Sample records for deployment program procedures

  1. Designing and Deploying Programming Courses: Strategies, Tools, Difficulties and Pedagogy

    ERIC Educational Resources Information Center

    Xinogalos, Stelios

    2016-01-01

    Designing and deploying programming courses is undoubtedly a challenging task. In this paper, an attempt to analyze important aspects of a sequence of two courses on imperative-procedural and object-oriented programming in a non-CS majors Department is made. This analysis is based on a questionnaire filled in by fifty students in a voluntary…

  2. Psychological screening program overview.

    PubMed

    Wright, Kathleen M; Huffman, Ann H; Adler, Amy B; Castro, Carl A

    2002-10-01

    This article reviews the literature on health surveillance conducted during military deployments, focusing on models for assessing the impact of operational deployments on peacekeepers. A discussion of the stressors and potential mental health consequences of peacekeeping operations follows with relevant examples of findings from U.S. and international military forces. Psychological screening in different peacekeeping operations conducted in U.S. Army-Europe is reviewed. The review begins with the redeployment screening of military personnel deployed to Bosnia mandated under the Joint Medical Surveillance Program, and continues through the present screening of units deployed to Kosovo. The detailed description of the screening program includes a discussion of procedures and measures and demonstrates the evolution of the program. A summary of key findings from the screening program and a discussion of future research directions are provided.

  3. An experimental predeployment training program improves self-reported patient treatment confidence and preparedness of Army combat medics.

    PubMed

    Gerhardt, Robert T; Hermstad, Erik L; Oakes, Michael; Wiegert, Richard S; Oliver, Jeffrey

    2008-01-01

    To develop and assess impact of a focused review of International Trauma Life Support (ITLS) and combat casualty care with hands-on procedure training for U.S. Army medics deploying to Iraq. The setting was a U.S. Army Medical Department Center and School and Camp Eagle, Iraq. Investigators developed and implemented a command-approved prospective educational intervention with a post hoc survey. Subjects completed a three-day course with simulator and live-tissue procedure laboratories. At deployment's end, medics were surveyed for experience, confidence, and preparedness in treating various casualty severity levels. Investigators used two-tailed t-test with unequal variance for continuous data and chi-square for categorical data. Twenty-nine medics deployed. Eight completed the experimental program. Twenty-one of 25 (84%) available medics completed the survey including six of the eight (75%) experimental medics. The experimental group reported significantly greater levels of preparedness and confidence treating "minimal," "delayed," and "immediate" casualties at arrival in Iraq. These differences dissipated progressively over the time course of the deployment. This experimental program increased combat medic confidence and perceived level of preparedness in treating several patient severity levels. Further research is warranted to determine if the experimental intervention objectively improves patient care quality and translates into lives saved early in deployment.

  4. Designing seasonal initial attack resource deployment and dispatch rules using a two-stage stochastic programming procedure

    Treesearch

    Yu Wei; Michael Bevers; Erin J. Belval

    2015-01-01

    Initial attack dispatch rules can help shorten fire suppression response times by providing easy-to-follow recommendations based on fire weather, discovery time, location, and other factors that may influence fire behavior and the appropriate response. A new procedure is combined with a stochastic programming model and tested in this study for designing initial attack...

  5. Engineering risk reduction in satellite programs

    NASA Technical Reports Server (NTRS)

    Dean, E. S., Jr.

    1979-01-01

    Methods developed in planning and executing system safety engineering programs for Lockheed satellite integration contracts are presented. These procedures establish the applicable safety design criteria, document design compliance and assess the residual risks where non-compliant design is proposed, and provide for hazard analysis of system level test, handling and launch preparations. Operations hazard analysis identifies product protection and product liability hazards prior to the preparation of operational procedures and provides safety requirements for inclusion in them. The method developed for documenting all residual hazards for the attention of program management assures an acceptable minimum level of risk prior to program deployment. The results are significant for persons responsible for managing or engineering the deployment and production of complex high cost equipment under current product liability law and cost/time constraints, have a responsibility to minimize the possibility of an accident, and should have documentation to provide a defense in a product liability suit.

  6. 49 CFR 268.17 - Project selection criteria.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., DEPARTMENT OF TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Procedures For...; will reduce emissions and/or energy consumption; or will reduce the rate of growth in needs for...

  7. 49 CFR 268.17 - Project selection criteria.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., DEPARTMENT OF TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Procedures For...; will reduce emissions and/or energy consumption; or will reduce the rate of growth in needs for...

  8. 49 CFR 268.17 - Project selection criteria.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., DEPARTMENT OF TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Procedures For...; will reduce emissions and/or energy consumption; or will reduce the rate of growth in needs for...

  9. Comparative thermal analysis of the Space Station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling acting within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  10. Comparative thermal analysis of the space station Freedom photovoltaic deployable boom structure using TRASYS, NEVADA, and SINDA programs

    NASA Technical Reports Server (NTRS)

    Baumeister, Joseph F.; Beach, Duane E.; Armand, Sasan C.

    1989-01-01

    The proposed Space Station Photovoltaic Deployable Boom was analyzed for operating temperatures. The boom glass/epoxy structure design needs protective shielding from environmental degradation. The protective shielding optical properties (solar absorptivity and emissivity) dictate the operating temperatures of the boom components. The Space Station Boom protective shielding must also withstand the effects of the extendible/retractable coiling action within the mast canister. A thermal analysis method was developed for the Space Station Deployable Boom to predict transient temperatures for a variety of surface properties. The modeling procedures used to evaluate temperatures within the boom structure incorporated the TRASYS, NEVADA, and SINDA thermal analysis programs. Use of these programs led to a comparison between TRASYS and NEVADA analysis methods. Comparing TRASYS and NEVADA results exposed differences in the environmental solar flux predictions.

  11. Improving oversight of the graduate medical education enterprise: one institution's strategies and tools.

    PubMed

    Afrin, Lawrence B; Arana, George W; Medio, Franklin J; Ybarra, Angela F N; Clarke, Harry S

    2006-05-01

    Accreditation organizations, financial stakeholders, legal systems, and regulatory agencies have increased the need for accountability in educational processes and curricular outcomes of graduate medical education. This demand for greater programmatic monitoring has placed pressure on institutions with graduate medical education (GME) programs to develop greater oversight of these programs. Meeting these challenges requires development of new GME management strategies and tools for institutional GME administrators to scrutinize programs, while still allowing these programs the autonomy to develop and implement educational methods to meet their unique training needs. At the Medical University of South Carolina (MUSC), senior administrators in the college of medicine felt electronic information management was a critical strategy for success and thus proceeded to carefully select an electronic residency management system (ERMS) to provide functionality for both individual programs and the GME enterprise as a whole. Initial plans in 2002 for a phased deployment had to be changed to a much more rapid deployment due to regulatory issues. Extensive communication and cooperation among MUSC's GME leaders resulted in a successful deployment in 2003. Evaluation completion rates have substantially improved, duty hours are carefully monitored, patient safety has improved through more careful oversight of residents' procedural privileges, regulators have been pleased, and central GME administrative visibility of program performance has dramatically improved. The system is now being expanded to MUSC's medical school and other health professions colleges. The authors discuss lessons learned and opportunities and challenges ahead, which include improving tracking of development of procedural competency, establishing and monitoring program performance standards, and integrating the ERMS with GME reimbursement systems.

  12. 49 CFR 268.9 - Eligible participants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Eligible participants. 268.9 Section 268.9 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION, DEPARTMENT OF TRANSPORTATION MAGNETIC LEVITATION TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Procedures For...

  13. Statistical Trajectory Estimation Program (STEP) implementation for BLDT post flight trajectory simulation

    NASA Technical Reports Server (NTRS)

    Shields, W. E.

    1973-01-01

    Tests were conducted to provide flight conditions for qualifying the Viking Decelerator System in a simulated Mars environment. A balloon launched decelerator test (BLDT) vehicle which has an external shape similar to the actual Mars Viking Lander Capsule was used so that the decelerator would be deployed in the wake of a blunt body. An effort was made to simulate the BLDT vehicle flights from the time they were dropped from the balloon, through decelerator deployment, until stable decelerator conditions were reached. The procedure used to simulate these flights using the Statistical Trajectory Estimation Program (STEP) is discussed. Using primarily ground-based position radar and vehicle onboard rate gyro and accelerometer data, the STEP produces a minimum variance solution of the vehicle trajectory and calculates vehicle attitude histories. Using film from cameras in the vehicle along with a computer program, attitude histories for portions of the flight before and after decelerator deployment were calculated independent of the STEP simulation. With the assumption that the vehicle motions derived from camera data are accurate, a comparison reveals that STEP was able to simulate vehicle motions for all flights both before and after decelerator deployment.

  14. 49 CFR 268.19 - Evaluation of applications for preconstruction planning assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... planning assistance. 268.19 Section 268.19 Transportation Other Regulations Relating to Transportation... TECHNOLOGY DEPLOYMENT PROGRAM Procedures For Financial Assistance § 268.19 Evaluation of applications for preconstruction planning assistance. The FRA will evaluate the applications for their completeness and...

  15. 49 CFR 268.13 - Deadline for submission of applications for preconstruction planning assistance.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... preconstruction planning assistance. 268.13 Section 268.13 Transportation Other Regulations Relating to... TRANSPORTATION TECHNOLOGY DEPLOYMENT PROGRAM Procedures For Financial Assistance § 268.13 Deadline for submission of applications for preconstruction planning assistance. Completed application packages shall be...

  16. XV-15 Tiltrotor Low Noise Terminal Area Operations

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Marcolini, Michael A.; Edwards, Bryan D.; Brieger, John T.

    1998-01-01

    Acoustic data have been acquired for the XV-15 tiltrotor aircraft performing a variety of terminal area operating procedures. This joint NASA/Bell/Army test program was conducted in two phases. During Phase 1 the XV-15 was flown over a linear array of microphones, deployed perpendicular to the flight path, at a number of fixed operating conditions. This documented the relative noise differences between the various conditions. During Phase 2 the microphone array was deployed over a large area to directly measure the noise footprint produced during realistic approach and departure procedures. The XV-15 flew approach profiles that culminated in IGE hover over a landing pad, then takeoffs from the hover condition back out over the microphone array. Results from Phase 1 identify noise differences between selected operating conditions, while those from Phase 2 identify differences in noise footprints between takeoff and approach conditions and changes in noise footprint due to variation in approach procedures.

  17. Global Positioning System data collection, processing, and analysis conducted by the U.S. Geological Survey Earthquake Hazards Program

    USGS Publications Warehouse

    Murray, Jessica R.; Svarc, Jerry L.

    2017-01-01

    The U.S. Geological Survey Earthquake Science Center collects and processes Global Positioning System (GPS) data throughout the western United States to measure crustal deformation related to earthquakes and tectonic processes as part of a long‐term program of research and monitoring. Here, we outline data collection procedures and present the GPS dataset built through repeated temporary deployments since 1992. This dataset consists of observations at ∼1950 locations. In addition, this article details our data processing and analysis procedures, which consist of the following. We process the raw data collected through temporary deployments, in addition to data from continuously operating western U.S. GPS stations operated by multiple agencies, using the GIPSY software package to obtain position time series. Subsequently, we align the positions to a common reference frame, determine the optimal parameters for a temporally correlated noise model, and apply this noise model when carrying out time‐series analysis to derive deformation measures, including constant interseismic velocities, coseismic offsets, and transient postseismic motion.

  18. Managing Risk for Thermal Vacuum Testing of the International Space Station Radiators

    NASA Technical Reports Server (NTRS)

    Carek, Jerry A.; Beach, Duane E.; Remp, Kerry L.

    2000-01-01

    The International Space Station (ISS) is designed with large deployable radiator panels that are used to reject waste heat from the habitation modules. Qualification testing of the Heat Rejection System (HRS) radiators was performed using qualification hardware only. As a result of those tests, over 30 design changes were made to the actual flight hardware. Consequently, a system level test of the flight hardware was needed to validate its performance in the final configuration. A full thermal vacuum test was performed on the flight hardware in order to demonstrate its ability to deploy on-orbit. Since there is an increased level of risk associated with testing flight hardware, because of cost and schedule limitations, special risk mitigation procedures were developed and implemented for the test program, This paper introduces the Continuous Risk Management process that was utilized for the ISS HRS test program. Testing was performed in the Space Power Facility at the NASA Glenn Research Center, Plum Brook Station located in Sandusky, Ohio. The radiator system was installed in the 100-foot diameter by 122-foot tall vacuum chamber on a special deployment track. Radiator deployments were performed at several thermal conditions similar to those expected on-orbit using both the primary deployment mechanism and the back-up deployment mechanism. The tests were highly successful and were completed without incident.

  19. Genitourinary Surgical Workload at Deployed U.S. Facilities in Iraq and Afghanistan, 2002-2016.

    PubMed

    Turner, Caryn A; Orman, Jean A; Stockinger, Zsolt T; Hudak, Steven J

    2018-06-13

    Genitourinary surgery constitutes approximately 1.15% of procedures performed for combat injuries. During forward deployment, surgeons usually deploy without urology support. To better understand the training and skills maintenance needs for genitourinary procedures by describing in detail the genitourinary surgical workload during 15 years of combat operations and compare our findings with those from previously published articles. A retrospective analysis of the Department of Defense Trauma Registry (DoDTR) was performed for all Roles 2 and 3 medical treatment facilities in Iraq and Afghanistan, from January 2002 to May 2016. The 177 ICD-9-CM procedure codes identified as genitourinary procedures were grouped into 15 anatomic categories by subject matter experts. Select groups were further subdivided by procedure types. Descriptive analyses were performed and stratified workload percentiles were calculated for the 10th, 50th, and 90th percentiles. Data analysis was performed using Stata Version 14 (College Station, TX, USA). This quality improvement project was deemed exempt from institutional review board review by the U.S. Army Institute of Surgical Research. A total of 3,963 genitourinary surgical procedures were identified, the majority occurring at Role 3 medical treatment facilities (3,512, 88.6%). The most common procedure groups were testis (20.6%), bladder (18.8%), scrotum (17.7%), and kidney (13.5%). The single most common individual procedures performed were unilateral orchiectomy (394, 9.9%), suture of laceration of scrotum and tunica vaginalis (373, 9.4%), nephroureterectomy (360, 9.1%), and other suprapubic cystostomy (268, 6.8%). Of the 77 gynecological procedures, 15 were C-sections. Genitourinary caseload per facility was low, never exceeding nine procedures per month. All deploying surgeons may be required to evaluate, stage, and surgically manage genitourinary, gynecologic, and obstetrical conditions. Surgery on the male genitalia, bladder, and kidney were the most commonly required genitourinary operative procedures in deployed facilities; therefore, non-urological surgeons should receive pre-deployment training in these techniques. The workload data from our study can be used to help guide the development of pre-deployment training to ensure military surgeons have the skills to perform the specialty procedures required while deployed.

  20. SEDS1 mission software verification using a signal simulator

    NASA Technical Reports Server (NTRS)

    Pierson, William E.

    1992-01-01

    The first flight of the Small Expendable Deployer System (SEDS1) is schedule to fly as the secondary payload of a Delta 2 in March, 1993. The objective of the SEDS1 mission is to collect data to validate the concept of tethered satellite systems and to verify computer simulations used to predict their behavior. SEDS1 will deploy a 50 lb. instrumented satellite as an end mass using a 20 km tether. Langley Research Center is providing the end mass instrumentation, while the Marshall Space Flight Center is designing and building the deployer. The objective of the experiment is to test the SEDS design concept by demonstrating that the system will satisfactorily deploy the full 20 km tether without stopping prematurely, come to a smooth stop on the application of a brake, and cut the tether at the proper time after it swings to the local vertical. Also, SEDS1 will collect data which will be used to test the accuracy of tether dynamics models used to stimulate this type of deployment. The experiment will last about 1.5 hours and complete approximately 1.5 orbits. Radar tracking of the Delta II and end mass is planned. In addition, the SEDS1 on-board computer will continuously record, store, and transmit mission data over the Delta II S-band telemetry system. The Data System will count tether windings as the tether unwinds, log the times of each turn and other mission events, monitor tether tension, and record the temperature of system components. A summary of the measurements taken during the SEDS1 are shown. The Data System will also control the tether brake and cutter mechanisms. Preliminary versions of two major sections of the flight software, the data telemetry modules and the data collection modules, were developed and tested under the 1990 NASA/ASEE Summer Faculty Fellowship Program. To facilitate the debugging of these software modules, a prototype SEDS Data System was programmed to simulate turn count signals. During the 1991 summer program, the concept of simulating signals produced by the SEDS electronics systems and circuits was expanded and more precisely defined. During the 1992 summer program, the SEDS signal simulator was programmed to test the requirements of the SEDS Mission software, and this simulator will be used in the formal verification of the SEDS Mission Software. The formal test procedures specification was written which incorporates the use of the signal simulator to test the SEDS Mission Software and which incorporates procedures for testing the other major component of the SEDS software, the Monitor Software.

  1. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  2. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  3. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  4. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  5. 49 CFR 268.3 - Different phases of the Maglev Deployment Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Different phases of the Maglev Deployment Program... DEPLOYMENT PROGRAM Overview § 268.3 Different phases of the Maglev Deployment Program. (a) The Maglev... deadlines—based on the progress of the Maglev Deployment Program; grantees will be notified accordingly. (b...

  6. Army Acquisition and Contracting Personnel Requirements: How are the Army’s Current Recruitment, Development and Retention Programs Meeting Current and Future Personnel Requirements?

    DTIC Science & Technology

    2011-09-01

    Contracting Center SEEP Student Educational Employment Program SAP Simplified Acquisition Procedures SDDC Surface Deployment and Distribution...personnel is more decentralized in DoD than it is for the uniformed military, and civilian employment levels are more driven by operating budgets...private sector recruiting efforts and make it easier to apply for DoD acquisition positions 26 5. Maximize use of the Student Educational Employment

  7. 41 CFR 301-73.2 - What are our responsibilities as participants in the Federal travel management program?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...

  8. 41 CFR 301-73.2 - What are our responsibilities as participants in the Federal travel management program?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...

  9. 41 CFR 301-73.2 - What are our responsibilities as participants in the Federal travel management program?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...

  10. 41 CFR 301-73.2 - What are our responsibilities as participants in the Federal travel management program?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... your agency's migration of ETS; (b) Ensure that you have internal policies and procedures in place to..., with agency-wide migration to ETS completed no later than September 30, 2006; (c) Establish a plan that... deployed. This plan must include your migration plan and schedule which must be submitted by March 31, 2004...

  11. Re-entry and reintegration: returning home after combat.

    PubMed

    Doyle, Michael E; Peterson, Kris A

    2005-01-01

    Soldier life exists on a continuum of readiness for deployment. Re-entry and reintegration-the return home and reunion with family and community-key the success of the deployment cycle. In current and projected future operations, the Army and society will both bear the burden of this re-entry and re-integration. Programs and procedures in place work towards improving communication, mitigating distress and resolving crises during reentry and reintegration. Key elements include: inclusion of families and communities early into the planning for reentry and reintegration; normalization (non-medicalization of distress); easy access to behavioral health professionals; and education of families on resources and benefits. Through broad collaboration, maximal benefit to the Soldier, family members and society be realized.

  12. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 4 2014-10-01 2014-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  13. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 4 2012-10-01 2012-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  14. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 4 2013-10-01 2013-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  15. 49 CFR 268.5 - Federal funding sources for the Maglev Deployment Program.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Federal funding sources for the Maglev Deployment... TECHNOLOGY DEPLOYMENT PROGRAM Overview § 268.5 Federal funding sources for the Maglev Deployment Program. (a) Federal Maglev Funds. Section 322 of Title 23 provides for the following funds for the Maglev Deployment...

  16. Observations, Ideas, and Opinions: Systems Engineering and Integration for Return to Flight

    NASA Technical Reports Server (NTRS)

    Gafka, George K.

    2006-01-01

    This presentation addresses project management and systems engineering and integration challenges for return to flight, focusing on the Thermal Protection System Tile Repair Project (TRP). The program documentation philosophy, communication with program requirements flow and philosophy and planned deliverables and documentation are outlined. The development of TRP 'use-as-is' analytical tools is also highlighted and emphasis is placed on the use flight history to assess pre-flight and real-time risk. Additionally, an overview is provided of the repair procedure, including an outline of the logistics deployment chart.

  17. Joint NASA/USAF Airborne Field Mill Program - Operation and safety considerations during flights of a Lear 28 airplane in adverse weather

    NASA Technical Reports Server (NTRS)

    Fisher, Bruce D.; Phillips, Michael R.; Maier, Launa M.

    1992-01-01

    A NASA Langley Research Center Learjet 28 research airplane was flown in various adverse weather conditions in the vicinity of the NASA Kennedy Space Center from 1990-1992 to measure airborne electric fields during the Joint NASA/USAF Airborne Field Mill Program. The objective of this program was to characterize the electrical activity in various weather phenomena common to the NASA-Kennedy area in order to refine Launch Commit Criteria for natural and triggered lightning. The purpose of the program was to safely relax the existing launch commit criteria, thereby increasing launch availability and reducing the chance for weather holds and delays. This paper discusses the operational conduct of the flight test, including environmental/safety considerations, aircraft instrumentation and modification, test limitations, flight procedures, and the procedures and responsibilities of the personnel in the ground station. Airborne field mill data were collected for all the Launch Commit Criteria during two summer and two winter deployments. These data are now being analyzed.

  18. Connected Vehicle Pilot Deployment Program phase I : comprehensive Pilot Deployment Plan : Tampa Hillsborough Expressway Authority (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-07-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is part of a national effort to advance CV technologies by deploying, demonstrating, testing and offering lessons learned for future deployers. The THE...

  19. A design procedure for a tension-wire stiffened truss-column

    NASA Technical Reports Server (NTRS)

    Greene, W. H.

    1980-01-01

    A deployable, tension wire stiffened, truss column configuration was considered for space structure applications. An analytical procedure, developed for design of the truss column and exercised in numerical studies, was based on equivalent beam stiffness coefficients in the classical analysis for an initially imperfect beam column. Failure constraints were formulated to be used in a combined weight/strength and nonlinear mathematical programming automated design procedure to determine the minimum mass column for a particular combination of design load and length. Numerical studies gave the mass characteristics of the truss column for broad ranges of load and length. Comparisons of the truss column with a baseline tubular column used a special structural efficiency parameter for this class of columns.

  20. Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.

    1997-06-01

    The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.

  1. Garrison Clinical Setting Inadequate for Maintenance of Procedural Skills for Emergency Medicine Physicians: A Cross-Sectional Study.

    PubMed

    Schauer, Steven G; Varney, Shawn M; Cox, Kristin L

    2015-01-01

    Emergency medicine physicians (EPs) are often placed in far-forward, isolated areas in theater. Maintenance of their emergency intervention skills is vital to keep the medical forces deployment ready. The US Army suggests that working at a Military Treatment Facility (MTF) is sufficient to keep emergency procedural skills at a deployment-ready level. We sought to compare the volume of emergency procedures that providers reported necessary to maintain their skills with the number available in the MTF setting. EPs were surveyed to quantify the number of procedures they reported they would need to perform yearly to stay deployment-ready. We obtained procedure data for their duty stations and compared the procedure volume with the survey responses to determine if working at an MTF is sufficient to keep providers' skills deployment ready. The reported necessary average numbers per year were as follows: tube thoracostomy (5.9), intubation (11.4), cricothyrotomy (4.2), lumbar puncture (5.2), central line (10.0), focused assessment with sonography for trauma (FAST) (21.3), reductions (10.6), splints (10.5), and sedations (11.7). None of the procedure volumes at MTFs met provider requirements with the exception of FAST examinations at the only trauma center. This suggests the garrison clinical environment is inadequate for maintaining procedure skills. Further research is needed to determine modalities that will provide adequate training volume. 2015.

  2. Infection control challenges in deployed US military treatment facilities.

    PubMed

    Hospenthal, Duane R; Crouch, Helen K

    2009-04-01

    Personnel sustaining combat-related injuries in current overseas conflicts continue to have their care complicated by infections caused by multidrug-resistant organisms, including Acinetobacter, Klebsiella, and Pseudomonas. Although presumed to be due to multiple factors both within and outside of the combat theater, concern has been raised about the difficulties in establishing and maintaining standard infection control (IC) practices in deployed medical treatment facilities and in the evacuation of the injured back to the United States. Level III facilities (hospitals capable of holding patients >72 hours) in Iraq and Afghanistan and the evacuation system from Iraq to the continental US were reviewed by an expert IC-infectious disease team. All reviewed facilities had established IC programs, but these were staffed by personnel with limited IC experience, often without perceived adequate time dedicated to perform their duties, and without uniform levels of command emphasis or support. Proper hand hygiene between patients was not always ideal. Isolation and cohorting of patients to decrease multidrug-resistant organism colonization and infection varied among facilities. Review of standard operating procedures found variability among institutions and in quality of these documents. Application of US national and theater-specific guidelines and of antimicrobial control measures also varied among facilities. Effective IC practices are often difficult to maintain in modern US hospitals. In the deployed setting, with ever-changing personnel in a less than optimal practice environment, IC is even more challenging. Standardization of practice with emphasis on the basics of IC practice (e.g., hand hygiene and isolation procedures) needs to be emplaced and maintained in the deployed setting.

  3. ATLS-stowage and deployment testing of medical supplies and pharmaceuticals

    NASA Technical Reports Server (NTRS)

    Gosbee, John; Benz, Darren; Lloyd, Charles W.; Bueker, Richard; Orsak, Debra

    1991-01-01

    The objective is to evaluate stowage and deployment methods for the Health Maintenance Facility (HMF) during microgravity. The specific objectives of this experiment are: (1) to evaluate the stowage and deployment mechanisms for the medical supplies; and (2) to evaluate the procedures for performing medical scenarios. To accomplish these objectives, the HMF test mini-racks will contain medical equipment mounted in the racks; and self-contained drawers with various mechanisms for stowing and deploying items. The medical supplies and pharmaceuticals will be destowed, handled, and restowed. The in-flight test procedures and other aspects of the KC-135 parabolic flight test to simulate weightlessness are presented.

  4. Challenges of CPAS Flight Testing

    NASA Technical Reports Server (NTRS)

    Ray, Eric S.; Morris, Aaron L.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is being designed to land the Orion Crew Module (CM) at a safe rate of descent at splashdown via a series of Drogue, Pilot, and Main parachutes. Because Orion is considerably larger and heavier than Apollo, many of the flight test techniques developed during the Apollo program must be modified. The Apollo program had a dedicated C-133 aircraft, which was modified to allow a simple airdrop of "boilerplate" flight test vehicles. However, the CPAS program must use either commercial or military assets with minimal modifications to airframes or procedures. Conceptual envelopes from 2-Degree Of Freedom trajectories are presented for several existing and novel architectures. Ideally, the technique would deliver a representative capsule shape to the desired altitude and dynamic pressure at test initiation. However, compromises must be made on the characteristics of trajectories or the fidelity of test articles to production hardware. Most of the tests to date have used traditional pallet and weight tub or missile-shaped test vehicles. New test vehicles are being designed to better incorporate Orion structural components and deploy parachutes in a more representative fashion. The first attempt to test a capsule-shaped vehicle failed due to unexpected events while setting up the test condition through a series of complex procedures. In order to avoid the loss of another expensive test article which will delay the program, simpler deployment methods are being examined and more positive control of the vehicle will be maintained. Existing challenges include interfacing with parent aircraft, separating test vehicles, achieving test conditions, and landing within limited test ranges. All these challenges must be met within cost and schedule limits.

  5. International Emergency Medical Teams Training Workshop Special Report.

    PubMed

    Albina, Anthony; Archer, Laura; Boivin, Marlène; Cranmer, Hilarie; Johnson, Kirsten; Krishnaraj, Gautham; Maneshi, Anali; Oddy, Lisa; Redwood-Campbell, Lynda; Russell, Rebecca

    2018-04-26

    The World Health Organization's (WHO; Geneva, Switzerland) Emergency Medical Team (EMT) Initiative created guidelines which define the basic procedures to be followed by personnel and teams, as well as the critical points to discuss before deploying a field hospital. However, to date, there is no formal standardized training program established for EMTs before deployment. Recognizing that the World Association of Disaster and Emergency Medicine (WADEM; Madison, Wisconsin USA) Congress brings together a diverse group of key stakeholders, a pre-Congress workshop was organized to seek out collective expertise and to identify key EMT training competencies for the future development of training programs and protocols. The future of EMT training should include standardization of curriculum and the recognition or accreditation of selected training programs. The outputs of this pre-WADEM Congress workshop provide an initial contribution to the EMT Training Working Group, as this group works on mapping training, competencies, and curriculum. Common EMT training themes that were identified as fundamental during the pre-Congress workshop include: the ability to adapt one's professional skills to low-resource settings; context-specific training, including the ability to serve the needs of the affected population in natural disasters; training together as a multi-disciplinary EMT prior to deployment; and the value of simulation in training. AlbinaA, ArcherL, BoivinM, CranmerH, JohnsonK, KrishnarajG, ManeshiA, OddyL, Redwood-CampbellL, RussellR. International Emergency Medical Teams training workshop special report.

  6. Development of a dynamic in vitro model of a stented blood vessel to evaluate the effects of stent strut material selection and surface coating on smooth muscle cell response

    NASA Astrophysics Data System (ADS)

    Winn, Bradley Huegh

    Cardiovascular disease is the leading cause of mortality in The United States and Europe, accounting for approximately half of all deaths. The most common form of cardiovascular disease is atherosclerosis, which is characterized by the formation of fatty atheromatous plaques that can grow to occlude the vessel lumen, thus causing ischemia distal to the occlusion. This is commonly treated using balloon angioplasty, which is usually done in conjunction with the deployment of a stent. Stent deployment helps hold the vessel open following the local injury caused by balloon inflation and prevents elastic recoil and subsequent negative remodeling. Stenting has been shown to significantly reduce restenosis rates from approximately 20-50% without a stent to about 10-30% with stent deployment. However, restenosis still remains the main cause of long-term stent failure. In basic terms, a balloon angioplasty procedure is a forceful displacement of an atherosclerotic lesion serving to widen the vessel lumen to increase blood flow. This procedure causes stretching of the vessel wall, tears in the atherosclerotic plaques, and general damage to the vessel in turn signaling a complex cascade of thrombosis, inflammation, intimal thickening, and vascular remodeling. Stent deployment also further complicates the immunological response by triggering a foreign body response from the implantation of a biomaterial into the body. When performing an angioplasty procedure, particularly in conjunction with stent deployment, a certain degree of vascular injury is inevitable. However, the initial injury can be further complicated by the body's local reaction to the implanted biomaterial, the severity of which can ultimately dictate the degree of restenosis and subsequently affect procedural success. The proliferative response of VSMCs to the various afore mentioned stimuli results in the formation of often copious amounts of neointimal tissue, generally known as intimal hyperplasia. The formation of this new tissue, primarily consisting of VSMCs of the synthetic phenotype and their subsequent extracellular matrix, is the sole causation of in-stent restenosis since the stent serves to prevent elastic recoil and negative remodeling. This doctoral research program is focused on endovascular stent biomaterials science and engineering. Overall, this doctoral project is founded on the hypothesis that smooth muscle cell hyperplasia, as an important causative factor for vascular restenosis following endovascular stent deployment, is triggered by the various effects of stent strut contact on the vessel wall including contact forces and material biocompatibility. In this program, a dynamic in vitro model of a stented blood vessel aimed at evaluating the effect of stent strut material selection, and surface coating on smooth muscle cell response was developed. The in vitro stented artery model was validated through the proliferation of VSMC in contact with stent struts. Additionally, it was demonstrated that, with respect to known biocompatible materials such as Nitinol and 316L stainless steel, DNA synthesis and alpha-actin expression, as indicators of VSMC phenotype, are independent of stent material composition. Furthermore, hydroxyapatite was shown to be a biocompatible stent surface coating with acceptable post-strain integrity. This coating was shown in a feasibility study to be capable of serving as a favorable drug delivery platform able to reliably deliver locally therapeutic doses of bisphosphonates, such as alendronate, to control VSMC proliferation in an in vitro model of a stented blood vessel. This stent coating/drug combination may be effective for reducing restenosis as a result of VSMC hyperplasia in vivo.

  7. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Jeff; Murphy, Sean

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which usemore » private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV have developed. The U.S. Department of Energy’s Building Technologies Office supported this research.« less

  8. Promoting North-South partnership in space data use and applications: Case study - East African countries space programs/projects new- concepts in document management

    NASA Astrophysics Data System (ADS)

    Mlimandago, S.

    This research paper have gone out with very simple and easy (several) new concepts in document management for space projects and programs which can be applied anywhere both in the developing and developed countries. These several new concepts are and have been applied in Tanzania, Kenya and Uganda and found out to bear very good results using simple procedures. The intergral project based its documentation management approach from the outset on electronic document sharing and archiving. The main objective of having new concepts was to provide a faster and wider availability of the most current space information to all parties rather than creating a paperless office. Implementation of the new concepts approach required the capturing of documents in an appropriate and simple electronic format at source establishing new procedures for project wide information sharing and the deployment of a new generation of simple procedure - WEB - based tools. Key success factors were the early adoption of Internet technologies and simple procedures for improved information flow new concepts which can be applied anywhere both in the developed and the developing countries.

  9. Rapidly Deployed Modular Telemetry System

    NASA Technical Reports Server (NTRS)

    Varnavas, Kosta A. (Inventor); Sims, William Herbert, III (Inventor)

    2013-01-01

    The present invention is a telemetry system, and more specifically is a rapidly deployed modular telemetry apparatus which utilizes of SDR technology and the FPGA programming capability to reduce the number of hardware components and programming required to deploy a telemetry system.

  10. Connected vehicle pilot deployment program phase 1 : lessons learned : final report.

    DOT National Transportation Integrated Search

    2017-01-30

    The Connected Vehicle Pilot Deployment (CV Pilots) Program seeks to spur innovation among early adopters of connected vehicle application concepts. Pilot deployment awards were given to three sites, New York City, Wyoming, and Tampa, FL. The CV pilot...

  11. Second Line of Defense Spares Program Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, Dale L.; Muller, George; Mercier, Theresa M.

    2012-11-20

    The Office of the Second Line of Defense (SLD) is part of the Department of Energy‘s (DOE) National Nuclear Security Administration (NNSA). The SLD Program accomplishes its critical global security mission by forming cooperative relationships with partner countries to install passive radiation detection systems that augment traditional inspection and law enforcement measures by alerting border officials to the presence of special nuclear or other radiological materials in cross-border traffic. An important tenet of the program is to work collaboratively with these countries to establish the necessary processes, procedures, infrastructure and conditions that will enable them to fully assume the financialmore » and technical responsibilities for operating the equipment. As the number of operational deployments grows, the SLD Program faces an increasingly complex logistics process to promote the timely and efficient supply of spare parts.« less

  12. Experimental thermal mechanics of deployable boom structures

    NASA Technical Reports Server (NTRS)

    Predmore, R.

    1972-01-01

    An apparatus was developed for thermal distortion measurements on deployable boom structures. The calibration procedure and thermal static bending plus twist measurements are considered. The thermal mechanics test facility is described. A table is presented for several examples of spacecraft applications of thermal static distortion measurements on 3-m deployable booms.

  13. Military deployment toxicology: a program manager's perspective.

    PubMed

    Knechtges, P L

    2000-02-01

    The Persian Gulf War drew attention to the potential hazards of chemicals that personnel may encounter during military operations and deployments overseas. During the War, the oil well fires of Kuwait highlighted the military threat of industrial chemicals in the area of operations. Following the War, the occurrence of Gulf War Illnesses brought home concerns and suspicions regarding "low level" and "mixed" exposures to chemicals. The public's concern and attention resulted in numerous institutional responses to the real and perceived problems of health risks during military deployments. These institutional responses ranged in scope from a Presidential Review Directive to the initiative known as the Deployment Toxicology Research, Development, Testing and Evaluation (RDT&E) Program. Most institutions, however, seem to agree that additional research is needed to assess the health risks from chemical exposures during military deployments. Establishing and managing an effective RDT&E program in risk assessment for deployed forces is a challenging enterprise. The Deployment Toxicology RDT&E Program was conceived utilizing the military's acquisition framework, an effective methodology with a proven record of fielding of new technologies. Based on a series of structured meetings with military representatives that would utilize new risk assessment tools, a hierarchical set of plans was developed to identify and prioritize end products. The challenge ahead for the Deployment Toxicology RDT&E Program is to execute these plans, provide the necessary oversight, and transition the results into successful product development.

