side effects during surgery and lead to a more predictable clinical diameter.
NASA Technical Reports Server (NTRS)
Stoker, C. R.; Zavaleta, J.; Bell, M.; Direto, S.; Foing, B.; Blake, D.; Kim, S.
2010-01-01
DOMEX (Drilling on the Moon and Mars in Human Exploration) is using analog missions to develop the approach for using human crews to perform science activities on the Moon and Mars involving exploration and sampling of the subsurface. Subsurface science is an important activity that may be uniquely enabled by human crews. DOMEX provides an opportunity to plan and execute planetary mission science activities without the expense and overhead of a planetary mission. Objectives: The objective of this first in a series of DOMEX missions were to 1) explore the regional area to understand the geologic context and determine stratigraphy and geologic history of various geologic units in the area. 2) Explore for and characterize sites for deploying a deep (10 m depth) drilling system in a subsequent field season. 3) Perform GPR on candidate drill sites. 4) Select sites that represent different geological units deposited in different epochs and collect soil cores using sterile procedures for mineralogical, organic and biological analysis. 5) Operate the MUM in 3 different sites representing different geological units and soil characteristics. 6) Collect rock and soil samples of sites visited and analyze them at the habitat. Results: At mission start the crew performed a regional survey to identify major geologic units that were correlated to recognized stratigraphy and regional geologic maps. Several candidate drill sites were identified. During the rest of the mission, successful GPR surveys were conducted in four locations. Soil cores were collected in 5 locations representing soils from 4 different geologic units, to depths up to 1m. Soil cores from two locations were analyzed with PCR in the laboratory. The remainder were reserved for subsequent analysis. XRD analysis was performed in the habitat and in the field on 39 samples, to assist with sample characterization, conservation, and archiving. MUM was deployed at 3 field locations and 1 test location (outside the habitat) where it operated autonomously for 2-4 hours at each site. Depths achieved ranged from 15 to 70 cm depending on the soil compressive strength and the presence and depth of subsurface indurated layers. Subsurface samples weighing 0.5 to 1 g were collected at the deepest depth encountered at each of the sites using the MUM automated sample collection system, and subsequently analyzed with XRD. Downhole inspection of holes produced by MUM with the Raman spectrometer was acquired on two of the holes and spectral features associated with selenite were identified in specific soil layers. Previously unreported fossilized remains of vertebrate fauna from the Jurassic era were discovered during our mission. Analysis of mineral biomarkers associated with this discovery are underway.
Active Wireline Heave Compensation for Ocean Drilling
NASA Astrophysics Data System (ADS)
Goldberg, D.; Liu, T.; Swain, K.; Furman, C.; Iturrino, G. J.
2014-12-01
The up-and-down heave motion of a ship causes a similar motion on any instruments tethered on wireline cable below it. If the amplitude of this motion is greater than a few tens of cm, significant discrepancy in the depth below the ship is introduced, causing uncertainty in the acquired data. Large and irregular cabled motions also increase the risk of damaging tethered instruments, particularly those with relatively delicate sensors. In 2005, Schlumberger and Deep Down, Inc built an active wireline heave compensator (AHC) system for use onboard the JOIDES Resolution to compensate for heave motion on wireline logging tools deployed in scientific drill holes. The goals for the new AHC system were to (1) design a reliable heave compensation system; and (2) devise a robust and quantitative methodology for routine assessment of compensation efficiency (CE) during wireline operations. Software programs were developed to monitor CE and the dynamics of logging tools in real-time, including system performance under variable parameters such as water depth, sea state, cable length, logging speed and direction. We present the CE results from the AHC system on the JOIDES Resolution during a 5-year period of recent IODP operations and compare the results to those from previous compensation systems deployed during ODP and IODP. Based on new data under heave conditions of ±0.2-2.0 m and water depths of 300-4,800 m in open holes, the system reduces 65-80% of downhole tool displacement under stationary conditions and 50-60% during normal logging operations. Moreover, down/up tool motion at low speeds (300-600 m/h) reduces the system's CE values by 15-20%, and logging down at higher speeds (1,000-1,200 m/h) reduces CE values by 55-65%. Furthermore, the system yields slightly lower CE values of 40-50% without tension feedback of the downhole cable while logging. These results indicate that the new system's compensation efficiency is comparable to or better than previous systems, with additional advantages that include upgradable compensation control software and the capability for continued assessment under varying environmental conditions. Future integration of downhole cable dynamics as an input feedback could further improve CE during logging operations.
NASA Astrophysics Data System (ADS)
Hebbeln, Dierk; Wienberg, Claudia; Frank, Norbert
2015-04-01
Cold-water corals (CWC) mostly occur in intermediate water depths between 200 m and 1000 m and are capable of forming substantial seafloor structures, so-called coral carbonate mounds. These mounds can reach heights from a few meters up to >300 m and are composed of a mixture of CWC (and other shell) fragments and hemipelagic sediments, that both individually serve as distinct paleo-archives. IODP Leg 307 drilled through Challenger Mound at the Irish margin and revealed for the first time the full life history of a coral mound. However, although CWC occur almost worldwide, the 155 m long Challenger Mound record was for many years the only record from a coral mound exceeding 10 m in length. During expedition MSM36 with the German R/V MARIA S. MERIAN in spring 2014, several coral mounds along the Moroccan margin, both in the Atlantic Ocean and in the Mediterranean Sea, were drilled (actually: push-cored) by applying the Bremen Seafloor Drill Rig MeBo. The MeBo is a remotely controlled drilling system that is lowered from the vessel to the seafloor. Energy supply and video control are secured by an umbilical linking the MeBo to the vessel. The scientific foci of expedition MSM36 were to investigate (1) the long-term development of CWC mounds in both areas over the last several 100,000 years in relation to changes in the ambient environmental conditions in the respective intermediate waters, (2) the life time history of these mounds, and (3) the forcing factors for the initiation and decease of individual mounds. In both working areas, a total amount of 11 sites were successfully drilled with MeBo. Eight drillings were conducted at CWC mounds (on-mound sites) and 3 drillings in the direct vicinity of the mounds (off-mound sites) in order to obtain continuous paleoceanographic records. Drilling depths ranged between 17 m and 71 m with the latter corresponding to the maximum drilling depth of MeBo. The core recoveries varied between the sites and ranged between 47% and 96%. The coral-bearing on-mound cores were frozen and opened (i.e., cut lengthwise) with a stone saw to avoid a destruction of the original sediment texture with the embedded coral fragments. After opening, it became obvious that the quality of the MeBo cores is excellent and that it allows detailed post-cruise analyses at the MARUM laboratories in Bremen. By obtaining on-mound records reaching lengths of >70 m (focus #1), supplemented by the full penetration of three coral mounds (foci #2 and #3) and by a >45-m-long double drilling at an off-mound site located between numerous fossil and buried mounds (allowing to put their full life history into a wider paleoceanographic context; foci #1 to #3), the major technical goals of this MeBo expedition were fully accomplished. The critical factor in applying MeBo is the sea state as during deployment and recovery dynamic loads on the umbilical might reach critical limits. Although during expedition MSM36 several MeBo deployments were done by wind speeds of 6 Bft, the sea state especially in the Mediterranean Sea allowed MeBo operations without any restrictions. On the Atlantic side, a high swell, which actually exceeded the operational limit given for secured MeBo operations, could be overcome by reducing the payload (i.e. reducing the maximum drill depth). Hence, the operational window could be widened allowing for almost continuous MeBo operations also in this area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2015-02-28
To address the critical site characterization and monitoring needs for CCS programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2010 a contract to design, build and test a fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying up to one thousand 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor pod design and most important –more » a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-2.3 at frequencies up to 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The fibers used for the seismic sensors in the system are used to record Distributed Temperature Sensor (DTS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
An unmanned ground vehicle for landmine remediation
NASA Astrophysics Data System (ADS)
Wasson, Steven R.; Guilberto, Jose; Ogg, Wade; Wedeward, Kevin; Bruder, Stephen; El-Osery, Aly
2004-09-01
Anti-tank (AT) landmines slow down and endanger military advances and present sizeable humanitarian problems. The remediation of these mines by direct human intervention is both dangerous and costly. The Intelligent Systems & Robotics Group (ISRG) at New Mexico Tech has provided a partial solution to this problem by developing an Unmanned Ground Vehicle (UGV) to remediate these mines without endangering human lives. This paper presents an overview of the design and operation of this UGV. Current results and future work are also described herein. To initiate the remediation process the UGV is given the GPS coordinates of previously detected landmines. Once the UGV autonomously navigates to an acceptable proximity of the landmine, a remote operator acquires control over a wireless network link using a joystick on a base station. Utilizing two cameras mounted on the UGV, the operator is able to accurately position the UGV directly over the landmine. The UGV houses a self-contained drill system equipped with its own processing resources, sensors, and actuators. The drill system deploys a neutralizing device over the landmine to neutralize it. One such device, developed by Science Applications International Corporation (SAIC), employs incendiary materials to melt through the container of the landmine and slowly burn the explosive material, thereby safely and remotely disabling the landmine.
2010-07-08
Scientists and Coast Guard swimmers test the integrity a melt pond on sea ice in the Chukchi Sea on July 9, 2010, before drilling holes through which instruments can be deployed to collect data. The research is part of NASA's ICESCAPE mission onboard the U.S. Coast Guard icebreaker Healy to sample the physical, chemical and biological characteristics of the ocean and sea ice. Impacts of Climate change on the Eco-Systems and Chemistry of the Arctic Pacific Environment (ICESCAPE) is a multi-year NASA shipborne project. The bulk of the research will take place in the Beaufort and Chukchi Sea’s in summer of 2010 and fall of 2011. Photo Credit: (NASA/Kathryn Hansen)
High Temperature 300°C Directional Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Kamalesh; Aaron, Dick; Macpherson, John
2015-07-31
Many countries around the world, including the USA, have untapped geothermal energy potential. Enhanced Geothermal Systems (EGS) technology is needed to economically utilize this resource. Temperatures in some EGS reservoirs can exceed 300°C. To effectively utilize EGS resources, an array of injector and production wells must be accurately placed in the formation fracture network. This requires a high temperature directional drilling system. Most commercial services for directional drilling systems are rated for 175°C while geothermal wells require operation at much higher temperatures. Two U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) projects have been initiated to develop a 300°Cmore » capable directional drilling system, the first developing a drill bit, directional motor, and drilling fluid, and the second adding navigation and telemetry systems. This report is for the first project, “High Temperature 300°C Directional Drilling System, including drill bit, directional motor and drilling fluid, for enhanced geothermal systems,” award number DE-EE0002782. The drilling system consists of a drill bit, a directional motor, and drilling fluid. The DOE deliverables are three prototype drilling systems. We have developed three drilling motors; we have developed four roller-cone and five Kymera® bits; and finally, we have developed a 300°C stable drilling fluid, along with a lubricant additive for the metal-to-metal motor. Metal-to-metal directional motors require coatings to the rotor and stator for wear and corrosion resistance, and this coating research has been a significant part of the project. The drill bits performed well in the drill bit simulator test, and the complete drilling system has been tested drilling granite at Baker Hughes’ Experimental Test Facility in Oklahoma. The metal-to-metal motor was additionally subjected to a flow loop test in Baker Hughes’ Celle Technology Center in Germany, where it ran for more than 100 hours.« less
Special mobile rescue unit can speed recovery
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1977-04-01
Since time is often a matter of life and death in a mine disaster, Mine Emergency Operations (MEO) personnel are prepared to begin rescue work at any mining site in the eastern part of the United States within six hours of notification, and within no more than nine hours in the western United States. The entire MEO force, including vans, trucks, bulldozers to clear and level the drilling site, seismic equipment, and the big drilling rig can be on any site within less than 20 hours of a disaster. The speed of deployment is made possible in some measure bymore » a special agreement between MESA and the United States Air Force, which stands ready 24 hours a day to dispatch giant C-130 cargo aircraft to airlift the tons of bulky MEO equipment. While the big drilling rig is usually taken to disaster sites by highway, it can also be airlifted when necessary.« less
Compact drilling and sample system
NASA Technical Reports Server (NTRS)
Gillis-Smith, Greg R.; Petercsak, Doug
1998-01-01
The Compact Drilling and Sample System (CDSS) was developed to drill into terrestrial, cometary, and asteroid material in a cryogenic, vacuum environment in order to acquire subsurface samples. Although drills were used by the Apollo astronauts some 20 years ago, this drill is a fraction of the mass and power and operates completely autonomously, able to drill, acquire, transport, dock, and release sample containers in science instruments. The CDSS has incorporated into its control system the ability to gather science data about the material being drilled by measuring drilling rate per force applied and torque. This drill will be able to optimize rotation and thrust in order to achieve the highest drilling rate possible in any given sample. The drill can be commanded to drill at a specified force, so that force imparted on the rover or lander is limited. This paper will discuss the cryo dc brush motors, carbide gears, cryogenic lubrication, quick-release interchangeable sampling drill bits, percussion drilling and the control system developed to achieve autonomous, cryogenic, vacuum, lightweight drilling.
Drilling systems for extraterrestrial subsurface exploration.
Zacny, K; Bar-Cohen, Y; Brennan, M; Briggs, G; Cooper, G; Davis, K; Dolgin, B; Glaser, D; Glass, B; Gorevan, S; Guerrero, J; McKay, C; Paulsen, G; Stanley, S; Stoker, C
2008-06-01
Drilling consists of 2 processes: breaking the formation with a bit and removing the drilled cuttings. In rotary drilling, rotational speed and weight on bit are used to control drilling, and the optimization of these parameters can markedly improve drilling performance. Although fluids are used for cuttings removal in terrestrial drilling, most planetary drilling systems conduct dry drilling with an auger. Chip removal via water-ice sublimation (when excavating water-ice-bound formations at pressure below the triple point of water) and pneumatic systems are also possible. Pneumatic systems use the gas or vaporization products of a high-density liquid brought from Earth, gas provided by an in situ compressor, or combustion products of a monopropellant. Drill bits can be divided into coring bits, which excavate an annular shaped hole, and full-faced bits. While cylindrical cores are generally superior as scientific samples, and coring drills have better performance characteristics, full-faced bits are simpler systems because the handling of a core requires a very complex robotic mechanism. The greatest constraints to extraterrestrial drilling are (1) the extreme environmental conditions, such as temperature, dust, and pressure; (2) the light-time communications delay, which necessitates highly autonomous systems; and (3) the mission and science constraints, such as mass and power budgets and the types of drilled samples needed for scientific analysis. A classification scheme based on drilling depth is proposed. Each of the 4 depth categories (surface drills, 1-meter class drills, 10-meter class drills, and deep drills) has distinct technological profiles and scientific ramifications.
Technology and Engineering Advances Supporting EarthScope's Alaska Transportable Array
NASA Astrophysics Data System (ADS)
Miner, J.; Enders, M.; Busby, R.
2015-12-01
EarthScope's Transportable Array (TA) in Alaska and Canada is an ongoing deployment of 261 high quality broadband seismographs. The Alaska TA is the continuation of the rolling TA/USArray deployment of 400 broadband seismographs in the lower 48 contiguous states and builds on the success of the TA project there. The TA in Alaska and Canada is operated by the IRIS Consortium on behalf of the National Science Foundation as part of the EarthScope program. By Sept 2015, it is anticipated that the TA network in Alaska and Canada will be operating 105 stations. During the summer of 2015, TA field crews comprised of IRIS and HTSI station specialists, as well as representatives from our partner agencies the Alaska Earthquake Center and the Alaska Volcano Observatory and engineers from the UNAVCO Plate Boundary Observatory will have completed a total of 36 new station installations. Additionally, we will have completed upgrades at 9 existing Alaska Earthquake Center stations with borehole seismometers and the adoption of an additional 35 existing stations. Continued development of battery systems using LiFePO4 chemistries, integration of BGAN, Iridium, Cellular and VSAT technologies for real time data transfer, and modifications to electronic systems are a driving force for year two of the Alaska Transportable Array. Station deployment utilizes custom heliportable drills for sensor emplacement in remote regions. The autonomous station design evolution include hardening the sites for Arctic, sub-Arctic and Alpine conditions as well as the integration of rechargeable Lithium Iron Phosphate batteries with traditional AGM batteries We will present new design aspects, outcomes, and lessons learned from past and ongoing deployments, as well as efforts to integrate TA stations with other existing networks in Alaska including the Plate Boundary Observatory and the Alaska Volcano Observatory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulsson, Bjorn N.P.
2016-06-29
To address the critical site characterization and monitoring needs for Enhance Geothermal Systems (EGS) programs, US Department of Energy (DOE) awarded Paulsson, Inc. in 2011 a contract to design, build and test a high temperature fiber optic based ultra-large bandwidth clamped borehole seismic vector array capable of deploying a large number of 3C sensor pods suitable for deployment into high temperature and high pressure boreholes. Paulsson, Inc. has completed a design or a unique borehole seismic system consisting of a novel drill pipe based deployment system that includes a hydraulic clamping mechanism for the sensor pods, a new sensor podmore » design and most important – a unique fiber optic seismic vector sensor with technical specifications and capabilities that far exceed the state of the art seismic sensor technologies. These novel technologies were all applied to the new borehole seismic system. In combination these technologies will allow for the deployment of up to 1,000 3C sensor pods in vertical, deviated or horizontal wells. Laboratory tests of the fiber optic seismic vector sensors developed during this project have shown that the new borehole seismic sensor technology is capable of generating outstanding high vector fidelity data with extremely large bandwidth: 0.01 – 6,000 Hz. Field tests have shown that the system can record events at magnitudes much smaller than M-4.0 at frequencies over 2,000 Hz. The sensors have also proved to be about 100 times more sensitive than the regular coil geophones that are used in borehole seismic systems today. The fiber optic seismic sensors have furthermore been qualified to operate at temperatures over 300°C (572°F). The data telemetry fibers used for the seismic vector sensors in the system are also used to simultaneously record Distributed Temperature Sensor (DTS) and Distributed Acoustic Sensor (DAS) data allowing additional value added data to be recorded simultaneously with the seismic vector sensor data.« less
While drilling system and method
Mayes, James C.; Araya, Mario A.; Thorp, Richard Edward
2007-02-20
A while drilling system and method for determining downhole parameters is provided. The system includes a retrievable while drilling tool positionable in a downhole drilling tool, a sensor chassis and at least one sensor. The while drilling tool is positionable in the downhole drilling tool and has a first communication coupler at an end thereof. The sensor chassis is supported in the drilling tool. The sensor chassis has a second communication coupler at an end thereof for operative connection with the first communication coupler. The sensor is positioned in the chassis and is adapted to measure internal and/or external parameters of the drilling tool. The sensor is operatively connected to the while drilling tool via the communication coupler for communication therebetween. The sensor may be positioned in the while drilling tool and retrievable with the drilling tool. Preferably, the system is operable in high temperature and high pressure conditions.
The ICDP Snake River Geothermal Drilling Project: preliminary overview of borehole geophysics
Schmitt, Douglas R.; Liberty, Lee M.; Kessler, James E.; Kuck, Jochem; Kofman, Randolph; Bishop, Ross; Shervais, John W.; Evans, James P.; Champion, Duane E.
2012-01-01
Hotspot: The Snake River Geothermal Drilling Project was undertaken to better understand the geothermal systems in three locations across the Snake River Plain with varying geological and hydrological structure. An extensive series of standard and specialized geophysical logs were obtained in each of the wells. Hydrogen-index neutron and γ-γ density logs employing active sources were deployed through the drill string, and although not fully calibrated for such a situation do provide semi-quantitative information related to the ‘stratigraphy’ of the basalt flows and on the existence of alteration minerals. Electrical resistivity logs highlight the existence of some fracture and mineralized zones. Magnetic susceptibility together with the vector magnetic field measurements display substantial variations that, in combination with laboratory measurements, may provide a tool for tracking magnetic field reversals along the borehole. Full waveform sonic logs highlight the variations in compressional and shear velocity along the borehole. These, together with the high resolution borehole seismic measurements display changes with depth that are not yet understood. The borehole seismic measurements indicate that seismic arrivals are obtained at depth in the formations and that strong seismic reflections are produced at lithological contacts seen in the corresponding core logging. Finally, oriented ultrasonic borehole televiewer images were obtained over most of the wells and these correlate well with the nearly 6 km of core obtained. This good image log to core correlations, particularly with regards to drilling induced breakouts and tensile borehole and core fractures will allow for confident estimates of stress directions and or placing constraints on stress magnitudes. Such correlations will be used to orient in core orientation giving information useful in hydrological assessments, paleomagnetic dating, and structural volcanology.
An experimental system for coiled tubing partial underbalanced drilling (CT-PUBD) technique
NASA Astrophysics Data System (ADS)
Shi, H. Z.; Ji, Z. S.; Zhao, H. Q.; Chen, Z. L.; Zhang, H. Z.
2018-05-01
To improve the rate of penetration (ROP) in hard formations, a new high-speed drilling technique called Coiled Tubing Partial Underbalanced Drilling (CT-PUBD) is proposed. This method uses a rotary packer to realize an underbalanced condition near the bit by creating a micro-annulus and an overbalanced condition at the main part of the annulus. A new full-scale laboratory experimental system is designed and set up to study the hydraulic characteristics and drilling performance of this method. The system is composed of a drilling system, circulation system, and monitor system, including three key devices, namely, cuttings discharge device, rotary packer, and backflow device. The experimental results showed that the pressure loss increased linearly with the flow rate of the drilling fluid. The high drilling speed of CT-PUBD proved it a better drilling method than the conventional drilling. The experimental system may provide a fundamental basis for the research of CT-PUBD, and the results proved that this new method is feasible in enhancing ROP and guaranteeing the drilling safety.
Resonance: The science behind the art of sonic drilling
NASA Astrophysics Data System (ADS)
Lucon, Peter Andrew
The research presented in this dissertation quantifies the system dynamics and the influence of control variables of a sonic drill system. The investigation began with an initial body of work funded by the Department of Energy under a Small Business Innovative Research Phase I Grant, grant number: DE-FG02-06ER84618, to investigate the feasibility of using sonic drills to drill micro well holes to depths of 1500 feet. The Department of Energy funding enabled feasibility testing using a 750 hp sonic drill owned by Jeffery Barrow, owner of Water Development Co. During the initial feasibility testing, data was measured and recorded at the sonic drill head while the sonic drill penetrated to a depth of 120 feet. To demonstrate feasibility, the system had to be well understood to show that testing of a larger sonic drill could simulate the results of drilling a micro well hole of 2.5 inch diameter. A first-order model of the system was developed that produced counter-intuitive findings that enabled the feasibility of using this method to drill deeper and produce micro-well holes to 1500 feet using sonic drills. Although funding was not continued, the project work continued. This continued work expanded on the sonic drill models by understanding the governing differential equation and solving the boundary value problem, finite difference methods, and finite element methods to determine the significance of the control variables that can affect the sonic drill. Using a design of experiment approach and commercially available software, the significance of the variables to the effectiveness of the drill system were determined. From the significant variables, as well as the real world testing, a control system schematic for a sonic drill was derived and is patent pending. The control system includes sensors, actuators, personal logic controllers, as well as a human machine interface. It was determined that the control system should control the resonant mode and the weight on the bit as the primary two control variables. The sonic drill can also be controlled using feedback from sensors mounted on the sonic drill head, which is the driver for the sonic drill located above ground
Defense.gov Special Report: ESGR Freedom Award
returning from deployment, so service members are able to spend quality time with family. When employees drilling with my unit in Rock Island. Yet, no one on my team thinks twice when I tell them that I cannot work on a specific weekend, even though they are the ones who will pick up the slack when I cannot
NASA Astrophysics Data System (ADS)
Nakamura, Masako; Nakajima, Yuichi; Watanabe, Hiromi Kayama; Sasaki, Takenori; Yamamoto, Hiroyuki; Mitarai, Satoshi
2018-05-01
Due to increasing anthropogenic impacts on deep-sea hydrothermal vent ecosystems, it is essential to understand population structure and maintenance through larval recruitment and recovery of vent faunas after disturbances. In this study, we quantified vent animal recruitment in the Okinawa Trough, in the western Pacific Ocean. This is the first study to investigate recruitment patterns at a man-made hydrothermal vent. Colonization plates were deployed at three sites. Site 1 manifested new hydrothermal shimmering with small chimneys, white bacterial mats, and some alvinocaridid shrimp that arrived after drilling. Site 2 showed no evidence of newly arrived foundation species after drilling, and Site 3 had pre-existing animal communities in the vicinity of the new vent. Twenty-two months after deployment, colonization plates were retrieved and recruited animals were inventoried. Species composition and abundance differed among sites, but relatively high similarity in species composition was observed at Sites 1 and 3, though not at Site 2. Newly established communities on the plates at Sites 1 and 2 (no pre-existing fauna) showed lower species richness and abundance than at Site 3. Differences in abundance and size-frequency distributions of major recruits on the plates (i.e. Lepetodrilus nux, Bathymodiolus spp.) suggest the importance of reproductive and early life-history characteristics in spatial variability of recruitment. Lepetodrilus nux populations established on the plates at Site 1 showed high genetic connectivity. These results illustrate the importance of localized recruitment, which may have a significant impact on sustainability of vent faunal populations, despite the existence of regional metapopulations.
Systems and Methods for Gravity-Independent Gripping and Drilling
NASA Technical Reports Server (NTRS)
Thatte, Nitish (Inventor); King, Jonathan P. (Inventor); Parness, Aaron (Inventor); Frost, Matthew A. (Inventor)
2016-01-01
Systems and methods for gravity independent gripping and drilling are described. The gripping device can also comprise a drill or sampling devices for drilling and/or sampling in microgravity environments, or on vertical or inverted surfaces in environments where gravity is present. A robotic system can be connected with the gripping and drilling devices via an ankle interface adapted to distribute the forces realized from the robotic system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, C.V.; Lockwood, G.J.; Normann, R.A.
1999-06-01
The Environmental Measurement-While-Drilling (EMWD) system and Horizontal Directional Drilling (HDD) were successfully demonstrated at the Mock Tank Leak Simulation Site and the Drilling Technology Test Site, Hanford, Washington. The use of directional drilling offers an alternative to vertical drilling site characterization. Directional drilling can develop a borehole under a structure, such as a waste tank, from an angled entry and leveling off to horizontal at the desired depth. The EMWD system represents an innovative blend of new and existing technology that provides the capability of producing real-time environmental and drill bit data during drilling operations. The technology demonstration consisted ofmore » the development of one borehole under a mock waste tank at a depth of {approximately} {minus}8 m ({minus}27 ft.), following a predetermined drill path, tracking the drill path to within a radius of {approximately}1.5 m (5 ft.), and monitoring for zones of radiological activity using the EMWD system. The purpose of the second borehole was to demonstrate the capability of drilling to a depth of {approximately} {minus}21 m ({minus}70 ft.), the depth needed to obtain access under the Hanford waste tanks, and continue drilling horizontally. This report presents information on the HDD and EMWD technologies, demonstration design, results of the demonstrations, and lessons learned.« less
Transient ElectroMagnetic and Electric Self-Potential survey in the TAG hydrothermal field in MAR
NASA Astrophysics Data System (ADS)
Tao, C.; Deng, X.; Wu, G.; Xi, Z.; Zhou, D.; Zuo, L.
2012-12-01
The TAG hydrothermal field is one of the most studied hydrothermal fields. This field covers an area of 5km×5km, which includes low-temperature Mn- and Fe-oxides and nontronites zone, relict massive sulfide mounds as well as active hydrothermal mound(TAG mound) [Thompson, 1985, Rona, 1993]. Drilling program was performed in the ODP (Ocean Drilling Program) Leg 158 in the TAG mound [Humphris, 1996]. In 1996, electrical resistivity survey in the TAG mound was conducted using innovative transient electric dipole-dipole instruments which was carried by DSV 'Alvin' [Cairns et al., 1996, Von Herzen et al., 1996]. In June 2012, the 2nd Leg of the Chinese 26th cruise was carried out in the TAG hydrothermal field at Mid Atlantic Ridge by R/V DAYANGYIHAO. Six TEM (Transient ElectroMagnetic) survey lines were deployed, with four of which across the ODP Leg 158 drilling area. Besides, two SP (Electric Self-Potential) survey lines were across the ODP drilling area. The survey results of TEM preliminary revealed the vertical structure of the TAG hydrothermal field. The survey results of both TEM and SP are consistent with the ODP drilling result, and also agree well with the temperature and water-column anomalies obtained in this leg. Preliminary results show that the TEM and SP methods are capable of revealing the horizontal and vertical distribution of the hydrothermal sulfide fields.
NASA Astrophysics Data System (ADS)
Kopf, A.; Saffer, D. M.; Davis, E. E.; Araki, E.; Kinoshita, M.; Lauer, R. M.; Wheat, C. G.; Kitada, K.; Kimura, T.; Toczko, S.; Eguchi, N. O.; Science Parties, E.
2010-12-01
The IODP Nankai Trough Seismogenic Zone Experiment (NanTroSEIZE) is a multi-expedition drilling program designed to investigate fault mechanics, fault slip behavior, and strain accumulation along subduction megathrusts, through coring, logging, and long-term monitoring experiments. One key objective is the development and installation of a borehole observatory network extending from locations above the outer, presumably aseismic accretionary wedge to the seismogenic and interseismically locked plate interface, to record seismicity and slip transients, monitor strain accumulation, document hydraulic transients associated with deformation events, and quantify in situ pore fluid pressure and temperature. As part of recent NanTroSEIZE operations, borehole instruments have been developed for deployment at two sites: (1) Site C0010, which penetrates a major out-of-sequence thrust fault termed the “megasplay” at ca. 400 mbsf, and (2) Site C0002 in the Kumano forearc basin at a location that overlies both the updip edge of the inferred interseismically locked portion of the plate interface, and clusters of very low frequency thrust and reverse earthquakes located within the accretionary prism and potentially on the megasplay fault. In 2009, Site C0010 was drilled and cased with screens to access the megasplay fault, and a simple pore pressure and temperature monitoring system (a ”smartplug”) was installed. The simple observatory unit includes pressure and temperature sensors and a data logging package mounted beneath a mechanically set retrievable casing packer, and includes two pressure sensors, one in hydraulic communication with the formation through the casing screens below the packer, and the other to the open borehole above the packer to record hydrostatic reference pressure and ocean loading signals. Temperatures are recorded within the instrument package using a platinum thermometer and by a self-contained miniature temperature logger (MTL). In fall 2010, the smartplug will be retrieved and replaced with an upgraded instrument package that also includes an autonomous osmotic geochemical sampling system and microbial colonization experiment. Fall 2010 operations will also drill and case Site C0002 to ca. 1000 m depth and install a newly developed multi-sensor permanent observatory system, which includes a volumetric strainmeter, a broadband seismometer, tiltmeter, thermister string, and multi-level pore-pressure sensors. The strain, seismometer, and tilt sensors will be cemented with the basal mudstones of the Kumano basin, and pore pressure will be monitored within both the underlying accretionary prism and within the lower basin sediments. The observatory will ultimately be connected to the seafloor fiber-optic cable network DONET. Here, we report on the retrieval of the smartplug, installation and configuration of the new multi-sensor permanent observatory, and preliminary data obtained from the smartplug deployment.
Drill System Development for the Lunar Subsurface Exploration
NASA Astrophysics Data System (ADS)
Zacny, Kris; Davis, Kiel; Paulsen, Gale; Roberts, Dustyn; Wilson, Jack; Hernandez, Wilson
Reaching the cold traps at the lunar poles and directly sensing the subsurface regolith is a primary goal of lunar exploration, especially as a means of prospecting for future In Situ Resource Utilization efforts. As part of the development of a lunar drill capable of reaching a depth of two meters or more, Honeybee Robotics has built a laboratory drill system with a total linear stroke of 1 meter, capability to produce as much as 45 N-m of torque at a rotational speed of 200 rpm, and a capability of delivering maximum downforce of 1000 N. Since this is a test-bed, the motors were purposely chosen to be relative large to provide ample power to the drill system (the Apollo drill was a 500 Watt drill, i.e. not small in current standards). In addition, the drill is capable of using three different drilling modes: rotary, rotary percussive and percussive. The frequency of percussive impact can be varied if needed while rotational speed can be held constant. An integral part of this test bed is a vacuum chamber that is currently being constructed. The drill test-bed is used for analyzing various drilling modes and testing different drill bit and auger systems under low pressure conditions and in lunar regolith simulant. The results of the tests are used to develop final lunar drill design as well as efficient drilling protocols. The drill was also designed to accommodate a downhole neutron spectrometer for measuring the amount of hydrated material in the area surrounding the borehole, as well as downhole temperature sensors, accelerometers, and electrical properties tester. The presentation will include history of lunar drilling, challenges of drilling on the Moon, a description of the drill and chamber as well as preliminary drilling test results conducted in the ice-bound lunar regolith simulant with a variety of drill bits and augers systems.
Rotary steerable motor system for underground drilling
Turner, William E.; Perry, Carl A.; Wassell, Mark E.; Barbely, Jason R.; Burgess, Daniel E.; Cobern, Martin E.
2010-07-27
A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.
Rotary steerable motor system for underground drilling
Turner, William E [Durham, CT; Perry, Carl A [Middletown, CT; Wassell, Mark E [Kingwood, TX; Barbely, Jason R [Middletown, CT; Burgess, Daniel E [Middletown, CT; Cobern, Martin E [Cheshire, CT
2008-06-24
A preferred embodiment of a system for rotating and guiding a drill bit in an underground bore includes a drilling motor and a drive shaft coupled to drilling motor so that drill bit can be rotated by the drilling motor. The system further includes a guidance module having an actuating arm movable between an extended position wherein the actuating arm can contact a surface of the bore and thereby exert a force on the housing of the guidance module, and a retracted position.
NASA Astrophysics Data System (ADS)
Konurin, AI; Khmelinin, AP; Denisova, EV
2018-03-01
The currently available drill navigation systems, with their benefits and shortcomings are reviewed. A mathematical model is built to describe the inertial navigation system movement in horizontal and inclined drilling. A prototype model of the inertial navigation system for rotary percussion drills has been designed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halvorsen, T.
The next generation subsea developments will be facing a number of new challenges which have to be solved to maintain a cost-efficient solution for production of oil and gas: (1) Smaller fields, i.e. cost reduction through volume will no longer be valid. (2) Freedom in configuration of subsea development. The current idea of standardization will not be directly applicable for cost reduction. (3) Various water depth. The same technology should be applicable for both guideline- and guideline less water depth. (4) Development in new areas of the world where drilling rig deployable system is a must. (5) Various types ofmore » fluid processing may be required as an integral part of a subsea production system. The next generation subsea production system should be universal and applicable to any subsea field development. Kongsberg Offshore a.s. (KOS) have gained extensive experience in supplying standardized total subsea systems. The paper presents the approach taken by KOS to develop the next generation subsea system, and discussed the challenges associated with this.« less
Achieving Reliable Communication in Dynamic Emergency Responses
Chipara, Octav; Plymoth, Anders N.; Liu, Fang; Huang, Ricky; Evans, Brian; Johansson, Per; Rao, Ramesh; Griswold, William G.
2011-01-01
Emergency responses require the coordination of first responders to assess the condition of victims, stabilize their condition, and transport them to hospitals based on the severity of their injuries. WIISARD is a system designed to facilitate the collection of medical information and its reliable dissemination during emergency responses. A key challenge in WIISARD is to deliver data with high reliability as first responders move and operate in a dynamic radio environment fraught with frequent network disconnections. The initial WIISARD system employed a client-server architecture and an ad-hoc routing protocol was used to exchange data. The system had low reliability when deployed during emergency drills. In this paper, we identify the underlying causes of unreliability and propose a novel peer-to-peer architecture that in combination with a gossip-based communication protocol achieves high reliability. Empirical studies show that compared to the initial WIISARD system, the redesigned system improves reliability by as much as 37% while reducing the number of transmitted packets by 23%. PMID:22195075
Mechatronical system for testing small diameter drills
NASA Astrophysics Data System (ADS)
Vekteris, Vladas; Jurevichius, Mindaugas; Daktariunas, Algis
2008-08-01
This paper describes a technique and mechatronical system for testing drills of a small diameter at different stages of production. The goal is to realize a system for drill testing which automatically increases the load applied to a drill under testing conditions and measure the drill's breaking torsion moment and deflection angle before a break occurs. The system's apparatus part and algorithms for the control of actuators and data acquisition from sensors are explained in the article. Also, a testing technique was applied in theoretical investigations to define the stress concentrations in dangerous places of the drill. The proposed technique and system have been verified by testing the drills of a small diameter at different stages of production—after thermal, mechanical treatment, and for quality control of the finished product.
Flexible roof drill for low coal. Volume 2. Phase III and Phase IV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shoup, N.H.
1977-09-01
Design specifications were developed for a flexible drilling and bolting system. The system configuration is based on the use of the Galis dual-boom roof drill as a vehicle for the drilling/bolting system. The WSU Flex-drill drivehead is mounted on the Galis drill boom and the Galis parts are modified to accommodate the revised system. The flexible drillhead supports a bolt bender/inserter designed by Bendix Corporation and is integrated into the system operation. A supplemental bolt thruster was designed to complete insertion of the roof bolt following operation and removal of the Bendix bender from the bolt shank. The complete cyclemore » of drilling a 1-3/8-in. diameter bolt hole, bending a roof bolt into the hole, thrusting the bolt head and washer to the roof surface, and final torquing of the bolt is manually controlled by the operator located in the new position behind the bolting line. The new operating position is beneath newly bolted roof in a safer location in back of the stab jack ad roof jacks positioning the drill boom and drivehead. The Flex-drill/bolting system prototype was constructed from both purchased components and parts specially fabricated in the shops for this design. This unit was assembled and test-operated with appropriate support equipment in a laboratory test stand. Numerous test holes were drilled in blocks of concrete at feed rates of 5 ft/min with drill rotation speeds of 360 rpm. The drill feeds uniformly and cuts smoothly with no difficulty in collection of dust or clogging of the drill bit. The holes drilled were straight, as evidence by passage of a 1-1/4-in. diameter bar full depth into the hole with no binding or evidence of curvature. The flexible drill is capable of drilling 8-ft-deep roof bolt holes in low coal 36 in. in height.« less
Kogbara, Reginald B; Ogar, Innocent; Okparanma, Reuben N; Ayotamuno, Josiah M
2016-07-28
This study sought to compare the effectiveness of bioaugmentation and biostimulation, as well as the combination of both techniques, supplemented with phytoremediation, in the decontamination of petroleum drill cuttings. Drill cuttings with relatively low concentration of total petroleum hydrocarbons (TPH) and metals were mixed with soil in the ratio 5:1 and treated with three different combinations of the bioremediation options. Option A entailed bioaugmentation supplemented with phytoremediation. Option B had the combination of biostimulation and bioaugmentation supplemented with phytoremediation. While biostimulation supplemented with phytoremediation was deployed in option C. Option O containing the drill cuttings-soil mixture without treatment served as untreated control. Fertilizer application, tillage and watering were used for biostimulation treatment, while spent mushroom substrate (Pleurotus ostreatus) and elephant grass (Pennisetum purpureum) were employed for bioaugmentation and phytoremediation treatment, respectively. The drill cuttings-soil mixtures were monitored for TPH, organic carbon, total nitrogen, pH, metal concentrations, and fungal counts, over time. After 56 days of treatment, there was a decline in the initial TPH concentration of 4,114 mg kg(-1) by 5.5%, 68.3%, 75.6% and 48% in options O, A, B and C, respectively. Generally, higher TPH loss resulted from the phytoremediation treatment stage. The treated options also showed slight reductions in metal concentrations ranging from 0% to 16% of the initial low concentrations. The results highlight the effectiveness of bioaugmentation supplemented with phytoremediation. The combination of bioaugmentation and biostimulation supplemented with phytoremediation, however, may prove better in decontaminating petroleum drill cuttings to environmentally benign levels.
Preliminary Research on Possibilities of Drilling Process Robotization
NASA Astrophysics Data System (ADS)
Pawel, Stefaniak; Jacek, Wodecki; Jakubiak, Janusz; Zimroz, Radoslaw
2017-12-01
Nowadays, drilling & blasting is crucial technique for deposit excavation using in hard rock mining. Unfortunately, such approach requires qualified staff to perform, and consequently there is a serious risk related to rock mechanics when using explosives. Negative influence of explosives usage on safety issues of underground mine is a main cause of mining demands related to elimination of people from production area. Other aspects worth taking into consideration are drilling precision according to drilling pattern, blasting effectiveness, improvement of drilling tool reliability etc. In the literature different drilling support solutions are well-known in terms of positioning support systems, anti-jamming systems or cavity detection systems. For many years, teleoperation of drilling process is also developed. Unfortunately, available technologies have so far not fully met the industries expectation in hard rock. Mine of the future is expected to incorporate robotic system instead of current approaches. In this paper we present preliminary research related to robotization of drilling process and possibilities of its application in underground mine condition. A test rig has been proposed. To simulate drilling process several key assumptions have been accepted. As a result, algorithms for automation of drilling process have been proposed and tested on the test rig. Experiences gathered so far underline that there is a need for further developing robotic system for drilling process.
Jessmore, James J.; Loomis, Guy G.; Pettet, Mark C.; Flyckt, Melissa C.
2004-09-28
Systems and methods relating to subterranean drilling while maintaining containment of any contaminants released during the drilling. A thrust block installed over a zone of interest provides an overflow space for retaining any contaminants and excess sealant returns. Negative air pressure may be maintained in the overflow space by a ventilation system. Access ports in the thrust block seal the overflow space from the surrounding environment with a membrane seal. A flexible sack seal in the access port may be connected to a drill shroud prior to drilling, providing containment during drilling after the drill bit penetrates the membrane seal. The drill shroud may be adapted to any industry standard drilling rig and includes a connection conduit for connecting to the flexible sack seal and a flexible enclosure surrounding the drill shaft and of a length to accommodate full extension thereof. Upon withdrawal, the sack seal may be closed off and separated, maintaining containment of the overflow space and the drill shroud.
Normann, R.A.; Kadlec, E.R.
1994-11-08
A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit. 7 figs.
Normann, Randy A.; Kadlec, Emil R.
1994-01-01
A downhole telemetry system is described for optically communicating to the surface operating parameters of a drill bit during ongoing drilling operations. The downhole telemetry system includes sensors mounted with a drill bit for monitoring at least one operating parameter of the drill bit and generating a signal representative thereof. The downhole telemetry system includes means for transforming and optically communicating the signal to the surface as well as means at the surface for producing a visual display of the optically communicated operating parameters of the drill bit.
Comet nucleus and asteroid sample return missions
NASA Technical Reports Server (NTRS)
Melton, Robert G.; Thompson, Roger C.; Starchville, Thomas F., Jr.; Adams, C.; Aldo, A.; Dobson, K.; Flotta, C.; Gagliardino, J.; Lear, M.; Mcmillan, C.
1992-01-01
During the 1991-92 academic year, the Pennsylvania State University has developed three sample return missions: one to the nucleus of comet Wild 2, one to the asteroid Eros, and one to three asteroids located in the Main Belt. The primary objective of the comet nucleus sample return mission is to rendezvous with a short period comet and acquire a 10 kg sample for return to Earth. Upon rendezvous with the comet, a tethered coring and sampler drill will contact the surface and extract a two-meter core sample from the target site. Before the spacecraft returns to Earth, a monitoring penetrator containing scientific instruments will be deployed for gathering long-term data about the comet. A single asteroid sample return mission to the asteroid 433 Eros (chosen for proximity and launch opportunities) will extract a sample from the asteroid surface for return to Earth. To limit overall mission cost, most of the mission design uses current technologies, except the sampler drill design. The multiple asteroid sample return mission could best be characterized through its use of future technology including an optical communications system, a nuclear power reactor, and a low-thrust propulsion system. A low-thrust trajectory optimization code (QuickTop 2) obtained from the NASA LeRC helped in planning the size of major subsystem components, as well as the trajectory between targets.
Electrical Transmission Line Diametrical Retention Mechanism
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2006-01-03
The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within downhole components. The invention allows a transmission line to be attached to the internal diameter of drilling components that have a substantially uniform drilling diameter. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to withstand the tension and compression of drill pipe during routine drilling cycles.
Smart laser hole drilling for gas turbine combustors
NASA Astrophysics Data System (ADS)
Laraque, Edy
1991-04-01
A smart laser drilling system, which incorporates air flow inspection-in-process of the holes and intelligent real-time process parameter corrections, is described. The system along with good laser parameter developments is proved to be efficient for producing cooling holes which meet the highest aeronautical standards. To date, the system is used for percussion drilling of combustion chamber cooling holes. The system is considered to be very economical due to the drilling-on-the-fly capability that is capable of drilling up to 3 holes of 0.025-in. dia. per second.
Kasahara, Yusuke; Kawana, Hiromasa; Usuda, Shin; Ohnishi, Kouhei
2012-01-01
Background Drilling is used in the medical field, especially in oral surgery and orthopaedics. In recent years, oral surgery involving dental implants has become more common. However, the risky drilling process causes serious accidents. To prevent these accidents, supporting systems such as robotic drilling systems are required. Methods A telerobotic-assisted drilling system is proposed. An acceleration-based four-channel bilateral control system is implemented in linear actuators in a master–slave system for drill feeding. A reaction force observer is used instead of a force sensor for measuring cutting force. Cutting force transmits from a cutting material to a surgeon, who may feel a static cutting resistance force and vigorous cutting vibrations, via the master–slave system. Moreover, position scaling and force scaling are achieved. Scaling functions are used to achieve precise drilling and hazard detection via force sensation. Results Cutting accuracy and reproducibility of the cutting force were evaluated by angular velocity/position error and frequency analysis of the cutting force, respectively, and errors were > 2.0 rpm and > 0.2 mm, respectively. Spectrum peaks of the cutting vibration were at the theoretical vibration frequencies of 30, 60 and 90 Hz. Conclusions The proposed telerobotic-assisted drilling system achieved precise manipulation of the drill feed and vivid feedback from the cutting force. Copyright © 2012 John Wiley & Sons, Ltd. PMID:22271710
Internal coaxial cable seal system
Hall, David R.; Sneddon, Cameron; Dahlgren, Scott Steven; Briscoe, Michael A.
2006-07-25
The invention is a seal system for a coaxial cable and is placed within the coaxial cable and its constituent components. A series of seal stacks including load ring components and elastomeric rings are placed on load bearing members within the coaxial cable sealing the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. The seal system can be used in a variety of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
Application of the Core Flight System to a Lunar Rover
NASA Technical Reports Server (NTRS)
Cannon, Howard
2017-01-01
Resource Prospector (RP) is a lunar mission sponsored by NASAs Advanced Exploration Systems (AES) division, that aims to study in-situ resource utilization (ISRU) feasibility and technologies on the surface of the moon. The RP missions lunar surface segment includes a rover equipped with with a suite of instruments specifically designed to measure and map volatiles both at the surface and in the subsurface. Of particular interest is the quantity and state of volatiles in permanently shadowed regions. To conduct the mission, ground system operators will remotely drive the rover, directing it to waypoints along the surface in order to achieve measurement objectives. At selected locations, an onboard drill will be deployed to collect material and obtain direct measurements of the subsurface constituents. RP is currently planned for launch in 2022. RP is managed at NASA Ames Research Center. The RP Rover is being designed and developed by NASA Johnson Space Center (JSC) in partnership with NASA Ames. NASA Kennedy Space Center (KSC) is responsible for the Honeybee drilling system and science payload.In order to better understand the technical challenges and demonstrate capability, in 2015 the RP project developed a rover testbed (known as RP15). In this mission in a year, a rover was designed, developed, and outfitted with science instruments and a drill. The rover was operated from a remote operations center, and operated in an outdoor lunar rock yard at Johnson space center. The study was a resounding success meeting all objectives. The RP Rover software architecture and development processes were based on the successful Lunar Atmosphere and Dust Environment Explorer spacecraft. This architecture is built on the Core Flight System software and an interface to MatlabSimulink auto-generated software components known as the Simulink Interface Layer (SIL). The application of this lunar satellite inspired framework worked well for the rover application, and is currently being planned for the mission. This presentation provides an overview of the architecture and processes, and describes some of the changes and challenges for the rover application.
Effects of tones associated with drilling activities on bowhead whale calling rates
Nations, Christopher S.; Thode, Aaron M.; Kauffman, Mandy E.; Conrad, Alexander S.; Norman, Robert G.; Kim, Katherine H.
2017-01-01
During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus), northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs) deployed on the seafloor over ~7 weeks in Aug–Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A “tone index” was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the “dose” of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort. PMID:29161308
Effects of tones associated with drilling activities on bowhead whale calling rates.
Blackwell, Susanna B; Nations, Christopher S; Thode, Aaron M; Kauffman, Mandy E; Conrad, Alexander S; Norman, Robert G; Kim, Katherine H
2017-01-01
During summer 2012 Shell performed exploratory drilling at Sivulliq, a lease holding located in the autumn migration corridor of bowhead whales (Balaena mysticetus), northwest of Camden Bay in the Beaufort Sea. The drilling operation involved a number of vessels performing various activities, such as towing the drill rig, anchor handling, and drilling. Acoustic data were collected with six arrays of directional recorders (DASARs) deployed on the seafloor over ~7 weeks in Aug-Oct. Whale calls produced within 2 km of each DASAR were identified and localized using triangulation. A "tone index" was defined to quantify the presence and amplitude of tonal sounds from industrial machinery. The presence of airgun pulses originating from distant seismic operations was also quantified. For each 10-min period at each of the 40 recorders, the number of whale calls localized was matched with the "dose" of industrial sound received, and the relationship between calling rates and industrial sound was modeled using negative binomial regression. The analysis showed that with increasing tone levels, bowhead whale calling rates initially increased, peaked, and then decreased. This dual behavioral response is similar to that described for bowhead whales and airgun pulses in earlier work. Increasing call repetition rates can be a viable strategy for combating decreased detectability of signals arising from moderate increases in background noise. Meanwhile, as noise increases, the benefits of calling may decrease because information transfer becomes increasingly error-prone, and at some point calling may no longer be worth the effort.
Neurosurgical robotic arm drilling navigation system.
Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai
2017-09-01
The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.
Resonant acoustic transducer and driver system for a well drilling string communication system
Chanson, Gary J.; Nicolson, Alexander M.
1981-01-01
The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.