  14. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : Tampa (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program intends to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to reduce...

  15. Connected Vehicle Pilot Deployment Program phase 1 : application deployment : Tampa (THEA) : final report.

    DOT National Transportation Integrated Search

    2016-09-01

    The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...

  16. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : ICF/Wyoming : final report.

    DOT National Transportation Integrated Search

    2016-09-13

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  17. Development of a verification program for deployable truss advanced technology

    NASA Technical Reports Server (NTRS)

    Dyer, Jack E.

    1988-01-01

    Use of large deployable space structures to satisfy the growth demands of space systems is contingent upon reducing the associated risks that pervade many related technical disciplines. The overall objectives of this program was to develop a detailed plan to verify deployable truss advanced technology applicable to future large space structures and to develop a preliminary design of a deployable truss reflector/beam structure for use a a technology demonstration test article. The planning is based on a Shuttle flight experiment program using deployable 5 and 15 meter aperture tetrahedral truss reflections and a 20 m long deployable truss beam structure. The plan addresses validation of analytical methods, the degree to which ground testing adequately simulates flight and in-space testing requirements for large precision antenna designs. Based on an assessment of future NASA and DOD space system requirements, the program was developed to verify four critical technology areas: deployment, shape accuracy and control, pointing and alignment, and articulation and maneuvers. The flight experiment technology verification objectives can be met using two shuttle flights with the total experiment integrated on a single Shuttle Test Experiment Platform (STEP) and a Mission Peculiar Experiment Support Structure (MPESS). First flight of the experiment can be achieved 60 months after go-ahead with a total program duration of 90 months.

  18. Dilatation by Soehendra stent retriever is feasible and effective in multiple deployment of metallic stents to malignant hilar biliary strictures.

    PubMed

    Kato, Hironari; Kawamoto, Hirofumi; Noma, Yasuhiro; Sonoyama, Takayuki; Tsutsumi, Koichiro; Fujii, Masakuni; Okada, Hiroyuki; Yamamoto, Kazuhide

    2013-01-01

    The endoscopic management of malignant hilar biliary strictures using multiple metallic stents (MS) is technically demanding, in the initial deployment of MS and the recovery from MS occlusion with deployment of multiple plastic stents (PS). We evaluated the outcomes of the application of a Soehendra stent retriever (SSR) as a dilator of intractable strictures. Fifty-nine patients with malignant hilar biliary strictures had multiple MS inserted using a partial stent-in-stent procedure. When we encountered intractable strictures, we adopted SSR to dilate the stricture and the interstice of the MS. We evaluated the success rate of MS or PS deployment after SSR application and procedural complications. Five of 59 patients (8%) were subjected to SSR application for the initial MS deployment. MS were successfully deployed in all of these patients (100%). MS occlusion was noted in 27 patients. We applied SSR to seven patients (26%) for the deployment of multiple PS after MS occlusion. In five patients (71%), successful PS deployment was achieved after the SSR application. No complications related to dilatation using SSR occurred in any patient. SSR proved to be a potent dilator of difficult strictures in the management of malignant hilar biliary strictures.

  19. Connected Vehicle Pilot Deployment Program phase 1 : application deployment plan : New York City : final application deployment plan.

    DOT National Transportation Integrated Search

    2016-08-04

    This document is the Task 7 Application Deployment Plan deliverable for the New York City Connected Vehicle Pilot Deployment. It describes the process that the deployment team will follow to acquire and test the connected vehicle safety applications....

  20. State perspectives on clean coal technology deployment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreland, T.

    1997-12-31

    State governments have been funding partners in the Clean Coal Technology program since its beginnings. Today, regulatory and market uncertainties and tight budgets have reduced state investment in energy R and D, but states have developed program initiatives in support of deployment. State officials think that the federal government must continue to support these technologies in the deployment phase. Discussions of national energy policy must include attention to the Clean Coal Technology program and its accomplishments.

  1. Spacecraft crew procedures from paper to computers

    NASA Technical Reports Server (NTRS)

    Oneal, Michael; Manahan, Meera

    1993-01-01

    Large volumes of paper are launched with each Space Shuttle Mission that contain step-by-step instructions for various activities that are to be performed by the crew during the mission. These instructions include normal operational procedures and malfunction or contingency procedures and are collectively known as the Flight Data File (FDF). An example of nominal procedures would be those used in the deployment of a satellite from the Space Shuttle; a malfunction procedure would describe actions to be taken if a specific problem developed during the deployment. A new FDF and associated system is being created for Space Station Freedom. The system will be called the Space Station Flight Data File (SFDF). NASA has determined that the SFDF will be computer-based rather than paper-based. Various aspects of the SFDF are discussed.

  2. Paving the Way for Small Satellite Access to Orbit: Cyclops' Deployment of SpinSat, the Largest Satellite Ever Deployed from the International Space Station

    NASA Technical Reports Server (NTRS)

    Hershey, Matthew P.; Newswander, Daniel R.; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.

    2015-01-01

    The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, successfully deployed the largest satellite ever (SpinSat) from the ISS on November 28, 2014. Cyclops, a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense Space Test Program (DoD STP) communities, is a dedicated 10-100 kg class ISS small satellite deployment system. This paper will showcase the successful deployment of SpinSat from the ISS. It will also outline the concept of operations, interfaces, requirements, and processes for satellites to utilize the Cyclops satellite deployment system.

  3. 78 FR 65747 - Notice of Funding Availability for Accelerated Innovation Deployment Demonstration

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... Funding Availability for Accelerated Innovation Deployment Demonstration AGENCY: Federal Highway... comments. SUMMARY: This notice announces the availability of funding for Accelerated Innovation Deployment (AID) Demonstration authorized within the Technology and Innovation Deployment Program (TIDP) under the...

  4. Utility of the balloon-overtube-assisted modified over-the-wire stenting technique to treat post-sleeve gastrectomy complications.

    PubMed

    Ponte, Ana; Pinho, Rolando; Proença, Luísa; Silva, Joana; Rodrigues, Jaime; Sousa, Mafalda; Silva, João Carlos; Carvalho, João

    2017-06-16

    To describe a modified technique of deployment of stents using the overtube developed for balloon-assisted enteroscopy in post-sleeve gastrectomy (SG) complications. Between January 2010 and December 2015, all patients submitted to an endoscopic stenting procedure to treat a post-SG stenosis or leakage were retrospectively collected. Procedures from patients in which the stent was deployed using the balloon-overtube-assisted modified over-the-wire (OTW) stenting technique were described. The technical success, corresponding to proper placement of the stent in the stomach resulting in exclusion of the SG leak or the stenosis, was evaluated. Complications related to stenting were also reported. Five procedures were included to treat 2 staple line leaks and 3 stenoses. Two types of stents were used, including a fully covered self-expandable metal stent designed for the SG anatomy (Hanarostent, ECBB-30-240-090; M.I. Tech, Co., Ltd, Seoul, South Korea) in 4 procedures and a biodegradable stent (BD stent 019-10A-25/20/25-080, SX-ELLA, Hradec Kralove, Czech Republic) in the remaining procedure. In all cases, an overtube was advanced with the endoscope through the SG to the duodenum. After placement of the guidewire and removal of the endoscope, the stent was easily advanced through the overtube. The overtube was pulled back and the stent was successfully deployed under fluoroscopic guidance. Technical success was achieved in all patients. The adoption of a modified technique of deployment of OTW stents using an overtube may represent an effective option in the approach of SG complications.

  5. Utility of the balloon-overtube-assisted modified over-the-wire stenting technique to treat post-sleeve gastrectomy complications

    PubMed Central

    Ponte, Ana; Pinho, Rolando; Proença, Luísa; Silva, Joana; Rodrigues, Jaime; Sousa, Mafalda; Silva, João Carlos; Carvalho, João

    2017-01-01

    AIM To describe a modified technique of deployment of stents using the overtube developed for balloon-assisted enteroscopy in post-sleeve gastrectomy (SG) complications. METHODS Between January 2010 and December 2015, all patients submitted to an endoscopic stenting procedure to treat a post-SG stenosis or leakage were retrospectively collected. Procedures from patients in which the stent was deployed using the balloon-overtube-assisted modified over-the-wire (OTW) stenting technique were described. The technical success, corresponding to proper placement of the stent in the stomach resulting in exclusion of the SG leak or the stenosis, was evaluated. Complications related to stenting were also reported. RESULTS Five procedures were included to treat 2 staple line leaks and 3 stenoses. Two types of stents were used, including a fully covered self-expandable metal stent designed for the SG anatomy (Hanarostent, ECBB-30-240-090; M.I. Tech, Co., Ltd, Seoul, South Korea) in 4 procedures and a biodegradable stent (BD stent 019-10A-25/20/25-080, SX-ELLA, Hradec Kralove, Czech Republic) in the remaining procedure. In all cases, an overtube was advanced with the endoscope through the SG to the duodenum. After placement of the guidewire and removal of the endoscope, the stent was easily advanced through the overtube. The overtube was pulled back and the stent was successfully deployed under fluoroscopic guidance. Technical success was achieved in all patients. CONCLUSION The adoption of a modified technique of deployment of OTW stents using an overtube may represent an effective option in the approach of SG complications. PMID:28690770

  6. An independent investigation into the deployment of the federal communications commissions' rural health care pilot program.

    PubMed

    Whitten, Pamela; Holtz, Bree; Laplante, Carolyn; Alverson, Dale; Krupinski, Elizabeth

    2010-12-01

    the goal of this study was to provide an independent and objective evaluation of the implementation of the Federal Communications Commission's Rural Health Care Pilot Program. thirty-nine of the programs that were provided funding through this program were interviewed and asked about their project deployment, network planning, and the involvement of their state in implementation. RESULTS showed that programs recruited project team members from a variety of fields to fulfill different roles. Network partners were often chosen because they were stakeholders in the outcome of the project and because they had a past working relationship with the grant-receiving programs. In terms of deployment, many programs had made progress in filling out necessary paperwork and were tracking milestones, but had experienced changes since first receiving funding, such as losing participants. Additionally, many encountered challenges that inhibited deployment, such as coping with rule fluctuations. Many of the programs received support from their respective state governments in project development, often through matching funds, but few states were involved in the actual management of projects. as rural healthcare facilities often lack the information technology infrastructure compared with many urban facilities, it is important to understand the implementation process for programs such as the Rural Health Care Pilot Program and to examine what contributes to progress, stagnation, or disintegration. Although the programs reported some success, almost all had encountered challenges that inhibited implementation. A follow-up study is planned to further investigate deployment and determine the implications of Federal Communications Commission funding.

  7. Liquid booster engine reuse - A recovery system

    NASA Technical Reports Server (NTRS)

    Von Eckroth, Wulf; Rohrkaste, Gary R.; Delurgio, Phillip R.

    1991-01-01

    The paper presents the design of a recovery system for a suborbital payload of an Atlas E rocket. This program utilizes off-the-shelf and previously qualified avionics, flotation, and decelerator systems. A brief history of liquid-engine recoveries is presented first, then the system design utilizing two self-contained structurally-identical pods diametrically mounted to the thrust section is outlined. A mortar-deployed drogue and the main parachute are described, and experimental procedures are considered. Data obtained from one tricluster drop employing a cylindrical test vehicle and helicopter is analyzed, and a satisfactory load balance between the parachutes is observed.

  8. 76 FR 34286 - ITS Joint Program Office; Webinar on Connected Vehicle Infrastructure Deployment Analysis Report...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-13

    ... Deployment Analysis Report Review; Notice of Public Meeting AGENCY: Research and Innovative Technology... discuss the Connected Vehicle Infrastructure Deployment Analysis Report. The webinar will provide an... and Transportation Officials (AASHTO) Connected Vehicle Infrastructure Deployment Analysis Report...

  9. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System

    PubMed Central

    2014-01-01

    Background The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. Methods This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. Results DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. Conclusions These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross. PMID:25038628

  10. Factors influencing readiness to deploy in disaster response: findings from a cross-sectional survey of the Department of Veterans Affairs Disaster Emergency Medical Personnel System.

    PubMed

    Zagelbaum, Nicole K; Heslin, Kevin C; Stein, Judith A; Ruzek, Josef; Smith, Robert E; Nyugen, Tam; Dobalian, Aram

    2014-07-19

    The Disaster Emergency Medical Personnel System (DEMPS) program provides a system of volunteers whereby active or retired Department of Veterans Affairs (VA) personnel can register to be deployed to support other VA facilities or the nation during national emergencies or disasters. Both early and ongoing volunteer training is required to participate. This study aims to identify factors that impact willingness to deploy in the event of an emergency. This analysis was based on responses from 2,385 survey respondents (response rate, 29%). Latent variable path models were developed and tested using the EQS structural equations modeling program. Background demographic variables of education, age, minority ethnicity, and female gender were used as predictors of intervening latent variables of DEMPS Volunteer Experience, Positive Attitude about Training, and Stress. The model had acceptable fit statistics, and all three intermediate latent variables significantly predicted the outcome latent variable Readiness to Deploy. DEMPS Volunteer Experience and a Positive Attitude about Training were associated with Readiness to Deploy. Stress was associated with decreased Readiness to Deploy. Female gender was negatively correlated with Readiness to Deploy; however, there was an indirect relationship between female gender and Readiness to Deploy through Positive Attitude about Training. These findings suggest that volunteer emergency management response programs such as DEMPS should consider how best to address the factors that may make women less ready to deploy than men in order to ensure adequate gender representation among emergency responders. The findings underscore the importance of training opportunities to ensure that gender-sensitive support is a strong component of emergency response, and may apply to other emergency response programs such as the Medical Reserve Corps and the American Red Cross.

  11. Connected vehicle pilot deployment program phase 1, deployment outreach plan -- New York City.

    DOT National Transportation Integrated Search

    2016-07-19

    This document is a high level plan that describes the Outreach Plan for the New York City Connected Vehicle Pilot Deployment. The plan defines the communications strategy for the CV Pilot Deployment; identifies roles and responsibilities of persons t...

  12. A description of the lunar ranging station at McDonald Observatory.

    NASA Technical Reports Server (NTRS)

    Silverberg, E. C.; Currie, D. G.

    1972-01-01

    The equipment of this station which has been in operation since the deployment of the first corner reflector by the Apollo 11 astronauts. The McDonald 2.7-m telescope is used for both transmission and reception of pulsed ruby laser light during three 45-minute daily laser runs about three weeks in a month. The present laser pulse width, timing system, calibration procedures, and signal levels are designed to achieve ranging with an accuracy to 1 nanosecond. The data rates obtained since September, 1970, are consistent with the scientific commitments of the lunar ranging program. Most of the over 200 acquisitions obtained have an accuracy to better than plus or minus 30 cm. Details of the telescope matching optics, guiding and timing equipment, and calibration procedures are discussed. Representative lunar range data are included.

  13. Commercial vehicle information systems and networks (CVISN) deployment program : benefits of CVISN level 1 deployment

    DOT National Transportation Integrated Search

    2001-09-05

    In Transportation Equity Act for the 21st Century (TEA-21), Congress established a goal to complete Commercial Vehicle Information Systems and Networks (CVISN) deployment in a majority of states by September 30, 2003. Through the CVISN Deployment Pro...

  14. Connected Vehicle Pilot Deployment Program phase 1 : deployment readiness summary : New York City : final report.

    DOT National Transportation Integrated Search

    2016-09-09

    This document describes the Deployment Readiness Summary for the New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. It demonstrates the completion of Task 1-12 deliverables of Phase 1 by the NYC team. The document also addresses h...

  15. Deployable antenna phase A study

    NASA Technical Reports Server (NTRS)

    Schultz, J.; Bernstein, J.; Fischer, G.; Jacobson, G.; Kadar, I.; Marshall, R.; Pflugel, G.; Valentine, J.

    1979-01-01

    Applications for large deployable antennas were re-examined, flight demonstration objectives were defined, the flight article (antenna) was preliminarily designed, and the flight program and ground development program, including the support equipment, were defined for a proposed space transportation system flight experiment to demonstrate a large (50 to 200 meter) deployable antenna system. Tasks described include: (1) performance requirements analysis; (2) system design and definition; (3) orbital operations analysis; and (4) programmatic analysis.

  16. Metrics for DoD Mental Health Preclinical Program Effectiveness and Clinical Program Outcomes

    DTIC Science & Technology

    2010-06-08

    Program Outcomes 13. Tue Subcommittee understands that the tenn "pre-clinical" has two meanings, one broad (a), and one specific (b): a. Any...questions) During your deployment, were you forced or pressured into having sex ? During your deployment, did someone use force or the threat of force to

  17. Non-Constant Learning Rates in Retrospective Experience Curve Analyses and their Correlation to Deployment Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Max; Smith, Sarah J.; Sohn, Michael D.

    2015-07-16

    A key challenge for policy-makers and technology market forecasters is to estimate future technology costs and in particular the rate of cost reduction versus production volume. A related, critical question is what role should state and federal governments have in advancing energy efficient and renewable energy technologies? This work provides retrospective experience curves and learning rates for several energy-related technologies, each of which have a known history of federal and state deployment programs. We derive learning rates for eight technologies including energy efficient lighting technologies, stationary fuel cell systems, and residential solar photovoltaics, and provide an overview and timeline ofmore » historical deployment programs such as state and federal standards and state and national incentive programs for each technology. Piecewise linear regimes are observed in a range of technology experience curves, and public investments or deployment programs are found to be strongly correlated to an increase in learning rate across multiple technologies. A downward bend in the experience curve is found in 5 out of the 8 energy-related technologies presented here (electronic ballasts, magnetic ballasts, compact fluorescent lighting, general service fluorescent lighting, and the installed cost of solar PV). In each of the five downward-bending experience curves, we believe that an increase in the learning rate can be linked to deployment programs to some degree. This work sheds light on the endogenous versus exogenous contributions to technological innovation and highlights the impact of exogenous government sponsored deployment programs. This work can inform future policy investment direction and can shed light on market transformation and technology learning behavior.« less

  18. Design Validation Methodology Development for an Aircraft Sensor Deployment System

    NASA Astrophysics Data System (ADS)

    Wowczuk, Zenovy S.

    The OCULUS 1.0 Sensor Deployment concept design, was developed in 2004 at West Virginia University (WVU), outlined the general concept of a deployment system to be used on a C-130 aircraft. As a sequel, a new system, OCULUS 1.1, has been developed and designed. The new system transfers the concept system design to a safety of flight design, and also enhanced to a pre-production system to be used as the test bed to gain full military certification approval. The OCULUS 1.1 system has an implemented standard deployment system/procedure to go along with a design suited for military certification and implementation. This design process included analysis of the system's critical components and the generation of a critical component holistic model to be used as an analysis tool for future payload modification made to the system. Following the completion of the OCULUS 1.1 design, preparations and procedures for obtaining military airworthiness certification are described. The airworthiness process includes working with the agency overseeing all modifications to the normal operating procedures made to military C-130 aircraft and preparing the system for an experimental flight test. The critical steps in his process include developing a complete documentation package that details the analysis performed on the OCULUS 1.1 system and also the design of experiment flight test plan to analyze the system. Following the approval of the documentation and design of experiment an experimental flight test of the OCULUS 1.1 system was performed to verify the safety and airworthiness of the system. This test proved successfully that the OCULUS 1.1 system design was airworthy and approved for military use. The OCULUS 1.1 deployment system offers an open architecture design that is ideal for use as a sensor testing platform for developmental airborne sensors. The system's patented deployment methodology presents a simplistic approach to reaching the systems final operating position which offers the most robust field of view area of rear ramp deployment systems.

  19. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at the SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J. B.; Austin, W. E.; Dukes, H. H.

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins.

  20. Highly Selective Nuclide Removal from the R-Reactor Disassembly Basin at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pickett, J.B.

    This paper describes the results of a deployment of highly selective ion-exchange resin technologies for the in-situ removal of Cs-137 and Sr-90 from the Savannah River Site (SRS) R-Reactor Disassembly Basin. The deployment was supported by the DOE Office of Science and Technology's (OST, EM-50) National Engineering Technology Laboratory (NETL), as a part of an Accelerated Site Technology Deployment (ASTD) project. The Facilities Decontamination and Decommissioning (FDD) Program at the SRS conducted this deployment as a part of an overall program to deactivate three of the site's five reactor disassembly basins

  1. US National Large-scale City Orthoimage Standard Initiative

    USGS Publications Warehouse

    Zhou, G.; Song, C.; Benjamin, S.; Schickler, W.

    2003-01-01

    The early procedures and algorithms for National digital orthophoto generation in National Digital Orthophoto Program (NDOP) were based on earlier USGS mapping operations, such as field control, aerotriangulation (derived in the early 1920's), the quarter-quadrangle-centered (3.75 minutes of longitude and latitude in geographic extent), 1:40,000 aerial photographs, and 2.5 D digital elevation models. However, large-scale city orthophotos using early procedures have disclosed many shortcomings, e.g., ghost image, occlusion, shadow. Thus, to provide the technical base (algorithms, procedure) and experience needed for city large-scale digital orthophoto creation is essential for the near future national large-scale digital orthophoto deployment and the revision of the Standards for National Large-scale City Digital Orthophoto in National Digital Orthophoto Program (NDOP). This paper will report our initial research results as follows: (1) High-precision 3D city DSM generation through LIDAR data processing, (2) Spatial objects/features extraction through surface material information and high-accuracy 3D DSM data, (3) 3D city model development, (4) Algorithm development for generation of DTM-based orthophoto, and DBM-based orthophoto, (5) True orthophoto generation by merging DBM-based orthophoto and DTM-based orthophoto, and (6) Automatic mosaic by optimizing and combining imagery from many perspectives.

  2. Flight Dynamics Operations: Methods and Lessons Learned from Space Shuttle Orbit Operations

    NASA Technical Reports Server (NTRS)

    Cutri-Kohart, Rebecca M.

    2011-01-01

    The Flight Dynamics Officer is responsible for trajectory maintenance of the Space Shuttle. This paper will cover high level operational considerations, methodology, procedures, and lessons learned involved in performing the functions of orbit and rendezvous Flight Dynamics Officer and leading the team of flight dynamics specialists during different phases of flight. The primary functions that will be address are: onboard state vector maintenance, ground ephemeris maintenance, calculation of ground and spacecraft acquisitions, collision avoidance, burn targeting for the primary mission, rendezvous, deorbit and contingencies, separation sequences, emergency deorbit preparation, mass properties coordination, payload deployment planning, coordination with the International Space Station, and coordination with worldwide trajectory customers. Each of these tasks require the Flight Dynamics Officer to have cognizance of the current trajectory state as well as the impact of future events on the trajectory plan in order to properly analyze and react to real-time changes. Additionally, considerations are made to prepare flexible alternative trajectory plans in the case timeline changes or a systems failure impact the primary plan. The evolution of the methodology, procedures, and techniques used by the Flight Dynamics Officer to perform these tasks will be discussed. Particular attention will be given to how specific Space Shuttle mission and training simulation experiences, particularly off-nominal or unexpected events such as shortened mission durations, tank failures, contingency deorbit, navigation errors, conjunctions, and unexpected payload deployments, have influenced the operational procedures and training for performing Space Shuttle flight dynamics operations over the history of the program. These lessons learned can then be extended to future vehicle trajectory operations.

  3. STS-31 pre-deployment checkout of the Hubble Space Telescope (HST) on OV-103

    NASA Image and Video Library

    1990-04-25

    The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is oriented in a 90 degree pitch position during STS-31 pre-deployment checkout procedures. The solar array (SA) panel (center) and high gain antennae (HGA) (on either side) are stowed along the Support System Module (SSM) forward shell prior to deployment. The sun highlights HST against the blackness of space.

  4. Connected vehicle pilot deployment program phase 2, data management plan - Wyoming

    DOT National Transportation Integrated Search

    2017-04-10

    The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...

  5. Design, development and fabrication of a deployable/retractable truss beam model for large space structures application

    NASA Technical Reports Server (NTRS)

    Adams, Louis R.

    1987-01-01

    The design requirements for a truss beam model are reviewed. The concept behind the beam is described. Pertinent analysis and studies concerning beam definition, deployment loading, joint compliance, etc. are given. Design, fabrication and assembly procedures are discussed.

  6. Quality Assurance of Real-Time Oceanographic Data from the Cabled Array of the Ocean Observatories Initiative

    NASA Astrophysics Data System (ADS)

    Kawka, O. E.; Nelson, J. S.; Manalang, D.; Kelley, D. S.

    2016-02-01

    The Cabled Array component of the NSF-funded Ocean Observatories Initiative (OOI) provides access to real-time physical, chemical, geological, and biological data from water column and seafloor platforms/instruments at sites spanning the southern half of the Juan de Fuca Plate. The Quality Assurance (QA) program for OOI data is designed to ensure that data products meet OOI science requirements. This overall data QA plan establishes the guidelines for assuring OOI data quality and summarizes Quality Control (QC) protocols and procedures, based on best practices, which can be utilized to ensure the highest quality data across the OOI program. This presentation will highlight, specifically, the QA/QC approach being utilized for the OOI Cabled Array infrastructure and data and will include a summary of both shipboard and shore-based protocols currently in use. Aspects addressed will be pre-deployment instrument testing and calibration checks, post-deployment and pre-recovery field verification of data, and post-recovery "as-found" testing of instruments. Examples of QA/QC data will be presented and specific cases of cabled data will be discussed in the context of quality assessments and adjustment/correction of OOI datasets overall for inherent sensor drift and/or instrument fouling.

  7. A Comparison of the Incidence of Cricothyrotomy in the Deployed Setting to the Emergency Department at a Level 1 Military Trauma Center: A Descriptive Analysis

    DTIC Science & Technology

    2015-03-01

    the providers in the deployed setting and include the Tactical Combat Casualty Care casualty card. Data are then coded for query and analysis. All...intubate, can’t ventilate” and disruption of head/neck anatomy. Of the four procedures performed in the ED setting, three patients survived to hospital...data from SAMMC are limited by the search methods and data extraction. We searched by Current Procedural Ter- minology code , which requires that the

  8. The Feasibility of Real-Time Intraoperative Performance Assessment With SIMPL (System for Improving and Measuring Procedural Learning): Early Experience From a Multi-institutional Trial.

    PubMed

    Bohnen, Jordan D; George, Brian C; Williams, Reed G; Schuller, Mary C; DaRosa, Debra A; Torbeck, Laura; Mullen, John T; Meyerson, Shari L; Auyang, Edward D; Chipman, Jeffrey G; Choi, Jennifer N; Choti, Michael A; Endean, Eric D; Foley, Eugene F; Mandell, Samuel P; Meier, Andreas H; Smink, Douglas S; Terhune, Kyla P; Wise, Paul E; Soper, Nathaniel J; Zwischenberger, Joseph B; Lillemoe, Keith D; Dunnington, Gary L; Fryer, Jonathan P

    Intraoperative performance assessment of residents is of growing interest to trainees, faculty, and accreditors. Current approaches to collect such assessments are limited by low participation rates and long delays between procedure and evaluation. We deployed an innovative, smartphone-based tool, SIMPL (System for Improving and Measuring Procedural Learning), to make real-time intraoperative performance assessment feasible for every case in which surgical trainees participate, and hypothesized that SIMPL could be feasibly integrated into surgical training programs. Between September 1, 2015 and February 29, 2016, 15 U.S. general surgery residency programs were enrolled in an institutional review board-approved trial. SIMPL was made available after 70% of faculty and residents completed a 1-hour training session. Descriptive and univariate statistics analyzed multiple dimensions of feasibility, including training rates, volume of assessments, response rates/times, and dictation rates. The 20 most active residents and attendings were evaluated in greater detail. A total of 90% of eligible users (1267/1412) completed training. Further, 13/15 programs began using SIMPL. Totally, 6024 assessments were completed by 254 categorical general surgery residents (n = 3555 assessments) and 259 attendings (n = 2469 assessments), and 3762 unique operations were assessed. There was significant heterogeneity in participation within and between programs. Mean percentage (range) of users who completed ≥1, 5, and 20 assessments were 62% (21%-96%), 34% (5%-75%), and 10% (0%-32%) across all programs, and 96%, 75%, and 32% in the most active program. Overall, response rate was 70%, dictation rate was 24%, and mean response time was 12 hours. Assessments increased from 357 (September 2015) to 1146 (February 2016). The 20 most active residents each received mean 46 assessments by 10 attendings for 20 different procedures. SIMPL can be feasibly integrated into surgical training programs to enhance the frequency and timeliness of intraoperative performance assessment. We believe SIMPL could help facilitate a national competency-based surgical training system, although local and systemic challenges still need to be addressed. Copyright © 2016. Published by Elsevier Inc.

  9. Biogeochemical sensor performance in the SOCCOM profiling float array

    NASA Astrophysics Data System (ADS)

    Johnson, Kenneth S.; Plant, Joshua N.; Coletti, Luke J.; Jannasch, Hans W.; Sakamoto, Carole M.; Riser, Stephen C.; Swift, Dana D.; Williams, Nancy L.; Boss, Emmanuel; Haëntjens, Nils; Talley, Lynne D.; Sarmiento, Jorge L.

    2017-08-01

    The Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM) program has begun deploying a large array of biogeochemical sensors on profiling floats in the Southern Ocean. As of February 2016, 86 floats have been deployed. Here the focus is on 56 floats with quality-controlled and adjusted data that have been in the water at least 6 months. The floats carry oxygen, nitrate, pH, chlorophyll fluorescence, and optical backscatter sensors. The raw data generated by these sensors can suffer from inaccurate initial calibrations and from sensor drift over time. Procedures to correct the data are defined. The initial accuracy of the adjusted concentrations is assessed by comparing the corrected data to laboratory measurements made on samples collected by a hydrographic cast with a rosette sampler at the float deployment station. The long-term accuracy of the corrected data is compared to the GLODAPv2 data set whenever a float made a profile within 20 km of a GLODAPv2 station. Based on these assessments, the fleet average oxygen data are accurate to 1 ± 1%, nitrate to within 0.5 ± 0.5 µmol kg-1, and pH to 0.005 ± 0.007, where the error limit is 1 standard deviation of the fleet data. The bio-optical measurements of chlorophyll fluorescence and optical backscatter are used to estimate chlorophyll a and particulate organic carbon concentration. The particulate organic carbon concentrations inferred from optical backscatter appear accurate to with 35 mg C m-3 or 20%, whichever is larger. Factors affecting the accuracy of the estimated chlorophyll a concentrations are evaluated.Plain Language SummaryThe ocean science community must move toward greater use of autonomous platforms and sensors if we are to extend our knowledge of the effects of climate driven change within the ocean. Essential to this shift in observing strategies is an understanding of the performance that can be obtained from biogeochemical sensors on platforms deployed for years and the procedures used to process data. This is the subject of the manuscript. We show the performance of oxygen, nitrate, pH, and bio-optical sensors that have been deployed on robotic profiling floats in the Southern Ocean for time periods up to 32 months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31730','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31730"><span>Connected Vehicle Pilot Deployment Program phase 1 : comprehensive deployment plan : New York City : volume 1 : technical application : part I : technical and management approach.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-01</p> <p>This document describes the Deployment Plan for the New York City Department of Transportation (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. This plan describes the approach to complete Phase 2 Design/Build/Test, and Phase 3 Operate and Ma...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32587','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32587"><span>Feasibility study of a campus-based bikesharing program at UNLV : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-07-01</p> <p>Bikesharing systems have been deployed worldwide as a transportation demand management strategy to encourage active modes and reduce single-occupant vehicle travel. These systems have been deployed at universities, both as part of a city program or a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30810','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30810"><span>Connected vehicle pilot deployment program phase 1, security management operational concept : ICF/Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-03-14</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32295','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32295"><span>Connected vehicle pilot deployment program phase 2, data privacy plan – Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-04-14</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4361','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4361"><span>Safety pilot model deployment : lessons learned and recommendations for future connected vehicle activities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-09-01</p> <p>The Connected Vehicle Safety Pilot was a research program that demonstrated the readiness of DSRC-based connected vehicle safety applications for nationwide deployment. The vision of the Connected Vehicle Safety Pilot Program was to test connected ve...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32392','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32392"><span>The Innovative Technology Deployment (ITD)/ Commercial Vehicle Information Systems and Networks (CVISN) Program, 2016 annual report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-06-01</p> <p>On December 4, 2015, the Fixing Americas Surface Transportation Act, 2015 (FAST Act) (Pub. L. 114-94) established the Innovative Technology Deployment (ITD) Grant Program, replacing the long-standing Commercial Vehicle Information Systems and Netw...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35425','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35425"><span>Connected Vehicle Pilot Deployment Program, Comprehensive Installation Plan - WYDOT CV Pilot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-02-16</p> <p>The Wyoming Department of Transportation's (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32763','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32763"><span>Connected vehicle pilot deployment program phase 2 : data management plan - Tampa (THEA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-10-01</p> <p>The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communication technology to re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30734','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30734"><span>Connected vehicle pilot deployment program phase 1, safety management plan – ICF/Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-03-14</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4292','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4292"><span>Early institutional lessons from the CVISN model deployments : checklists for success</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1998-10-01</p> <p>In 1996, a model deployment program launched deployment of CVISN in eight states across the country: California, Colorado, Connecticut, Kentucky, Michigan, Minnesota, Oregon, and Washington. Representatives of these states are attending workshops and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4772831"><span>The Typhoid Fever Surveillance in Africa Program (TSAP): Clinical, Diagnostic, and Epidemiological Methodologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>von Kalckreuth, Vera; Konings, Frank; Aaby, Peter; Adu-Sarkodie, Yaw; Ali, Mohammad; Aseffa, Abraham; Baker, Stephen; Breiman, Robert F.; Bjerregaard-Andersen, Morten; Clemens, John D.; Crump, John A.; Cruz Espinoza, Ligia Maria; Deerin, Jessica Fung; Gasmelseed, Nagla; Sow, Amy Gassama; Im, Justin; Keddy, Karen H.; Cosmas, Leonard; May, Jürgen; Meyer, Christian G.; Mintz, Eric D.; Montgomery, Joel M.; Olack, Beatrice; Pak, Gi Deok; Panzner, Ursula; Park, Se Eun; Rakotozandrindrainy, Raphaël; Schütt-Gerowitt, Heidi; Soura, Abdramane Bassiahi; Warren, Michelle R.; Wierzba, Thomas F.; Marks, Florian</p> <p>2016-01-01</p> <p>Background. New immunization programs are dependent on data from surveillance networks and disease burden estimates to prioritize target areas and risk groups. Data regarding invasive Salmonella disease in sub-Saharan Africa are currently limited, thus hindering the implementation of preventive measures. The Typhoid Fever Surveillance in Africa Program (TSAP) was established by the International Vaccine Institute to obtain comparable incidence data on typhoid fever and invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa through standardized surveillance in multiple countries. Methods. Standardized procedures were developed and deployed across sites for study site selection, patient enrolment, laboratory procedures, quality control and quality assurance, assessment of healthcare utilization and incidence calculations. Results. Passive surveillance for bloodstream infections among febrile patients was initiated at thirteen sentinel sites in ten countries (Burkina Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar, Senegal, South Africa, Sudan, and Tanzania). Each TSAP site conducted case detection using these standardized methods to isolate and identify aerobic bacteria from the bloodstream of febrile patients. Healthcare utilization surveys were conducted to adjust population denominators in incidence calculations for differing healthcare utilization patterns and improve comparability of incidence rates across sites. Conclusions. By providing standardized data on the incidence of typhoid fever and iNTS disease in sub-Saharan Africa, TSAP will provide vital input for targeted typhoid fever prevention programs. PMID:26933028</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_3");'>3</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li class="active"><span>5</span></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_5 --> <div id="page_6" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="101"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29901771','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29901771"><span>Preparedness Evaluation of French Military Orthopedic Surgeons Before Deployment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Choufani, Camille; Barbier, Olivier; Mayet, Aurélie; Rigal, Sylvain; Mathieu, Laurent</p> <p>2018-06-13</p> <p>A deployed military orthopedic surgeon is a trauma surgeon working in austere conditions. The first aim of this study was to analyze the current activity of French military orthopedic surgeons in the field and to identify the differences of the combat zone with their daily practice. The second aim was to assess the adequacy of the preparedness they received before their deployment and to identify additional needs that could be addressed in future training. An evaluation survey was sent to all French military orthopedic surgeons deployed in theaters of operations between 2004 and 2014. An analogic visual scale of 10 was used to evaluate their surgical activity abroad and prior training. A total of 55 surgeons, with a median deployment number of 7, were included in this study after they answered the survey. Debridement and external fixation were the most common orthopedic procedures. The practice of general surgery was mostly concerned with vascular and abdominal injuries as part of damage control procedures. Median scores were ranked at seven for surgical preparedness, five for physical readiness, and three for mental preparedness. There was a significant inverse relationship between the number of missions performed and the evaluation of surgical preparedness. The higher they perceived their mental preparedness, the better they estimated their surgical preparedness. In the French Army, deployed orthopedic surgeons perform general surgical activity. Their initial training must be adapted to this constraint and enhanced by continuing medical education.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850015527','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850015527"><span>Structural dynamics analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Housner, J. M.; Anderson, M.; Belvin, W.; Horner, G.</p> <p>1985-01-01</p> <p>Dynamic analysis of large space antenna systems must treat the deployment as well as vibration and control of the deployed antenna. Candidate computer programs for deployment dynamics, and issues and needs for future program developments are reviewed. Some results for mast and hoop deployment are also presented. Modeling of complex antenna geometry with conventional finite element methods and with repetitive exact elements is considered. Analytical comparisons with experimental results for a 15 meter hoop/column antenna revealed the importance of accurate structural properties including nonlinear joints. Slackening of cables in this antenna is also a consideration. The technology of designing actively damped structures through analytical optimization is discussed and results are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19076743','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19076743"><span>The Deployment Health Surveillance Program: vision and challenges of health surveillance for Australian military cohorts.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barton, Christopher A; Dobson, Annette; Treloar, Susan A; McClintock, Christine; McFarlane, Alexander C</p> <p>2008-12-01</p> <p>The Australian Government has supported the establishment of a Deployment Health Surveillance Program for the Australian Defence Force. Although some health screening mechanisms already exist for Australian Defence Force personnel, until now health data have been used largely for clinical management at an individual level and have not been aggregated to identify trends in health and risk factors in the shorter or longer term. We identify challenges for and potential benefits of health surveillance in the military context, describe features of the Program and progress to date. Retrospective and cross-sectional projects based on deployments to the Near North Area of Influence since 1997 are under way. A planned prospective model of health surveillance for those deploying to the Middle East promises more timely attention to any emerging health problems for military personnel and veterans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31732','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31732"><span>Connected Vehicle Pilot Deployment Program phase 1 : performance measurement and evaluation support plan : Tampa (THEA) : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-03-14</p> <p>The Performance Measurement and Evaluation Support Plan for the Connected Vehicle Pilot Deployment Program Phase 1, Tampa Hillsborough Expressway Authority, outlines the goals and objectives for the Pilot as well as the proposed performance metrics. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3582','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3582"><span>Connected vehicle pilot deployment program phase 1, concept of operations (ConOps), ICF/Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2015-12-01</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31402','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31402"><span>Connected Vehicle Pilot Deployment Program Phase 1, Human Use Approval Summary – ICF/Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-18</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30931','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30931"><span>Connected vehicle pilot deployment program phase 1, participant training and education plan – ICF/Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-06-22</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31722','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31722"><span>Connected Vehicle Pilot Deployment Program phase 1 : partnership status summary : ICF/Wyoming : draft report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-12</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32034','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32034"><span>Connected vehicle pilot deployment program phase II data privacy plan – Tampa (THEA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-02-01</p> <p>The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35878','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35878"><span>Feasibility Assessment of ITS Deployment Analysis System (IDAS) for ITS Evaluation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-12-01</p> <p>This study investigated the feasibility of utilizing the ITS Deployment Analysis System (IDAS) program version 2.2 as a tool for evaluating Intelligent Transportation Systems (ITS) deployment plans. Firstly, an online survey was conducted among metro...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31395','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31395"><span>Connected Vehicle Pilot Deployment Program Phase 1, Outreach Plan – Tampa (THEA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-06</p> <p>This document presents the Outreach Plan for the Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment. The goal of the pilot deployment is to advance and enable safe, interoperable, networked wireless communications ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850022054','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850022054"><span>Application of the ADAMS program to deployable space truss structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Calleson, R. E.</p> <p>1985-01-01</p> <p>The need for a computer program to perform kinematic and dynamic analyses of large truss structures while deploying from a packaged configuration in space led to the evaluation of several existing programs. ADAMS (automatic dynamic analysis of mechanical systems), a generalized program from performing the dynamic simulation of mechanical systems undergoing large displacements, is applied to two concepts of deployable space antenna units. One concept is a one cube folding unit of Martin Marietta's Box Truss Antenna and the other is a tetrahedral truss unit of a Tetrahedral Truss Antenna. Adequate evaluation of dynamic forces during member latch-up into the deployed configuration is not yet available from the present version of ADAMS since it is limited to the assembly of rigid bodies. Included is a method for estimating the maximum bending stress in a surface member at latch-up. Results include member displacement and velocity responses during extension and an example of member bending stresses at latch-up.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFMIN23A1070M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFMIN23A1070M"><span>Experiences with engineering, making and deploying sensor networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Martinez, K.; Hart, J. K.</p> <p>2008-12-01</p> <p>Engineers and computer scientists will usually persuade themselves that producing a sensor network is matter of design, test and deploy. After several deployments in and on Glaciers within the Glacsweb project we are in a better position to understand the reality of producing sensor networks for real-world deployments. Not only does the electronics design, programming, management and logistics have to be perfected but a full understanding of the geoscience user's priorities and needs have to be an integral part of the system. This talk will outline the achievements of the 2008 Iceland subglacial probe deployment concentrating on the unexpected things which can affect the success of such a system. This includes the design of a new sensor node which is designed for low power, easy programming and high flexibility.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023468','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023468"><span>ATLS: Catheter and tube placement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gosbee, John; Krupa, Debra T.; Pepper, L.; Orsak, Debra</p> <p>1991-01-01</p> <p>The specific objectives of this experiment are: to evaluate the rack mounted equipment and medical supplies necessary for medical procedures; to evaluate the attachments, mounting points, and inner drawer assemblies for the medical supplies; and to evaluate the procedures for performing medical scenarios. The resources available in the HMF miniracks to accomplish medical scenarios and/or procedures include: medical equipment mounted in the racks; a patch panel with places to attach tubing and catheters; self contained drawers full of critical care medical supplies; and an ALS 'backpack' for deploying supplies. The attachment lines, tubing and associated medical supplies will be deployed and used with the equipment and a patient mannequin. Data collection is provided by direct observations by the inflight experimenters, and analysis of still and video photography.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830003862','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830003862"><span>STS-5 Fifth Space shuttle mission, first operational flight: Press Kit</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1982-01-01</p> <p>Schedules for the fifth Space Shuttle flight are provided. Launching procedure, extravehicular activity, contingency plans, satellite deployment, and onboard experiments are discussed. Landing procedures, tracking facilities, and crew data are provided.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-03-14/pdf/2012-6197.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-03-14/pdf/2012-6197.pdf"><span>77 FR 15019 - Groundfish Fisheries of the Exclusive Economic Zone Off Alaska and Pacific Halibut Fisheries...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-03-14</p> <p>.... The new funding and deployment system would allow NMFS to determine when and where to deploy observers... requirements for vessels and processing plants at 50 CFR 679.50. The new funding and deployment system would... funding and deployment system. The proposed amendments would divide the existing Observer Program into two...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1115795','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1115795"><span>Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hewes, Tom; Peeks, Brady</p> <p>2013-11-01</p> <p>The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220912','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220912"><span>Northwest Energy Efficient Manufactured Housing Program: High Performance Manufactured Home Prototyping and Construction Development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hewes, Tom; Peeks, Brady</p> <p>2013-11-01</p> <p>The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50% over typical manufactured homes produced in the northwest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770026316','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770026316"><span>AAFE large deployable antenna development program: Executive summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1977-01-01</p> <p>The large deployable antenna development program sponsored by the Advanced Applications Flight Experiments of the Langley Research Center is summarized. Projected user requirements for large diameter deployable reflector antennas were reviewed. Trade-off studies for the selection of a design concept for 10-meter diameter reflectors were made. A hoop/column concept was selected as the baseline concept. Parametric data are presented for 15-meter, 30-meter, and 100-meter diameters. A 1.82-meter diameter engineering model which demonstrated the feasiblity of the concept is described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30827','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30827"><span>Connected vehicle pilot deployment program phase I : security management operational concept, Tampa Hillsborough Expressway Authority (THEA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-05-01</p> <p>The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to re...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_4");'>4</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li class="active"><span>6</span></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_6 --> <div id="page_7" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="121"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31400','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31400"><span>Connected Vehicle Pilot Deployment Program Phase 1, Performance Measurement and Evaluation Support Plan – ICF/Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-06-06</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31719','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31719"><span>Connected Vehicle Pilot Deployment Program phase I : partnership status summary : Tampa (THEA) : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-01</p> <p>The Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment Program is developing a suite of CV applications, or apps, that utilize vehicle-to-infrastructure (V2I), vehicle-to-vehicle (V2V) and Vehicle to everything (V2...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30733','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30733"><span>Connected vehicle pilot deployment program phase 1, safety management plan – Tampa (THEA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-04-01</p> <p>This document presents the Safety Management Plan for the THEA Connected Vehicle (CV) Pilot Deployment. The THEA CV Pilot Deployment goal is to advance and enable safe, interoperable, networked wireless communications among vehicles, the infrastructu...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25997691','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25997691"><span>Surgical workload of a foreign medical team after Typhoon Haiyan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Read, David J; Holian, Annette; Moller, Cea-Cea; Poutawera, Vaughan</p> <p>2016-05-01</p> <p>On 8 November 2013, Typhoon Haiyan struck the Philippines causing widespread loss of lives and infrastructures. At the request of the Government of the Philippines, the Australian Government deployed a surgical field hospital to the city of Tacloban for 4 weeks. This paper describes the establishment of the hospital, the surgical workload and handover to the local health system upon the end of deployment. A Microsoft excel database was utilized throughout the deployment, recording demographics, relationship to the typhoon and surgical procedure performed. Over the 21 days of surgical activity, the Australian field hospital performed 222 operations upon 131 persons. A mean of 10.8 procedures were performed per day (range 3-20). The majority (70.2%) of procedures were soft tissue surgery. Diabetes was present in 22.9% and 67.9% were typhoon-related. The Australian Medical Assistance Team field hospital adhered to the World Health Organization guidelines for foreign medical teams, in ensuring informed consent, appropriate anaesthesia and surgery, and worked collaboratively with local surgeons, ensuring adequate documentation and clinical handover. This paper describes the experience of a trained, equipped and collaborative surgical foreign medical team in Tacloban in the aftermath of Typhoon Haiyan. Sepsis from foot injuries in diabetic patients constituted an unexpected majority of the workload. New presentations of typhoon-related injuries were presented throughout the deployment. © 2015 Royal Australasian College of Surgeons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25520792','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25520792"><span>Spatial distribution and deployment of community-based distributors implementing integrated community case management (iCCM): Geographic information system (GIS) mapping study in three South Sudan states.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pratt, Abigail; Dale, Martin; Olivi, Elena; Miller, Jane</p> <p>2014-12-01</p> <p>In late 2012 and in conjunction with South Sudan's Ministry of Health - National Malaria Control Program, PSI (Population Services International) conducted a comprehensive mapping exercise to assess geographical coverage of its integrated community case management (iCCM) program and consider scope for expansion. The operational research was designed to provide evidence and support for low-cost mapping and monitoring systems, demonstrating the use of technology to enhance the quality of programming and to allow for the improved allocation of resources through appropriate and need-based deployment of community-based distributors (CBDs). The survey took place over the course of three months and program staff gathered GPS (global positioning system) data, along with demographic data, for over 1200 CBDs and 111 CBD supervisors operating in six counties in South Sudan. Data was collated, cleaned and quality assured, input into an Excel database, and subsequently uploaded to geographic information system (GIS) for spatial analysis and map production. The mapping results showed that over three-quarters of CBDs were deployed within a five kilometer radius of a health facility or another CBD, contrary to program planning and design. Other characteristics of the CBD and CBD supervisor profiles (age, gender, literacy) were more closely matched with other regional programs. The results of this mapping exercise provided a valuable insight into the contradictions found between a program "deployment plan" and the realities observed during field implementation. It also highlighted an important need for program implementers and national-level strategy makers to consider the natural and community-driven diffusion of CBDs, and take into consideration the strength of the local health facilities when developing a deployment plan.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980193165&hterms=fluid+viscous+dampers&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfluid%2Bviscous%2Bdampers','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980193165&hterms=fluid+viscous+dampers&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dfluid%2Bviscous%2Bdampers"><span>Improvements for rotary viscous dampers used in spacecraft deployment mechanisms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stewart, Alphonso; Powers, Charles; Lyons, Ron</p> <p>1998-01-01</p> <p>During component level thermal-vacuum deployment testing of eight rotary viscous dampers for the Tropical Rainfall Measuring Mission (TRMM) satellite, all the dampers failed to provide damping during a region of the deployment. Radiographic examination showed that air in the damping fluid caused the undamped motion when the dampers were operated in a vacuum environment. Improvements in the procedure used to fill the dampers with damping fluid, the installation of a Viton vacuum seal in the damper cover, and improved screening techniques eliminated the problem.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1014424','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1014424"><span>Microstructure and Mixing: Interactions of Energetic Flow and Eddies with Complex Topography in the Western Indian Ocean</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-09-17</p> <p>the region of interest from SAEON archives Task 3 An offshore survey - to make some basic measurements in the area of interest and develop AUV ... AUV deployment procedures and skills using local resources. 4. Glider deployment in collaboration with WHOI YEAR 2 1. Further measurements based</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA492576','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA492576"><span>Deployment Experiences of Guard and Reserve Families. Implications for Support and Retention</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-01-01</p> <p>the Air Force Reserve had the lowest proportion. Among the spouses, the relative ranking of the components was similar, with a greater proportion...friends and neighbors for assistance during deployment. Newlyweds were generally less inclined to use support resources, with newly married service...military programs use of military programs satisfaction with military programs (spouse only) service member military preparedness (service member only</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA610959','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA610959"><span>Identification of and At-Risk Interventions for Pre-Deployment Psychophysiologic Predictors of PostDeployment Mental Health Outcomes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-06-01</p> <p>Bias Assessment Program – Serves as a non-self-report measure of negative cognitive bias. Use of this program will allow researchers to determine...participants who may be at high risk for trauma-related distress because of negative cognitive bias. • Cognitive Bias Training Program – Modification...of negative cognitive bias is the target of the Cognitive Training Program. By learning how to make positive attributions about events, one can</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.afdc.energy.gov/case/1983','SCIGOVWS'); return false;" href="https://www.afdc.energy.gov/case/1983"><span>Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Rochester, <em>New</em> York, Through the Congestion Mitigation and Air Quality Improvement Program</A> in Rochester, <em>New</em> York, Through the Congestion Mitigation and Air Quality Improvement Program to someone by E -mail Share Alternative Fuels Data Center: Deploying Alternative Fuel Vehicles in Rochester, <em>New</em> York</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1219272','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1219272"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cort, K. A.; Hostick, D. J.; Belzer, D. B.</p> <p></p> <p>This report compiles information and conclusions gathered as part of the “Modeling EERE Deployment Programs” project. The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge in which future research is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=benefits+AND+education&pg=7&id=ED559082','ERIC'); return false;" href="https://eric.ed.gov/?q=benefits+AND+education&pg=7&id=ED559082"><span>Impact of Military Deployment and Distance Learning on Soldier-Students</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Murray, August T.</p> <p>2013-01-01</p> <p>Soldiers face complex challenges, issues, and decisions when pursuing distance learning while deployed. These challenges are encountered frequently while completing undergraduate and graduate degree programs on active duty overseas. Many learning programs and benefits are available and utilized by military online learners in a war zone. Education…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19920001818','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19920001818"><span>Large deployable antenna program. Phase 1: Technology assessment and mission architecture</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rogers, Craig A.; Stutzman, Warren L.</p> <p>1991-01-01</p> <p>The program was initiated to investigate the availability of critical large deployable antenna technologies which would enable microwave remote sensing missions from geostationary orbits as required for Mission to Planet Earth. Program goals for the large antenna were: 40-meter diameter, offset-fed paraboloid, and surface precision of 0.1 mm rms. Phase 1 goals were: to review the state-of-the-art for large, precise, wide-scanning radiometers up to 60 GHz; to assess critical technologies necessary for selected concepts; to develop mission architecture for these concepts; and to evaluate generic technologies to support the large deployable reflectors necessary for these missions. Selected results of the study show that deployable reflectors using furlable segments are limited by surface precision goals to 12 meters in diameter, current launch vehicles can place in geostationary only a 20-meter class antenna, and conceptual designs using stiff reflectors are possible with areal densities of 2.4 deg/sq m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25562859','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25562859"><span>Risk and protective factors for suicidal ideation and suicide attempts among deployed Danish soldiers from 1990 to 2009.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ejdesgaard, Bo Andersen; Zøllner, Lilian; Jensen, Børge Frank; Jørgensen, Hans-Ole; Kähler, Henrik</p> <p>2015-01-01</p> <p>The study was undertaken to identify risk and protective factors for suicidal ideation and suicide attempts among deployed Danish soldiers. Research on suicide among Danish veterans has only been conducted to a limited degree. The method applied was a questionnaire survey administered to a population of 1,264 Danish soldiers deployed from 1990 to 2009. The data were analyzed using backward logistic regression modeling in SAS 9.2. In the logistic regression analysis, the following were significant risk factors for suicidal ideation: drug abuse, a poor financial situation before deployment, a heavy workload and/or repatriation during deployment, and attending a poor athletic and recreation program after deployment. Significant protective factors against suicidal ideation were support from friends at home during deployment and appreciation by the general population after deployment. Significant risk factors for suicide attempts were an unhappy childhood and pointless tasks during deployment. No significant protective factors against suicide attempts were identified. On the basis of the results presented in this study, intervention against suicidal behavior would benefit from screening for certain childhood issues, drug abuse, and poor financial situation before deployment. During deployment, measures should be taken to minimize the amount of meaningless tasks and heavy workloads. At the same time, efficient ways of communicating with home should be ensured. After deployment, good athletic and recreation programs should be warranted for all military personnel-including repatriated soldiers. Finally, priority should be given to ensure public appreciation of what deployed soldiers accomplish. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19724540','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19724540"><span>Calibration procedure for Slocum glider deployed optical instruments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cetinić, Ivona; Toro-Farmer, Gerardo; Ragan, Matthew; Oberg, Carl; Jones, Burton H</p> <p>2009-08-31</p> <p>Recent developments in the field of the autonomous underwater vehicles allow the wide usage of these platforms as part of scientific experiments, monitoring campaigns and more. The vehicles are often equipped with sensors measuring temperature, conductivity, chlorophyll a fluorescence (Chl a), colored dissolved organic matter (CDOM) fluorescence, phycoerithrin (PE) fluorescence and spectral volume scattering function at 117 degrees, providing users with high resolution, real time data. However, calibration of these instruments can be problematic. Most in situ calibrations are performed by deploying complementary instrument packages or water samplers in the proximity of the glider. Laboratory calibrations of the mounted sensors are difficult due to the placement of the instruments within the body of the vehicle. For the laboratory calibrations of the Slocum glider instruments we developed a small calibration chamber where we can perform precise calibrations of the optical instruments aboard our glider, as well as sensors from other deployment platforms. These procedures enable us to obtain pre- and post-deployment calibrations for optical fluorescence instruments, which may differ due to the biofouling and other physical damage that can occur during long-term glider deployments. We found that biofouling caused significant changes in the calibration scaling factors of fluorescent sensors, suggesting the need for consistent and repetitive calibrations for gliders as proposed in this paper.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39911','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39911"><span>Performance of full-sib families of Douglas-fir in pure-family and mixed-family deployments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Peter J. Gould; J. Bradley St.Clair; Paul D. Anderson</p> <p>2011-01-01</p> <p>A major objective of tree improvement programs is to identify genotypes that will perform well in operational deployments. Relatively little is known, however, about how the competitive environment affects performance in different types of deployments. We tested whether the genetic composition and density of deployments affect the performance of full-sib families of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008181&hterms=self+verification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dself%2Bverification','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008181&hterms=self+verification&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dself%2Bverification"><span>Verification and Validation Testing of the Parachute Decelerator System Prior to the First Supersonic Flight Dynamics Test for the Low Density Supersonic Decelerator Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallon, John C.; Witkowski, Allen</p> <p>2015-01-01</p> <p>The Parachute Decelerator System (PDS) is comprised of all components associated with the supersonic parachute and its associated deployment. During the Supersonic Flight Dynamics Test (SFDT), for the Low Density Supersonic Decelerators Program, the PDS was required to deploy the supersonic parachute in a defined fashion. The PDS hardware includes three major subsystems that must function together. The first subsystem is the Parachute Deployment Device (PDD), which acts as a modified pilot deployment system. It is comprised of a pyrotechnic mortar, a Kevlar ballute, a lanyard actuated pyrotechnic inflation aid, and rigging with its associated thermal protection material (TPS). The second subsystem is the supersonic parachute deployment hardware. This includes all of the parachute specific rigging that includes the parachute stowage can and the rigging including TPS and bridle stiffeners for bridle management during deployment. The third subsystem is the Supersonic Parachute itself, which includes the main parachute and deployment bags. This paper summarizes the verification and validation of the deployment process, from the initialization of the PDS system through parachute bag strip that was done prior to the first SFDT.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170004416','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170004416"><span>Design and Testing of CPAS Main Deployment Bag Energy Modulator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mollmann, Catherine</p> <p>2017-01-01</p> <p>During the developmental testing program for CPAS (Capsule Parachute Assembly System), the parachute system for the NASA Orion Crew Module, simulation revealed that high loads may be experienced by the pilot risers during the most devere deployment conditions. As the role of the pilot parachutes is to deploy the main parachutes, these high loads introduced the possibility of main deployment failure. In order to mitigate these high loads, a set of energy modulators was incorporated between the pilot riser and the main deployment bag. An extensive developmental program was implemented to ensure the adequacy of these energy modulators. After initial design comparisons, the energy modulator design was validated through slow-speed joint tests as well as through high-speed bungee tests. This paper documents the design, development, and results of multiple tests completed on the final design.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1297867','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1297867"><span>AMF 1 Site Science</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller, Mark Alan</p> <p></p> <p>This report documents progress on DOE Grant# DE-FG02-08ER64531 funded by the Department of Energy’s Atmospheric Systems Research (ASR) program covering the period between its inception in 2008 and its conclusion in 2014. The Atmospheric Radiation Measurement (ARM) Program’s Mobile Facility #1 (AMF#1) is a collection of state-of-the art atmospheric sensing systems including remote and in situ instrumentation designed to characterize the atmospheric column above and in the immediate vicinity of the deployment location. The grant discussed in this report funded the activities of the AMF#1 Site Scientist Team. Broad responsibilities of this team included examining new deployment sites and recommendingmore » instrument deployment configurations; data quality control during the early stages of deployments and for certain instruments through the course of the deployment; scientific outreach in the host country or location (particularly international deployments); scientific research oriented toward basic questions about cloud physics and radiation transfer in the deployment region; and training of Ph.D. students to conduct future research relevant to the Atmospheric Systems Research (ASR) program.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/14904','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/14904"><span>Intelligent Transportation Systems (ITS) in Texas: Deployment Summary and Case Study of Deployment Methodologies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-06-01</p> <p>The state of the intelligent transportation systems (ITS) program in Texas is summarized and analyzed. The report first reviews the types of ITS deployments within each Texas Department of Transportation district. The methods used to plan, design, co...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_5");'>5</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li class="active"><span>7</span></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_7 --> <div id="page_8" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="141"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35423','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35423"><span>Deployment of Intelligent Transportation Systems: A Summary of the 2016 National Survey Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-03-01</p> <p>This report presents summary results of the 2016 ITS Deployment Tracking survey, the most recent survey conducted through the ITS Deployment Tracking Project. The U.S. Department of Transportation and the ITS Joint Program Office have pursued a resea...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3476','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3476"><span>Deployment of intelligent transportation systems : a summary of the 2013 national survey results.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-08-01</p> <p>This report presents summary results of the 2013 ITS Deployment Tracking survey, the most recent survey conducted by the ITS Deployment Tracking Project. The U.S. Department of Transportation and the ITS Joint Program Office have pursued a research a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100021372&hterms=right+International+public&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dright%2BInternational%2Bpublic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100021372&hterms=right+International+public&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dright%2BInternational%2Bpublic"><span>The International Space Weather Initiative</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson</p> <p>2010-01-01</p> <p>The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1027322','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1027322"><span>Deployment Pulmonary Health</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-02-11</p> <p>A similar risk-based approach may be appropriate for deploying military personnel. e) If DoD were to consider implementing a large- scale pre...quality of existing spirometry programs prior to considering a larger scale pre-deployment effort. Identifying an accelerated decrease in spirometry...baseline spirometry on a wider scale . e) Conduct pre-deployment baseline spirometry if there is a significant risk of exposure to a pulmonary hazard based</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002iaf..confE.490P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002iaf..confE.490P"><span>A Sub-Orbital Platform for Flight Tests of Small Space Capsules</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pereira, P. Moraes A. L., Jr.; Silva, C. R.; Villas Bôas, D. J.; Corrêa, F., Jr.; Miyoshi, J. H.; Loures da Costa, L. E.</p> <p>2002-01-01</p> <p>In the development of a small recoverable space capsule, flight tests using sub-orbital rockets are considered. For this test series, a platform for aerodynamic and thermal measurements as also for qualification tests of onboard sub-systems and equipment was specified and is actually under development. This platform, known as SARA Suborbital, is specified to withstand a sub-orbital flight with the high performance sounding rocket VS40 and to be recovered at the sea. To perform the testing program, a flight trajectory with adequate aeroballistic parameters, as for instance high velocities in dense atmosphere and average re-entry velocity, is considered. The testing program includes measurements of aerodynamic pressures and thermal characteristics, three- axis acceleration, acoustic pressure level inside the platform and vibration environment. Beside this, tests to characterise the performance of the data acquisition and transmission system, the micro-gravity environment and to qualify the recovery system will be carried out. During the return flight, the dynamics of parachutes deployment and platform water impact, as also rescue procedures will also be observed. The present article shows the concept of the platform, describes in detail the experiments, and concludes with a discussion on the flight trajectory and recovery procedure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=training+AND+core&pg=6&id=EJ1100042','ERIC'); return false;" href="https://eric.ed.gov/?q=training+AND+core&pg=6&id=EJ1100042"><span>Preschool Deployment of Evidence-Based Social Communication Intervention: JASPER in the Classroom</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Chang, Ya-Chih; Shire, Stephanie Y.; Shih, Wendy; Gelfand, Carolyn; Kasari, Connie</p> <p>2016-01-01</p> <p>Few research-developed early intervention models have been deployed to and tested in real world preschool programs. In this study, teaching staff implemented a social communication modularized intervention, JASPER, in their daily program. Sixty-six preschool children with autism in twelve classrooms (12 teachers) were randomized to receive…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e044916.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e044916.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-044916 (11 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the Small Satellite Orbital Deployer (SSOD). The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31723','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31723"><span>Connected Vehicle Pilot Deployment Concept phase 1 : comprehensive Pilot Deployment Plan : ICF Wyoming : draft final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-11</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34755','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34755"><span>Connected Vehicle Pilot Deployment Program Phase 1 : Human Use Approval Summary : New York City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-04</p> <p>The New York City (NYC) Connected Vehicle (CV) Pilot Deployment will be the largest deployment of connected vehicle technology to date. The purpose of the human use approval activity is to apply the Institutional Review Board (IRB) process to the NYC...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.H51K1344C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.H51K1344C"><span>The South Fork Experimental Watershed: Soil moisture and precipitation network for satellite validation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cosh, M. H.; Prueger, J. H.; McKee, L.; Bindlish, R.</p> <p>2013-12-01</p> <p>A recently deployed long term network for the study of soil moisture and precipitation was deployed in north central iowa, in cooperation between USDA and NASA. This site will be a joint calibration/validation network for the Soil Moisture Active Passive (SMAP) and Global Precipitation Measurement (GPM) missions. At total of 20 dual gauge precipitation gages were established across a watershed landscape with an area of approximately 600 km2. In addition, four soil moisture probes were installed in profile at 5, 10, 20, and 50 cm. The network was installed in April of 2013, at the initiation of the Iowa Flood Study (IFloodS) which was a six week intensive ground based radar observation period, conducted in coordination with NASA and the University of Iowa. This site is a member watershed of the Group on Earth Observations Joint Experiments on Crop Assessment and Monitoring (GEO-JECAM) program. A variety of quality control procedures are examined and spatial and temporal stability aspects of the network are examined. Initial comparisons of the watershed to soil moisture estimates from satellites are also conducted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24897343','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24897343"><span>CloudDOE: a user-friendly tool for deploying Hadoop clouds and analyzing high-throughput sequencing data with MapReduce.