Technology Development and Field Trials of EGS Drilling Systems at Chocolate Mountain
Steven Knudsen
2012-01-01
Polycrystalline diamond compact (PDC) bits are routinely used in the oil and gas industry for drilling medium to hard rock but have not been adopted for geothermal drilling, largely due to past reliability issues and higher purchase costs. The Sandia Geothermal Research Department has recently completed a field demonstration of the applicability of advanced synthetic diamond drill bits for production geothermal drilling. Two commercially-available PDC bits were tested in a geothermal drilling program in the Chocolate Mountains in Southern California. These bits drilled the granitic formations with significantly better Rate of Penetration (ROP) and bit life than the roller cone bit they are compared with. Drilling records and bit performance data along with associated drilling cost savings are presented herein. The drilling trials have demonstrated PDC bit drilling technology has matured for applicability and improvements to geothermal drilling. This will be especially beneficial for development of Enhanced Geothermal Systems whereby resources can be accessed anywhere within the continental US by drilling to deep, hot resources in hard, basement rock formations.
Results from Testing of Two Rotary Percussive Drilling Systems
NASA Technical Reports Server (NTRS)
Kriechbaum, Kristopher; Brown, Kyle; Cady, Ian; von der Heydt, Max; Klein, Kerry; Kulczycki, Eric; Okon, Avi
2010-01-01
The developmental test program for the MSL (Mars Science Laboratory) rotary percussive drill examined the e ect of various drill input parameters on the drill pene- tration rate. Some of the input parameters tested were drill angle with respect to gravity and percussive impact energy. The suite of rocks tested ranged from a high strength basalt to soft Kaolinite clay. We developed a hole start routine to reduce high sideloads from bit walk. The ongoing development test program for the IMSAH (Integrated Mars Sample Acquisition and Handling) rotary percussive corer uses many of the same rocks as the MSL suite. An additional performance parameter is core integrity. The MSL development test drill and the IMSAH test drill use similar hardware to provide rotation and percussion. However, the MSL test drill uses external stabilizers, while the IMSAH test drill does not have external stabilization. In addition the IMSAH drill is a core drill, while the MSL drill uses a solid powdering bit. Results from the testing of these two related drilling systems is examined.
Counter-Rotating Tandem Motor Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kent Perry
2009-04-30
Gas Technology Institute (GTI), in partnership with Dennis Tool Company (DTC), has worked to develop an advanced drill bit system to be used with microhole drilling assemblies. One of the main objectives of this project was to utilize new and existing coiled tubing and slimhole drilling technologies to develop Microhole Technology (MHT) so as to make significant reductions in the cost of E&P down to 5000 feet in wellbores as small as 3.5 inches in diameter. This new technology was developed to work toward the DOE's goal of enabling domestic shallow oil and gas wells to be drilled inexpensively comparedmore » to wells drilled utilizing conventional drilling practices. Overall drilling costs can be lowered by drilling a well as quickly as possible. For this reason, a high drilling rate of penetration is always desired. In general, high drilling rates of penetration (ROP) can be achieved by increasing the weight on bit and increasing the rotary speed of the bit. As the weight on bit is increased, the cutting inserts penetrate deeper into the rock, resulting in a deeper depth of cut. As the depth of cut increases, the amount of torque required to turn the bit also increases. The Counter-Rotating Tandem Motor Drilling System (CRTMDS) was planned to achieve high rate of penetration (ROP) resulting in the reduction of the drilling cost. The system includes two counter-rotating cutter systems to reduce or eliminate the reactive torque the drillpipe or coiled tubing must resist. This would allow the application of maximum weight-on-bit and rotational velocities that a coiled tubing drilling unit is capable of delivering. Several variations of the CRTDMS were designed, manufactured and tested. The original tests failed leading to design modifications. Two versions of the modified system were tested and showed that the concept is both positive and practical; however, the tests showed that for the system to be robust and durable, borehole diameter should be substantially larger than that of slim holes. As a result, the research team decided to complete the project, document the tested designs and seek further support for the concept outside of the DOE.« less
The Potential of Geothermal as a Major Supplier of U.S. Primary Energy using EGS technology
NASA Astrophysics Data System (ADS)
Tester, J. W.
2012-12-01
Recent national focus on the value of increasing our supply of indigenous, renewable energy underscores the need for re-evaluating all alternatives, particularly those that are large and well-distributed nationally. To transition from our current hydrocarbon-based energy system, we will need to expand and diversify the portfolio of options we currently have. One such option that has been undervalued and often ignored completely in national assessments is geothermal energy from both conventional hydrothermal resources and enhanced or engineered geothermal systems (EGS). Although geothermal energy is currently used for both electric and non-electric applications worldwide from conventional hydrothermal resources and in groundsource heat pumps, most of the emphasis in the US has been generating electricity. For example, a 2006 MIT-led study focused on the potential for EGS to provide 100,000 MWe of base-load electric generating capacity in the US by 2050. Since that time, a Cornell-led study has evaluated the potential for geothermal to meet the more than 25 EJ per year demand in the US for low temperature thermal energy for heating and other direct process applications Field testing of EGS in the US, Europe, and Australia is reviewed to outline what remains to be done for large-scale deployment. Research, Development and Demonstration (RD&D) needs in five areas important to geothermal deployment on a national scale will be reviewed: 1. Resource - estimating the magnitude and distribution of the US resource 2. Reservoir Technology - establishing requirements for extracting and utilizing energy from EGS reservoirs including drilling, reservoir design and stimulation 3. Utilization - exploring end use options for district heating, electricity generation and co-generation. 4. Environmental impacts and tradeoffs -- dealing with water and land use and seismic risk and quantifying the reduction in carbon emissions with increased deployment 5. Economics - projecting costs for EGS supplied electricity as a function of invested R&D and deployment in evolving US energy markets
An Internal Coaxil Cable Seal System
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2004-12-23
The invention is a seal system for a coaxial cable more specifically an internal seal system placed within the coaxial cable and its constituent components. A series of seal stacks including flexible rigid rings and elastomeric rings are placed on load bearing members within the coaxial cable. The current invention is adapted to seal the annular space between the coaxial cable and an electrical contact passing there through. The coaxial cable is disposed within drilling components to transmit electrical signals between drilling components within a drill string. During oil and gas exploration, a drill string can see a range of pressures and temperatures thus resulting in multiple combinations of temperature and pressure and increasing the difficulty of creating a robust seal for all combinations. The seal system can be used in a plurality of downhole components, such as sections of pipe in a drill string, drill collars, heavy weight drill pipe, and jars.
Drilling subsurface wellbores with cutting structures
Mansure, Arthur James; Guimerans, Rosalvina Ramona
2010-11-30
A system for forming a wellbore includes a drill tubular. A drill bit is coupled to the drill tubular. One or more cutting structures are coupled to the drill tubular above the drill bit. The cutting structures remove at least a portion of formation that extends into the wellbore formed by the drill bit.
Making Safe Surgery Affordable: Design of a Surgical Drill Cover System for Scale.
Buchan, Lawrence L; Black, Marianne S; Cancilla, Michael A; Huisman, Elise S; Kooyman, Jeremy J R; Nelson, Scott C; OʼHara, Nathan N; OʼBrien, Peter J; Blachut, Piotr A
2015-10-01
Many surgeons in low-resource settings do not have access to safe, affordable, or reliable surgical drilling tools. Surgeons often resort to nonsterile hardware drills because they are affordable, robust, and efficient, but they are impossible to sterilize using steam. A promising alternative is to use a Drill Cover system (a sterilizable fabric bag plus surgical chuck adapter) so that a nonsterile hardware drill can be used safely for surgical bone drilling. Our objective was to design a safe, effective, affordable Drill Cover system for scale in low-resource settings. We designed our device based on feedback from users at Mulago Hospital (Kampala, Uganda) and focused on 3 main aspects. First, the design included a sealed barrier between the surgical field and hardware drill that withstands pressurized fluid. Second, the selected hardware drill had a maximum speed of 1050 rpm to match common surgical drills and reduce risk of necrosis. Third, the fabric cover was optimized for ease of assembly while maintaining a sterile technique. Furthermore, with the Drill Cover approach, multiple Drill Covers can be provided with a single battery-powered drill in a "kit," so that the drill can be used in back-to-back surgeries without requiring immediate sterilization. The Drill Cover design presented here provides a proof-of-concept for a product that can be commercialized, produced at scale, and used in low-resource settings globally to improve access to safe surgery.
Method and system for determining formation porosity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pittman, R.W.; Hermes, C.E.
1977-12-27
The invention discloses a method and/or system for measuring formation porosity from drilling response. It involves measuring a number of drilling parameters and includes determination of tooth dullness as well as determining a reference torque empirically. One of the drilling parameters is the torque applied to the drill string.
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... SHELF Sulphur Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to... manifold valves, upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to...
30 CFR 250.617 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2014 CFR
2014-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...
30 CFR 250.616 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...
30 CFR 250.617 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drills. 250.617 Section 250.617 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Gas Well-Workover Operations § 250.617 Blowout preventer system testing, records, and drills. (a) BOP... disconnecting a pressure seal in the assembly, the affected seal will be pressure tested. (c) Drills. All...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2012 CFR
2012-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2013 CFR
2013-07-01
... drills. 250.1625 Section 250.1625 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT... Operations § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high..., upper and lower kelly cocks, and drill-string safety valves shall be pressure tested to pipe-ram test...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muhleman, T.; Dempsey, P.
Examples of new technology in drilling reflect, for the most part, the industry's determination to overcome harsh drilling environments and to improve drilling efficiency through new methods and better equipment. The technology addressed includes a BOP fire prevention device; a diverter systems for floaters; a unique telescoping derrick; Sohio's mobile drilling island; more power from existing SCR's; a radio-based MWD system; better field tool joint inspection; a combined drilling/production platform, and a subsea BOP protection method.
Data on cost analysis of drilling mud displacement during drilling operation.
Okoro, Emeka Emmanuel; Dosunmu, Adewale; Iyuke, Sunny E
2018-08-01
The focus of this research was to present a data article for analyzing the cost of displacing a drilling fluid during the drilling operation. The cost of conventional Spud, KCl and Pseudo Oil base (POBM) muds used in drilling oil and gas wells are compared with that of a Reversible Invert Emulsion Mud. The cost analysis is limited to three sections for optimum and effective Comparison. To optimize drilling operations, it is important that we specify the yardstick by which drilling performance is measured. The most relevant yardstick is the cost per foot drilled. The data have shown that the prices for drilling mud systems are a function of the mud system formulation cost for that particular mud weight and maintenance per day. These costs for different mud systems and depend on the base fluid. The Reversible invert emulsion drilling fluid, eliminates the cost acquired in displacing Pseudo Oil Based mud (POBM) from the well, possible formation damage (permeability impairment) resulting from the use of viscous pill in displacing the POBM from the wellbore, and also eliminates the risk of taking a kick during mud change-over. With this reversible mud system, the costs of special fluids that are rarely applied for the well-completion purpose (cleaning of thick mud filter cake) may be reduced to the barest minimum.
NASA Technical Reports Server (NTRS)
Harvey, Jill (Editor)
1989-01-01
A self contained, mobile drilling and coring system was designed to operate on the Lunar surface and be controlled remotely from earth. The system uses SKITTER (Spatial Kinematic Inertial Translatory Tripod Extremity Robot) as its foundation and produces Lunar core samples two meters long and fifty millimeters in diameter. The drill bit used for this is composed of 30 per carat diamonds in a sintered tungsten carbide matrix. To drill up to 50 m depths, the bit assembly will be attached to a drill string made from 2 m rods which will be carried in racks on SKITTER. Rotary power for drilling will be supplied by a Curvo-Synchronous motor. SKITTER is to support this system through a hexagonal shaped structure which will contain the drill motor and the power supply. A micro-coring drill will be used to remove a preliminary sample 5 mm in diameter and 20 mm long from the side of the core. This whole system is to be controlled from earth. This is carried out by a continuously monitoring PLC onboard the drill rig. A touch screen control console allows the operator on earth to monitor the progress of the operation and intervene if necessary.
Ejector subassembly for dual wall air drilling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolle, J.J.
1996-09-01
The dry drilling system developed for the Yucca Mountain Site Characterization Project incorporates a surface vacuum system to prevent drilling air and cuttings from contaminating the borehole wall during coring operations. As the drilling depth increases, however there is a potential for borehole contamination because of the limited volume of air which can be removed by the vacuum system. A feasibility analysis has shown that an ejector subassembly mounted in the drill string above the core barrel could significantly enhance the depth capacity of the dry drilling system. The ejector subassembly would use a portion of the air supplied tomore » the core bit to maintain a vacuum on the hole bottom. The results of a design study including performance testing of laboratory scale ejector simulator are presented here.« less
Implementation of improved underbalanced drilling in AbuDhabi onshore field
NASA Astrophysics Data System (ADS)
Alhammadi, Adel Mohammed
Abu Dhabi Company for Onshore Oil Operations (ADCO) is considering Underbalanced Drilling (UBD) as a means to develop lower permeability units in its fields. In addition to productivity and recovery gains, ADCO also expects reservoir characterization benefits from UBD. Reservoir screening studies were carried out on all of ADCO's reservoirs to determine their applicability for UBD. The primary business benefits of UBD were determined to be reservoir characterization, damage Mitigation, and rate of Penetration "ROP" Improvement. Apart from the primary benefits, some of the secondary benefits of UBD that were identified beforehand included rig performance. Since it's a trial wells, the challenge was to drill these wells safely, efficiently and of course meeting well objectives. Many operators worldwide drill these well in underbalanced mode but complete it overbalanced. In our case the plan was to drill and complete these wells in underbalanced condition. But we had to challenge most operators and come up with special and unique casing hanger design to ensure well control barriers exists while fishing the control line of the Downhole Deployment Valve "DDV". After intensive studies and planning, the hanger was designed as per our recommendations and found to be effective equipment that optimized the operational time and the cost as well. This report will provide better understanding of UBD technique in general and shade on the special designed casing hanger compared to conventional or what's most used worldwide. Even thought there were some issues while running the casing hanger prior drilling but managed to capture the learning's from each well and re-modified the hanger and come up with better deign for the future wells. Finally, the new design perform a good performance of saving the operation time and assisting the project to be done in a safe and an easy way without a major impact on the well cost. This design helped to drill and complete these wells safely with requirement to kill the wells and this ensured least reservoir damage.
Application of CFS to a Lunar Rover: Resource Prospector (RP)
NASA Technical Reports Server (NTRS)
Cannon, Howard
2017-01-01
Resource Prospector (RP) is a lunar mission sponsored by NASA's Advanced Exploration Systems (AES) division, that aims to study in-situ resource utilization (ISRU) feasibility and technologies on the surface of the moon. The RP mission's lunar surface segment includes a rover equipped with with a suite of instruments specifically designed to measure and map volatiles both at the surface and in the subsurface. Of particular interest is the quantity and state of volatiles in permanently shadowed regions. To conduct the mission, ground system operators will remotely drive the rover, directing it to waypoints along the surface in order to achieve measurement objectives. At selected locations, an onboard drill will be deployed to collect material and obtain direct measurements of the subsurface constituents. RP is currently planned for launch in 2022. RP is managed at NASA Ames Research Center. The RP Rover is being designed and developed by NASA Johnson Space Center (JSC) in partnership with NASA Ames. NASA Kennedy Space Center (KSC) is responsible for the Honeybee drilling system and science payload. In order to better understand the technical challenges and demonstrate capability, in 2015 the RP project developed a rover testbed (known as RP15). In this mission in a year, a rover was designed, developed, and outfitted with science instruments and a drill. The rover was operated from a remote operations center, and operated in an outdoor lunar rock yard at Johnson space center. The study was a resounding success meeting all objectives. The RP Rover software architecture and development processes were based on the successful Lunar Atmosphere and Dust Environment Explorer spacecraft. This architecture is built on the Core Flight System software and an interface to Matlab/Simulink auto-generated software components known as the Simulink Interface Layer (SIL). The application of this lunar satellite inspired framework worked well for the rover application, and is currently being planned for the mission. This presentation provides an overview of the architecture and processes, and describes some of the changes and challenges for the rover application.
30 CFR 250.616 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2011 CFR
2011-07-01
... drills. 250.616 Section 250.616 Mineral Resources BUREAU OF OCEAN ENERGY MANAGEMENT, REGULATION, AND... drills. (a) BOP pressure tests. When you pressure test the BOP system you must conduct a low-pressure... engaged in well-workover operations shall participate in a weekly BOP drill to familiarize crew members...
The MARTE VNIR imaging spectrometer experiment: design and analysis.
Brown, Adrian J; Sutter, Brad; Dunagan, Stephen
2008-10-01
We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.
The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis
NASA Astrophysics Data System (ADS)
Brown, Adrian J.; Sutter, Brad; Dunagan, Stephen
2008-10-01
We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain. We analyzed subsets of three cores from Río Tinto using a new band modeling technique. We found most of the MARTE drill cores to contain predominantly goethite, though spatially coherent areas of hematite were identified in Core 23. We also distinguished non Fe-bearing minerals that were subsequently analyzed by X-ray diffraction (XRD) and found to be primarily muscovite. We present drill core maps that include spectra of goethite, hematite, and non Fe-bearing minerals.
State-of-the-art in coalbed methane drilling fluids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baltoiu, L.V.; Warren, B.K.; Natras, T.A.
2008-09-15
The production of methane from wet coalbeds is often associated with the production of significant amounts of water. While producing water is necessary to desorb the methane from the coal, the damage from the drilling fluids used is difficult to assess, because the gas production follows weeks to months after the well is drilled. Commonly asked questions include the following: What are the important parameters for drilling an organic reservoir rock that is both the source and the trap for the methane? Has the drilling fluid affected the gas production? Are the cleats plugged? Does the 'filtercake' have an impactmore » on the flow of water and gas? Are stimulation techniques compatible with the drilling fluids used? This paper describes the development of a unique drilling fluid to drill coalbed methane wells with a special emphasis on horizontal applications. The fluid design incorporates products to match the delicate surface chemistry on the coal, a matting system to provide both borehole stability and minimize fluid losses to the cleats, and a breaker method of removing the matting system once drilling is completed. This paper also discusses how coal geology impacts drilling planning, drilling practices, the choice of drilling fluid, and completion/stimulation techniques for Upper Cretaceous Mannville-type coals drilled within the Western Canadian Sedimentary Basin. A focus on horizontal coalbed methane (CBM) wells is presented. Field results from three horizontal wells are discussed, two of which were drilled with the new drilling fluid system. The wells demonstrated exceptional stability in coal for lengths to 1000 m, controlled drilling rates and ease of running slotted liners. Methods for, and results of, placing the breaker in the horizontal wells are covered in depth.« less
A new thermal model for bone drilling with applications to orthopaedic surgery.
Lee, JuEun; Rabin, Yoed; Ozdoganlar, O Burak
2011-12-01
This paper presents a new thermal model for bone drilling with applications to orthopaedic surgery. The new model combines a unique heat-balance equation for the system of the drill bit and the chip stream, an ordinary heat diffusion equation for the bone, and heat generation at the drill tip, arising from the cutting process and friction. Modeling of the drill bit-chip stream system assumes an axial temperature distribution and a lumped heat capacity effect in the transverse cross-section. The new model is solved numerically using a tailor-made finite-difference scheme for the drill bit-chip stream system, coupled with a classic finite-difference method for the bone. The theoretical investigation addresses the significance of heat transfer between the drill bit and the bone, heat convection from the drill bit to the surroundings, and the effect of the initial temperature of the drill bit on the developing thermal field. Using the new model, a parametric study on the effects of machining conditions and drill-bit geometries on the resulting temperature field in the bone and the drill bit is presented. Results of this study indicate that: (1) the maximum temperature in the bone decreases with increased chip flow; (2) the transient temperature distribution is strongly influenced by the initial temperature; (3) the continued cooling (irrigation) of the drill bit reduces the maximum temperature even when the tip is distant from the cooled portion of the drill bit; and (4) the maximum temperature increases with increasing spindle speed, increasing feed rate, decreasing drill-bit diameter, increasing point angle, and decreasing helix angle. The model is expected to be useful in determination of optimum drilling conditions and drill-bit geometries. Copyright © 2011. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLellan, G.W.
This test plan describes the field demonstration of the sonic drilling system being conducted as a coordinated effort between the VOC-Arid ID (Integrated Demonstration) and the 200 West Area Carbon Tetrachloride ERA (Expedited Response Action) programs at Hanford. The purpose of this test is to evaluate the Water Development Corporation`s drilling system, modify components as necessary and determine compatible drilling applications for the sonic drilling method for use at facilities in the DOE complex. The sonic demonstration is being conducted as the first field test under the Cooperative Research and Development Agreement (CRADA) which involves the US Department of Energy,more » Pacific Northwest Laboratory, Westinghouse Hanford Company and Water Development Corporation. The sonic drilling system will be used to drill a 45 degree vadose zone well, two vertical wells at the VOC-Arid ID site, and several test holes at the Drilling Technology Test Site north of the 200 Area fire station. Testing at other locations will depend on the performance of the drilling method. Performance of this technology will be compared to the baseline drilling method (cable-tool).« less
NASA Astrophysics Data System (ADS)
Sarmiento, D. P.; Belmecheri, S.; Lauvaux, T.; Sowers, T. A.; Bryant, S.; Miles, N. L.; Richardson, S.; Aikins, J.; Sweeney, C.; Petron, G.; Davis, K. J.
2012-12-01
Natural gas extraction from shale formations via hydraulic-fracturing (fracking) is expanding rapidly in several regions of North America. In Pennsylvania, the number of wells drilled to extract natural gas from the Marcellus shale has grown from 195 in 2008 to 1,386 in 2010. The gas extraction process using the fracking technology results in the escape of methane (CH4), a potent greenhouse gas and the principal component of natural gas, into the atmosphere. Emissions of methane from fracking operations remain poorly quantified, leading to a large range of scenarios for the contribution of fracking to climate change. A mobile measurement campaign provided insights on methane leakage rates and an improved understanding of the spatio-temporal variability in active drilling areas in the South West of Pennsylvania. Two towers were then instrumented to monitor fugitive emissions of methane from well pads, pipelines, and other infrastructures in the area. The towers, one within a drilling region and one upwind of active drilling, measured atmospheric CH4 mixing ratios continuously. Isotopic measurements from air flasks were also collected. Data from the initial mobile campaign were used to estimate emission rates from single sites such as wells and compressor stations. Tower data will be used to construct a simple atmospheric inversion for regional methane emissions. Our results show the daily variability in emissions and allow us to estimate leakage rates over a one month period in South West Pennsylvania. We discuss potential deployment strategies in drilling zones to monitor emissions of methane over longer periods of time.
Dynamics of a distributed drill string system: Characteristic parameters and stability maps
NASA Astrophysics Data System (ADS)
Aarsnes, Ulf Jakob F.; van de Wouw, Nathan
2018-03-01
This paper involves the dynamic (stability) analysis of distributed drill-string systems. A minimal set of parameters characterizing the linearized, axial-torsional dynamics of a distributed drill string coupled through the bit-rock interaction is derived. This is found to correspond to five parameters for a simple drill string and eight parameters for a two-sectioned drill-string (e.g., corresponding to the pipe and collar sections of a drilling system). These dynamic characterizations are used to plot the inverse gain margin of the system, parametrized in the non-dimensional parameters, effectively creating a stability map covering the full range of realistic physical parameters. This analysis reveals a complex spectrum of dynamics not evident in stability analysis with lumped models, thus indicating the importance of analysis using distributed models. Moreover, it reveals trends concerning stability properties depending on key system parameters useful in the context of system and control design aiming at the mitigation of vibrations.
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 33.36 - Method of drilling; combination unit or dust-collecting system.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Method of drilling; combination unit or dust-collecting system. 33.36 Section 33.36 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF... ROCK DRILLING IN COAL MINES Test Requirements § 33.36 Method of drilling; combination unit or dust...
30 CFR 250.442 - What are the requirements for a subsea BOP stack?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...) When you drill with a subsea BOP stack, you must install the BOP system before drilling below surface casing. The District Manager may require you to install a subsea BOP system before drilling below the...
30 CFR 250.430 - When must I install a diverter system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...
30 CFR 250.430 - When must I install a diverter system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...
30 CFR 250.430 - When must I install a diverter system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling... diverter system before you drill a conductor or surface hole. The diverter system consists of a diverter... the diverter system to ensure proper diversion of gases, water, drilling fluid, and other materials...
Contamination Tracer Testing With Seabed Rock Drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, B.; Bergenthal, M.; Freudenthal, T.; Smith, D. J.; Lilley, M. D.; Schneiders, L.; Fruh-Green, G. L.
2016-12-01
IODP Expedition 357 utilized seabed rock drills for the first time in the history of the ocean drilling program, with the aim of collecting intact core of shallow mantle sequences from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This new drilling approach required the development of a new system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Contamination tracer testing with seabed drills: IODP Expedition 357
NASA Astrophysics Data System (ADS)
Orcutt, Beth N.; Bergenthal, Markus; Freudenthal, Tim; Smith, David; Lilley, Marvin D.; Schnieders, Luzie; Green, Sophie; Früh-Green, Gretchen L.
2017-11-01
IODP Expedition 357 utilized seabed drills for the first time in the history of the ocean drilling program, with the aim of collecting intact sequences of shallow mantle core from the Atlantis Massif to examine serpentinization processes and the deep biosphere. This novel drilling approach required the development of a new remote seafloor system for delivering synthetic tracers during drilling to assess for possible sample contamination. Here, we describe this new tracer delivery system, assess the performance of the system during the expedition, provide an overview of the quality of the core samples collected for deep biosphere investigations based on tracer concentrations, and make recommendations for future applications of the system.
Microgravity Drill and Anchor System
NASA Technical Reports Server (NTRS)
Parness, Aaron; Frost, Matthew A.; King, Jonathan P.
2013-01-01
This work is a method to drill into a rock surface regardless of the gravitational field or orientation. The required weight-on-bit (WOB) is supplied by a self-contained anchoring mechanism. The system includes a rotary percussive coring drill, forming a complete sampling instrument usable by robot or human. This method of in situ sample acquisition using micro - spine anchoring technology enables several NASA mission concepts not currently possible with existing technology, including sampling from consolidated rock on asteroids, providing a bolt network for astronauts visiting a near-Earth asteroid, and sampling from the ceilings or vertical walls of lava tubes and cliff faces on Mars. One of the most fundamental parameters of drilling is the WOB; essentially, the load applied to the bit that allows it to cut, creating a reaction force normal to the surface. In every drilling application, there is a minimum WOB that must be maintained for the system to function properly. In microgravity (asteroids and comets), even a small WOB could not be supported conventionally by the weight of the robot or astronaut. An anchoring mechanism would be needed to resist the reactions, or the robot or astronaut would push themselves off the surface and into space. The ability of the system to anchor itself to a surface creates potential applications that reach beyond use in low gravity. The use of these anchoring mechanisms as end effectors on climbing robots has the potential of vastly expanding the scope of what is considered accessible terrain. Further, because the drill is supported by its own anchor rather than by a robotic arm, the workspace is not constrained by the reach of such an arm. Yet, if the drill is on a robotic arm, it has the benefit of not reflecting the forces of drilling back to the arm s joints. Combining the drill with the anchoring feet will create a highly mobile, highly stable, and highly reliable system. The drilling system s anchor uses hundreds of microspine toes that independently find holes and ledges on a rock to create an anchor. Once the system is anchored, a linear translation mechanism moves the drill axially into the surface while maintaining the proper WOB. The linear translation mechanism is composed of a ball screw and stepper motor that can translate a carriage with high precision and applied load. The carriage slides along rails using self-aligning linear bearings that correct any axial misalignment caused by bending and torsion. The carriage then compresses a series of springs that simultaneously transmit the load to the drill along the bit axis and act as a suspension that compensates for the vibration caused by percussive drilling. The drill is a compacted, modified version of an off-the-shelf rotary percussive drill, which uses a custom carbide-tipped coring bit. By using rotary percussive drilling, the drill time is greatly reduced. The percussive action fractures the rock debris, which is removed during rotation. The final result is a 0.75-in. (.1.9- cm) diameter hole and a preserved 0.5- in. (.1.3-cm) diameter rock core. This work extends microspine technology, making it applicable to astronaut missions to asteroids and a host of robotic sampling concepts. At the time of this reporting, it is the first instrument to be demonstrated using microspine anchors, and is the first self-contained drill/anchor system to be demonstrated that is capable of drilling in inverted configurations and would be capable of drilling in microgravity.
Nondestructive web thickness measurement of micro-drills with an integrated laser inspection system
NASA Astrophysics Data System (ADS)
Chuang, Shui-Fa; Chen, Yen-Chung; Chang, Wen-Tung; Lin, Ching-Chih; Tarng, Yeong-Shin
2010-09-01
Nowadays, the electric and semiconductor industries use numerous micro-drills to machine micro-holes in printed circuit boards. The measurement of web thickness of micro-drills, a key parameter of micro-drill geometry influencing drill rigidity and chip-removal ability, is quite important to ensure quality control. Traditionally, inefficiently destructive measuring method is adopted by inspectors. To improve quality and efficiency of the web thickness measuring tasks, a nondestructive measuring method is required. In this paper, based on the laser micro-gauge (LMG) and laser confocal displacement meter (LCDM) techniques, a nondestructive measuring principle of web thickness of micro-drills is introduced. An integrated laser inspection system, mainly consisting of a LMG, a LCDM and a two-axis-driven micro-drill fixture device, was developed. Experiments meant to inspect web thickness of micro-drill samples with a nominal diameter of 0.25 mm were conducted to test the feasibility of the developed laser inspection system. The experimental results showed that the web thickness measurement could achieve an estimated repeatability of ± 1.6 μm and a worst repeatability of ± 7.5 μm. The developed laser inspection system, combined with the nondestructive measuring principle, was able to undertake the web thickness measuring tasks for certain micro-drills.
Uniaxial Compressive Strengths of Rocks Drilled at Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Peters, G. H.; Carey, E. M.; Anderson, R. C.; Abbey, W. J.; Kinnett, R.; Watkins, J. A.; Schemel, M.; Lashore, M. O.; Chasek, M. D.; Green, W.; Beegle, L. W.; Vasavada, A. R.
2018-01-01
Measuring the physical properties of geological materials is important for understanding geologic history. Yet there has never been an instrument with the purpose of measuring mechanical properties of rocks sent to another planet. The Mars Science Laboratory (MSL) rover employs the Powder Acquisition Drill System (PADS), which provides direct mechanical interaction with Martian outcrops. While the objective of the drill system is not to make scientific measurements, the drill's performance is directly influenced by the mechanical properties of the rocks it drills into. We have developed a methodology that uses the drill to indicate the uniaxial compressive strengths of rocks through comparison with performance of an identically assembled drill system in terrestrial samples of comparable sedimentary class. During this investigation, we utilize engineering data collected on Mars to calculate the percussive energy needed to maintain a prescribed rate of penetration and correlate that to rock strength.
Simple, affordable and sustainable borehole observatories for complex monitoring objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.
2014-12-01
Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to two weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on German RV Sonne in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by ROV is planned for 2016.
Freeze shoe sampler for the collection of hyporheic zone sediments and porewater.
Bianchin, M; Smith, L; Beckie, R
2015-01-01
The Starr and Ingleton (1992) drive point piston sampler (DPPS) design was modified by fitting it with a Murphy and Herkelrath (1996) type sample-freezing drive shoe (SFDS), which uses liquid carbon dioxide as a cryogen. Liquid carbon dioxide was used to freeze sediments in the lower 0.1 m of the core and the drive-point piston sealed the core at the top preserving the reductive-oxidation (redox) sensitive sediments from the atmosphere and maintaining natural stratigraphy. The use of nitrogen gas to provide positive pressure on the gas system blocked the ingress of water which froze on contact with the cryogen thus blocking the gas lines with ice. With this adaptation to the gas system cores could be collected at greater depths beneath the static water level. This tool was used to collect intact saturated sediment cores from the hyporheic zone of the tidally influenced Fraser River in Vancouver, British Columbia, Canada where steep geochemical and microbial gradients develop within the interface between discharging anaerobic groundwater and recharging aerobic river water. In total, 25 cores driven through a 1.5 m sampling interval were collected from the river bed with a mean core recovery of 75%. The ability to deploy this method from a fishing vessel makes the tool more cost effective than traditional marine-based drilling operations which often use barges, tug boats, and drilling rigs. © 2014, National Ground Water Association.
Communication adapter for use with a drilling component
Hall, David R [Provo, UT; Pixton, David S [Lehi, UT; Hall,; Jr,; Tracy, H [Provo, UT; Bradford, Kline [Orem, UT; Rawle, Michael [Springville, UT
2007-04-03
A communication adapter is disclosed that provides for removable attachment to a drilling component when the drilling component is not actively drilling and for communication with an integrated transmission system in the drilling component. The communication adapter comprises a data transmission coupler that facilitates communication between the drilling component and the adapter, a mechanical coupler that facilitates removable attachment of the adapter to the drilling component, and a data interface.
Advancing the dual reciprocating drill design for efficient planetary subsurface exploration
NASA Astrophysics Data System (ADS)
Pitcher, Craig
Accessing the subsurface of planetary bodies with drilling systems is vital for furthering our understanding of the solar system and in the search for life and volatiles. The extremely stringent mass and sizing mission constraints have led to the examination of novel low-mass drilling techniques. One such system is the Dual-Reciprocating Drill (DRD), inspired by the ovipositor of the sirex noctilio, which uses the reciprocation of two halves lined with backwards-facing teeth to engage with and grip the surrounding substrate. For the DRD to become a viable alternative technique, further work is required to expand its testing, improve its efficiency and evolve it from the current proof-of-concept to a system prototype. To do this, three areas of research were identified. This involved examining how the drill head design affects the drilling depth, exploring the effects of ice content in regolith on its properties and drilling performance, and determining the benefits of additional controlled lateral motions in an integrated actuation mechanism. The tests performed in this research revealed that the cross-sectional area of the drill head was by far the most significant geometrical parameter with regards to drilling performance, while the teeth shape had a negligible effect. An ice content of 5 +/- 1% in the regolith corresponded to an increase in drilling time and a clear change in the regolith's physical properties. Finally, it was demonstrated that the addition of lateral motions allowed the drill to achieve greater depths. This work has advanced both the understanding and design of the DRD considerably. It has continued the exploration of the geometrical and substrate parameters that affect drilling performance and provided the first characterisation of the properties of an icy lunar polar simulant. The construction and testing of the complex motion internal actuation mechanism has both evolved the DRD design and opened a new avenue through which the system can be further optimised.
Drill user's manual. [drilling machine automation
NASA Technical Reports Server (NTRS)
Pitts, E. A.
1976-01-01
Instructions are given for using the DRILL computer program which converts data contained in an Interactive Computer Graphics System (IGDS) design file to production of a paper tape for driving a numerically controlled drilling machine.
A novel drill design for photoacoustic guided surgeries
NASA Astrophysics Data System (ADS)
Shubert, Joshua; Lediju Bell, Muyinatu A.
2018-02-01
Fluoroscopy is currently the standard approach for image guidance of surgical drilling procedures. In addition to the harmful radiation dose to the patient and surgeon, fluoroscopy fails to visualize critical structures such as blood vessels and nerves within the drill path. Photoacoustic imaging is a well-suited imaging method to visualize these structures and it does not require harmful ionizing radiation. However, there is currently no clinical system available to deliver light to occluded drill bit tips. To address this challenge, a prototype drill was designed, built, and tested using an internal light delivery system that allows laser energy to be transferred from a stationary laser source to the tip of a spinning drill bit. Photoacoustic images were successfully obtained with the drill bit submerged in water and with the drill tip inserted into a thoracic vertebra from a human cadaver.
Considerations, constraints and strategies for drilling on Mars
NASA Astrophysics Data System (ADS)
Zacny, K.; Cooper, G.
2006-04-01
The effect of the environmental conditions on Mars - low temperature, low pressure, the uncertainty in the nature of the formations to be penetrated and the possibility of encountering ice - imply that a successful drilling system will have to be able to cope with a wide range of conditions. Systems using continuous drill pipe or wireline both offer attractive features and disadvantages, and the preferred choice may depend on the target depth. The drill bit will have to cope with a range of terrain, and we offer some suggestions for making a bit that will be able to drill in both hard and soft formations, and also be able to resist choking if it encounters ice or ice-bound materials. Since it will not be possible to use a liquid to remove the drilled cuttings on Mars, the cuttings removal system will probably use some form of auger, although it may be possible to use continuous or intermittent gas blasts. The sublimation of ice resulting from the heat of drilling in ice-containing formations may help in removing the cuttings, particularly as they are expected to be very fine as a result of the low power available for drilling. Drilling into ice bound soils was also found to be akin to drilling into ice-bound sandstones.
Wang, Yudan; Wen, Guojun; Chen, Han
2017-04-27
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system.
Wang, Yudan; Wen, Guojun; Chen, Han
2017-01-01
The drilling length is an important parameter in the process of horizontal directional drilling (HDD) exploration and recovery, but there has been a lack of accurate, automatically obtained statistics regarding this parameter. Herein, a technique for real-time HDD length detection and a management system based on the electromagnetic detection method with a microprocessor and two magnetoresistive sensors employing the software LabVIEW are proposed. The basic principle is to detect the change in the magnetic-field strength near a current coil while the drill stem and drill-stem joint successively pass through the current coil forward or backward. The detection system consists of a hardware subsystem and a software subsystem. The hardware subsystem employs a single-chip microprocessor as the main controller. A current coil is installed in front of the clamping unit, and two magneto resistive sensors are installed on the sides of the coil symmetrically and perpendicular to the direction of movement of the drill pipe. Their responses are used to judge whether the drill-stem joint is passing through the clamping unit; then, the order of their responses is used to judge the movement direction. The software subsystem is composed of a visual software running on the host computer and a software running in the slave microprocessor. The host-computer software processes, displays, and saves the drilling-length data, whereas the slave microprocessor software operates the hardware system. A combined test demonstrated the feasibility of the entire drilling-length detection system. PMID:28448445
Seismic while drilling: Operational experiences in Viet Nam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jackson, M.; Einchcomb, C.
1997-03-01
The BP/Statoil alliance in Viet Nam has used seismic while drilling on four wells during the last two years. Three wells employed the Western Atlas Tomex system, and the last well, Schlumberger`s SWD system. Perceived value of seismic while drilling (SWD) lies in being able to supply real-time data linking drill bit position to a seismic picture of the well. However, once confidence in equipment and methodology is attained, SWD can influence well design and planning associated with drilling wells. More important, SWD can remove uncertainty when actually drilling wells, allowing risk assessment to be carried out more accurately andmore » confidently.« less
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Jet drills. 56.7801 Section 56.7801 Mineral... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Drilling and Rotary Jet Piercing Rotary Jet Piercing § 56.7801 Jet drills. Jet piercing drills shall be provided with— (a) A system to...
An inexpensive and portable drill rig for bedrock groundwater studies in headwater catchments
C. Gabrielli; J.J. McDonnell
2011-01-01
Bedrock groundwater dynamics in headwater catchments are poorly understood and poorly characterized. Here, we present an inexpensive and portable bedrock drilling system designed for use in remote locations. Our system is capable of drilling bedrock wells up to 11 m deep and 38 mm in diameter in a wide range of bedrock types. The drill consists of a lawn mower engine...
NASA Astrophysics Data System (ADS)
Saito, S.; Sanada, Y.; Moe, K.; Kido, Y. N.; Hamada, Y.; Kumagai, H.; Nozaki, T.; Takai, K.; Suzuki, K.
2015-12-01
A scientific drilling expedition was conducted at an active hydrothermal field on the Iheya-North Knoll by D/V Chikyu in 2014 (Expedition 907) as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program. During the expedition logging while drilling (LWD) was deployed to constrain the area of the fluid reservoir beneath seafloor followed by three coring holes down to 150 meter below the seafloor (mbsf). The LWD system is composed of arcVISION for resistivity and natural gamma ray measurement and TeleScope for real-time transmission of drilling parameters and arcVISION data. Five sites (C9011-15) at the Iheya-North Original Site and one site (C9016) at Aki Site were drilled with LWD. At C9012 and C9016, the arcVISION detected temperature anomaly up to 84℃ at 234 mbsf and up to 39℃ at 80 mbsf, respectively. The temperature quickly increases at that depth and it would reflect the existence of high-temperature heat source along borehole. Due to the continuous fluid circulation during drilling, the measured temperature does not indicate in-situ temperature, but it reflects the heat disturbed by the cold circulated water instead. High quality resistivity and natural gamma ray data were acquired at six sites. The log curves at Site C9016 show characteristic response; the natural gamma ray log exhibits extremely high radiation (>500 gAPI) at 7-13 and 23-31 mbsf (Zone A). In the underlying interval of 31-40 mbsf, the resistivity log exhibits extremely low value (<0.2 ohm-m) (Zone B). Then the resistivity log exhibits higher value (~10 ohm-m) and the natural gamma ray log shows very low radiation (<50 gAPI) at the interval of 41-48 mbsf (Zone C). The log characteristics in Zone A, B, and C can be interpreted as a series of K-rich alteration zone, sulfide zone, and low-K hard (silicified) sediments, respectively. The LWD-based lithological interpretation was confirmed by the following core description. Zones A and B can be correlated to altered clay zone and sulfide zone including sphalerite, galena, chalcopyrite, and pyrite. Our results show that LWD is a powerful tool for the identification and characterization of submarine hydrothermal deposits and LWD survey enhances the successful recovery of sulfide samples.
Drilling Regolith: Why Is It So Difficult?
NASA Astrophysics Data System (ADS)
Schmitt, H. H.
2017-10-01
The Apollo rotary percussive drill system penetrated the lunar regolith with reasonable efficiency; however, extraction of the drill core stem proved to be very difficult on all three missions. Retractable drill stem flutes may solve this problem.
Identification of sandstone core damage using scanning electron microscopy
NASA Astrophysics Data System (ADS)
Ismail, Abdul Razak; Jaafar, Mohd Zaidi; Sulaiman, Wan Rosli Wan; Ismail, Issham; Shiunn, Ng Yinn
2017-12-01
Particles and fluids invasion into the pore spaces causes serious damage to the formation, resulting reduction in petroleum production. In order to prevent permeability damage for a well effectively, the damage mechanisms should be identified. In this study, water-based drilling fluid was compared to oil-based drilling fluids based on microscopic observation. The cores were damaged by several drilling fluid systems. Scanning electron microscope (SEM) was used to observe the damage mechanism caused by the drilling fluids. Results showed that the ester based drilling fluid system caused the most serious damage followed by synthetic oil based system and KCI-polymer system. Fine solids and filtrate migration and emulsion blockage are believed to be the major mechanisms controlling the changes in flow properties for the sandstone samples.
Reaching 1 m deep on Mars: the Icebreaker drill.
Zacny, K; Paulsen, G; McKay, C P; Glass, B; Davé, A; Davila, A F; Marinova, M; Mellerowicz, B; Heldmann, J; Stoker, C; Cabrol, N; Hedlund, M; Craft, J
2013-12-01
The future exploration of Mars will require access to the subsurface, along with acquisition of samples for scientific analysis and ground-truthing of water ice and mineral reserves for in situ resource utilization. The Icebreaker drill is an integral part of the Icebreaker mission concept to search for life in ice-rich regions on Mars. Since the mission targets Mars Special Regions as defined by the Committee on Space Research (COSPAR), the drill has to meet the appropriate cleanliness standards as requested by NASA's Planetary Protection Office. In addition, the Icebreaker mission carries life-detection instruments; and in turn, the drill and sample delivery system have to meet stringent contamination requirements to prevent false positives. This paper reports on the development and testing of the Icebreaker drill, a 1 m class rotary-percussive drill and triple redundant sample delivery system. The drill acquires subsurface samples in short, approximately 10 cm bites, which makes the sampling system robust and prevents thawing and phase changes in the target materials. Autonomous drilling, sample acquisition, and sample transfer have been successfully demonstrated in Mars analog environments in the Arctic and the Antarctic Dry Valleys, as well as in a Mars environmental chamber. In all environments, the drill has been shown to perform at the "1-1-100-100" level; that is, it drilled to 1 m depth in approximately 1 hour with less than 100 N weight on bit and approximately 100 W of power. The drilled substrate varied and included pure ice, ice-rich regolith with and without rocks and with and without 2% perchlorate, and whole rocks. The drill is currently at a Technology Readiness Level (TRL) of 5. The next-generation Icebreaker drill weighs 10 kg, which is representative of the flightlike model at TRL 5/6.
Experimental analysis of drilling process in cortical bone.
Wang, Wendong; Shi, Yikai; Yang, Ning; Yuan, Xiaoqing
2014-02-01
Bone drilling is an essential part in orthopaedics, traumatology and bone biopsy. Prediction and control of drilling forces and torque are critical to the success of operations involving bone drilling. This paper studied the drilling force, torque and drilling process with automatic and manual drill penetrating into bovine cortical bone. The tests were performed on a drilling system which is used to drill and measure forces and torque during drilling. The effects of drilling speed, feed rate and drill bit diameter on force and torque were discussed separately. The experimental results were proven to be in accordance with the mathematic expressions introduced in this paper. The automatic drilling saved drilling time by 30-60% in the tested range and created less vibration, compared to manual drilling. The deviation between maximum and average force of the automatic drilling was 5N but 25N for manual drilling. To conclude, using the automatic method has significant advantages in control drilling force, torque and drilling process in bone drilling. Copyright © 2013 IPEM. Published by Elsevier Ltd. All rights reserved.
New surface-based observations of the environment beneath Pine Island Glacier ice shelf
NASA Astrophysics Data System (ADS)
Bindschadler, Robert; Truffer, Martin; Stanton, Tim; Peters, Leo; Shortt, Mike; Pomraning, Dale; Stockel, Jim; Shaw, Bill; Steinarson, Einar; Anandakrishnan, Sridhar; Wilson, Kiya; Holland, David; Bushuk, Mitch; Behar, Alberto; Cocaud, Cedric; Stam, Christina
2013-04-01
Extensive surface, sub-shelf cavity and seabed observations of the Pine Island Glacier (PIG) ice shelf environment were collected by a surface field team during the 2012-13 austral summer. Three sites aligned along a central, flow-aligned surface valley were occupied for about one week each during which two hot-water holes were drilled at each site. In one hole, a mast-mounted set of oceanographic sensors recorded water temperature, current and salinity in the few meters immediately below the ice-shelf bottom. In the other hole, a similarly instrumented profiler was deployed to make quasi-daily vertical transects of the sub-shelf cavity by rising and sinking along a cable suspended in the cavity. These instruments are already returning data that provide direct rates of heat and momentum transfer in the boundary layer, basal melt rates and the temporal variation of water movements on daily and longer time scales. Shallow cores of the sea bed and a photographic record of the drill holes, ocean cavity and sea bed were also collected at two of the drill sites. The geophysics program was spatially much broader and consisted of phase-sensitive radars to measure basal melt rates and active seismic instrumentation to explore the character of the sea bed. Continuous profiling between the drill sites established the previously discovered ("Autosub") sea bed ridge is asymmetric with a steeper downstream face. Spot measurements upstream of the drill sites were reached by helicopter and refined the shape of the ocean cavity where extensive melt rates were measured. The field work is concluding as this abstract is being submitted, so most results are not yet available, but will be included in the presentation as first results emerge.
Multi-gradient drilling method and system
Maurer, William C.; Medley, Jr., George H.; McDonald, William J.
2003-01-01
A multi-gradient system for drilling a well bore from a surface location into a seabed includes an injector for injecting buoyant substantially incompressible articles into a column of drilling fluid associated with the well bore. Preferably, the substantially incompressible articles comprises hollow substantially spherical bodies.
1991-03-01
aspects of war.) Moral forces are difficult to grasp and impossible to quantify. 9 One cannot easily gauge forces like national and military resolve...Legion’s solution to the problem of battlefield control was to simplify it by means of standardized tactical drill coupled with a deployment that gave...conditions that will achieve the strategic goals. The operational commander must be interacting constantly with the strategic level even as he gauges his
In-process and post-process measurements of drill wear for control of the drilling process
NASA Astrophysics Data System (ADS)
Liu, Tien-I.; Liu, George; Gao, Zhiyu
2011-12-01
Optical inspection was used in this research for the post-process measurements of drill wear. A precision toolmakers" microscope was used. Indirect index, cutting force, is used for in-process drill wear measurements. Using in-process measurements to estimate the drill wear for control purpose can decrease the operation cost and enhance the product quality and safety. The challenge is to correlate the in-process cutting force measurements with the post-process optical inspection of drill wear. To find the most important feature, the energy principle was used in this research. It is necessary to select only the cutting force feature which shows the highest sensitivity to drill wear. The best feature selected is the peak of torque in the drilling process. Neuro-fuzzy systems were used for correlation purposes. The Adaptive-Network-Based Fuzzy Inference System (ANFIS) can construct fuzzy rules with membership functions to generate an input-output pair. A 1x6 ANFIS architecture with product of sigmoid membership functions can in-process measure the drill wear with an error as low as 0.15%. This is extremely important for control of the drilling process. Furthermore, the measurement of drill wear was performed under different drilling conditions. This shows that ANFIS has the capability of generalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevallier, J.J.; Quetier, F.P.; Marshall, D.W.
Sedco Forex has developed an integrated computer system to enhance the technical performance of the company at various operational levels and to increase the understanding and knowledge of the drill crews. This paper describes the system and how it is used for recording and processing drilling data at the rig site, for associated technical analyses, and for well design, planning, and drilling performance studies at the operational centers. Some capabilities related to the statistical analysis of the company's operational records are also described, and future development of rig computing systems for drilling applications and management tasks is discussed.
Impedance matched joined drill pipe for improved acoustic transmission
Moss, William C.
2000-01-01
An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.
Accessing SAFOD data products: Downhole measurements, physical samples and long-term monitoring
NASA Astrophysics Data System (ADS)
Weiland, C.; Zoback, M.; Hickman, S. H.; Ellsworth, W. L.
2005-12-01
Many different types of data were collected during SAFOD Phases 1 and 2 (2004-2005) as part of the National Science Foundation's EarthScope program as well as from the SAFOD Pilot Hole, drilled in 2002 and funded by the International Continental Drilling Program (ICDP). Both SAFOD and the SAFOD Pilot Hole are being conducted as a close collaboration between NSF, the U.S. Geological Survey and the ICDP. SAFOD data products include cuttings, core and fluid samples; borehole geophysical measurements; and strain, tilt, and seismic recordings from the multilevel SAFOD borehole monitoring instruments. As with all elements of EarthScope, these data (and samples) are openly available to members of the scientific and educational communities. This paper presents the acquisition, storage and distribution plan for SAFOD data products. Washed and unwashed drill cuttings and mud samples were collected during Phases 1 and 2, along with three spot cores at depths of 1.5, 2.5, and 3.1 km. A total of 52 side-wall cores were also collected in the open-hole interval between 2.5 and 3.1 km depth. The primary coring effort will occur during Phase 3 (2007), when we will continuously core up to four, 250-m-long multilaterals directly within and adjacent to the San Andreas Fault Zone. Drill cuttings, core, and fluid samples from all three Phases of SAFOD drilling are being curated under carefully controlled conditions at the Integrated Ocean Drilling Program (IODP) Gulf Coast Repository in College Station, Texas. Photos of all physical samples and a downloadable sample request form are available on the ICDP website (http://www.icdp-online.de/sites/sanandreas/index/index.html). A suite of downhole geophysical measurements was conducted during the first two Phases of SAFOD drilling, as well as during drilling of the SAFOD Pilot Hole. These data include density, resistivity, porosity, seismic and borehole image logs and are also available via the ICDP website. The SAFOD monitoring program includes fiber-optic strain, tilt, seismic and fluid-pressure recording instruments. Seismic data from the Pilot Hole array are now available in SEED format from the Northern California Earthquake Data Center (http://quake.geo.berkeley.edu/safod/). The strain and tilt instruments are still undergoing testing and quality assurance, and these data will be available through the same web site as soon as possible. Lastly, two terabytes of unprocessed (SEG-2 format) data from a two-week deployment of an 80-level seismic array during April/May 2005 by Paulsson Geophysical Services, Inc. are now available via the IRIS data center (http://www.iris.edu/data/data.htm). Drilling parameters include real-time descriptions of drill cuttings mineralogy, drilling mud properties, and mechanical data related to the drilling process and are available via the ICDP web site. Current status reports on SAFOD drilling, borehole measurements, sampling, and monitoring instrumentation will continue to be available from the EarthScope web site (http://www.earthscope.org).
Experimental system for drilling simulated lunar rock in ultrahigh vacuum
NASA Technical Reports Server (NTRS)
Roepke, W. W.
1975-01-01
An experimental apparatus designed for studying drillability of hard volcanic rock in a simulated lunar vacuum of 5 x 10 to the minus 10th power torr is described. The engineering techniques used to provide suitable drilling torque inside the ultrahigh vacuum chamber while excluding all hydrocarbon are detailed. Totally unlubricated bearings and gears were used to better approximate the true lunar surface conditions within the ultrahigh vacuum system. The drilling system has a starting torque of 30 in-lb with an unloaded running torque of 4 in-lb. Nominal torque increase during drilling is 4.5 in-lb or a total drilling torque of 8.5 in-lb with a 100-lb load on the drill bit at 210 rpm. The research shows conclusively that it is possible to design operational equipment for moderate loads operating under UHV conditions without the use of sealed bearings or any need of lubricants whatsoever.
NASA Astrophysics Data System (ADS)
Denchik, N.; Pezard, P. A.; Ragnar, A.; Jean-Luc, D.; Jan, H.
2014-12-01
Drilling an entire section of the oceanic crust and through the Moho has been a goal of the scientific community for more than half of a century. On the basis of ODP and IODP experience and data, this will require instruments and strategies working at temperature far above 200°C (reached, for example, at the bottom of DSDP/ODP Hole 504B), and possibly beyond 300°C. Concerning logging and monitoring instruments, progress were made over the past ten years in the context of the HiTI ("High Temperature Instruments") project funded by the european community for deep drilling in hot Icelandic geothermal holes where supercritical conditions and a highly corrosive environment are expected at depth (with temperatures above 374 °C and pressures exceeding 22 MPa). For example, a slickline tool (memory tool) tolerating up to 400°C and wireline tools up to 300°C were developed and tested in Icelandic high-temperature geothermal fields. The temperature limitation of logging tools was defined to comply with the present limitation in wireline cables (320°C). As part of this new set of downhole tools, temperature, pressure, fluid flow and casing collar location might be measured up to 400°C from a single multisensor tool. Natural gamma radiation spectrum, borehole wall ultrasonic images signal, and fiber optic cables (using distributed temperature sensing methods) were also developed for wireline deployment up to 300°C and tested in the field. A wireline, dual laterolog electrical resistivity tool was also developed but could not be field tested as part of HiTI. This new set of tools constitutes a basis for the deep exploration of the oceanic crust in the future. In addition, new strategies including the real-time integration of drilling parameters with modeling of the thermo-mechanical status of the borehole could be developed, using time-lapse logging of temperature (for heat flow determination) and borehole wall images (for hole stability and in-situ stress determination) as boundary conditions for the models. In all, and with limited integration of existing tools, to deployment of high-temperature downhole tools could contribute largely to the success of the long awaited Mohole project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudleson, B.; Arnold, M.; McCann, D.
Rapid detection of unexpected drilling events requires continuous monitoring of drilling parameters. A major R and D program by a drilling contractor has led to the introduction of a computerized monitoring system on its offshore rigs. System includes advanced color graphics displays and new smart alarms to help both contractor and operator personnel detect and observe drilling events before they would normally be apparent with conventional rig instrumentation. This article describes a module of this monitoring system, which uses expert system technology to detect the earliest stages of drillstring washouts. Field results demonstrate the effectiveness of the smart alarm incorporatedmore » in the system. Early detection allows the driller to react before a twist-off results in expensive fishing operations.« less
a Self-Excited System for Percussive-Rotary Drilling
NASA Astrophysics Data System (ADS)
Batako, A. D.; Babitsky, V. I.; Halliwell, N. A.
2003-01-01
A dynamic model for a new principle of percussive-rotary drilling is presented. This is a non-linear mechanical system with two degrees of freedom, in which friction-induced vibration is used for excitation of impacts, which influence the parameters of stick-slip motion. The model incorporates the friction force as a function of sliding velocity, which allows for the self-excitation of the coupled vibration of the rotating bit and striker, which tends to a steady state periodic cycle. The dynamic coupling of vibro-impact action with the stick-slip process provides an entirely new adaptive feature in the drilling process. The dynamic behaviour of the system with and without impact is studied numerically. Special attention is given to analysis of the relationship between the sticking and impacting phase of the process in order to achieve an optimal drilling performance. This paper provides an understanding of the mechanics of percussive -rotary drilling and design of new drilling tools with advanced characteristics. Conventional percussive-rotary drilling requires two independent actuators and special control for the synchronization of impact and rotation. In the approach presented, a combined complex interaction of drill bit and striker is synchronized by a single rotating drive.
Boa, Kristof; Varga, Endre; Pinter, Gabor; Csonka, Akos; Gargyan, Istvan; Varga, Endre
2015-12-01
The purpose of this study was to measure the rise in intraosseous temperature caused by drilling through a drilling guide system. We compared the rise in temperature generated, and the number of increases of more than 10 °C, between drills that had been cooled with saline at room temperature (25 °C) and those that had not been cooled, for every step of the drilling sequence. Cortical layers of bovine ribs were used as specimens, and they were drilled through 3-dimensional printed surgical guides. Heat was measured with an infrared thermometer. The significance of differences was assessed with either a two-sample t test or Welch's test, depending on the variances. The mean rises (number of times that the temperature rose above 10 °C) for each group of measurements were: for the 2mm drill, 4.8 °C (0/48) when cooled and 7.0 °C (8/48) when not cooled; with the 2.5mm drill, 5.2 °C (1/48) when cooled and 8.5 °C (17/48) when not cooled (2 mm canal); with the 3 mm drill, 3.3 °C when cooled (0/48) and 8.5 °C (18/24) when not cooled (2.5 mm canal); and with the 3.5 mm drill, 4.8 °C when cooled (0/24) and 9.4 °C when not cooled (10/23) (3 mm canal). The temperature rose significantly less with cooling at every step of the drilling sequence (p<0.001). We conclude that external cooling can maintain the intraosseous temperature within the safe range while drilling through an implant guide system, whereas drilling without irrigation can lead to temperatures that exceed the acceptable limit. Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?
Code of Federal Regulations, 2013 CFR
2013-07-01
... foundations; drilling, production, and pipeline risers and riser tensioning systems; turrets and turret-and... component design; pile foundations; drilling, production, and pipeline risers and riser tensioning systems... Loads imposed by jacket; decks; production components; drilling, production, and pipeline risers, and...
30 CFR 250.905 - How do I get approval for the installation, modification, or repair of my platform?
Code of Federal Regulations, 2014 CFR
2014-07-01
... foundations; drilling, production, and pipeline risers and riser tensioning systems; turrets and turret-and... component design; pile foundations; drilling, production, and pipeline risers and riser tensioning systems... Loads imposed by jacket; decks; production components; drilling, production, and pipeline risers, and...
NASA Astrophysics Data System (ADS)
Mattioli, Glen S.; Young, Simon R.; Voight, Barry; Sparks, R. Steven J.; Shalev, Eylon; Selwyn, Sacks; Malin, Peter; Linde, Alan; Johnston, William; Hadayat, Dannie; Elsworth, Derek; Dunkley, Peter; Herd, Richard; Neuberg, Jurgen; Norton, Gillian; Widiwijayanti, Christina
2004-08-01
This article is an update on the status of an innovative new project designed to enhance generally our understanding of andesitic volcano eruption dynamics and, specifically, the monitoring and scientific infrastructure at the active Soufriàre Hills Volcano (SHV), Montserrat. The project has been designated as the Caribbean Andesite Lava Island Precision Seismo-geodetic Observatory, known as CALIPSO. Its purpose is to investigate the dynamics of the entire SHV magmatic system using an integrated array of specialized instruments in four strategically located ~200-m-deep boreholes in concert with several shallower holes and surface sites. The project is unique, as it represents the first, and only, such borehole volcano-monitoring array deployed at an andesitic stratovolcano. CALIPSO may be considered as a prototype for planned Plate Boundary Observatory (PBO) installations at several volcanic targets in the western United States. Scientific objectives of the EarthScope Integrated Science Plan (ES-ISP) relevant to magmatic systems are to investigate (1) melt generation in the mantle; (2) melt migration from the mantle to and through the crust to the surface; (3) melt residence times at various deep reservoirs; and (4) delineation of characteristic patterns of surface deformation and seismicity, which may prove useful in eruption forecasting. The CALIPSO project shares most of the same scientific goals and has, moreover, the benefit of a rich existing geophysical context in its deployment at SHV. Our experience during instrument design, planning, drilling and installation, systems integration, and early operation of CALIPSO, moreover, may prove valuable to EarthScope and PBO managers.
Automation of cutting and drilling of composite components
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1991-01-01
The task was to develop a preliminary plan for an automated system for the cutting and drilling of advanced aerospace composite components. The goal was to automate the production of these components, but the technology developed can be readily extended to other systems. There is an excellent opportunity for developing a state of the art automated system for the cutting and drilling of large composite components at NASA-Marshall. Most of the major system components are in place: the robot, the water jet pump, and the off-line programming system. The drilling system and the part location system are the only major components that need to be developed. Also, another water jet nozzle and a small amount of high pressure plumbing need to be purchased from, and installed.
GRAIN-SCALE FAILURE IN THERMAL SPALLATION DRILLING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, S C; Lomov, I; Roberts, J J
2012-01-19
Geothermal power promises clean, renewable, reliable and potentially widely-available energy, but is limited by high initial capital costs. New drilling technologies are required to make geothermal power financially competitive with other energy sources. One potential solution is offered by Thermal Spallation Drilling (TSD) - a novel drilling technique in which small particles (spalls) are released from the rock surface by rapid heating. While TSD has the potential to improve drilling rates of brittle granitic rocks, the coupled thermomechanical processes involved in TSD are poorly described, making system control and optimization difficult for this drilling technology. In this paper, we discussmore » results from a new modeling effort investigating thermal spallation drilling. In particular, we describe an explicit model that simulates the grain-scale mechanics of thermal spallation and use this model to examine existing theories concerning spalling mechanisms. We will report how borehole conditions influence spall production, and discuss implications for macro-scale models of drilling systems.« less
NASA Technical Reports Server (NTRS)
Glass, Brian J.; Thompson, S.; Paulsen, G.
2010-01-01
Several proposed or planned planetary science missions to Mars and other Solar System bodies over the next decade require subsurface access by drilling. This paper discusses the problems of remote robotic drilling, an automation and control architecture based loosely on observed human behaviors in drilling on Earth, and an overview of robotic drilling field test results using this architecture since 2005. Both rotary-drag and rotary-percussive drills are targeted. A hybrid diagnostic approach incorporates heuristics, model-based reasoning and vibration monitoring with neural nets. Ongoing work leads to flight-ready drilling software.
NASA Astrophysics Data System (ADS)
Timonin, VV; Alekseev, SE; Kokoulin, DI; Kubanychbek, B.
2018-03-01
It is proposed to carry out pre-mine methane drainage using underground degassing holes made by downhole air hammer drills. The features of downhole air drills are described. The downhole air drill layout with the simple-shape striking part is presented with its pluses and minuses. The researchers point at available options to eliminate the shortcomings. The improved layout of the downhole air hammer drill is suggested. The paper ends with the test data on the prototype air hammer drill, its characteristics and trial drilling results.
Steinsvåg, Kjersti; Galea, Karen S; Krüger, Kirsti; Peikli, Vegard; Sánchez-Jiménez, Araceli; Sætvedt, Esther; Searl, Alison; Cherrie, John W; van Tongeren, Martie
2011-05-01
Workers in the drilling section of the offshore petroleum industry are exposed to air pollutants generated by drilling fluids. Oil mist and oil vapour concentrations have been measured in the drilling fluid processing areas for decades; however, little work has been carried out to investigate exposure determinants such as drilling fluid viscosity and temperature. A study was undertaken to investigate the effect of two different oil-based drilling fluid systems and their temperature on oil mist, oil vapour, and total volatile organic compounds (TVOC) levels in a simulated shale shaker room at a purpose-built test centre. Oil mist and oil vapour concentrations were sampled simultaneously using a sampling arrangement consisting of a Millipore closed cassette loaded with glass fibre and cellulose acetate filters attached to a backup charcoal tube. TVOCs were measured by a PhoCheck photo-ionization detector direct reading instrument. Concentrations of oil mist, oil vapour, and TVOC in the atmosphere surrounding the shale shaker were assessed during three separate test periods. Two oil-based drilling fluids, denoted 'System 2.0' and 'System 3.5', containing base oils with a viscosity of 2.0 and 3.3-3.7 mm(2) s(-1) at 40°C, respectively, were used at temperatures ranging from 40 to 75°C. In general, the System 2.0 yielded low oil mist levels, but high oil vapour concentrations, while the opposite was found for the System 3.5. Statistical significant differences between the drilling fluid systems were found for oil mist (P = 0.025),vapour (P < 0.001), and TVOC (P = 0.011). Increasing temperature increased the oil mist, oil vapour, and TVOC levels. Oil vapour levels at the test facility exceeded the Norwegian oil vapour occupational exposure limit (OEL) of 30 mg m(-3) when the drilling fluid temperature was ≥50°C. The practice of testing compliance of oil vapour exposure from drilling fluids systems containing base oils with viscosity of ≤2.0 mm(2) s(-1) at 40°C against the Norwegian oil vapour OEL is questioned since these base oils are very similar to white spirit. To reduce exposures, relevant technical control measures in this area are to cool the drilling fluid <50°C before it enters the shale shaker units, enclose shale shakers and related equipment, in addition to careful consideration of which fluid system to use.
Microhole Coiled Tubing Bottom Hole Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Don Macune
2008-06-30
The original objective of the project, to deliver an integrated 3 1/8-inch diameter Measurement While Drilling (MWD) and Logging While Drilling (LWD) system for drilling small boreholes using coiled tubing drilling, has been achieved. Two prototype systems have been assembled and tested in the lab. One of the systems has been successfully tested downhole in a conventional rotary drilling environment. Development of the 3 1/8-inch system has also lead to development and commercialization of a slightly larger 3.5-inch diameter system. We are presently filling customer orders for the 3.5-inch system while continuing with commercialization of the 3 1/8-inch system. Themore » equipment developed by this project will be offered for sale to multiple service providers around the world, enabling the more rapid expansion of both coiled tubing drilling and conventional small diameter drilling. The project was based on the reuse of existing technology whenever possible in order to minimize development costs, time, and risks. The project was begun initially by Ultima Labs, at the time a small company ({approx}12 employees) which had successfully developed a number of products for larger oil well service companies. In September, 2006, approximately 20 months after inception of the project, Ultima Labs was acquired by Sondex plc, a worldwide manufacturer of downhole instrumentation for cased hole and drilling applications. The acquisition provided access to proven technology for mud pulse telemetry, downhole directional and natural gamma ray measurements, and surface data acquisition and processing, as well as a global sales and support network. The acquisition accelerated commercialization through existing Sondex customers. Customer demand resulted in changes to the product specification to support hotter (150 C) and deeper drilling (20,000 psi pressure) than originally proposed. The Sondex acquisition resulted in some project delays as the resistivity collar was interfaced to a different MWD system and also as the mechanical design was revised for the new pressure requirements. However, the Sondex acquisition has resulted in a more robust system, secure funding for completion of the project, and more rapid commercialization.« less
NASA Astrophysics Data System (ADS)
Pitcher, Craig; Gao, Yang
2017-03-01
The dual-reciprocating drill (DRD) is a biologically-inspired low-mass alternative to traditional drilling techniques, using backwards-facing teethed halves to grip the surrounding substrate, generating a traction force that reduces the required overhead penetration force. Previous experiments using a proof-of-concept test bench have provided evidence as to the significant role of sideways movements and lateral forces in improving drilling performance. The system is also progressing to a first system prototype concept, in which an actuation mechanism is integrated within the drill heads. To experimentally determine the effect of lateral motions, a new internal actuation mechanism was developed to allow the inclusion of controlled sideways movements, resulting in the creation of the circular and diagonal burrowing motions. This paper presents an investigation into the performance of the reciprocation and burrowing motions by testing them in a planetary regolith simulant. Analysis of force sensor measurements has shown a relationship between the penetration and traction forces and the internal friction of the mechanism and depth achieved. These tests have also experimentally demonstrated the benefit of lateral motions in drilling performance, with both the burrowing mechanisms and drilling tests performed at an angle able to penetrate further than traditional vertical reciprocation, leading to the proposition of new burrowing and diagonal drilling mechanics. From this, a new fully integrated system prototype can be developed which incorporates lateral motions that can optimise the drilling performance.
Intraoperative positioning of mobile C-arms using artificial fluoroscopy
NASA Astrophysics Data System (ADS)
Dressel, Philipp; Wang, Lejing; Kutter, Oliver; Traub, Joerg; Heining, Sandro-Michael; Navab, Nassir
2010-02-01
In trauma and orthopedic surgery, imaging through X-ray fluoroscopy with C-arms is ubiquitous. This leads to an increase in ionizing radiation applied to patient and clinical staff. Placing these devices in the desired position to visualize a region of interest is a challenging task, requiring both skill of the operator and numerous X-rays for guidance. We propose an extension to C-arms for which position data is available that provides the surgeon with so called artificial fluoroscopy. This is achieved by computing digitally reconstructed radiographs (DRRs) from pre- or intraoperative CT data. The approach is based on C-arm motion estimation, for which we employ a Camera Augmented Mobile C-arm (CAMC) system, and a rigid registration of the patient to the CT data. Using this information we are able to generate DRRs and simulate fluoroscopic images. For positioning tasks, this system appears almost exactly like conventional fluoroscopy, however simulating the images from the CT data in realtime as the C-arm is moved without the application of ionizing radiation. Furthermore, preoperative planning can be done on the CT data and then visualized during positioning, e.g. defining drilling axes for pedicle approach techniques. Since our method does not require external tracking it is suitable for deployment in clinical environments and day-to-day routine. An experiment with six drillings into a lumbar spine phantom showed reproducible accuracy in positioning the C-arm, ranging from 1.1 mm to 4.1 mm deviation of marker points on the phantom compared in real and virtual images.
ROPEC - ROtary PErcussive Coring Drill for Mars Sample Return
NASA Technical Reports Server (NTRS)
Chu, Philip; Spring, Justin; Zacny, Kris
2014-01-01
The ROtary Percussive Coring Drill is a light weight, flight-like, five-actuator drilling system prototype designed to acquire core material from rock targets for the purposes of Mars Sample Return. In addition to producing rock cores for sample caching, the ROPEC drill can be integrated with a number of end effectors to perform functions such as rock surface abrasion, dust and debris removal, powder and regolith acquisition, and viewing of potential cores prior to caching. The ROPEC drill and its suite of end effectors have been demonstrated with a five degree of freedom Robotic Arm mounted to a mobility system with a prototype sample cache and bit storage station.
Research on high speed drilling technology and economic integration evaluation in Oilfield
NASA Astrophysics Data System (ADS)
Wang, Kun; Ni, Hongjian; Cheng, Na; Song, Jingbo
2018-01-01
The carbonate reservoir in the oilfield mainly formed in Ordovician System and Carboniferous System. The geology here is very complicated, with high heterogeneity. It gets much more difficult to control the well deflection in Permian system so that high accident ratio could be expected. The buried depth of the reservoir is large, normally 4600-6600m deep. The temperature of the layer is higher than 132 and the pressure is greater than 62MPa. The reservoir is with a high fluid properties, mainly including thin oil, heavy oil, condensate oil, gas and so on; the ground is very hard to drill, so we can foresee low drilling speed, long drilling period and high drilling cost, which will surely restrict the employing progress of the reservoir.
Electric motor for laser-mechanical drilling
Grubb, Daryl L.; Faircloth, Brian O.; Zediker, Mark S.
2015-07-07
A high power laser drilling system utilizing an electric motor laser bottom hole assembly. A high power laser beam travels within the electric motor for advancing a borehole. High power laser drilling system includes a down hole electrical motor having a hollow rotor for conveying a high power laser beam through the electrical motor.
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations... pressure test your BOP system (this includes the choke manifold, kelly valves, inside BOP, and drill-string... performance warrant; and (c) Before drilling out each string of casing or a liner. The District Manager may...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Signorelli, Riccardo; Cooley, John
2015-10-14
FastCAP Systems Corporation has successfully completed all milestones defined by the award DE-EE0005503. Under this program, FastCAP developed three critical subassemblies to TRL3 demonstrating proof of concept of a geothermal MWD power source. This power source includes an energy harvester, electronics and a novel high temperature ultracapacitor (“ultracap”) rechargeable energy storage device suitable for geothermal exploration applications. FastCAP’s ruggedized ultracapacitor (ultracap) technology has been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. Characteristics of this technology are that it is rechargeable and relatively high power. This technology was the basis for the advancements inmore » rechargeable energy storage under this project. The ultracap performs reliably at 250°C and beyond and operates over a wide operating temperature range: -5°C to 250°C. The ultracap has significantly higher power density than lithium thionyl chloride batteries, a non-rechargeable incumbent used in oil and gas drilling today. Several hermetically sealed, prototype devices were tested in our laboratories at constant temperatures of 250°C showing no significant degradation over 2000 hours of operation. Other prototypes were tested at Sandia National Lab in the month of April, 2015 for a third party performance validation. These devices showed outstanding performance over 1000 hours of operation at three rated temperatures, 200°C, 225°C and 250°C, with negligible capacitance degradation and minimal equivalent series resistance (ESR) increase. Similarly, FastCAP’s ruggedized electronics have been proven and commercialized in oil and gas exploration operating to rated temperatures of 150°C. This technology was the basis for the advancements in downhole electronics under this project. Principal contributions here focused on design for manufacture innovations that have reduced the prototype build cycle time by a factor of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated in the oil and gas context. Without batteries, geothermal MWD is left without a downhole power source. Some very high temperature turbines exist but provide unsteady, intermittent power and no power when the flow is off. In high loss formations common to geothermal exploration, it will be auspicious to support air drilling in which case there is no flow to power a turbine at all. In the best case, rechargeable energy storage will help to buffer unsteady power from non-battery power sources and in the worst case it will be needed to store energy from highly intermittent sources to provide a continuously operable power source to the tool.« less
Environmental Measurement-While-Drilling system for real-time field screening of contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lockwood, G.J.; Normann, R.A.; Bishop, L.B.
Sampling during environmental drilling is essential to fully characterize the spatial distribution and migration of near surface contaminants. However, the analysis of these samples is not only expensive, but can take weeks or months when sent to an off-site laboratory. In contrast, measurement-while-drilling (MWD) screening capability could save money and valuable time by quickly distinguishing between contaminated and uncontaminated areas. Real-time measurements provided by a MVM system would enable on-the-spot decisions to be made regarding sampling strategies, enhance worker safety, and provide the added flexibility of being able to ``steer`` the drill bit in or out hazardous zones. During measurement-while-drilling,more » down-hole sensors are located behind the drill bit and linked by a rapid data transmission system to a computer at the surface. As drilling proceeds, data are collected on the nature and extent of the subsurface contamination in real-time. The down-hole sensor is a Geiger-Mueller tube (GMT) gamma radiation detector. In addition to the GMT signal, the MWD system monitors these required down-hole voltages and two temperatures associated with the detector assembly. The Gamma Ray Detection System (GRDS) and electronics package are discussed in as well as the results of the field test. Finally, our conclusions and discussion of future work are presented.« less
NASA Astrophysics Data System (ADS)
Eshelman, E.; Wanger, G.; Manatt, K.; Malaska, M.; Willis, M.; Abbey, W.; Doloboff, I.; Beegle, L. W.; DeFlores, L. P.; Priscu, J. C.; Lane, A. L.; Carrier, B. L.; Mellerowicz, B.; Kim, D.; Paulsen, G.; Zacny, K.; Bhartia, R.
2017-12-01
Future astrobiological missions to Europa and other ocean worlds may benefit from next-generation instrumentation capable of in situ organic and life detection in subsurface ice environments. WATSON (Wireline Analysis Tool for in Situ Observation of Northern ice sheets) is an instrument under development at NASA's Jet Propulsion Laboratory. WATSON contains high-TRL instrumentation developed for SHERLOC, the Mars 2020 deep-UV fluorescence and Raman spectrometer, including a 248.6 nm NeCu hollow cathode laser as an excitation source. In WATSON, these technologies provide spectroscopic capabilities highly sensitive to many organic compounds, including microbes, in an instrument package approximately 1.2 m long with a 101.6 mm diameter, designed to accommodate a 108 mm ice borehole. Interrogation into the ice wall with a laser allows for a non-destructive in situ measurement that preserves the spatial distribution of material within the ice. We report on a successful deployment of WATSON to Kangerlussuaq, Greenland, where the instrument was lowered to a 4.5 m depth in a hand-cored hole on the Kangerlussuaq sector of the Greenland ice sheet. Motorized stages within the instrument were used to raster a laser across cm-scale regions of the interior surface of the borehole, obtaining fluorescence spectral maps with a 200 µm spatial resolution and a spectral range from 265 nm to 440 nm. This region includes the UV emission bands of many aromatic compounds and microbes, and includes the water and ice Raman O-H stretching modes. We additionally report on experiments designed to inform an early-2018 deployment to Kangerlussuaq where WATSON will be incorporated into a Honeybee Robotics planetary deep drill, with a goal of drilling to a depth of 100 m and investigating the distribution of organic material within the ice sheet. These experiments include laboratory calibrations to determine the sensitivity to organic compounds embedded in ice at various depths, as well as analysis of ice cores obtained during the deployment and returned for subsequent study.
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
46 CFR 111.105-33 - Mobile offshore drilling units.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Mobile offshore drilling units. 111.105-33 Section 111... ELECTRIC SYSTEMS-GENERAL REQUIREMENTS Hazardous Locations § 111.105-33 Mobile offshore drilling units. (a) Applicability. This section applies to each mobile offshore drilling unit. (b) Definitions. As used in this...
Drilling Precise Orifices and Slots
NASA Technical Reports Server (NTRS)
Richards, C. W.; Seidler, J. E.
1983-01-01
Reaction control thrustor injector requires precisely machined orifices and slots. Tooling setup consists of rotary table, numerical control system and torque sensitive drill press. Components used to drill oxidizer orifices. Electric discharge machine drills fuel-feed orifices. Device automates production of identical parts so several are completed in less time than previously.
Simple, affordable, and sustainable borehole observatories for complex monitoring objectives
NASA Astrophysics Data System (ADS)
Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.
2015-05-01
Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerat) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data on command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with iridium link. After a predefined period, the data unit with satellite link is released, ascends to the sea surface, and remains there for up to 2 weeks while sending the long-term data sets to shore. In summer 2012, two MeBoPLUGs, one MeBoCORK-A and one MeBoCORK-B were installed with MeBo on RV Sonne, Germany, in the Nankai Trough area, Japan. We have successfully downloaded data from the CORKs, attesting that coupling to the formation worked, and pressure records were elevated relative to the seafloor reference. In the near future, we will further deploy the first two MeBoPUPPIs. Recovery of all monitoring systems by a ROV is planned for 2016.
NASA Astrophysics Data System (ADS)
Zoback, M. D.; Hickman, S.; Ellsworth, W.
2005-12-01
In this talk we provide an overview of on-site drilling, sampling and downhole measurement activities associated with the first two Phases of the San Andreas Fault Observatory at Depth. SAFOD is located at the transition between the creeping and locked sections of the fault, 9 km NW of Parkfield, CA. A 2.1 km deep vertical pilot hole was drilled at the site in 2002. The SAFOD main borehole was drilled vertically to a depth of 1.5 km and then deviated at an average angle of 55° to vertical, passing beneath the surface trace of the San Andreas fault, 1.8 km to the NW at a depth of 3.2 km. Repeating microearthquakes on the San Andreas define the main active fault trace at depth, as well as a secondary active fault about 250 m to the SW (i.e., closer to SAFOD). The hole was rotary drilled, comprehensive cuttings were obtained and a real-time analysis of gases in the drilling mud was carried out. Spot cores were obtained at three depths (at casing set points) in the shallow granite and deeper sedimentary rocks penetrated by the hole, augmented by over fifty side-wall cores. Continuous coring of the San Andreas Fault Zone will be carried out in Phase 3 of the project in the summer of 2007. In addition to sampling mud gas, discrete fluid and gas samples were obtained at several depths for geochemical analysis. Real-time geophysical measurements were made while drilling through most of the San Andreas Fault Zone. A suite of "open hole" geophysical measurements were also made over essentially the entire depth of the hole. Construction of the multi-component SAFOD observatory is well underway, with a seismometer and tiltmeter operating at 1 km depth in the pilot hole and a fiber-optic laser strainmeter cemented behind casing in the main hole. A seismometer deployed at depth in the hole between Phases 1 and 2 detected one of the target earthquakes. A number of surface-to-borehole seismic experiments have been carried out to characterize seismic velocities and structures at depth, including deployment of an 80-level, 240-component seismic array in SAFOD in the spring of 2005. With knowledge of P- and S-wave velocities obtained from the geophysical measurements in conjunction with downhole recordings of the SAFOD target earthquake, it appears that the seismically active main trace of the fault is on the order of 400 m SW of the surface trace, in proximity to several candidate zones of particularly anomalous geophysical properties. Observations of casing deformation to be made over the next several years, as well as monitoring of the microearthquakes using seismometers directly within the fault zone, will pinpoint the exact location of this and other active fault traces prior to continuous coring in Phase 3. As will be elaborated in detail by the presentations of the SAFOD science team at this meeting, the activities carried out as part of Phases 1 and 2 of SAFOD lay the ground work for years of exciting research in earthquake physics, fault-rock geology, rock mechanics and the role of fluids and gases in faulting and earthquake generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wallace, Adam N., E-mail: wallacea@mir.wustl.edu; Pacheco, Rafael A., E-mail: pachecor@mir.wustl.edu; Tomasian, Anderanik, E-mail: tomasiana@mir.wustl.edu
2016-02-15
BackgroundA novel coaxial biopsy system powered by a handheld drill has recently been introduced for percutaneous bone biopsy. This technical note describes our initial experience performing fluoroscopy-guided vertebral body biopsies with this system, compares the yield of drill-assisted biopsy specimens with those obtained using a manual technique, and assesses the histologic adequacy of specimens obtained with drill assistance.MethodsMedical records of all single-level, fluoroscopy-guided vertebral body biopsies were reviewed. Procedural complications were documented according to the Society of Interventional Radiology classification. The total length of bone core obtained from drill-assisted biopsies was compared with that of matched manual biopsies. Pathology reportsmore » were reviewed to determine the histologic adequacy of specimens obtained with drill assistance.ResultsTwenty eight drill-assisted percutaneous vertebral body biopsies met study inclusion criteria. No acute complications were reported. Of the 86 % (24/28) of patients with clinical follow-up, no delayed complications were reported (median follow-up, 28 weeks; range 5–115 weeks). The median total length of bone core obtained from drill-assisted biopsies was 28 mm (range 8–120 mm). This was longer than that obtained from manual biopsies (median, 20 mm; range 5–45 mm; P = 0.03). Crush artifact was present in 11 % (3/28) of drill-assisted biopsy specimens, which in one case (3.6 %; 1/28) precluded definitive diagnosis.ConclusionsA drill-assisted, coaxial biopsy system can be used to safely obtain vertebral body core specimens under fluoroscopic guidance. The higher bone core yield obtained with drill assistance may be offset by the presence of crush artifact.« less
[Navigated drilling for femoral head necrosis. Experimental and clinical results].
Beckmann, J; Tingart, M; Perlick, L; Lüring, C; Grifka, J; Anders, S
2007-05-01
In the early stages of osteonecrosis of the femoral head, core decompression by exact drilling into the ischemic areas can reduce pain and achieve reperfusion. Using computer aided surgery, the precision of the drilling can be improved while simultaneously lowering radiation exposure time for both staff and patients. We describe the experimental and clinical results of drilling under the guidance of the fluoroscopically-based VectorVision navigation system (BrainLAB, Munich, Germany). A total of 70 sawbones were prepared mimicking an osteonecrosis of the femoral head. In two experimental models, bone only and obesity, as well as in a clinical setting involving ten patients with osteonecrosis of the femoral head, the precision and the duration of radiation exposure were compared between the VectorVision system and conventional drilling. No target was missed. For both models, there was a statistically significant difference in terms of the precision, the number of drilling corrections as well as the radiation exposure time. The average distance to the desired midpoint of the lesion of both models was 0.48 mm for navigated drilling and 1.06 mm for conventional drilling, the average drilling corrections were 0.175 and 2.1, and the radiation exposure time less than 1 s and 3.6 s, respectively. In the clinical setting, the reduction of radiation exposure (below 1 s for navigation compared to 56 s for the conventional technique) as well as of drilling corrections (0.2 compared to 3.4) was also significant. Computer guided drilling using the fluoroscopically based VectorVision navigation system shows a clearly improved precision with a enormous simultaneous reduction in radiation exposure. It is therefore recommended for clinical routine.
A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling
Zhang, Chunxi; Lin, Tie
2016-01-01
In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method. PMID:27483270
A Long-Term Performance Enhancement Method for FOG-Based Measurement While Drilling.
Zhang, Chunxi; Lin, Tie
2016-07-28
In the oil industry, the measurement-while-drilling (MWD) systems are usually used to provide the real-time position and orientation of the bottom hole assembly (BHA) during drilling. However, the present MWD systems based on magnetic surveying technology can barely ensure good performance because of magnetic interference phenomena. In this paper, a MWD surveying system based on a fiber optic gyroscope (FOG) was developed to replace the magnetic surveying system. To accommodate the size of the downhole drilling conditions, a new design method is adopted. In order to realize long-term and high position precision and orientation surveying, an integrated surveying algorithm is proposed based on inertial navigation system (INS) and drilling features. In addition, the FOG-based MWD error model is built and the drilling features are analyzed. The state-space system model and the observation updates model of the Kalman filter are built. To validate the availability and utility of the algorithm, the semi-physical simulation is conducted under laboratory conditions. The results comparison with the traditional algorithms show that the errors were suppressed and the measurement precision of the proposed algorithm is better than the traditional ones. In addition, the proposed method uses a lot less time than the zero velocity update (ZUPT) method.
Automatic Bone Drilling - More Precise, Reliable and Safe Manipulation in the Orthopaedic Surgery
NASA Astrophysics Data System (ADS)
Boiadjiev, George; Kastelov, Rumen; Boiadjiev, Tony; Delchev, Kamen; Zagurski, Kazimir
2016-06-01
Bone drilling manipulation often occurs in the orthopaedic surgery. By statistics, nowadays, about one million people only in Europe need such an operation every year, where bone implants are inserted. Almost always, the drilling is performed handily, which cannot avoid the subjective factor influence. The question of subjective factor reduction has its answer - automatic bone drilling. The specific features and problems of orthopaedic drilling manipulation are considered in this work. The automatic drilling is presented according the possibilities of robotized system Orthopaedic Drilling Robot (ODRO) for assuring the manipulation accuracy, precision, reliability and safety.
Electrical transmission line diametrical retainer
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David; Dahlgren, Scott; Sneddon, Cameron; Briscoe, Michael; Fox, Joe
2004-12-14
The invention is a mechanism for retaining an electrical transmission line. In one embodiment of the invention it is a system for retaining an electrical transmission line within down hole components. In accordance with one aspect of the invention, the system includes a plurality of downhole components, such as sections of pipe in a drill string. The system also includes a coaxial cable running between the first and second end of a drill pipe, the coaxial cable having a conductive tube and a conductive core within it. The invention allows the electrical transmission line to with stand the tension and compression of drill pipe during routine drilling cycles.
Clean subglacial access: prospects for future deep hot-water drilling
Pearce, David; Hodgson, Dominic A.; Smith, Andrew M.; Rose, Mike; Ross, Neil; Mowlem, Matt; Parnell, John
2016-01-01
Accessing and sampling subglacial environments deep beneath the Antarctic Ice Sheet presents several challenges to existing drilling technologies. With over half of the ice sheet believed to be resting on a wet bed, drilling down to this environment must conform to international agreements on environmental stewardship and protection, making clean hot-water drilling the most viable option. Such a drill, and its water recovery system, must be capable of accessing significantly greater ice depths than previous hot-water drills, and remain fully operational after connecting with the basal hydrological system. The Subglacial Lake Ellsworth (SLE) project developed a comprehensive plan for deep (greater than 3000 m) subglacial lake research, involving the design and development of a clean deep-ice hot-water drill. However, during fieldwork in December 2012 drilling was halted after a succession of equipment issues culminated in a failure to link with a subsurface cavity and abandonment of the access holes. The lessons learned from this experience are presented here. Combining knowledge gained from these lessons with experience from other hot-water drilling programmes, and recent field testing, we describe the most viable technical options and operational procedures for future clean entry into SLE and other deep subglacial access targets. PMID:26667913
Automated Cutting And Drilling Of Composite Parts
NASA Technical Reports Server (NTRS)
Warren, Charles W.
1993-01-01
Proposed automated system precisely cuts and drills large, odd-shaped parts made of composite materials. System conceived for manufacturing lightweight composite parts to replace heavier parts in Space Shuttle. Also useful in making large composite parts for other applications. Includes robot locating part to be machined, positions cutter, and positions drill. Gantry-type robot best suited for task.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high (greater than 10,000 rpm) rotational speeds. The work includes a feasibility of concept research effort aimed at development and test results that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with rigs having a smaller footprint to be more mobile. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration rockmore » cutting with substantially lower inputs of energy and loads. The project draws on TerraTek results submitted to NASA's ''Drilling on Mars'' program. The objective of that program was to demonstrate miniaturization of a robust and mobile drilling system that expends small amounts of energy. TerraTek successfully tested ultrahigh speed ({approx}40,000 rpm) small kerf diamond coring. Adaptation to the oilfield will require innovative bit designs for full hole drilling or continuous coring and the eventual development of downhole ultra-high speed drives. For domestic operations involving hard rock and deep oil and gas plays, improvements in penetration rates is an opportunity to reduce well costs and make viable certain field developments. An estimate of North American hard rock drilling costs is in excess of $1,200 MM. Thus potential savings of $200 MM to $600 MM are possible if drilling rates are doubled [assuming bit life is reasonable]. The net result for operators is improved profit margin as well as an improved position on reserves. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''SMALLER FOOTPRINT DRILLING SYSTEM FOR DEEP AND HARD ROCK ENVIRONMENTS; FEASIBILITY OF ULTRA-HIGH SPEED DIAMOND DRILLING'' for the period starting June 23, 2003 through September 30, 2004. (1) TerraTek has reviewed applicable literature and documentation and has convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek has designed and planned Phase I bench scale experiments. Some difficulties in obtaining ultra-high speed motors for this feasibility work were encountered though they were sourced mid 2004. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. Some improvements over early NASA experiments have been identified.« less
43 CFR 3162.2-1 - Drilling and producing obligations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...
43 CFR 3162.2-1 - Drilling and producing obligations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...
43 CFR 3162.2-1 - Drilling and producing obligations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...
43 CFR 3162.2-1 - Drilling and producing obligations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Drilling and producing obligations. 3162.2... Requirements for Operating Rights Owners and Operators § 3162.2-1 Drilling and producing obligations. (a) The operator, at its election, may drill and produce other wells in conformity with any system of well spacing...
Mathematical model of bone drilling for virtual surgery system
NASA Astrophysics Data System (ADS)
Alaytsev, Innokentiy K.; Danilova, Tatyana V.; Manturov, Alexey O.; Mareev, Gleb O.; Mareev, Oleg V.
2018-04-01
The bone drilling is an essential part of surgeries in ENT and Dentistry. A proper training of drilling machine handling skills is impossible without proper modelling of the drilling process. Utilization of high precision methods like FEM is limited due to the requirement of 1000 Hz update rate for haptic feedback. The study presents a mathematical model of the drilling process that accounts the properties of materials, the geometry and the rotation rate of a burr to compute the removed material volume. The simplicity of the model allows for integrating it in the high-frequency haptic thread. The precision of the model is enough for a virtual surgery system targeted on the training of the basic surgery skills.
Development of an Ultra-Light Multipurpose Drill and Tooling for the Transportable Array in Alaska
NASA Astrophysics Data System (ADS)
Coyle, B. J.; Lundgren, M.; Busby, R. W.
2014-12-01
Over the next four years the EarthScope Transportable Array (TA) will install approximately 250 to 275 broadband seismic stations in Alaska and Western Canada. The station plans build on recent developments in posthole broadband seismometer design and call for sensors to be installed in boreholes 7 inches diameter, from 1 to 5 meters deep. These boreholes will be lined with PVC or steel casing, grouted in place. The proposed station locations are in a grid-like pattern with a nominal spacing of 85 km. Since most of these locations will only be accessible by helicopter, it was necessary to develop an ultra-light drilling system that could be transported to site in one sling load by a high performance light helicopter (i.e. AS350B2 or Bell 407) and still be able to drill the variety of ground conditions we expect to encounter. In the past year we have developed a working prototype, gasoline-hydraulic drill rig that can be configured to run auger, diamond core or DTH tools, and weighs <1,300 lbs, including tooling. We have successfully drilled over 30 boreholes with this drill, including 12 for TA installations in Alaska and 13 at the Piñon Flat Observatory for testing sensor performance and placement techniques. Our drilling solution comprises: - Hydraulic system using a variable flow pump with on-demand load sensing valves to reduce the engine size needed and to cut down on heat build-up; - Rotation head mounting system on the travelling block to enable quick change of drilling tools; - Low speed, high torque rotation head for the auger, and an anchoring system that enables us to apply up to 5,000 lbs downforce for augering in permafrost; - Custom DTH that can run on low air pressure and air flow, yet is still robust enough to drill a 7 inch hole 2.5 meters through solid rock; - One-trip casing advance drilling with the DTH, steel casing is loaded at the start of drilling and follows the drill bit down; - Grout-through bottom caps for sealing the borehole casing and cementing it in place. Our next step is to build a dedicated DTH drilling system that will be light enough to mobilize to sites in one helicopter sling, including an air compressor. This rig is currently on the drawing board and we expect to build it this winter for field testing in the spring.
Precision of computer-assisted core decompression drilling of the knee.
Beckmann, J; Goetz, J; Bäthis, H; Kalteis, T; Grifka, J; Perlick, L
2006-06-01
Core decompression by exact drilling into the ischemic areas is the treatment of choice in early stages of osteonecrosis of the femoral condyle. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision-navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. 20 sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany). Ten sawbones were drilled by fluoroscopic control only. A statistically significant difference with a mean distance of 0.58 mm in the navigated group and 0.98 mm in the control group regarding the distance to the desired mid-point of the lesion could be stated. Significant difference was further found in the number of drilling corrections as well as radiation time needed. The fluoroscopic-based VectorVision-navigation system shows a high feasibility and precision of computer-guided drilling with simultaneously reduction of radiation time and therefore could be integrated into clinical routine.
Diverter bop system and method for a bottom supported offshore drilling rig
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roche, J. R.; Alexander, G. G.; Carbaugh, W. L.
1985-06-25
A system and method for installing a fluid flow controller and telescoping spools beneath an offshore bottom supported drilling rig rotary table is disclosed. Upper and lower telescoping spools are provided for initially connecting a Diverter/BOP convertible fluid flow controller between structural casing in the well and a permanent housing beneath the drilling rig rotary table. Clamp means are provided for clamping the rig vent line to an opening in the housing wall of the fluid flow controller during drilling of the borehole through the structural casing in preparation for setting and cementing the conductor casing. In that mode, themore » system is adapted as a diverter system. After the well is drilled for the conductor casing and the conductor casing is cemented and cut off at its top, a mandrel is fitted at the top of the conductor casing to which the lower end of the lower spool may be connected. The system may be used in this configuration as a diverter system, or after removal of the vent line and connection of a kill line to the housing outlet, the system may be used as a low pressure blowout preventer system.« less
Development of a high-temperature diagnostics-while-drilling tool.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chavira, David J.; Huey, David; Hetmaniak, Chris
2009-01-01
The envisioned benefits of Diagnostics-While-Drilling (DWD) are based on the principle that high-speed, real-time information from the downhole environment will promote better control of the drilling process. Although in practice a DWD system could provide information related to any aspect of exploration and production of subsurface resources, the current DWD system provides data on drilling dynamics. This particular set of new tools provided by DWD will allow quicker detection of problems, reduce drilling flat-time and facilitate more efficient drilling (drilling optimization) with the overarching result of decreased drilling costs. In addition to providing the driller with an improved, real-time picturemore » of the drilling conditions downhole, data generated from DWD systems provides researchers with valuable, high fidelity data sets necessary for developing and validating enhanced understanding of the drilling process. Toward this end, the availability of DWD creates a synergy with other Sandia Geothermal programs, such as the hard-rock bit program, where the introduction of alternative rock-reduction technologies are contingent on the reduction or elimination of damaging dynamic effects. More detailed descriptions of the rationale for the program and early development efforts are described in more detail by others [SAND2003-2069 and SAND2000-0239]. A first-generation low-temperature (LT) DWD system was fielded in a series of proof-of-concept tests (POC) to validate functionality. Using the LT system, DWD was subsequently used to support a single-laboratory/multiple-partner CRADA (Cooperative Research and Development Agreement) entitled Advanced Drag Bits for Hard-Rock Drilling. The drag-bit CRADA was established between Sandia and four bit companies, and involved testing of a PDC bit from each company [Wise, et al., 2003, 2004] in the same lithologic interval at the Gas Technology Institute (GTI) test facility near Catoosa, OK. In addition, the LT DWD system has been fielded in cost-sharing efforts with an industrial partner to support the development of new generation hard-rock drag bits. Following the demonstrated success of the POC DWD system, efforts were initiated in FY05 to design, fabricate and test a high-temperature (HT) capable version of the DWD system. The design temperature for the HT DWD system was 225 C. Programmatic requirements dictated that a HT DWD tool be developed during FY05 and that a working system be demonstrated before the end of FY05. During initial design discussions regarding a high-temperature system it was decided that, to the extent possible, the HT DWD system would maintain functionality similar to the low temperature system, that is, the HT DWD system would also be designed to provide the driller with real-time information on bit and bottom-hole-assembly (BHA) dynamics while drilling. Additionally, because of time and fiscal constraints associated with the HT system development, the design of the HT DWD tool would follow that of the LT tool. The downhole electronics package would be contained in a concentrically located pressure barrel and the use of externally applied strain gages with thru-tool connectors would also be used in the new design. Also, in order to maximize the potential wells available for the HT DWD system and to allow better comparison with the low-temperature design, the diameter of the tool was maintained at 7-inches. This report discusses the efforts associated with the development of a DWD system capable of sustained operation at 225 C. This report documents work performed in the second phase of the Diagnostics-While-Drilling (DWD) project in which a high-temperature (HT) version of the phase 1 low-temperature (LT) proof-of-concept (POC) DWD tool was built and tested. Descriptions of the design, fabrication and field testing of the HT tool are provided. Background on prior phases of the project can be found in SAND2003-2069 and SAND2000-0239.« less
Downhole drilling network using burst modulation techniques
Hall,; David R. , Fox; Joe, [Spanish Fork, UT
2007-04-03
A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.
Effect of bit wear on hammer drill handle vibration and productivity.
Antonucci, Andrea; Barr, Alan; Martin, Bernard; Rempel, David
2017-08-01
The use of large electric hammer drills exposes construction workers to high levels of hand vibration that may lead to hand-arm vibration syndrome and other musculoskeletal disorders. The aim of this laboratory study was to investigate the effect of bit wear on drill handle vibration and drilling productivity (e.g., drilling time per hole). A laboratory test bench system was used with an 8.3 kg electric hammer drill and 1.9 cm concrete bit (a typical drill and bit used in commercial construction). The system automatically advanced the active drill into aged concrete block under feed force control to a depth of 7.6 cm while handle vibration was measured according to ISO standards (ISO 5349 and 28927). Bits were worn to 4 levels by consecutive hole drilling to 4 cumulative drilling depths: 0, 1,900, 5,700, and 7,600 cm. Z-axis handle vibration increased significantly (p<0.05) from 4.8 to 5.1 m/s 2 (ISO weighted) and from 42.7-47.6 m/s 2 (unweighted) when comparing a new bit to a bit worn to 1,900 cm of cumulative drilling depth. Handle vibration did not increase further with bits worn more than 1900 cm of cumulative drilling depth. Neither x- nor y-axis handle vibration was effected by bit wear. The time to drill a hole increased by 58% for the bit with 5,700 cm of cumulative drilling depth compared to a new bit. Bit wear led to a small but significant increase in both ISO weighted and unweighted z-axis handle vibration. Perhaps more important, bit wear had a large effect on productivity. The effect on productivity will influence a worker's allowable daily drilling time if exposure to drill handle vibration is near the ACGIH Threshold Limit Value. [1] Construction contractors should implement a bit replacement program based on these findings.