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D T; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung</p> <p>2014-01-01</p> <p>Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4045712','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4045712"><span>CloudDOE: A User-Friendly Tool for Deploying Hadoop Clouds and Analyzing High-Throughput Sequencing Data with MapReduce</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Chung, Wei-Chun; Chen, Chien-Chih; Ho, Jan-Ming; Lin, Chung-Yen; Hsu, Wen-Lian; Wang, Yu-Chun; Lee, D. T.; Lai, Feipei; Huang, Chih-Wei; Chang, Yu-Jung</p> <p>2014-01-01</p> <p>Background Explosive growth of next-generation sequencing data has resulted in ultra-large-scale data sets and ensuing computational problems. Cloud computing provides an on-demand and scalable environment for large-scale data analysis. Using a MapReduce framework, data and workload can be distributed via a network to computers in the cloud to substantially reduce computational latency. Hadoop/MapReduce has been successfully adopted in bioinformatics for genome assembly, mapping reads to genomes, and finding single nucleotide polymorphisms. Major cloud providers offer Hadoop cloud services to their users. However, it remains technically challenging to deploy a Hadoop cloud for those who prefer to run MapReduce programs in a cluster without built-in Hadoop/MapReduce. Results We present CloudDOE, a platform-independent software package implemented in Java. CloudDOE encapsulates technical details behind a user-friendly graphical interface, thus liberating scientists from having to perform complicated operational procedures. Users are guided through the user interface to deploy a Hadoop cloud within in-house computing environments and to run applications specifically targeted for bioinformatics, including CloudBurst, CloudBrush, and CloudRS. One may also use CloudDOE on top of a public cloud. CloudDOE consists of three wizards, i.e., Deploy, Operate, and Extend wizards. Deploy wizard is designed to aid the system administrator to deploy a Hadoop cloud. It installs Java runtime environment version 1.6 and Hadoop version 0.20.203, and initiates the service automatically. Operate wizard allows the user to run a MapReduce application on the dashboard list. To extend the dashboard list, the administrator may install a new MapReduce application using Extend wizard. Conclusions CloudDOE is a user-friendly tool for deploying a Hadoop cloud. Its smart wizards substantially reduce the complexity and costs of deployment, execution, enhancement, and management. Interested users may collaborate to improve the source code of CloudDOE to further incorporate more MapReduce bioinformatics tools into CloudDOE and support next-generation big data open source tools, e.g., Hadoop BigTop and Spark. Availability: CloudDOE is distributed under Apache License 2.0 and is freely available at http://clouddoe.iis.sinica.edu.tw/. PMID:24897343</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23820345','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23820345"><span>Deployment of military mothers: supportive and nonsupportive military programs, processes, and policies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goodman, Petra; Turner, Annette; Agazio, Janice; Throop, Meryia; Padden, Diane; Greiner, Shawna; Hillier, Shannon L</p> <p>2013-07-01</p> <p>Military mothers and their children cope with unique issues when mothers are deployed. In this article, we present mothers' perspectives on how military resources affected them, their children, and their caregivers during deployment. Mothers described beneficial features of military programs such as family readiness groups and behavioral health care, processes such as unit support, and policies on length and timing of deployments. Aspects that were not supportive included inflexibility in family care plans, using personal leave time and funds for transporting children, denial of release to resolve caretaker issues, and limited time for reintegration. We offer recommendations for enhanced support to these families that the military could provide. Reprint & Copyright © 2013 Association of Military Surgeons of the U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=329151','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=329151"><span>Improve California trap programs for detection of fruit flies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>There are >160,000 federal and state fruit fly detection traps deployed in southern and western U.S. States and Puerto Rico. In California alone, >100,000 traps are deployed and maintained just for exotic fruit flies detection. Fruit fly detection and eradication requires deployment of large numbers...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30926','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30926"><span>Connected vehicle pilot deployment program phase 1 : human use approval summary – Tampa.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-18</p> <p>This document presents the Human Use Approval (HUA) Summary for the THEA Connected Vehicle (CV) Pilot Deployment. The purpose of this report is to document the process used by THEA in the Tampa CV Pilot Deployment as required in Phase 1, Task 8 in pr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA540130','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA540130"><span>The Effects of Combat Deployments on Children and Spouses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-12</p> <p>2 Child Abuse ................................................................................................................................. 2...in to existing programs. Prominent Adverse Impacts Child Abuse Of the adverse effects attributed to deployments, perhaps the most alarming are...military child abuse rates were 22 percent higher than for civilians. Researchers tied the rate specifically to deployments, noting that “for each 1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850025220','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850025220"><span>Appendange deployment mechanism for the Hubble Space Telescope program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenfield, H. T.</p> <p>1985-01-01</p> <p>The key requirements, a design overview, development testing (qualification levels), and two problems and their solutions resolved during the mechanism development testing phase are presented. The mechanism described herein has demonstrated its capability to deploy/restow two large Hubble Space Telescope deployable appendages in a varying but controlled manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AIPC.1922n0011I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AIPC.1922n0011I"><span>Creating CAD designs and performing their subsequent analysis using opensource solutions in Python</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Iakushkin, Oleg O.; Sedova, Olga S.</p> <p>2018-01-01</p> <p>The paper discusses the concept of a system that encapsulates the transition from geometry building to strength tests. The solution we propose views the engineer as a programmer who is capable of coding the procedure for working with the modeli.e., to outline the necessary transformations and create cases for boundary conditions. We propose a prototype of such system. In our work, we used: Python programming language to create the program; Jupyter framework to create a single workspace visualization; pythonOCC library to implement CAD; FeniCS library to implement FEM; GMSH and VTK utilities. The prototype is launched on a platform which is a dynamically expandable multi-tenant cloud service providing users with all computing resources on demand. However, the system may be deployed locally for prototyping or work that does not involve resource-intensive computing. To make it possible, we used containerization, isolating the system in a Docker container.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870011583','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870011583"><span>Filament wound data base development, revision 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sharp, R. Scott; Braddock, William F.</p> <p>1985-01-01</p> <p>The objective was to update the present Space Shuttle Solid Rocket Booster (SRB) baseline reentry aerodynamic data base and to develop a new reentry data base for the filament wound case SRB along with individual protuberance increments. Lockheed's procedures for performing these tasks are discussed. Free fall of the SRBs after separation from the Space Shuttle Launch Vehicle is completely uncontrolled. However, the SRBs must decelerate to a velocity and attitude that is suitable for parachute deployment. To determine the SRB reentry trajectory parameters, including the rate of deceleration and attitude history during free-fall, engineers at Marshall Space Flight Center are using a six-degree-of-freedom computer program to predict dynamic behavior. Static stability aerodynamic coefficients are part of the information required for input into this computer program. Lockheed analyzed the existing reentry aerodynamic data tape (Data Tape 5) for the current steel case SRB. This analysis resulted in the development of Data Tape 7.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26933028','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26933028"><span>The Typhoid Fever Surveillance in Africa Program (TSAP): Clinical, Diagnostic, and Epidemiological Methodologies.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>von Kalckreuth, Vera; Konings, Frank; Aaby, Peter; Adu-Sarkodie, Yaw; Ali, Mohammad; Aseffa, Abraham; Baker, Stephen; Breiman, Robert F; Bjerregaard-Andersen, Morten; Clemens, John D; Crump, John A; Cruz Espinoza, Ligia Maria; Deerin, Jessica Fung; Gasmelseed, Nagla; Sow, Amy Gassama; Im, Justin; Keddy, Karen H; Cosmas, Leonard; May, Jürgen; Meyer, Christian G; Mintz, Eric D; Montgomery, Joel M; Olack, Beatrice; Pak, Gi Deok; Panzner, Ursula; Park, Se Eun; Rakotozandrindrainy, Raphaël; Schütt-Gerowitt, Heidi; Soura, Abdramane Bassiahi; Warren, Michelle R; Wierzba, Thomas F; Marks, Florian</p> <p>2016-03-15</p> <p>New immunization programs are dependent on data from surveillance networks and disease burden estimates to prioritize target areas and risk groups. Data regarding invasive Salmonella disease in sub-Saharan Africa are currently limited, thus hindering the implementation of preventive measures. The Typhoid Fever Surveillance in Africa Program (TSAP) was established by the International Vaccine Institute to obtain comparable incidence data on typhoid fever and invasive nontyphoidal Salmonella (iNTS) disease in sub-Saharan Africa through standardized surveillance in multiple countries. Standardized procedures were developed and deployed across sites for study site selection, patient enrolment, laboratory procedures, quality control and quality assurance, assessment of healthcare utilization and incidence calculations. Passive surveillance for bloodstream infections among febrile patients was initiated at thirteen sentinel sites in ten countries (Burkina Faso, Ethiopia, Ghana, Guinea-Bissau, Kenya, Madagascar, Senegal, South Africa, Sudan, and Tanzania). Each TSAP site conducted case detection using these standardized methods to isolate and identify aerobic bacteria from the bloodstream of febrile patients. Healthcare utilization surveys were conducted to adjust population denominators in incidence calculations for differing healthcare utilization patterns and improve comparability of incidence rates across sites. By providing standardized data on the incidence of typhoid fever and iNTS disease in sub-Saharan Africa, TSAP will provide vital input for targeted typhoid fever prevention programs. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_6");'>6</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li class="active"><span>8</span></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_8 --> <div id="page_9" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="161"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......147D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......147D"><span>Utilization of Copper Alloys for Marine Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Drach, Andrew</p> <p></p> <p>Utilization of copper alloy components in systems deployed in marine environment presents potential improvements by reducing maintenance costs, prolonging service life, and increasing reliability. However, integration of these materials faces technological challenges, which are discussed and addressed in this work, including characterization of material performance in seawater environment, hydrodynamics of copper alloy components, and design procedures for systems with copper alloys. To characterize the hydrodynamic behavior of copper alloy nets, mesh geometry of the major types of copper nets currently used in the marine aquaculture are analyzed and formulae for the solidity and strand length are proposed. Experimental studies of drag forces on copper alloy net panels are described. Based on these studies, empirical values for normal drag coefficients are proposed for various types of copper netting. These findings are compared to the previously published data on polymer nets. It is shown that copper nets exhibit significantly lower resistance to normal currents, which corresponds to lower values of normal drag coefficient. The seawater performance (corrosion and biofouling) of copper alloys is studied through the field trials of tensioned and untensioned specimens in a one-year deployment in the North Atlantic Ocean. The corrosion behavior is characterized by weight loss, optical microscopy, and SEM/EDX analyses. The biofouling performance is quantified in terms of the biomass accumulation. To estimate the effects of stray electrical currents on the seawater corrosion measurements, a low cost three-axis stray electric current monitoring device is designed and tested both in the lab and in the 30-day field deployment. The system consists of a remotely operated PC with a set of pseudo-electrodes and a digital compass. The collected data is processed to determine magnitudes of AC and DC components of electric field and dominant AC frequencies. Mechanical behavior of copper alloys is investigated through a series of uniaxial tension tests on virgin and weathered (after one-year deployment in the ocean) specimens. The changes in mechanical properties are quantified in terms of differences in Young's modulus, Poisson's ratio, ultimate strength, and ultimate strain. The obtained stress-strain data is used for numerical modeling of the mechanical behavior of chain-link nets. The simulations are compared with the experimental data on stiffness and strength of the nets. The available information on seawater performance of copper alloys (corrosion, biofouling, mechanics) and copper alloy nets (hydrodynamics) is used to develop engineering procedures for marine aquaculture fish cage systems with copper alloy netting. The design, analysis, and fabrication procedures are illustrated on a commercial size gravity-type offshore fish cage deployed in the Pacific Ocean near Isla Italia (Patagonia, Chile). The funding for this work was provided by the International Copper Association. This work was also supported through two UNH Fellowships: CEPS UNH Graduate Fellowship to Outstanding PhD Program Applicants and Dissertation Year Fellowship.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25623551','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25623551"><span>Integration of Surgical Residency Training With US Military Humanitarian Missions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jensen, Shane; Tadlock, Matthew D; Douglas, Trent; Provencher, Matthew; Ignacio, Romeo C</p> <p>2015-01-01</p> <p>To describe how the US Navy integrates surgical resident training during hospital ship-based humanitarian activities and discuss the potential operative and educational benefits during these missions. Retrospective review of predeployment surgical plans, operative case logs, and after-action reports from United States Naval Ship (USNS) Mercy humanitarian deployments from 2006 to 2012. The USNS Mercy hospital ship. We enrolled 24 surgical residents from different surgical specialties including general surgery, obstetrics and gynecology, urology, otolaryngology, and ophthalmology. During 4 planned deployments (2006-2012), 2887 surgical procedures were performed during 20 humanitarian missions conducted by the USNS Mercy in 9 different Southeast Asian countries. Of all the general surgery eligible procedures performed, 1483 (79%) were defined categories under the current general surgery Accreditation Council for Graduate Medical Education guidelines, including abdominal (31%); skin, soft tissue, and breast (21%); ear, nose, and throat (20.5%); plastic surgery (15.5%); and pediatric (12%) cases. The number of surgical cases completed by each resident ranged from 30 to 67 cases over a period of 4 to 6 weeks during the overseas humanitarian rotation. The US Navy's humanitarian experience provides a unique educational opportunity for young military surgeons to experience various global health systems, diverse cultures, and complex logistical planning without sacrificing the breadth and depth of surgical training. This model may provide a framework to develop future international electives for other general surgery training programs. Copyright © 2015. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......193C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......193C"><span>Classical and modern control strategies for the deployment, reconfiguration, and station-keeping of the National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Capo-Lugo, Pedro A.</p> <p></p> <p>Formation flying consists of multiple spacecraft orbiting in a required configuration about a planet or through Space. The National Aeronautics and Space Administration (NASA) Benchmark Tetrahedron Constellation is one of the proposed constellations to be launched in the year 2009 and provides the motivation for this investigation. The problem that will be researched here consists of three stages. The first stage contains the deployment of the satellites; the second stage is the reconfiguration process to transfer the satellites through different specific sizes of the NASA benchmark problem; and, the third stage is the station-keeping procedure for the tetrahedron constellation. Every stage contains different control schemes and transfer procedures to obtain/maintain the proposed tetrahedron constellation. In the first stage, the deployment procedure will depend on a combination of two techniques in which impulsive maneuvers and a digital controller are used to deploy the satellites and to maintain the tetrahedron constellation at the following apogee point. The second stage that corresponds to the reconfiguration procedure shows a different control scheme in which the intelligent control systems are implemented to perform this procedure. In this research work, intelligent systems will eliminate the use of complex mathematical models and will reduce the computational time to perform different maneuvers. Finally, the station-keeping process, which is the third stage of this research problem, will be implemented with a two-level hierarchical control scheme to maintain the separation distance constraints of the NASA Benchmark Tetrahedron Constellation. For this station-keeping procedure, the system of equations defining the dynamics of a pair of satellites is transformed to take in account the perturbation due to the oblateness of the Earth and the disturbances due to solar pressure. The control procedures used in this research will be transformed from a continuous control system to a digital control system which will simplify the implementation into the computer onboard the satellite. In addition, this research will show an introductory chapter on attitude dynamics that can be used to maintain the orientation of the satellites, and an adaptive intelligent control scheme will be proposed to maintain the desired orientation of the spacecraft. In conclusion, a solution for the dynamics of the NASA Benchmark Tetrahedron Constellation will be presented in this research work. The main contribution of this work is the use of discrete control schemes, impulsive maneuvers, and intelligent control schemes that can be used to reduce the computational time in which these control schemes can be easily implemented in the computer onboard the satellite. These contributions are explained through the deployment, reconfiguration, and station-keeping process of the proposed NASA Benchmark Tetrahedron Constellation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5812136','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5812136"><span>The Current State of Rural Neurosurgical Practice: An International Perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Upadhyayula, Pavan S.; Yue, John K.; Yang, Jason; Birk, Harjus S.; Ciacci, Joseph D.</p> <p>2018-01-01</p> <p>Introduction: Rural and low-resource areas have diminished capacity to care for neurosurgical patients due to lack of infrastructure, healthcare investment, and training programs. This review summarizes the range of rural neurosurgical procedures, novel mechanisms for delivering care, rapid training programs, and outcome differences across international rural neurosurgical practice. Methods: A comprehensive literature search was performed for English language manuscripts with keywords “rural” and “neurosurgery” using the National Library of Medicine PubMed database (01/1971–06/2017). Twenty-four articles focusing on rural non-neurosurgical practice were included. Results: Time to care and/or surgery and shortage of trained personnel remain the strongest risk factors for mortality and poor outcome. Telemedicine consults to regional centers with neurosurgery housestaff have potential for increased timeliness of diagnosis/triage, improved time to surgery, and reductions in unnecessary transfers in remote areas. Mobile neurosurgery teams have been deployed with success in nations with large transport distances precluding initial transfers. Common neurosurgical procedures involve trauma mechanisms; accordingly, training programs for nonneurosurgery medical personnel on basic assessment and operative techniques have been successful in resource-deficient settings where neurosurgeons are unavailable. Conclusions: Protracted transport times, lack of resources/training, and difficulty retaining specialists are barriers to successful outcomes. Advances in telemedicine, mobile neurosurgery, and training programs for urgent operative techniques have been implemented efficaciously. Development of guidelines for paired partnerships between rural centers and academic hospitals, supplying surplus technology to rural areas, and rapid training of qualified local surgical personnel can create sustainable feed-forward programs for trainees and infrastructural solutions to address challenges in rural neurosurgery. PMID:29456356</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1253/of2010-1253.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1253/of2010-1253.pdf"><span>Reformatted data sets used in the Cooperative LACSD/USGS Palos Verdes Flow Study, 2000--2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Anderson, Todd; Rosenberger, Kurt J.; Gartner, Anne L.</p> <p>2012-01-01</p> <p>Beginning in 1997, the Environmental Protection Agency (EPA) defined a contaminated section of the Palos Verdes shelf in southern California as a Superfund site, initiating a continuing investigation of this area. A number of agencies, including the EPA, U.S. Geological Survey (USGS), and Science Applications International Corporation (SAIC), conducted two oceanographic measurement programs in 2004 and 2007-2008 (SAIC, 2004, 2005; Rosenberger and others, 2010; Sherwood and others, unpublished data) to improve our understanding of the natural processes that resuspend and transport sediment in the area, especially in the region southeast of the Whites Point ocean outfall where earlier measurements were thought to be deficient. Los Angeles County Sanitation Districts (LACSD) deployed a simpler but much broader array of instruments on the Palos Verdes shelf and within the northern reaches of San Pedro Bay from 2000 to 2008 in order to characterize the current and temperature patterns within these regions. This program overlapped the two programs run by USGS and other agencies in 2004 and 2007. The LACSD data were made available to the USGS and the EPA in order to support their joint efforts to model the transport of the contaminated sediments in the region. This report describes the LACSD data sets, the instruments and data-processing procedures used, and the archive that contains the data sets that have passed our quality-assurance procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12281679','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12281679"><span>Deployment of Indonesian migrants in the Middle East: present situation and prospects.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cremer, G</p> <p>1988-12-01</p> <p>"This paper examines the Indonesian overseas employment program. It is limited to overseas deployment through the official channels, i.e. organised by licensed labour suppliers and approved by government authorities. The main destination of this official labour migration is the Middle East. Indonesian officials have indicated that the government aims to increase overseas employment and to shift deployment from houseworkers to better skilled workers. It is argued in the paper that, in view of a shrinking labour market for migrants, even limited realisation of these hopes would depend upon some distinct changes in the overseas employment program." excerpt</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1019860','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1019860"><span>Theater Medical Information Program Joint Increment 2 (TMIP J Inc 2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-01</p> <p>Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY...the Full Deployment Decision ( FDD ), the TMIP-J Increment 2 Economic Analysis was approved on December 6, 2013. The USD(AT&L) signed an Acquisition...Decision Memorandum (ADM) on December 23, 2013 approving FDD for TMIP-J Increment 2 and establishing the Full Deployment Objective and Threshold dates as</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/research/ian-baring-gould.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/research/ian-baring-gould.html"><span>Ian Baring-Gould | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Competition, and <em>Integrated</em> Deployment programs, Ian assists organizations in the deployment of wind technologies and provides information on the appropriate <em>implementation</em> of wind energy. Ian also manages the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/15007087','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/15007087"><span>Wind Power Today and Tomorrow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Not Available</p> <p></p> <p>Wind Power Today and Tomorrow is an annual publication that provides an overview of the wind research conducted under the U.S. Department of Energy's Wind and Hydropower Technologies Program. The purpose of Wind Power Today and Tomorrow is to show how DOE supports wind turbine research and deployment in hopes of furthering the advancement of wind technologies that produce clean, low-cost, reliable energy. Content objectives include: educate readers about the advantages and potential for widespread deployment of wind energy; explain the program's objectives and goals; describe the program's accomplishments in research and application; examine the barriers to widespread deployment; describemore » the benefits of continued research and development; facilitate technology transfer; and attract cooperative wind energy projects with industry. This 2003 edition of the program overview also includes discussions about wind industry growth in 2003, how DOE is taking advantage of low wind speed region s through advancing technology, and distributed applications for small wind turbines.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27649750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27649750"><span>Women's oral and dental health aspects in humanitarian missions and disasters: Jordanian experience.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smadi, Leena; Sumadi, Aiman Al</p> <p>2016-01-01</p> <p>The study aimed to review oral and dental health aspects in female patients presented to Jordanian Royal Medical Services (RMS) international humanitarian missions over a 3-year period. Analysis of humanitarian missions of RMS data and records over a 3-year period (2011-2013) in regard to women's oral and dental health issues was done. The data were analyzed in regard to the number of women seen, the presenting conditions, and the prevalence of oral and dental diseases and procedures in these cases. During the 3-year period, 72 missions were deployed in four locations (Gaza, Ram Allah-West Bank, Jeneen-West Bank, and Iraq). The total number of females seen in this period was 86,436 women, accounting for 56 percent of adult patients seen by RMS humanitarian missions. Dental Clinics were deployed to only two missions (Iraq and Gaza), during which they received 13,629 visits; of these, 41 percent were females (5,588 patients), 29 percent were males, and 30 percent were in the pediatric age group. Trauma accounts for only 7 percent of the cases, while nonacute dental problems (caries and gingivitis) were responsible for the majority of cases (31.6 and 28.7 percent, respectively). RMS dental services during humanitarian mission deployment are a vital part of comprehensive healthcare. Women usually seek more dental care than men, with the majority of treatments for nonacute conditions. RMS experiences demonstrate the tremendous need for a well-defined preparedness plan for deployment of humanitarian missions that considers the contributions of all types of health professionals, the appropriate mobile technology to respond to emergent health risks, and a competent workforce ready and able to respond. Such preparation will require our dental education programs to develop disaster preparedness competencies to achieve the desired level of understanding.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2009/1101/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2009/1101/"><span>The Partition Intervalometer: A Programmable Underwater Timer for Marking Accumulated Sediment Profiles Collected in Anderson Sediment Traps: Development, Operation, Testing Procedures, and Field Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rendigs, Richard R.; Anderson, Roger Y.; Xu, Jingping; Davis, Raymond E.; Bergeron, Emile M.</p> <p>2009-01-01</p> <p>This manual illustrates the development of a programmable instrument designed to deploy a series of wafer-shaped discs (partitions) into the collection tube of a sediment trap in various aquatic environments. These hydrodynamically shaped discs are deployed at discrete time intervals from the Intervalometer and provide markers that delineate time intervals within the sediments that accumulate in the collection tube. The timer and mechanical system are lodged in an air-filled, water-tight pressure housing that is vertically hung within the confines of a cone-shaped sediment trap. The instrumentation has been operationally pressure tested to an equivalent water depth of approximately 1 km. Flaws discovered during extensive laboratory and pressure testing resulted in the implementation of several mechanical modifications (such as a redesign of the rotor and the discs) that improved the operation of the rotor assembly as well as the release of discs through the end cap. These results also identified a preferred azimuth placement of the rotor disc relative to the drop hole of the end cap. In the initial field trial, five sediment traps and coupled Intervalometers were attached to moored arrays and deployed at two sites off the coast of Southern California for approximately 8 months. Each of the instruments released 18 discs at the programmed 10 day intervals, except one unit, which experienced a malfunction after approximately 4 months. Most of the discs oriented in a near-horizontal position upon the surface of the sediment in the collection tubes. Sampling of the sediments for geochemical analyses was improved by these clearly defined markers, which indicated the changes in the flux and nature of sediments accumulated during the deployment period of each sediment trap.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22033756','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22033756"><span>Evaluation of a family-centered prevention intervention for military children and families facing wartime deployments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lester, Patricia; Saltzman, William R; Woodward, Kirsten; Glover, Dorie; Leskin, Gregory A; Bursch, Brenda; Pynoos, Robert; Beardslee, William</p> <p>2012-03-01</p> <p>We evaluated the Families OverComing Under Stress program, which provides resiliency training designed to enhance family psychological health in US military families affected by combat- and deployment-related stress. We performed a secondary analysis of Families OverComing Under Stress program evaluation data that was collected between July 2008 and February 2010 at 11 military installations in the United States and Japan. We present data at baseline for 488 unique families (742 parents and 873 children) and pre-post outcomes for 331 families. Family members reported high levels of satisfaction with the program and positive impact on parent-child indicators. Psychological distress levels were elevated for service members, civilian parents, and children at program entry compared with community norms. Change scores showed significant improvements across all measures for service member and civilian parents and their children (P < .001). Evaluation data provided preliminary support for a strength-based, trauma-informed military family prevention program to promote resiliency and mitigate the impact of wartime deployment stress.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=select&pg=2&id=EJ1126179','ERIC'); return false;" href="https://eric.ed.gov/?q=select&pg=2&id=EJ1126179"><span>A Best Practice Modular Design of a Hybrid Course Delivery Structure for an Executive Education Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Klotz, Dorothy E.; Wright, Thomas A.</p> <p>2017-01-01</p> <p>This article highlights a best practice approach that showcases the highly successful deployment of a hybrid course delivery structure for an Operations core course in an Executive MBA Program. A key design element of the approach was the modular design of both the course itself and the learning materials. While other hybrid deployments may stress…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/939047','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/939047"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cort, Katherine A.; Hostick, Donna J.; Belzer, David B.</p> <p></p> <p>The purpose of this report is to compile information and conclusions gathered as part of three separate tasks undertaken as part of the overall project, “Modeling EERE Deployment Programs,” sponsored by the Planning, Analysis, and Evaluation office within the Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE). The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address improvements to modeling in the near term, and note gaps in knowledge where future research is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA607740','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA607740"><span>Computer Simulations of Coronary Blood Flow Through a Constriction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-03-01</p> <p>interventional procedures (e.g., stent deployment). Building off previous models that have been partially validated with experimental data, this thesis... stent deployment). Building off previous models that have been partially validated with experimental data, this thesis continues to develop the...the artery and increase blood flow. Generally a stent , or a mesh wire tube, is permanently inserted in order to scaffold open the artery wall</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e044887.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e044887.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-044887 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e044889.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e044889.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-044889 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e044890.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e044890.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-044890 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s31-76-023.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s31-76-023.html"><span>STS-31 Hubble Space Telescope (HST) pre-deployment procedures aboard OV-103</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1990-04-24</p> <p>During STS-31, the Hubble Space Telescope (HST) grappled by the remote manipulator system (RMS) end effector is held in appendage deploy position above Discovery, Orbiter Vehicle (OV) 103. The solar array (SA) bistem cassette has been released from its latch fittings. The bistem spreader bars begin to unfurl the SA wing. The secondary deployment mechanism (SDM) handle is visible at the SA end. Stowed against either side of the HST System Support Module (SSM) forward shell are the high-gain antennae (HGA). Puerto Rico and the Dominican Republic are recognizable at the left of the frame.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990063541','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990063541"><span>Fabrication and Assembly of High-Precision Hinge and Latch Joints for Deployable Optical Instruments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phelps, James E.</p> <p>1999-01-01</p> <p>Descriptions are presented of high-precision hinge and latch joints that have been co-developed, for application to deployable optical instruments, by NASA Langley Research Center and Nyma/ADF. Page-sized versions of engineering drawings are included in two appendices to describe all mechanical components of both joints. Procedures for assembling the mechanical components of both joints are also presented. The information herein is intended to facilitate the fabrication and assembly of the high-precision hinge and latch joints, and enable the incorporation of these joints into the design of deployable optical instrument systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_7");'>7</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li class="active"><span>9</span></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_9 --> <div id="page_10" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="181"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100033538','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100033538"><span>Self-Deployable Membrane Structures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sokolowski, Witold M.; Willis, Paul B.; Tan, Seng C.</p> <p>2010-01-01</p> <p>Currently existing approaches for deployment of large, ultra-lightweight gossamer structures in space rely typically upon electromechanical mechanisms and mechanically expandable or inflatable booms for deployment and to maintain them in a fully deployed, operational configuration. These support structures, with the associated deployment mechanisms, launch restraints, inflation systems, and controls, can comprise more than 90 percent of the total mass budget. In addition, they significantly increase the stowage volume, cost, and complexity. A CHEM (cold hibernated elastic memory) membrane structure without any deployable mechanism and support booms/structure is deployed by using shape memory and elastic recovery. The use of CHEM micro-foams reinforced with carbon nanotubes is considered for thin-membrane structure applications. In this advanced structural concept, the CHEM membrane structure is warmed up to allow packaging and stowing prior to launch, and then cooled to induce hibernation of the internal restoring forces. In space, the membrane remembers its original shape and size when warmed up. After the internal restoring forces deploy the structure, it is then cooled to achieve rigidization. For this type of structure, the solar radiation could be utilized as the heat energy used for deployment and space ambient temperature for rigidization. The overall simplicity of the CHEM self-deployable membrane is one of its greatest assets. In present approaches to space-deployable structures, the stow age and deployment are difficult and challenging, and introduce a significant risk, heavy mass, and high cost. Simple procedures provided by CHEM membrane greatly simplify the overall end-to-end process for designing, fabricating, deploying, and rigidizing large structures. The CHEM membrane avoids the complexities associated with other methods for deploying and rigidizing structures by eliminating deployable booms, deployment mechanisms, and inflation and control systems that can use up the majority of the mass budget</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MS%26E..127a2018R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MS%26E..127a2018R"><span>Integrated Model to Assess Cloud Deployment Effectiveness When Developing an IT-strategy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Razumnikov, S.; Prankevich, D.</p> <p>2016-04-01</p> <p>Developing an IT-strategy of cloud deployment is a complex issue since even the stage of its formation necessitates revealing what applications will be the best possible to meet the requirements of a company business-strategy, evaluate reliability and safety of cloud providers and analyze staff satisfaction. A system of criteria, as well an integrated model to assess cloud deployment effectiveness is offered. The model makes it possible to identify what applications being at the disposal of a company, as well as new tools to be deployed are reliable and safe enough for implementation in the cloud environment. The data on practical use of the procedure to assess cloud deployment effectiveness by a provider of telecommunication services is presented. The model was used to calculate values of integral indexes of services to be assessed, then, ones, meeting the criteria and answering the business-strategy of a company, were selected.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5808972','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5808972"><span>Bilateral bronchial stent deployment for palliative treatment of a compressive intrathoracic mass in a cat</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Simpson, Kerry; Reese, David; Wilson, Helen; Potter, Joanna; Ogden, Daniel</p> <p>2018-01-01</p> <p>Case summary Bronchial stents may be useful to relieve clinical signs of extraluminal compression. Herein we describe a case which, to our knowledge, is the first cat where bilateral bronchial stents have been used clinically. Respiratory signs of principal bronchial compression were alleviated after the stent procedure. Minor complications occurred, specifically: severe hypoxia during stent deployment; a transient, self-limiting postoperative pneumothorax possibly associated with ventilation-induced lung injury; bronchopneumonia (possibly pre-existing); and transient worsening of cough postoperatively. Stents were well- tolerated long- term. The cat was euthanased at 44 weeks post-stent procedure, owing to clinical signs of regurgitation, seemingly related to oesophageal dysfunction associated with tumour invasion. Relevance and novel information In this case, it appeared that bronchial stents were feasible and the procedure was associated with long-term improvement in respiratory signs related to extraluminal bronchial compression. PMID:29449956</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1351293-advanced-commercial-buildings-initiative-final-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1351293-advanced-commercial-buildings-initiative-final-report"><span>Advanced Commercial Buildings Initiative Final Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roberts, Sydney G.</p> <p></p> <p>The Southface Advanced Commercial Buildings Initiative has developed solutions to overcome market barriers to energy reductions in small commercial buildings by building on the success of four local and Southeast regional energy efficiency deployment programs. These programs address a variety of small commercial building types, efficiency levels, owners, facility manager skills and needs for financing. The deployment programs also reach critical private sector, utility, nonprofit and government submarkets, and have strong potential to be replicated at scale. During the grant period, 200 small commercial buildings participated in Southface-sponsored energy upgrade programs, saving 166,736,703 kBtu of source energy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA582281','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA582281"><span>Passive PE Sampling in Support of In Situ Remediation of Contaminated Sediments: Standard Operating Procedure for PED Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-12-01</p> <p>mineral and organic materials situated beneath an aqueous layer. PEDs assembled, installed, and retrieved following these procedures will be suitable...at a minimum, wearing adequate protective equipment, flotation devices, and making use of lifelines. 8.0 References Massachusetts Institute of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3321386','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3321386"><span>Military Combat Deployments and Substance Use: Review and Future Directions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>LARSON, MARY JO; WOOTEN, NIKKI R.; ADAMS, RACHEL SAYKO; MERRICK, ELIZABETH L.</p> <p>2012-01-01</p> <p>Iraq and Afghanistan veterans experience extreme stressors and injuries during deployments, witnessing and participating in traumatic events. The military has organized prevention and treatment programs as a result of increasing suicides and posttraumatic stress disorder among troops; however, there is limited research on how to intervene with alcohol misuse and drug use that accompany these problems. This review presents statistics about post-deployment substance use problems and comorbidities, and discusses the military’s dual role in 1) enforcing troop readiness with its alcohol and drug policies and resiliency-building programs, and 2) seeking to provide treatment to troops with combat-acquired problems including substance abuse. PMID:22496626</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1019795','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1019795"><span>Global Combat Support System Army Increment 1 (GCSS-A Inc 1)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-01</p> <p>Acquisition Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year...another economic anaylsis was completed on November 14, 2012, in advance of a successful FDD . The program is now in the O&S Phase. GCSS-A Inc 1 2016...Increment I Feb 2011 Aug 2011 Full Deployment Decision ( FDD )1 Feb 2012 Dec 2012 Full Deployment (FD)2 Sep 2017 Mar 2018 Memo 1/ GCSS-A Increment 1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900012775','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900012775"><span>Relatchable launch restraint mechanism for deployable booms</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Warden, Robert M.</p> <p>1990-01-01</p> <p>A new Relatchable Launch Mechanism was developed which enables a deployable system to be restrained and released repeatedly rather than the normal one shot release systems of the past. The deployable systems are of the self extending type which rely on a lanyard attached to a drive motor to control the deployment and retraction. The Relatch Mechanism uses the existing drive motor to also actuate the latch. The design and kinematics of the Relatch Mechanism as used on two flight programs are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-21/pdf/2012-28255.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-21/pdf/2012-28255.pdf"><span>77 FR 70061 - Groundfish Fisheries of the Exclusive Economic Zone Off Alaska and Pacific Halibut Fisheries...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-21</p> <p>...NMFS publishes regulations to implement Amendment 86 to the Fishery Management Plan for Groundfish of the Bering Sea and Aleutian Islands Management Area and Amendment 76 to the Fishery Management Plan for Groundfish of the Gulf of Alaska (Amendments 86/76). Amendments 86/ 76 add a funding and deployment system for observer coverage to the existing North Pacific Groundfish Observer Program (Observer Program) and amend existing observer coverage requirements for vessels and processing plants. The new funding and deployment system allows NMFS to determine when and where to deploy observers according to management and conservation needs, with funds provided through a system of fees based on the ex-vessel value of groundfish and halibut in fisheries covered by the new system. This action is necessary to resolve data quality and cost equity concerns with the Observer Program's existing funding and deployment structure. This action is intended to promote the goals and objectives of the Magnuson-Stevens Fishery Conservation and Management Act, the Northern Pacific Halibut Act of 1982, the fishery management plans, and other applicable law.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA558364','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA558364"><span>Deployment Related Medical Research Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-12-01</p> <p>vaccines to prevent Staphylococcus aureus infection; priority will be given to those vac- cines that also include protection against methicillin - resistant ...Maryland Staphylococcus aureus is a leading cause of infections impacting all stages of military deployment from skin and soft tissue infec- tions during...deployment and training to wound infections in casu- alties in theater. Furthermore, newly emerging antibiotic- resistant strains of S. aureus in both</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e044883.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e044883.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-044883 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it begins the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e044994.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e044994.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-044994 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station prior to the deployment of a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27246950','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27246950"><span>Robotic-assisted real-time MRI-guided TAVR: from system deployment to in vivo experiment in swine model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chan, Joshua L; Mazilu, Dumitru; Miller, Justin G; Hunt, Timothy; Horvath, Keith A; Li, Ming</p> <p>2016-10-01</p> <p>Real-time magnetic resonance imaging (rtMRI) guidance provides significant advantages during transcatheter aortic valve replacement (TAVR) as it provides superior real-time visualization and accurate device delivery tracking. However, performing a TAVR within an MRI scanner remains difficult due to a constrained procedural environment. To address these concerns, a magnetic resonance (MR)-compatible robotic system to assist in TAVR deployments was developed. This study evaluates the technical design and interface considerations of an MR-compatible robotic-assisted TAVR system with the purpose of demonstrating that such a system can be developed and executed safely and precisely in a preclinical model. An MR-compatible robotic surgical assistant system was built for TAVR deployment. This system integrates a 5-degrees of freedom (DoF) robotic arm with a 3-DoF robotic valve delivery module. A user interface system was designed for procedural planning and real-time intraoperative manipulation of the robot. The robotic device was constructed of plastic materials, pneumatic actuators, and fiber-optical encoders. The mechanical profile and MR compatibility of the robotic system were evaluated. The system-level error based on a phantom model was 1.14 ± 0.33 mm. A self-expanding prosthesis was successfully deployed in eight Yorkshire swine under rtMRI guidance. Post-deployment imaging and necropsy confirmed placement of the stent within 3 mm of the aortic valve annulus. These phantom and in vivo studies demonstrate the feasibility and advantages of robotic-assisted TAVR under rtMRI guidance. This robotic system increases the precision of valve deployments, diminishes environmental constraints, and improves the overall success of TAVR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22066569-outcomes-prosthetic-hemodialysis-grafts-after-deployment-bare-metal-versus-covered-stents-venous-anastomosis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22066569-outcomes-prosthetic-hemodialysis-grafts-after-deployment-bare-metal-versus-covered-stents-venous-anastomosis"><span>Outcomes of Prosthetic Hemodialysis Grafts after Deployment of Bare Metal versus Covered Stents at the Venous Anastomosis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kim, Charles Y., E-mail: charles.kim@duke.edu; Tandberg, Daniel J.; Rosenberg, Michael D.