Smart Drill-Down: A New Data Exploration Operator
Joglekar, Manas; Garcia-Molina, Hector; Parameswaran, Aditya
2015-01-01
We present a data exploration system equipped with smart drill-down, a novel operator for interactively exploring a relational table to discover and summarize “interesting” groups of tuples. Each such group of tuples is represented by a rule. For instance, the rule (a, b, ★, 1000) tells us that there are a thousand tuples with value a in the first column and b in the second column (and any value in the third column). Smart drill-down presents an analyst with a list of rules that together describe interesting aspects of the table. The analyst can tailor the definition of interesting, and can interactively apply smart drill-down on an existing rule to explore that part of the table. In the demonstration, conference attendees will be able to use the data exploration system equipped with smart drill-down, and will be able to contrast smart drill-down to traditional drill-down, for various interestingness measures, and resource constraints. PMID:26844008
A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead.
Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing
2017-01-21
To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety.
A Lift-Off-Tolerant Magnetic Flux Leakage Testing Method for Drill Pipes at Wellhead
Wu, Jianbo; Fang, Hui; Li, Long; Wang, Jie; Huang, Xiaoming; Kang, Yihua; Sun, Yanhua; Tang, Chaoqing
2017-01-01
To meet the great needs for MFL (magnetic flux leakage) inspection of drill pipes at wellheads, a lift-off-tolerant MFL testing method is proposed and investigated in this paper. Firstly, a Helmholtz coil magnetization method and the whole MFL testing scheme are proposed. Then, based on the magnetic field focusing effect of ferrite cores, a lift-off-tolerant MFL sensor is developed and tested. It shows high sensitivity at a lift-off distance of 5.0 mm. Further, the follow-up high repeatability MFL probing system is designed and manufactured, which was embedded with the developed sensors. It can track the swing movement of drill pipes and allow the pipe ends to pass smoothly. Finally, the developed system is employed in a drilling field for drill pipe inspection. Test results show that the proposed method can fulfill the requirements for drill pipe inspection at wellheads, which is of great importance in drill pipe safety. PMID:28117721
Chen, Xiaomei; Longstaff, Andrew; Fletcher, Simon; Myers, Alan
2014-04-01
This paper presents and evaluates an active dual-sensor autofocusing system that combines an optical vision sensor and a tactile probe for autofocusing on arrays of small holes on freeform surfaces. The system has been tested on a two-axis test rig and then integrated onto a three-axis computer numerical control (CNC) milling machine, where the aim is to rapidly and controllably measure the hole position errors while the part is still on the machine. The principle of operation is for the tactile probe to locate the nominal positions of holes, and the optical vision sensor follows to focus and capture the images of the holes. The images are then processed to provide hole position measurement. In this paper, the autofocusing deviations are analyzed. First, the deviations caused by the geometric errors of the axes on which the dual-sensor unit is deployed are estimated to be 11 μm when deployed on a test rig and 7 μm on the CNC machine tool. Subsequently, the autofocusing deviations caused by the interaction of the tactile probe, surface, and small hole are mathematically analyzed and evaluated. The deviations are a result of the tactile probe radius, the curvatures at the positions where small holes are drilled on the freeform surface, and the effect of the position error of the hole on focusing. An example case study is provided for the measurement of a pattern of small holes on an elliptical cylinder on the two machines. The absolute sum of the autofocusing deviations is 118 μm on the test rig and 144 μm on the machine tool. This is much less than the 500 μm depth of field of the optical microscope. Therefore, the method is capable of capturing a group of clear images of the small holes on this workpiece for either implementation.
Zhu, J.; Currens, J.C.; Dinger, J.S.
2011-01-01
Conduits serve as major pathways for groundwater flow in karst aquifers. Locating them from the surface, however, is one of the most challenging tasks in karst research. Geophysical methods are often deployed to help locate voids by mapping variations of physical properties of the subsurface. Conduits can cause significant contrasts of some physical properties that can be detected; other subsurface features such as water-bearing fractures often yield similar contrasts, which are difficult to distinguish from the effects of the conduits. This study used electrical resistivity method to search for an unmapped karst conduit that recharges Royal Spring in the Inner Bluegrass karst region, Kentucky, USA. Three types of resistivity techniques (surface 2D survey, quasi-3D survey, and time-lapse survey) were used to map and characterize resistivity anomalies. Some of the major anomalies were selected as drilling targets to verify the existence of the conduits. Drilling near an anomaly identified by an electrical resistivity profile resulted in successful penetration of a major water-filled conduit. The drilling results also suggest that, in this study area, low resistivity anomalies in general are associated with water-bearing features. However, differences in the anomaly signals between the water-filled conduit and other water-bearing features such as water-filled fracture zones were undistinguishable. The electrical resistivity method is useful in conduit detection by providing potential drilling targets. Knowledge of geology and hydrogeology about the site and professional judgment also played important roles in locating the major conduit. ?? 2011 Elsevier B.V.
A study of an assisting robot for mandible plastic surgery based on augmented reality.
Shi, Yunyong; Lin, Li; Zhou, Chaozheng; Zhu, Ming; Xie, Le; Chai, Gang
2017-02-01
Mandible plastic surgery plays an important role in conventional plastic surgery. However, its success depends on the experience of the surgeons. In order to improve the effectiveness of the surgery and release the burden of surgeons, a mandible plastic surgery assisting robot, based on an augmented reality technique, was developed. Augmented reality assists surgeons to realize positioning. Fuzzy control theory was used for the control of the motor. During the process of bone drilling, both the drill bit position and the force were measured by a force sensor which was used to estimate the position of the drilling procedure. An animal experiment was performed to verify the effectiveness of the robotic system. The position error was 1.07 ± 0.27 mm and the angle error was 5.59 ± 3.15°. The results show that the system provides a sufficient accuracy with which a precise drilling procedure can be performed. In addition, under the supervision's feedback of the sensor, an adequate safety level can be achieved for the robotic system. The system realizes accurate positioning and automatic drilling to solve the problems encountered in the drilling procedure, providing a method for future plastic surgery.
NASA Technical Reports Server (NTRS)
Stysley, Paul
2016-01-01
Applicability to Early Stage Innovation NIAC Cutting edge and innovative technologies are needed to achieve the demanding requirements for NASA origin missions that require sample collection as laid out in the NRC Decadal Survey. This proposal focused on fully understanding the state of remote laser optical trapping techniques for capturing particles and returning them to a target site. In future missions, a laser-based optical trapping system could be deployed on a lander that would then target particles in the lower atmosphere and deliver them to the main instrument for analysis, providing remote access to otherwise inaccessible samples. Alternatively, for a planetary mission the laser could combine ablation and trapping capabilities on targets typically too far away or too hard for traditional drilling sampling systems. For an interstellar mission, a remote laser system could gather particles continuously at a safe distance; this would avoid the necessity of having a spacecraft fly through a target cloud such as a comet tail. If properly designed and implemented, a laser-based optical trapping system could fundamentally change the way scientists designand implement NASA missions that require mass spectroscopy and particle collection.
NASA Astrophysics Data System (ADS)
Priymak, E. Yu.; Stepanchukova, A. V.; Yakovleva, I. L.; Tereshchenko, N. A.
2015-05-01
Nitrocarburizing is tested at the Drill Equipment Plant for reinforcing threaded joints of drill pipes for units with retrievable core receiver (RCR). The effect of the nitrocarburizing on the mechanical properties of steels of different alloying systems is considered. Steels for the production of threaded joints of drill pipes are recommended.
The Third Dimension of an Active Back-arc Hydrothermal System: ODP Leg 193 at PACMANUS
NASA Astrophysics Data System (ADS)
Binns, R.; Barriga, F.; Miller, D.
2001-12-01
This first sub-seafloor examination of an active hydrothermal system hosted by felsic volcanics, at a convergent margin, obtained drill core from a high-T "smoker" site (penetrated to sim200 mbsf) and a low-T site of diffuse venting (~400mbsf). We aimed to delineate the lateral and vertical variability in mineralisation and alteration patterns, so as to understand links between volcanological, structural and hydrothermal phenomena and the sources of fluids, and to establish the nature and extent of microbial activity within the system. Technological breakthroughs included deployment of a new hard-rock re-entry system, and direct comparison in a hardrock environment of structural images obtained by wireline methods and logging-while-drilling. The PACMANUS hydrothermal site, at the 1700m-deep crest of a 500m-high layered sequence of dacitic lavas, is notable for baritic massive sulfide chimneys rich in Cu, Zn, Au and Ag. Below an extensive cap 5-40m thick of fresh dacite-rhyodacite, we found unexpectedly pervasive hydrothermal alteration of vesicular and flow-banded precursors, accompanied by variably intense fracturing and anhydrite-pyrite veining. Within what appears one major hydrothermal event affecting the entire drilled sequence, there is much overprinting and repetition of distinctly allochemical argillaceous (illite-chlorite), acid-sulfate (pyrophyllite-anhydrite) and siliceous assemblages. The alteration profiles include a transition from metastable cristobalite to quartz at depth, and are similar under low-T and high-T vent sites but are vertically condensed in a manner suggesting higher thermal gradients beneath the latter. The altered rocks are surprisingly porous (average 25%). Retention of intergranular pore spaces and open vesicles at depth implies elevated hydrothermal pressures, whereas evidence from fluid inclusions and hydrothermal brecciation denotes local or sporadic phase separation. A maximum measured temperature of 313 degC measured 8 days after drilling (360 mbsf at the diffuse venting site), if indicative of thermal gradient, suggests the presence of a very shallow ( ~1.5 km below seafloor) magmatic heat source. While isotopic characteristics of anhydrite suggest an irregularly varying component of magmatic fluid, the abundance of this mineral implies a substantial role for circulating seawater within the subsurface hydrothermal system. Other than the near-ubiquitous, fine grained disseminated pyrite in altered rocks, we found little sulfide mineralisation. Pyritic vein networks and breccias are extensive in the rapidly penetrated, but poorly recovered, interval down to 120 mbsf within our "high-T end-member" hole spudded on a mound surmounted by active (280 degC) chimneys. Anhydrite and open cavities possibly dominate this interval, from which a possible example of subhalative semi-massive sulfide containing chalcopyrite and some sphalerite was recovered near 30 mbsf. At the low-T and high-T vent sites respectively, anaerobic microbes were recorded by direct counting at depths down to 99 and 78 mbsf, and in 90 degC cultivation experiments at 69-107 and 99-129 mbsf. >http://www-odp.tamu.edu/publications/prelim/193
Chemical Speciation of Chromium in Drilling Muds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taguchi, Takeyoshi; Yoshii, Mitsuru; Shinoda, Kohzo
2007-02-02
Drilling muds are made of bentonite and other clays, and/or polymers, mixed with water to the desired viscosity. Without the drilling muds, corporations could not drill for oil and gas and we would have hardly any of the fuels and lubricants considered essential for modern industrial civilization. There are hundreds of drilling muds used and some kinds of drilling muds contain chromium. The chemical states of chromium in muds have been studied carefully due to concerns about the environmental influence. However it is difficult to determine the chemical state of chromium in drilling muds directly by conventional analytical methods. Wemore » have studied the chemical form of chromium in drilling muds by using a laboratory XAFS system and a synchrotron facility.« less
Downhole Applications of Magnetic Sensors.
Gooneratne, Chinthaka P; Li, Bodong; Moellendick, Timothy E
2017-10-19
In this paper we present a review of the application of two types of magnetic sensors-fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors-in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed.
Downhole Applications of Magnetic Sensors
Gooneratne, Chinthaka P.; Li, Bodong; Moellendick, Timothy E.
2017-01-01
In this paper we present a review of the application of two types of magnetic sensors—fluxgate magnetometers and nuclear magnetic resonance (NMR) sensors—in the oil/gas industry. These magnetic sensors play a critical role in drilling wells safely, accurately and efficiently into a target reservoir zone by providing directional data of the well and acquiring information about the surrounding geological formations. Research into magnetic sensors for oil/gas drilling has not been explored by researchers to the same extent as other applications, such as biomedical, magnetic storage and automotive/aerospace applications. Therefore, this paper aims to serve as an opportunity for researchers to truly understand how magnetic sensors can be used in a downhole environment and to provide fertile ground for research and development in this area. A look ahead, discussing other magnetic sensor technologies that can potentially be used in the oil/gas industry is presented, and what is still needed in order deploy them in the field is also addressed. PMID:29048391
Kratchman, Louis B.; Schurzig, Daniel; McRackan, Theodore R.; Balachandran, Ramya; Noble, Jack H.; Webster, Robert J.; Labadie, Robert F.
2014-01-01
The current technique for cochlear implantation (CI) surgery requires a mastoidectomy to gain access to the cochlea for electrode array insertion. It has been shown that microstereotactic frames can enable an image-guided, minimally invasive approach to CI surgery called percutaneous cochlear implantation (PCI) that uses a single drill hole for electrode array insertion, avoiding a more invasive mastoidectomy. Current clinical methods for electrode array insertion are not compatible with PCI surgery because they require a mastoidectomy to access the cochlea; thus, we have developed a manually operated electrode array insertion tool that can be deployed through a PCI drill hole. The tool can be adjusted using a preoperative CT scan for accurate execution of the advance off-stylet (AOS) insertion technique and requires less skill to operate than is currently required to implant electrode arrays. We performed three cadaver insertion experiments using the AOS technique and determined that all insertions were successful using CT and microdissection. PMID:22851233
Real Time Seismic Prediction while Drilling
NASA Astrophysics Data System (ADS)
Schilling, F. R.; Bohlen, T.; Edelmann, T.; Kassel, A.; Heim, A.; Gehring, M.; Lüth, S.; Giese, R.; Jaksch, K.; Rechlin, A.; Kopf, M.; Stahlmann, J.; Gattermann, J.; Bruns, B.
2009-12-01
Efficient and safe drilling is a prerequisite to enhance the mobility of people and goods, to improve the traffic as well as utility infrastructure of growing megacities, and to ensure the growing energy demand while building geothermal and in hydroelectric power plants. Construction within the underground is often building within the unknown. An enhanced risk potential for people and the underground building may arise if drilling enters fracture zones, karsts, brittle rocks, mixed solid and soft rocks, caves, or anthropogenic obstacles. Knowing about the material behavior ahead of the drilling allows reducing the risk during drilling and construction operation. In drilling operations direct observations from boreholes can be complemented with geophysical investigations. In this presentation we focus on “real time” seismic prediction while drilling which is seen as a prerequisite while using geophysical methods in modern drilling operations. In solid rocks P- and S-wave velocity, refraction and reflection as well as seismic wave attenuation can be used for the interpretation of structures ahead of the drilling. An Integrated Seismic Imaging System (ISIS) for exploration ahead of a construction is used, where a pneumatic hammer or a magnetostrictive vibration source generate repetitive signals behind the tunneling machine. Tube waves are generated which travel along the tunnel to the working face. There the tube waves are converted to mainly S- but also P-Waves which interact with the formation ahead of the heading face. The reflected or refracted waves travel back to the working front are converted back to tube waves and recorded using three-component geophones which are fit into the tips of anchor rods. In near real time, the ISIS software allows for an integrated 3D imaging and interpretation of the observed data, geological and geotechnical parameters. Fracture zones, heterogeneities, and variations in the rock properties can be revealed during the drilling operation. First experiments indicate that parts of the ISIS system can be used for smaller diameters e.g. in vertical drilling. In unconsolidated rocks S-waves are strongly attenuated. For the Sonic Softground Probing (SSP) system P-waves are used. A vibration-seismic correlation positioning system was developed. One transmitter and several receiver are placed within the cutting wheel. During drilling, a specially coded transmitter signal is sent directly from the cutterhead via the face support medium in the direction of tunneling. With this geometry, boulders can be detected 50 m ahead of the working face. Fracture zones and other discontinuities can be localized, and the physical properties of the upcoming rocks can be partly determined nearly in real time, while using sound velocity and attenuation as indicators. All evaluation is based on real time 3D velocity models which are determined during the drilling operation. Different technologies allow a seismic prediction while drilling in various rock types and geologies. Seismic prediction during vertical drilling will significantly profit from the lesson learned from state of the art tunneling systems.
Microcomponents manufacturing for precise devices by copper vapor laser
NASA Astrophysics Data System (ADS)
Gorny, Sergey; Nikonchuk, Michail O.; Polyakov, Igor V.
2001-06-01
This paper presents investigation results of drilling of metal microcomponents by copper vapor laser. The laser consists of master oscillator - spatial filter - amplifier system, electronics switching with digital control of laser pulse repetition rate and quantity of pulses, x-y stage with computer control system. Mass of metal, removed by one laser pulse, is measured and defined by means of diameter and depth of holes. Interaction of next pulses on drilled material is discussed. The difference between light absorption and metal evaporation processes is considered for drilling and cutting. Efficiency of drilling is estimated by ratio of evaporation heat and used laser energy. Maximum efficiency of steel cutting is calculated with experimental data of drilling. Applications of copper vapor laser for manufacturing is illustrated by such microcomponents as pin guide plate for printers, stents for cardio surgery, encoded disks for security systems and multiple slit masks for spectrophotometers.
NASA Astrophysics Data System (ADS)
Park, Byeolteo; Myung, Hyun
2014-12-01
With the development of unconventional gas, the technology of directional drilling has become more advanced. Underground localization is the key technique of directional drilling for real-time path following and system control. However, there are problems such as vibration, disconnection with external infrastructure, and magnetic field distortion. Conventional methods cannot solve these problems in real time or in various environments. In this paper, a novel underground localization algorithm using a re-measurement of the sequence of the magnetic field and pose graph SLAM (simultaneous localization and mapping) is introduced. The proposed algorithm exploits the property of the drilling system that the body passes through the previous pass. By comparing the recorded measurement from one magnetic sensor and the current re-measurement from another magnetic sensor, the proposed algorithm predicts the pose of the drilling system. The performance of the algorithm is validated through simulations and experiments.
Remote laser drilling and sampling system for the detection of concealed explosives
NASA Astrophysics Data System (ADS)
Wild, D.; Pschyklenk, L.; Theiß, C.; Holl, G.
2017-05-01
The detection of hazardous materials like explosives is a central issue in national security in the field of counterterrorism. One major task includes the development of new methods and sensor systems for the detection. Many existing remote or standoff methods like infrared or raman spectroscopy find their limits, if the hazardous material is concealed in an object. Imaging technologies using x-ray or terahertz radiation usually yield no information about the chemical content itself. However, the exact knowledge of the real threat potential of a suspicious object is crucial for disarming the device. A new approach deals with a laser drilling and sampling system for the use as verification detector for suspicious objects. Central part of the system is a miniaturised, diode pumped Nd:YAG laser oscillator-amplifier. The system allows drilling into most materials like metals, synthetics or textiles with bore hole diameters in the micron scale. During the drilling process, the hazardous material can be sampled for further investigation with suitable detection methods. In the reported work, laser induced breakdown spectroscopy (LIBS) is used to monitor the drilling process and to classify the drilled material. Also experiments were carried out to show the system's ability to not ignite even sensitive explosives like triacetone triperoxide (TATP). The detection of concealed hazardous material is shown for different explosives using liquid chromatography and ion mobility spectrometry.
Hüfner, T; Geerling, J; Oldag, G; Richter, M; Kfuri, M; Pohlemann, T; Krettek, C
2005-01-01
This study was designed to determine the clinical relevant accuracy of CT-based navigation for drilling. Experimental model. Laboratory. Twelve drills of varying lengths and diameters were tested with 2 different set-ups. Group 1 used free-hand navigated drilling technique with foam blocks equipped with titanium target points. Group 2 (control) used a newly developed 3-dimensional measurement device equipped with titanium target points with a fixed entry for the navigated drill to minimize bending forces. One examiner performed 690 navigated drillings using solely the monitor screen for control in both groups. The difference between the planned and the actual starting and target point (up to 150 mm distance) was measured (mm). Levene test and a nonpaired t test. Significance level was set as P < 0.05. The core accuracy of the navigation system measured with the 3-dimensional device was 0.5 mm. The mean distance from planned to actual entry points in group 1 was 1.3 (range, 0.6-3.4 mm). The mean distance between planned and actual target point was 3.4 (range, 1.7-5.8 mm). Free-hand navigated drilling showed an increased difference with increased length of the drill bits as well as with increased drilling channel for drill bits 2.5 and 3.2 mm and not for 3.5 and 4.5 mm (P < 0.05). The core accuracy of the navigation system is high. Compared with the navigated free-hand technique, the results suggest that drill bit deflection interferes directly with the precision. The precision is decreased when using small diameter and longer drill bits.
NASA Astrophysics Data System (ADS)
Busby, Robert; Frassetto, Andy; Hafner, Katrin; Woodward, Robert; Sauter, Allan
2013-04-01
In preparation for deployment of EarthScope's USArray Transportable Array (TA) in Alaska beginning in 2014, the National Science Foundation (NSF) is supporting exploratory work on seismic station design, sensor emplacement and communication concepts appropriate for the challenging high-latitude environment that is proposed for deployment. IRIS has installed several experimental stations to evaluate different sensor emplacement schemes both in Alaska and the lower-48 U.S. The goal of these tests is to maintain or enhance a station's noise performance while minimizing its footprint and the equipment, materials, and overall expense required for its construction. Motivating this approach are recent developments in posthole broadband seismometer design and the unique conditions for operating in Alaska, where there are few roads, cellular communications are scarce, most areas are only accessible by small plane or helicopter, and permafrost underlies much of the northern tundra. In this study we review our methods used for directly emplacing of broadband seismometers in comparison to the current methods used to deploy TA stations. These primarily focus on using an auger to drill three to five meters, beneath the active layer of the permafrost, or coring directly into surface bedrock to one meter depth using a portable drill. Both methods have proven logistically effective in trials. Subsequent station performance can be quantitatively assessed using probability density functions summed from power spectral density estimates. These are calculated for the continuous time series of seismic data recorded for each channel of the seismometer. There are five test stations currently operating in Alaska. One was deployed in August 2011 and the remaining four in October 2012. Our results show that the performance of seismometers in Alaska with auger-hole or core-hole installations equals or exceeds that of the quietest TA stations in the lower-48, particularly at long periods, and in exceptional cases approaches the performance of the GSN low noise model. The station at Poker Flat Research Range, Alaska co-locates a sensor in a 5 meter deep auger hole with a 2 meter deep TA tank installation typical of the lower-48. The augered seismometer is currently over 20 dB quieter at periods over 40 seconds than the TA tank installation. Similar performance has been observed at other TA stations, which also compare favorably to co-located permanent stations.
A new scientific drilling infrastructure in Sweden
NASA Astrophysics Data System (ADS)
Rosberg, J.-E.; Lorenz, H.
2012-04-01
A new scientific drilling infrastructure is currently under commissioning at Lund University in southern Sweden and is intended primarily for Swedish scientific drilling projects. However, it will be available to the scientific community and even industry when not occupied. The drill rig, a crawler mounted Atlas Copco CT20, was funded by the Swedish Research Council (VR) after an application by the Swedish scientific drilling community under the lead of Prof. Leif Bjelm, Lund University. As a national resource it is, together with support of the Swedish Deep Drilling Program (SDDP) and the Swedish membership in ICDP, part of VR's commitment to scientific drilling. The Atlas Copco CT20 is a top modern, versatile diamond wireline core-drilling rig which can handle P, H and N sizes. It can operate on very small drill sites (500-800 m2) and, thus, leaves a minimal environmental footprint. The crawler makes the rig ideal for operations in remote locations. A total of only 3-4 truckloads is necessary for mobilization of the basic drilling equipment. Main technical specifications are: Depth capacity coring, based on vertical water filled hole: P-size to around 1050 m, hole size 123 mm and core size 85 mm. H-size to around 1600 m, hole size 96 mm and core size 63 mm. N-size to around 2500 m, hole size 76 mm and core size 48 mm. Weight: Complete rig including crawler, wet - 23500 kg Dimensions in (length, width, height) transport position: 11560 x 2500 x 3750 mm. Available in-hole equipment: Complete core retrieval system for PQ, HQ and NQ-sizes, including PHD, HRQ (V-Wall) and NRQ (V-Wall) drill rods covering the maximum drilling depth for each size (see rig depth capacity above). Both dual and triple tube for HQ and NQ-sizes. Casing advancers (PW, HW, NW and BW). Casing PWT, HWT, NW and BW. Bits and reamers. Additional equipment: Mud cleaning and mixing system. MWD-system (Measurements While Drilling). Cementing equipment. Fishing tools (Bowen Spear). Blow Out Preventer (BOP). Deviation tools. Wireline packers. And more.
76 FR 81957 - Mobile Offshore Drilling Unit Guidance Policy
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... Purpose Dynamic Positioning Systems (DPSs), Emergency Disconnect Systems (EDSs), Blowout Preventers (BOPs..., ``Dynamically Positioned Mobile Offshore Drilling Unit (MODU) Critical Systems, Personnel and Training.'' We... association, business, labor union, etc.). You may review a Privacy Act, system of records notice regarding...
Development of a ROV Deployed Video Analysis Tool for Rapid Measurement of Submerged Oil/Gas Leaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savas, Omer
Expanded deep sea drilling around the globe makes it necessary to have readily available tools to quickly and accurately measure discharge rates from accidental submerged oil/gas leak jets for the first responders to deploy adequate resources for containment. We have developed and tested a field deployable video analysis software package which is able to provide in the field sufficiently accurate flow rate estimates for initial responders in accidental oil discharges in submarine operations. The essence of our approach is based on tracking coherent features at the interface in the near field of immiscible turbulent jets. The software package, UCB_Plume, ismore » ready to be used by the first responders for field implementation. We have tested the tool on submerged water and oil jets which are made visible using fluorescent dyes. We have been able to estimate the discharge rate within 20% accuracy. A high end WINDOWS laptop computer is suggested as the operating platform and a USB connected high speed, high resolution monochrome camera as the imaging device are sufficient for acquiring flow images under continuous unidirectional illumination and running the software in the field. Results are obtained over a matter of minutes.« less
30 CFR 250.441 - What are the requirements for a surface BOP stack?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...? (a) When you drill with a surface BOP stack, you must install the BOP system before drilling below... with blind-shear rams. The blind-shear rams must be capable of shearing the drill pipe that is in the...
Evaluations of bit sleeve and twisted-body bit designs for controlling roof bolter dust
Beck, T.W.
2015-01-01
Drilling into coal mine roof strata to install roof bolts has the potential to release substantial quantities of respirable dust. Due to the proximity of drill holes to the breathing zone of roof bolting personnel, dust escaping the holes and avoiding capture by the dust collection system pose a potential respiratory health risk. Controls are available to complement the typical dry vacuum collection system and minimize harmful exposures during the initial phase of drilling. This paper examines the use of a bit sleeve in combination with a dust-hog-type bit to improve dust extraction during the critical initial phase of drilling. A twisted-body drill bit is also evaluated to determine the quantity of dust liberated in comparison with the dust-hog-type bit. Based on the results of our laboratory tests, the bit sleeve may reduce dust emissions by one-half during the initial phase of drilling before the drill bit is fully enclosed by the drill hole. Because collaring is responsible for the largest dust liberations, overall dust emission can also be substantially reduced. The use of a twisted-body bit has minimal improvement on dust capture compared with the commonly used dust-hog-type bit. PMID:26257435
Force and torque modelling of drilling simulation for orthopaedic surgery.
MacAvelia, Troy; Ghasempoor, Ahmad; Janabi-Sharifi, Farrokh
2014-01-01
The advent of haptic simulation systems for orthopaedic surgery procedures has provided surgeons with an excellent tool for training and preoperative planning purposes. This is especially true for procedures involving the drilling of bone, which require a great amount of adroitness and experience due to difficulties arising from vibration and drill bit breakage. One of the potential difficulties with the drilling of bone is the lack of consistent material evacuation from the drill's flutes as the material tends to clog. This clogging leads to significant increases in force and torque experienced by the surgeon. Clogging was observed for feed rates greater than 0.5 mm/s and spindle speeds less than 2500 rpm. The drilling simulation systems that have been created to date do not address the issue of drill flute clogging. This paper presents force and torque prediction models that account for this phenomenon. The two coefficients of friction required by these models were determined via a set of calibration experiments. The accuracy of both models was evaluated by an additional set of validation experiments resulting in average R² regression correlation values of 0.9546 and 0.9209 for the force and torque prediction models, respectively. The resulting models can be adopted by haptic simulation systems to provide a more realistic tactile output.
Design of a sample acquistion system for the Mars exobiological penetrator
NASA Technical Reports Server (NTRS)
Thomson, Ron; Gwynne, Owen
1988-01-01
The Mars Exobiological Penetrator will be imbedded into several locations on the Martian surface. It contains various scientific instruments, such as an Alpha-Particle Instrument (API), Differential Scanning Calorimeter (DSC), Evolved Gas Analyzer (EGA) and accelerometers. A sample is required for analysis in the API and DSC. To avoid impact contaminated material, this sample must be taken from soil greater than 2 cm away from the penetrator shell. This study examines the design of a dedicated sampling system including deployment, suspension, fore/after body coupling, sample gathering and placement. To prevent subsurface material from entering the penetrator sampling compartment during impact, a plug is placed in the exit hole of the wall. A U-lever device is used to hold this plug in the penetrator wall. The U-lever rotates upon initial motion of the core-grinder mechanism (CGM), releasing the plug. Research points to a combination of coring and grinding as a plausible solution to the problem of dry drilling. The CGM, driven by two compressed springs, will be deployed along a tracking system. A slowly varying load i.e., springs, is favored over a fixed displacement motion because of its adaptability to different material hardness. However, to accommodate sampling in a low density soil, two dash pots set a maximum transverse velocity. In addition, minimal power use is achieved by unidirectional motion of the CGM. The sample will be transported to the scientific instruments by means of a sample placement tray that is driven by a compressed spring to avoid unnecessary power usage. This paper also explores possible modifications for size, weight, and time as well as possible future studies.
Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya
2017-01-01
The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups ( n =13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey's post hoc tests were used for two-by-two comparisons. Gates-Glidden drills with hand files removed significantly more ( P <0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems ( P >0.05). The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls.
NASA Astrophysics Data System (ADS)
Ma, C.; Li, L.; Yang, Y. P.; Hao, W. W.; Zhang, Q.; Lv, J.
2018-01-01
A new type of polymeric rheology modifier was synthesized by suspension polymerization, and the effect of rheology modifier on the rheological properties of oil-based drilling fluids was investigated. The results indicated that the obtained polymer had good capacity of improvement of shearing force of oil-based drilling fluids under high temperature and high pressure conditions. Moreover, the obtained polymer can improve the stability of oil-based drilling fluids greatly. As a result, the obtained polymer is a good rheology modifier for oil-based drilling fluids, and it can optimize oil-based drilling fluid system with good rheological properties, good static suspension ability for cuttings and environmental protection function. It can play an essential role in safe drilling jobs and improvement of drilling efficiency.
About Regional Energy Deployment System Model-ReEDS | Regional Energy
Deployment System Model | Energy Analysis | NREL About Regional Energy Deployment System Model -ReEDS About Regional Energy Deployment System Model-ReEDS The Regional Energy Deployment System (ReEDS ) is a long-term, capacity-expansion model for the deployment of electric power generation technologies
NASA Astrophysics Data System (ADS)
Dey, Kaushik; Ghose, A. K.
2011-09-01
Rock excavation is carried out either by drilling and blasting or using rock-cutting machines like rippers, bucket wheel excavators, surface miners, road headers etc. Economics of mechanised rock excavation by rock-cutting machines largely depends on the achieved production rates. Thus, assessment of the performance (productivity) is important prior to deploying a rock-cutting machine. In doing so, several researchers have classified rockmass in different ways and have developed cuttability indices to correlate machine performance directly. However, most of these indices were developed to assess the performance of road headers/tunnel-boring machines apart from a few that were developed in the earlier days when the ripper was a popular excavating equipment. Presently, around 400 surface miners are in operation around the world amongst which, 105 are in India. Until now, no rockmass classification system is available to assess the performance of surface miners. Surface miners are being deployed largely on trial and error basis or based on the performance charts provided by the manufacturer. In this context, it is logical to establish a suitable cuttability index to predict the performance of surface miners. In this present paper, the existing cuttability indices are reviewed and a new cuttability indexes proposed. A new relationship is also developed to predict the output from surface miners using the proposed cuttability index.
Freifeld, Barry; Daley, Tom; Cook, Paul; ...
2014-12-31
Understanding the impacts caused by injection of large volumes of CO 2 in the deep subsurface necessitates a comprehensive monitoring strategy. While surface-based and other remote geophysical methods can provide information on the general morphology of a CO 2 plume, verification of the geochemical conditions and validation of the remote sensing data requires measurements from boreholes that penetrate the storage formation. Unfortunately, the high cost of drilling deep wellbores and deploying instrumentation systems constrains the number of dedicated monitoring borings as well as limits the technologies that can be incorporated in a borehole completion. The objective of the Modular Boreholemore » Monitoring (MBM) Program was to develop a robust suite of well-based tools optimized for subsurface monitoring of CO 2 that could meet the needs of a comprehensive well-based monitoring program. It should have enough flexibility to be easily reconfigured for various reservoir geometries and geologies. The MBM Program sought to provide storage operators with a turn-key fully engineered design that incorporated key technologies, function over the decades long time-span necessary for post-closure reservoir monitoring, and meet industry acceptable risk profiles for deep-well installations. While still within the conceptual design phase of the MBM program, the SECARB Anthropogenic Test in Citronelle, Alabama, USA was identified as a deployment site for our engineered monitoring systems. The initial step in designing the Citronelle MBM system was to down-select from the various monitoring tools available to include technologies that we considered essential to any program. Monitoring methods selected included U-tube geochemical sampling, discrete quartz pressure and temperature gauges, an integrated fibre-optic bundle consisting of distributed temperature and heat-pulse sensing, and a sparse string of conventional 3C-geophones. While not originally planned within the initial MBM work scope, the fibre-optic cable was able to also be used for the emergent technology of distributed acoustic sensing. The MBM monitoring string was installed in March, 2012. To date, the Citronelle MBM instruments continue to operate reliably. Results and lessons learned from the Citronelle MBM deployment are addressed along with examples of data being collected.« less
Draper, Heather; Jenkins, Simon
2017-12-19
As part of its response to the 2014 Ebola outbreak in west Africa, the United Kingdom (UK) government established an Ebola treatment unit in Sierra Leone, staffed by military personnel. Little is known about the ethical challenges experienced by military medical staff on humanitarian deployment. We designed a qualitative study to explore this further with those who worked in the treatment unit. Semi-structured, face-to-face and telephone interviews were conducted with 20 UK military personnel deployed between October 2014 and April 2015 in one of three roles in the Ebola treatment unit: clinician; nursing and nursing assistant; and other medical support work, including infection control and laboratory and mortuary services. Many participants reported feeling ethically motivated to volunteer for deployment, but for some personal interests were also a consideration. A small minority had negative feelings towards the deployment, others felt that this deployment like any other was part of military service. Almost all had initial concerns about personal safety but were reassured by their pre-deployment 'drills and skills', and personal protective equipment. Risk perceptions were related to perceptions about military service. Efforts to minimise infection risk were perceived to have made good patient care more difficult. Significantly, some thought the humanitarian nature of the mission justified tolerating greater risks to staff. Trust in the military institution and colleagues was expressed; many participants referred to the ethical obligation within the chain of command to protect those under their command. Participants expected resources to be overwhelmed and 'empty beds' presented a significant and pervasive ethical challenge. Most thought more patients could and should have been treated. Points of reference for participants' ethical values were: previous deployment experience; previous UK/National Health Service experience; professional ethics; and, distinctly military values (that might not be shared with non-military workers). We report the first systematic exploration of the ethical challenges face by a Western medical military in the international response to the first major Ebola outbreak. We offer unique insights into the military healthcare workers' experiences of humanitarian deployment. Many participants expressed motivations that gave them common purpose with civilian volunteers.
Horizontal wells in the Java Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barrett, S.L.; Lyon, R.
1988-05-01
The utilization of the Navigation Drilling System in recent drilling activity has established that: Continuous build rates as high as 6.75 degrees/100 ft are achievable (with a .74 degree DTU), making possible the tapping of near platform reserves. The system provides the flexibility necessary to drill a continuous curve or an irregular path without bottomhole assembly changes. The system provides the flexibility for sidetracks to the ''low side'' of the well bore without coming out of the hole for bottomhole assembly changes or a cement plug. Geological objectives can be reached with a high degree of accuracy. The system greatlymore » reduces the costly learning curve associated with rotary bottomhole assemblies and substantially increases the confidence of the operator. Significant drilling cost reductions resulted from the use of the system. The cost per foot was further reduced as additional familiarity with the equipment was gained.« less
Issues and Concerns in Robotic Drilling
NASA Technical Reports Server (NTRS)
Glass, Brian
2003-01-01
Exploration of the Martian subsurface will be essential in the search for life and water, given the desiccated and highly oxidized conditions on the surface. Discovery of these, at least in non-fossil form, is unlikely without drilling or other physical access to the subsurface. Hence subsurface access will be critical for both future in-situ science and Mars sample return. Drilling applications present many new challenges for diagnosis and control technology. Traditionally, diagnosis has concentrated on determining the internal state of a system, and detecting failures of system components. In the case of drilling applications, an additional challenge is to diagnose the interactions between the drill and its environment. This is necessary because particular observations of the drilling operation may be consistent with a number of possible problems, including faults in the equipment, but also changes in the material being drilled (for example, from rock to ice). The diagnosis of a particular observation may also depend on knowledge of geological formations previously encountered during drilling, and different remedial actions may be required for each diagnosis. Current 2009 Mars mission scenarios call for no more than 33 sols to be spent drilling. Yet they also call for a baseline of two 2m-deep holes in each of three target areas, for a total of six drilling operations. Using current levels of automation, it is estimated that 15-16 sols would be required to drill each hole. As a result of this, either the drilling part of the mission plan will need to be severely downscoped to no more than two holes total, or on-board automation and robotics must be increased in order to reduce the number of sols required per hole by removing ground control from the drilling control loop. This lecture will discuss salient issues and concerns of robotic drilling automation compares with other applications, and implementation constraints.
Small-scale mechanical characterization of viscoelastic adhesive systems
NASA Astrophysics Data System (ADS)
Shean, T. A. V.
Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.
Drilling into molten rock at Kilauea Iki
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colp, J.L.; Okamura, R.T.
1978-01-01
The scientific feasibility of extracting energy directly from buried circulating magma resources is being assessed. One of the tasks of the project is the study of geophysical measuring systems to locate and define buried molten rock bodies. To verify the results of a molten rock sensing experiment performed at Kilauea Iki lava lake, it is necessary to drill a series of holes through the solid upper crust and through the molten zone at that location. Thirteen holes have been drilled in Kilauea Iki. The results achieved during the drilling of the last two holes indicated that the molten zone inmore » Kilauea Iki is not a simple, relatively homogeneous fluid body as expected. The encountering of an unexpected, unknown rigid obstruction 2.5 ft below the crust/melt interface has led to the conceptual development of a drilling system intended to have the capability to drill through a hot, rigid obstruction while the drill stem is immersed in molten rock. The concept will be field tested at Kilauea Iki in the summer of 1978.« less
Drill/borescope System for the Mars Polar Pathfinder
NASA Technical Reports Server (NTRS)
Paige, D. A.; Wood, S. E.; Vasavada, A. R.
1993-01-01
The primary goals of the Mars Polar Pathfinder (MPP) Discovery Mission are to characterize the composition and structure of Mars' north polar ice cap, and to determine whether a climate record may be preserved in layers of ice and dust. The MPP would land as close as possible to the geographic north pole of Mars and use a set of instruments similar to those used by glaciologists to study polar ice caps on Earth: a radar sounder, a drill/borescope system, and a thermal probe. The drill/borescope system will drill approximately 50 cm into the surface and image the sides of the hole at 10 micron resolution for compositional and stratigraphic analysis. Several uncertainties have guided the development of this instrument, and they are discussed.
Tuned dynamics stabilizes an idealized regenerative axial-torsional model of rotary drilling
NASA Astrophysics Data System (ADS)
Gupta, Sunit K.; Wahi, Pankaj
2018-01-01
We present an exact stability analysis of a dynamical system idealizing rotary drilling. This system comprises lumped parameter axial-torsional modes of the drill-string coupled via the cutting forces and torques. The kinematics of cutting is modeled through a functional description of the cut surface which evolves as per a partial differential equation (PDE). Linearization of this model is straightforward as opposed to the traditional state-dependent delay (SDDE) model and both the approaches result in the same characteristic equation. A systematic study on the key system parameters influencing the stability characteristics reveals that torsional damping is very critical and stable drilling is, in general, not possible in its absence. The stable regime increases as the natural frequency of the axial mode approaches that of the torsional mode and a 1:1 internal resonance leads to a significant improvement in the system stability. Hence, from a practical point of view, a drill-string with 1:1 internal resonance is desirable to avoid vibrations during rotary drilling. For the non-resonant case, axial damping reduces the stable range of operating parameters while for the resonant case, an optimum value of axial damping (equal to the torsional damping) results in the largest stable regime. Interestingly, the resonant (tuned) system has a significant parameter regime corresponding to stable operation even in the absence of damping.
Engineering for Deep Sea Drilling for Scientific Purposes
1980-01-01
Clyde Consultants JOSEPH E. BEALL, Triton Engineering Services Company DOUWE DE VRIES, N L Industries, Incorporated TERRY N. GARDNER, Exxon...estimate: $1 million additional cost for each site drilled and 25 to 35 wells to be drilled over the period. __ U 20 inclusion in a request for proposal...26 of a positively buoyant system would allow a nearly conventional rise tensioning system. However, the latter approach would require de - .aping a
NASA Astrophysics Data System (ADS)
Boese, C. M.; Chamberlain, C. J.; Townend, J.
2015-12-01
In preparation for the second stage of the Deep Fault Drilling Project (DFDP) and as part of related research projects, borehole and surface seismic stations were installed near the intended DFDP-2 drill-site in the Whataroa Valley from late 2008. The final four borehole stations were installed within 1.2 km of the drill-site in early 2013 to provide near-field observations of any seismicity that occurred during drilling and thus provide input into operational decision-making processes if required. The basis for making operational decisions in response to any detected seismicity had been established as part of a safety review conducted in early 2014 and was implemented using a "traffic light" system, a communications plan, and other operational documents. Continuous real-time earthquake monitoring took place throughout the drilling period, between September and late December 2014, and involved a team of up to 15 seismologists working in shifts near the drill-site and overseas. Prior to drilling, records from 55 local earthquakes and 14 quarry blasts were used as master templates in a matched-filter detection algorithm to test the capabilities of the seismic network for detecting seismicity near the drill site. The newly detected microseismicity was clustered near the DFDP-1 drill site at Gaunt Creek, 7.4 km southwest of DFDP-2. Relocations of these detected events provide more information about the fault geometry in this area. Although no detectable seismicity occurred within 5 km of the drill site during the drilling period, the region is capable of generating earthquakes that would have required an operational response had they occurred while drilling was underway (including a M2.9 event northwest of Gaunt Creek on 15 August 2014). The largest event to occur while drilling was underway was of M4.5 and occurred approximately 40 km east of the DFDP-2 drill site. In this presentation, we summarize the setup and operations of the seismic network and discuss key aspects of seismicity recorded prior to and during drilling operations.
Analysis and design of trial well mooring in deepwater of the South China Sea
NASA Astrophysics Data System (ADS)
Guo, Yongfeng; Ji, Shaojun; Tang, Changquan; Li, Jiansong; Zhong, Huiquan; Ian, Ong Chin Yam
2012-06-01
Mooring systems play an important role for semi-submersible rigs that drill in deepwater. A detailed analysis was carried out on the mooring of a semi-submersible rig that conducted a trial well drilling at a deepwater location in the South China Sea in 2009. The rig was 30 years old and had a shallow platform with a designed maximum operating water depth of 457 m. Following the mooring analysis, a mooring design was given that requires upgrading of the rig's original mooring system. The upgrade included several innovations, such as installing eight larger anchors, i.e. replacing the original anchors and inserting an additional 600 m of steel wires with the existing chains. All this was done to enhance the mooring capability of the rig in order for the rig to be held in position to conduct drilling at a water depth of 476 m. The overall duration of the drilling was 50 days and the upgraded mooring system proved to be efficient in achieving the goal of keeping the rig stationary while it was drilling the trial well in the South China Sea. This successful campaign demonstrates that an older semi-submersible rig can take on drilling in deep water after careful design and proper upgrading and modification to the original mooring system.
NASA Astrophysics Data System (ADS)
Saito, S.; Yamada, Y.; Sanada, Y.; Kido, Y. N.; Hamada, Y.; Shiraishi, K.; Hsiung, K. H.; Tsuji, T.; Eng, C.; Maeda, L.; Kumagai, H.; Nozaki, T.; Ishibashi, J. I.
2017-12-01
A scientific drilling expedition, CK16-01 was conducted by D/V Chikyu in an active hydrothermal field on the Iheya-North Knoll in Okinawa Trough in February-March, 2016 as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program (SIP). During the expedition logging while drilling (LWD) was deployed to uncover the architecture of modern hydrothermal deposits near the seafloor. A downhole sequence of fracture network (stock-work) was discovered by high resolution resistivity images at Site C9023 in the southern part of the knoll. More than 500 structural features were extracted from the borehole images down to 188 meter below the seafloor. Quantitative image analyses were performed and three types of conductive fractures were identified and classified as Generation 1 (G1), Generation 2 (G2), and Generation 3 (G3) based on the crossing or cutting relationship. The average thickness of fractures decrease with generation from G1 (78 mm), G2 (57 mm), to G3 (45 mm). G1 is developed in the entire interval, whereas G2 and G3 are commonly observed in the intervals of lower gamma ray and high resistivity ( 10 ohm-m) at 77-125 m and 167-186 m where sulfide minerals hosted in silicified rocks were observed in recovered core samples. Low angle fractures (<30°) are typically developed in the interval at 120 -125 m, suggesting possible lateral hydrothermal conduits. The quantitative analysis of fracture network based on borehole images shows the detailed formation process of stock-work in the basal part of modern hydrothermal system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael S. Bruno
This report summarizes the research efforts on the DOE supported research project Percussion Drilling (DE-FC26-03NT41999), which is to significantly advance the fundamental understandings of the physical mechanisms involved in combined percussion and rotary drilling, and thereby facilitate more efficient and lower cost drilling and exploration of hard-rock reservoirs. The project has been divided into multiple tasks: literature reviews, analytical and numerical modeling, full scale laboratory testing and model validation, and final report delivery. Literature reviews document the history, pros and cons, and rock failure physics of percussion drilling in oil and gas industries. Based on the current understandings, a conceptualmore » drilling model is proposed for modeling efforts. Both analytical and numerical approaches are deployed to investigate drilling processes such as drillbit penetration with compression, rotation and percussion, rock response with stress propagation, damage accumulation and failure, and debris transportation inside the annulus after disintegrated from rock. For rock mechanics modeling, a dynamic numerical tool has been developed to describe rock damage and failure, including rock crushing by compressive bit load, rock fracturing by both shearing and tensile forces, and rock weakening by repetitive compression-tension loading. Besides multiple failure criteria, the tool also includes a damping algorithm to dissipate oscillation energy and a fatigue/damage algorithm to update rock properties during each impact. From the model, Rate of Penetration (ROP) and rock failure history can be estimated. For cuttings transport in annulus, a 3D numerical particle flowing model has been developed with aid of analytical approaches. The tool can simulate cuttings movement at particle scale under laminar or turbulent fluid flow conditions and evaluate the efficiency of cutting removal. To calibrate the modeling efforts, a series of full-scale fluid hammer drilling tests, as well as single impact tests, have been designed and executed. Both Berea sandstone and Mancos shale samples are used. In single impact tests, three impacts are sequentially loaded at the same rock location to investigate rock response to repetitive loadings. The crater depth and width are measured as well as the displacement and force in the rod and the force in the rock. Various pressure differences across the rock-indentor interface (i.e. bore pressure minus pore pressure) are used to investigate the pressure effect on rock penetration. For hammer drilling tests, an industrial fluid hammer is used to drill under both underbalanced and overbalanced conditions. Besides calibrating the modeling tool, the data and cuttings collected from the tests indicate several other important applications. For example, different rock penetrations during single impact tests may reveal why a fluid hammer behaves differently with diverse rock types and under various pressure conditions at the hole bottom. On the other hand, the shape of the cuttings from fluid hammer tests, comparing to those from traditional rotary drilling methods, may help to identify the dominant failure mechanism that percussion drilling relies on. If so, encouraging such a failure mechanism may improve hammer performance. The project is summarized in this report. Instead of compiling the information contained in the previous quarterly or other technical reports, this report focuses on the descriptions of tasks, findings, and conclusions, as well as the efforts on promoting percussion drilling technologies to industries including site visits, presentations, and publications. As a part of the final deliveries, the 3D numerical model for rock mechanics is also attached.« less
Hammerschmidt, Sebastian B; Wiersberg, Thomas; Heuer, Verena B; Wendt, Jenny; Erzinger, Jörg; Kopf, Achim
2014-01-01
Integrated Ocean Drilling Program Expedition 338 was the second scientific expedition with D/V Chikyu during which riser drilling was conducted as part of the Nankai Trough Seismogenic Zone Experiment. Riser drilling enabled sampling and real-time monitoring of drilling mud gas with an onboard scientific drilling mud gas monitoring system ("SciGas"). A second, independent system was provided by Geoservices, a commercial mud logging service. Both systems allowed the determination of (non-) hydrocarbon gas, while the SciGas system also monitored the methane carbon isotope ratio (δ(13)CCH4). The hydrocarbon gas composition was predominated by methane (> 1%), while ethane and propane were up to two orders of magnitude lower. δ(13)CCH4 values suggested an onset of thermogenic gas not earlier than 1600 meter below seafloor. This study aims on evaluating the onboard data and subsequent geological interpretations by conducting shorebased analyses of drilling mud gas samples. During shipboard monitoring of drilling mud gas the SciGas and Geoservices systems recorded up to 8.64% and 16.4% methane, respectively. Ethane and propane concentrations reached up to 0.03 and 0.013%, respectively, in the SciGas system, but 0.09% and 0.23% in the Geoservices data. Shorebased analyses of discrete samples by gas chromatography showed a gas composition with ~0.01 to 1.04% methane, 2 - 18 ppmv ethane, and 2 - 4 ppmv propane. Quadruple mass spectrometry yielded similar results for methane (0.04 to 4.98%). With δD values between -171‰ and -164‰, the stable hydrogen isotopic composition of methane showed little downhole variability. Although the two independent mud gas monitoring systems and shorebased analysis of discrete gas sample yielded different absolute concentrations they all agree well with respect to downhole variations of hydrocarbon gases. The data point to predominantly biogenic methane sources but suggest some contribution from thermogenic sources at depth, probably due to mixing. In situ thermogenic gas production at depths shallower 2000 mbsf is unlikely based on in situ temperature estimations between 81°C and 85°C and a cumulative time-temperature index of 0.23. In conclusion, the onboard SciGas data acquisition helps to provide a preliminary, qualitative evaluation of the gas composition, the in situ temperature and the possibility of gas migration.
Effective Dust Control Systems on Concrete Dowel Drilling Machinery
Echt, Alan S.; Sanderson, Wayne T.; Mead, Kenneth R.; Feng, H. Amy; Farwick, Daniel R.; Farwick, Dawn Ramsey
2016-01-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels. PMID:27074062
NASA Astrophysics Data System (ADS)
Soreghan, G. S.; Cohen, A. S.
2013-11-01
A US National Science Foundation-funded workshop occurred 17-19 May 2013 at the University of Oklahoma to stimulate research using continental scientific drilling to explore earth's sedimentary, paleobiological and biogeochemical record. Participants submitted 3-page "pre-proposals" to highlight projects that envisioned using drill-core studies to address scientific issues in paleobiology, paleoclimatology, stratigraphy and biogeochemistry, and to identify locations where key questions can best be addressed. The workshop was also intended to encourage US scientists to take advantage of the exceptional capacity of unweathered, continuous core records to answer important questions in the history of earth's sedimentary, biogeochemical and paleobiologic systems. Introductory talks on drilling and coring methods, plus best practices in core handling and curation, opened the workshop to enable all to understand the opportunities and challenges presented by scientific drilling. Participants worked in thematic breakout sessions to consider questions to be addressed using drill cores related to glacial-interglacial and icehouse-greenhouse transitions, records of evolutionary events and extinctions, records of major biogeochemical events in the oceans, reorganization of earth's atmosphere, Lagerstätte and exceptional fossil biota, records of vegetation-landscape change, and special sampling requirements, contamination, and coring tool concerns for paleobiology, geochemistry, geochronology, and stratigraphy-sedimentology studies. Closing discussions at the workshop focused on the role drilling can play in studying overarching science questions about the evolution of the earth system. The key theme, holding the most impact in terms of societal relevance, is understanding how climate transitions have driven biotic change, and the role of pristine, stratigraphically continuous cores in advancing our understanding of this linkage. Scientific drilling, and particularly drilling applied to continental targets, provides unique opportunities to obtain continuous and unaltered material for increasingly sophisticated analyses, tapping the entire geologic record (extending through the Archean), and probing the full dynamic range of climate change and its impact on biotic history.
DOE Office of Scientific and Technical Information (OSTI.GOV)
TerraTek, A Schlumberger Company
2008-12-31
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill 'faster and deeper' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the 'ultra-high rotary speed drilling system' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm - usually well below 5,000 rpm. This document provides the progress through two phases of the program entitled 'Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling' for the period starting 30 June 2003 and concluding 31 March 2009. The accomplishments of Phases 1 and 2 are summarized as follows: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance (see Black and Judzis); (2) TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed; (3) TerraTek concluded small-scale cutting performance tests; (4) Analysis of Phase 1 data indicated that there is decreased specific energy as the rotational speed increases; (5) Technology transfer, as part of Phase 1, was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black); (6) TerraTek prepared a design concept for the high speed drilling test stand, which was planned around the proposed high speed mud motor concept. Alternative drives for the test stand were explored; a high speed hydraulic motor concept was finally used; (7) The high speed system was modified to accommodate larger drill bits than originally planned; (8) Prototype mud turbine motors and the high speed test stand were used to drive the drill bits at high speed; (9) Three different rock types were used during the testing: Sierra White granite, Crab Orchard sandstone, and Colton sandstone. The drill bits used included diamond impregnated bits, a polycrystalline diamond compact (PDC) bit, a thermally stable PDC (TSP) bit, and a hybrid TSP and natural diamond bit; and (10) The drill bits were run at rotary speeds up to 5500 rpm and weight on bit (WOB) to 8000 lbf. During Phase 2, the ROP as measured in depth of cut per bit revolution generally increased with increased WOB. The performance was mixed with increased rotary speed, with the depth cut with the impregnated drill bit generally increasing and the TSP and hybrid TSP drill bits generally decreasing. The ROP in ft/hr generally increased with all bits with increased WOB and rotary speed. The mechanical specific energy generally improved (decreased) with increased WOB and was mixed with increased rotary speed.« less
77 FR 26562 - Mobile Offshore Drilling Unit Dynamic Positioning Guidance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-04
... regarding a draft policy letter on Dynamic Positioning (DP) Systems, Emergency Disconnect Systems, Blowout... Coast Guard, NOSAC issued the report ``Recommendations for Dynamic Positioning System Design and... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2011-1106] Mobile Offshore Drilling Unit Dynamic...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
46 CFR 58.60-1 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-10-01
... GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING MAIN AND AUXILIARY MACHINERY AND RELATED SYSTEMS Industrial Systems and Components on Mobile Offshore Drilling Units (MODU) § 58.60-1 Applicability. This subpart applies to the following industrial systems on board a mobile offshore drilling unit...
30 CFR 250.430 - When must I install a diverter system?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.430 When must I install a diverter system? You must install a diverter system before you drill a conductor or surface hole. The diverter system...
Wireline Deep Drill for the Exploration of Icy Bodies
NASA Technical Reports Server (NTRS)
Paulsen, G.; Zacny, K.; Mellerowicz, B.; Craft, J.; Bar-Cohen, Y.; Beegle, L.; Sherrit, S.; Badescu, M.; Corsetti, F.; Ibarra, Y.
2013-01-01
One of the most pressing current questions in space science is whether life has ever arisen anywhere else in the universe. Water is a critical prerequisite for all life-as-we-know-it, thus the possible exploration targets for extraterrestrial life are bodies that have or had copious liquid: Mars, Europa, and Enceladus. Due to the oxidizing nature of Mars' surface, as well as subsurface liquid water reservoirs present on Europa and Enceladus, the search for evidence of existing life must likely focus on subsurface locations, at depths sufficient to support liquid water or retain biologic signatures. To address these questions, an Auto-Gopher sampler has been developed that is a wireline type drill. This drill is suspended on a tether and its motors and mechanisms are built into a tube that ends with a coring bit. The tether provides the mechanical connection to a rover/lander on a surface as well as power and data communication. Upon penetrating to a target depth, the drill is retracted from the borehole, the core is deposited into a sample transfer system, and the drill is lowered back into the hole. Wireline operation sidesteps one of the major drawbacks of traditional continuous drill string systems by obviating the need for multiple drill sections, which add significantly to the mass and the complexity of the system (i.e. penetration rate was 40 cm per hour). Drilling to 2 meter depth and recovering of cores every 10 cm took a total time of 15 hours (a single step of drilling 10 cm and retrieving the core was 45 minutes). Total energy to reach the 2 m depth was 500 Whr. The Weight on Bit was limited to less than 70 Newton. The core recovery was 100%.
NASA Astrophysics Data System (ADS)
Nguyen, Danh-Tuyen; Hoang, Tien-Dat; Lee, An-Chen
2017-10-01
A micro drill structure was optimized to give minimum lateral displacement at its drill tip, which plays an extremely important role on the quality of drilled holes. A drilling system includes a spindle, chuck and micro drill bit, which are modeled as rotating Timoshenko beam elements considering axial drilling force, torque, gyroscopic moments, eccentricity and bearing reaction force. Based on our previous work, the lateral vibration at the drill tip is evaluated. It is treated as an objective function in the optimization problem. Design variables are diameter and lengths of cylindrical and conical parts of the micro drill, along with nonlinear constraints on its mass and mass center location. Results showed that the lateral vibration was reduced by 15.83 % at a cutting speed of 70000 rpm as compared to that for a commercial UNION drill. Among the design variables, we found that the length of the conical part connecting to the drill shank plays the most important factor on the lateral vibration during cutting process.
NASA Astrophysics Data System (ADS)
Rossi, Edoardo; Kant, Michael A.; von Rohr, Philipp Rudolf; Saar, Martin O.
2017-04-01
The exploitation of deep geothermal resources for energy production relies on finding cost effective solutions to increase the drilling performance in hard rocks. Conventional rotary drilling techniques, based on mechanical rock exportation, result in high rates of drilling tool wearing, causing significant costs. Additionally, rotary drilling results in low drilling speeds in the typically hard crystalline basement rocks targeted for enhanced geothermal energy utilization technologies. Furthermore, even lower overall drilling rates result, when considering tripping times required to exchange worn drill tools. Therefore, alternative drilling techniques, such as hammering, thermal drilling, plasma drilling, and jetting processes are widely investigated in order to provide cost-effective alternatives to conventional drilling methods. A promising approach, that combines conventional rotary and thermal drilling techniques, is investigated in the present work. Here, the rock material is thermally weakened before being exported by conventional cutters. Heat is locally provided by a flame, which moves over the rock surface, heat-treating the material. Besides reducing the rock strength, an in-depth smoothening effect of the mechanical rock properties is observed due to the thermal treatment. This results in reduced rates of drill bit wearing and higher rates of penetration, which in turn decreases drilling costs significantly, particularly for deep-drilling projects. Due to the high heating rates, rock-hardening, commonly observed at moderate temperatures, can be avoided. The flame action can be modelled as a localized, high heat transfer coefficient flame treatment, which results in orders of magnitude higher heating rates than conventional oven treatments. Therefore, we analyse rock strength variations after different maximum temperatures, flame-based heating rates, and rock confinement pressures. The results show that flame treatments lead to a monotonous decrease of rock strength with temperature. This is different from oven treatments, where an initial increase of strength is typically observed, followed by a steep decrease upon further (slow) oven-heating. Thus, the weakening of sandstone and granite samples due to flame treatments indicates the feasibility of a combined mechanical-thermal drilling system. These results suggest that the new combined method enables improved rates of penetration in hard rocks while reducing the rate of drill tool wear. We also present possible implementations of this combined drilling system in the field. From field test results, advantages and limitations of the proposed new technology are presented, with an emphasis on accessing geothermal energy resources in crystalline basement rocks.
Monroe, Utah, Hydrothermal System: Results from Drilling of Test Wells MC1 and MC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, D.S.; Harrison, Roger
1978-10-01
Following detailed geological (Parry et al., 1976; Miller, 1976) and geophysical (Mase, Chapman, and Ward, 1978; Kilty, Mase, and Chapman, 1978) studies of the Monroe, Utah hydrothermal system, a program of drilling two intermediate depth test wells was undertaken. The objectives of the test well drilling were three-fold: (1) to obtain structural information bearing on the poorly known dip of the Sevier Fault, (2) to obtain temperature information below the shallow depths (approximately 300 ft.) sampled in the first phase of exploration, and (3) to provide cased wells which could act as monitor wells during the production phase of themore » project. The test well drilling was seen to be vital to the selection of a site for a production well. This report describes the results from the drilling of the two test wells, designated MC1 and MC2, and offers interpretation of the hydrothermal system which may be used as a basis for selecting production wells.« less
Ocean Drilling Program: Science Operator Site Index
time estimator Long-Term Observatories and Legacy Holes (University of Miami site) Drilling Services systems Internet systems Help Desk Database services How to obtain ODP data Data types and examples Core
Powder-Collection System for Ultrasonic/Sonic Drill/Corer
NASA Technical Reports Server (NTRS)
Sherrit, Stewart; Bar-Cohen, Yoseph; Bao, Xiaoqi; Chang, Zensheu; Blake, David; Bryson, Charles
2005-01-01
A system for collecting samples of powdered rock has been devised for use in conjunction with an ultrasonic/sonic drill/corer (USDC) -- a lightweight, lowpower apparatus designed to cut into, and acquire samples of, rock or other hard material for scientific analysis. The USDC includes a drill bit, corer, or other tool bit, in which ultrasonic and sonic vibrations are excited by an electronically driven piezoelectric actuator. The USDC advances into the rock or other material of interest by means of a hammering action and a resulting chiseling action at the tip of the tool bit. The hammering and chiseling actions are so effective that unlike in conventional twist drilling, a negligible amount of axial force is needed to make the USDC advance into the material. Also unlike a conventional twist drill, the USDC operates without need for torsional restraint, lubricant, or a sharp bit. The USDC generates powder as a byproduct of the drilling or coring process. The purpose served by the present samplecollection system is to remove the powder from the tool-bit/rock interface and deliver the powder to one or more designated location(s) for analysis or storage
New mud gas monitoring system aboard D/V Chikyu
NASA Astrophysics Data System (ADS)
Kubo, Yusuke; Inagaki, Fumio; Eguchi, Nobuhisa; Igarashi, Chiaki
2013-04-01
Mud gas logging has been commonly used in oil industry and continental scientific drilling to detect mainly hydrocarbon gases from the reservoir formation. Quick analysis of the gas provides almost real-time information which is critical to evaluate the formation and, in particular, safety of drilling operation. Furthermore, mud gas monitoring complements the lack of core or fluid samples particularly in a deep hole, and strengthen interpretations of geophysical logs. In scientific ocean drilling, on the other hand, mud gas monitoring was unavailable in riserless drilling through the history of DSDP and ODP, until riser drilling was first carried out in 2009 by D/V Chikyu. In IODP Exp 319, GFZ installed the same system with that used in continental drilling aboard Chikyu. High methane concentrations are clearly correlated with increased wood content in the cuttings. The system installation was, however, temporary and gas separator was moved during the expedition for a technical reason. In 2011, new mud gas monitoring system was installed aboard Chikyu and was used for the first time in Exp 337. The gas separator was placed on a newly branched bypass mud flow line, and the gas sample was sent to analysis unit equipped with methane carbon isotope analyzer in addition to mass spectrometer and gas chromatograph. The data from the analytical instruments is converted to depth profiles by calculating the lag effects due to mud circulation. Exp 337 was carried out from July 26 to Sep 30, 2011, at offshore Shimokita peninsula, northeast Japan, targeting deep sub-seafloor biosphere in and around coal bed. Data from the hole C0020A, which was drilled to 2466 mbsf with riser drilling, provided insights into bio-geochemical process through the depth of the hole. In this presentation, we show the design of Chikyu's new mud gas monitoring system, with preliminary data from Exp 337.
Methods and systems for determining angular orientation of a drill string
Cobern, Martin E.
2010-03-23
Preferred methods and systems generate a control input based on a periodically-varying characteristic associated with the rotation of a drill string. The periodically varying characteristic can be correlated with the magnetic tool face and gravity tool face of a rotating component of the drill string, so that the control input can be used to initiate a response in the rotating component as a function of gravity tool face.
NASA Astrophysics Data System (ADS)
Huang, Zhiqiang; Xie, Dou; Xie, Bing; Zhang, Wenlin; Zhang, Fuxiao; He, Lei
2018-03-01
The undesired stick-slip vibration is the main source of PDC bit failure, such as tooth fracture and tooth loss. So, the study of PDC bit failure base on stick-slip vibration analysis is crucial to prolonging the service life of PDC bit and improving ROP (rate of penetration). For this purpose, a piecewise-smooth torsional model with 4-DOF (degree of freedom) of drilling string system plus PDC bit is proposed to simulate non-impact drilling. In this model, both the friction and cutting behaviors of PDC bit are innovatively introduced. The results reveal that PDC bit is easier to fail than other drilling tools due to the severer stick-slip vibration. Moreover, reducing WOB (weight on bit) and improving driving torque can effectively mitigate the stick-slip vibration of PDC bit. Therefore, PDC bit failure can be alleviated by optimizing drilling parameters. In addition, a new 4-DOF torsional model is established to simulate torsional impact drilling and the effect of torsional impact on PDC bit's stick-slip vibration is analyzed by use of an engineering example. It can be concluded that torsional impact can mitigate stick-slip vibration, prolonging the service life of PDC bit and improving drilling efficiency, which is consistent with the field experiment results.
Automatic control of oscillatory penetration apparatus
Lucon, Peter A
2015-01-06
A system and method for controlling an oscillatory penetration apparatus. An embodiment is a system and method for controlling a sonic drill having a displacement and an operating range and operating at a phase difference, said sonic drill comprising a push-pull piston and eccentrics, said method comprising: operating the push-pull piston at an initial push-pull force while the eccentrics are operated at a plurality of different operating frequencies within the operating range of the sonic drill and measuring the displacement at each operating frequency; determining an efficient operating frequency for the material being drilled and operating the eccentrics at said efficient operating frequency; determining the phase difference at which the sonic drill is operating; and if the phase difference is not substantially equal to minus ninety degrees, operating the push-pull piston at another push-pull force.
Harandi, Azade; Mohammadpour Maleki, Fatemeh; Moudi, Ehsan; Ehsani, Maryam; Khafri, Soraya
2017-01-01
Introduction: The aim of this study was to compare the dentine removing efficacy of Gates-Glidden drills with hand files, ProTaper and OneShape single-instrument system using cone-beam computed tomography (CBCT). Methods and Materials: A total of 39 extracted bifurcated maxillary first premolars were divided into 3 groups (n=13) and were prepared using either Gates-Glidden drills and hand instruments, ProTaper and OneShape systems. Pre- and post-instrumentation CBCT images were obtained. The dentin thickness of canals was measured at furcation, and 1 and 2 mm from the furcation area in buccal, palatal, mesial and distal walls. Data were analyzed using one-way ANOVA test. Tukey’s post hoc tests were used for two-by-two comparisons. Results: Gates-Glidden drills with hand files removed significantly more (P<0.001) dentine than the engine-driven systems in all canal walls (buccal, palatal, mesial and distal). There were no significant differences between OneShape and ProTaper rotary systems (P>0.05). Conclusion: The total cervical dentine removal during canal instrumentation was significantly less with engine-driven file systems compared to Gates-Glidden drills. There were no significant differences between residual dentine thicknesses left between the various canal walls. PMID:28179920
Balachandran, Ramya; Labadie, Robert F.
2015-01-01
Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149
Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F
2016-03-01
A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.
Laser Drilling Development Trial Final Report CRADA No. TSB-1538-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, M. R.; Hebbar, R. R.
This project performed various laser drilling tests to demonstrate femtosecond laser drilling of fuel injector nozzles with minimal recast, minimal heat affected zone and no collateral damage. LLNL had extensive experience in ultra short-pulse laser systems and developed specialized hardware for these applications.
Geothermal Exploration and Resource Assessment | Geothermal Technologies |
, drilling, and resource assessments and the widespread adoption of under-utilized low-temperature resources -temperature geothermal resource technologies. Drilling The drilling of wells to find and develop geothermal low-temperature, sedimentary, co-produced, and enhanced geothermal system resources. We also work to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Alan Black; Homer Robertson
2006-03-01
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ultra-high rotary speed drilling system is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm--usually well below 5,000 rpm. This document details the progress to date on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 October 2004 through 30 September 2005. Additionally, research activity from 1 October 2005 through 28 February 2006 is included in this report: (1) TerraTek reviewed applicable literature and documentation and convened a project kick-off meeting with Industry Advisors in attendance. (2) TerraTek designed and planned Phase I bench scale experiments. Some difficulties continue in obtaining ultra-high speed motors. Improvements have been made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs have been provided to vendors for production. A more consistent product is required to minimize the differences in bit performance. A test matrix for the final core bit testing program has been completed. (3) TerraTek is progressing through Task 3 ''Small-scale cutting performance tests''. (4) Significant testing has been performed on nine different rocks. (5) Bit balling has been observed on some rock and seems to be more pronounces at higher rotational speeds. (6) Preliminary analysis of data has been completed and indicates that decreased specific energy is required as the rotational speed increases (Task 4). This data analysis has been used to direct the efforts of the final testing for Phase I (Task 5). (7) Technology transfer (Task 6) has begun with technical presentations to the industry (see Judzis).« less
30 CFR 250.442 - What are the requirements for a subsea BOP system?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...
30 CFR 250.442 - What are the requirements for a subsea BOP system?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...
30 CFR 250.442 - What are the requirements for a subsea BOP system?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...
30 CFR 250.442 - What are the requirements for a subsea BOP system?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.442 What are the requirements for a subsea BOP system? When you drill with a subsea BOP system, you must install the BOP system...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2010-01-15
Broad Funding Opportunity Announcement Project: Foro Energy is developing a unique capability and hardware system to transmit high power lasers over long distances via fiber optic cables. This laser power is integrated with a mechanical drilling bit to enable rapid and sustained penetration of hard rock formations too costly to drill with mechanical drilling bits alone. The laser energy that is directed at the rock basically softens the rock, allowing the mechanical bit to more easily remove it. Foro Energy’s laser-assisted drill bits have the potential to be up to 10 times more economical than conventional hard-rock drilling technologies, makingmore » them an effective way to access the U.S. energy resources currently locked under hard rock formations.« less
Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro
2017-07-01
The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.
Heat accumulation during sequential cortical bone drilling.
Palmisano, Andrew C; Tai, Bruce L; Belmont, Barry; Irwin, Todd A; Shih, Albert; Holmes, James R
2016-03-01
Significant research exists regarding heat production during single-hole bone drilling. No published data exist regarding repetitive sequential drilling. This study elucidates the phenomenon of heat accumulation for sequential drilling with both Kirschner wires (K wires) and standard two-flute twist drills. It was hypothesized that cumulative heat would result in a higher temperature with each subsequent drill pass. Nine holes in a 3 × 3 array were drilled sequentially on moistened cadaveric tibia bone kept at body temperature (about 37 °C). Four thermocouples were placed at the center of four adjacent holes and 2 mm below the surface. A battery-driven hand drill guided by a servo-controlled motion system was used. Six samples were drilled with each tool (2.0 mm K wire and 2.0 and 2.5 mm standard drills). K wire drilling increased temperature from 5 °C at the first hole to 20 °C at holes 6 through 9. A similar trend was found in standard drills with less significant increments. The maximum temperatures of both tools increased from <0.5 °C to nearly 13 °C. The difference between drill sizes was found to be insignificant (P > 0.05). In conclusion, heat accumulated during sequential drilling, with size difference being insignificant. K wire produced more heat than its twist-drill counterparts. This study has demonstrated the heat accumulation phenomenon and its significant effect on temperature. Maximizing the drilling field and reducing the number of drill passes may decrease bone injury. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Evaluation of Hard Coating Performance in Drilling Compacted Graphite Iron (CGI)
NASA Astrophysics Data System (ADS)
de Paiva, José M. F.; Amorim, Fred L.; Soares, P.; Torres, Ricardo D.
2013-10-01
The aim of this investigation was to compare the performance of the following commercial coatings system, TiAlN/TiN, AlCrN, and TiSiN/AlCrN, deposited in cemented carbide tools in drilling compact graphite iron (CGI). The drilling tests were conducted adopting two cutting speeds: 80 or 150 m/min. For each test condition, the tool flank wear, the machining feed force, and the circularity and the roughness of the resulting drilled hole were determined. At the cutting speed of 80 m/min, the results revealed that the tool life, in terms of flank wear, was improved for the Cr-based coatings, while the multilayered coatings presented a better performance at the cutting speed of 150 m/min. It was also found that feed force is substantially increased when drilling at a cutting speed of 150 m/min. The holes drilled with the TiSiN/AlCrN at a cutting speed of 150 m/min showed the best circularity. The drill roughness is directly influenced by the coating system wear and iron adhesion. Consequently, it was found that the lowest holes' roughness was obtained with TiSiN/AlCrN at 80 m/min.
Analysis and 3D inspection system of drill holes in aeronautical surfaces
NASA Astrophysics Data System (ADS)
Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.
2017-06-01
In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.
NASA Astrophysics Data System (ADS)
Stoker, C. R.; Lemke, L. G.; Cannon, H.; Glass, B.; Dunagan, S.; Zavaleta, J.; Miller, D.; Gomez-Elvira, J.
2006-03-01
The Mars Analog Research and Technology (MARTE) experiment has developed an automated drilling system on a simulated Mars lander platform including drilling, sample handling, core analysis and down-hole instruments relevant to searching for life in the Martian subsurface.
Development of lunar drill to take core samples to 100-foot depths
NASA Technical Reports Server (NTRS)
1967-01-01
Lunar drill takes lunar surface cores to depths of 100 feet and is being developed to the samples at greater depths. The wireline drill system has been adapted to operate in the lunar environment by providing a sealed dc motor and solid metallic base lubricants.
Game-Based Evacuation Drill Using Augmented Reality and Head-Mounted Display
ERIC Educational Resources Information Center
Kawai, Junya; Mitsuhara, Hiroyuki; Shishibori, Masami
2016-01-01
Purpose: Evacuation drills should be more realistic and interactive. Focusing on situational and audio-visual realities and scenario-based interactivity, the authors have developed a game-based evacuation drill (GBED) system that presents augmented reality (AR) materials on tablet computers. The paper's current research purpose is to improve…
Impedance-matched drilling telemetry system
Normann, Randy A [Edgewood, NM; Mansure, Arthur J [Albuquerque, NM
2008-04-22
A downhole telemetry system that uses inductance or capacitance as a mode through which signal is communicated across joints between assembled lengths of pipe wherein efficiency of signal propagation through a drill string, for example, over multiple successive pipe segments is enhanced through matching impedances associated with the various telemetry system components.
Effective dust control systems on concrete dowel drilling machinery.
Echt, Alan S; Sanderson, Wayne T; Mead, Kenneth R; Feng, H Amy; Farwick, Daniel R; Farwick, Dawn Ramsey
2016-09-01
Rotary-type percussion dowel drilling machines, which drill horizontal holes in concrete pavement, have been documented to produce respirable crystalline silica concentrations above recommended exposure criteria. This places operators at potential risk for developing health effects from exposure. United States manufacturers of these machines offer optional dust control systems. The effectiveness of the dust control systems to reduce respirable dust concentrations on two types of drilling machines was evaluated under controlled conditions with the machines operating inside large tent structures in an effort to eliminate secondary exposure sources not related to the dowel-drilling operation. Area air samples were collected at breathing zone height at three locations around each machine. Through equal numbers of sampling rounds with the control systems randomly selected to be on or off, the control systems were found to significantly reduce respirable dust concentrations from a geometric mean of 54 mg per cubic meter to 3.0 mg per cubic meter on one machine and 57 mg per cubic meter to 5.3 mg per cubic meter on the other machine. This research shows that the dust control systems can dramatically reduce respirable dust concentrations by over 90% under controlled conditions. However, these systems need to be evaluated under actual work conditions to determine their effectiveness in reducing worker exposures to crystalline silica below hazardous levels.
NASA Astrophysics Data System (ADS)
Sun, Youhong; Gao, Ke; Yu, Ping; Liu, Baochang; Guo, Wei; Ma, Yinlong; Yang, Yang
2014-05-01
SK-2 Well is located in DaQing city,where is site of the largest oil field in China,Heilongjiang province, north-east of China.The objective of SK-2 well is to obtain full cores of cretaceous formation in Song Liao basin,and to build the time tunnel of Cretaceous greenhouse climate change,and to clarify the causes,processes and results of the formations of DaQing oil field. This will ensure to achieve our ultimate goals,to test the CRUST-1 drilling rig and improve China's deep scientific drilling technology,to form the scientific drilling technology,method and system with independent intellectual property rights,and to provide technical knowledge and information for China's ten kilometers super-deep scientific drilling technical resources.SK-2 Well is at 6400 meter depth, where the drilling inclination is 90 degree and the continuous coring length is 3535 meter that from 2865 to 6400 meter,the recovery rate of the core is greater or equal to 95 percent with 100 millimeters core diameter and 3.9 degree per 100 meter geothermal gradient.The CRUST-1 rig is designated with special drilling equipment for continental scientific drilling combined to the oil drilling equipment ability with advanced geological drilling technology which is highly automatic and intelligent. CRUST-1 drilling ability is 10000 meter with the maximum hook load 700 tons, the total power is 4610 Kilowatt.CRUST-1 will be integrated with a complete set of automation equipment,including big torque hydraulic top drive,high accuracy automatic drilling rod feeding system, suspended automatic drill string discharge device,hydraulic intelligent iron roughneck,and hydraulic automatic catwalk to fully meet the drilling process requirements of SK-2.Designed with advanced drilling technique for 260 degree in the bottom of SK-2 well and hard rock,including the drilling tools of high temperature hydraulic hammer,high temperature resistance and high strength aluminum drill pipe,high temperature preparation of mud treatment and high temperature resistant cementing materials, and bionic bits,that is coupling bionic PDC tooth bit and diamond-impregnated bit for hard rock.All parts of CRUST-1 were successfully assembled along with the derrick and base lift and transported about 3456 kilometers from manufacture,GuangHan city in southwest China's Sichuan province,to the well site of SK-2 in end of 2013.SK-2 will be finished during next 4 years.
Volvo CE to expand driveline components and introduce new loader concept at bauma
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
2007-04-15
This suppliers news report includes a description of Volvo CE's Graphic wheel loader which uses an electric hybrid power sources and is almost emissions free. Simulator training technology is proving its usefulness in establishing higher safety levels in the mining industry. Immersive Technologies Advanced Equipment training simulators are being used to train students at the Academy for Mine Training and Energy Technology in West Virginia. Geo-Explorer core drills manufactured by Multi-Power Products Ltd. of Canada have been purchased by the Pan African Mining Corp. One is to be assigned to the company's coal program where an extensive exploration program ismore » underway in the Sakoa area in Madagascar. A joint venture agreement has been announced between iPackets International and China's Henan YongAn Investment Guarantee Co. and China Coal Information Institute. Under the name GuoAn Mine Safety Communication System, iPacket's wireless communications software and equipment will be deployed in China's mining industry. 3 photos.« less
Design and Implementation of Multifunctional Automatic Drilling End Effector
NASA Astrophysics Data System (ADS)
Wang, Zhanxi; Qin, Xiansheng; Bai, Jing; Tan, Xiaoqun; Li, Jing
2017-03-01
In order to realize the automatic drilling in aircraft assembly, a drilling end effector is designed by integrating the pressure unit, drilling unit, measurement unit, control system and frame structure. In order to reduce the hole deviation, this paper proposes a vertical normal adjustment program based on 4 laser distance sensors. The actual normal direction of workpiece surface can be calculated through the sensors measurements, and then robot posture is adjusted to realize the hole deviation correction. A base detection method is proposed to detect and locate the hole automatically by using the camera and the reference hole. The experiment results show that the position accuracy of the system is less than 0.3mm, and the normal precision is less than 0.5°. The drilling end effector and robot can greatly improve the efficiency of the aircraft parts and assembly quality, and reduce the product development cycle.
30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What associated systems... components. (b) At least two BOP control stations. One station must be on the drilling floor. You must locate...
System approach to automation and robotization of drivage
NASA Astrophysics Data System (ADS)
Zinov’ev, VV; Mayorov, AE; Starodubov, AN; Nikolaev, PI
2018-03-01
The authors consider the system approach to finding ways of no-man drilling and blasting in the face area by means of automation and robotization of operations with a view to reducing injuries in mines. The analysis is carried out in terms of the drilling and blasting technology applied in Makarevskoe Coal Field, Kuznetsk Coal Basin. Within the system-functional approach and using INDEFO procedure, the processes of drilling and blasthole charging are decomposed into related elementary operations. The automation and robotization methods to avoid the presence of miners in the face are found for each operation.
Development of the RANCOR Rotary-Percussive Coring System for Mars Sample Return
NASA Technical Reports Server (NTRS)
Paulsen, Gale; Indyk, Stephen; Zacny, Kris
2014-01-01
A RANCOR drill was designed to fit a Mars Exploration Rover (MER) class vehicle. The low mass of 3 kg was achieved by using the same actuator for three functions: rotation, percussions, and core break-off. Initial testing of the drill exposed an unexpected behavior of an off-the-shelf sprag clutch used to couple and decouple rotary-percussive function from the core break off function. Failure of the sprag was due to the vibration induced during percussive drilling. The sprag clutch would back drive in conditions where it was expected to hold position. Although this did not affect the performance of the drill, it nevertheless reduced the quality of the cores produced. Ultimately, the sprag clutch was replaced with a custom ratchet system that allowed for some angular displacement without advancing in either direction. Replacing the sprag with the ratchet improved the collected core quality. Also, premature failure of a 300-series stainless steel percussion spring was observed. The 300-series percussion spring was ultimately replaced with a music wire spring based on performances of previously designed rotary-percussive drill systems.
Resonant acoustic transducer system for a well drilling string
Nardi, Anthony P.
1981-01-01
For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.
Resonant acoustic transducer system for a well drilling string
Kent, William H.; Mitchell, Peter G.
1981-01-01
For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...
30 CFR 250.433 - What are the diverter actuation and testing requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations...-control systems and control stations. You must also flow-test the vent lines. (a) For drilling operations... must conduct subsequent pressure tests within 7 days after the previous test. (b) For floating drilling...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System...
An experimental investigation on thermal exposure during bone drilling.
Lee, Jueun; Ozdoganlar, O Burak; Rabin, Yoed
2012-12-01
This study presents an experimental investigation of the effects of spindle speed, feed rate, and depth of drilling on the temperature distribution during drilling of the cortical section of the bovine femur. In an effort to reduce measurement uncertainties, a new approach for temperature measurements during bone drilling is presented in this study. The new approach is based on a setup for precise positioning of multiple thermocouples, automated data logging system, and a computer numerically controlled (CNC) machining system. A battery of experiments that has been performed to assess the uncertainty and repeatability of the new approach displayed adequate results. Subsequently, a parametric study was conducted to determine the effects of spindle speed, feed rate, hole depth, and thermocouple location on the measured bone temperature. This study suggests that the exposure time during bone drilling far exceeds the commonly accepted threshold for thermal injury, which may prevail at significant distances from the drilled hole. Results of this study suggest that the correlation of the thermal exposure threshold for bone injury and viability should be further explored. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Campbell, Gene K.
1983-01-01
A pumping system is described for pumping fluids, such as water with entrained mud and small rocks, out of underground cavities such as drilled wells, which can effectively remove fluids down to a level very close to the bottom of the cavity and which can operate solely by compressed air pumped down through the cavity. The system utilizes a subassembly having a pair of parallel conduit sections (44, 46) adapted to be connected onto the bottom of a drill string utilized for drilling the cavity, the drill string also having a pair of coaxially extending conduits. The subassembly includes an upper portion which has means for connection onto the drill string and terminates the first conduit of the drill string in a plenum (55). A compressed air-driven pump (62) is suspended from the upper portion. The pump sucks fluids from the bottom of the cavity and discharges them into the second conduit. Compressed air pumped down through the first conduit (46) to the plenum powers the compressed air-driven pump and aerates the fluid in the second conduit to lift it to the earth's surface.
Precision of computer-assisted core decompression drilling of the femoral head.
Beckmann, J; Goetz, J; Baethis, H; Kalteis, T; Grifka, J; Perlick, L
2006-08-01
Osteonecrosis of the femoral head is a local destructive disease with progression into devastating stages. Left untreated it mostly leads to severe secondary osteoarthrosis and early endoprosthetic joint replacement. Core decompression by exact drilling into the ischemic areas can be performed in early stages according to Ficat or ARCO. Computer-aided surgery might enhance the precision of the drilling and lower the radiation exposure time of both staff and patients. The aim of this study was to evaluate the precision of the fluoroscopically based VectorVision navigation system in an in vitro model. Thirty sawbones were prepared with a defect filled up with a radiopaque gypsum sphere mimicking the osteonecrosis. Twenty sawbones were drilled by guidance of an intraoperative navigation system VectorVision (BrainLAB, Munich, Germany) and 10 sawbones by fluoroscopic control only. No gypsum sphere was missed. There was a statistically significant difference regarding the three-dimensional deviation (Euclidian norm) as well as maximum deviation in x-, y- or z-direction (maximum norm) to the desired mid-point of the lesion, with a mean of 0.51 and 0.4 mm in the navigated group and 1.1 and 0.88 mm in the control group, respectively. Furthermore, significant difference was found in the number of drilling corrections as well as the radiation time needed: no second drilling or correction of drilling direction was necessary in the navigated group compared to 1.4 in the control group. The radiation time needed was less than 1 s compared to 3.1 s, respectively. The fluoroscopy-based VectorVision navigation system shows a high feasibility of computer-guided drilling with a clear reduction of radiation exposure time and can therefore be integrated into clinical routine. The additional time needed is acceptable regarding the simultaneous reduction of radiation time.
Mixed reality temporal bone surgical dissector: mechanical design.
Hochman, Jordan Brent; Sepehri, Nariman; Rampersad, Vivek; Kraut, Jay; Khazraee, Milad; Pisa, Justyn; Unger, Bertram
2014-08-08
The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill's passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The purpose of the research was to demonstrate a fluidless directional drilling and monitoring system (FDD) specifically tailored to address environmental drilling concerns for shallow buried wasted. The major concerns are related to worker exposure, minimizing waste generation, and confining the spread of contamination. The FDD is potentially applicable to Environmental Restoration (ER) activities for the Oak Ridge National Laboratory Waste Area Grouping 6 (WAG 6) shallow buried waste disposed in unlined trenches. Major ER activities for directional drilling are to develop a drilling system for leachate collection directly beneath trenches, and to provide localized control over leachate release tomore » the environment. Other ER FDD activities could include vadose zone and groundwater monitoring of contaminant transport. The operational constraints pointed the research in the direction of purchasing a steerable impact hammer, or mole, manufactured by Steer-Rite Ltd. of Racine, Wisconsin. This drill was selected due to the very low cost ($25,000) associated with procuring the drill, steering module, instrumentation and service lines. The impact hammer is a self propelled drill which penetrates the soil by compacting cut material along the sidewalls of the borehole. Essentially, it forces its way through the subsurface. Although the pneumatic hammer exhausts compressed air which must be handled at the borehole collar, it does not generate soil cuttings or liquids. This is the basis for the term fluidless. A stub casing muffler was attached to the entrance hole for controlling exhaust gas and any airborne releases. Other environmental compliance modifications made to the equipment included operating the tool without lubrication, and using water instead of hydraulic fluid to actuate the steering fins on the tool.« less
DEVELOPMENT OF NEW DRILLING FLUIDS
DOE Office of Scientific and Technical Information (OSTI.GOV)
David B. Burnett
2003-08-01
The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addressesmore » the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.« less
30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?
Code of Federal Regulations, 2011 CFR
2011-07-01
... MANAGEMENT, REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System... must be on the drilling floor. You must locate the other station in a readily accessible location away...
Hydraulically Induced Seismicity in South-Eastern Brazil Linked to Water Wells
NASA Astrophysics Data System (ADS)
Convers, J.; Assumpcao, M.; Barbosa, J. R.
2017-12-01
While hydraulic stimulus on seismic activity is most commonly associated with hydraulic fracturing processes, we find in SE Brazil a rare case of seismicity influenced by hydraulic stimulation linked to seasonal rain and water wells in a farming area. These are thought to be the main factors influencing the seasonal seismicity activity in Jurupema, a farming town located in the interior of the state of Sao Paulo, southern Brazil. With temporary seismic station deployments during 2016 and 2017, we analyze the seismicity in this area, its temporal and spatial distribution, and its association with the drilling of ground water wells in this particular area. In a region where water wells are often drilled to provide irrigation for farming, these are often perforated down to about 100 m depth, penetrating below the uppermost sandstone rock layer ( 50 m) into a fractured basaltic rock layer, reaching the confined aquifer within it. While the wells are constantly pumped during the dry season, during the course of the rainy season (when these are not being used), a possible infiltration into the confined basaltic aquifer, from both the rainwater and the upper sandstone aquifer, adds changes to the pore pressure of the fractured rock, and modifies the tectonic pre-stress conditions, to facilitate stress release mechanisms in pre-existing faults and cracks. With our temporary seismic station deployments, we not only examine the seismicity in this region during both 2016 and 2017, but we additionally compare its characteristics to the nearby Bebedouro case in an apparent induced seismic case of analogous source, and seismic activity with magnitudes up to 2.9 occurring between 2005 and 2010.
Er, Nilay; Alkan, Alper; Ilday, Serim; Bengu, Erman
2018-06-01
The dental implant drilling procedure is an essential step for implant surgery, and frictional heat in bone during drilling is a key factor affecting the success of an implant. The aim of this study was to increase the dental implant drill lifetime and performance by using heat- and wear-resistant protective coatings to decrease the alveolar bone temperature caused by the dental implant drilling procedure. Commercially obtained stainless steel drills were coated with titanium aluminum nitride, diamond-like carbon, titanium boron nitride, and boron nitride coatings via magnetron-sputter deposition. Drilling was performed on bovine femoral cortical bone under the conditions mimicking clinical practice. Tests were performed under water-assisted cooling and under the conditions when no cooling was applied. Coated drill performances and durabilities were compared with those of three commonly used commercial drills with surfaces made from zirconia, black diamond. and stainless steel. Protective coatings with boron nitride, titanium boron nitride, and diamond-like carbon have significantly improved drill performance and durability. In particular, boron nitride-coated drills have performed within safe bone temperature limits for 50 drillings even when no cooling is applied. Titanium aluminium nitride coated drills did not show any improvement over commercially obtained stainless steel drills. Surface modification using heat- and wear-resistant coatings is an easy and highly effective way to improve implant drill performance and durability, which can improve the surgical procedure and the postsurgical healing period. The noteworthy success of different types of coatings is novel and likely to be applicable to various other medical systems.
Self-propelled instrumented deep drilling system
NASA Technical Reports Server (NTRS)
Myrick, Thomas M. (Inventor); Gorevan, Stephen (Inventor)
2006-01-01
An autonomous subsurface drilling device has spaced-apart forward and rearward feet sections coupled to an axial thruster mechanism between them to operate using an inchworm method of mobility. In one embodiment, forward and rearward drill sections are carried on forward and rearward feet sections for drilling into material in the borehole in both forward and rearward directions, to allow the device to maneuver in any direction underground. In another embodiment, a front drill section has a drill head for cutting into the borehole and conveying cuttings through a center spine tube to an on-board depository for the cuttings. The feet sections of the device employ a foot scroll drive unit to provide radial thrust and synchronous motion to the feet for gripping the borehole wall. The axial thrust mechanism has a tandem set of thrusters in which the second thruster is used to provide the thrust needed for drilling, but not walking. A steering mechanism composed of concentric inner and outer eccentric rings provided with the rearward feet section allow small corrections in both direction and magnitude to the drilling direction as drilling commences.
NASA Astrophysics Data System (ADS)
Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.
2017-12-01
The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work has suggested that the Reykjanes geothermal system has been active since the last glaciation, 10ka. No shallow melt bodies have been detected on the Reykjanes Peninsula suggesting that hydrothermal circulation typical of black smoker systems can be sustained with out a magmatic heat source.
Nathenson, Manuel; Urban, Thomas C.; Covington, Harry R.
2014-01-01
For purposes of defining the thermal anomaly for the geothermal system, temperature gradients are calculated over long depth intervals on the basis of the appearance of reasonable linear segments on a temperature versus plot depth. Temperature versus depth data for some drill holes can be represented by a single gradient, whereas others require multiple gradients to match the data. Data for some drill holes clearly reflect vertical flows of water in the formation surrounding the drill holes, and water velocities are calculated for these drill holes. Within The Narrows area, temperature versus depth data show reversals at different depth in different drill holes. In the main thermal area, temperatures in intermediate-depth drill holes vary approximately linearly but with very high values of temperature gradient. Temperature gradients on a map of the area can be reasonable divided into a large area of regional gradients and smaller areas defining the thermal anomalies.
Development of an instructional expert system for hole drilling processes
NASA Technical Reports Server (NTRS)
Al-Mutawa, Souhaila; Srinivas, Vijay; Moon, Young Bai
1990-01-01
An expert system which captures the expertise of workshop technicians in the drilling domain was developed. The expert system is aimed at novice technicians who know how to operate the machines but have not acquired the decision making skills that are gained with experience. This paper describes the domain background and the stages of development of the expert system.
Analysis and control of the dynamical response of a higher order drifting oscillator
Páez Chávez, Joseph; Pavlovskaia, Ekaterina; Wiercigroch, Marian
2018-01-01
This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider’s property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved. PMID:29507508
Analysis and control of the dynamical response of a higher order drifting oscillator
NASA Astrophysics Data System (ADS)
Liu, Yang; Páez Chávez, Joseph; Pavlovskaia, Ekaterina; Wiercigroch, Marian
2018-02-01
This paper studies a position feedback control strategy for controlling a higher order drifting oscillator which could be used in modelling vibro-impact drilling. Special attention is given to two control issues, eliminating bistability and suppressing chaos, which may cause inefficient and unstable drilling. Numerical continuation methods implemented via the continuation platform COCO are adopted to investigate the dynamical response of the system. Our analyses show that the proposed controller is capable of eliminating coexisting attractors and mitigating chaotic behaviour of the system, providing that its feedback control gain is chosen properly. Our investigations also reveal that, when the slider's property modelling the drilled formation changes, the rate of penetration for the controlled drilling can be significantly improved.
Effect of irrigation and stainless steel drills on dental implant bed heat generation.
Bullon, B; Bueno, E F; Herrero, M; Fernandez-Palacin, A; Rios, J V; Bullon, P; Gil, F J
2015-02-01
The objective of this study is assessing the influence of the use of different drill types and external irrigation on heat generation in the bone. In-vitro study to compare two different sequences for implant-bed preparation by means of two stainless steels: precipitation-hardening stainless steel (AISI 420B) (K drills), and martensitic stainless steel (AISI 440) (S drills). Besides, the drilled sequences were realized without irrigation, and with external irrigation by means of normal saline solution at room temperature. The study was realized on bovine ribs using: K without irrigation (KSI) and with irrigation (KCI) and S without irrigation (SSI) and with irrigation (SCI) with five drills for each system. Each drill was used 100 times. Bone temperature was measured with a thermocouple immediately after drilled. Average bone temperature with irrigation was for K drills 17.58±3.32 °C and for S drills 16.66±1.30 °C. Average bone temperature without irrigation was for K drills 23.58±2.94 °C and for S drills 19.41±2.27 °C. Statistically significant differences were found between K without irrigation versus S with irrigation and K with irrigation (p<0.05, Bonferroni correction). Lower temperature variation coefficient throughout the 50 measurements was observed in irrigated groups (K=5.6%, S=5.1% vs. without irrigation groups K=9.4%, S=9.3%). The first K drill generated more heat than the remaining drills. No significant differences were detected among temperature values in any of the analyzed drill groups. Unlike irrigation, drill use and type were observed to have no significant impact on heat generation. The stainless steel AISI 420B presents better mechanical properties and corrosion resistance than AISI440.
Drill wear monitoring in cortical bone drilling.
Staroveski, Tomislav; Brezak, Danko; Udiljak, Toma
2015-06-01
Medical drills are subject to intensive wear due to mechanical factors which occur during the bone drilling process, and potential thermal and chemical factors related to the sterilisation process. Intensive wear increases friction between the drill and the surrounding bone tissue, resulting in higher drilling temperatures and cutting forces. Therefore, the goal of this experimental research was to develop a drill wear classification model based on multi-sensor approach and artificial neural network algorithm. A required set of tool wear features were extracted from the following three types of signals: cutting forces, servomotor drive currents and acoustic emission. Their capacity to classify precisely one of three predefined drill wear levels has been established using a pattern recognition type of the Radial Basis Function Neural Network algorithm. Experiments were performed on a custom-made test bed system using fresh bovine bones and standard medical drills. Results have shown high classification success rate, together with the model robustness and insensitivity to variations of bone mechanical properties. Features extracted from acoustic emission and servomotor drive signals achieved the highest precision in drill wear level classification (92.8%), thus indicating their potential in the design of a new type of medical drilling machine with process monitoring capabilities. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
An automated tool joint inspection device for the drill string
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, M.C.; Dale, B.A.; Kusenberger, F.N.
1983-02-01
This paper discusses the development of an automated tool joint inspection device (i.e., the Fatigue Crack Detector), which is capable of detecting defects in the threaded region of drill pipe and drill collars. On the basis of inspection tests conducted at a research test facility and at drilling rig sites, this device is capable of detecting both simulated defects (saw slots and drilled holes) and service-induced defects, such as fatigue cracks, pin stretch (plastic deformation), mashed threads, and corrosion pitting. The system employs an electromagnetic flux-leakage principle and has several advantages over the conventional method of magnetic particle inspection.
NASA Astrophysics Data System (ADS)
Jamil, N. A. M.; Azmi, A. I.; Fairuz, M. A.
2016-02-01
This research experimentally investigates the performance of a TiAlN coated carbide drill bit in drilling AISI P20 through two different kinds of lubricants, namely; soluble coconut oil (SCO) and nanoparticle-enhanced coconut oil (NECO) under minimum quantity lubrication system. The tool life and tool wear mechanism were studied using various cutting speeds of 50, 100 and 150 m/min with a constant feed of 0.01 mm/rev. Since the flank wear land was not regular along the cutting edge, the average flank wear (VB) was measured at several points using image analysis software. The drills were inspected using a scanning electron microscope to further elucidate the wear mechanism. The result indicates that drilling with the nanoparticle- enhanced lubricant was better in resisting the wear and improving the drill life to some extent
NASA Astrophysics Data System (ADS)
Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.
2013-05-01
Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., inside BOPs, and drill-string safety valves? 250.445 Section 250.445 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.445 What...
Drilling of bone: A comprehensive review
Pandey, Rupesh Kumar; Panda, S.S.