</p> <p>2012-08-15</p> <p>Purpose: To compare postintervention patency rates after deployment of bare metal versus covered stents across the venous anastomosis of prosthetic arteriovenous (AV) grafts. Methods: Review of our procedural database over a 6 year period revealed 377 procedures involving stent deployment in an AV access circuit. After applying strict inclusion criteria, our study group consisted of 61 stent deployments in 58 patients (median age 58 years, 25 men, 33 women) across the venous anastomosis of an upper extremity AV graft circuit that had never been previously stented. Both patent and thrombosed AV access circuits were retrospectively analyzed. Within the bare metalmore » stent group, 20 of 32 AV grafts were thrombosed at initial presentation compared to 18 of 29 AV grafts in the covered stent group. Results: Thirty-two bare metal stents and 29 covered stents were deployed across the venous anastomosis. The 3, 6, and 12 months primary access patency rates for bare metal stents were not significantly different than for covered stents: 50, 41, and 22 % compared to 59, 52, and 29 %, respectively (p = 0.21). The secondary patency rates were also not significantly different: 78, 78, and 68 % for bare metal stents compared to 76, 69, and 61 % for covered stents, respectively (p = 0.85). However, covered stents demonstrated a higher primary stent patency rate than bare metal stents: 100, 85, and 70 % compared to 75, 67, and 49 % at 3, 6, and 12 months (p < 0.01). Conclusion: The primary and secondary access patency rates after deployment of bare metal versus covered stents at the venous anastomosis were not significantly different. However, bare metal stents developed in-stent stenoses significantly sooner.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1257880','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1257880"><span>Systems Integration Fact Sheet</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p>2016-06-01</p> <p>This fact sheet is an overview of the Systems Integration subprogram at the U.S. Department of Energy SunShot Initiative. The Systems Integration subprogram enables the widespread deployment of safe, reliable, and cost-effective solar energy technologies by addressing the associated technical and non-technical challenges. These include timely and cost-effective interconnection procedures, optimal system planning, accurate prediction of solar resources, monitoring and control of solar power, maintaining grid reliability and stability, and many more. To address the challenges associated with interconnecting and integrating hundreds of gigawatts of solar power onto the electricity grid, the Systems Integration program funds research, development, and demonstrationmore » projects in four broad, interrelated focus areas: grid performance and reliability, dispatchability, power electronics, and communications.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-12-10/pdf/2012-29691.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-12-10/pdf/2012-29691.pdf"><span>77 FR 73455 - Change to the Military Freight Carrier Registration Program (FCRP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-12-10</p> <p>... Deployment and Distribution Command (SDDC) is providing notice that it will, effective 1 December 2012, only...: Submit comments to Military Surface Deployment and Distribution Command, ATTN: AMSSD-SBD-QA, 1 Soldier...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930008878','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930008878"><span>Space shuttle solid rocket booster main parachute damage reduction team report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watts, G.</p> <p>1993-01-01</p> <p>This report gives the findings of the space shuttle solid rocket booster main parachute damage reduction team. The purpose of the team was to investigate the causes of main parachute deployment damage and to recommend methods to eliminate or substantially reduce the damage. The team concluded that the two primary causes of significant damage during deployment are vent entanglement and contact of the parachutes with the main parachute support structure. As an inexpensive but effective step towards damage reduction, the team recommends modification of the parachute packing procedure to eliminate vent entanglement. As the most effective design change, the team recommends a pilot chute-deployed soft-pack system. Alternative concepts are also recommended that provide a major reduction in damage at a total cost lower than the pilot chute-deployed soft pack.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1242660','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1242660"><span>Weatherization and Intergovernmental Programs Office FY 2017 Budget At-A-Glance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p>2016-03-01</p> <p>The Weatherization and Intergovernmental Programs (WIP) Office is part of EERE’s balanced research, development, demonstration, and deployment approach to accelerate America’s transition to a clean energy economy. WIP’s mission is to partner with state and local organizations to improve energy security and to significantly accelerate the deployment of clean energy technologies and practices by a wide range of government, community, and business stakeholders.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26602367','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26602367"><span>Deceased Donor Organs: What Can Be Done to Raise Donation Rates Using Evidence From Malaysia?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Rasiah, R; Manikam, R; Chandrasekaran, S K; Naghavi, N; Mubarik, S; Mustafa, R; Pushparajan, S</p> <p>2016-05-01</p> <p>Organ donation rates have continued to fall seriously short of needs worldwide, with the lowest rates recorded among developing economies. This study seeks to analyze evidence from a developing economy to explore the usefulness of social psychological theory to solve the problem. The study deployed a large survey (n = 10 412) using a convenience sampling procedure targeted at increasing the number of Malaysians registered with the Ministry of Health, Malaysia who are willing to donate organs upon death. Structural equation modeling was deployed to estimate simultaneously the relative influence of cognitive and noncognitive variables on willingness to donate deceased organs. The cognitive factors of donation perception, socioeconomic status and financial incentives, and the noncognitive factors of demography and fear showed a high statistically significant (1%) relationship with willingness to donate organs after death. While financial incentives were significant, cash rewards showed the least impact. Donation perception showed the highest impact, which shows that the development of effective pedagogic programs with simultaneous improvements to the quality of services provided by medical personnel engaged in retrieving and transplanting deceased donor organs can help raise organ donation rates. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3496435','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3496435"><span>Evaluation of a Family-Centered Prevention Intervention for Military Children and Families Facing Wartime Deployments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Saltzman, William R.; Woodward, Kirsten; Glover, Dorie; Leskin, Gregory A.; Bursch, Brenda; Pynoos, Robert; Beardslee, William</p> <p>2012-01-01</p> <p>Objectives. We evaluated the Families OverComing Under Stress program, which provides resiliency training designed to enhance family psychological health in US military families affected by combat- and deployment-related stress. Methods. We performed a secondary analysis of Families OverComing Under Stress program evaluation data that was collected between July 2008 and February 2010 at 11 military installations in the United States and Japan. We present data at baseline for 488 unique families (742 parents and 873 children) and pre–post outcomes for 331 families. Results. Family members reported high levels of satisfaction with the program and positive impact on parent–child indicators. Psychological distress levels were elevated for service members, civilian parents, and children at program entry compared with community norms. Change scores showed significant improvements across all measures for service member and civilian parents and their children (P < .001). Conclusions. Evaluation data provided preliminary support for a strength-based, trauma-informed military family prevention program to promote resiliency and mitigate the impact of wartime deployment stress. PMID:22033756</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017E%26ES...93a2014W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017E%26ES...93a2014W"><span>Deployment strategy for battery energy storage system in distribution network based on voltage violation regulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.</p> <p>2017-11-01</p> <p>In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/751550','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/751550"><span>The accelerated site technology deployment program presents the segmented gate system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>PATTESON,RAYMOND; MAYNOR,DOUG; CALLAN,CONNIE</p> <p>2000-02-24</p> <p>The Department of Energy (DOE) is working to accelerate the acceptance and application of innovative technologies that improve the way the nation manages its environmental remediation problems. The DOE Office of Science and Technology established the Accelerated Site Technology Deployment Program (ASTD) to help accelerate the acceptance and implementation of new and innovative soil and ground water remediation technologies. Coordinated by the Department of Energy's Idaho Office, the ASTD Program reduces many of the classic barriers to the deployment of new technologies by involving government, industry, and regulatory agencies in the assessment, implementation, and validation of innovative technologies. The papermore » uses the example of the Segmented Gate System (SGS) to illustrate how the ASTD program works. The SGS was used to cost effectively separate clean and contaminated soil for four different radionuclides: plutonium, uranium, thorium, and cesium. Based on those results, it has been proposed to use the SGS at seven other DOE sites across the country.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070031728','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070031728"><span>Development of a Deployable Nonmetallic Boom for Reconfigurable Systems of Small Spacecraft</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rehnmark, Fredrik; Pryor, Mark; Holmes, Buck; Schaechter, David; Pedreiro, Nelson; Carrington, Connie</p> <p>2007-01-01</p> <p>In 2005, NASA commenced Phase 1 of the Modular Reconfigurable High Energy Technology Demonstrator (MRHE) program to investigate reconfigurable systems of small spacecraft. During that year, Lockheed Martin's Advanced Technology Center (ATC) led an accelerated effort to develop a 1-g MRHE concept demonstration featuring robotic spacecraft simulators equipped with docking mechanisms and deployable booms. The deployable boom built for MRHE was the result of a joint effort in which ATK was primarily responsible for developing and fabricating the Collapsible Rollable Tube (CRT patent pending) boom while Lockheed Martin designed and built the motorized Boom Deployment Mechanism (BDM) under a concurrent but separate IR&D program. Tight coordination was necessary to meet testbed integration and functionality requirements. This paper provides an overview of the CRT boom and BDM designs and presents preliminary results of integration and testing to support the MRHE demonstration.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720004307','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720004307"><span>Deployment loads data from a free-flight investigation of all flexible parawings having 371.612 sq meters (4000 sq feet) of wing area</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Croom, D. R.</p> <p>1971-01-01</p> <p>A free-flight test program to determine the deployment characteristics of all-flexible parawings was conducted. Both single-keel and twin-keel parawings having a wing area of 4000 square feet with a five-stage reefing system were tested by use of a bomb-type instrumented test vehicle. Several twin-keel-parawing tests were also made by using an instrumented controllable sled-type test vehicle. The systems were launched from either a C-130 or a C-119 carrier airplane, and a programer parachute was used to bring the test vehicle to a proper dynamic pressure and near-vertical flight path prior to deployment of the parawing system. The free-flight deployment loads data are presented in the form of time histories of individual suspension-line loads and total loads.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980021275','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980021275"><span>Research on the Problem of High-Precision Deployment for Large-Aperture Space-Based Science Instruments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lake, Mark S.; Peterson, Lee D.; Hachkowski, M. Roman; Hinkle, Jason D.; Hardaway, Lisa R.</p> <p>1998-01-01</p> <p>The present paper summarizes results from an ongoing research program conducted jointly by the University of Colorado and NASA Langley Research Center since 1994. This program has resulted in general guidelines for the design of high-precision deployment mechanisms, and tests of prototype deployable structures incorporating these mechanisms have shown microdynamically stable behavior (i.e., dimensional stability to parts per million). These advancements have resulted from the identification of numerous heretofore unknown microdynamic and micromechanical response phenomena, and the development of new test techniques and instrumentation systems to interrogate these phenomena. In addition, recent tests have begun to interrogate nanomechanical response of materials and joints and have been used to develop an understanding of nonlinear nanodynamic behavior in microdynamically stable structures. The ultimate goal of these efforts is to enable nano-precision active control of micro-precision deployable structures (i.e., active control to a resolution of parts per billion).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/10697','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/10697"><span>Extended System Operations Studies for Automated Guideway Transit Systems : Procedure for the Analysis of Representative AGT Deployments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1981-12-01</p> <p>The purpose of this report is to present a general procedure for using the SOS software to analyze AGT systems. Data to aid the analyst in specifying input information, required as input to the software, are summarized in the appendices. The data are...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27483525','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27483525"><span>Evaluation of a Technology-Based Adaptive Learning and Prevention Program for Stress Response-A Randomized Controlled Trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wesemann, Ulrich; Kowalski, Jens T; Jacobsen, Thomas; Beudt, Susan; Jacobs, Herbert; Fehr, Julia; Büchler, Jana; Zimmermann, Peter L</p> <p>2016-08-01</p> <p>To prevent deployment-related disorders, Chaos Driven Situations Management Retrieval System (CHARLY), a computer-aided training platform with a biofeedback interface has been developed. It simulates critical situations photorealistic for certain target and occupational groups. CHARLY was evaluated as a 1.5 days predeployment training method comparing it with the routine training. The evaluation was carried out for a matched random sample of N = 67 soldiers deployed in Afghanistan (International Security Assistance Force). Data collection took place before and after the prevention program and 4 to 6 weeks after deployment, which included mental state, post-traumatic stress disorder (PTSD) symptoms, knowledge of and attitude toward PTSD, and deployment-specific stressors. CHARLY has been significantly superior to the control group in terms of psychoeducation and attitude change. As to the mental state, both groups showed a significant increase in stress after deployment with significant lower increase in CHARLY. For PTSD-specific symptoms, CHARLY achieved a significant superiority. The fact that PTSD-specific scales showed significant differences at the end of deployment substantiates the validity of a specifically preventive effect of CHARLY. The study results tentatively indicate that highly standardized, computer-based primary prevention of mental disorders in soldiers on deployment might be superior to other more personal and less standardized forms of prevention. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19115070','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19115070"><span>First magnetic resonance imaging-guided aortic stenting and cava filter placement using a polyetheretherketone-based magnetic resonance imaging-compatible guidewire in swine: proof of concept.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kos, Sebastian; Huegli, Rolf; Hofmann, Eugen; Quick, Harald H; Kuehl, Hilmar; Aker, Stephanie; Kaiser, Gernot M; Borm, Paul J A; Jacob, Augustinus L; Bilecen, Deniz</p> <p>2009-05-01</p> <p>The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. The guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21428548-first-magnetic-resonance-imaging-guided-aortic-stenting-cava-filter-placement-using-polyetheretherketone-based-magnetic-resonance-imaging-compatible-guidewire-swine-proof-concept','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21428548-first-magnetic-resonance-imaging-guided-aortic-stenting-cava-filter-placement-using-polyetheretherketone-based-magnetic-resonance-imaging-compatible-guidewire-swine-proof-concept"><span>First Magnetic Resonance Imaging-Guided Aortic Stenting and Cava Filter Placement Using a Polyetheretherketone-Based Magnetic Resonance Imaging-Compatible Guidewire in Swine: Proof of Concept</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Kos, Sebastian, E-mail: skos@gmx.d; Huegli, Rolf; Hofmann, Eugen</p> <p></p> <p>The purpose of this study was to demonstrate feasibility of percutaneous transluminal aortic stenting and cava filter placement under magnetic resonance imaging (MRI) guidance exclusively using a polyetheretherketone (PEEK)-based MRI-compatible guidewire. Percutaneous transluminal aortic stenting and cava filter placement were performed in 3 domestic swine. Procedures were performed under MRI-guidance in an open-bore 1.5-T scanner. The applied 0.035-inch guidewire has a PEEK core reinforced by fibres, floppy tip, hydrophilic coating, and paramagnetic markings for passive visualization. Through an 11F sheath, the guidewire was advanced into the abdominal (swine 1) or thoracic aorta (swine 2), and the stents were deployed. Themore » guidewire was advanced into the inferior vena cava (swine 3), and the cava filter was deployed. Postmortem autopsy was performed. Procedural success, guidewire visibility, pushability, and stent support were qualitatively assessed by consensus. Procedure times were documented. Guidewire guidance into the abdominal and thoracic aortas and the inferior vena cava was successful. Stent deployments were successful in the abdominal (swine 1) and thoracic (swine 2) segments of the descending aorta. Cava filter positioning and deployment was successful. Autopsy documented good stent and filter positioning. Guidewire visibility through applied markers was rated acceptable for aortic stenting and good for venous filter placement. Steerability, pushability, and device support were good. The PEEK-based guidewire allows either percutaneous MRI-guided aortic stenting in the thoracic and abdominal segments of the descending aorta and filter placement in the inferior vena cava with acceptable to good device visibility and offers good steerability, pushability, and device support.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1001653','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1001653"><span>Ocean Thermal Energy Conversion (OTEC) Programmatic Environmental Analysis--Appendices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Authors, Various</p> <p>1980-01-01</p> <p>The programmatic environmental analysis is an initial assessment of Ocean Thermal Energy Conversion (OTEC) technology considering development, demonstration and commercialization. It is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distancesmore » necessary to minimize adverse environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties. This volume contains these appendices: Appendix A -- Deployment Scenario; Appendix B -- OTEC Regional Characterization; and Appendix C -- Impact and Related Calculations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s31-04-027.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s31-04-027.html"><span>Hubble Space Telescope (HST) above OV-103's PLB during STS-31 deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1990-04-25</p> <p>The Hubble Space Telescope (HST) is raised above the payload bay (PLB) in low hover position during STS-31 checkout and pre-deployment procedures aboard Discovery, Orbiter Vehicle (OV) 103. Stowed along the HST Support System Module (SSM) are the high gain antenna (HGA) (center) and the two solar arrays (one either side). In the background are the orbital maneuvering system (OMS) pods and the Earth's surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621374','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621374"><span>Army Reserve Components: Improvements Needed to Data Quality and Management Procedures to Better Report Soldier Availability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-07-01</p> <p>and, • free of any deployment-limiting medical or dental conditions that may interfere with the soldier’s ability to perform duties while deployed...surgery, or pregnancy . However, once a medical treatment provider determines that a soldier has a condition that does not appear to meet medical...and administrative appointments and to assist in providing required personnel and administrative data, and maintain regular, open communication in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1396202','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1396202"><span>Level-2 Milestone 6007: Sierra Early Delivery System Deployed to Secret Restricted Network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bertsch, A. D.</p> <p></p> <p>This report documents the delivery and installation of Shark, a CORAL Sierra early delivery system deployed on the LLNL SRD network. Early ASC program users have run codes on the machine in support of application porting for the final Sierra system which will be deployed at LLNL in CY2018. In addition to the SRD resource, Shark, unclassified resources, Rzmanta and Ray, have been deployed on the LLNL Restricted Zone and Collaboration Zone networks in support of application readiness for the Sierra platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-12-23/pdf/2013-30487.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-12-23/pdf/2013-30487.pdf"><span>78 FR 77550 - Integrated Corridor Management Deployment Planning Grants</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-12-23</p> <p>... of this program is to promote the integrated management and operations of the transportation system... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Integrated Corridor Management... the Integrated Corridor Management Deployment Planning Grants. The purpose of this notice was to...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/12045','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/12045"><span>2012 Eco-Logical grant program annual report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-01-01</p> <p>What is IDAS? IDAS, which stands for the ITS Deployment Analysis System, is software developed by the Federal Highway Administration that can be used to perform sketch planning analysis for ITS deployments. Planners and others can use IDAS to calcula...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2053T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2053T"><span>SOCCOM Biogeochemical Profiling Floats: Representativeness and Deployment Strategies Utilizing GO-SHIP/Argo Observations and SOSE/Hycom Model Output</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Talley, L. D.; Riser, S.; Johnson, K. S.; Wang, J.; Kamenkovich, I. V.; Rosso, I.; Mazloff, M. R.; Ogle, S.; Sarmiento, J. L.</p> <p>2016-12-01</p> <p>Biogeochemical profiling floats are being deployed in the Southern Ocean south of 30°S, including within the seasonal sea ice zone, as part of the SOCCOM project. The floats carry oxygen, nitrate, pH, fluorescence and backscatter sensors, in addition to standard T/S measurements that contribute to the Argo program. The total array size over the expected 6 years of deployment will be 180 to 200 floats. At the conclusion of Year 2 (2015-2016), 58 floats had been deployed and 50 were still active (see figure from http://soccom.princeton.edu). In order to calibrate the biogeochemical sensors using shipboard measurements, deployment takes place from research ships. As the ship tracks are dictated by other programs, care is taken prior to deployment to maximize the probability that the floats sample varied oceanographic regimes, and that all important regimes present along a deployment track are seeded with at least one float. Prior GO-SHIP hydrographic sections are used to locate water mass regimes that are targeted for deployments, yielding a background description of the oceanography along each of these sections. Simulations of Argo floats in the Southern Ocean State Estimate (SOSE) and data-assimilating HYCOM model and previous Argo trajectories are used to predict ensemble float trajectories. Trajectories and water mass regimes from floats after deployment have generally agreed well with those projected prior to deployment. The exercise of examining this suite of information prior to the deployment cruises provides valuable regional information for interpreting the actual SOCCOM float profiles and trajectories. Particularly useful are demarcation of the major frontal regimes and their relation to sea ice and topography, regions of upwelling from the deep ocean to the surface, and upper ocean mode water regions associated with both the Subantarctic and Polar Fronts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16507803','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16507803"><span>Mental health problems, use of mental health services, and attrition from military service after returning from deployment to Iraq or Afghanistan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoge, Charles W; Auchterlonie, Jennifer L; Milliken, Charles S</p> <p>2006-03-01</p> <p>The US military has conducted population-level screening for mental health problems among all service members returning from deployment to Afghanistan, Iraq, and other locations. To date, no systematic analysis of this program has been conducted, and studies have not assessed the impact of these deployments on mental health care utilization after deployment. To determine the relationship between combat deployment and mental health care use during the first year after return and to assess the lessons learned from the postdeployment mental health screening effort, particularly the correlation between the screening results, actual use of mental health services, and attrition from military service. Population-based descriptive study of all Army soldiers and Marines who completed the routine postdeployment health assessment between May 1, 2003, and April 30, 2004, on return from deployment to Operation Enduring Freedom in Afghanistan (n = 16,318), Operation Iraqi Freedom (n = 222,620), and other locations (n = 64,967). Health care utilization and occupational outcomes were measured for 1 year after deployment or until leaving the service if this occurred sooner. Screening positive for posttraumatic stress disorder, major depression, or other mental health problems; referral for a mental health reason; use of mental health care services after returning from deployment; and attrition from military service. The prevalence of reporting a mental health problem was 19.1% among service members returning from Iraq compared with 11.3% after returning from Afghanistan and 8.5% after returning from other locations (P<.001). Mental health problems reported on the postdeployment assessment were significantly associated with combat experiences, mental health care referral and utilization, and attrition from military service. Thirty-five percent of Iraq war veterans accessed mental health services in the year after returning home; 12% per year were diagnosed with a mental health problem. More than 50% of those referred for a mental health reason were documented to receive follow-up care although less than 10% of all service members who received mental health treatment were referred through the screening program. Combat duty in Iraq was associated with high utilization of mental health services and attrition from military service after deployment. The deployment mental health screening program provided another indicator of the mental health impact of deployment on a population level but had limited utility in predicting the level of mental health services that were needed after deployment. The high rate of using mental health services among Operation Iraqi Freedom veterans after deployment highlights challenges in ensuring that there are adequate resources to meet the mental health needs of returning veterans.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/emergency-response/classic-emergencies','PESTICIDES'); return false;" href="https://www.epa.gov/emergency-response/classic-emergencies"><span>Classic Emergencies</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>This example scenario describes a hazardous release of liquid chlorine at a chemical manufacturing facility, notification of the National Response Center, and deployment of an on-scene coordinator and subsequent response procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1020478','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1020478"><span>Spouses/Family Members of Service Members at Risk for PTSD or Suicide</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-09-01</p> <p>time/program (like a “halfway house”) between deployment and return to family c. Establish mechanisms so that seeking help does not jeopardize job...using interview and self -report measures to (a) validate information gathered in Phase 1 and (b) examine the longitudinal associations among service...deployment, (2) difficulties associated with Army lifestyle (outside of deployment), (3) stigma of behavioral health problems, (4) personal struggles of</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA579735','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA579735"><span>Security Issues and Resulting Security Policies for Mobile Devices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-03-01</p> <p>protecting it. The Army has requested that the capabilities of these devices be delivered rapidly to the battlefield. Programs like Joint Battle...Explosives (ATF) has already deployed 50 iPads, with interest in deploying 50 additional devices. Despite the desire to rapidly deploy these devices, little...come in many different forms, such as personal data assistants, smart phones, and tablets . Today, the most popular mobile devices are characterized by</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1332541','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1332541"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wei, Max; Smith, Sarah J.; Sohn, Michael D.</p> <p></p> <p>Fuel cells are both a longstanding and emerging technology for stationary and transportation applications, and their future use will likely be critical for the deep decarbonization of global energy systems. As we look into future applications, a key challenge for policy-makers and technology market forecasters who seek to track and/or accelerate their market adoption is the ability to forecast market costs of the fuel cells as technology innovations are incorporated into market products. Specifically, there is a need to estimate technology learning rates, which are rates of cost reduction versus production volume. Unfortunately, no literature exists for forecasting future learningmore » rates for fuel cells. In this paper, we look retrospectively to estimate learning rates for two fuel cell deployment programs: (1) the micro-combined heat and power (CHP) program in Japan, and (2) the Self-Generation Incentive Program (SGIP) in California. These two examples have a relatively broad set of historical market data and thus provide an informative and international comparison of distinct fuel cell technologies and government deployment programs. We develop a generalized procedure for disaggregating experience-curve cost-reductions in order to disaggregate the Japanese fuel cell micro-CHP market into its constituent components, and we derive and present a range of learning rates that may explain observed market trends. Finally, we explore the differences in the technology development ecosystem and market conditions that may have contributed to the observed differences in cost reduction and draw policy observations for the market adoption of future fuel cell technologies. The scientific and policy contributions of this paper are the first comparative experience curve analysis of past fuel cell technologies in two distinct markets, and the first quantitative comparison of a detailed cost model of fuel cell systems with actual market data. The resulting approach is applicable to analyzing other fuel cell markets and other energy-related technologies, and highlights the data needed for cost modeling and quantitative assessment of key cost reduction components.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120003745','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120003745"><span>Photovoltaic Power System and Power Distribution Demonstration for the Desert RATS Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colozza, Anthony; Jakupca, Ian; Mintz, Toby; Herlacher, Mike; Hussey, Sam</p> <p>2012-01-01</p> <p>A stand alone, mobile photovoltaic power system along with a cable deployment system was designed and constructed to take part in the Desert Research And Technology Studies (RATS) lunar surface human interaction evaluation program at Cinder Lake, Arizona. The power system consisted of a photovoltaic array/battery system. It is capable of providing 1 kW of electrical power. The system outputs were 48 V DC, 110 V AC, and 220 V AC. A cable reel with 200 m of power cable was used to provide power from the trailer to a remote location. The cable reel was installed on a small trailer. The reel was powered to provide low to no tension deployment of the cable. The cable was connected to the 220 V AC output of the power system trailer. The power was then converted back to 110 V AC on the cable deployment trailer for use at the remote site. The Scout lunar rover demonstration vehicle was used to tow the cable trailer and deploy the power cable. This deployment was performed under a number of operational scenarios, manned operation, remote operation and tele-robotically. Once deployed, the cable was used to provide power, from the power system trailer, to run various operational tasks at the remote location.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34760','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34760"><span>Connected Vehicle Pilot Deployment Program : New York City, New York</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-03-03</p> <p>The New York City Connected Vehicle Pilot aims to improve the safety of travelers and pedestrians in the city through the deployment of connected vehicle technologies. This objective directly aligns with the city's Vision Zero initiative, which began...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31053','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31053"><span>CV pilot deployment concept phase 1, outreach plan — ICF Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-06-24</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2457','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2457"><span>Miami Valley ITS : early deployment plan : recommended system architecture and technologies working paper</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1997-08-01</p> <p>This system architecture paper will discuss proposed architectures for the four infrastructure oriented program areas defined by the project team and presented in the Strategic Deployment Plan (August 1997). This report will concentrate on defi...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/27800','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/27800"><span>Summary of responses to the connected vehicle pilot deployment program’s request for information (RFI).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-05-01</p> <p>This document is a summary of all responses the USDOT received from the Connected Vehicle Pilot Deployment Programs Request for Information (RFI) Notice put out by the Federal Highway Administration on 03/12/2014.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19418','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19418"><span>Evaluation of the ITS planning process.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1996-01-01</p> <p>Planning for the deployment of ITS in regions throughout the United States has been underway since the development of the Early Deployment Program by the Federal Highway Administration (FHWA) in 1992. In 1993, the FHWA released Version 1.0 of the 1TS...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3176','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3176"><span>Use of the national ITS architecture and emerging standards in the metropolitan model deployment initiatives</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-03-03</p> <p>The US Department Of Transportations Model Deployment Initiative (MDI) program is : integrating and extending the existing ITS infrastructure in four metropolitan regions: New York/ : New Jersey/Connecticut, Phoenix, San Antonio and Seattle. The N...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/485065-subsea-deployment-installation-flexible-pipe-catenaries-enserch-garden-banks-freestanding-production-riser','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/485065-subsea-deployment-installation-flexible-pipe-catenaries-enserch-garden-banks-freestanding-production-riser"><span>The subsea deployment and installation of flexible pipe catenaries for the Enserch Garden Banks 388 Freestanding Production Riser</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Herman, R.J.</p> <p>1997-07-01</p> <p>This narrative addresses the development of the subsea flexible pipe catenary handling tools and procedures as used in the Gulf of Mexico on the Enserch Garden Banks 388 Freestanding Production Riser. The philosophy that was invoked for the development of the tools and procedures was targeted on long term utilization and field maintenance capability with minimum vessel relocation requirements and minimum production interruptions. The initial emphasis for the required tools and procedures was to develop worker safe, environmentally friendly and cost effective equipment. These tools are for the deployment and installation of 3-inch Production and Annulus flexible pipe catenaries frommore » the Enserch Garden Banks 388 Floating Production Vessel to the system`s Freestanding Production Riser. The Pull In Jib system is common to the handling of all the catenaries. The Pull In Jib system has been designed to support the greater loads of the 8-inch and 12-inch export line catenaries.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA577940','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA577940"><span>Nonstrategic Nuclear Weapons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-12-19</p> <p>full scope” life extension program for the B61 bomb, the weapon that is currently deployed in Europe, “to ensure its functionality with the F-35...This life extension program will consolidate four versions of the B61 bomb, including the B61 -3 and B61 - 4 that are currently deployed in Europe, into...one version, the B61 -12. Reports indicate that this new version will reuse the nuclear components of the older bombs, but will include enhanced</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA592881','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA592881"><span>Nonstrategic Nuclear Weapons</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-01-03</p> <p>NPR also indicated that the United States would conduct a “full scope” life extension program for the B61 bomb, the weapon that is currently deployed...in Europe, “to ensure its functionality with the F-35.” This life extension program will consolidate four versions of the B61 bomb, including the B61 ...3 and B61 - 4 that are currently deployed in Europe, into one version, the B61 -12. Reports indicate that this new version will reuse the nuclear</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA582836','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA582836"><span>The Belgian End of Mission Transition Period: Lessons Learned from Third Location Decompression after Operational Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2011-04-01</p> <p>Third Location Decompression after Operational Deployment 11 - 2 RTO-MP-HFM-205 programs is based upon the literature on combat motivation ...exposure to normal leisure activities and tourism . Massage is another interesting element in the French program. Each soldier receives at least one... gastronomy ; during the French TLD, soldiers were allowed to drink wine or beer with their meal starting at 7pm and bars closed at 1am ultimately. Alcohol</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA614072','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA614072"><span>Building Partner Capacity: DOD Should Improve Its Reporting to Congress on Challenges to Expanding Ministry of Defense Advisors Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-02-11</p> <p>with additional information on the program’s performance ; and (3) develop a time frame for updating the policy for the MODA program. DOD...requirement development , State concurrence, DOD formal approval, recruitment, and training and pre-deployment (see fig. 1). While some of these...Georgia, and Bosnia and Herzegovina (see table 1).7 For more information on DOD’s first 2 Global MODA deployments, see app. II</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22469882-outcomes-av-fistulas-av-grafts-after-interventional-stent-graft-deployment-haemodialysis-patients','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22469882-outcomes-av-fistulas-av-grafts-after-interventional-stent-graft-deployment-haemodialysis-patients"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Schmelter, Christopher, E-mail: christopher.schmelter@klinikum-ingolstadt.de; Raab, Udo, E-mail: udo.raab@klinikum-ingolstadt.de; Lazarus, Friedrich, E-mail: friedrich.lazarus@klinikum-ingolstadt.de</p> <p></p> <p>PurposeThe study was designed to assess outcomes of arteriovenous (AV) accesses after interventional stent-graft deployment in haemodialysis patients.Materials and Methods63 haemodialysis patients with 66 AV fistulas and AV grafts were treated by interventional stent-graft deployment from 2006 to 2012 at our hospital. Data of these patients were retrospectively analysed for location of deployed stent-grafts, occurrence and location of (re-)stenosis and (re-)thrombosis. Complex stenosis was the most frequent indication for stent-graft deployment (45.5 %), followed by complications of angioplasty with vessel rupture or dissection (31.8 %).ResultsA high rate of procedural success was achieved (98.5 %). The most frequent location of the deployed stent-graft wasmore » the draining vein (66.7 %). Stent-graft deployment was more frequent in AV grafts than in AV fistulas. Primary patency was 45.5 % at 6 month, 31.3 % at 12 month and 19.2 % at 24 month. Primary patency was significantly better for AV fistulas than for AV grafts with deployed stent-grafts. Patency of the deployed stent-graft was much better than overall AV access primary patency with deployed stent-graft. Re-stenosis with thrombosis was the most frequent indication for re-intervention. Most frequent location of re-stenosis was the draining vein (37.1 %), followed by stenosis at the AV access (29.5 %) and the deployed stent-graft (23.5 %).ConclusionRe-stenosis and re-thrombosis remain frequent in AV fistulas and AV grafts in haemodialysis patients despite stent-graft deployment. Re-stenosis of the deployed stent-graft is, only in the minority of the cases, responsible for AV access dysfunction.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-s31-10-019.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-s31-10-019.html"><span>Hubble Space Telescope (HST) grappled by OV-103's RMS during STS-31 checkout</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1990-04-25</p> <p>The Hubble Space Telescope (HST), grappled by Discovery's, Orbiter Vehicle (OV) 103's, remote manipulator system (RMS), is held in a pre-deployment position. During STS-31 checkout procedures, the solar array (SA) panels and the high gain antennae (HGA) will be deployed. The starboard SA (center) and the two HGA are stowed along side the Support System Module (SSM) forward shell. The sun highlights HST against the blackness of space.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21608838-cirse-vascular-closure-device-registry','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21608838-cirse-vascular-closure-device-registry"><span>CIRSE Vascular Closure Device Registry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Reekers, Jim A., E-mail: j.a.reekers@amc.uva.nl; Mueller-Huelsbeck, Stefan; Libicher, Martin</p> <p>2011-02-15</p> <p>Purpose: Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods: The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results: Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0-14.5] for antegrade access and 1.8% (95% CI 1.1-2.9) for retrograde access (Pmore » = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only <0.5% of patients. Postdeployment bleeding occurred in 6.4%, and most these (51.5%) could be managed with light manual compression. During follow-up, other device-related complications were reported in 1.3%: seven false aneurysms, three hematoma >5.9 cm, and two vessel occlusions. Conclusion: The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3020296','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3020296"><span>CIRSE Vascular Closure Device Registry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Müller-Hülsbeck, Stefan; Libicher, Martin; Atar, Eli; Trentmann, Jens; Goffette, Pierre; Borggrefe, Jan; Zeleňák, Kamil; Hooijboer, Pieter; Belli, Anna-Maria</p> <p>2010-01-01</p> <p>Purpose Vascular closure devices are routinely used after many vascular interventional radiology procedures. However, there have been no major multicenter studies to assess the safety and effectiveness of the routine use of closure devices in interventional radiology. Methods The CIRSE registry of closure devices with an anchor and a plug started in January 2009 and ended in August 2009. A total of 1,107 patients were included in the registry. Results Deployment success was 97.2%. Deployment failure specified to access type was 8.8% [95% confidence interval (95% CI) 5.0–14.5] for antegrade access and 1.8% (95% CI 1.1–2.9) for retrograde access (P = 0.001). There was no difference in deployment failure related to local PVD at the access site. Calcification was a reason for deployment failure in only <0.5% of patients. Postdeployment bleeding occurred in 6.4%, and most these (51.5%) could be managed with light manual compression. During follow-up, other device-related complications were reported in 1.3%: seven false aneurysms, three hematoma >5.9 cm, and two vessel occlusions. Conclusion The conclusion of this registry of closure devices with an anchor and a plug is that the use of this device in interventional radiology procedures is safe, with a low incidence of serious access site complications. There seems to be no difference in complications between antegrade and retrograde access and other parameters. PMID:20981425</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31729','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31729"><span>Connected Vehicle Pilot Deployment Program phase 1 : partnership status summary : New York City : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-01</p> <p>This document describes the process and status of developing and implementing agreements, contracts and subcontracts among partner organizations in the New York City Connected Vehicle Pilot Deployment (NYC CVPD). Details include the work elements as ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3842','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3842"><span>Evaluation of the commercial vehicle information systems and networks (CVISN) model deployment initiative. Volume I, Final report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-03-01</p> <p>The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3588','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3588"><span>Connected vehicle pilot deployment program phase 1, concept of operations (ConOps) – Tampa (THEA).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-02-01</p> <p>This document describes the Concept of Operations (ConOps) for the Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment. This ConOps describes the current state of operations, establishes the reasons for change, and ...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35363','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35363"><span>Connected Vehicle Pilot Deployment Program Phase 2, Data Management Plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-10-17</p> <p>This document represents a data management plan that delineates all of the data types and data treatment throughout the New York City Connected Vehicle Pilot Deployment (NYC CVPD). This plan includes an identification of the New York City connected v...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31733','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31733"><span>Connected Vehicle Pilot Deployment Program phase 1 : System Requirements Specification (SyRS) : Tampa (THEA) : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-08-01</p> <p>This document describes the System Requirements Specification (SyRS) for the Tampa Hillsborough Expressway Authority (THEA) Connected Vehicle (CV) Pilot Deployment. This SyRS describes the current system requirements derived from the user needs, Conc...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3197','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3197"><span>Evaluation of the commercial vehicle information systems and networks (CVISN) model deployment initiative. Volume II, Appendices</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-03-01</p> <p>The Commercial Vehicle Information Systems and Networks Model Deployment Initiative (CVISN MDI) is funded by the Intelligent Transportation Systems Joint Program Office (ITS JPO) and managed by the Federal Motor Carrier Safety Administration (FMCSA),...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA303940','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA303940"><span>Evolving Service Poles in Presence Missions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1995-08-01</p> <p>were trained, equipped, deployed and re-deployed t-.hrough FMF; e.g., Morocco in Somalia and S*n* ga , Nigeria, Ghana, Siarra Leone. Uganda, and TanzarH...Mongolia, Nopal , and Bangladesh, military outraach programs, including parsonnsl exchanges and multinational conferences, provide some of our basic</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005SPIE.5799...48H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005SPIE.5799...48H"><span>Seven-panel solar wing deployment and on-orbit maneuvering analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hwang, Earl</p> <p>2005-05-01</p> <p>BSS developed a new generation high power (~20kW) solar array to meet the customer demands. The high power solar array had the north and south solar wings of which designs were identical. Each side of the solar wing consists of three main conventional solar panels and the four-side panel swing-out new design. The fully deployed solar array surface area is 966 ft2. It was a quite challenging task to define the solar array's optimum design parameters and deployment scheme for such a huge solar array's successful deployment and on-orbit maneuvering. Hence, a deployable seven-flex-panel solar wing nonlinear math model and a fully deployed solar array/bus-payload math model were developed with the Dynamic Analysis and Design System (DADS) program codes utilizing the inherited and empirical data. Performing extensive parametric analyses with the math model, the optimum design parameters and the orbit maneuvering /deployment schemes were determined to meet all the design requirements, and for the successful solar wing deployment on-orbit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960053993','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960053993"><span>Launch Deployment Assembly Extravehicular Activity Neutral Buoyancy Development Test Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Loughead, T.</p> <p>1996-01-01</p> <p>This test evaluated the Launch Deployment Assembly (LDA) design for Extravehicular Activity (EVA) work sites (setup, igress, egress), reach and visual access, and translation required for cargo item removal. As part of the LDA design, this document describes the method and results of the LDA EVA Neutral Buoyancy Development Test to ensure that the LDA hardware support the deployment of the cargo items from the pallet. This document includes the test objectives, flight and mockup hardware description, descriptions of procedures and data collection used in the testing, and the results of the development test at the National Aeronautics and Space Administrations (NASA) Marshall Space Flight Center (MSFC) Neutral Buoyancy Simulator (NBS).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29223726','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29223726"><span>Computed tomography measurement of the left atrial appendage for optimal sizing of the Watchman device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Xu, Bo; Betancor, Jorge; Sato, Kimi; Harb, Serge; Abdur Rehman, Karim; Patel, Kunal; Kumar, Arnav; Cremer, Paul C; Jaber, Wael; Rodriguez, L Leonardo; Schoenhagen, Paul; Wazni, Oussama</p> <p></p> <p>Percutaneous left atrial appendage (LAA) occlusion is an emerging treatment option for patients with non-valvular atrial fibrillation who cannot tolerate oral anticoagulation. The Watchman device (Boston Scientific Corporation, Natick, MA, USA) is deployed at the ostium of the LAA, and an appropriately sized device is critical for successful occlusion. However, standardized imaging protocols for device sizing have not been established. We investigated the clinical utility of a standardized imaging protocol, with pre-procedural multi-detector cardiac computed tomography (MDCT), and intra-procedural transesophageal echocardiography (TEE), for Watchman device sizing. Patients who underwent Watchman device implantation between 2010 and 2016 at our center, and who had pre-procedural MDCT and intra-procedural TEE were included. MDCT measurements (CTmax, CTmin, CTmean), and TEE measurement (TEEmax) of the LAA ostium were determined for each case, and correlated with the final size of the Watchman device implanted. Demographic data and clinical outcomes were collected. The study included 80 patients (mean age: 75 ± 9.6 years; male: 68%; mean CHA2DS2-VASc score: 4.5 ± 1.4). CTmax of the LAA ostium correlated strongly with the final deployed Watchman device size (Spearman's rho: 0.81, p < 0.001), while TEEmax of the LAA ostium showed only moderate correlation with the final deployed Watchman device size (Spearman's rho: 0.61, p < 0.001). Implantation success rate was 100%. At a mean duration of follow-up of 197 days, there were no device-related complications (device embolization, cardiac perforation and pericardial tamponade). At follow-up, the vast majority of patients (76 patients; 95%) had either no or trivial (≤3 mm) residual peri-device leak on TEE. A standardized imaging protocol for assessment of Watchman device implantation incorporating pre-procedural MDCT and intra-procedural TEE, was associated with excellent procedural outcomes at a mean duration of follow-up of 197 days. Copyright © 2018 Society of Cardiovascular Computed Tomography. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1050875','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1050875"><span>A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-10-01</p> <p>AWARD NUMBER: W81XWH-14-2-0195 TITLE: A Novel Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis PRINCIPAL INVESTIGATOR...Field-Deployable Point-of-Care Diagnostic Test for Cutaneous Leishmaniasis 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...Month % completion Aim 1: To use simulated field conditions to optimize and produce the established RPA lateral flow diagnostic test for POC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616302','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616302"><span>A Coaching Intervention to Promote Nutrition and Bone Health in Deployed Soldiers</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-03-13</p> <p>to Promote Nutrition and Bone Health in Deployed Soldiers 5b. GRANT NUMBER HU0001-10-1-TS15 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S...Purpose: The purpose of this study was to determine if telehealth coaching is superior to one-time nutrition and fitness education regarding...leisure activities. All soldiers received one-time nutrition and fitness education prior to deployment; Telehealth Group received health-related</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA565638','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA565638"><span>Army Guide to Deployment Health: Health Threat Information and Countermeasures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-01-01</p> <p>TITLE AND SUBTITLE Army Guide to Deployment Health 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT...duration of deployment, whichever is less (amount required may vary – confirm individual requirements with a health care provider, medical authority ...feeding rodents can contaminate food and they can spread serious life-threatening diseases such as Hantavirus or plague. ` do not allow trash or garbage</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/36186','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/36186"><span>Standards Participation Guidance : ITS Standards Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-04-15</p> <p>The Intelligent Transportation System Joint Program Office (ITS JPO) focuses on research projects, exploratory studies and deployment support for the intelligent transportation system. The ITS Architecture and Standards Programs are foundational to t...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011NatPh...7..376M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011NatPh...7..376M"><span>Quantum metrology: Beauty and the noisy beast</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Maccone, Lorenzo; Giovannetti, Vittorio</p> <p>2011-05-01</p> <p>Elegant but extremely delicate quantum procedures can increase the precision of measurements. Characterizing how they cope with the detrimental effects of noise is essential for deployment to the real world.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31727','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31727"><span>Connected Vehicle Pilot Deployment Program phase 1 : performance measurement and evaluation support plan : New York City : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-12</p> <p>This document describes the Performance Measurement and Evaluation Support Plan for the New York City Department of Transportation New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. The report documents the performance metrics tha...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31725','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31725"><span>Connected Vehicle Pilot Deployment Program phase 1 : security management operating concept : New York City : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-05-18</p> <p>This document describes the Security Management Operating Concept (SMOC) for the New York City Department of Transportation (NYCDOT) Connected Vehicle Pilot Deployment (CVPD) Project. This SMOC outlines the security mechanisms that will be used to pr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31403','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31403"><span>Connected Vehicle Pilot Deployment Program Phase 1, System Requirements Specification (SyRS) – New York City.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-28</p> <p>This document describes the System Requirements Specification (SyRS) for the New York City Department of Transportation (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. This SyRS describes the results of the definition of need, the operationa...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2857','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2857"><span>Technical memoranda : ITS early deployment program : I-5 Seattle to Vancouver B.C.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1998-01-01</p> <p>The I-5 Seattle to Vancouver B.C. study is intended to provide the Washington State Department of Transportation (WSDOT) with an implementation plan for the deployment of ITS technologies along Interstate 5 from the U.S./Canadian international border...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/30881','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/30881"><span>Connected vehicle pilot deployment program phase 1, concept of operations (ConOps) - New York City.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-04-08</p> <p>This document describes the Concept of Operations (ConOps) for the New York City Department of Transportation (NYC) Connected Vehicle Pilot Deployment (CVPD) Project. This ConOps describes the current state of operations, establishes the reasons for ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31601','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31601"><span>Connected Vehicle Pilot Deployment Concept Phase 1, System Requirements Specification (SyRS), ICF Wyoming.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-09-02</p> <p>The Wyoming Department of Transportations (WYDOT) Connected Vehicle (CV) Pilot Deployment Program is intended to develop a suite of applications that utilize vehicle to infrastructure (V2I) and vehicle to vehicle (V2V) communication technology to ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2768','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2768"><span>Development Of Human Factors Guidelines For Advanced Traveler Information Systens And Commercial Vehicle Operations: Comparable Systems Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1998-11-01</p> <p>This document describes the strategy used to evaluate the Intelligent Transportation Systems (ITS) Joint Program Offices Metropolitan Model Deployment Initiative (MMDI). The MMDI is an aggressive deployment of ITS at four urban sites: New York/New...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3400','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3400"><span>Los Angeles congestion reduction demonstration (Metro ExpressLanes) program. National evaluation : surveys, interviews, and workshops test plan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1997-09-01</p> <p>Integration of intelligent transportation systems (ITS) within a metropolitan area is crucial for effective deployment. The Early Deployment Planning (EDP) Process is one tool that allows transportation officials to plan for and implement ITS technol...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012ISPAn..I4..125R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012ISPAn..I4..125R"><span>An Evaluative Review of Simulated Dynamic Smart 3d Objects</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Romeijn, H.; Sheth, F.; Pettit, C. J.</p> <p>2012-07-01</p> <p>Three-dimensional (3D) modelling of plants can be an asset for creating agricultural based visualisation products. The continuum of 3D plants models ranges from static to dynamic objects, also known as smart 3D objects. There is an increasing requirement for smarter simulated 3D objects that are attributed mathematically and/or from biological inputs. A systematic approach to plant simulation offers significant advantages to applications in agricultural research, particularly in simulating plant behaviour and the influences of external environmental factors. This approach of 3D plant object visualisation is primarily evident from the visualisation of plants using photographed billboarded images, to more advanced procedural models that come closer to simulating realistic virtual plants. However, few programs model physical reactions of plants to external factors and even fewer are able to grow plants based on mathematical and/or biological parameters. In this paper, we undertake an evaluation of plant-based object simulation programs currently available, with a focus upon the components and techniques involved in producing these objects. Through an analytical review process we consider the strengths and weaknesses of several program packages, the features and use of these programs and the possible opportunities in deploying these for creating smart 3D plant-based objects to support agricultural research and natural resource management. In creating smart 3D objects the model needs to be informed by both plant physiology and phenology. Expert knowledge will frame the parameters and procedures that will attribute the object and allow the simulation of dynamic virtual plants. Ultimately, biologically smart 3D virtual plants that react to changes within an environment could be an effective medium to visually represent landscapes and communicate land management scenarios and practices to planners and decision-makers.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28421016','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28421016"><span>Online Coaching of Emotion-Regulation Strategies for Parents: Efficacy of the Online Rational Positive Parenting Program and Attention Bias Modification Procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>David, Oana A; Capris, David; Jarda, Alexandra</p> <p>2017-01-01</p> <p>Parenting programs are currently treatment of choice for behavioral disorders in children and one of their main components is reducing the negativity bias in the child-parent dyad. The Rational Positive Parenting Program (rPPP) is a program with a special focus on parent emotion-regulation functional reappraisal strategies, which has recently received consistent support for reducing child externalizing and internalizing disorders. In the last years, online interventions were proliferated and the Attention Bias Modification (ABM) becoming a promising implicit therapeutic intervention based on attention deployment emotion-regulation strategy, or adjunctive module to usual treatments, with results in multiple domains, varying from pain to self-esteem and emotional disorders (e.g., anxiety). We conducted two studies to investigate (1) the efficacy of the ABM procedures applied to parents and (2) the efficacy of the online version of the rPPP augmented with an ABM module. A total of 42 parents of children aged 2-12 years old participated in the first study, being allocated either to the ABM training or wait-list. Positive results were reported by the parents participating in the ABM group for own distress, satisfaction, positive interactions with the child, and child's strengths. In the second study, 53 parents and their children were allocated either in the rPPP group or in the rPPP + ABM group. Results show that ABM training can boost the effects of the rPPP on the strengths of children reported by the parents after the intervention. Findings are discussed in the light of limited research on using online tools for coaching effective emotion-regulation strategies for parents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5379846','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5379846"><span>Online Coaching of Emotion-Regulation Strategies for Parents: Efficacy of the Online Rational Positive Parenting Program and Attention Bias Modification Procedures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>David, Oana A.; Capris, David; Jarda, Alexandra</p> <p>2017-01-01</p> <p>Parenting programs are currently treatment of choice for behavioral disorders in children and one of their main components is reducing the negativity bias in the child–parent dyad. The Rational Positive Parenting Program (rPPP) is a program with a special focus on parent emotion-regulation functional reappraisal strategies, which has recently received consistent support for reducing child externalizing and internalizing disorders. In the last years, online interventions were proliferated and the Attention Bias Modification (ABM) becoming a promising implicit therapeutic intervention based on attention deployment emotion-regulation strategy, or adjunctive module to usual treatments, with results in multiple domains, varying from pain to self-esteem and emotional disorders (e.g., anxiety). We conducted two studies to investigate (1) the efficacy of the ABM procedures applied to parents and (2) the efficacy of the online version of the rPPP augmented with an ABM module. A total of 42 parents of children aged 2–12 years old participated in the first study, being allocated either to the ABM training or wait-list. Positive results were reported by the parents participating in the ABM group for own distress, satisfaction, positive interactions with the child, and child’s strengths. In the second study, 53 parents and their children were allocated either in the rPPP group or in the rPPP + ABM group. Results show that ABM training can boost the effects of the rPPP on the strengths of children reported by the parents after the intervention. Findings are discussed in the light of limited research on using online tools for coaching effective emotion-regulation strategies for parents. PMID:28421016</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001711','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001711"><span>Enabling Venus In-Situ Science - Deployable Entry System Technology, Adaptive Deployable Entry and Placement Technology (ADEPT): A Technology Development Project funded by Game Changing Development Program of the Space Technology Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wercinski, Paul F.; Venkatapathy, Ethiraj; Gage, Peter J.; Yount, Bryan C.; Prabhu, Dinesh K.; Smith, Brandon; Arnold, James O.; Makino, alberto; Peterson, Keith Hoppe; Chinnapongse, Ronald I.</p> <p>2012-01-01</p> <p>Venus is one of the important planetary destinations for scientific exploration, but: The combination of extreme entry environment coupled with extreme surface conditions have made mission planning and proposal efforts very challenging. We present an alternate, game-changing approach (ADEPT) where a novel entry system architecture enables more benign entry conditions and this allows for greater flexibility and lower risk in mission design</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA516563','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA516563"><span>Deployment Effects on Children and Adolescents: Designing and Deploying a Developmentally Appropriate Education and Screening Video Program for Military Families</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-03-22</p> <p>the videos. 24% of children felt they could talk more easily about issues after seeing the program. Facilitator’s guides were provided to stimulate ...be physical, sexual , or psychological to a current or former dating partner or spouse (Plichta. 2004). took place in 2002 at Fort Bragg, North...video format, available on the Internet, will be particularly useful for children with visual and/or auditory learning preferences for whom</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011017','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011017"><span>Cognitive Networking With Regards to NASA's Space Communication and Navigation Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ivancic, William D.; Paulsen, Phillip E.; Vaden, Karl R.; Ponchak, Denise S.</p> <p>2013-01-01</p> <p>This report describes cognitive networking (CN) and its application to NASA's Space Communication and Networking (SCaN) Program. This report clarifies the terminology and framework of CN and provides some examples of cognitive systems. It then provides a methodology for developing and deploying CN techniques and technologies. Finally, the report attempts to answer specific questions regarding how CN could benefit SCaN. It also describes SCaN's current and target networks and proposes places where cognition could be deployed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28599187','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28599187"><span>The impact of antecedent trauma exposure and mental health symptoms on the post-deployment mental health of Afghanistan-deployed Australian troops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Searle, Amelia K; Van Hooff, Miranda; Lawrence-Wood, Ellie R; Grace, Blair S; Saccone, Elizabeth J; Davy, Carol P; Lorimer, Michelle; McFarlane, Alexander C</p> <p>2017-10-01</p> <p>Both traumatic deployment experiences and antecedent traumas increase personnel's risk of developing PTSD and depression. However, only cross-sectional studies have assessed whether antecedent trauma moderates stress reactions to deployment experiences. This study prospectively examines whether antecedent trauma moderates the association between deployment trauma and post-deployment PTSD and depressive symptoms after accounting for antecedent mental health problems, in a large Australian Defence Force (ADF) sample. In the ADF Middle East Area of Operations Prospective Study, currently-serving military personnel deployed to Afghanistan across 2010-2012 (n = 1122) completed self-reported measures at pre-deployment and post-deployment. Within multivariable regressions, associations between deployment trauma and PTSD and depressive symptoms at post-deployment were stronger for personnel with greater antecedent trauma. However, once adjusting for antecedent mental health problems, these significant interaction effects disappeared. Instead, deployment-related trauma and antecedent mental health problems showed direct associations with post-deployment mental health problems. Antecedent trauma was also indirectly associated with post-deployment mental health problems through antecedent mental health problems. Similar associations were seen with prior combat exposure as a moderator. Antecedent and deployment trauma were reported retrospectively. Self-reports may also suffer from social desirability bias, especially at pre-deployment. Our main effects results support the pervasive and cumulative negative effect of trauma on military personnel, regardless of its source. While antecedent trauma does not amplify personnel's psychological response to deployment trauma, it is indirectly associated with increased post-deployment mental health problems. Antecedent mental health should be considered within pre-deployment prevention programs, and deployment-trauma within post-operational screening. Copyright © 2017. Published by Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16638','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16638"><span>Information sharing for traffic incident management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2009-01-01</p> <p>Traffic incident management focuses on developing procedures, implementing policies, and deploying technologies to more quickly identify incidents, improve response times, and more effectively and efficiently manage the incident scene. Because so man...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28578145','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28578145"><span>Contraceptive prescriptions for US servicewomen, 2008-2013.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Witkop, Catherine T; Webber, Bryant J; Chu, Kasi M; Clark, Leslie L</p> <p>2017-07-01</p> <p>To determine the proportion and characteristics of US servicewomen who were prescribed contraception between 2008 and 2013 and to estimate the prevalence of contraceptive utilization among women who deployed during the surveillance period. This is a descriptive study of all servicewomen of child-bearing potential serving in the active component of the US armed forces at any time between 2008 and 2013. We estimated contraceptive utilization status using pharmacy, procedural and diagnostic codes as recorded in the Defense Medical Surveillance System and Pharmacy Data Transaction Service. Estimates of contraceptive utilization were compared by demographic and military variables, including deployment status. Poisson regression with robust error variance was used to estimate adjusted prevalence ratios and 95% confidence intervals. Among eligible servicewomen (N=375,847), 68.7% received at least one form of contraception during the surveillance period. Contraceptive methods included short acting only (55.6%), long-acting (11.9%), permanent (1.0%) and barrier methods (0.2%). An additional 8.2% received counseling services only without an associated procedure or prescription. After adjusting by several demographic variables, receipt of contraception was highest among women aged 25-29 years and lowest among those aged 17-19 and 45-49 years. Receipt of any contraception was similar across racial/ethnic groups, although Hispanic and black, non-Hispanic women were more likely to receive long-acting reversible contraception. Of those who deployed (N=131,597), 53.6% received contraception before or during their deployment, with 7.9% using long-acting contraception. US servicewomen utilize contraception at high levels, with few demographic disparities. Gaps still exist, especially among the youngest women and around the time of deployment. US servicewomen are prescribed contraception at high levels, but utilization is lower in the youngest servicewomen and around the time of deployment. Such data provide opportunities for development and evaluation of interventions designed to improve access to contraceptive services for all servicewomen and to reduce the rate of unintended pregnancy. Published by Elsevier Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002AIPC..608..345M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002AIPC..608..345M"><span>Technology development for deployable aerodynamic decelerators at Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Masciarelli, James P.</p> <p>2002-01-01</p> <p>Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa. .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100035224','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100035224"><span>Technology Development for Deployable Aerodynamic Decelerators at Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Masciarelli, James P.</p> <p>2002-01-01</p> <p>Parachutes used for Mars landing missions are only certified for deployment at Mars behind blunt bodies flying at low angles of attack, Mach numbers up to 2.2, and dynamic pressures of up to 800 Pa. NASA is currently studying entry vehicle concepts for future robotic missions to Mars that would require parachutes to be deployed at higher Mach numbers and dynamic pressures. This paper demonstrates the need for expanding the parachute deployment envelope, and describes a three-phase technology development activity that has been initiated to address the need. The end result of the technology development program will be a aerodynamic decelerator system that can be deployed at Mach numbers of up to 3.1 and dynamic pressures of up to 1400 Pa.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29707168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29707168"><span>Leadership and post-traumatic stress disorder: are soldiers' perceptions of organizational justice during deployment protective?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Elrond, Andreas F; Høgh, Annie; Andersen, Søren B</p> <p>2018-01-01</p> <p>Background : Soldiers' perception of leadership during military deployment has gained research attention as a potentially modifiable factor to buffer against the development of postdeployment post-traumatic stress disorder (PTSD). Within nonmilitary research, the organizational justice (OJ) framework, i.e. distributive justice, procedural justice (PJ) and interactional justice (IJ), has been found to relate to mental health outcomes. Aspects of OJ may, therefore, be protective against PTSD. Objectives : We examined the prospective relationship between aspects of OJ, namely the perceptions of PJ and IJ by subordinate soldiers without leadership obligations in relationship to immediate superiors and PTSD. Method : Participants were soldiers ( n =  245) deployed to Helmand Province in Afghanistan in 2009. Logistic regression procedures were used. The primary analysis measured PTSD cases using the Structured Clinical Interview for DSM-IV-TR Axis-I Disorder (SCID) 2½ years after homecoming. PJ/IJ was measured during deployment with a 6-item composite measure ranging from 0 to 12. Supplementary primary analyses were performed with PJ/IJ measured before and immediately after deployment. A secondary PJ/IJ analysis also tested against four postdeployment measures with the Post-Traumatic Stress Disorder Checklist Civilian (PCL-C) dichotomized at screening symptom levels. Results : Higher levels of perceived PJ/IJ for soldiers without leadership obligations during deployment had a prospective relation (OR = 0.86, 95% CI = 0.75-0.98) with PTSD on the SCID 2½ years after homecoming after adjustment for factors including predeployment PTSD symptoms, trauma and combat exposure, and state affectivity. Similar results were found by measuring PJ/IJ before (OR = 0.83, 95% CI = 0.71-0.95) but not immediately after homecoming (OR = 0.97, 95% CI = 0.85-1.11). A relationship with PTSD symptoms at the screening level at the four measurements of PCL-C was found, but only when predeployment PTSD symptoms were not controlled for. Conclusions : These results suggest that PJ/IJ exercised by superiors in relation to military deployments may protect subordinate soldiers against the development of postdeployment PTSD.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5912440','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5912440"><span>Leadership and post-traumatic stress disorder: are soldiers’ perceptions of organizational justice during deployment protective?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2018-01-01</p> <p>ABSTRACT Background: Soldiers’ perception of leadership during military deployment has gained research attention as a potentially modifiable factor to buffer against the development of postdeployment post-traumatic stress disorder (PTSD). Within nonmilitary research, the organizational justice (OJ) framework, i.e. distributive justice, procedural justice (PJ) and interactional justice (IJ), has been found to relate to mental health outcomes. Aspects of OJ may, therefore, be protective against PTSD. Objectives: We examined the prospective relationship between aspects of OJ, namely the perceptions of PJ and IJ by subordinate soldiers without leadership obligations in relationship to immediate superiors and PTSD. Method: Participants were soldiers (n = 245) deployed to Helmand Province in Afghanistan in 2009. Logistic regression procedures were used. The primary analysis measured PTSD cases using the Structured Clinical Interview for DSM-IV-TR Axis-I Disorder (SCID) 2½ years after homecoming. PJ/IJ was measured during deployment with a 6-item composite measure ranging from 0 to 12. Supplementary primary analyses were performed with PJ/IJ measured before and immediately after deployment. A secondary PJ/IJ analysis also tested against four postdeployment measures with the Post-Traumatic Stress Disorder Checklist Civilian (PCL-C) dichotomized at screening symptom levels. Results: Higher levels of perceived PJ/IJ for soldiers without leadership obligations during deployment had a prospective relation (OR = 0.86, 95% CI = 0.75–0.98) with PTSD on the SCID 2½ years after homecoming after adjustment for factors including predeployment PTSD symptoms, trauma and combat exposure, and state affectivity. Similar results were found by measuring PJ/IJ before (OR = 0.83, 95% CI = 0.71–0.95) but not immediately after homecoming (OR = 0.97, 95% CI = 0.85–1.11). A relationship with PTSD symptoms at the screening level at the four measurements of PCL-C was found, but only when predeployment PTSD symptoms were not controlled for. Conclusions: These results suggest that PJ/IJ exercised by superiors in relation to military deployments may protect subordinate soldiers against the development of postdeployment PTSD. PMID:29707168</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e045009.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e045009.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-11</p> <p>ISS038-E-045009 (11 Feb. 2014) --- The Small Satellite Orbital Deployer (SSOD), in the grasp of the Kibo laboratory robotic arm, is photographed by an Expedition 38 crew member on the International Space Station as it deploys a set of NanoRacks CubeSats. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing. Station solar array panels, Earth's horizon and the blackness of space provide the backdrop for the scene.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1019843','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1019843"><span>Mission Planning System Increment 5 (MPS Inc 5)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-01</p> <p>DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...Alternative Selected (Funds First Obligated (FFO)) (O/T) : Mar 2013 / Mar 2013 • MS B (O/T) : Apr 2012 / Apr 2012 • MS C (O/T) : N/A / N/A • FDD (O/T...Deployed Software Intensive Program" as described in the DOD Instruction 5000.02, January 7, 2015. 4. FDD provides approval to field the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28300987','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28300987"><span>The Rio de Janeiro Municipality's Services Portfolio and Health Actions in Primary Care in Brazil.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Salazar, Bianca Alves; Campos, Mônica Rodrigues; Luiza, Vera Lucia</p> <p>2017-03-01</p> <p>This study aimed to identify the provision of actions and procedures by family health teams (FHSt), based on Rio de Janeiro Municipality's (MRJ) Health Services Portfolio (HSP) and the main factors associated with this provision, in the different population strata. Data from the National Program for Improving Access and Quality of Primary Healthcare were used and implemented at the national level into 17,202 FHSts from June to September 2012. Outcome variables were "FHSt belonging to MRJ" and "FHSt providing all nine CS-MRJ procedures". Uni-, bi- and multivariate analysis were performed. A better performance of the MRJ in relation to other major urban centers (EP6#) (p<5%) was noted in 10 of the 14 health actions analyzed. The electronic medical record showed a level of deployment in MRJ's FHSts of 96%, contrasting with 34% in the EP6# and 14% in Brazil. Both the MRJ and EP6# evidenced low supply of mental health services (about 56%). While the supply of low-complexity procedures was a major problem in large cities, the supply of health actions in the different health care lines was a larger problem in small municipalities. Overall, the MRJ showed better performance when compared to the average of large municipalities. The health service portfolio appeared to be an important management tool.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/34723','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/34723"><span>Rural Connected Vehicle Gap Analysis : Factors Impeding Deployment and Recommendations for Moving Forward</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-08-25</p> <p>The intent of the Rural Connected Vehicle Gap Analysis project was to identify any current gaps in the connected vehicle program that may result in a reduced deployment potential in the rural areas of the United States. Through a workshop conducted a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/8461','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/8461"><span>Tracking state deployments of commercial vehicle information systems and networks : national report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1998-03-31</p> <p>The ITS Joint Program Office (ITS/JPO) of the USDOT has begun tracking progress by state governments in the deployment of Commercial Vehicle Information Systems and Networks (CVISN) in all 50 states through the year 2005. FHWAs goal is to have bet...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/36051','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/36051"><span>Connected Vehicle Pilot Deployment Program Phase 2 : Comprehensive Maintenance and Operations Plan - New York City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-05-31</p> <p>This Comprehensive Maintenance and Operations Plan (CMOP) describes the types and number of equipment to be operated and maintained for the proposed New York City (NYC) Connected Vehicle Pilot Deployment (CVPD) system. Its objective is to develop a p...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA564978','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA564978"><span>CANES Contracting Strategies for Full Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-01-01</p> <p>9 CANES Program Functions in Full Deployment...contractors will design CANES, identifying specific hardware and developing the integration software necessary to consolidate existing C4I functions . At...would be responsible for execut- ing the purchased design and assembling the systems, ensuring that the integration software is functioning . An</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22642518-transjugular-intrahepatic-portosystemic-shunt-flow-reduction-adjustable-polytetrafluoroethylene-covered-balloon-expandable-stents-using-sheath-control-technique','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22642518-transjugular-intrahepatic-portosystemic-shunt-flow-reduction-adjustable-polytetrafluoroethylene-covered-balloon-expandable-stents-using-sheath-control-technique"><span>Transjugular Intrahepatic Portosystemic Shunt Flow Reduction with Adjustable Polytetrafluoroethylene-Covered Balloon-Expandable Stents Using the “Sheath Control” Technique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Blue, Robert C., E-mail: Robert.c.blue@gmail.com; Lo, Grace C.; Kim, Edward</p> <p></p> <p>PurposeA complication of transjugular intrahepatic portosystemic shunts (TIPS) placement is refractory portosystemic encephalopathy (PSE) often requiring TIPS reduction. We report the results of a “sheath control technique” utilizing constraining sheaths during deployment of polytetrafluoroethylene (PTFE)-covered balloon-expandable stents, minimizing stent migration, and providing additional procedural control.MethodsTIPS reduction was performed in 10 consecutive patients for PSE using Atrium iCast covered stents (Atrium Maquet Getinge Group, Germany). Within the indwelling TIPS stent, a 9 mm × 59 mm iCast stent was deployed with 2 cm exposed from the sheath’s distal end and the majority of the stent within the sheath to create the distal hourglass shape. During balloonmore » retraction, the stent was buttressed by the sheath. The proximal portion of the stent was angioplastied to complete the hourglass configuration, and the central portion of the stent was dilated to 5 mm. Demographics, pre- and post-procedure laboratory values, and outcomes were recorded.ResultsTen patients underwent TIPS reduction with 100 % technical success. There was no stent migration during stent deployment. All patients experienced initial improvement of encephalopathy. One patient ultimately required complete TIPS occlusion for refractory PSE, and another developed TIPS occlusion 36 days post-procedure. There was no significant trend toward change in patients’ MELD scores immediately post-procedure or at 30 days (p = 0.46, p = 0.47, respectively).ConclusionTIPS reduction using Atrium iCast PTFE balloon-expandable stents using the “sheath control technique” is safe and effective, and minimizes the risk of stent migration.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/10155','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/10155"><span>Urban Rail Noise Abatement Program : A Description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1980-03-01</p> <p>This report presents the background, current activities, and future plans for the Urban Rail Noise Abatement Program. This program, sponsored by the Office of Technology Development and Deployment of the Urban Mass Transportation Administration (UMTA...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SPIE.4708..324G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SPIE.4708..324G"><span>Advanced consequence management program: challenges and recent real-world implementations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graser, Tom; Barber, K. S.; Williams, Bob; Saghir, Feras; Henry, Kurt A.</p> <p>2002-08-01</p> <p>The Enhanced Consequence Management, Planning and Support System (ENCOMPASS) was developed under DARPA's Advanced Consequence Management program to assist decision-makers operating in crisis situations such as terrorist attacks using conventional and unconventional weapons and natural disasters. ENCOMPASS provides the tools for first responders, incident commanders, and officials at all levels to share vital information and consequently, plan and execute a coordinated response to incidents of varying complexity and size. ENCOMPASS offers custom configuration of components with capabilities ranging from map-based situation assessment, situation-based response checklists, casualty tracking, and epidemiological surveillance. Developing and deploying such a comprehensive system posed significant challenges for DARPA program management, due to an inherently complex domain, a broad spectrum of customer sites and skill sets, an often inhospitable runtime environment, demanding development-to-deployment transition requirements, and a technically diverse and geographically distributed development team. This paper introduces ENCOMPASS and explores these challenges, followed by an outline of selected ENCOMPASS deployments, demonstrating how ENCOMPASS can enhance consequence management in a variety real world contexts.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6513679','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6513679"><span>Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos (in EN;SP)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dennis, B.R.; Lawton, R.G.; Kolar, J.D.</p> <p></p> <p>The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15112921','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15112921"><span>Financial management and dental school equity, Part II: Tactics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chambers, David W; Bergstrom, Roy</p> <p>2004-04-01</p> <p>Financial management includes all processes that build organizations' equity through accumulating assets in strategically important areas. The tactical aspects of financial management are budget deployment and monitoring. Budget deployment is the process of making sure that costs are fairly allocated. Budget monitoring addresses issues of effective uses and outcomes of resources. This article describes contemporary deployment and monitoring mechanisms, including revenue positive and marginal analysis, present value, program phases, options logic, activity-based costing, economic value added, cost of quality, variance reconciliation, and balanced scorecards. The way financial decisions are framed affects comparative decision-making and even influences the arithmetic of accounting. Familiarity with these concepts should make it possible for dental educators to more fully participate in discussions about the relationships between budgeting and program strategy.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050240872&hterms=svm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsvm','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050240872&hterms=svm&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsvm"><span>A Voice Enabled Procedure Browser for the International Space Station</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rayner, Manny; Chatzichrisafis, Nikos; Hockey, Beth Ann; Farrell, Kim; Renders, Jean-Michel</p> <p>2005-01-01</p> <p>Clarissa, an experimental voice enabled procedure browser that has recently been deployed on the International Space Station (ISS), is to the best of our knowledge the first spoken dialog system in space. This paper gives background on the system and the ISS procedures, then discusses the research developed to address three key problems: grammar-based speech recognition using the Regulus toolkit; SVM based methods for open microphone speech recognition; and robust side-effect free dialogue management for handling undos, corrections and confirmations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1336011','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1336011"><span>Department of Energy WindSentinel Loan Program Description</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shaw, William J.; Sturges, Mark H.</p> <p></p> <p>The U.S. Department of Energy (DOE) currently owns two AXYS WindSentinel buoys that collect a comprehensive set of meteorological and oceanographic data to support resource characterization for wind energy offshore. The two buoys were delivered to DOE’s Pacific Northwest National Laboratory (PNNL) in September, 2014. After acceptance testing and initial performance testing and evaluation at PNNL’s Marine Sciences Laboratory in Sequim, Washington, the buoys have been deployed off the U.S. East Coast. One buoy was deployed approximately 42 km east of Virginia Beach, Virginia from December, 2014 through June, 2016. The second buoy was deployed approximately 5 km off Atlanticmore » City, New Jersey in November, 2015. Data from the buoys are available to the public. Interested parties can create an account and log in to http://offshoreweb.pnnl.gov. In response to a number of inquiries and unsolicited proposals, DOE’s Wind Energy Technologies Office is implementing a program, to be managed by PNNL, to lend the buoys to qualified parties for the purpose of acquiring wind resource characterization data in areas of interest for offshore wind energy development. This document describes the buoys, the scope of the loans, the process of how borrowers will be selected, and the schedule for implementation of this program, including completing current deployments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1001058','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1001058"><span>OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Sands, M. D.</p> <p>1980-01-01</p> <p>This programmatic environmental analysis is an initial assessment of OTEC technology considering development, demonstration and commercialization; it is concluded that the OTEC development program should continue because the development, demonstration, and commercialization on a single-plant deployment basis should not present significant environmental impacts. However, several areas within the OTEC program require further investigation in order to assess the potential for environmental impacts from OTEC operation, particularly in large-scale deployments and in defining alternatives to closed-cycle biofouling control: (1) Larger-scale deployments of OTEC clusters or parks require further investigations in order to assess optimal platform siting distances necessary to minimize adversemore » environmental impacts. (2) The deployment and operation of the preoperational platform (OTEC-1) and future demonstration platforms must be carefully monitored to refine environmental assessment predictions, and to provide design modifications which may mitigate or reduce environmental impacts for larger-scale operations. These platforms will provide a valuable opportunity to fully evaluate the intake and discharge configurations, biofouling control methods, and both short-term and long-term environmental effects associated with platform operations. (3) Successful development of OTEC technology to use the maximal resource capabilities and to minimize environmental effects will require a concerted environmental management program, encompassing many different disciplines and environmental specialties.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35794','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35794"><span>Connected Vehicle Pilot Deployment Program Independent Evaluation: Mobility, Environmental, and Public Agency Efficiency Refined Evaluation Plan - New York City</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-03-01</p> <p>The purpose of this report is to provide a refined evaluation plan detailing the approach to be used by the Texas A&M Transportation Institute Connected Vehicle Pilot Deployment Evaluation Team for evaluating the mobility, environmental, and public a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/32240','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/32240"><span>Deploying SHRP2 renewal 10 guidebook for project management strategies for complex projects in the Georgia Department of Transportation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2017-01-01</p> <p>The Georgia Department of Transportation (GDOT) was selected by the Federal Highway Administration (FHWA) for the Strategic Highway Research Program 2 (SHRP2) Lead Adopter Incentive Implementation Assistance Grant to deploy the Renewal 10 (R10) Guide...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=coopersmith&pg=5&id=EJ430978','ERIC'); return false;" href="https://eric.ed.gov/?q=coopersmith&pg=5&id=EJ430978"><span>Group Counseling for Navy Children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Mitchum, Nancy Taylor</p> <p>1991-01-01</p> <p>Conducted six-session group counseling program for Navy children (n=22) enrolled in public schools whose fathers were on deployment. Pretest and posttest scores on the Coopersmith Self-Esteem Inventory suggest that participation in the group counseling unit positively affected self-esteem of Navy children whose fathers were on deployment. Found…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-4495.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-4495.html"><span>KSC-2013-4495</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-12-20</p> <p>MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-4496.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-4496.html"><span>KSC-2013-4496</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-12-20</p> <p>MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-2013-4497.