2013-01-01
Background Bone fracture treatment usually involves restoring of the fractured parts to their initial position and immobilizing them until the healing takes place. Drilling of bone is common to produce hole for screw insertion to fix the fractured parts for immobilization. Orthopaedic drilling during surgical process causes increase in the bone temperature and forces which can cause osteonecrosis reducing the stability and strength of the fixation. Methods A comprehensive review of all the relevant investigations carried on bone drilling is conducted. The experimental method used, results obtained and the conclusions made by the various researchers are described and compared. Result Review suggests that the further improvement in the area of bone drilling is possible. The systematic review identified several consequential factors (drilling parameters and drill specifications) affecting bone drilling on which there no general agreement among investigators or are not adequately evaluated. These factors are highlighted and use of more advanced methods of drilling is accentuated. The use of more precise experimental set up which resembles the actual situation and the development of automated bone drilling system to minimize human error is addressed. Conclusion In this review, an attempt has been made to systematically organize the research investigations conducted on bone drilling. Methods of treatment of bone fracture, studies on the determination of the threshold for thermal osteonecrosis, studies on the parameters influencing bone drilling and methods of the temperature measurement used are reviewed and the future work for the further improvement of bone drilling process is highlighted. PMID:26403771
Usefulness of temporal bone prototype for drilling training: A prospective study.
Aussedat, C; Venail, F; Nguyen, Y; Lescanne, E; Marx, M; Bakhos, D
2017-12-01
Dissection of cadaveric temporal bones (TBs) is considered the gold standard for surgical training in otology. For many reasons, access to the anatomical laboratory and cadaveric TBs is difficult for some facilities. The aim of this prospective and comparative study was to evaluate the usefulness of a physical TB prototype for drilling training in residency. Prospective study. Tertiary referral centre. Thirty-four residents were included. Seventeen residents (mean age 26.7±1.6) drilled on only cadaveric TBs ("traditional" group), in the traditional training method, while seventeen residents (mean age 26.5±1.7) drilled first on a prototype and then on a cadaveric TB ("prototype" group). Drilling performance was assessed using a validated scale. Residents completed a mastoid image before and after each drilling to enable evaluation of mental representations of the mastoidectomy. No differences were observed between the groups with respect to age, drilling experience and level of residency. Regarding drilling performance, we found a significant difference across the groups, with a better score in the prototype group (P=.0007). For mental representation, the score was statistically improved (P=.0003) after drilling in both groups, suggesting that TB drilling improves the mental representation of the mastoidectomy whether prototype or cadaveric TB is used. The TB prototype improves the drilling performance and mental representation of the mastoidectomy in the young resident population. A drilling simulation with virtual or physical systems seems to be a beneficial tool to improve TB drilling. © 2017 John Wiley & Sons Ltd.
Smart energy management system
NASA Astrophysics Data System (ADS)
Desai, Aniruddha; Singh, Jugdutt
2010-04-01
Peak and average energy usage in domestic and industrial environments is growing rapidly and absence of detailed energy consumption metrics is making systematic reduction of energy usage very difficult. Smart energy management system aims at providing a cost-effective solution for managing soaring energy consumption and its impact on green house gas emissions and climate change. The solution is based on seamless integration of existing wired and wireless communication technologies combined with smart context-aware software which offers a complete solution for automation of energy measurement and device control. The persuasive software presents users with easy-to-assimilate visual cues identifying problem areas and time periods and encourages a behavioural change to conserve energy. The system allows analysis of real-time/statistical consumption data with the ability to drill down into detailed analysis of power consumption, CO2 emissions and cost. The system generates intelligent projections and suggests potential methods (e.g. reducing standby, tuning heating/cooling temperature, etc.) of reducing energy consumption. The user interface is accessible using web enabled devices such as PDAs, PCs, etc. or using SMS, email, and instant messaging. Successful real-world trial of the system has demonstrated the potential to save 20 to 30% energy consumption on an average. Low cost of deployment and the ability to easily manage consumption from various web enabled devices offers gives this system a high penetration and impact capability offering a sustainable solution to act on climate change today.
The Realization of Drilling Fault Diagnosis Based on Hybrid Programming with Matlab and VB
NASA Astrophysics Data System (ADS)
Wang, Jiangping; Hu, Yingcai
This paper presents a method using hybrid programming with Matlab and VB based on ActiveX to design the system of drilling accident prediction and diagnosis. So that the powerful calculating function and graphical display function of Matlab and visual development interface of VB are combined fully. The main interface of the diagnosis system is compiled in VB,and the analysis and fault diagnosis are implemented by neural network tool boxes in Matlab.The system has favorable interactive interface,and the fault example validation shows that the diagnosis result is feasible and can meet the demands of drilling accident prediction and diagnosis.
30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What... all BOP components. (b) At least two BOP control stations. One station must be on the drilling floor...
30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I... actions that lessees must take when certain situations occur with BOP systems during drilling activities...
30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I do in... lessees must take when certain situations occur with BOP systems during drilling activities. If you...
30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I... actions that lessees must take when certain situations occur with BOP systems during drilling activities...
30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What... all BOP components. (b) At least two BOP control stations. One station must be on the drilling floor...
30 CFR 250.443 - What associated systems and related equipment must all BOP systems include?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.443 What... all BOP components. (b) At least two BOP control stations. One station must be on the drilling floor...
30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.451 What must I... actions that lessees must take when certain situations occur with BOP systems during drilling activities...
30 CFR 250.1625 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 250.1625 Blowout preventer system testing, records, and drills. (a) Prior to conducting high-pressure tests, all BOP systems shall be tested to a pressure of 200 to 300 psi. (b) Ram-type BOP's and the choke manifold shall be pressure tested with water to a rated working pressure or as otherwise approved by the...
30 CFR 250.616 - Blowout preventer system testing, records, and drills.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Well-Workover Operations § 250.616 Blowout preventer system testing, records, and drills. (a) BOP pressure tests. When you pressure test the BOP system you must conduct a low-pressure test and a high-pressure test for each...
Williams, Douglas F.; Colman, S.; Grachev, M.; Hearn, P.; Horie, Shoji; Kawai, T.; Kuzmin, Mikhail I.; Logachov, N.; Antipin, V.; Bardardinov, A.; Bucharov, A.; Fialkov, V.; Gorigljad, A.; Tomilov, B.; Khakhaev, B.N.; Kochikov, S.; Logachev, N.; Pevzner, L.A.; Karabanov, E.B.; Mats, V.; Baranova, E.; Khlystov, O.; Khrachenko, E.; Shimaraeva, M.; Stolbova, E.; Efremova, S.; Gvozdkov, A.; Kravchinski, A.; Peck, J.; Fileva, T.; Kashik, S.; Khramtsova, T.; Kalashnikova, I.; Rasskazova, T.; Tatarnikova, V.; Yuretich, Richard; Mazilov, V.; Takemura, K.; Bobrov, V.; Gunicheva, T.; Haraguchi, H.; Ito, S.; Kocho, T.; Markova, M.; Pampura, V.; Proidakova, O.; Ishiwatari, R.; Sawatari, H.; Takeuchi, A.; Toyoda, K.; Vorobieva, S.; Ikeda, A.; Marui, A.; Nakamura, T.; Ogura, K.; Ohta, Takeshi; King, J.; Sakai, H.; Yokoyama, T.; Hayashida, A.; Bezrukova, E.; Fowell, S.; Fujii, N.; Letunova, P.; Misharina, V.; Miyoshi, N.; Chernyaeva, G.; Ignatova, I.; Likhoshvai, E.; Granina, L.; Levina, O.; Dolgikh, P.; Lazo, F.; Lutskaia, N.; Orem, W.; Wada, E.; Yamada, K.; Yamada, S.; Callander, E.; Golobokoval, L.; Shanks, W. C. Pat; Dorofeeva, R.; Duchkov, A.
1997-01-01
The Baikal Drilling Project (BDP) is a multinational effort to investigate the paleoclimatic history and tectonic evolution of the Baikal sedimentary basin during the Late Neogene. In March 1993 the Baikal drilling system was successfuly deployed from a barge frozen into position over a topographic high, termed the Buguldeika saddle, in the southern basin of Lake Baikal. The BDP-93 scientific team, made up of Russian, American and Japanese scientists, successfully recovered the first long (>100 m) hydraulic piston cores from two holes in 354 m of water. High quality cores of 98 m (Hole 1) and 102 m (Hole 2), representing sedimentation over the last 500,000 years, were collected in 78 mm diameter plastic liners with an average recovery of 72% and 90%, respectively. Magnetic susceptibility logging reveals an excellent hole-to-hole correlation. In this report the scientific team describes the preliminary analytical results from BDP-93 hole 1 cores. Radiocarbon dating by accelerator mass spectrometry provides an accurate chronology for the upper portion of Hole 1. Detailed lithologic characteristics, rock magnetic properties and inorganic element distributions show a significant change to the depositional environment occuring at 50 m subbottom depth, approximately 250,000 BP. This change may be due to uplift and rotation of the horst block in the Buguldeika saddle. The sedimentary section above 50 m is pelitic with varve-like laminae, whereas the section below 50 m contains a high proportion of sand and gravel horizons often organized into turbidite sequences. Accordingly, high resolution seismic records reveal a change in sonic velocity at this depth. It is inferred that sedimentation prior to 250 ka BP was from the west via the Buguldeika river system. After 250 ka BP the Buguldeika saddle reflects an increase in hemipelagic sediments admixed with fine-grained material from the Selenga River drainage basin, east of Lake Baikal. Variations in the spore-pollen assemblage, diatoms, biogenic silica content, rock magnetic properties, clay mineralogy and organic carbon in the upper 50 m of BDP-93-1 reveal a detailed record of climate change over approximately the last 250,000 years. These variables alternate in a pattern characteristic of glacial/interglacial climatic fluctuations. The present age model suggests that the climate signal recorded in Lake Baikal sediments is similar to Late Quaternary signals recorded in Chinese loess sections and in marine sediments.
NASA Technical Reports Server (NTRS)
Gorevan, S. P.; Wilson, J.; Bartlett, P.; Powderly, J.; Lawrence, D.; Elphic, R.; Mungas, G.; McCullough, E.; Stoker, C.; Cannon, H.
2004-01-01
Since the 1960s, claims have been made that water ice deposits should exist in permanently shadowed craters near both lunar poles. Recent interpretations of data from the Lunar Prospector-Neutron Spectrometer (LP- NS) confirm that significant concentrations of hydrogen exist, probably in the form of water ice, in the permanently shadowed polar cold traps. Yet, due to the large spatial resolution (45-60 Ian) of the LP-NS measurements relative to these shadowed craters (approx.5-25 km), these data offer little certainty regarding the precise location, form or distribution of these deposits. Even less is known about how such deposits of water ice might effect lunar regolith physical properties relevant to mining, excavation, water extraction and construction. These uncertainties will need to be addressed in order to validate fundamental lunar In Situ Resource Utilization (ISRU) precepts by 2011. Given the importance of the in situ utilization of water and other resources to the future of space exploration a need arises for the advanced deployment of a robotic and reconfigurable system for physical properties and resource reconnaissance. Based on a collection of high-TRL. designs, the Subsurface Analyzer and Sample Handler (SASH) addresses these needs, particularly determining the location and form of water ice and the physical properties of regolith. SASH would be capable of: (1) subsurface access via drilling, on the order of 3-10 meters into both competent targets (ice, rock) and regolith, (2) down-hole analysis through drill string embedded instrumentation and sensors (Neutron Spectrometer and Microscopic Imager), enabling water ice identification and physical properties measurements; (3) core and unconsolidated sample acquisition from rock and regolith; (4) sample handling and processing, with minimized contamination, sample containerization and delivery to a modular instrument payload. This system would be designed with three mission enabling goals, including: (1) a self-contained, low power, low mass, "black box'' configuration for operations from a lander, various classes of rovers or a surface-based platform with human assistance or robotic anchoring mechanisms; (2) reconfigurable and scalable sample handling for delivery to various types of instrumentation, depending on mission requirements; and (3) the use of advanced automation control and diagnostic techniques that will afford local human deployed, remote teleoperation and fully autonomous intelligent operations. Though a great deal of technology has been advanced toward these objectives, the SASH system faces significant design challenges, including the low gravity environment, various levels of autonomy in operations, radiation exposure, dust contamination, and temperature extremes and deltas. Significant input from the scientific and engineering communities, as well as a significant environmental testing program, will be required to guide the design process.
Addressing submarine geohazards through scientific drilling
NASA Astrophysics Data System (ADS)
Camerlenghi, A.
2009-04-01
Natural submarine geohazards (earthquakes, volcanic eruptions, landslides, volcanic island flank collapses) are geological phenomena originating at or below the seafloor leading to a situation of risk for off-shore and on-shore structures and the coastal population. Addressing submarine geohazards means understanding their spatial and temporal variability, the pre-conditioning factors, their triggers, and the physical processes that control their evolution. Such scientific endeavour is nowadays considered by a large sector of the international scientific community as an obligation in order to contribute to the mitigation of the potentially destructive societal effects of submarine geohazards. The study of submarine geohazards requires a multi-disciplinary scientific approach: geohazards must be studied through their geological record; active processes must be monitored; geohazard evolution must be modelled. Ultimately, the information must be used for the assessment of vulnerability, risk analysis, and development of mitigation strategies. In contrast with the terrestrial environment, the oceanic environment is rather hostile to widespread and fast application of high-resolution remote sensing techniques, accessibility for visual inspection, sampling and installation of monitoring stations. Scientific Drilling through the IODP (including the related pre site-survey investigations, sampling, logging and in situ measurements capability, and as a platform for deployment of long term observatories at the surface and down-hole) can be viewed as the centre of gravity of an international, coordinated, multi-disciplinary scientific approach to address submarine geohazards. The IODP Initial Science Plan expiring in 2013 does not address openly geohazards among the program scientific objectives. Hazards are referred to mainly in relation to earthquakes and initiatives towards the understanding of seismogenesis. Notably, the only drilling initiative presently under way is the multi-platform drilling of the Nankai seismogenic zone. Scientific initiatives are flourishing to drive IODP towards the study of submarine geohazards. In the last three years international workshops, were held to address the topic: ESF-ECORD sponsored a Magellan Workshop focussed on submarine landslides (Barcelona, Spain, 2006); IODP sponsored a world-wide Geohazard Workshop (Portland, Oregon, 2007); ESF-ECORD sponsored another Magellan Workshop focussed on Mediterranean submarine geohazards (Luleå, Sweden, 2008). In addition, following the ECORD-Net Conference on the Deep Sea Frontier (Naples, Italy, 2006), the history, monitoring and prediction of geohazards was identified as one of the 6 major areas for a European science plan to integrate Ocean Drilling, Ocean Margin, and Seabed research. More than 200 scientists and private companies representatives have been mobilized world-wide to attend these meetings, from where it emerged that Ocean Drilling will play a key role in the future to answer the following basic open questions on submarine geohazards: - What is the frequency, magnitude, and distribution of geohazard events? - Do precursory phenomena exist and can they be recognized? - What are the physical and mechanical properties of materials prone to failure? - What are the roles of preconditioning vs. triggering in rapid seafloor deformation? - Can the tsunamigenic potential of past and future events be assessed? Within the global-ocean geohazards, worth of note is the attention given in this preparatory phase to submarine geohazards in the Mediterranean basin, a miniature ocean often called a "natural laboratory" because of the diversity of geological environments it contains. The coastline is very densely-populated, totalling 160 million inhabitants sharing 46,000 km of coastline. The Mediterranean is the World's leading holiday destination, receiving an average of 135 million visitors annually. Submarine landslides, volcanic flank collapses, volcanic island eruptions, earthquakes and the associated tsunamis can lead to destruction of seafloor structures potentially capable of releasing hydrocarbon pollutants into Mediterranean waters, and damage to a dense telecommunication cables net that would cause severe economic loss. However, the most devastating effect would be that of earthquake or landslide-induced tsunamis. When compared to other basins, the Mediterranean has larger vulnerability due to its small dimensions, resulting in close proximity to tsunami sources and impact areas. Recent examples include the 1979 Nice airport submarine landslide and tsunami and the 2002 Stromboli volcano landslide and tsunami. Future international scientific drilling must include submarine geohazards among priority scientific objectives. The science advisory structure must be prepared to receive and evaluate proposal specifically addressing submarine geohazards. The implementing organizations need to be prepared for the technological needs of drilling proposals addressing geohazards. Among the most relevant: geotechnical sampling, down-hole logging at shallow depths below the seafloor, in situ geotechnical and physical measurements, capability of deployment of long-term in situ observatories. Pre-site surveys will often aim at the highest possible resolution, three dimensional imaging of the seafloor ant its sub-surface. Drilling for submarine geohazards is seen as an opportunity of multiplatform drilling, and for Mission Specific drilling in particular. Rather than turning the scientific investigation in a purely engineering exercise, proposals addressing submarine geohazards should offer an opportunity to scientists and engineers to work together to unravel the details of basic geological processes that may turn into catastrophic events.
Laser Materials Processing Final Report CRADA No. TC-1526-98
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crane, J.; Lehane, C. J.
2017-09-08
This CRADA project was a joint effort between Lawrence Livermore National Laboratory (LLNL) and United Technologies Corporation (UTC)/Pratt & Whitney (P&W) to demonstrate process capability for drilling holes in turbine airfoils using LLNL-developed femtosecond laser machining technology. The basis for this development was the ability of femtosecond lasers to drill precision holes in variety of materials with little or no collateral damage. The ultimate objective was to develop a laser machine tool consisting of an extremely advanced femtosecond laser subsystem to be developed by LLNL on a best-effort basis and a drilling station for turbine blades and vanes to bemore » developed by P&W. In addition, P&W was responsible for commercializing the system. The goal of the so called Advanced Laser Drilling (ALD) system was to drill specified complex hole-shapes in turbine blades and vanes with a high degree precision and repeatability and simultaneously capable of very high speed processing.« less
Son, Ji-Hee; Hanif, Asma; Dhanasekar, Ashwin; Carlson, Kenneth H
2018-02-13
Currently, only a few states in the USA (e.g., Colorado and Ohio) require mandatory baseline groundwater sampling from nearby groundwater wells prior to drilling a new oil or gas well. Colorado is the first state to regulate groundwater testing before and after drilling, which requires one pre-drilling sample and two additional post-drilling samples within 6-12 months and 5-6 years of drilling. However, the monitoring method is limited to the state's regulatory agency and to ex situ sampling, which offers only a snapshot in time. To overcome the limitations and increase monitoring performance, a new groundwater monitoring system, Colorado Water Watch (CWW), was introduced as a decision-making tool to support the state's regulatory agency and also to provide real-time groundwater quality data to both the industry and the public. The CWW uses simple in situ water quality sensors based on the surrogate sensing technology that employs an event detection system to screen the incoming data in near real-time.
Advanced Seismic While Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert Radtke; John Fontenot; David Glowka
A breakthrough has been discovered for controlling seismic sources to generate selectable low frequencies. Conventional seismic sources, including sparkers, rotary mechanical, hydraulic, air guns, and explosives, by their very nature produce high-frequencies. This is counter to the need for long signal transmission through rock. The patent pending SeismicPULSER{trademark} methodology has been developed for controlling otherwise high-frequency seismic sources to generate selectable low-frequency peak spectra applicable to many seismic applications. Specifically, we have demonstrated the application of a low-frequency sparker source which can be incorporated into a drill bit for Drill Bit Seismic While Drilling (SWD). To create the methodology ofmore » a controllable low-frequency sparker seismic source, it was necessary to learn how to maximize sparker efficiencies to couple to, and transmit through, rock with the study of sparker designs and mechanisms for (a) coupling the sparker-generated gas bubble expansion and contraction to the rock, (b) the effects of fluid properties and dynamics, (c) linear and non-linear acoustics, and (d) imparted force directionality. After extensive seismic modeling, the design of high-efficiency sparkers, laboratory high frequency sparker testing, and field tests were performed at the University of Texas Devine seismic test site. The conclusion of the field test was that extremely high power levels would be required to have the range required for deep, 15,000+ ft, high-temperature, high-pressure (HTHP) wells. Thereafter, more modeling and laboratory testing led to the discovery of a method to control a sparker that could generate low frequencies required for deep wells. The low frequency sparker was successfully tested at the Department of Energy Rocky Mountain Oilfield Test Center (DOE RMOTC) field test site in Casper, Wyoming. An 8-in diameter by 26-ft long SeismicPULSER{trademark} drill string tool was designed and manufactured by TII. An APS Turbine Alternator powered the SeismicPULSER{trademark} to produce two Hz frequency peak signals repeated every 20 seconds. Since the ION Geophysical, Inc. (ION) seismic survey surface recording system was designed to detect a minimum downhole signal of three Hz, successful performance was confirmed with a 5.3 Hz recording with the pumps running. The two Hz signal generated by the sparker was modulated with the 3.3 Hz signal produced by the mud pumps to create an intense 5.3 Hz peak frequency signal. The low frequency sparker source is ultimately capable of generating selectable peak frequencies of 1 to 40 Hz with high-frequency spectra content to 10 kHz. The lower frequencies and, perhaps, low-frequency sweeps, are needed to achieve sufficient range and resolution for realtime imaging in deep (15,000 ft+), high-temperature (150 C) wells for (a) geosteering, (b) accurate seismic hole depth, (c) accurate pore pressure determinations ahead of the bit, (d) near wellbore diagnostics with a downhole receiver and wired drill pipe, and (e) reservoir model verification. Furthermore, the pressure of the sparker bubble will disintegrate rock resulting in an increased overall rates of penetration. Other applications for the SeismicPULSER{trademark} technology are to deploy a low-frequency source for greater range on a wireline for Reverse Vertical Seismic Profiling (RVSP) and Cross-Well Tomography. Commercialization of the technology is being undertaken by first contacting stakeholders to define the value proposition for rig site services utilizing SeismicPULSER{trademark} technologies. Stakeholders include national oil companies, independent oil companies, independents, service companies, and commercial investors. Service companies will introduce a new Drill Bit SWD service for deep HTHP wells. Collaboration will be encouraged between stakeholders in the form of joint industry projects to develop prototype tools and initial field trials. No barriers have been identified for developing, utilizing, and exploiting the low-frequency SeismicPULSER{trademark} source in a variety of applications. Risks will be minimized since Drill Bit SWD will not interfere with the drilling operation, and can be performed in a relatively quiet environment when the pumps are turned off. The new source must be integrated with other Measurement While Drilling (MWD) tools. To date, each of the oil companies and service companies contacted have shown interest in participating in the commercialization of the low-frequency SeismicPULSER{trademark} source. A technical paper has been accepted for presentation at the 2009 Offshore Technology Conference (OTC) in a Society of Exploration Geologists/American Association of Petroleum Geophysicists (SEG/AAPG) technical session.« less
Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar
NASA Astrophysics Data System (ADS)
Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.
2013-12-01
Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms. ARTEMIS will be capable of conducting precision hovering proximity science in an unexplored environment, followed by high speed (1.5 m/s) return to the melt hole. The navigation system will significantly advance upon the successes of the prior DEPTHX and ENDURANCE systems and several novel pose-drift correction technologies will be developed and tested under ice during the project. The method of down-hole deployment and auto-docking return will be extended to a vertically-deployed, horizontally-recovered concept that is depth independent and highly relevant to an ice-water deployment on an icy moon. The presentation will discuss the mission down-select architecture for the ARTEMIS vehicle and its implications for the design of a Europa 'fast mover' carrier AUV, the onboard instrument suite, and the Antarctic mission CONOPS. The vehicle and crew will deploy to Antarctica in the 2015/2016 season.
30 CFR 250.430 - When must I install a diverter system?
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 250.430 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter... before you drill a conductor or surface hole. The diverter system consists of a diverter sealing element...
The Newberry Deep Drilling Project (NDDP)
NASA Astrophysics Data System (ADS)
Bonneville, A.; Cladouhos, T. T.; Petty, S.; Schultz, A.; Sorle, C.; Asanuma, H.; Friðleifsson, G. Ó.; Jaupart, C. P.; Moran, S. C.; de Natale, G.
2017-12-01
We present the arguments to drill a deep well to the ductile/brittle transition zone (T>400°C) at Newberry Volcano, central Oregon state, U.S.A. The main research goals are related to heat and mass transfer in the crust from the point of view of natural hazards and geothermal energy: enhanced geothermal system (EGS supercritical and beyond-brittle), volcanic hazards, mechanisms of magmatic intrusions, geomechanics close to a magmatic system, calibration of geophysical imaging techniques and drilling in a high temperature environment. Drilling at Newberry will bring additional information to a very promising field of research initiated by ICDP in the Deep Drilling project in Iceland with IDDP-1 on Krafla in 2009, followed by IDDP-2 on the Reykjanes ridge in 2016, and the future Japan Beyond-Brittle project and Krafla Magma Testbed. Newberry Volcano contains one of the largest geothermal heat reservoirs in the western United States, extensively studied for the last 40 years. All the knowledge and experience collected make this an excellent choice for drilling a well that will reach high temperatures at relatively shallow depths (< 5000 m). The large conductive thermal anomaly (320°C at 3000 m depth), has already been well-characterized by extensive drilling and geophysical surveys. This will extend current knowledge from the existing 3000 m deep boreholes at the sites into and through the brittle-ductile transition approaching regions of partial melt like lateral dykes. The important scientific questions that will form the basis of a full drilling proposal, have been addressed during an International Continental Drilling Program (ICDP) workshop held in Bend, Oregon in September 2017. They will be presented and discussed as well as the strategic plan to address them.
NASA Astrophysics Data System (ADS)
Vlasenko, A. V.; Sizonenko, A. B.; Zhdanov, A. A.
2018-05-01
Discrete time series or mappings are proposed for describing the dynamics of a nonlinear system. The article considers the problems of forecasting the dynamics of the system from the time series generated by it. In particular, the commercial rate of drilling oil and gas wells can be considered as a series where each next value depends on the previous one. The main parameter here is the technical drilling speed. With the aim of eliminating the measurement error and presenting the commercial speed of the object to the current with a good accuracy, future or any of the elapsed time points, the use of the Kalman filter is suggested. For the transition from a deterministic model to a probabilistic one, the use of ensemble modeling is suggested. Ensemble systems can provide a wide range of visual output, which helps the user to evaluate the measure of confidence in the model. In particular, the availability of information on the estimated calendar duration of the construction of oil and gas wells will allow drilling companies to optimize production planning by rationalizing the approach to loading drilling rigs, which ultimately leads to maximization of profit and an increase of their competitiveness.
Rationale and Roadmap for Moon Exploration
NASA Astrophysics Data System (ADS)
Foing, B. H.; ILEWG Team
We discuss the different rationale for Moon exploration. This starts with areas of scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life. The rationale includes also the advancement of instrumentation: Remote sensing miniaturised instruments; Surface geophysical and geochemistry package; Instrument deployment and robotic arm, nano-rover, sampling, drilling; Sample finder and collector. There are technologies in robotic and human exploration that are a drive for the creativity and economical competitivity of our industries: Mecha-electronics-sensors; Tele control, telepresence, virtual reality; Regional mobility rover; Autonomy and Navigation; Artificially intelligent robots, Complex systems, Man-Machine interface and performances. Moon-Mars Exploration can inspire solutions to global Earth sustained development: In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental protection aspects; Life sciences laboratories; Support to human exploration. We also report on the IAA Cosmic Study on Next Steps In Exploring Deep Space, and ongoing IAA Cosmic Studies, ILEWG/IMEWG ongoing activities, and we finally discuss possible roadmaps for robotic and human exploration, starting with the Moon-Mars missions for the coming decade, and building effectively on joint technology developments.
A bi-directional fixed-latency clock distribution system
NASA Astrophysics Data System (ADS)
Yang, Y.; Ó Murchadha, A.; Meures, T.; Korntheuer, M.; Hanson, K.
2013-12-01
The Askar'yan Radio Array (ARA) Collaboration is constructing a giant array of radio-frequency antennas deployed in the ice near the geographic South Pole. This experiment aims at detecting the extremely weak signal of neutrinos with energies in excess of 100 PeV from ultrahigh-energy cosmic ray interactions with the cosmic microwave background radiation. The antennas are located in shallow holes drilled to depths of 200 m and need high fidelity RF signal transmission over extended lengths to the data acquisition logic at the surface. We report on a transmission scheme whereby signals are digitized in the ice and the waveforms are digitally sent via high-speed serial links. Reconstruction algorithms require distribution of a low-jitter clock from the surface down to the digitization boards in the holes with knowledge of the overall time delay between the two clock domains. Previously, we designed a clock synchronization system using electrical signaling over CAT5. This year we have updated our solution to optical fibers using high speed transceiver blocks in Spartan-6 FPGAs. This note describes our improvements on the latter solution: technical details as well as methods of maintaining a fixed phase between two clocks after power cycles and resets.
Template-guided vs. non-guided drilling in site preparation of dental implants.
Scherer, Uta; Stoetzer, Marcus; Ruecker, Martin; Gellrich, Nils-Claudius; von See, Constantin
2015-07-01
Clinical success of oral implants is related to primary stability and osseointegration. These parameters are associated with delicate surgical techniques. We herein studied whether template-guided drilling has a significant influence on drillholes diameter and accuracy in an in vitro model. Fresh cadaveric porcine mandibles were used for drilling experiments of four experimental groups. Each group consisted of three operators, comparing guide templates for drilling with free-handed procedure. Operators without surgical knowledge were grouped together, contrasting highly experienced oral surgeons in other groups. A total of 180 drilling actions were performed, and diameters were recorded at multiple depth levels, with a precision measuring instrument. Template-guided drilling procedure improved accuracy on a very significant level in comparison with free-handed drilling operation (p ≤ 0.001). Inaccuracy of free-handed drilling became more significant in relation to measurement depth. High homogenic uniformity of template-guided drillholes was significantly stronger than unguided drilling operations by highly experienced oral surgeons (p ≤ 0.001). Template-guided drilling procedure leads to significantly enhanced accuracy. Significant results compared to free-handed drilling actions were achieved, irrespective of the clinical experience level of the operator. Template-guided drilling procedures lead to a more predictable clinical diameter. It shows that any set of instruments has to be carefully chosen to match the specific implant system. The current in vitro study is implicating an improvement of implant bed preparation but needs to be confirmed in clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2005-09-30
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2004 through September 2005. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all Phase 1 testing and is planning Phase 2 development.« less
A general high-speed laser drilling method for nonmetal thin material
NASA Astrophysics Data System (ADS)
Cai, Zhijian; Xu, Guangsheng; Xu, Zhou; Xu, Zhiqiang
2013-05-01
Many nonmetal film products, such as herbal plaster, medical adhesive tape and farm plastic film, require drilling dense small holes to enhance the permeability without affecting the appearance. For many medium and small enterprises, a low-cost, high-speed laser drilling machine with the ability of processing different kinds of nonmetal material is highly demanded. In this paper, we proposed a general purpose high-speed laser drilling method for micro-hole production on thin nonmetal film. The system utilizes a rotating polygonal mirror to perform high-speed laser scan, which is simpler and more efficient than the oscillating mirror scan. In this system, an array of closepacked paraboloid mirrors is mounted on the laser scan track to focus the high-power laser onto the material sheet, which could produce up to twenty holes in a single scan. The design of laser scan and focusing optics is optimized to obtain the best holes' quality, and the mirrors can be flexibly adjusted to get different drilling parameters. The use of rotating polygonal mirror scan and close-packed mirror array focusing greatly improves the drilling productivity to enable the machine producing thirty thousand holes per minute. With proper design, the hold uniformity can also get improved. In this paper, the detailed optical and mechanical design is illustrated, the high-speed laser drilling principle is introduced and the preliminary experimental results are presented.
Drilling to investigate processes in active tectonics and magmatism
NASA Astrophysics Data System (ADS)
Shervais, J.; Evans, J.; Toy, V.; Kirkpatrick, J.; Clarke, A.; Eichelberger, J.
2014-12-01
Coordinated drilling efforts are an important method to investigate active tectonics and magmatic processes related to faults and volcanoes. The US National Science Foundation (NSF) recently sponsored a series of workshops to define the nature of future continental drilling efforts. As part of this series, we convened a workshop to explore how continental scientific drilling can be used to better understand active tectonic and magmatic processes. The workshop, held in Park City, Utah, in May 2013, was attended by 41 investigators from seven countries. Participants were asked to define compelling scientific justifications for examining problems that can be addressed by coordinated programs of continental scientific drilling and related site investigations. They were also asked to evaluate a wide range of proposed drilling projects, based on white papers submitted prior to the workshop. Participants working on faults and fault zone processes highlighted two overarching topics with exciting potential for future scientific drilling research: (1) the seismic cycle and (2) the mechanics and architecture of fault zones. Recommended projects target fundamental mechanical processes and controls on faulting, and range from induced earthquakes and earthquake initiation to investigations of detachment fault mechanics and fluid flow in fault zones. Participants working on active volcanism identified five themes: the volcano eruption cycle; eruption sustainability, near-field stresses, and system recovery; eruption hazards; verification of geophysical models; and interactions with other Earth systems. Recommended projects address problems that are transferrable to other volcanic systems, such as improved methods for identifying eruption history and constraining the rheological structure of shallow caldera regions. Participants working on chemical geodynamics identified four major themes: large igneous provinces (LIPs), ocean islands, continental hotspot tracks and rifts, and convergent plate margins (subduction zones). This workshop brought together a diverse group of scientists with a broad range of scientific experience and interests. A particular strength was the involvement of both early-career scientists, who will initiate and carry out these new research programs, and more senior researchers with many years of experience in scientific drilling and active tectonics research. Each of the themes and questions outlined above has direct benefits to society, including improving hazard assessment, direct monitoring of active systems for early warning, renewable and non-renewable resource and energy exploitation, and predicting the environmental impacts of natural hazards, emphasizing the central role that scientific drilling will play in future scientific and societal developments.
He, Jiang-Fu; Liang, Yun-Pei; Li, Li-Jia; Luo, Yong-Jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations.
He, Jiang-fu; Li, Li-jia; Luo, Yong-jiang
2018-01-01
Rapid horizontal directional well drilling in hard or fractured formations requires efficient drilling technology. The penetration rate of conventional hard rock drilling technology in horizontal directional well excavations is relatively low, resulting in multiple overgrinding of drill cuttings in bottom boreholes. Conventional drilling techniques with reamer or diamond drill bit face difficulties due to the long construction periods, low penetration rates, and high engineering costs in the directional well drilling of hard rock. To improve the impact energy and penetration rate of directional well drilling in hard formations, a new drilling system with a percussive and rotary drilling technology has been proposed, and a hydro-hammer with a jet actuator has also been theoretically designed on the basis of the impulse hydro-turbine pressure model. In addition, the performance parameters of the hydro-hammer with a jet actuator have been numerically and experimentally analyzed, and the influence of impact stroke and pumped flow rate on the motion velocity and impact energy of the hydro-hammer has been obtained. Moreover, the designed hydro-hammer with a jet actuator has been applied to hard rock drilling in a trenchless drilling program. The motion velocity of the hydro-hammer ranges from 1.2 m/s to 3.19 m/s with diverse flow rates and impact strokes, and the motion frequency ranges from 10 Hz to 22 Hz. Moreover, the maximum impact energy of the hydro-hammer is 407 J, and the pumped flow rate is 2.3 m3/min. Thus, the average penetration rate of the optimized hydro-hammer improves by over 30% compared to conventional directional drilling in hard rock formations. PMID:29768421
Mishra, Sunil Kumar; Chowdhary, Ramesh
2014-06-01
Osseointegration is the more stable situation and results in a high success rate of dental implants. Heat generation during rotary cutting is one of the important factors influencing the development of osseointegration. To assess the various factors related to implant drills responsible for heat generation during osteotomy. To identify suitable literature, an electronic search was performed using Medline and Pubmed database. Articles published in between 1960 to February 2013 were searched. The search is focused on heat generated by dental implant drills during osteotomy. Various factors related to implant drill such effect of number of blades; drill design, drill fatigue, drill speed and force applied during osteotomies which were responsible for heat generation were reviewed. Titles and abstracts were screened, and literature that fulfilled the inclusion criteria was selected for a full-text reading. The initial literature search resulted in 299 articles out of which only 70 articles fulfils the inclusion criteria and were included in this systematic review. Many factors related to implant drill responsible for heat generation were found. Successful preparation of an implant cavity with minimal damage to the surrounding bone depends on the avoidance of excessive temperature generation during surgical drilling. The relationship between heat generated and implant drilling osteotomy is multifactorial in nature and its complexity has not been fully studied. Lack of scientific knowledge regarding this issue still exists. Further studies should be conducted to determine the various factors which generate less heat while osteotomy such as ideal ratio of force and speed in vivo, exact time to replace a drill, ideal drill design, irrigation system, drill-bone contact area.
GPM Solar Array Gravity Negated Deployment Testing
NASA Technical Reports Server (NTRS)
Penn, Jonathan; Johnson, Chris; Lewis, Jesse; Dear, Trevin; Stewart, Alphonso
2014-01-01
NASA Goddard Space Flight Center (GSFC) successfully developed a g-negation support system for use on the solar arrays of the Global Precipitation Measurement (GPM) Satellite. This system provides full deployment capability at the subsystem and observatory levels. In addition, the system provides capability for deployed configuration first mode frequency verification testing. The system consists of air pads, a support structure, an air supply, and support tables. The g-negation support system was used to support all deployment activities for flight solar array deployment testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arnis Judzis; Homer Robertson; Alan Black
2006-06-22
The two phase program addresses long-term developments in deep well and hard rock drilling. TerraTek believes that significant improvements in drilling deep hard rock will be obtained by applying ultra-high rotational speeds (greater than 10,000 rpm). The work includes a feasibility of concept research effort aimed at development that will ultimately result in the ability to reliably drill ''faster and deeper'' possibly with smaller, more mobile rigs. The principle focus is on demonstration testing of diamond bits rotating at speeds in excess of 10,000 rpm to achieve high rate of penetration (ROP) rock cutting with substantially lower inputs of energymore » and loads. The significance of the ''ultra-high rotary speed drilling system'' is the ability to drill into rock at very low weights on bit and possibly lower energy levels. The drilling and coring industry today does not practice this technology. The highest rotary speed systems in oil field and mining drilling and coring today run less than 10,000 rpm-usually well below 5,000 rpm. This document details the progress at the end of Phase 1 on the program entitled ''Smaller Footprint Drilling System for Deep and Hard Rock Environments: Feasibility of Ultra-High-Speed Diamond Drilling'' for the period starting 1 March 2006 and concluding 30 June 2006. (Note: Results from 1 September 2005 through 28 February 2006 were included in the previous report (see Judzis, Black, and Robertson)). Summarizing the accomplished during Phase 1: {lg_bullet} TerraTek reviewed applicable literature and documentation and convened a project kickoff meeting with Industry Advisors in attendance (see Black and Judzis). {lg_bullet} TerraTek designed and planned Phase I bench scale experiments (See Black and Judzis). Some difficulties continued in obtaining ultra-high speed motors. Improvements were made to the loading mechanism and the rotational speed monitoring instrumentation. New drill bit designs were developed to provided a more consistent product with consistent performance. A test matrix for the final core bit testing program was completed. {lg_bullet} TerraTek concluded Task 3 ''Small-scale cutting performance tests.'' {sm_bullet} Significant testing was performed on nine different rocks. {sm_bullet} Five rocks were used for the final testing. The final tests were based on statistical design of experiments. {sm_bullet} Two full-faced bits, a small diameter and a large diameter, were run in Berea sandstone. {lg_bullet} Analysis of data was completed and indicates that there is decreased specific energy as the rotational speed increases (Task 4). Data analysis from early trials was used to direct the efforts of the final testing for Phase I (Task 5). {lg_bullet} Technology transfer (Task 6) was accomplished with technical presentations to the industry (see Judzis, Boucher, McCammon, and Black).« less
NASA Astrophysics Data System (ADS)
Scherer, R. P.; Powell, R. D.; Coenen, J. J.; Hodson, T. O.; Puttkammer, R.; Tulaczyk, S. M.
2015-12-01
The WISSARD project recovered sediment cores and other geological materials from beneath the Whillans Ice Stream in West Antarctica during two drilling seasons; Subglacial Lake Whillans (SLW) in 2013 and 100km downstream at the ice stream grounding-zone (WGZ) in 2015. SLW is characterized by 2 m of freshwater with a high suspended-sediment load, whereas WGZ has a 10 m column of clear, fully marine water with an active community of marine organisms. Three coring devices were deployed as part of WISSARD, including (1) a multicorer, which recovers 3 unaltered sediment-water interface cores, up to 0.5m, (2) a piston corer, also deployed as a gravity corer, with a 3m core barrel, and (3) a percussion coring system with a 5m core barrel. Sediments recovered from SLW are muddy diamicton with minimal stratification. The sediments are characteristic of active till, not water-column deposition. The till is weak and effective stresses very low, thus till flux from deformation must also be low. Water through flow is sufficient to carry suspended clays and silts, but not transfer large volumes of sediment in the current glaciological regime. Microfossils and geochemical tracers (e.g., biomarkers, 10Be and 14C) in SLW sediments indicate Pleistocene input from open water conditions, plus input and mixing of components derived from older Cenozoic strata. Diatoms and other sedimentary characteristics of SLW are entirely consistent with material previously recovered from upstream sites on the Whillans Ice Stream (UpB), but show evidence of further cumulative subglacial shear strain, suggesting downstream translation as deforming till. Sedimentary components from WGZ indicate significant input from sources other than from the Whillans Ice Stream. Sediment cores include distinct stratigraphic variability, with differing geochemical and sedimentary components indicative of input from changing source beds. Components indicate a mixture of Quaternary and older components. The lower ca. 10m of ice at WGZ contained abundant sedimentary debris, and active melting and rainout of basal debris was observed. We attribute much of the stratigraphy of the upper sedimentary layers at WGZ, which include soft mud and rock clasts, to ongoing basal melting. This may represent recent grounding line retreat.
Facility for testing ice drills
NASA Astrophysics Data System (ADS)
Nielson, Dennis L.; Delahunty, Chris; Goodge, John W.; Severinghaus, Jeffery P.
2017-05-01
The Rapid Access Ice Drill (RAID) is designed for subsurface scientific investigations in Antarctica. Its objectives are to drill rapidly through ice, to core samples of the transition zone and bedrock, and to leave behind a borehole observatory. These objectives required the engineering and fabrication of an entirely new drilling system that included a modified mining-style coring rig, a unique fluid circulation system, a rod skid, a power unit, and a workshop with areas for the storage of supplies and consumables. An important milestone in fabrication of the RAID was the construction of a North American Test (NAT) facility where we were able to test drilling and fluid processing functions in an environment that is as close as possible to that expected in Antarctica. Our criteria for site selection was that the area should be cold during the winter months, be located in an area of low heat flow, and be at relatively high elevation. We selected a site for the facility near Bear Lake, Utah, USA. The general design of the NAT well (NAT-1) started with a 27.3 cm (10.75 in.) outer casing cemented in a 152 m deep hole. Within that casing, we hung a 14 cm (5.5 in.) casing string, and, within that casing, a column of ice was formed. The annulus between the 14 and 27.3 cm casings provided the path for circulation of a refrigerant. After in-depth study, we chose to use liquid CO2 to cool the hole. In order to minimize the likelihood of the casing splitting due to the volume increase associated with freezing water, the hole was first cooled and then ice was formed in increments from the bottom upward. First, ice cubes were placed in the inner liner and then water was added. Using this method, a column of ice was incrementally prepared for drilling tests. The drilling tests successfully demonstrated the functioning of the RAID system. Reproducing such a facility for testing of other ice drilling systems could be advantageous to other research programs in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2004-10-01
The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for a next level of deep drilling performance; Phase 2--Develop advanced smart bit-fluid prototypes and test at large scale; and Phase 3--Field trial smart bit-fluid concepts, modify as necessary and commercialize products. As of report date, TerraTek has concluded all major preparations for themore » high pressure drilling campaign. Baker Hughes encountered difficulties in providing additional pumping capacity before TerraTek's scheduled relocation to another facility, thus the program was delayed further to accommodate the full testing program.« less
Unrecoverable bi-products of drilling titanium alloy and tantalum metal implants: a pilot study.
Skowronek, Paweł; Olszewski, Paweł; Święszkowski, Wojciech; Synder, Marek; Sibiński, Marcin; Mazek, Jacek
2018-05-01
Trabecular metal implants with a porous architecture that allows for the incorporation of bone into the implant during healing are gaining popularity in alloplastic revision procedures. The bi-products of drilling titanium alloy (Ti) and tantalum (Ta) implants have not been previously assessed. Four holes were drilled in each of two spatially porous trabecular implants, one Ta and the other Ti alloy (Ti-6Al-7Nb), for this pilot in vitro study. The particles were flushed out with a continuous flow of saline. The particles' weight and the volume were then measured using a Radwag XA 110/2X (USA) laboratory balance. The total volume of the obtained metal fines was measured by titration using a 10 mm 3 measurement system. A cobalt carbide bit was used since the holes could not be made with a standard bone drill. Each Ti and Ta implant lost 1.26 g and 2.48 g of mass, respectively. The volume of free particles recovered after each stage was 280 mm 3 and 149 mm 3 , respectively. Approximately 0.6% of the total implant mass was not recovered after drilling (roughly 2% of the mass of the particles created by drilling), despite the use of 5 µm filters. It is technically difficult to drill holes in Ti and Ta implants using standard surgical tools. The drilling process creates a considerable amount of metal particles, which cannot be recovered despite intensive flushing. This may have an adverse influence on the bio-functionality (survival) of the endoprosthesis and present deleterious systemic consequences.
Novitskiy participates in a CHeCS medical contingency drill in the U.S. Laboratory
2012-11-26
ISS034-E-005260 (26 Nov. 2012) --- Russian cosmonaut Oleg Novitskiy, Expedition 34 flight engineer, participates in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Shkaplerov participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012600 (16 Dec. 2011) --- Russian cosmonaut Anton Shkaplerov, Expedition 30 flight engineer, participates in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Novitskiy participates in a CHeCS medical contingency drill in the U.S. Laboratory
2012-11-26
ISS034-E-005266 (26 Nov. 2012) --- Russian cosmonaut Oleg Novitskiy, Expedition 34 flight engineer, participates in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 4 2014-10-01 2014-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 4 2012-10-01 2012-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 4 2011-10-01 2011-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 4 2010-10-01 2010-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
46 CFR 109.211 - Testing of emergency lighting and power systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 4 2013-10-01 2013-10-01 false Testing of emergency lighting and power systems. 109.211 Section 109.211 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) A-MOBILE OFFSHORE DRILLING UNITS OPERATIONS Tests, Drills, and Inspections § 109.211 Testing of emergency lighting and power...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2013 CFR
2013-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure test the BOP... BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed since your...
30 CFR 250.446 - What are the BOP maintenance and inspection requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.446 What are the... Prevention Equipment Systems for Drilling Wells (incorporated by reference as specified in § 250.198). You...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2012 CFR
2012-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure test the BOP... BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed since your...
30 CFR 250.434 - What are the recordkeeping requirements for diverter actuations and tests?
Code of Federal Regulations, 2014 CFR
2014-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.434 What are the recordkeeping... the facility for the duration of drilling the well. Blowout Preventer (BOP) System Requirements ...
30 CFR 250.451 - What must I do in certain situations involving BOP equipment or systems?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., REGULATION, AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements... drilling activities. If you encounter the following situation: Then you must . . . (a) BOP equipment does...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2014 CFR
2014-07-01
... THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure test the BOP... BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed since your...
30 CFR 250.434 - What are the recordkeeping requirements for diverter actuations and tests?
Code of Federal Regulations, 2013 CFR
2013-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.434 What are the recordkeeping... the facility for the duration of drilling the well. Blowout Preventer (BOP) System Requirements ...
30 CFR 250.447 - When must I pressure test the BOP system?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.447 When must I pressure... valves, inside BOP, and drill-string safety valve): (a) When installed; (b) Before 14 days have elapsed...
30 CFR 250.434 - What are the recordkeeping requirements for diverter actuations and tests?
Code of Federal Regulations, 2012 CFR
2012-07-01
... ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Diverter System Requirements § 250.434 What are the recordkeeping... the facility for the duration of drilling the well. Blowout Preventer (BOP) System Requirements ...
Direct Observation of Rhyolite Magma by Drilling: The Proposed Krafla Magma Drilling Project
NASA Astrophysics Data System (ADS)
Eichelberger, J. C.; Sigmundsson, F.; Papale, P.; Markusson, S.; Loughlin, S.
2014-12-01
Remarkably, drilling in Landsvirkjun Co.'s geothermal field in Krafla Caldera, Iceland has encountered rhyolite magma or hypersolidus rhyolite at 2.1-2.5 km depth in 3 wells distributed over 3.5 km2, including Iceland Deep Drilling Program's IDDP-1 (Mortensen, 2012). Krafla's most recent rifting and eruption (basalt) episode was 1975-1984; deformation since that time has been simple decay. Apparently rhyolite magma was either emplaced during that episode without itself erupting or quietly evolved in situ within 2-3 decades. Analysis of drill cuttings containing quenched melt from IDDP-1 yielded unprecedented petrologic data (Zierenberg et al, 2012). But interpreting active processes of heat and mass transfer requires knowing spatial variations in physical and chemical characteristics at the margin of the magma body, and that requires retrieving core - a not-inconceivable task. Core quenched in situ in melt up to 1150oC was recovered from Kilauea Iki lava lake, Hawaii by the Magma Energy Project >30 years ago. The site from which IDDP-1 was drilled, and perhaps IDDP-1 itself, may be available to attempt the first-ever coring of rhyolite magma, now proposed as the Krafla Magma Drilling Project (KMDP). KMDP would also include geophysical and geochemical experiments to measure the response of the magma/hydrothermal system to fluid injection and flow tests. Fundamental results will reveal the behavior of magma in the upper crust and coupling between magma and the hydrothermal system. Extreme, sustained thermal power output during flow tests of IDDP-1 suggests operation of a Kilauea-Iki-like freeze-fracture-flow boundary propagating into the magma and mining its latent heat of crystallization (Carrigan et al, EGU, 2014). Such an ultra-hot Enhanced Geothermal System (EGS) might be developable beneath this and other magma-heated conventional hydrothermal systems. Additionally, intra-caldera intrusions like Krafla's are believed to produce the unrest that is so troubling in populated calderas (e.g., Campi Flegrei, Italy). Experiments with the live system will aid in hazard assessment and eruption forecasting for this most difficult of volcano hazard problems. We will report on an International Continental Scientific Drilling Program (ICDP) workshop held to assess feasibility and to develop a plan for KMDP.