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-2013-4497.html"><span>KSC-2013-4497</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2013-12-20</p> <p>MORRO BAY, Calif. – Drogue chutes open above Dragon test article during a test to evaluate the spacecraft's parachute deployment system. The drogue chutes stabilized the vehicle, in preparation for main chute deployment as part of a milestone under SpaceX's Commercial Crew Integrated Capability agreement with NASA's Commercial Crew Program. Photo credit: NASA/Kim Shiflett</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19817','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19817"><span>Identification of core functions and development of a deployment planning tool for safety service patrols in Virginia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2006-01-01</p> <p>The purpose of this study was to identify and document the core functions of the Virginia Department of Transportation's (VDOT) Safety Service Patrol (SSP) programs and to develop a deployment planning tool that would help VDOT decision-makers when c...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA612227','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA612227"><span>Darton College Customized Nursing Program for the Fort Benning Community and Research Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-10-01</p> <p>Netbook /laptop versions of English 1102, Communication 1101, PSYC 2115 and PHED 1161 will be developed for deployed students with limited or no...internet accessibility. Netbook /laptop versions of English 1102, Communication 1101, PSYC, and PHED 1161 for deployed students with limited or no</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31404','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31404"><span>Connected Vehicle Pilot Deployment Program Phase 1, Participant Training and Stakeholder Education Plan– New York City.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-22</p> <p>High level plan that describes the Training and Stakeholder Education plan for the New York City Connected Vehicle Pilot Deployment. The purpose of the training and education plan is to identify the roles that participants will take during the pilot ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040071043','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040071043"><span>Development and Ground Testing of a Compactly Stowed Scalable Inflatably Deployed Solar Sail</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lichodziejewski, David; Derbes, Billy; Reinert, Rich; Belvin, Keith; Slade, Kara; Mann, Troy</p> <p>2004-01-01</p> <p>This paper discusses the solar sail design and outlines the interim accomplishments to advance the technology readiness level (TRL) of the subsystem from 3 toward a technology readiness level of 6 in 2005. Under Phase II of the program many component test articles have been fabricated and tested successfully. Most notably an unprecedented section of the conically deployed rigidizable sail support beam, the heart of the inflatable rigidizable structure, has been deployed and tested in the NASA Goddard thermal vacuum chamber with good results. The development testing validated the beam packaging and deployment. The inflatable conically deployed, Sub Tg rigidizable beam technology is now in the TRL 5-6 range. The fabricated masses and structural test results of our beam components have met predictions and no changes to the mass estimates or design assumptions have been identified adding great credibility to the design. Several quadrants of the Mylar sail have also been fabricated and successfully deployed validating our design, manufacturing, and deployment techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4431281','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4431281"><span>Design and Field Test of a WSN Platform Prototype for Long-Term Environmental Monitoring</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lazarescu, Mihai T.</p> <p>2015-01-01</p> <p>Long-term wildfire monitoring using distributed in situ temperature sensors is an accurate, yet demanding environmental monitoring application, which requires long-life, low-maintenance, low-cost sensors and a simple, fast, error-proof deployment procedure. We present in this paper the most important design considerations and optimizations of all elements of a low-cost WSN platform prototype for long-term, low-maintenance pervasive wildfire monitoring, its preparation for a nearly three-month field test, the analysis of the causes of failure during the test and the lessons learned for platform improvement. The main components of the total cost of the platform (nodes, deployment and maintenance) are carefully analyzed and optimized for this application. The gateways are designed to operate with resources that are generally used for sensor nodes, while the requirements and cost of the sensor nodes are significantly lower. We define and test in simulation and in the field experiment a simple, but effective communication protocol for this application. It helps to lower the cost of the nodes and field deployment procedure, while extending the theoretical lifetime of the sensor nodes to over 16 years on a single 1 Ah lithium battery. PMID:25912349</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26147728','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26147728"><span>UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Tonolo, Fabio Giulio; Lingua, Andrea</p> <p>2015-07-02</p> <p>Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author's group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17219788','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17219788"><span>Venomous adversaries: a reference to snake identification, field safety, and bite-victim first aid for disaster-response personnel deploying into the hurricane-prone regions of North America.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wozniak, Edward J; Wisser, John; Schwartz, Michael</p> <p>2006-01-01</p> <p>Each hurricane season, emergency-preparedness deployment teams including but not limited to the Office of Force Readiness and Deployment of the US Public Health Service, Federal Emergency Management Agency, Deployment Medical Assistance Teams, Veterinary Medical Assistance Teams, and the US Army and Air Force National Guard are at risk for deploying into hurricane-stricken areas that harbor indigenous hazards, including those posed by venomous snakes. North America is home to 2 distinct families of venomous snakes: 1) Viperidae, which includes the rattlesnakes, copperheads, and cottonmouths; and 2) Elapidae, in which the only native species are the coral snakes. Although some of these snakes are easily identified, some are not, and many rank among the most feared and misunderstood animals. This article specifically addresses all the native species of venomous snakes that inhabit the hurricane-prone regions of North America and is intended to serve as a reference to snake identification, basic field safety procedures, and the currently recommended first-aid measures for snakebite casualties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24188064','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24188064"><span>Gaze-fixation to happy faces predicts mood repair after a negative mood induction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sanchez, Alvaro; Vazquez, Carmelo; Gomez, Diego; Joormann, Jutta</p> <p>2014-02-01</p> <p>The present study tested the interplay between mood and attentional deployment by examining attention to positive (i.e., happy faces) and negative (i.e., angry and sad faces) stimuli in response to experimental inductions of sad and happy mood. Participants underwent a negative, neutral, or positive mood induction procedure (MIP) which was followed by an assessment of their attentional deployment to emotional faces using eye-tracking technology. Faces were selected from the Karolinska Directed Emotional Faces (KDEF) database (Lundqvist, Flykt, & Öhman, 1998). In the positive MIP condition, analyses revealed a mood-congruent relation between positive mood and greater attentional deployment to happy faces. In the negative MIP condition, however, analyses revealed a mood-incongruent relation between increased negative mood and greater attentional deployment to happy faces. Furthermore, attentional deployment to happy faces after the negative MIP predicted participants' mood recovery at the end of the experimental session. These results suggest that attentional processing of positive information may play a role in mood repair, which may have important clinical implications. PsycINFO Database Record (c) 2014 APA, all rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/9038029','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/9038029"><span>Readiness: observations and comments from a medical team deployment.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Popper, S E; Noble, D E; Mason, L J; Schaffer, L A; Glover, J G; Barkley, M S</p> <p>1997-02-01</p> <p>The evolving strategy of the United States in dealing with the changing world order calls for a force structure capable of fighting and winning two nearly simultaneous major regional conflicts and conducting a range of other military operations. Readiness is a key factor in this new strategy. Consequently, major paradigm shifts are occurring within the Air Force Medical Service. Maintaining current and accurate medical records on personnel to meet deployment requirements is a significant challenge. Historically, time and resources are consumed determining the deployability of troops prior to a deployment. This adds to the cost of doing business and increases the time required to clear the deploying team, even though there is an established process to avoid these very problems. The experience of a recent medical team deployment to Bosnia is discussed. Future directions given the implementation of TRI-CARE, the Preventive Health Assessment Program, and the Strategic Health Resourcing Plan are also considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960025612','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960025612"><span>Mars pathfinder Rover egress deployable ramp assembly</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spence, Brian R.; Sword, Lee F.</p> <p>1996-01-01</p> <p>The Mars Pathfinder Program is a NASA Discovery Mission, led by the Jet Propulsion Laboratory, to launch and place a small planetary Rover for exploration on the Martian surface. To enable safe and successful egress of the Rover vehicle from the spacecraft, a pair of flight-qualified, deployable ramp assemblies have been developed. This paper focuses on the unique, lightweight deployable ramp assemblies. A brief mission overview and key design requirements are discussed. Design and development activities leading to qualification and flight systems are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021937','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021937"><span>A Novel Approach for a Low-Cost Deployable Antenna</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Amend, Chris; Nurnberger, Michael; Oppenheimer, Paul; Koss, Steve; Purdy, Bill</p> <p>2010-01-01</p> <p>The Naval Research Laboratory (NRL) has designed, built, and fully qualified a low cost, low Passive Intermodulation (PIM) 12-foot (3.66-m) diameter deployable ultra high frequency (UHF) antenna for the Tacsat-4 program. The design utilized novel approaches in reflector material and capacitive coupling techniques. This paper discusses major design trades, unique design characteristics, and lessons learned from the development of the Tacsat 4 deployable antenna. This antenna development was sponsored by the Office of Naval Research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3516','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3516"><span>Connected vehicle pilot deployment program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-01-01</p> <p>The U.S. Department of Transportations (USDOTs) connected vehicle research program is a multimodal initiative to enable safe, interoperable, networked wireless communications among vehicles, infrastructure, and personal communications devices. ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940034513&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfunctional%2Bstructure','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940034513&hterms=functional+structure&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dfunctional%2Bstructure"><span>Validation of a unique concept for a low-cost, lightweight space-deployable antenna structure</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Freeland, R. E.; Bilyeu, G. D.; Veal, G. R.</p> <p>1993-01-01</p> <p>An experiment conducted in the framework of a NASA In-Space Technology Experiments Program based on a concept of inflatable deployable structures is described. The concept utilizes very low inflation pressure to maintain the required geometry on orbit and gravity-induced deflection of the structure precludes any meaningful ground-based demonstrations of functions performance. The experiment is aimed at validating and characterizing the mechanical functional performance of a 14-m-diameter inflatable deployable reflector antenna structure in the orbital operational environment. Results of the experiment are expected to significantly reduce the user risk associated with using large space-deployable antennas by demonstrating the functional performance of a concept that meets the criteria for low-cost, lightweight, and highly reliable space-deployable structures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-05-30/pdf/2012-13102.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-05-30/pdf/2012-13102.pdf"><span>77 FR 31839 - Wind and Water Power Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-05-30</p> <p>... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy Wind and Water Power Program... projects. The 2012 Wind and Water Power Program, Wind Power Peer Review Meeting will review wind technology development and market acceleration and deployment projects from the Program's research and development...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16446534','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16446534"><span>Analysis of emboli during carotid stenting with distal protection device.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chen, Chin-I; Iguchi, Yasuyuki; Garami, Zsolt; Malkoff, Marc D; Smalling, Richard W; Campbell, Morgan S; Alexandrov, Andrei V</p> <p>2006-01-01</p> <p>The newly developed multi-frequency transcranial Doppler (TCD) is able to differentiate gaseous from solid emboli. Our goal was to apply this technology to initially characterize emboli detected during carotid stenting with distal protection. Patients undergoing carotid angiography and stenting were monitored with 2-2.5 MHz TCD (Embo-Dop, DWL) over the middle cerebral artery unilateral to stent deployment. Sonographers insured optimal signal recordings during the procedures. Automated emboli detection and classification software (MultiXLab version 2.0) was applied for offline count and analysis. Monitoring using the Filter Wire EX (Boston Scientific) and ACCUNET system (Guidant Corporation) was performed. A total of 9,649 embolic signals were detected during 11 angiographic and 10 stenting procedures. An observer confirmed the signals using the International Consensus definition. Automated software classified these events into 5,900 gaseous and 3,749 solid emboli. During contrast injections without the protection device, 1,013 emboli were detected with 28% of these being solid. With deployment of the distal protection device, 8,636 emboli were found with 40% being solid (p < 0.001). During stenting and angioplasty with the protection device, 7,395 emboli with 42% solids were detected (p < 0.001). Finally injection of contrast after the procedure, with the protection device still deployed, yielded 1,241 emboli with 31% solids (NS). Only 1 patient developed transient hemiparesthesia during ballooning that reduced the flow velocity to zero for 14 s. Neither gaseous nor solid emboli resulted in a mean flow velocity decrease or clinical symptoms. Microembolization frequently occurs during stenting even with deployment of the distal protection device. More solid emboli are seen during manipulations associated with lesion crossing. Although novel TCD methods yield a high frequency of embolic signals, further validation of this technique to determine the true nature, size, and number of emboli is needed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900007091','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900007091"><span>Stochastic model of the NASA/MSFC ground facility for large space structures with uncertain parameters: The maximum entropy approach, part 2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hsia, Wei Shen</p> <p>1989-01-01</p> <p>A validated technology data base is being developed in the areas of control/structures interaction, deployment dynamics, and system performance for Large Space Structures (LSS). A Ground Facility (GF), in which the dynamics and control systems being considered for LSS applications can be verified, was designed and built. One of the important aspects of the GF is to verify the analytical model for the control system design. The procedure is to describe the control system mathematically as well as possible, then to perform tests on the control system, and finally to factor those results into the mathematical model. The reduction of the order of a higher order control plant was addressed. The computer program was improved for the maximum entropy principle adopted in Hyland's MEOP method. The program was tested against the testing problem. It resulted in a very close match. Two methods of model reduction were examined: Wilson's model reduction method and Hyland's optimal projection (OP) method. Design of a computer program for Hyland's OP method was attempted. Due to the difficulty encountered at the stage where a special matrix factorization technique is needed in order to obtain the required projection matrix, the program was successful up to the finding of the Linear Quadratic Gaussian solution but not beyond. Numerical results along with computer programs which employed ORACLS are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960002222','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960002222"><span>The role of small missions in planetary and lunar exploration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1995-01-01</p> <p>The Space Studies Board of the National Research Council charged its Committee on Planetary and Lunar Exploration (COMPLEX) to (1) examine the degree to which small missions, such as those fitting within the constraints of the Discovery program, can achieve priority objectives in the lunar and planetary sciences; (2) determine those characteristics, such as level of risk, flight rate, target mix, university involvement, technology development, management structure and procedures, and so on, that could allow a successful program; (3) assess issues, such as instrument selection, mission operations, data analysis, and data archiving, to ensure the greatest scientific return from a particular mission, given a rapid deployment schedule and a tightly constrained budget; and (4) review past programmatic attempts to establish small planetary science mission lines, including the Planetary Observers and Planetary Explorers, and consider the impact management practices have had on such programs. A series of small missions presents the planetary science community with the opportunity to expand the scope of its activities and to develop the potential and inventiveness of its members in ways not possible within the confines of large, traditional programs. COMPLEX also realized that a program of small planetary missions was, in and of itself, incapable of meeting all of the prime objectives contained in its report 'An Integrated Strategy for the Planetary Sciences: 1995-2010.' Recommendations are provided for the small planetary missions to fulfill their promise.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1369552','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1369552"><span>Borrow the Buoys: DOE’s Lidar Buoy Loan Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None</p> <p>2017-02-27</p> <p>After a 19-month deployment off the coast of Virginia, one of PNNL’s research buoys has returned to shore where researchers can analyze the data recorded by the buoy. The data revealed a few major takeaways that will inform future buoy deployments, including the times and conditions when data measurement is most accurate. Through the Department of Energy's Wind Energy Technologies Office's Lidar Buoy Loan Program, managed by PNNL, interested parties can borrow the buoys for year and contribute invaluable data to the wind energy community.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=%22applied+engineering%22&pg=4&id=EJ378087','ERIC'); return false;" href="https://eric.ed.gov/?q=%22applied+engineering%22&pg=4&id=EJ378087"><span>An Option in Applied Microbiology.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Lee, William E., III</p> <p>1988-01-01</p> <p>Describes a program option for undergraduate chemical engineering students interested in biotechnology. Discusses how this program is deployed at the University of Southern Florida. Lists courses which apply to this program. Discusses the goals of teaching applied microbiology to engineering majors. (CW)</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1114072','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1114072"><span>Technology Solutions for New Manufactured Homes: Idaho, Oregon, and Washington Manufactured Home Builders (Fact Sheet)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None, None</p> <p>2013-11-01</p> <p>The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1034816','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1034816"><span>High Temperature Steam Electrolysis: Demonstration of Improved Long-Term Performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>J. E. O'Brien; X. Zhang; R. C. O'Brien</p> <p>2011-11-01</p> <p>Long-term performance is an ongoing issue for hydrogen production based on high-temperature steam electrolysis (HTSE). For commercial deployment, solid-oxide electrolysis stacks must achieve high performance with long-term degradation rates of {approx}0.5%/1000 hours or lower. Significant progress has been achieved toward this goal over the past few years. This paper will provide details of progress achieved under the Idaho National Laboratory high temperature electrolysis research program. Recent long-term stack tests have achieved high initial performance with degradation rates less than 5%/khr. These tests utilize internally manifolded stacks with electrode-supported cells. The cell material sets are optimized for the electrolysis mode ofmore » operation. Details of the cells and stacks will be provided along with details of the test apparatus, procedures, and results.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1191/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1191/"><span>Sampling protocol for post-landfall Deepwater Horizon oil release, Gulf of Mexico, 2010</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Wilde, F.D.; Skrobialowski, S.C.; Hart, J.S.</p> <p>2010-01-01</p> <p>The protocols and procedures described in this report are designed to be used by U.S. Geological Survey (USGS) field teams for the collection of environmental data and samples in coastal areas affected by the 2010 Deepwater Horizon oil spill in the Gulf of Mexico. This sampling protocol focuses specifically on sampling for water, sediments, benthic invertebrates, and microorganisms (ambient bacterial populations) after shoreline arrival of petroleum-associated product on beach, barrier island, and wetland environments of the Gulf of Mexico coastal states. Deployment to sampling sites, site setup, and sample collection in these environments necessitates modifications to standard USGS sampling procedures in order to address the regulatory, logistical, and legal requirements associated with samples collected in oil-impacted coastal areas. This document, therefore, has been written as an addendum to the USGS National Field Manual for the Collection of Water-Quality Data (NFM) (http://pubs.water.usgs.gov/twri9A/), which provides the basis for training personnel in the use of standard USGS sampling protocols. The topics covered in this Gulf of Mexico oil-spill sampling protocol augment NFM protocols for field-deployment preparations, health and safety precautions, sampling and quality-assurance procedures, and decontamination requirements under potentially hazardous environmental conditions. Documentation procedures and maintenance of sample integrity by use of chain-of-custody procedures also are described in this protocol.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-10-01/pdf/2010-24493.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-10-01/pdf/2010-24493.pdf"><span>75 FR 60573 - Federal Employees' Group Life Insurance Program: Miscellaneous Changes, Clarifications, and...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-10-01</p> <p>... civilian employees deployed in support of a contingency operation, to elect Basic insurance, Option A... after the operations of the Senate Restaurants are contracted to be performed by a private business... for Basic insurance coverage and is deployed in support of a contingency operation as defined by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e046586.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e046586.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-13</p> <p>ISS038-E-046586 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss038e046579.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss038e046579.html"><span>NanoRacks CubeSat Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-02-13</p> <p>ISS038-E-046579 (13 Feb. 2014) --- A set of NanoRacks CubeSats is photographed by an Expedition 38 crew member after the deployment by the NanoRacks Launcher attached to the end of the Japanese robotic arm. The CubeSats program contains a variety of experiments such as Earth observations and advanced electronics testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/technical-assistance/blog/posts/focusing-the-sun-state-considerations-for-designing-community-solar-policy.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/technical-assistance/blog/posts/focusing-the-sun-state-considerations-for-designing-community-solar-policy.html"><span>Focusing the Sun: State Considerations for Designing Community Solar Policy</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>decisions may <em>influence</em> deployment. The report offers state policymakers a list of key questions to help summarizes the policy variation across the states. Though all six elements can <em>influence</em> deployment, we focus rate, may <em>influence</em> whether developers can attract enough consumer demand to reach program caps. Table</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150011941&hterms=mortar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmortar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150011941&hterms=mortar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmortar"><span>Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos</p> <p>2009-01-01</p> <p>In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale supersonic wind tunnel testing of a rigid DGB parachute with entry-vehicle to validate two high fidelity computational fluid dynamics (CFD) tools. The computer codes utilized Large Eddy Simulation and Detached Eddy Simulation numerical approaches to accurately capture the turbulent wake of the entry vehicle and its coupling to the parachute bow-shock. The second phase was the development of fluid structure interaction (FSI) computational tools to predict parachute response to the supersonic flow field. The FSI development included the integration of the CFD from the first phase with a finite element structural model of the parachute membrane and cable elements. In this phase, a 4% of full-scale supersonic flexible parachute test program was conducted to provide validation data to the FSI code and an empirical dataset of the MSL parachute in a flight-like environment. The final phase is FSI simulations of the full-scale MSL parachute in a Mars type deployment. Findings from this program will be presented in terms of code development and validation, empirical findings from the supersonic testing, and drag performance during supersonic operation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28290927','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28290927"><span>Understanding Primary Care Behavioral Health Across Military Settings: A Preliminary Comparison Between Deployed and In-Garrison Care.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Landoll, Ryan R; Nielsen, Matthew K; Waggoner, Kathryn K</p> <p>2017-03-01</p> <p>Integrated primary care behavioral health (PCBH) is a growing trend in health care delivery, particularly in the Department of Defense and the Department of Veterans Affairs. This consultative model has been applied within the U.S. Air Force for over 15 years and has demonstrated positive health impacts and patient satisfaction. With extended conflicts and engagements, including Operation Enduring Freedom and Operation Iraqi Freedom, deployment behavioral health care has expanded and positively received, but there is less empirical support of particular models of care in a deployed environment. Brief, solution-focused strategies commonly utilized in PCBH are likely to be particularly good candidates for the deployed environment. One key feature the Air Force's PCBH program is the collaborative team-based approach to care centered around a patient and driven by a primary care manager. This study expands the evaluation of the Air Force's PCBH program to include its novel application in a combat setting. A retrospective review of 516 archival patient satisfaction surveys across Air Force military treatment facilities utilizing a PCBH program compared patient satisfaction surveys collected in a deployed environment at a large combat support hospital to noncombat facilities. Results indicated that patient satisfaction in theater was comparable to satisfaction at Air Force military treatment facilities in noncombat environments, with one exception; patients seen in garrison rated higher satisfaction with the treatment plan than those seen in a deployed setting, F(509) = 5.36, p < 0.01, consistent with limited resources available in theater. Given patient satisfaction across settings was found to be relatively equivalent, results suggests that the PCBH consultation model may be an appropriate model of care to meet a majority of the population's needs for a deployed environment. This pilot study has implications not only for military combat environments, but other austere settings, including civilian rural mental health settings. These findings inform provision of care in a deployed environment by demonstrating the benefits of the primary care behavioral model. Additionally, the Department of Veterans Affairs and other federal health care agencies will benefit from reviewing the structured and standardized PCBH model employed by the U.S. Air Force for nearly two decades as they expand care in rural mental health settings across the country. Reprint & Copyright © 2017 Association of Military Surgeons of the U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20010097642&hterms=Qamar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3DQamar','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20010097642&hterms=Qamar&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAuthor-Name%26N%3D0%26No%3D40%26Ntt%3DQamar"><span>Field-Deployable Acoustic Digital Systems for Noise Measurement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.</p> <p>2000-01-01</p> <p>Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1216573','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1216573"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cort, K. A.; Hostick, D. J.; Belzer, D. B.</p> <p></p> <p>The purpose of the project was to identify and characterize the modeling of deployment programs within the EERE Technology Development (TD) programs, address possible improvements to the modeling process, and note gaps in knowledge for future research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.nrel.gov/about/mission-programs.html','SCIGOVWS'); return false;" href="https://www.nrel.gov/about/mission-programs.html"><span>Mission and Programs | NREL</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Government International, <em>Research</em>, and Nonprofit Organizations R&D Programs NREL is the only federal laboratory dedicated to the <em>research</em>, development, commercialization, and deployment of renewable energy and Program supports NREL <em>research</em> and development that focuses on biomass characterization, thermochemical</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000052454','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000052454"><span>Venus Aerobot Multisonde Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cutts, James A.; Kerzhanovich, Viktor; Balaram, J. Bob; Campbell, Bruce; Gershaman, Robert; Greeley, Ronald; Hall, Jeffery L.; Cameron, Jonathan; Klaasen, Kenneth; Hansen, David M.</p> <p>1999-01-01</p> <p>Robotic exploration of Venus presents many challenges because of the thick atmosphere and the high surface temperatures. The Venus Aerobot Multisonde mission concept addresses these challenges by using a robotic balloon or aerobot to deploy a number of short lifetime probes or sondes to acquire images of the surface. A Venus aerobot is not only a good platform for precision deployment of sondes but is very effective at recovering high rate data. This paper describes the Venus Aerobot Multisonde concept and discusses a proposal to NASA's Discovery program using the concept for a Venus Exploration of Volcanoes and Atmosphere (VEVA). The status of the balloon deployment and inflation, balloon envelope, communications, thermal control and sonde deployment technologies are also reviewed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4000208','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4000208"><span>Measuring Large-Scale Social Networks with High Resolution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Stopczynski, Arkadiusz; Sekara, Vedran; Sapiezynski, Piotr; Cuttone, Andrea; Madsen, Mette My; Larsen, Jakob Eg; Lehmann, Sune</p> <p>2014-01-01</p> <p>This paper describes the deployment of a large-scale study designed to measure human interactions across a variety of communication channels, with high temporal resolution and spanning multiple years—the Copenhagen Networks Study. Specifically, we collect data on face-to-face interactions, telecommunication, social networks, location, and background information (personality, demographics, health, politics) for a densely connected population of 1 000 individuals, using state-of-the-art smartphones as social sensors. Here we provide an overview of the related work and describe the motivation and research agenda driving the study. Additionally, the paper details the data-types measured, and the technical infrastructure in terms of both backend and phone software, as well as an outline of the deployment procedures. We document the participant privacy procedures and their underlying principles. The paper is concluded with early results from data analysis, illustrating the importance of multi-channel high-resolution approach to data collection. PMID:24770359</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4928G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4928G"><span>StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grund, Michael</p> <p>2017-04-01</p> <p>The SplitLab package (Wüstefeld et al., Computers and Geosciences, 2008), written in MATLAB, is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to seaside or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1351060','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1351060"><span>Evaluation of Installation Time for SMASHmount by SMASHsolar</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p></p> <p></p> <p>The Department of Energy SunShot Incubator program provides early-stage assistance to help startup companies cross technological barriers to commercialization while encouraging private sector investment. The SunShot Incubator program aims to shorten the time it takes for a young business or company to develop an innovative product concept and make it commercially available, which includes product prototyping, deployment, and, potentially, manufacturing. SMASHsolar was selected as an Incubator awardee to develop a simple, snap-together, module-integrated photovoltaic (PV) mounting system in attempts to dramatically reduce the time, effort and skill needed to install rooftop solar. In support of this award, the National Renewablemore » Energy Laboratory worked with SMASHsolar to develop a procedure for evaluating the installation time required for the SMASHmount system vs. widely-available rail systems. Amongst several installations, NREL measured the following installation times, subject to the qualifications and conditions described later in this report. NREL found that the SMASHsolar SMASHmount system was installed between 15% and 37% faster than tested competing systems after one or two installations of the system.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18842388','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18842388"><span>Cigarette smoking and military deployment: a prospective evaluation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Smith, Besa; Ryan, Margaret A K; Wingard, Deborah L; Patterson, Thomas L; Slymen, Donald J; Macera, Caroline A</p> <p>2008-12-01</p> <p>The stress of military deployment may compound occupational stress experienced in the military and manifest in maladaptive coping behaviors such as cigarette smoking. The current study describes new smoking among never-smokers, smoking recidivism among past smokers, and change in daily smoking among smokers in relation to military deployment. The Millennium Cohort is a 21-year longitudinal study. The current analysis utilized participants (N=48,304) who submitted baseline data (July 2001-June 2003) before the current conflicts in Iraq and Afghanistan and follow-up data (June 2004-January 2006) on health measures. New smoking was identified among baseline never-smokers, smoking recidivism among baseline past smokers, and increased or decreased daily smoking among baseline smokers. Analyses were conducted March 2007-April 2007. Among never-smokers, smoking initiation was identified in 1.3% of nondeployers and 2.3% of deployers. Among past smokers, smoking resumption occurred in 28.7% of nondeployers and 39.4% of those who deployed. Smoking increased 44% among nondeployers and 57% among deployers. Those who deployed and reported combat exposures were at 1.6 times greater odds of initiating smoking among baseline never-smokers (95% CI=1.2, 2.3) and at 1.3 times greater odds of resuming smoking among baseline past smokers when compared to those who did not report combat exposures. Other deployment factors independently associated with postdeployment smoking recidivism included deploying for >9 months and deploying multiple times. Among those who smoked at baseline, deployment was not associated with changes in daily amount smoked. Military deployment is associated with smoking initiation and, more strongly, with smoking recidivism, particularly among those with prolonged deployments, multiple deployments, or combat exposures. Prevention programs should focus on the prevention of smoking relapse during or after deployment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1134130','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1134130"><span>Overview of Variable Renewable Energy Regulatory Issues: A Clean Energy Regulators Initiative Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Miller, M.; Cox, S.</p> <p></p> <p>This CERI report aims to provide an introductory overview of key regulatory issues associated with the deployment of renewable energy -- particularly variable renewable energy (VRE) sources such wind and solar power. The report draws upon the research and experiences from various international contexts, and identifies key ideas that have emerged from the growing body of VRE deployment experience and regulatory knowledge. The report assumes basic familiarity with regulatory concepts, and although it is not written for a technical audience, directs the reader to further reading when available. VRE deployment generates various regulatory issues: substantive, procedural, and public interest issues,more » and the report aims to provide an empirical and technical grounding for all three types of questions as appropriate.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16483294','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16483294"><span>Operation Sumatra Assist: surgery for survivors of the tsunami disaster in Indonesia.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chambers, Anthony J; Campion, Michael J; Courtenay, Brett G; Crozier, John A; New, Charles H</p> <p>2006-01-01</p> <p>The tsunami of 26 December 2004 was one of the deadliest natural disasters recorded, with the Indonesian province of Aceh being the most devastated region. As part of the Australian Government's response to the disaster, the Australian Defence Force deployed personnel from the Sydney-based 1st Health Support Battalion to Banda Aceh, the capital of the province. This unit joined with medical personnel from the New Zealand Defence Force to form the ANZAC field hospital. The mission of this unit as part of Operation Sumatra Assist was to provide medical and surgical care to the people of Aceh during the critical stages of rebuilding of the tsunami-devastated region. Surgical teams of the ANZAC field hospital were some of the first to provide definitive surgical care to the critically injured survivors of the disaster. During the first 4 weeks of the deployment, 173 surgical procedures were carried out for 71 patients in this facility. Thirty patients underwent 119 procedures (69% of total) for injuries sustained in the tsunami. Most of these patients required debridements, dressing changes and wound management procedures for the management of severe soft tissue infections. Three amputations were carried out. The remaining 41 patients underwent 54 procedures (31%) for emergent surgical conditions unrelated to the disaster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20100030617&hterms=right+International+public&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dright%2BInternational%2Bpublic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20100030617&hterms=right+International+public&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dright%2BInternational%2Bpublic"><span>International Space Weather Initiative (ISWI)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gopalswamy, Nat; Davila, Joseph M.</p> <p>2010-01-01</p> <p>The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25664434','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25664434"><span>Analysis of wireless sensor network topology and estimation of optimal network deployment by deterministic radio channel characterization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Aguirre, Erik; Lopez-Iturri, Peio; Azpilicueta, Leire; Astrain, José Javier; Villadangos, Jesús; Falcone, Francisco</p> <p>2015-02-05</p> <p>One of the main challenges in the implementation and design of context-aware scenarios is the adequate deployment strategy for Wireless Sensor Networks (WSNs), mainly due to the strong dependence of the radiofrequency physical layer with the surrounding media, which can lead to non-optimal network designs. In this work, radioplanning analysis for WSN deployment is proposed by employing a deterministic 3D ray launching technique in order to provide insight into complex wireless channel behavior in context-aware indoor scenarios. The proposed radioplanning procedure is validated with a testbed implemented with a Mobile Ad Hoc Network WSN following a chain configuration, enabling the analysis and assessment of a rich variety of parameters, such as received signal level, signal quality and estimation of power consumption. The adoption of deterministic radio channel techniques allows the design and further deployment of WSNs in heterogeneous wireless scenarios with optimized behavior in terms of coverage, capacity, quality of service and energy consumption.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930019525','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930019525"><span>Developing an Inflatable Solar Array</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Malone, Patrick K.; Jankowski, Francis J.; Williams, Geoffery T.; Vendura, George J., Jr.</p> <p>1992-01-01</p> <p>Viewgraphs describing the development of an inflatable solar array as part of the Inflatable Torus Solar Array Technology (ITSAT) program are presented. Program phases, overall and subsystem designs, and array deployment are addressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910036899&hterms=Creative+Thinking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCreative%2BThinking','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910036899&hterms=Creative+Thinking&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3DCreative%2BThinking"><span>Uses of tethered atmospheric research probes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Deloach, Richard</p> <p>1991-01-01</p> <p>In situ measurements in the lower thermosphere are rare because of the difficulty of reaching these altitudes with conventional instrument platforms. The emerging technology of tethered satellites as a means to probe these altitudes from above has matured to the point that a flight program is planned to verify the operational performance of a low-cost deployer mechanism for tethered satellites, and to demonstrate a basic understanding of the dynamics of tethered satellite deployment. With such operational developments at hand, it is appropriate to review some of the potential applications of tethered measurement platforms for acquiring in situ data in the upper atmosphere. This paper focuses on downward-deployed tethered satellite measurements of interest to atmospheric scientists and to hypersonic aerodynamicists, and discusses ways in which this technology may be able to support selected long-range research programs currently in progress or in various stages of pre-flight development. The intent is to illustrate for the potential user community some of the unique advantages of tethered measurement platform technology now under development, and to stimulate creative thinking about ways in which this new capability may be used in support of future research programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010etti.conf..151C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010etti.conf..151C"><span>Applications of Dynamic Deployment of Services in Industrial Automation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Candido, Gonçalo; Barata, José; Jammes, François; Colombo, Armando W.</p> <p></p> <p>Service-oriented Architecture (SOA) is becoming a de facto paradigm for business and enterprise integration. SOA is expanding into several domains of application envisioning a unified solution suitable across all different layers of an enterprise infrastructure. The application of SOA based on open web standards can significantly enhance the interoperability and openness of those devices. By embedding a dynamical deployment service even into small field de- vices, it would be either possible to allow machine builders to place built- in services and still allow the integrator to deploy on-the-run the services that best fit his current application. This approach allows the developer to keep his own preferred development language, but still deliver a SOA- compliant application. A dynamic deployment service is envisaged as a fundamental framework to support more complex applications, reducing deployment delays, while increasing overall system agility. As use-case scenario, a dynamic deployment service was implemented over DPWS and WS-Management specifications allowing designing and programming an automation application using IEC61131 languages, and deploying these components as web services into devices.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19848','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19848"><span>A return on investment study of the Hampton Roads Safety Service Patrol program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2007-01-01</p> <p>Safety Service Patrol (SSP) programs are widely used to help mitigate the effects of nonrecurring congestion on our nation's highways and have become an increasingly vital element of incident management programs. SSPs are typically deployed in areas ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1216641','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1216641"><span>Appendix F: FreedomCAR and Vehicle Technologies Program inputs for FY 2008 benefits estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>None, None</p> <p>2009-01-18</p> <p>Document summarizes the results of the benefits analysis of EERE’s programs, as described in the FY 2008 Budget Request. EERE estimates benefits for its overall portfolio and nine Research, Development, Demonstration, and Deployment (RD3) programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22470121-flat-panel-cone-beam-ct-guided-radiofrequency-ablation-very-small-liver-tumors-technical-note-preliminary-experience','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22470121-flat-panel-cone-beam-ct-guided-radiofrequency-ablation-very-small-liver-tumors-technical-note-preliminary-experience"><span>Flat-Panel Cone-Beam Ct-Guided Radiofrequency Ablation of Very Small (≤1.5 cm) Liver Tumors: Technical Note on a Preliminary Experience</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cazzato, Roberto Luigi, E-mail: r.cazzato@unicampus.it; Buy, Xavier, E-mail: x.buy@bordeaux.unicancer.fr; Alberti, Nicolas, E-mail: nicoalbertibdx@gmail.com</p> <p>2015-02-15</p> <p>PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize themore » tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA433718','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA433718"><span>Deployment Health Surveillance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2004-06-01</p> <p>executing a rigorous pre- and post- deployment health screening program. Our healthcare providers practice preventive medicine, promote healthy lifestyles ...individual responsibility for their health and fitness. This includes avoidance of unhealthy behaviors like alcohol abuse and cigarette smoking...due to accident or disease. The basic principles of disease prevention in the field really haven’t changed much. Hand washing, food sanitation</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA587863','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA587863"><span>United States Military Posture for FY 1987</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-01-01</p> <p>monitor, plan, and execute mobilization, deployment, employment, and sustainment during peace, crisis, and war. JOPES requirements are being developed ...positioning 68 Deployment Management 69 VI Sustainability 69 Ammunition 69 Petroleum, Oils, and Lubricants 69 Military Construction 69...Commanders in Chiefs 73 Joint Doctrine 73 Combined Doctrine 74 Joint Force Development Process 74 Joint Resource Assessment 75 Joint Program</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1034219','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1034219"><span>MD PHEV/EV ARRA Project Data Collection and Reporting (Presentation)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Walkowicz, K.; Ramroth, L.; Duran, A.