NASA Astrophysics Data System (ADS)
Aderhold, K.; Frassetto, A.; Busby, R. W.; Enders, M.; Bierma, R. M.; Miner, J.; Woodward, R.
2016-12-01
From 2011 to 2015, IRIS has built or upgraded 67 broadband seismic stations in Alaska and western Canada as part of the EarthScope Transportable Array (TA) program. An additional 72 stations will be completed by the fall of 2016. Nearly all use new posthole seismometers, emplaced at 3 m depth in cased holes within fractured bedrock outcrops, permafrost, or soil. Based on initial tests in Alaska, New Mexico, and California, this emplacement technique was chosen to streamline logistics in challenging, remote conditions as well as optimize station performance. A versatile drill capable of operating with a hammer bit or auger was developed specifically for the TA and is light enough to be transported by helicopter in a single load. The drilling system is ideal for TA deployment logistics in Alaska, but could be adapted to many regional or permanent network operations because it is easily transported on a flatbed truck and manuevered into tight working locations. The TA will complete another 73 installations in 2017 and operate the full network of 268 real-time stations through at least 2019. The removal of some TA stations is planned for 2020, but upgrades to existing stations are permanent contributions to these networks. The TA stations are a proof of concept for a new approach to emplacement of seismometers across a large network and will enable high-quality scientific research as well as advances in hazard monitoring. To evaluate the new and upgraded stations, we use probability density functions of hourly power spectral density computed by the IRIS DMC MUSTANG metric service for the continuous data recorded through 2016. Our results show that the noise performance of TA postholes in Alaska and Canada show significant improvement over the tank vaults of the lower-48 TA. With an ideal posthole drilled into bedrock or permafrost, noise levels can approach the quality of GSN stations particularly on the horizontal channels at long periods [>70 seconds]. Stations also display a strong but expected regional and seasonal variation. We provide notable examples of station performance, focusing on regional trends as well as the performance of stations upgraded from surface vault to posthole configuration.
Study of sample drilling techniques for Mars sample return missions
NASA Technical Reports Server (NTRS)
Mitchell, D. C.; Harris, P. T.
1980-01-01
To demonstrate the feasibility of acquiring various surface samples for a Mars sample return mission the following tasks were performed: (1) design of a Mars rover-mounted drill system capable of acquiring crystalline rock cores; prediction of performance, mass, and power requirements for various size systems, and the generation of engineering drawings; (2) performance of simulated permafrost coring tests using a residual Apollo lunar surface drill, (3) design of a rock breaker system which can be used to produce small samples of rock chips from rocks which are too large to return to Earth, but too small to be cored with the Rover-mounted drill; (4)design of sample containers for the selected regolith cores, rock cores, and small particulate or rock samples; and (5) design of sample handling and transfer techniques which will be required through all phase of sample acquisition, processing, and stowage on-board the Earth return vehicle. A preliminary design of a light-weight Rover-mounted sampling scoop was also developed.
Godø, Olav Rune; Klungsøyr, Jarle; Meier, Sonnich; Tenningen, Eirik; Purser, Autun; Thomsen, Laurenz
2014-07-15
Environmental awareness and technological advances has spurred development of new monitoring solutions for the petroleum industry. This paper presents experience from a monitoring program off Norway. To maintain operation within the limits of the government regulations Statoil tested a new monitoring concept. Multisensory data were cabled to surface buoys and transmitted to land via wireless communication. The system collected information about distribution of the drilling wastes and the welfare of the corals in relation to threshold values. The project experienced a series of failures, but the backup monitoring provided information to fulfil the requirements of the permit. The experience demonstrated the need for real time monitoring and how such systems enhance understanding of impacts on marine organisms. Also, drilling operations may improve by taking environmental information into account. The paper proposes to standardize and streamline monitoring protocols to maintain comparability during all phases of the operation and between drill sites. Copyright © 2014 Elsevier Ltd. All rights reserved.
Wellbore manufacturing processes for in situ heat treatment processes
Davidson, Ian Alexander; Geddes, Cameron James; Rudolf, Randall Lynn; Selby, Bruce Allen; MacDonald, Duncan Charles
2012-12-11
A method includes making coiled tubing at a coiled tubing manufacturing unit coupled to a coiled tubing transportation system. One or more coiled tubing reels are transported from the coiled tubing manufacturing unit to one or more moveable well drilling systems using the coiled tubing transportation system. The coiled tubing transportation system runs from the tubing manufacturing unit to one or more movable well drilling systems, and then back to the coiled tubing manufacturing unit.
The Sample Handling System for the Mars Icebreaker Life Mission: from Dirt to Data
NASA Technical Reports Server (NTRS)
Dave, Arwen; Thompson, Sarah J.; McKay, Christopher P.; Stoker, Carol R.; Zacny, Kris; Paulsen, Gale; Mellerowicz, Bolek; Glass, Brian J.; Wilson, David; Bonaccorsi, Rosalba;
2013-01-01
The Mars icebreaker life mission will search for subsurface life on mars. It consists of three payload elements: a drill to retrieve soil samples from approx. 1 meter below the surface, a robotic sample handling system to deliver the sample from the drill to the instruments, and the instruments themselves. This paper will discuss the robotic sample handling system.
NASA Astrophysics Data System (ADS)
Amirov, Elnur
2017-04-01
Sperry Drilling Services' PWD sensor improve and support drilling efficiency by providing very important, real-time downhole pressure information that allows to make faster and better drilling decisions. The PWD service, provides accurate annular pressure, internal pressure and temperature measurements using any of well-known telemetry systems: positive mud pulse, negative mud pulse and electromagnetic. Pressure data can be transmitted in real time and recorded in downhole memory. In the pumpsoff mode, the minimum, maximum and average pressures observed during the non-circulating period are transmitted via mud pulse telemetry when circulation recommences. These measurements provide the knowledge to avoid lost circulation and detect flow/kicks before they happen. The PWD sensor also reduces the risk of problems related by unexpected fracture or collapse. Sperry's PWD sensor also helps to avoid lost circulation and flow/kick, which can lead to costly delays in drilling. Annular pressure increases often reflect ineffective cuttings removal and poor hole cleaning, both of which can lead to lost circulation. The PWD sensor detects the increase and drilling fluid parameters and operating procedures can be modified to improve hole-cleaning efficiency. On extended reach wells, real-time information helps to maintain wellbore pressures between safe operating limits and to monitor hole cleaning. The PWD sensor also provides early detection of well flows and kicks. A drop in pressure, can indicate gas, oil and water kicks. Because the sensor is making its measurement downhole, the PWD sensor makes it possible to detect such pressure drops earlier than more traditional surface measurements. The PWD sensor has high-accuracy quartz gauges and is able to record data because of its battery-powered operation. It is also extremely useful in specialized drilling environments, such as high-pressure/high-temperature, extended-reach and deepwater wells. When combined with the rig management system, surface and downhole measurements, can be compared for more accurate and extensive analysis. PWD sensor was utilized with encouraging results in many wells up to 3000-6000m subsurface reservoirs (these wells were drilled in the Khazar-Caspian region of the Azerbaijan Republic) and acquired PWD RT/RM data implemented for best drilling practices in other brand new drilled offset wells in order to help us achieve our mission to drill safe, faster, on target, optimize drilling efficiency, maximize well value and reservoir insight.
Rehan, I; Gondal, M A; Rehan, K
2018-05-15
A detection system based on Laser Induced Breakdown Spectroscopy (LIBS) was designed, optimized, and successfully employed for the estimation of lead (Pb) content in drilling fueled soil (DFS) collected from oil field drilling areas in Pakistan. The concentration of Pb was evaluated by the standard calibration curve method as well as by using an approach based on the integrated intensity of strongest emission of an element of interest. Remarkably, our investigation clearly demonstrated that the concentration of Pb in drilling fueled soil collected at the exact drilling site was greater than the safe permissible limits. Furthermore, the Pb concentration was observed to decline with increasing distance away from the specific drilling point. Analytical determinations were carried out under the assumptions that laser generated plasma was optically thin and in local thermodynamic equilibrium (LTE). In order to improve the sensitivity of our LIBS detection system, various parametric dependence studies were performed. To further validate the precision of our LIBS results, the concentration of Pb present in the acquired samples were also quantified via a standard analytical tool like inductively coupled plasma/optical emission spectroscopy (ICP/OES). Both results were in excellent agreement, implying remarkable reliability for the LIBS data. Furthermore, the Limit of detection (LOD) of our LIBS system for Pb was estimated to be 125.14 mg L -1 . Copyright © 2018 Elsevier B.V. All rights reserved.
VSAT: opening new horizons to oil and gas explorations
NASA Astrophysics Data System (ADS)
Al-Dhamen, Muhammad I.
2002-08-01
Whether exploring in the Empty Quarter, drilling offshore in the Gulf of Mexico, or monitoring gas pipelines or oil wells in the deserts, communications is a key element to the success of oil and gas operations. Secure, efficient communications is required between remote, isolated locations and head offices to report on work status, dispatch supplies and repairs, report on-site emergencies, transfer geophysical surveys and real-time drilling data. Drilling and exploration firms have traditionally used land-based terrestrial networks that rely on radio transmissions for voice and data communications to offshore platforms and remote deep desert drilling rigs. But these systems are inefficient and have proven inflexible with today's drilling and exploration communications demands, which include high-speed data access, telephone and video conferencing. In response, numerous oil and gas exploration entities working in deep waters and remote deep deserts have all tapped into what is an ideal solution for these needs: Very Small Aperture Terminal Systems (VSAT) for broadband access services. This led to the use of Satellite Communication Systems for a wide range of applications that were difficult to achieve in the past, such as real-time applications transmission of drilling data and seismic information. This paper provides a thorough analysis of opportunities for satellite technology solutions in support of oil and gas operations. Technologies, architecture, service, networking and application developments are discussed based upon real field experience. More specifically, the report addresses: VSAT Opportunities for the Oil and Gas Operations, Corporate Satellite Business Model Findings, Satellite Market Forecasts
Field Testing of Environmentally Friendly Drilling System
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Burnett
2009-05-31
The Environmentally Friendly Drilling (EFD) program addresses new low-impact technology that reduces the footprint of drilling activities, integrates light weight drilling rigs with reduced emission engine packages, addresses on-site waste management, optimizes the systems to fit the needs of a specific development sites and provides stewardship of the environment. In addition, the program includes industry, the public, environmental organizations, and elected officials in a collaboration that addresses concerns on development of unconventional natural gas resources in environmentally sensitive areas. The EFD program provides the fundamentals to result in greater access, reasonable regulatory controls, lower development cost and reduction of themore » environmental footprint associated with operations for unconventional natural gas. Industry Sponsors have supported the program with significant financial and technical support. This final report compendium is organized into segments corresponding directly with the DOE approved scope of work for the term 2005-2009 (10 Sections). Each specific project is defined by (a) its goals, (b) its deliverable, and (c) its future direction. A web site has been established that contains all of these detailed engineering reports produced with their efforts. The goals of the project are to (1) identify critical enabling technologies for a prototype low-impact drilling system, (2) test the prototype systems in field laboratories, and (3) demonstrate the advanced technology to show how these practices would benefit the environment.« less
The Marskhod Egyptian Drill Project
NASA Astrophysics Data System (ADS)
Shaltout, M. A. M.
We describe a possible participation of Egypt in a future Mars rover Mission. It was suggested that Egypt participate through involvement in the design, building and testing of a drill to obtain sub-surface samples. The Space Research Institute of the Russian Academy of Sciences (IKI), formally invited the Egyptian Ministry of Scientific Research to study the concept for potential use on the Russian Mars 2001 Mission. As one of the objectives of the Marskhod mission was the analysis of sub-surface samples, a drilling mechanism in the payload would be essential. The Egyptian expertise in drill development is associated with the archaeological exploration of the Pyramids. A sophisticated drilling system perforated limestone to a depth of 2 m without the use of lubricants or cooling fluids that might have contaminated the Pit's environment. This experience could have been applied to a drill development Mars 2001 mission, which was unfortunately canceled due to economic problems.
Barrak, Ibrahim; Joób-Fancsaly, Árpád; Braunitzer, Gábor; Varga, Endre; Boa, Kristóf; Piffkó, József
2018-06-01
To investigate drill wear and consequent intraosseous temperature elevation during freehand and guided bone drilling, with attention to the effect of metal-on-metal contact during guided drilling. Osteotomies were performed on bovine ribs, with 2.0 mm diameter stainless steel drill bits of the SMART Guide System, under 3 sterilization protocols, at 800, 1200, 1500, and 2000 rpm. Sterilization was performed after every 3 drilling. Temperature was measured after every 30 drilling. The studied contributing factors had a cumulative effect, and each contributed significantly to temperature elevation. Whether guide use led to a near-necrotic (47°C) temperature increment depended largely on the applied sterilization protocol. The metal sleeve is a significant contributing factor to heat generation during guided osteotomy, but its effect can be offset by keeping the other studied factors under control.
Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.
Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem
2018-01-01
Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.
Laser drilling of thermal barrier coated jet-engine components
NASA Astrophysics Data System (ADS)
Sezer, H. K.
Aero engine hot end components are often covered with ceramic Thermal Barrier Coatings (TBCs). Laser drilling in the TBC coated components can be a source of service life TBC degradation and spallation. The present study aims to understand the mechanisms of TBC delamination and develop techniques to drill holes without damaging the TBC, Nimonic 263 workpieces coated with TBC are used in the experiments. Microwave non-destructive testing (NDT) is employed to monitor the integrity of the coating /substrate interfaces of the post-laser drilled materials. A numerical modelling technique is used to investigate the role of melt ejection on TBC delamination. The model accounts for the vapour and the assist gas flow effects in the process. Broadly, melt ejection induced mechanical stresses for the TBC coating / bond coating and thermal effects for the bond coating / substrate interfaces are found the key delamination mechanisms. Experiments are carried out to validate the findings from the model. Various techniques that enable laser drilling without damaging the TBC are demonstrated. Twin jet assisted acute angle laser drilling is one successful technique that has been analysed using the melt ejection simulation. Optimisation of the twin jet assisted acute angle laser drilling process parameters is carried out using Design of Experiments (DoE) and statistical modelling approaches. Finally, an industrial case study to develop a high speed, high quality laser drilling system for combustor cans is described. Holes are drilled by percussion and trepan drilling in TBC coated and uncoated Haynes 230 workpieces. The production rate of percussion drilling is significantly higher than the trepan drilling, however metallurgical hole quality and reproducibility is poor. A number of process parameters are investigated to improve these characteristics. Gas type and gas pressure effects on various characteristics of the inclined laser drilled holes are investigated through theoretical and experimental work.
NASA Astrophysics Data System (ADS)
Lu, Chunhua; Jiang, Guosheng; Wang, Ziqi; Wang, Jiahao; Wang, Chenli
2016-10-01
An electromagnetic measurement while drilling system (EM-MWD) can transfer well track state parameters to the ground in real time, which makes it an indispensable technology for deep-hole drilling. This paper introduces the development of and experiments on an EM-MWD system used for deep exploration in the People’s Republic of China. The designed EM-MWD system is composed of a downhole instrument and a ground instrument, and we elaborate on the structural design of the downhole instrument, the design of the transmission and control circuits and the signal modulation. This work also covers the software and hardware design of the ground instrument and signal demodulation technologies. Finally, some indoor signal decoding experiments and some in-hole signal transmission experiments are performed. This study indicates that the designed EM-MWD system can measure information for downhole drilling parameters and send it to the ground effectively, while the ground receiver can decode the signal accurately and reliably, and the desired signal can be obtained. Furthermore, the strength of the received signal is not affected by the polar distance within a certain polar distance.
NASA Astrophysics Data System (ADS)
Eggertsson, Guðjón H.; Lavallée, Yan; Kendrick, Jackie E.
2017-04-01
Krafla volcano, located in North-East Iceland, holds an active magmatic hydrothermal system. Since 1978, this system has been exploited for geothermal energy. Today it is exploited by Landsvirkjun National Power of Iceland and the system is generating 60 MWg from 18 wells, tapping into fluids at 200-300°C. In order to meet further demands of environmentally sustainable energy, Landsvirkjun aims to drill deeper and source fluids in the super-heated, super high-enthalpy system which resides deeper (at 400-600°C). In relation to this, the first well of the Icelandic Deep Drilling Project (IDDP) was drilled in Krafla in 2009. Drilling stopped at a depth of 2.1 km, when the drill string penetrated a rhyolitic magma body, which could not be bypassed despite attempts to side-track the well. This pioneering effort demonstrated that the area close to magma had great energy potential. Here we seek a constraint on the mechanical properties of reservoir rocks overlying the magmatic systems to gain knowledge on these systems to improve energy extraction. During two field surveys in 2015 and 2016, and through information gathered from drilling of geothermal wells, five main rock types were identified and sampled [and their porosities (i.e., storage capacities) where determined with a helium-pycnometer]: basalts (5-60% porosity), hyaloclastites (<35-45% porosity), obsidians (0.25-5% porosity), ignimbrites (13-18% porosity), and intrusive felsites and microgabbros (9-16% porosity). Samples are primarily from surface exposures, but selected samples were taken from cores drilled within the Krafla caldera, outside of the geothermal reservoir. Uniaxial and triaxial compressive strength tests have been carried out, as well as indirect tensile strength tests using the Brazilian disc method, to measure the rock strengths. The results show that the rock strength is inversely proportional to the porosity and strongly affected by the abundance of microcracks; some of the rocks are unusually weak considering their porosities, especially at low effective pressure as constrained at Krafla. The results also show that the porous lithologies may undergo significant compaction at relatively low loads (i.e., depth). Integration of the observed mechanical behaviour and associated permeability into future fluid flow simulations will aim to increase our understanding and exploitation of geothermal reservoirs.
Deployment dynamics and control of large-scale flexible solar array system with deployable mast
NASA Astrophysics Data System (ADS)
Li, Hai-Quan; Liu, Xiao-Feng; Guo, Shao-Jing; Cai, Guo-Ping
2016-10-01
In this paper, deployment dynamics and control of large-scale flexible solar array system with deployable mast are investigated. The adopted solar array system is introduced firstly, including system configuration, deployable mast and solar arrays with several mechanisms. Then dynamic equation of the solar array system is established by the Jourdain velocity variation principle and a method for dynamics with topology changes is introduced. In addition, a PD controller with disturbance estimation is designed to eliminate the drift of spacecraft mainbody. Finally the validity of the dynamic model is verified through a comparison with ADAMS software and the deployment process and dynamic behavior of the system are studied in detail. Simulation results indicate that the proposed model is effective to describe the deployment dynamics of the large-scale flexible solar arrays and the proposed controller is practical to eliminate the drift of spacecraft mainbody.
NASA Astrophysics Data System (ADS)
Gupta, Harsh; Purnachandra Rao, N.; Roy, Sukanta; Arora, Kusumita; Tiwari, V. M.; Patro, Prasanta K.; Satyanarayana, H. V. S.; Shashidhar, D.; Mallika, K.; Akkiraju, Vyasulu V.; Goswami, Deepjyoti; Vyas, Digant; Ravi, G.; Srinivas, K. N. S. S. S.; Srihari, M.; Mishra, S.; Dubey, C. P.; Raju, D. Ch. V.; Borah, Ujjal; Chinna Reddy, K.; Babu, Narendra; Rohilla, Sunil; Dhar, Upasana; Sen, Mrinal; Bhaskar Rao, Y. J.; Bansal, B. K.; Nayak, Shailesh
2015-09-01
Artificial water reservoir-triggered earthquakes have continued at Koyna in the Deccan Traps province, India, since the impoundment of the Shivaji Sagar reservoir in 1962. Existing models, to comprehend the genesis of triggered earthquakes, suffer from lack of observations in the near field. To investigate further, scientific deep drilling and setting up a fault zone observatory at depth of 5-7 km is planned in the Koyna area. Prior to undertaking deep drilling, an exploratory phase of investigations has been launched to constrain subsurface geology, structure and heat flow regime in the area that provide critical inputs for the design of the deep borehole observatory. Two core boreholes drilled to depths of 1,522 and 1,196 m have penetrated the Deccan Traps and sampled the granitic basement in the region for the first time. Studies on cores provide new and direct information regarding the thickness of the Deccan Traps, the absence of infra-Trappean sediments and the nature of the underlying basement rocks. Temperatures estimated at a depth of 6 km in the area, made on the basis of heat flow and thermal properties data sets, do not exceed 150 °C. Low-elevation airborne gravity gradient and magnetic data sets covering 5,012 line km, together with high-quality magnetotelluric data at 100 stations, provide both regional information about the thickness of the Deccan Traps and the occurrence of localized density heterogeneities and anomalous conductive zones in the vicinity of the hypocentral zone. Acquisition of airborne LiDAR data to obtain a high-resolution topographic model of the region has been completed over an area of 1,064 km2 centred on the Koyna seismic zone. Seismometers have been deployed in the granitic basement inside two boreholes and are planned in another set of six boreholes to obtain accurate hypocentral locations and constrain the disposition of fault zones.
Percussive Force Magnitude in Permafrost
NASA Technical Reports Server (NTRS)
Eustes, A. W., III; Bridgford, E.; Tischler, A.; Wilcox, B. H.
2000-01-01
An in-depth look at percussive drilling shows that the transmission efficiency is very important; however, data for percussive drilling in hard rock or permafrost is rarely available or the existing data are very old. Transmission efficiency can be used as a measurement of the transmission of the energy in the piston to the drill steel or bit and from the bit to the rock. Having a plane and centralized impact of the piston on the drill steel can optimize the transmission efficiency from the piston to the drill steel. A transmission efficiency of near 100% between piston and drill steel is possible. The transmission efficiency between bit and rock is dependent upon the interaction within the entire system. The main factors influencing this transmission efficiency are the contact area between cutting structure and surrounding rock (energy loss due to friction heat), damping characteristics of the surrounding rock (energy dampening), and cuttings transport. Some of these parameters are not controllable. To solve the existing void regarding available drilling data, an experiment for gathering energy data in permafrost for percussive drilling was designed. Fifteen artificial permafrost samples were prepared. The samples differed in the grain size distribution to observe a possible influence of the grain size distribution on the drilling performance. The samples were then manually penetrated (with a sledge-hammer) with two different spikes.
Sankey, Eric W; Butler, Eric; Sampson, John H
2017-10-01
To evaluate accuracy of a computed tomography (CT)-guided frameless stereotactic drilling and catheter system. A prospective, single-arm study was performed using human cadaver heads to evaluate placement accuracy of a novel, flexible intracranial catheter and stabilizing bone anchor system and drill kit. There were 20 catheter placements included in the analysis. The primary endpoint was accuracy of catheter tip location on intraoperative CT. Secondary endpoints included target registration error and entry and target point error before and after drilling. Measurements are reported as mean ± SD (median, range). Target registration error was 0.46 mm ± 0.26 (0.50 mm, -1.00 to 1.00 mm). Two (10%) target point trajectories were negatively impacted by drilling. Intracranial catheter depth was 59.8 mm ± 9.4 (60.5 mm, 38.0-80.0 mm). Drilling angle was 22° ± 9 (21°, 7°-45°). Deviation between planned and actual entry point on CT was 1.04 mm ± 0.38 (1.00 mm, 0.40-2.00 mm). Deviation between planned and actual target point on CT was 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). No correlation was observed between intracranial catheter depth and target point deviation (accuracy) (Pearson coefficient 0.018) or between technician experience and accuracy (Pearson coefficient 0.020). There was no significant difference in accuracy with trajectories performed for different cadaver heads (P = 0.362). Highly accurate catheter placement is achievable using this novel flexible catheter and bone anchor system placed via frameless stereotaxy, with an average deviation between planned and actual target point of 1.60 mm ± 0.98 (1.40 mm, 0.40-4.00 mm). Copyright © 2017 Elsevier Inc. All rights reserved.
Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012613 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Burbank participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012609 (16 Dec. 2011) --- NASA astronaut Dan Burbank (foreground), Expedition 30 commander, and Russian cosmonaut Anton Shkaplerov, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Ivanishin participates in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2011-12-16
ISS030-E-012604 (16 Dec. 2011) --- Russian cosmonauts Anatoly Ivanishin (foreground) and Anton Shkaplerov, both Expedition 30 flight engineers, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chevallier, J.; Turner, L.
There's a great deal of data recorded during drilling operations on rigs these days, but it is seldom well utilized. The operator's company person relies upon mud loggers for collecting and recording most information. The methods used to process and display this information are often inadequate for those who need it the most the driller and toolpusher. Drilling contractor personnel usually have only rudimentary displays of drilling parameters, and practically no serious method of analysis except for daily paper reports. These are cumbersome to use and provide only incomplete data, after the fact. The MDS system, presented in this article,more » is a new information and alarm network, which rectifies this situation by bringing to the rig, for the first time, the latest in sensor and computer technologies. This system acquires key drilling data on the rig floor, pump room, and return line, and displays it in a clear graphical format to both the driller and the toolpusher in real time. It also provides the toolpusher with a workstation for easy access to the same information for evaluation and planning of the drilling program.« less
Garden Banks 388 subsea drilling/production template: Project management of a fast-track project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledbetter, W.R.
1995-10-01
Enserch Exploration`s Garden Banks 388 development is a production scheme based around a floating drilling and production facility and subsea drilling/production template. The Floating Production Facility (FPF) is a converted semisubmersible drilling rig which will drill and product through a 24-well slot template. This development is located in Block 388 of the Garden Banks area in the Gulf of Mexico approximately 200 miles southwest of New Orleans. Louisiana. This production system is being installed in an area of known oil and gas reserves and will produce to a shallow water platform 54 miles away at Ewing Bank 315. The FPFmore » will be permanently moored on the surface above the template. The subsea template has been installed in 2,190 feet of water and will produce through a 2,000 foot free-standing production riser system to the FPF. The produced fluids are partially separated on the FPF before oil and gas are pumped through the template to export gathering lines which are connected to the shallow water facility.« less
Disposal of saltwater during well construction--Problems and solutions
Pitt, William A.; Meyer, Frederick W.; Hull, John E.
1977-01-01
The recent interest in the disposal of treated sewage effluent by deep-well injection into salt-water-filled aquifers has increased the need for proper disposal of salt water as more wells are drilled and tested each year.The effects on an unconfined aquifer of the improper disposal of salt water associated with the construction of three wells in southeastern Florida emphasize this need. In two of the wells provisions to prevent and detect salt-water contamination of the unconfined aquifer were practically nonexistent, and in one well extensive provisions were made. Of the three drilling sites the one with proper provision for detection presented no serious problem, as the ground water contaminated by the salt water was easily located and removed. The provisions consisted of drilling a brine-injection well to dispose of salt water discharged in drilling and testing operations, using a closed drilling circulation system to reduce spillage, installing shallow observation wells to map the extent and depth of any salt-water contamination of the shallow aquifer, and installing a dewatering system to remove contaminated ground water.
Supporting Knowledge Transfer in IS Deployment Projects
NASA Astrophysics Data System (ADS)
Schönström, Mikael
To deploy new information systems is an expensive and complex task, and does seldom result in successful usage where the system adds strategic value to the firm (e.g. Sharma et al. 2003). It has been argued that innovation diffusion is a knowledge integration problem (Newell et al. 2000). Knowledge about business processes, deployment processes, information systems and technology are needed in a large-scale deployment of a corporate IS. These deployments can therefore to a large extent be argued to be a knowledge management (KM) problem. An effective deployment requires that knowledge about the system is effectively transferred to the target organization (Ko et al. 2005).
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
NASA Technical Reports Server (NTRS)
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System (HGAS) for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission-degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity-negation mechanism, and use of dynamic modeling is described and lessons learned presented
High Gain Antenna System Deployment Mechanism Integration, Characterization, and Lessons Learned
NASA Technical Reports Server (NTRS)
Parong, Fil; Russell, Blair; Garcen, Walter; Rose, Chris; Johnson, Chris; Huber, Craig
2014-01-01
The integration and deployment testing of the High Gain Antenna System for the Global Precipitation Measurement mission is summarized. The HGAS deployment mechanism is described. The gravity negation system configuration and its influence on vertical, ground-based, deployment tests are presented with test data and model predictions. A focus is made on the late discovery and resolution of a potentially mission degrading deployment interference condition. The interaction of the flight deployment mechanism, gravity negation mechanism, and use of dynamic modeling is described and lessons learned presented.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... Offshore Drilling Units). OMB Control Number: 1014-0013. Abstract: The Outer Continental Shelf (OCS) Lands.... The subject of this ICR is an NTL, GPS (Global Positioning System) for MODUs (Mobile Offshore Drilling... Operators (NTL)--Gulf of Mexico OCS Region--GPS (Global Positioning System) for MODUs (Mobile Offshore...
An innovative deployable solar panel system for Cubesats
NASA Astrophysics Data System (ADS)
Santoni, Fabio; Piergentili, Fabrizio; Donati, Serena; Perelli, Massimo; Negri, Andrea; Marino, Michele
2014-02-01
One of the main Cubesat bus limitations is the available on-board power. The maximum power obtained using body mounted solar panels and advanced triple junction solar cells on a triple unit Cubesat is typically less than 10 W. The Cubesat performance and the mission scenario opened to these small satellite systems could be greatly enhanced by an increase of the available power. This paper describes the design and realization of a modular deployable solar panel system for Cubesats, consisting of a modular hinge and spring system that can be potentially used on-board single (1U), double(2U), triple (3U) and six units (6U) Cubesats. The size of each solar panels is the size of a lateral Cubesat surface. The system developed is the basis for a SADA (Solar Array Drive Assembly), in which a maneuvering capability is added to the deployed solar array in order to follow the apparent motion of the sun. The system design trade-off is discussed, comparing different deployment concepts and architectures, leading to the final selection for the modular design. A prototype of the system has been realized for a 3U Cubesat, consisting of two deployable solar panel systems, made of three solar panels each, for a total of six deployed solar panels. The deployment system is based on a plastic fiber wire and thermal cutters, guaranteeing a suitable level of reliability. A test-bed for the solar panel deployment testing has been developed, supporting the solar array during deployment reproducing the dynamical situation in orbit. The results of the deployment system testing are discussed, including the design and realization of the test-bed, the mechanical stress given to the solar cells by the deployment accelerations and the overall system performance. The maximum power delivered by the system is about 50.4 W BOL, greatly enhancing the present Cubesat solar array performance.
Scientific Drilling in the Snake River Plain: Past, Present, and Future
NASA Astrophysics Data System (ADS)
Shervais, J. W.; Hanan, B. B.; Hughes, S. S.; Geist, D.; Vetter, S. K.
2006-12-01
The Snake River-Yellowstone volcanic province has long been linked to the concept of lithospheric drift over a fixed mantle thermal anomaly or hotspot. This concept is reinforced by seismic tomography that images this anomaly to depths around 500 km, but alternative proposals still present a serious challenge. Basaltic volcanism spans a significant age range and basaltic volcanism in the western SRP lies well off the hotspot track and cannot be related directly to the hotspot in any simple way. The plume-track age progression is documented by rhyolite volcanic centers, but even these represent extended time periods that overlap in age with adjacent centers. Scientific drilling projects carried out over the last two decades have made significant contributions to our understanding of both basaltic and rhyolitic volcanism associated with the Snake River-Yellowstone hotspot system. Because these drill holes also intercept sedimentary interbeds or, in the case of the western SRP, thick sections of Pliocene and Pleistocene sediments, they have also contributed to our understanding of basin formation by thermal collapse in the wake of the hotspot passage or by rifting, paleoclimate of the interior west, and groundwater systems in volcanic rocks. Many of these drill holes are associated with the Idaho National Laboratory (INL) in the eastern plain; others were drilled for geothermal or petroleum exploration. The latter include older holes that were not instrumented or logged in detail, but which still provide valuable stratigraphic controls. We focus here on the result of basalt drilling, which have been high-lighted in recent publications. Basaltic volcanism in the Snake River plain is dominated by olivine tholeiites that have major and trace element characteristics of ocean island basalt: the range in MgO is similar to MORB, but Ti, Fe, P, K, Sr, Zr and LREE/HREE ratios are all higher. Recent studies of basalts from the drill holes show that they evolved by fractionation in a mid-crustal sill complex that has been imaged seismically. Further, the chemical and isotopic systematics of these basalts require assimilation of consanguineous mafic material inferred to represent previously intruded sills. Major and trace element modeling suggest formation of the primary melts by melting of a source similar to E- MORB source. Trace element systematics document mixing between a plume-like source and a more depleted source that is not DMM. A similar more depleted source is inferred for Hawaii, suggesting that it is not continental lithosphere. Future scientific drilling in the SRP is the focus of Project HOTSPOT, a multi-disciplinary initiative that seeks to document time-space variations in the SRP-Yellowstone volcanic system. A workshop sponsored by the International Continental Drilling Program was held in May 2006 to develop a targeted program of scientific drilling that examines the entire plume-lithosphere system across a major lithospheric boundary, with holes targeting basalt, rhyolite, and sediments. These drill holes will complement geophysical studies of continental dynamics (e.g., Earthscope), as well as current studies centered on Yellowstone. Additional components of a targeted drilling program include studies of lacustrine sediments that document paleoclimate change in North America during the Pliocene—Pleistocene and fluid flow at deeper crustal levels.
Simank, H G; Graf, J; Kerber, A; Wiedmaier, S
1997-01-01
Avascular necrosis of the femoral head is associated with bone marrow hyperpression. Although core decompression by drilling is an accepted treatment regimen, until today no experimental results exist concerning the physiological effects of this procedure. Published clinical data are controversial. In an animal study marrow decompression was carried out by drilling of both hips in 18 healthy male sheep. In the right hip of each animal a resorbable stent was implanted in order to prolong the duration of core decompression. Over a time period of 24 weeks the effects were studied by measurement of the intraosseous pressure, by the plastination method and by morphological examination with light and electron microscopy. Bone drilling is a procedure of high short-time efficacy in decompressing the bone marrow. But decompression lasts only for a short time period. Three weeks postoperatively the drill channel is sealed by hematoma and fibrous tissue in both hips (with/without stent) and no significant decompressive effect is measured. Ingrowth of vessels along the drill channel is found in all hips after a time period of 3 weeks. These vessels originate from the periosteum as well as from the bone marrow and form temporary anastomoses between the periostal-diaphyseal-metaphyseal and the epiphyseal-physeal circulatory system. In conclusion, for the first time an anastomosis induced by drilling between both circulatory systems of bone is demonstrated and the importance of the periosteum is confirmed. The time of decreased core pressure induced by drilling is too short for substitution of a necrotic area and could be the explanation of the inferior clinical results of the procedure.
A Search for Life in the Subsurface At Rio Tinto Spain, An Analog To Searching For Life On Mars.
NASA Astrophysics Data System (ADS)
Stoker, C. R.
2003-12-01
Most familiar life forms on Earth live in the surface biosphere where liquid water, sunlight, and the essential chemical elements for life are abundant. However, such environments are not found on Mars or anywhere else in the solar system. On Mars, the surface environmental conditions of pressure and temperature prevent formation of liquid water. Furthermore, conditions at the Martian surface are unfavorable to life due to intense ultraviolet radiation and strong oxidizing compounds that destroy organic compounds. However, subsurface liquid water on Mars has been predicted on theoretical grounds. The recent discovery of near surface ground ice by the Mars Odyssey mission, and the abundant evidence for recent Gully features observed by the Mars Global Surveyor mission strengthen the case for subsurface liquid water on Mars. Thus, the strategy for searching for life on Mars points to drilling to the depth of liquid water, bringing samples to the surface and analyzing them with instrumentation to detect in situ organisms and biomarker compounds. The MARTE (Mars Astrobiology Research and Technology Experiment) project is a field experiment focused on searching for a hypothesized subsurface anaerobic chemoautotrophic biosphere in the region of the Rio Tinto, a river in southwestern Spain while also demonstrating technology relevant to searching for a subsurface biosphere on Mars. The Tinto river is located in the Iberian Pyrite belt, one of the largest deposits of sulfide minerals in the world. The surface (river) system is an acidic extreme environment produced and maintained by microbes that metabolize sulfide minerals and produce sulfuric acid as a byproduct. Evidence suggests that the river is a surface manifestation of an underground biochemical reactor. Organisms found in the river are capable of chemoautotrophic metabolism using sulfide and ferric iron mineral substrates, suggesting these organisms could thrive in groundwater which is the source of the Rio Tinto. The MARTE project will simulate the search for subsurface life on Mars using a drilling system developed for future Mars flight to accomplish subsurface access. Augmenting the drill are robotic systems for extracting the cores from the drill head and performing analysis using a suite of instruments to understand the composition, mineralogy, presence of organics, and to search for life signatures in subsurface samples. A robotic bore-hole inspection system will characterize borehole properties in situ. A Mars drilling mission simulation including remote operation of the drilling, sample handling, and instruments and interpretation of results by a remote science team will be performed. This simulated mission will be augmented by manual methods of drilling, sample handling, and sample analysis to fully document the subsurface, prevent surface microbial contamination, identify subsurface biota, and compare what can be learned with robotically-operated instruments. The first drilling campaign in the MARTE project takes place in September 2003 and is focused on characterizing the microbiology of the subsurface at Rio Tinto using conventional drilling, sample handling and laboratory analysis techniques. Lessons learned from this "ground truth" drilling campaign will guide the development of robotic systems and instruments needed for searching for life underground on Mars.
Antarctic subglacial lake exploration: first results and future plans
Siegert, Martin J.; Priscu, John C.; Wadham, Jemma L.; Lyons, W. Berry
2016-01-01
After more than a decade of planning, three attempts were made in 2012–2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. PMID:26667917
Antarctic subglacial lake exploration: first results and future plans.
Siegert, Martin J; Priscu, John C; Alekhina, Irina A; Wadham, Jemma L; Lyons, W Berry
2016-01-28
After more than a decade of planning, three attempts were made in 2012-2013 to access, measure in situ properties and directly sample subglacial Antarctic lake environments. First, Russian scientists drilled into the top of Lake Vostok, allowing lake water to infiltrate, and freeze within, the lower part of the ice-core borehole, from which further coring would recover a frozen sample of surface lake water. Second, UK engineers tried unsuccessfully to deploy a clean-access hot-water drill, to sample the water column and sediments of subglacial Lake Ellsworth. Third, a US mission successfully drilled cleanly into subglacial Lake Whillans, a shallow hydraulically active lake at the coastal margin of West Antarctica, obtaining samples that would later be used to prove the existence of microbial life and active biogeochemical cycling beneath the ice sheet. This article summarizes the results of these programmes in terms of the scientific results obtained, the operational knowledge gained and the engineering challenges revealed, to collate what is known about Antarctic subglacial environments and how to explore them in future. While results from Lake Whillans testify to subglacial lakes as being viable biological habitats, the engineering challenges to explore deeper more isolated lakes where unique microorganisms and climate records may be found, as exemplified in the Lake Ellsworth and Vostok missions, are considerable. Through international cooperation, and by using equipment and knowledge of the existing subglacial lake exploration programmes, it is possible that such environments could be explored thoroughly, and at numerous sites, in the near future. © 2015 The Author(s).
Military Neurosurgery: A Range of Service Options.
Menger, Richard P; Wolf, Michael E; Lang, Richard W; Smith, Donald R; Nanda, Anil; Letarte, Peter; Rosner, Michael K
2016-06-01
The pathway to military neurosurgical practice can include a number of accession options. This article is an objective comparison of fiscal, tangible, and intangible benefits provided through different military neurosurgery career paths. Neurosurgeons may train through active duty, reserve, or civilian pathways. These modalities were evaluated on the basis of economic data during residency and the initial 3 years afterwards. When available, military base pay, basic allowance for housing and subsistence, variable special pay, board certified pay, incentive pay, multiyear special pay, reserve drill pay, civilian salary, income tax, and other tax incentives were analyzed using publically available data. Civilians had lower residency pay, higher starting salaries, increased taxes, malpractice insurance cost, and increased overhead. Active duty service saw higher residency pay, lower starting salary, tax incentives, increased benefits, and almost no associated overhead including malpractice coverage. Reserve service saw a combination of civilian benefits with supplementation of reserve drill pay in return for weekend drill and the possibility of deployment and activation. Being a neurosurgeon in the military is extremely rewarding. From a financial perspective, ignoring intangibles, this article shows most entry pathways with initially modest differences between the cumulative salaries of active duty and civilian career paths and with higher overall compensation available from the reserve service option. These pathways become increasingly discrepant over time as civilian pay greatly exceeds that of military neurosurgeons. We hope that those curious about or considering serving in the United States military benefit from our accounting and review of these comparative paths. FAP, Financial Assistance ProgramNADDS, Navy Active Duty Delay for SpecialistsTMS, Training in Medical Specialties.
30 CFR 250.1617 - Application for permit to drill.
Code of Federal Regulations, 2010 CFR
2010-07-01
... BOP equipment, (ii) A schematic drawing of the diverter system to be used (plan and elevation views... survey program for directionally drilled wells; (9) An H2S Contingency Plan, if applicable, and if not...
Real-time depth measurement for micro-holes drilled by lasers
NASA Astrophysics Data System (ADS)
Lin, Cheng-Hsiang; Powell, Rock A.; Jiang, Lan; Xiao, Hai; Chen, Shean-Jen; Tsai, Hai-Lung
2010-02-01
An optical system based on the confocal principle has been developed for real-time precision measurements of the depth of micro-holes during the laser drilling process. The capability of the measuring system is theoretically predicted by the Gaussian lens formula and experimentally validated to achieve a sensitivity of 0.5 µm. A nanosecond laser system was used to drill holes, and the hole depths were measured by the proposed measuring system and by the cut-and-polish method. The differences between these two measurements are found to be 5.0% for hole depths on the order of tens of microns and 11.2% for hundreds of microns. The discrepancies are caused mainly by the roughness of the bottom surface of the hole and by the existence of debris in the hole. This system can be easily implemented in a laser workstation for the fabrication of 3D microstructures.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2007-05-22
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2008-05-27
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E.; Perry, Carl Allison
2012-08-14
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison
2014-03-04
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth [Kingwood, TX; Turner, William Evans [Durham, CT; Burgess, Daniel E [Middletown, CT; Perry, Carl Allison [Middletown, CT
2011-08-16
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
System and method for damping vibration in a drill string
Wassell, Mark Ellsworth; Turner, William Evans; Burgess, Daniel E; Perry, Carl Allison
2015-02-03
A system for damping vibration in a drill string can include a valve assembly having a supply of a fluid, a first member, and a second member capable of moving in relation to first member in response to vibration of the drill bit. The first and second members define a first and a second chamber for holding the fluid. Fluid can flow between the first and second chambers in response to the movement of the second member in relation to the first member. The valve assembly can also include a coil or a valve for varying a resistance of the fluid to flow between the first and second chambers.
Ma_Miss Experiment: miniaturized imaging spectrometer for subsurface studies
NASA Astrophysics Data System (ADS)
Coradini, A.; Ammannito, E.; Boccaccini, A.; de Sanctis, M. C.; di Iorio, T.; Battistelli, E.; Capanni, A.
2011-10-01
The study of the Martian subsurface will provide important constraints on the nature, timing and duration of alteration and sedimentation processes on Mars, as well as on the complex interactions between the surface and the atmosphere. A Drilling system, coupled with an in situ analysis package, is installed on the Exomars-Pasteur Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system. The instrument is fully integrated with the Drill and shares its structure and electronics.
Sensor emplacement testing at Poker Flat, Alaska
NASA Astrophysics Data System (ADS)
Reusch, A.; Beaudoin, B. C.; Anderson, K. E.; Azevedo, S.; Carothers, L.; Love, M.; Miller, P. E.; Parker, T.; Pfeifer, M.; Slad, G.; Thomas, D.; Aderhold, K.
2013-12-01
PASSCAL provides equipment and support for temporary seismic projects. Speed and efficiency of deployments are essential. A revised emplacement technique of putting broadband sensors directly into soil (aka direct burial) is being tested. The first phase (fall 2011 to spring 2013) comparing data quality and sensor stability between the direct burial and the traditional 1 m deep temporary PASSCAL-style vault in a wet and noisy site near San Antonio, NM is complete. Results suggest there is little or no difference in sensor performance in the relatively high-noise environment of this initial test. The second phase was started in November 2012 with the goal of making the same comparison, but at Poker Flat, Alaska, in a low-noise, high-signal, cold and wet environment, alongside a Transportable Array (TA) deployment to be used as a performance control. This location is in an accessible and secure area with very low site noise. In addition to benefiting future worldwide PASSCAL deployments, the Poker Flat experiment serves a secondary purpose of testing modifications necessary to successfully deploy and recover broadband stations in a cold environment with the limited logistics anticipated for remote Flexible Array (FA) and PASSCAL Program deployments in Alaska. Developing emplacement techniques that maintain high data quality and data return while minimizing logistics is critical to enable principle investigators to effectively and efficiently co-locate within the future TA Alaska footprint. Three Nanometrics sensors were installed in November 2012 in power-augered holes 76 cm in depth: a Trillium Compact Posthole (PH) and two Trillium 120PH units (one standard PH and one enhanced PHQ). The installations took less than 8 hours in -30°C conditions with 4 hours of usable daylight. The Compact PH and the 120PHQ are delivering data in realtime, while the 120PH is testing standalone power and data collection systems. Preliminary results compare favorably to each other as well as the nearby Trillium 240 in a traditional TA surface vault and a 120PH in a 5 m machine-drilled borehole. This summer, two Trillium 120PA sensors were installed at a depth of 54 cm in traditional PASSCAL-style vaults, adjacent to the Trillium Compact PH, Trillium 120PH and 120PHQ emplacements. Analysis of the data collected from these five sensors will include the use of probability density functions of power spectral density to examine temporal trends in noise, signal-to-noise ratios for local, regional, and teleseismic earthquakes, and coherence of both noise and earthquake signal recordings to compare the data quality of direct burial versus temporary PASSCAL-style vaults sensor emplacements.
Flight qualification of mortar-actuated parachute deployment systems
NASA Technical Reports Server (NTRS)
Pleasants, J. E.
1975-01-01
A brief discussion outlines background of mortar use in parachute deployment systems. A description of the system operation is presented. Effects of the environment on performance are discussed as well as the instrumentation needed to assess this performance. Power unit qualification and lot qualification for shear pins and cartridges is delineated. Functional mortar system tests are described. Finally, bridle deployment and parachute deployment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Black; Arnis Judzis
2003-10-01
This document details the progress to date on the OPTIMIZATION OF DEEP DRILLING PERFORMANCE--DEVELOPMENT AND BENCHMARK TESTING OF ADVANCED DIAMOND PRODUCT DRILL BITS AND HP/HT FLUIDS TO SIGNIFICANTLY IMPROVE RATES OF PENETRATION contract for the year starting October 2002 through September 2002. The industry cost shared program aims to benchmark drilling rates of penetration in selected simulated deep formations and to significantly improve ROP through a team development of aggressive diamond product drill bit--fluid system technologies. Overall the objectives are as follows: Phase 1--Benchmark ''best in class'' diamond and other product drilling bits and fluids and develop concepts for amore » next level of deep drilling performance; Phase 2--Develop advanced smart bit--fluid prototypes and test at large scale; and Phase 3--Field trial smart bit--fluid concepts, modify as necessary and commercialize products. Accomplishments to date include the following: 4Q 2002--Project started; Industry Team was assembled; Kick-off meeting was held at DOE Morgantown; 1Q 2003--Engineering meeting was held at Hughes Christensen, The Woodlands Texas to prepare preliminary plans for development and testing and review equipment needs; Operators started sending information regarding their needs for deep drilling challenges and priorities for large-scale testing experimental matrix; Aramco joined the Industry Team as DEA 148 objectives paralleled the DOE project; 2Q 2003--Engineering and planning for high pressure drilling at TerraTek commenced; 3Q 2003--Continuation of engineering and design work for high pressure drilling at TerraTek; Baker Hughes INTEQ drilling Fluids and Hughes Christensen commence planning for Phase 1 testing--recommendations for bits and fluids.« less
Rover deployment system for lunar landing mission
NASA Astrophysics Data System (ADS)
Sutoh, Masataku; Hoshino, Takeshi; Wakabayashi, Sachiko
2017-09-01
For lunar surface exploration, a deployment system is necessary to allow a rover to leave the lander. The system should be as lightweight as possible and stored retracted when launched. In this paper, two types of retractable deployment systems for lunar landing missions, telescopic- and fold-type ramps, are discussed. In the telescopic-type system, a ramp is stored with the sections overlapping and slides out during deployment. In the fold-type system, it is stored folded and unfolds for the deployment. For the development of these ramps, a design concept study and structural analysis were conducted first. Subsequently, ramp deployment and rover release tests were performed using the developed ramp prototypes. Through these tests, the validity of their design concepts and functions have been confirmed. In the rover release test, it was observed that the developed lightweight ramp was sufficiently strong for a 50-kg rover to descend. This result suggests that this ramp system is suitable for the deployment of a 300-kg-class rover on the Moon, where the gravity is about one-sixth that on Earth. The lightweight and sturdy ramp developed in this study will contribute to both safe rover deployment and increase of lander/rover payload.
NASA Astrophysics Data System (ADS)
Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.
2011-12-01
We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.
Ford and Novitskiy participate in a CHeCS Medical Contingency Drill in the U.S. Laboratory
2012-11-26
ISS034-E-005268 (26 Nov. 2012) --- NASA astronaut Kevin Ford (background), Expedition 34 commander; and Russian cosmonaut Oleg Novitskiy, flight engineer, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Novitskiy and Tarelkin both participate in a CHeCS medical contingency drill in the U.S. Laboratory
2012-11-26
ISS034-E-005261 (26 Nov. 2012) --- Russian cosmonauts Oleg Novitskiy (left) and Evgeny Tarelkin, both Expedition 34 flight engineers, participate in a Crew Health Care System (CHeCS) medical contingency drill in the Destiny laboratory of the International Space Station. This drill gives crew members the opportunity to work as a team in resolving a simulated medical emergency onboard the space station.
Measurement of acoustic attenuation in South Pole ice
NASA Astrophysics Data System (ADS)
IceCube Collaboration; Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Gustafsson, L.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration
2011-01-01
Using the South Pole Acoustic Test Setup (SPATS) and a retrievable transmitter deployed in holes drilled for the IceCube experiment, we have measured the attenuation of acoustic signals by South Pole ice at depths between 190 m and 500 m. Three data sets, using different acoustic sources, have been analyzed and give consistent results. The method with the smallest systematic uncertainties yields an amplitude attenuation coefficient α = 3.20 ± 0.57 km-1 between 10 and 30 kHz, considerably larger than previous theoretical estimates. Expressed as an attenuation length, the analyses give a consistent result for λ ≡ 1/α of ˜300 m with 20% uncertainty. No significant depth or frequency dependence has been found.
Borehole P- and S-wave velocity at thirteen stations in Southern California
Gibbs, James F.; Boore, David M.; Tinsley, John C.; Mueller, Charles S.
2001-01-01
The U.S. Geological Survey (USGS), as part of a program to acquire seismic velocity data at locations of strong-ground motion in earthquakes (e.g., Gibbs et al., 2000), has investigated thirteen additional sites in the Southern California region. Of the thirteen sites, twelve are in the vicinity of Whittier, California, and one is located in San Bernardino, California. Several deployments of temporary seismographs were made after the Whittier Narrows, California earthquake of 1 October 1987 (Mueller et al., 1988). A deployment, between 2 October and 9 November 1987, was the motivation for selection of six of the drill sites. Temporary portable seismographs at Hoover School (HOO), Lincoln School (LIN), Corps of Engineers Station (NAR), Olive Junior High School (OLV), Santa Anita Golf Course (SAG), and Southwestern Academy (SWA) recorded significant aftershock data. These portable sites, with the exception of Santa Anita Golf Course, were co-sited with strong-motion recorders. Stations at HOO, Lincoln School Whittier (WLB), Saint Paul High School (STP), Alisos Adult School (EXC), Cerritos College Gymnasium (CGM), Cerritos College Physical Science Building (CPS), and Cerritos College Police Building (CPB) were part of an array of digital strong-motion stations deployed from "bedrock" in Whittier to near the deepest part of the Los Angeles basin in Norwalk. Although development and siting of this new array (partially installed at the time of this writing) was generally motivated by the Whittier Narrows earthquake, these new sites (with the exception of HOO) were not part of any Whittier Narrows aftershock deployments. A similar new digital strong-motion site was installed at the San Bernardino Fire Station during the same time frame. Velocity data were obtained to depths of about 90 meters at two sites, 30 meters at seven sites, and 18 to 25 meters at four sites. Lithology data from the analysis of cuttings and samples was obtained from the two 90-meter deep holes and from five of the shallower holes to supplement the velocity interpretation. The two 90-meter boreholes (SB1, CPB) have been instrumented with borehole seismometers for continuous monitoring of earthquake activity (Rogers et al., 1998). No drill samples or cuttings were obtained from the other six sites, but driller's logs were scanned for major changes noted there. The velocity models at those sites were interpreted using only the measured data and major changes in the driller's log as noted above. The sites are shown in Figure 1 and listed in Table 1, which gives references to information regarding the strong-motion data. Several hundred strong-motion records of the main-shock were written by this moderate size earthquake (ML = 5.9), making it important from a scientific and engineering prospective (Brady et al., 1988; Shakal et al., 1988).
A joint TEM-HLEM geophysical approach to borehole sitting in deeply weathered granitic terrains.
Meju, M A; Fontes, S L; Ulugergerli, E U; La Terra, E F; Germano, C R; Carvalho, R M
2001-01-01
The accurate location of aquiferous fracture zones in granite beneath a > 50 m thick weathered mantle in semi-arid regions is a major hydrogeological problem. It is expected that the zone of intensive fracturing will be more susceptible to weathering and thus be characterized by the thickest development of saprolite, a good electrically conductive target for deep-probing electromagnetic systems. The single-loop transient electromagnetic (TEM) technique is well known to have the capability for detecting concealed steep mineralized targets in mining environments and can be adapted to this hydrogeological problem. We propose that combining the conventional frequency-domain horizontal-loop electromagnetic (HLEM) and single-loop TEM is an effective practical approach to locating concealed aquiferous fracture zones. In the supporting case studies presented here, we deployed multifrequency HLEM profiling (with 50 m transmitter-receiver separation) and TEM soundings with contiguous 10 or 20 m sided loops along the survey lines in a granitic terrain affected by deep (> 50 m) weathering in northeast Brazil. A somewhat layered structure consisting of resistive hardpan/leached zone, conductive saprolite, and resistive basement is identifiable in the typical TEM depth sounding data. We obtained coincident HLEM and TEM anomalies at all the sites, enabling a relatively straightforward selection of potential drilling positions. Simple resistivity-depth transformation of the TEM data was done for each site, yielding an approximate section from which drilling depths were estimated. All of the boreholes located were successful. Although our results appear to indicate that the single-loop TEM method could be used independently for borehole sitting in deeply weathered granitic terrains and that the weathering profile over granite can be mapped using TEM depth soundings of appropriate observational bandwidth, we recommend a joint electromagnetic approach for optimal well sitting.
Qualification of the Tropical Rainfall Measuring Mission Solar Array Deployment System
NASA Technical Reports Server (NTRS)
Lawrence, Jon
1998-01-01
The Tropical Rainfall Measuring Mission (TRMM) solar arrays are placed into orbital configuration by a complex deployment system. Its two wings each comprise twin seven square solar panels located by a twelve foot articulated boom. The four spring-driven hinge lines per wing are rate-limited by viscous dampers. The wings are stowed against the spacecraft kinematically, and released by five pyrotechnically-actuated mechanisms. Since deployment failure would be catastrophic, a total of 17 deployment tests were completed to qualify the system for the worst cast launch environment. This successful testing culminated in the flawless deployment of the solar arrays on orbit, 15 minutes after launch in November 1997. The custom gravity negation system used to perform deployment testing is modular to allow its setup in several locations, including the launch site in Japan. Both platform and height can be varied, to meet the requirements of the test configuration and the test facility. Its air pad floatation system meets tight packaging requirements, allowing installation while stowed against the spacecraft without breaking any flight interfaces, and avoiding interference during motion. This system was designed concurrently with the deployment system, to facilitate its installation, to aid in the integration of the flight system to the spacecraft, while demonstrating deployment capabilities. Critical parameters for successful testing were alignment of deployment axes and tables to gravity, alignment of table seams to minimize discontinuities, and minimizing pressure drops in the air supply system. Orbital performance was similar to that predicted by ground testing.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-14
.... The new funding and deployment system would allow NMFS to determine when and where to deploy observers... requirements for vessels and processing plants at 50 CFR 679.50. The new funding and deployment system would... funding and deployment system. The proposed amendments would divide the existing Observer Program into two...
Deployer Performance Results for the TSS-1 Mission
NASA Technical Reports Server (NTRS)
Marshall, Leland S.; Geiger, Ronald V.
1995-01-01
Performance of the Tethered Satellite System (TSS) Deployer during the STS-46 mission (July and August 1992) is analyzed in terms of hardware operation at the component and system level. Although only a limited deployment of the satellite was achieved (256 meters vs 20 kilometers planned), the mission served to verify the basic capability of the Deployer to release, control and retrieve a tethered satellite. - Deployer operational flexibility that was demonstrated during the flight is also addressed. Martin Marietta was the prime contractor for the development of the Deployer, under management of the NASA George C. Marshall Space Flight Center (MSFC). The satellite was provided by Alenia, Torino, Italy under contract to the Agencia Spaziale Italiana (ASI). Proper operation of the avionics components and the majority of mechanisms was observed during the flight. System operations driven by control laws for the deployment and retrieval of the satellite were also successful for the limited deployment distance. Anomalies included separation problems for one of the two umbilical connectors between the Deployer and satellite, tether jamming (at initial Satellite fly-away and at a deployment distance of 224 meters), and a mechanical interference which prevented tether deployment beyond 256 meters. The Deployer was used in several off-nominal conditions to respond to these anomalies, which ultimately enabled a successful satellite retrieval and preservation of hardware integrity for a future re-flight. The paper begins with an introduction defining the significance of the TSS-1 mission. The body of the paper is divided into four major sections: (1) Description of Deployer System and Components, (2) Deployer Components/Systems Demonstrating Successful Operation, (3) Hardware Anomalies and Operational Responses, and (4) Design Modifications for the TSS-1R Re-flight Mission. Conclusions from the TSS-1 mission, including lessons learned are presented at the end of the manuscript.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 30 Mineral Resources 2 2013-07-01 2013-07-01 false What are the requirements for blowout preventer system testing, records, and drills? 250.1707 Section 250.1707 Mineral Resources BUREAU OF SAFETY AND..., you must conduct a low-pressure test and a high-pressure test for each component. You must conduct the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 30 Mineral Resources 2 2014-07-01 2014-07-01 false What are the requirements for blowout preventer system testing, records, and drills? 250.1707 Section 250.1707 Mineral Resources BUREAU OF SAFETY AND..., you must conduct a low-pressure test and a high-pressure test for each component. You must conduct the...
Methods and system for subsurface stabilization using jet grouting
Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.
1999-01-01
Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.
Shipboard Analytical Capabilities on the Renovated JOIDES Resolution, IODP Riserless Drilling Vessel
NASA Astrophysics Data System (ADS)
Blum, P.; Foster, P.; Houpt, D.; Bennight, C.; Brandt, L.; Cobine, T.; Crawford, W.; Fackler, D.; Fujine, K.; Hastedt, M.; Hornbacher, D.; Mateo, Z.; Moortgat, E.; Vasilyev, M.; Vasilyeva, Y.; Zeliadt, S.; Zhao, J.
2008-12-01
The JOIDES Resolution (JR) has conducted 121 scientific drilling expeditions during the Ocean Drilling Program (ODP) and the first phase of the Integrated Ocean Drilling Program (IODP) (1983-2006). The vessel and scientific systems have just completed an NSF-sponsored renovation (2005-2008). Shipboard analytical systems have been upgraded, within funding constraints imposed by market driven vessel conversion cost increases, to include: (1) enhanced shipboard analytical services including instruments and software for sampling and the capture of chemistry, physical properties, and geological data; (2) new data management capabilities built around a laboratory information management system (LIMS), digital asset management system, and web services; (3) operations data services with enhanced access to navigation and rig instrumentation data; and (4) a combination of commercial and home-made user applications for workflow- specific data extractions, generic and customized data reporting, and data visualization within a shipboard production environment. The instrumented data capture systems include a new set of core loggers for rapid and non-destructive acquisition of images and other physical properties data from drill cores. Line-scan imaging and natural gamma ray loggers capture data at unprecedented quality due to new and innovative designs. Many instruments used to characterize chemical compounds of rocks, sediments, and interstitial fluids were upgraded with the latest technology. The shipboard analytical environment features a new and innovative framework (DESCinfo) and application (DESClogik) for capturing descriptive and interpretive data from geological sub-domains such as sedimentology, petrology, paleontology, structural geology, stratigraphy, etc. This system fills a long-standing gap by providing a global database, controlled vocabularies and taxa name lists with version control, a highly configurable spreadsheet environment for data capture, and visualization of context data collected with the shipboard core loggers and other instruments.
Design of a Pneumatic Tool for Manual Drilling Operations in Confined Spaces
NASA Astrophysics Data System (ADS)
Janicki, Benjamin
This master's thesis describes the design process and testing results for a pneumatically actuated, manually-operated tool for confined space drilling operations. The purpose of this device is to back-drill pilot holes inside a commercial airplane wing. It is lightweight, and a "locator pin" enables the operator to align the drill over a pilot hole. A suction pad stabilizes the system, and an air motor and flexible drive shaft power the drill. Two testing procedures were performed to determine the practicality of this prototype. The first was the "offset drill test", which qualified the exit hole position error due to an initial position error relative to the original pilot hole. The results displayed a linear relationship, and it was determined that position errors of less than .060" would prevent the need for rework, with errors of up to .030" considered acceptable. For the second test, a series of holes were drilled with the pneumatic tool and analyzed for position error, diameter range, and cycle time. The position errors and hole diameter range were within the allowed tolerances. The average cycle time was 45 seconds, 73 percent of which was for drilling the hole, and 27 percent of which was for positioning the device. Recommended improvements are discussed in the conclusion, and include a more durable flexible drive shaft, a damper for drill feed control, and a more stable locator pin.
Deploying advanced public transportation systems in Birmingham
DOT National Transportation Integrated Search
2003-08-01
Advanced Public Transportation Systems (APTS) technologies have been deployed by many urban transit systems in order to improve efficiency, reduce operating costs, and improve service quality. The majority of : these deployments, however, have been i...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oglesby, Kenneth; Finsterle, Stefan; Zhang, Yingqi
2014-03-12
This project had two major areas of research for Engineered/ Enhanced Geothermal System (EGS) development - 1) study the potential benefits from using microholes (i.e., bores with diameters less than 10.16 centimeters/ 4 inches) and 2) study FLASH ASJ to drill/ install those microbores between a well and a fracture system. This included the methods and benefits of drilling vertical microholes for exploring the EGS reservoir and for installing multiple (forming an array of) laterals/ directional microholes for creating the in-reservoir heat exchange flow paths. Significant benefit was found in utilizing small microbore sized connecting bores for EGS efficiency andmore » project life. FLASH ASJ was deemed too complicated to optimally work in such deep reservoirs at this time.« less
GOS hook type wells, directional planning, techniques applied and problems encountered
DOE Office of Scientific and Technical Information (OSTI.GOV)
A /Azim, M.; Fahmy, H.; Salem, A.
1995-10-01
This paper addresses the various aspects of hook type wells introduced and drilled within GUPCO operations during he last two years. The first well of this category was October-G10, drilled in October 1992 from October ``G`` platform to a target point in the Nubia formation. Several wells of the same type have been drilled through 1993 and 1994. This group includes October-H1, Ramadan 3-57, July 62-69 and SB 374-3. Drilling hook type well profiles has resulted in increased production and more reserve recovery. The driving force behind using this profile was the reservoir requirements where it was required to hitmore » a target within few meters at a certain angle and direction. Torque and drag models have been used to optimize well path planning, resulting in lower torque and drag values. Daily pot appraisal of the drilling operations to monitor hole cleaning effectiveness. Combination of advanced steerable systems and PDC bits enabled GUPCO to drill these wells cost effectively.« less
Elastomers in mud motors for oil field applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hendrik, J.
1997-08-01
Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less
Deployable System for Crash-Load Attenuation
NASA Technical Reports Server (NTRS)
Kellas, Sotiris; Jackson, Karen E.
2007-01-01
An externally deployable honeycomb structure is investigated with respect to crash energy management for light aircraft. The new concept utilizes an expandable honeycomb-like structure to absorb impact energy by crushing. Distinguished by flexible hinges between cell wall junctions that enable effortless deployment, the new energy absorber offers most of the desirable features of an external airbag system without the limitations of poor shear stability, system complexity, and timing sensitivity. Like conventional honeycomb, once expanded, the energy absorber is transformed into a crush efficient and stable cellular structure. Other advantages, afforded by the flexible hinge feature, include a variety of deployment options such as linear, radial, and/or hybrid deployment methods. Radial deployment is utilized when omnidirectional cushioning is required. Linear deployment offers better efficiency, which is preferred when the impact orientation is known in advance. Several energy absorbers utilizing different deployment modes could also be combined to optimize overall performance and/or improve system reliability as outlined in the paper. Results from a series of component and full scale demonstration tests are presented as well as typical deployment techniques and mechanisms. LS-DYNA analytical simulations of selected tests are also presented.
Development of deployable structures for large space platform systems, volume 1
NASA Technical Reports Server (NTRS)
1982-01-01
Generic deployable spacecraft configurations and deployable platform systems concepts were identified. Sizing, building block concepts, orbiter packaging, thermal analysis, cost analysis, and mass properties analysis as related to platform systems integration are considered. Technology needs are examined and the major criteria used in concept selection are delineated. Requirements for deployable habitat modules, tunnels, and OTV hangars are considered.
30 CFR 250.450 - What are the recordkeeping requirements for BOP tests?
Code of Federal Regulations, 2014 CFR
2014-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.450 What are the... the duration of drilling. ...
30 CFR 250.450 - What are the recordkeeping requirements for BOP tests?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.450 What are the... the duration of drilling. ...
30 CFR 250.450 - What are the recordkeeping requirements for BOP tests?
Code of Federal Regulations, 2013 CFR
2013-07-01
..., DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Drilling Operations Blowout Preventer (bop) System Requirements § 250.450 What are the... the duration of drilling. ...
NASA Technical Reports Server (NTRS)
Hershey, Matthew P.; Newswander, Daniel R.; Evernden, Brent A.
2016-01-01
On January 29, 2016, the Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, deployed Lonestar from the ISS. The deployment of Lonestar, a collaboration between Texas A&M University and the University of Texas at Austin, continued to showcase the simplicity and reliability of the Cyclops deployment system. Cyclops, a NASA-developed, dedicated 10-100 kg class ISS SmallSat deployment system, utilizes the Japanese airlock and robotic systems to seamlessly insert SmallSats into orbit. This paper will illustrate Cyclops' successful deployment of Lonestar from the ISS as well as outline its concept of operations, interfaces, requirements, and processes.
Rowan Gorilla I rigged up, heads for eastern Canada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1984-03-01
Designed to operate in very hostile offshore environments, the first of the Rowan Gorilla class of self-elevating drilling rigs has been towed to its drilling assignment offshore Nova Scotia. About 40% larger than other jackups, these rigs can operate in 300 ft of water, drilling holes as deep as 30,000 ft. They also feature unique high-pressure and solids control systems that are expected to improve drilling procedures and efficiencies. A quantitative formation pressure evaluation program for the Hewlett-Packard HP-41 handheld calculator computes formation pressures by three independent methods - the corrected d exponent, Bourgoyne and Young, and normalized penetration ratemore » techniques for abnormal pressure detection and computation. Based on empirically derived drilling rate equations, each of the methods can be calculated separately, without being dependent on or influenced by the results or stored data from the other two subprograms. The quantitative interpretation procedure involves establishing a normal drilling rate trend and calculating the pore pressure from the magnitude of the drilling rate trend or plotting parameter increases above the trend line. Mobil's quick, accurate program could aid drilling operators in selecting the casing point, minimizing differential sticking, maintaining the proper mud weights to avoid kicks and lost circulation, and maximizing penetration rates.« less
PDC-bit performance under simulated borehole conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, E.E.; Azar, J.J.
1993-09-01
Laboratory drilling tests were used to investigate the effects of pressure on polycrystalline-diamond-compact (PDC) drill-bit performance. Catoosa shale core samples were drilled with PDC and roller-cone bits at up to 1,750-psi confining pressure. All tests were conducted in a controlled environment with a full-scale laboratory drilling system. Test results indicate, that under similar operating conditions, increases in confining pressure reduce PDC-bit performance as much as or more than conventional-rock-bit performance. Specific energy calculations indicate that a combination of rock strength, chip hold-down, and bit balling may have reduced performance. Quantifying the degree to which pressure reduces PDC-bit performance will helpmore » researchers interpret test results and improve bit designs and will help drilling engineers run PDC bits more effectively in the field.« less
Li, Xue-Mei; Zhao, Baolong; Wang, Zhouwei; Xie, Ming; Song, Jianfeng; Nghiem, Long D; He, Tao; Yang, Chi; Li, Chunxia; Chen, Gang
2014-01-01
This study examined the performance of a novel hybrid system of forward osmosis (FO) combined with vacuum membrane distillation (VMD) for reclaiming water from shale gas drilling flow-back fluid (SGDF). In the hybrid FO-VMD system, water permeated through the FO membrane into a draw solution reservoir, and the VMD process was used for draw solute recovery and clean water production. Using a SGDF sample obtained from a drilling site in China, the hybrid system could achieve almost 90% water recovery. Quality of the reclaimed water was comparable to that of bottled water. In the hybrid FO-VMD system, FO functions as a pre-treatment step to remove most contaminants and constituents that may foul or scale the membrane distillation (MD) membrane, whereas MD produces high quality water. It is envisioned that the FO-VMD system can recover high quality water not only from SGDF but also other wastewaters with high salinity and complex compositions.
Mixed reality temporal bone surgical dissector: mechanical design
2014-01-01
Objective The Development of a Novel Mixed Reality (MR) Simulation. An evolving training environment emphasizes the importance of simulation. Current haptic temporal bone simulators have difficulty representing realistic contact forces and while 3D printed models convincingly represent vibrational properties of bone, they cannot reproduce soft tissue. This paper introduces a mixed reality model, where the effective elements of both simulations are combined; haptic rendering of soft tissue directly interacts with a printed bone model. This paper addresses one aspect in a series of challenges, specifically the mechanical merger of a haptic device with an otic drill. This further necessitates gravity cancelation of the work assembly gripper mechanism. In this system, the haptic end-effector is replaced by a high-speed drill and the virtual contact forces need to be repositioned to the drill tip from the mid wand. Previous publications detail generation of both the requisite printed and haptic simulations. Method Custom software was developed to reposition the haptic interaction point to the drill tip. A custom fitting, to hold the otic drill, was developed and its weight was offset using the haptic device. The robustness of the system to disturbances and its stable performance during drilling were tested. The experiments were performed on a mixed reality model consisting of two drillable rapid-prototyped layers separated by a free-space. Within the free-space, a linear virtual force model is applied to simulate drill contact with soft tissue. Results Testing illustrated the effectiveness of gravity cancellation. Additionally, the system exhibited excellent performance given random inputs and during the drill’s passage between real and virtual components of the model. No issues with registration at model boundaries were encountered. Conclusion These tests provide a proof of concept for the initial stages in the development of a novel mixed-reality temporal bone simulator. PMID:25927300
NASA Astrophysics Data System (ADS)
Goodge, J. W.; Severinghaus, J. P.
2014-12-01
The Rapid Access Ice Drill (RAID) will penetrate the Antarctic ice sheets in order to core through deep ice, the glacial bed, and into bedrock below. This new technology will provide a critical first look at the interface between major ice caps and their subglacial geology. Currently in construction, RAID is a mobile drilling system capable of making several long boreholes in a single field season in Antarctica. RAID is interdisciplinary and will allow access to polar paleoclimate records in ice >1 Ma, direct observation at the base of the ice sheets, and recovery of rock cores from the ice-covered East Antarctic craton. RAID uses a diamond rock-coring system as in mineral exploration. Threaded drill-pipe with hardened metal bits will cut through ice using reverse circulation of Estisol for pressure-compensation, maintenance of temperature, and removal of ice cuttings. Near the bottom of the ice sheet, a wireline bottom-hole assembly will enable diamond coring of ice, the glacial bed, and bedrock below. Once complete, boreholes will be kept open with fluid, capped, and made available for future down-hole measurement of thermal gradient, heat flow, ice chronology, and ice deformation. RAID will also sample for extremophile microorganisms. RAID is designed to penetrate up to 3,300 meters of ice and take sample cores in less than 200 hours. This rapid performance will allow completion of a borehole in about 10 days before moving to the next drilling site. RAID is unique because it can provide fast borehole access through thick ice; take short ice cores for paleoclimate study; sample the glacial bed to determine ice-flow conditions; take cores of subglacial bedrock for age dating and crustal history; and create boreholes for use as an observatory in the ice sheets. Together, the rapid drilling capability and mobility of the drilling system, along with ice-penetrating imaging methods, will provide a unique 3D picture of the interior Antarctic ice sheets.
Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications
NASA Technical Reports Server (NTRS)
Aldrich, Jack B.; Okon, Avi B.
2012-01-01
The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used optimally in the context of both open-loop and closed-loop control modes (using standard realtime control hardware).
Dual Source Time-of-flight Mass Spectrometer and Sample Handling System
NASA Astrophysics Data System (ADS)
Brinckerhoff, W.; Mahaffy, P.; Cornish, T.; Cheng, A.; Gorevan, S.; Niemann, H.; Harpold, D.; Rafeek, S.; Yucht, D.
We present details of an instrument under development for potential NASA missions to planets and small bodies. The instrument comprises a dual ionization source (laser and electron impact) time-of-flight mass spectrometer (TOF-MS) and a carousel sam- ple handling system for in situ analysis of solid materials acquired by, e.g., a coring drill. This DSTOF instrument could be deployed on a fixed lander or a rover, and has an open design that would accommodate measurements by additional instruments. The sample handling system (SHS) is based on a multi-well carousel, originally de- signed for Champollion/DS4. Solid samples, in the form of drill cores or as loose chips or fines, are inserted through an access port, sealed in vacuum, and transported around the carousel to a pyrolysis cell and/or directly to the TOF-MS inlet. Samples at the TOF-MS inlet are xy-addressable for laser or optical microprobe. Cups may be ejected from their holders for analyzing multiple samples or caching them for return. Samples are analyzed with laser desorption and evolved-gas/electron-impact sources. The dual ion source permits studies of elemental, isotopic, and molecular composition of unprepared samples with a single mass spectrometer. Pulsed laser desorption per- mits the measurement of abundance and isotope ratios of refractory elements, as well as the detection of high-mass organic molecules in solid samples. Evolved gas analysis permits similar measurements of the more volatile species in solids and aerosols. The TOF-MS is based on previous miniature prototypes at JHU/APL that feature high sensitivity and a wide mass range. The laser mode, in which the sample cup is directly below the TOF-MS inlet, permits both ablation and desorption measurements, to cover elemental and molecular species, respectively. In the evolved gas mode, sample cups are raised into a small pyrolysis cell and heated, producing a neutral gas that is elec- tron ionized and pulsed into the TOF-MS. (Any imaging and laser microprobe studies would necessarily precede the pyrolysis step to assure that the grain-scale composition is captured.)
Stability analysis of coupled torsional vibration and pressure in oilwell drillstring system
NASA Astrophysics Data System (ADS)
Toumi, S.; Beji, L.; Mlayeh, R.; Abichou, A.
2018-01-01
To address security issues in oilwell drillstring system, the drilling operation handling which is in generally not autonomous but ensured by an operator may be drill bit destructive or fatal for the machine. To control of stick-slip phenomenon, the drillstring control at the right speed taking only the drillstring vibration is not sufficient as the mud dynamics and the pressure change around the drill pipes cannot be neglected. A coupled torsional vibration and pressure model is presented, and the well-posedness problem is addressed. As a Partial Differential Equation-Ordinary Differential Equation (PDE-ODE) coupled system, and in order to maintain a non destructive downhole pressure, we investigate the control stability with and without the damping term in the wave PDE. In terms of, the torsional variable, the downhole pressure, and the annulus pressure, the coupled system equilibrium is shown to be exponentially stable.
Subsurface Sample Acquisition and Transfer Systems (SSATS)
NASA Astrophysics Data System (ADS)
Rafeek, S.; Gorevan, S. P.; Kong, K. Y.
2001-01-01
In the exploration of planets and small bodies, scientists will need the services of a deep drilling and material handling system to not only obtain the samples necessary for analyses but also to precisely transfer and deposit those samples in in-situ instruments on board a landed craft or rover. The technology for such a deep sampling system as the SSATS is currently been developed by Honeybee Robotics through a PIDDP effort. The SSATS has its foundation in a one-meter prototype (SATM) drill that was developed under the New Millenium Program for ST4/Champollion. Additionally the SSATS includes relevant coring technology form a coring drill (Athena Mini-Corer) developed for the Mars Sample Return Mission. These highly developed technologies along with the current PIDDP effort, is combined to produce a sampling system that can acquire and transfer samples from various depths. Additional information is contained in the original extended abstract.
A space release/deployment system actuated by shape memory wires
NASA Astrophysics Data System (ADS)
Fragnito, Marino; Vetrella and, Sergio
2002-11-01
In this paper, the design of an innovative hold down/release and deployment device actuated by shape memory wires, to be used for the first time for the S MA RT microsatellite solar wings is shown. The release and deployment mechanisms are actuated by a Shape Memory wire (Nitinol), which allows a complete symmetrical and synchronous release, in a very short time, of the four wings in pairs. The hold down kinematic mechanism is preloaded to avoid vibration nonlinearities and unwanted deployment at launch. The deployment mechanism is a simple pulley system. The stiffness of the deployed panel-hinge system needs to be dimensioned in order to meet the on-orbit requirement for attitude control. One-way roller clutches are used to keep the panel at the desired angle during the mission. An ad hoc software has been developed to simulate both the release and deployment operations, coupling the SMA wire behavior with the system mechanics.
DOT National Transportation Integrated Search
2001-09-05
In Transportation Equity Act for the 21st Century (TEA-21), Congress established a goal to complete Commercial Vehicle Information Systems and Networks (CVISN) deployment in a majority of states by September 30, 2003. Through the CVISN Deployment Pro...
Feasibility Assessment of ITS Deployment Analysis System (IDAS) for ITS Evaluation
DOT National Transportation Integrated Search
2003-12-01
This study investigated the feasibility of utilizing the ITS Deployment Analysis System (IDAS) program version 2.2 as a tool for evaluating Intelligent Transportation Systems (ITS) deployment plans. Firstly, an online survey was conducted among metro...
Rapidly Deployed Modular Telemetry System
NASA Technical Reports Server (NTRS)
Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)
2013-01-01
The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.
58TH Fiscal Law Course Deskbook
2001-01-29
Home Page http://www.afca.scott.af.mil/ ecommerce /index.htm Air Force FAR Supplement http://www.hq.af.mil/SAFAQ/contracting/far/ affars/html Air...veterinary care in rural areas; b. construction of rudimentary surface transportation systems; c. well drilling and construction of rudimentary...care provided in rural areas of a country; (2) construction of rudimentary surface transportation systems; (3) well drilling and construction of
Deployment Mechanism for Thermal Pointing System
NASA Technical Reports Server (NTRS)
Koski, Kraig
2014-01-01
The Deployment Mechanism for the Total and Spectral Solar Irradiance Sensor (TSIS) is responsible for bringing the Thermal Pointing System (TPS) from its stowed, launch locked position to the on-orbit deployed, operational position. The Deployment Mechanism also provides structural support for the TSIS optical bench and two-axis gimbal. An engineering model of the Deployment Mechanism has been environmentally qualified and life tested. This paper will give an overview of the TSIS mission and then describe the development, design, and testing of the Deployment Mechanism.
The Iceland Deep Drilling Project (IDDP): (I) A New Era in Geothermal Development?
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2007-12-01
The Iceland Deep Drilling Project (IDDP) announced in September 2007 that an international industrial consortium has signed a new contract to collaborate in exploratory deep drilling in Iceland. The main objective of the IDDP is to investigate whether it is economically feasible to produce energy from geothermal systems at supercritical conditions. This will require drilling to depths of 4 to 5 km in order to reach temperatures of 400 to 600°C. Today, geothermal wells in Iceland typically range up to 2.5 km in depth and produce steam at about 300°C, or less, at a rate sufficient to generate about 4 to 7 megawatts of electricity. It is estimated that producing steam from a well penetrating a reservoir with temperatures >450°C, and at a rate of 0.67 cubic meters a second, could generate 40 to 50 MWe. If IDDP's test of this concept proves successful, it could lead to major improvements in the development of high-temperature geothermal resources worldwide. The consortium collaborating to fund this investigation of supercritical geothermal energy consists of three leading Icelandic power companies, Hitaveita Sudurnesja Ltd., Landsvirkjun, Orkuveita Reykjavikur, together with Orkustofnun (the National Energy Authority) and Alcoa Inc. (an international aluminum company). The three power companies financed a feasibility study for the project that was completed in 2003. Each of the three power companies is committed to drill, at their own cost, a 3.5 to 4.0 km deep well in a geothermal field that they operate. The design of these wells will permit them to be deepened to 4.5 or 5.0 km by the IDDP, and funded by the consortium with additional funds from international scientific agencies. The first deep IDDP well will be drilled in the latter part of 2008 in the Krafla geothermal field near the northern end of the central rift zone of Iceland, within a volcanic caldera that has had recent volcanic activity. Two new wells, ~4 km deep, will then be drilled at the Hengill and the Reykjanes geothermal fields during 2009-2010, and subsequently deepened. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, in southern Iceland, where the Mid-Atlantic Ridge comes on land in southern Iceland. Processes at depth at Reykjanes should be similar to those responsible for black smokers on ocean spreading centers. The IDDP has engendered considerable international scientific interest. The US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. In preparation for studying the data and samples that will be recovered by deep drilling research is underway on samples from existing wells in the target geothermal fields, and on exposed "fossil" geothermal systems and active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
NASA Astrophysics Data System (ADS)
Elders, W. A.; Fridleifsson, G. O.; Bird, D. K.; Reed, M. H.; Schiffman, P.; Zierenberg, R.
2008-12-01
The IDDP is being carried out by an international industry-government consortium in Iceland (consisting of three leading Icelandic power companies, together with the National Energy Authority), Alcoa Inc. and StatoilHydro) with the objective of investigating the economic feasibility of producing electricity from supercritical geothermal fluids. This will require drilling to temperatures of 400-600°C and depths of 4 to 5 km. Modeling suggests that supercritical water could yield an order of magnitude greater power output than that produced by conventional geothermal wells. The consortium plans to test this concept in three different geothermal fields in Iceland. If successful, major improvements in the development of high-temperature geothermal resources could result worldwide. In June 2008 preparation of the first deep IDDP well commenced in the Krafla volcanic caldera in the active rift zone of NE Iceland. Selection of the first drill site for this well was based on geological, geophysical and geochemical data, and on the results of extensive geothermal drilling since 1971. During 1975-1984, a rifting episode occurred in the caldera, involving 9 volcanic eruptions. In parts of the geothermal field acid volcanic gases made steam from some of the existing wells unsuitable for power generation for the following decade. A large magma chamber at 3-7 km depth was detected by S-wave attenuation beneath the center of the caldera, believed to be the heat source of the geothermal system. A recent MT-survey has confirmed the existence of low resistivity bodies at shallow depths within the volcano. The IDDP well will be drilled and cased to 800m depth in September, before the winter snows, and in spring 2009 it will be drilled and cased to 3.5km depth and then deepened to 4.5 km in July. Several spot cores for scientific studies will be collected between 2400m and the total depth. After the well heats, it will be flow tested and, if successful, a pilot plant for power production should follow in 2010. During 2009-19 two new wells, ~4 km deep, will be drilled at the Hengill and the Reykjanes geothermal fields in southern Iceland, and subsequently deepened into the supercritical zone. In contrast to the fresh water systems at Krafla and Hengill, the Reykjanes geothermal system produces hydrothermally modified seawater on the Reykjanes peninsula, where the Mid-Atlantic Ridge comes on land. Processes at depth at Reykjanes should be more similar to those responsible for black smokers on oceanic rift systems. Because of the considerable international scientific opportunities afforded by the IDDP, the US National Science Foundation and the International Continental Scientific Drilling Program will jointly fund the coring and sampling for scientific studies. Research is underway on samples from existing wells in the targeted geothermal fields, and on active mid-ocean ridge systems that have conditions believed to be similar to those that will be encountered in deep drilling by the IDDP. Some of these initial scientific studies by US investigators are reported in the accompanying papers.
Ebbeling, Laura G; Goralnick, Eric; Bivens, Matthew J; Femino, Meg; Berube, Claire G; Sears, Bryan; Sanchez, Leon D
2016-01-01
Disaster exercises often simulate rare, worst-case scenario events that range from mass casualty incidents to severe weather events. In actuality, situations such as information system downtimes and physical plant failures may affect hospital continuity of operations far more significantly. The objective of this study is to evaluate disaster drills at two academic and one community hospital to compare the frequency of planned drills versus real-world events that led to emergency management command center activation. Emergency management exercise and command center activation data from January 1, 2013 to October 1, 2015 were collected from a database. The activations and drills were categorized according to the nature of the event. Frequency of each type of event was compared to determine if the drills were representative of actual activations. From 2013 to 2015, there were a total of 136 command center activations and 126 drills at the three hospital sites. The most common reasons for command center activations included severe weather (25 percent, n = 34), maintenance failure (19.9 percent, n = 27), and planned mass gathering events (16.9 percent, n = 23). The most frequent drills were process tests (32.5 percent, n = 41), hazardous material-related events (22.2 percent, n = 28), and in-house fires (15.10 percent, n = 19). Further study of the reasons behind why hospitals activate emergency management plans may inform better preparedness drills. There is no clear methodology used among all hospitals to create drills and their descriptions are often vague. There is an opportunity to better design drills to address specific purposes and events.
NASA Astrophysics Data System (ADS)
Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes
2018-02-01
Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.
Pandey, Rupesh Kumar; Panda, Sudhansu Sekhar
2014-11-01
Drilling of bone is a common procedure in orthopedic surgery to produce hole for screw insertion to fixate the fracture devices and implants. The increase in temperature during such a procedure increases the chances of thermal invasion of bone which can cause thermal osteonecrosis resulting in the increase of healing time or reduction in the stability and strength of the fixation. Therefore, drilling of bone with minimum temperature is a major challenge for orthopedic fracture treatment. This investigation discusses the use of fuzzy logic and Taguchi methodology for predicting and minimizing the temperature produced during bone drilling. The drilling experiments have been conducted on bovine bone using Taguchi's L25 experimental design. A fuzzy model is developed for predicting the temperature during orthopedic drilling as a function of the drilling process parameters (point angle, helix angle, feed rate and cutting speed). Optimum bone drilling process parameters for minimizing the temperature are determined using Taguchi method. The effect of individual cutting parameters on the temperature produced is evaluated using analysis of variance. The fuzzy model using triangular and trapezoidal membership predicts the temperature within a maximum error of ±7%. Taguchi analysis of the obtained results determined the optimal drilling conditions for minimizing the temperature as A3B5C1.The developed system will simplify the tedious task of modeling and determination of the optimal process parameters to minimize the bone drilling temperature. It will reduce the risk of thermal osteonecrosis and can be very effective for the online condition monitoring of the process. © IMechE 2014.
Feasibility study of a hand guided robotic drill for cochleostomy.
Brett, Peter; Du, Xinli; Zoka-Assadi, Masoud; Coulson, Chris; Reid, Andrew; Proops, David
2014-01-01
The concept of a hand guided robotic drill has been inspired by an automated, arm supported robotic drill recently applied in clinical practice to produce cochleostomies without penetrating the endosteum ready for inserting cochlear electrodes. The smart tactile sensing scheme within the drill enables precise control of the state of interaction between tissues and tools in real-time. This paper reports development studies of the hand guided robotic drill where the same consistent outcomes, augmentation of surgeon control and skill, and similar reduction of induced disturbances on the hearing organ are achieved. The device operates with differing presentation of tissues resulting from variation in anatomy and demonstrates the ability to control or avoid penetration of tissue layers as required and to respond to intended rather than involuntary motion of the surgeon operator. The advantage of hand guided over an arm supported system is that it offers flexibility in adjusting the drilling trajectory. This can be important to initiate cutting on a hard convex tissue surface without slipping and then to proceed on the desired trajectory after cutting has commenced. The results for trials on phantoms show that drill unit compliance is an important factor in the design.
Collett, Timothy S.; Lee, Myung W.; Zyrianova, Margarita V.; Mrozewski, Stefan A.; Guerin, Gilles; Cook, Ann E.; Goldberg, Dave S.
2012-01-01
One of the objectives of the Gulf of MexicoGasHydrateJointIndustryProjectLegII (GOM JIP LegII) was the collection of a comprehensive suite of logging-while-drilling (LWD) data within gas-hydrate-bearing sand reservoirs in order to make accurate estimates of the concentration of gashydrates under various geologic conditions and to understand the geologic controls on the occurrence of gashydrate at each of the sites drilled during this expedition. The LWD sensors just above the drill bit provided important information on the nature of the sediments and the occurrence of gashydrate. There has been significant advancements in the use of downhole well-logging tools to acquire detailed information on the occurrence of gashydrate in nature: From using electrical resistivity and acoustic logs to identify gashydrate occurrences in wells to where wireline and advanced logging-while-drilling tools are routinely used to examine the petrophysical nature of gashydrate reservoirs and the distribution and concentration of gashydrates within various complex reservoir systems. Recent integrated sediment coring and well-log studies have confirmed that electrical resistivity and acoustic velocity data can yield accurate gashydrate saturations in sediment grain supported (isotropic) systems such as sand reservoirs, but more advanced log analysis models are required to characterize gashydrate in fractured (anisotropic) reservoir systems. In support of the GOM JIP LegII effort, well-log data montages have been compiled and presented in this report which includes downhole logs obtained from all seven wells drilled during this expedition with a focus on identifying and characterizing the potential gas-hydrate-bearing sedimentary section in each of the wells. Also presented and reviewed in this report are the gas-hydrate saturation and sediment porosity logs for each of the wells as calculated from available downhole well logs.
NASA Astrophysics Data System (ADS)
Hohl, Andreas; Tergeist, Mathias; Oueslati, Hatem; Jain, Jayesh R.; Herbig, Christian; Ostermeyer, Georg-Peter; Reckmann, Hanno
2015-04-01
Drilling system applications are subject to torsional vibrations that are induced by self-excitation mechanisms. A common mechanism is a falling characteristic of contact or cutting forces with respect to the relative velocity between the bit and the formation. To mitigate the effects of this mechanism, it is important to identify modes that are the most likely to be excited. However, in complex structures the identification of critical mode shapes is no trivial task. This paper discusses a criterion derived to identify critical torsional modes in drilling systems that are prone to self-excitation. Basic assumptions are a falling (velocity-weakening) characteristic of the contact forces and only one contributing mode. Multiple contact forces along the structure can be considered with different contact characteristics. Contributing parameters are angular eigenfrequency, deflection of the mode shape at the contact points, modal damping of the examined mode, and the slope of the characteristic of the contact forces at the operating point. In a case study of a drilling system the derived criterion is tested. The case study focuses on torsional vibrations excited by cutting forces observed in field measurements with high amplitudes and accelerations. The corresponding modes are localized to the so-called bottomhole assembly (BHA) at the end of the drilling system. Numerical results from a finite element analysis are compared to downhole measurements to verify the critical modes that are identified with the criterion. In addition, mass and stiffness changes along the structure are intentionally induced to beneficially influence mode shapes. Results indicate that reducing the mode shape at the source of vibration (bit) decreases the excitability of this mode shape.
Methods of instruction of the incident command system and related topics at US veterinary schools.
Smith, Joe S; Kuldau, Gretchen A
2014-12-01
The Incident Command System (ICS) is an adaptable construct designed to streamline response efforts to a disaster or other incident. We aimed to examine the methods used to teach the ICS at US veterinary schools and to explore alternative and novel methods for instruction of this material. A total of 29 US accredited veterinary schools (as of February 2012) were surveyed, and 18 of the 29 schools responded. The ICS and related topics were taught by both classroom methods and online instruction by most of the surveyed schools. Several of the schools used readily available Federal Emergency Management Agency and US Department of Agriculture resources to aid in instruction. Most schools used one course to teach the ICS, and some schools also used unique methods such as field exercises, drills, side-by-side training with disaster response teams, elective courses, extracurricular clubs, and externships to reinforce the ICS and related topics. Some of the surveyed institutions also utilized fourth-year clinical rotations and field deployments during actual disasters as a component of their ICS and emergency response curriculum. The ICS is being taught at some form at a significant number of US veterinary schools. Additional research is needed to evaluate the efficacy of the teaching methods of the ICS in US veterinary schools.
Head impact exposure measured in a single youth football team during practice drills.
Kelley, Mireille E; Kane, Joeline M; Espeland, Mark A; Miller, Logan E; Powers, Alexander K; Stitzel, Joel D; Urban, Jillian E
2017-11-01
OBJECTIVE This study evaluated the frequency, magnitude, and location of head impacts in practice drills within a youth football team to determine how head impact exposure varies among different types of drills. METHODS On-field head impact data were collected from athletes participating in a youth football team for a single season. Each athlete wore a helmet instrumented with a Head Impact Telemetry (HIT) System head acceleration measurement device during all preseason, regular season, and playoff practices. Video was recorded for all practices, and video analysis was performed to verify head impacts and assign each head impact to a specific drill. Eleven drills were identified: dummy/sled tackling, install, special teams, Oklahoma, one-on-one, open-field tackling, passing, position skill work, multiplayer tackle, scrimmage, and tackling drill stations. Generalized linear models were fitted to log-transformed data, and Wald tests were used to assess differences in head accelerations and impact rates. RESULTS A total of 2125 impacts were measured during 30 contact practices in 9 athletes (mean age 11.1 ± 0.6 years, mean mass 44.9 ± 4.1 kg). Open-field tackling had the highest median and 95th percentile linear accelerations (24.7 g and 97.8 g, respectively) and resulted in significantly higher mean head accelerations than several other drills. The multiplayer tackle drill resulted in the highest head impact frequency, with an average of 0.59 impacts per minute per athlete, but the lowest 95th percentile linear accelerations of all drills. The front of the head was the most common impact location for all drills except dummy/sled tackling. CONCLUSIONS Head impact exposure varies significantly in youth football practice drills, with several drills exposing athletes to high-magnitude and/or high-frequency head impacts. These data suggest that further study of practice drills is an important step in developing evidence-based recommendations for modifying or eliminating certain high-intensity drills to reduce head impact exposure and injury risk for all levels of play.
Ponce, David A.; Watt, Janet T.; Casteel, John; Logsdon, Grant
2009-01-01
From May to June 2008, the U.S. Geological Survey (USGS) collected and measured physical properties on 36 core samples from drill-hole Deep Blue No. 1 (DB-1) and 46 samples from drill-hole Deep Blue No. 2 (DB-2) along the west side of Blue Mountain about 40 km west of Winnemucca, Nev. These data were collected as part of an effort to determine the geophysical setting of the Blue Mountain geothermal prospect as an aid to understanding the geologic framework of geothermal systems throughout the Great Basin. The physical properties of these rocks and other rock types in the area create a distinguishable pattern of gravity and magnetic anomalies that can be used to infer their subsurface geologic structure. Drill-holes DB-1 and DB-2 were spudded in alluvium on the western flank of Blue Mountain in 2002 and 2004, respectively, and are about 1 km apart. Drill-hole DB-1 is at a ground elevation of 1,325 m and was drilled to a depth of 672 m and drill-hole DB-2 is at a ground elevation of 1,392 m and was drilled to a depth of 1522 m. Diameter of the core samples is 6.4 cm. These drill holes penetrate Jurassic and Triassic metasedimentary rocks predominantly consisting of argillite, mudstone, and sandstone; Tertiary diorite and gabbro; and younger Tertiary felsic dikes.
Antarctic Testing of the European Ultrasonic Planetary Core Drill (UPCD)
NASA Astrophysics Data System (ADS)
Timoney, R.; Worrall, K.; Li, X.; Firstbrook, D.; Harkness, P.
2018-04-01
An overview of a series of field testing in Antarctica where the Ultrasonic Planetary Core Drill (UPCD) architecture was tested. The UPCD system is the product an EC FP7 award to develop a Mars Sample Return architecture based around the ultrasonic technique.
Passive and semi-active heave compensator: Project design methodology and control strategies.
Cuellar Sanchez, William Humberto; Linhares, Tássio Melo; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa
2017-01-01
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator.
Drill hole data for coal beds in the Powder River Basin, Montana and Wyoming
Haacke, Jon E.; Scott, David C.
2013-01-01
This report by the U.S. Geological Survey (USGS) of the Powder River Basin (PRB) of Montana and Wyoming is part of the U.S. Coal Resources and Reserves Assessment Project. Essential to that project was the creation of a comprehensive drill hole database that was used for coal bed correlation and for coal resource and reserve assessments in the PRB. This drill hole database was assembled using data from the USGS National Coal Resources Data System, several other Federal and State agencies, and selected mining companies. Additionally, USGS personnel manually entered lithologic picks into the database from geophysical logs of coalbed methane, oil, and gas wells. Of the 29,928 drill holes processed, records of 21,393 are in the public domain and are included in this report. The database contains location information, lithology, and coal bed names for each drill hole.
Geothermal drilling in Cerro Prieto
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dominguez A., Bernardo
The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of controlmore » have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.« less
Passive and semi-active heave compensator: Project design methodology and control strategies
Cuellar Sanchez, William Humberto; Neto, André Benine; Fortaleza, Eugênio Libório Feitosa
2017-01-01
Heave compensator is a system that mitigates transmission of heave movement from vessels to the equipment in the vessel. In drilling industry, a heave compensator enables drilling in offshore environments. Heave compensator attenuates movement transmitted from the vessel to the drill string and drill bit ensuring security and efficiency of the offshore drilling process. Common types of heave compensators are passive, active and semi-active compensators. This article presents 4 main points. First, a bulk modulus analysis obtains a simple condition to determine if the bulk modulus can be neglected in the design of hydropneumatic passive heave compensator. Second, the methodology to design passive heave compensators with the desired frequency response. Third, four control methodologies for semi-active heave compensator are tested and compared numerically. Lastly, we show experimental results obtained from a prototype with the methodology developed to design passive heave compensator. PMID:28813494
Nakajima, Ryota; Yamamoto, Hiroyuki; Kawagucci, Shinsuke; Takaya, Yutaro; Nozaki, Tatsuo; Chen, Chong; Fujikura, Katsunori; Miwa, Tetsuya; Takai, Ken
2015-01-01
There has been an increasing interest in seafloor exploitation such as mineral mining in deep-sea hydrothermal fields, but the environmental impact of anthropogenic disturbance to the seafloor is poorly known. In this study, the effect of such anthropogenic disturbance by scientific drilling operations (IODP Expedition 331) on seabed landscape and megafaunal habitation was surveyed for over 3 years using remotely operated vehicle video observation in a deep-sea hydrothermal field, the Iheya North field, in the Okinawa Trough. We focused on observations from a particular drilling site (Site C0014) where the most dynamic change of landscape and megafaunal habitation was observed among the drilling sites of IODP Exp. 331. No visible hydrothermal fluid discharge had been observed at the sedimentary seafloor at Site C0014, where Calyptogena clam colonies were known for more than 10 years, before the drilling event. After drilling commenced, the original Calyptogena colonies were completely buried by the drilling deposits. Several months after the drilling, diffusing high-temperature hydrothermal fluid began to discharge from the sedimentary subseafloor in the area of over 20 m from the drill holes, ‘artificially’ creating a new hydrothermal vent habitat. Widespread microbial mats developed on the seafloor with the diffusing hydrothermal fluids and the galatheid crab Shinkaia crosnieri endemic to vents dominated the new vent community. The previously soft, sedimentary seafloor was hardened probably due to barite/gypsum mineralization or silicification, becoming rough and undulated with many fissures after the drilling operation. Although the effects of the drilling operation on seabed landscape and megafaunal composition are probably confined to an area of maximally 30 m from the drill holes, the newly established hydrothermal vent ecosystem has already lasted 2 years and is like to continue to exist until the fluid discharge ceases and thus the ecosystem in the area has been altered for long-term. PMID:25902075