</p> <p>2012-01-01</p> <p>This presentation describes a National Renewable Energy Laboratory project to collect and analyze commercial fleet deployment data from medium-duty plug-in hybrid electric and all-electric vehicles that were deployed using funds from the American Recovery and Reinvestment Act. This work supports the Department of Energy's Vehicle Technologies Program and its Advanced Vehicle Testing Activity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/16178','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/16178"><span>Redding Responder phase I final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2005-12-19</p> <p>The Redding Responder Study was initiated as a component of the Redding Incident : Management Enhancement (RIME) Program. The goals of the RIME program are to leverage : technology and communications deployments for emergency communication providers ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4265','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4265"><span>Advanced public transportation system deployment in the United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-01-01</p> <p>This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/165570-dumand-ii-deep-underwater-muon-neutrino-detector-progress-report','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/165570-dumand-ii-deep-underwater-muon-neutrino-detector-progress-report"><span>DUMAND-II (deep underwater muon and neutrino detector) progress report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Young, K.K.; The DUMAND Collaboration</p> <p>1995-07-10</p> <p>The DUMAND II detector will search for astronomical sources of high energy neutrinos. Successful deployment of the basic infrastructure, including the shore cable, the underwater junction box, and an environmental module was accomplished in December, 1993. One optical module string was also deployed and operated, logging data for about 10 hours. The underwater cable was connected to the shore station where we were able to successfully exercise system controls and log further environmental data. After this time, water leaking into the electronics control module for the deployed string disabled the string electrical system. The acquired data are consistent with themore » expected rate of downgoing muons, and our ability to reconstruct muons was demonstrated. The measured acoustical backgrounds are consistent with expectation, which should allow acoustical detection of nearby PeV particle cascades. The disabled string has been recovered and is undergoing repairs ashore. We have identified the source of the water leak and implemented additional testing and QC procedures to ensure no repetition in our next deployment. We will be ready to deploy three strings and begin continuous data taking in late 1994 or early 1995. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22684350','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22684350"><span>Use of a real-time viewer for endoscopic deployment of capsule endoscope in the pediatric population.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bass, Lee M; Misiewicz, Lawrence</p> <p>2012-11-01</p> <p>Wireless capsule endoscopy (WCE) is an increasingly used procedure for visualization of the small intestine. One challenge in pediatric WCE is the placement of the capsule in a population unable to swallow it for a variety of reasons. Here we present a novel use of the real-time (RT) viewer in the endoscopic deployment of the capsule endoscope. We performed a retrospective chart review on all WCE completed at the Children's Memorial Hospital from February 2010 to May 2011. Following a diagnostic upper endoscopy, the RT viewer was attached to the capsule recorder and image was noted before insertion. The endoscope and AdvanCE capsule delivery device were slowly advanced into duodenum while maintaining visualization on the RT viewer. A total of 17 patients who underwent a WCE with endoscopic placement were identified. They ranged in ages from 2 to 19 years. Thirteen patients required endoscopic placement because of the inability to swallow the capsule, whereas 4 were placed during a scheduled procedure to take advantage of sedation and airway protection. All of the 17 patients had successful deployment of the capsule into the duodenal lumen. In each case, the endoscopist was able to confirm capsule location in duodenum during scope withdrawal. There was no evidence of iatrogenic trauma or bleeding in any patient. There were 5 incomplete studies, a completion rate consistent with that described in the literature. The use of the RT viewer for endoscopic deployment of WCE is an effective technique to improve visualization of capsule placement in the pediatric population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1998PhDT.......332C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1998PhDT.......332C"><span>Application of quality function deployment in defense technology development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cornejo, Estrella De Maria Forster</p> <p>1998-12-01</p> <p>Introduction. As advances in aviation technology take place, the research community recognizes, and the operator demands that the progress in technology be integrated with the human component of the same, the aircrew. Integrative programs are primarily concerned with three sub-systems: the operator, the aircraft, and the cockpit. To accomplish their integration, a "dialogue" between the various disciplines addressing these aspects of the weapon system is indispensable. Such dialogue is theorized to be possible via Quality Function Deployment (QFD). QFD emphasizes an understanding of the relationships between the requirements of the aircrew and the technology the research and engineering community provides. In establishing these relationships, program management concerns such as need, applicability, affordability, and transition of the technology are addressed. Procedures. QFD was incorporated in a Performance Methodology (PMM). This methodology associates a particular technology's Measures of Performance (MOP) and the overall weapon system's Measures of Effectiveness (MOE) to which it is applied. Incorporation of QFD in the PMM was hypothesized to result in an improved PMM (Q-PMM) that would address both, the aircrew's interests and those of program management. Both methodologies were performed. The g-ensemble was selected as the technology of interest. The Standard and Combat Edge designs were examined for comparison purposes. Technology MOPs were ranked in order of importance in accordance to both the PMM and its proposed improvement, the Q-PMM. These methodologies were then evaluated by way of an experiment in the human centrifuge. This experiment was to answer two questions: Is there a relationship between the technology's MOP and the aircraft's MOEs? Given a MOP-MOE relationship, is there a difference between the two ensembles? Findings. The Q-PMM was superior to the PMM in addressing customer's requirements. The Q-PMM was superior to the PMM in addressing program management concerns. The Q-PMM provided an improvement in defining the MOPs that would best describe the overall system MOEs. Both, MOP-MOE associations and a basis of comparison between the two ensembles were elucidated. Conclusion. The findings demonstrated QFD to be an effective approach to defense technology development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20050207462','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20050207462"><span>Vacuum Deployment and Testing of a 4-Quadrant Scalable Inflatable Solar Sail System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lichodziejewski, David; Derbes, Billy; Galena, Daisy; Friese, Dave</p> <p>2005-01-01</p> <p>Solar sails reflect photons streaming from the sun and transfer momentum to the sail. The thrust, though small, is continuous and acts for the life of the mission without the need for propellant. Recent advances in materials and ultra-low mass gossamer structures have enabled a host of useful missions utilizing solar sail propulsion. The team of L'Garde, Jet Propulsion Laboratories, Ball Aerospace, and Langley Research Center, under the direction of the NASA In-Space Propulsion office, has been developing a scalable solar sail configuration to address NASA s future space propulsion needs. The baseline design currently in development and testing was optimized around the 1 AU solar sentinel mission. Featuring inflatably deployed sub-T(sub g), rigidized beam components, the 10,000 sq m sail and support structure weighs only 47.5 kg, including margin, yielding an areal density of 4.8 g/sq m. Striped sail architecture, net/membrane sail design, and L'Garde's conical boom deployment technique allows scalability without high mass penalties. This same structural concept can be scaled to meet and exceed the requirements of a number of other useful NASA missions. This paper discusses the interim accomplishments of phase 3 of a 3-phase NASA program to advance the technology readiness level (TRL) of the solar sail system from 3 toward a technology readiness level of 6 in 2005. Under earlier phases of the program many test articles have been fabricated and tested successfully. Most notably an unprecedented 4-quadrant 10 m solar sail ground test article was fabricated, subjected to launch environment tests, and was successfully deployed under simulated space conditions at NASA Plum Brook s 30m vacuum facility. Phase 2 of the program has seen much development and testing of this design validating assumptions, mass estimates, and predicted mission scalability. Under Phase 3 a much larger 20 m square test article including subscale vane has been fabricated and tested. A 20 m system ambient deployment has been successfully conducted after enduring Delta-2 launch environment testing. The program will culminate in a vacuum deployment of a 20 m subscale test article at the NASA Glenn s Plum Brook 30 m vacuum test facility to bring the TRL level as close to 6 as possible in 1 g. This focused program will pave the way for a flight experiment of this highly efficient space propulsion technology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19740025628','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19740025628"><span>Deployable reflector design for Ku-band operation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tankersley, B. C.</p> <p>1974-01-01</p> <p>A project was conducted to extend the deployable antenna technology state-of-the art through the design, analysis, construction, and testing of a lightweight, high surface tolerance, 12.5 foot diameter reflector for Ku-band operation. The applicability of the reflector design to the Tracking and Data Relay Satellite (TDRS) program was one requirement to be met. A documentary of the total program is presented. The performance requirements used to guide and constrain the design are discussed. The radio frequency, structural/dynamic, and thermal performance results are reported. Appendices are used to provide test data and detailed fabrication drawings of the reflector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptFT..33...89Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptFT..33...89Z"><span>Performance verification of network function virtualization in software defined optical transport networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhao, Yongli; Hu, Liyazhou; Wang, Wei; Li, Yajie; Zhang, Jie</p> <p>2017-01-01</p> <p>With the continuous opening of resource acquisition and application, there are a large variety of network hardware appliances deployed as the communication infrastructure. To lunch a new network application always implies to replace the obsolete devices and needs the related space and power to accommodate it, which will increase the energy and capital investment. Network function virtualization1 (NFV) aims to address these problems by consolidating many network equipment onto industry standard elements such as servers, switches and storage. Many types of IT resources have been deployed to run Virtual Network Functions (vNFs), such as virtual switches and routers. Then how to deploy NFV in optical transport networks is a of great importance problem. This paper focuses on this problem, and gives an implementation architecture of NFV-enabled optical transport networks based on Software Defined Optical Networking (SDON) with the procedure of vNFs call and return. Especially, an implementation solution of NFV-enabled optical transport node is designed, and a parallel processing method for NFV-enabled OTN nodes is proposed. To verify the performance of NFV-enabled SDON, the protocol interaction procedures of control function virtualization and node function virtualization are demonstrated on SDON testbed. Finally, the benefits and challenges of the parallel processing method for NFV-enabled OTN nodes are simulated and analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541851','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4541851"><span>UAV Deployment Exercise for Mapping Purposes: Evaluation of Emergency Response Applications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Boccardo, Piero; Chiabrando, Filiberto; Dutto, Furio; Giulio Tonolo, Fabio; Lingua, Andrea</p> <p>2015-01-01</p> <p>Exploiting the decrease of costs related to UAV technology, the humanitarian community started piloting the use of similar systems in humanitarian crises several years ago in different application fields, i.e., disaster mapping and information gathering, community capacity building, logistics and even transportation of goods. Part of the author’s group, composed of researchers in the field of applied geomatics, has been piloting the use of UAVs since 2006, with a specific focus on disaster management application. In the framework of such activities, a UAV deployment exercise was jointly organized with the Regional Civil Protection authority, mainly aimed at assessing the operational procedures to deploy UAVs for mapping purposes and the usability of the acquired data in an emergency response context. In the paper the technical features of the UAV platforms will be described, comparing the main advantages/disadvantages of fixed-wing versus rotor platforms. The main phases of the adopted operational procedure will be discussed and assessed especially in terms of time required to carry out each step, highlighting potential bottlenecks and in view of the national regulation framework, which is rapidly evolving. Different methodologies for the processing of the acquired data will be described and discussed, evaluating the fitness for emergency response applications. PMID:26147728</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://archive.defense.gov/home/features/2010/1010_Integration','SCIGOVWS'); return false;" href="http://archive.defense.gov/home/features/2010/1010_Integration"><span>DoD Yellow Ribbon Program For Reintegration</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>their families get the support and care they need. VIDEO Video Link Yellow Ribbon Program Eases <em>Post</em> Reintegration Program will help them resolve Velazquez' No. 1 <em>post</em>-deployment challenge: finding a civilian job reintegration event regarding <em>post</em>-traumatic stress: "I need your help." Story Program Fills Gap for</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110015104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110015104"><span>Component-Based Visualization System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Delgado, Francisco</p> <p>2005-01-01</p> <p>A software system has been developed that gives engineers and operations personnel with no "formal" programming expertise, but who are familiar with the Microsoft Windows operating system, the ability to create visualization displays to monitor the health and performance of aircraft/spacecraft. This software system is currently supporting the X38 V201 spacecraft component/system testing and is intended to give users the ability to create, test, deploy, and certify their subsystem displays in a fraction of the time that it would take to do so using previous software and programming methods. Within the visualization system there are three major components: the developer, the deployer, and the widget set. The developer is a blank canvas with widget menu items that give users the ability to easily create displays. The deployer is an application that allows for the deployment of the displays created using the developer application. The deployer has additional functionality that the developer does not have, such as printing of displays, screen captures to files, windowing of displays, and also serves as the interface into the documentation archive and help system. The third major component is the widget set. The widgets are the visual representation of the items that will make up the display (i.e., meters, dials, buttons, numerical indicators, string indicators, and the like). This software was developed using Visual C++ and uses COTS (commercial off-the-shelf) software where possible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900020593','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900020593"><span>Shuttle remote manipulator system mission preparation and operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Ernest E., Jr.</p> <p>1989-01-01</p> <p>The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617734','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617734"><span>Early-onset Infectious Complications among Penetrating and Severe Closed Traumatic Brain Injury in Active Duty Deployed during OIF and OEF, 2008-2013</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-02-01</p> <p>seizures, hydrocephalus, cerebral spinal fluid (CSF) leaks, infections inside the skull, vascular injuries, and cranial nerve injuries. 9-11 The...bacterial infection ). Neurosurgical procedures were based on ICD-9-CM procedure codes used to describe interventions related to severe TBI. 21 The...study of critical care trauma patients, traumatic shock was the only admission characteristic associated with infection , and infection developed</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.C13C0687W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.C13C0687W"><span>United States Naval Academy Polar Science Program's Visual Arctic Observing Platforms; IceGoat and IceKids</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Woods, J. E.; Rigor, I. G.; Valentic, T. A.</p> <p>2013-12-01</p> <p>The U.S. Naval Academy Oceanography Department currently has a curriculum based Polar Science Program (USNA PSP). Within the PSP there is an Arctic Buoy Program (ABP) student research component that will include the design, build, testing and deployment of Arctic Observing Platforms. Establishing an active, field-research program in Polar Science will greatly enhance Midshipman education and research, as well as introduce future Naval Officers to the Arctic environment. The Oceanography Department has engaged the USNA Engineering Departments, and in close collaboration with SRI International, developed the USNA Visual Arctic Observing Platforms. The experience gained through Polar field studies and data derived from these platforms will be used to enhance course materials and laboratories and will also be used directly in Midshipman independent research projects. The USNA PSP successfully deployed IceGoat1 (IG1) off the USCGC HEALY in September, 2012. IG1 suffered a malfunction to its solar powered webcam system upon deployment, but is still reporting via ARGOS SATCOM systems basic weather parameters of air temperature, pressure, and position. USNA PSP attempted to build a less robust, but more economical system integrating similar low power observing platforms housed in heavy duty coolers. This allowed for a streamlined process to get a complete system completed in one academic year. IceKids (IK) are similar observing platforms, just not designed to float once the sea ice melts. IK1 was deployed to Antarctica from October 2012 through January 2013 and captured over 11,000 web cam images in near real time of two remote environmental monitoring stations. IK2A and IK3T were built to be deployed at the Naval Academy Ice Experiment in Barrow, AK in March 2013. IK2A was unique in trying to collect and transmit underwater acoustic signals in near real time. The system integrated a passive hydrophone into the already developed low power data transport system. Unfortunately a malfunction occurred post deployment and only a few hours of data was collected while under the ice. IK3T integrated a Vaisala all in one weather station for very accurate Air Temperature, Pressure, and Wind measurements. IK3T is still operating in Barrow, AK as part of the University of Washington's Arctic Observing Experiment (AOX) where very precise temperature measurements are being collected for validation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......120Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......120Z"><span>Integrating a novel shape memory polymer into surgical meshes to improve device performance during laparoscopic hernia surgery</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zimkowski, Michael M.</p> <p></p> <p>About 600,000 hernia repair surgeries are performed each year. The use of laparoscopic minimally invasive techniques has become increasingly popular in these operations. Use of surgical mesh in hernia repair has shown lower recurrence rates compared to other repair methods. However in many procedures, placement of surgical mesh can be challenging and even complicate the procedure, potentially leading to lengthy operating times. Various techniques have been attempted to improve mesh placement, including use of specialized systems to orient the mesh into a specific shape, with limited success and acceptance. In this work, a programmed novel Shape Memory Polymer (SMP) was integrated into commercially available polyester surgical meshes to add automatic unrolling and tissue conforming functionalities, while preserving the intrinsic structural properties of the original surgical mesh. Tensile testing and Dynamic Mechanical Analysis was performed on four different SMP formulas to identify appropriate mechanical properties for surgical mesh integration. In vitro testing involved monitoring the time required for a modified surgical mesh to deploy in a 37°C water bath. An acute porcine model was used to test the in vivo unrolling of SMP integrated surgical meshes. The SMP-integrated surgical meshes produced an automated, temperature activated, controlled deployment of surgical mesh on the order of several seconds, via laparoscopy in the animal model. A 30 day chronic rat model was used to test initial in vivo subcutaneous biocompatibility. To produce large more clinical relevant sizes of mesh, a mold was developed to facilitate manufacturing of SMP-integrated surgical mesh. The mold is capable of manufacturing mesh up to 361 cm2, which is believed to accommodate the majority of clinical cases. Results indicate surgical mesh modified with SMP is capable of laparoscopic deployment in vivo, activated by body temperature, and possesses the necessary strength and biocompatibility to function as suitable ventral hernia repair mesh, while offering a reduction in surgical operating time and improving mesh placement characteristics. Future work will include ball-burst tests similar to ASTM D3787-07, direct surgeon feedback studies, and a 30 day chronic porcine model to evaluate the SMP surgical mesh in a realistic hernia repair environment, using laparoscopic techniques for typical ventral hernia repair.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4327','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4327"><span>Advanced public transportation systems deployment in the United States : year 2002 update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-06-01</p> <p>This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4320','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4320"><span>Advanced public transportation systems deployment in the United States : year 2000 update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-05-01</p> <p>This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/4301','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/4301"><span>Advanced public transportation systems deployment in the United States : year 2004 update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2005-06-01</p> <p>This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35630','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35630"><span>Advanced Public Transportation Systems Deployment in the United States, Year 2000, Update</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-05-01</p> <p>This report documents work performed under the Federal Transit Administration's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, infor...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35632','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35632"><span>Advanced Public Transportation Systems Deployment in the United States. Update, January 1999</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-01-01</p> <p>This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advanced navigation, information, and communication techn...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/8436','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/8436"><span>Advanced public transportation systems deployment in the United States : update, January 1999</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1999-01-01</p> <p>This report documents work performed under FTA's Advanced Public Transportation Systems (APTS) Program, a program structured to undertake research and development of innovative applications of advances navigation, information, and communication techn...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMED11A0849L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMED11A0849L"><span>Engaging High School Science Teachers in Field-Based Seismology Research: Opportunities and Challenges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Long, M. D.</p> <p>2015-12-01</p> <p>Research experiences for secondary school science teachers have been shown to improve their students' test scores, and there is a substantial body of literature about the effectiveness of RET (Research Experience for Teachers) or SWEPT (Scientific Work Experience Programs for Teachers) programs. RET programs enjoy substantial support, and several opportunities for science teachers to engage in research currently exist. However, there are barriers to teacher participation in research projects; for example, laboratory-based projects can be time consuming and require extensive training before a participant can meaningfully engage in scientific inquiry. Field-based projects can be an effective avenue for involving teachers in research; at its best, earth science field work is a fun, highly immersive experience that meaningfully contributes to scientific research projects, and can provide a payoff that is out of proportion to a relatively small time commitment. In particular, broadband seismology deployments provide an excellent opportunity to provide teachers with field-based research experience. Such deployments are labor-intensive and require large teams, with field tasks that vary from digging holes and pouring concrete to constructing and configuring electronics systems and leveling and orienting seismometers. A recently established pilot program, known as FEST (Field Experiences for Science Teachers) is experimenting with providing one week of summer field experience for high school earth science teachers in Connecticut. Here I report on results and challenges from the first year of the program, which is funded by the NSF-CAREER program and is being run in conjunction with a temporary deployment of 15 seismometers in Connecticut, known as SEISConn (Seismic Experiment for Imaging Structure beneath Connecticut). A small group of teachers participated in a week of field work in August 2015 to deploy seismometers in northern CT; this experience followed a visit of the PI to the classroom of one of the teacher participants during spring 2015 to give a series of talks on Connecticut earthquakes and geology. This presentation will focus on the challenges and opportunities of running small, PI-driven, field-based RET programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7967E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7967E"><span>Visual soil evaluation - future research requirements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Ball, Bruce; Holden, Nick</p> <p>2017-04-01</p> <p>A review of Visual Soil Evaluation (VSE) techniques (Emmet-Booth et al., 2016) highlighted their established utility for soil quality assessment, though some limitations were identified; (1) The examination of aggregate size, visible intra-porosity and shape forms a key assessment criterion in almost all methods, thus limiting evaluation to structural form. The addition of criteria that holistically examine structure may be desirable. For example, structural stability can be indicated using dispersion tests or examining soil surface crusting, while the assessment of soil colour may indirectly indicate soil organic matter content, a contributor to stability. Organic matter assessment may also indicate structural resilience, along with rooting, earthworm numbers or shrinkage cracking. (2) Soil texture may influence results or impeded method deployment. Modification of procedures to account for extreme texture variation is desirable. For example, evidence of compaction in sandy or single grain soils greatly differs to that in clayey soils. Some procedures incorporate separate classification systems or adjust deployment based on texture. (3) Research into impacts of soil moisture content on VSE evaluation criteria is required. Criteria such as rupture resistance and shape may be affected by moisture content. It is generally recommended that methods are deployed on moist soils and quantification of influences of moisture variation on results is necessary. (4) Robust sampling strategies for method deployment are required. Dealing with spatial variation differs between methods, but where methods can be deployed over large areas, clear instruction on sampling is required. Additionally, as emphasis has been placed on the agricultural production of soil, so the ability of VSE for exploring structural quality in terms of carbon storage, water purification and biodiversity support also requires research. References Emmet-Booth, J.P., Forristal. P.D., Fenton, O., Ball, B.C. & Holden, N.M. 2016. A review of visual soil evaluation techniques for soil structure. Soil Use and Management, 32, 623-634.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19265186','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19265186"><span>Guide for mass prophylaxis of hospital employees in preparation for a bioterrorist attack.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lee, Jeremy John; Johnson, Shannon John; Sohmer, Michael J</p> <p>2009-03-15</p> <p>The key elements required for the health-system pharmacist to prepare and implement a hospital-based mass prophylaxis distribution effort for hospital employees are described. A bioterrorist attack may involve multiple jurisdictions which would necessitate a regional response. Pharmacists should collaborate not only with colleagues in their immediate areas, but also with pharmacists and emergency-management planners in neighboring counties and jurisdictions. Pharmacists must also develop antibiotic drug selection protocols and define the quantity needed to maintain hospital operations after a bioterrorist attack. Once the desired antibiotics have been selected and the number of employees has been determined, along with the length of prophylaxis therapy, it should be determined how much money will be needed to purchase and store enough medications to meet the need. Next, provisions must be made to acquire and store the antibiotic cache, with attention paid to cache rotation and packaging and repackaging recommendations. A detailed procedure for the deployment of an antibiotic cache must be developed. This procedure should include job descriptions and job action sheets for deployment team members and plans for receiving and dispensing antibiotics from the Strategic National Stockpile. Once the employee prophylaxis procedure is developed, staff must be educated about it, and exercises should be conducted to identify possible weaknesses in the procedure. Health-system pharmacists should play an active role in designing and implementing an antibiotic prophylaxis plan for employees for a potential bioterrorist attack. Understanding and following procedures provided in the tool kit are critical to their successful readiness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3479','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3479"><span>I-15 integrated corridor management system : project management plan.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2011-06-01</p> <p>The Project Management Plan (PMP) assists the San Diego ICM Team by defining a procedural framework for management and control of the I-15 Integrated Corridor Management Demonstration Project, and development and deployment of the ICM System. The PMP...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1040721','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1040721"><span>Making IT Work</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-10-01</p> <p>system (MAIS) program failed to “achieve a Full Deployment Decision ( FDD ) within five years after funds were first obligated for the program.”14 A...Quarterly Report dated 31 October 2010, highlighted that the MDA had not approved a FDD for ECSS by 31 August 2010, and determined that the program</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=deployment+AND+strategic&pg=5&id=EJ360805','ERIC'); return false;" href="https://eric.ed.gov/?q=deployment+AND+strategic&pg=5&id=EJ360805"><span>Strategic Considerations in Developing Programs at Colleges and Universities.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Barbaro, Fred</p> <p>1986-01-01</p> <p>A strategy, based on organizational change literature, for establishing a college program for learning-disabled students includes such crucial steps as assessing the change effort (nature of the change, environmental factors, initiators of change), establishing a campaign plan (program and decision centers), and developing deployment tactics…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22842656','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22842656"><span>Virtual evaluation of stent graft deployment: a validated modeling and simulation study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>De Bock, S; Iannaccone, F; De Santis, G; De Beule, M; Van Loo, D; Devos, D; Vermassen, F; Segers, P; Verhegghe, B</p> <p>2012-09-01</p> <p>The presented study details the virtual deployment of a bifurcated stent graft (Medtronic Talent) in an Abdominal Aortic Aneurysm model, using the finite element method. The entire deployment procedure is modeled, with the stent graft being crimped and bent according to the vessel geometry, and subsequently released. The finite element results are validated in vitro with placement of the device in a silicone mock aneurysm, using high resolution CT scans to evaluate the result. The presented work confirms the capability of finite element computer simulations to predict the deformed configuration after endovascular aneurysm repair (EVAR). These simulations can be used to quantify mechanical parameters, such as neck dilations, radial forces and stresses in the device, that are difficult or impossible to obtain from medical imaging. Copyright © 2012 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA538094','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA538094"><span>Logistics Handbook for Strategic Mobility Planning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1994-04-01</p> <p>tion 83 E. Flatrack Characteristics 85 F. Seashed Characteristics 88 G. Equipment Deployment and Storage Systems (EDSS) 88 H. Palletized Load...Equipment Deployment and Storage Systems (EDSS) 94 41 Containerizable Unit Equipment 97 42 Mobilization Station to Inland Waterway Dock Mileage 101...passengers worldwide, and the DOD Worldwide Personal Property Movement and Storage Program. 15 MTMC also provides interface between military shippers</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=312734','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=312734"><span>Pest Management Practices for the Military: Novel Field Studies to Develop Methods to Protect Deployed Troops from Mosquito, Filth/Biting Flies, and Sand Fly Vectors</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>New techniques that we developed to protect deployed military troops from the threat of vector-borne diseases and are also applicable for use by civilian mosquito control program use are described. Techniques illustrated included (1) novel military personal protection methods, (2) barrier treatments...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1220907','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1220907"><span>New Whole-House Solutions Case Study: Technology Solutions for New Manufactured Homes, Idaho, Oregon, and Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>BA-PIRC</p> <p>2013-11-01</p> <p>The Building America Partnership for Improved Residential Construction, the Bonneville Power Administration (BPA), and Northwest Energy Works (NEW), the current Northwest Energy Efficient Manufactured Housing Program (NEEM) administrator, have been collaborating to conduct research on new specifications that would improve on the energy requirements of a NEEM home. In its role as administrator, NEW administers the technical specs, performs research and engineering analysis, implements ongoing construction quality management procedures, and maintains a central database with home tracking. This project prototyped and assessed the performances of cost-effective high performance building assemblies and mechanical systems that are not commonly deployed in themore » manufacturing setting. The package of measures is able to reduce energy used for space conditioning, water heating and lighting by 50 percent over typical manufactured homes produced in the northwest.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810010914','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810010914"><span>Test techniques for determining laser ranging system performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zagwodzki, T. W.</p> <p>1981-01-01</p> <p>Procedures and results of an on going test program intended to evaluate laser ranging system performance levels in the field as well as in the laboratory are summarized. Tests show that laser ranging system design requires consideration of time biases and RMS jitters of individual system components. All simple Q switched lasers tested were found to be inadequate for 10 centimeter ranging systems. Timing discriminators operating over a typical 100:1 dynamic signal range may introduce as much as 7 to 9 centimeters of range bias. Time interval units commercially available today are capable of half centimeter performance and are adequate for all field systems currently deployed. Photomultipliers tested show typical tube time biases of one centimeter with single photoelectron transit time jitter of approximately 10 centimeters. Test results demonstrate that NASA's Mobile Laser Ranging System (MOBLAS) receiver configuration is limiting system performance below the 100 photoelectron level.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ets..conf...93S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ets..conf...93S"><span>Automated Methodologies for the Design of Flow Diagrams for Development and Maintenance Activities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shivanand M., Handigund; Shweta, Bhat</p> <p></p> <p>The Software Requirements Specification (SRS) of the organization is a text document prepared by strategic management incorporating the requirements of the organization. These requirements of ongoing business/ project development process involve the software tools, the hardware devices, the manual procedures, the application programs and the communication commands. These components are appropriately ordered for achieving the mission of the concerned process both in the project development and the ongoing business processes, in different flow diagrams viz. activity chart, workflow diagram, activity diagram, component diagram and deployment diagram. This paper proposes two generic, automatic methodologies for the design of various flow diagrams of (i) project development activities, (ii) ongoing business process. The methodologies also resolve the ensuing deadlocks in the flow diagrams and determine the critical paths for the activity chart. Though both methodologies are independent, each complements other in authenticating its correctness and completeness.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996SPIE.2602...84C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996SPIE.2602...84C"><span>Wireless intelligent network: infrastructure before services?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chu, Narisa N.</p> <p>1996-01-01</p> <p>The Wireless Intelligent Network (WIN) intends to take advantage of the Advanced Intelligent Network (AIN) concepts and products developed from wireline communications. However, progress of the AIN deployment has been slow due to the many barriers that exist in the traditional wireline carriers' deployment procedures and infrastructure. The success of AIN has not been truly demonstrated. The AIN objectives and directions are applicable to the wireless industry although the plans and implementations could be significantly different. This paper points out WIN characteristics in architecture, flexibility, deployment, and value to customers. In order to succeed, the technology driven AIN concept has to be reinforced by the market driven WIN services. An infrastructure suitable for the WIN will contain elements that are foreign to the wireline network. The deployment process is expected to seed with the revenue generated services. Standardization will be achieved by simplifying and incorporating the IS-41C, AIN, and Intelligent Network CS-1 recommendations. Integration of the existing and future systems impose the biggest challenge of all. Service creation has to be complemented with service deployment process which heavily impact the carriers' infrastructure. WIN deployment will likely start from an Intelligent Peripheral, a Service Control Point and migrate to a Service Node when sufficient triggers are implemented in the mobile switch for distributed call control. The struggle to move forward will not be based on technology, but rather on the impact to existing infrastructure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT.......104P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT.......104P"><span>Automated Deployment of Advanced Controls and Analytics in Buildings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pritoni, Marco</p> <p></p> <p>Buildings use 40% of primary energy in the US. Recent studies show that developing energy analytics and enhancing control strategies can significantly improve their energy performance. However, the deployment of advanced control software applications has been mostly limited to academic studies. Larger-scale implementations are prevented by the significant engineering time and customization required, due to significant differences among buildings. This study demonstrates how physics-inspired data-driven models can be used to develop portable analytics and control applications for buildings. Specifically, I demonstrate application of these models in all phases of the deployment of advanced controls and analytics in buildings: in the first phase, "Site Preparation and Interface with Legacy Systems" I used models to discover or map relationships among building components, automatically gathering metadata (information about data points) necessary to run the applications. During the second phase: "Application Deployment and Commissioning", models automatically learn system parameters, used for advanced controls and analytics. In the third phase: "Continuous Monitoring and Verification" I utilized models to automatically measure the energy performance of a building that has implemented advanced control strategies. In the conclusions, I discuss future challenges and suggest potential strategies for these innovative control systems to be widely deployed in the market. This dissertation provides useful new tools in terms of procedures, algorithms, and models to facilitate the automation of deployment of advanced controls and analytics and accelerate their wide adoption in buildings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA523391','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA523391"><span>Information Security: Federal Guidance Needed to Address Control Issues With Implementing Cloud Computing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-05-01</p> <p>Figure 2: Cloud Computing Deployment Models 13 Figure 3: NIST Essential Characteristics 14 Figure 4: NASA Nebula Container 37...Access Computing Environment (RACE) program, the National Aeronautics and Space Administration’s (NASA) Nebula program, and the Department of...computing programs: the DOD’s RACE program; NASA’s Nebula program; and Department of Transportation’s CARS program, including lessons learned related</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2016/1054/ofr20161054.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2016/1054/ofr20161054.pdf"><span>Evaluation of the Storm 3 data logger manufactured by WaterLOG/Xylem Incorporated—Results of bench, temperature, and field deployment testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kunkle, Gerald A.</p> <p>2016-05-04</p> <p>The procedures followed and the results obtained from the testing are described in this publication. The device met most of the manufacturer’s stated specifications. An exception was power consumption, which was about 10 percent above the manufacturer’s specifications. It was also observed that enabling WiFi doubles the Storm 3’s power consumption. In addition, several logging errors were made by two units during deployment testing, but it could not be determined whether these errors were the fault of the Storm or of an attached sensor.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27196932','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27196932"><span>Real-Time Monitoring and Evaluation of a Visual-Based Cervical Cancer Screening Program Using a Decision Support Job Aid.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Peterson, Curtis W; Rose, Donny; Mink, Jonah; Levitz, David</p> <p>2016-05-16</p> <p>In many developing nations, cervical cancer screening is done by visual inspection with acetic acid (VIA). Monitoring and evaluation (M&E) of such screening programs is challenging. An enhanced visual assessment (EVA) system was developed to augment VIA procedures in low-resource settings. The EVA System consists of a mobile colposcope built around a smartphone, and an online image portal for storing and annotating images. A smartphone app is used to control the mobile colposcope, and upload pictures to the image portal. In this paper, a new app feature that documents clinical decisions using an integrated job aid was deployed in a cervical cancer screening camp in Kenya. Six organizations conducting VIA used the EVA System to screen 824 patients over the course of a week, and providers recorded their diagnoses and treatments in the application. Real-time aggregated statistics were broadcast on a public website. Screening organizations were able to assess the number of patients screened, alongside treatment rates, and the patients who tested positive and required treatment in real time, which allowed them to make adjustments as needed. The real-time M&E enabled by "smart" diagnostic medical devices holds promise for broader use in screening programs in low-resource settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19969612','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19969612"><span>Children on the homefront: the experience of children from military families.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Chandra, Anita; Lara-Cinisomo, Sandraluz; Jaycox, Lisa H; Tanielian, Terri; Burns, Rachel M; Ruder, Teague; Han, Bing</p> <p>2010-01-01</p> <p>Although studies have begun to explore the impact of the current wars on child well-being, none have examined how children are doing across social, emotional, and academic domains. In this study, we describe the health and well-being of children from military families from the perspectives of the child and nondeployed parent. We also assessed the experience of deployment for children and how it varies according to deployment length and military service component. PARTICIPANTS AND METHODS. Data from a computer-assisted telephone interview with military children, aged 11 to 17 years, and nondeployed caregivers (n = 1507) were used to assess child well-being and difficulties with deployment. Multivariate regression analyses assessed the association between family characteristics, deployment histories, and child outcomes. After controlling for family and service-member characteristics, children in this study had more emotional difficulties compared with national samples. Older youth and girls of all ages reported significantly more school-, family-, and peer-related difficulties with parental deployment (P < .01). Length of parental deployment and poorer nondeployed caregiver mental health were significantly associated with a greater number of challenges for children both during deployment and deployed-parent reintegration (P < .01). Family characteristics (eg, living in rented housing) were also associated with difficulties with deployment. Families that experienced more total months of parental deployment may benefit from targeted support to deal with stressors that emerge over time. Also, families in which caregivers experience poorer mental health may benefit from programs that support the caregiver and child.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/25589','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/25589"><span>Alkali-aggregate reactivity (AAR) workshops for engineers and practitioners reference manual.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2013-01-01</p> <p>Funding for the Federal Highway Administration (FHWA) Alkali-Silica Reactivity (ASR) Development and Deployment Program was provided under SAFETEA-LU. A related Conference Report provides additional guidance stating that project and programs related ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/19465','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/19465"><span>Planning for intelligent transportation systems in small urban areas.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1997-01-01</p> <p>Intelligent transportation systems (ITS) has been a primary program focus of the U.S. Department of Transportation since its origination in the Intermodal Surface Transportation Efficiency Act of 1991. The federal ITS program funded early deployment ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1325405','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1325405"><span>2015 Key Water Power Program and National Laboratory Accomplishments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Office of Energy Efficiency and Renewable Energy</p> <p></p> <p>The U.S. Department of Energy Water Power Program is committed to developing and deploying a portfolio of innovative technologies and market solutions for clean, domestic power generation from water resources across the United States.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Evaluative+AND+research&pg=5&id=ED534014','ERIC'); return false;" href="https://eric.ed.gov/?q=Evaluative+AND+research&pg=5&id=ED534014"><span>Training Civic Bridge Builders: Outcomes of Community Leadership Development Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Keating, Kari Hall</p> <p>2011-01-01</p> <p>As rural communities experience rapid economic, demographic, and political change, program interventions that focus on the development of community leadership capacity could be valuable. Community leadership development programs have been deployed in rural U.S. communities for the past 30 years by university extension units, chambers of commerce,…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=approach+AND+systemic&pg=5&id=EJ1106658','ERIC'); return false;" href="https://eric.ed.gov/?q=approach+AND+systemic&pg=5&id=EJ1106658"><span>Winning One Program at a Time: A Systemic Approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Schultz, Adam; Zimmerman, Kay</p> <p>2016-01-01</p> <p>Many Universities are missing an opportunity to focus student recruitment marketing efforts and budget at the program level, which can offer lower priced advertising opportunities with higher conversion rates than traditional University level marketing initiatives. At NC State University, we have begun to deploy a scalable, low-cost, program level…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=Programming+AND+Mobile&id=EJ1011697','ERIC'); return false;" href="https://eric.ed.gov/?q=Programming+AND+Mobile&id=EJ1011697"><span>Learning Programming with IPRO: The Effects of a Mobile, Social Programming Environment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Martin, Taylor; Berland, Matthew; Benton, Tom; Smith, Carmen Petrick</p> <p>2013-01-01</p> <p>In this paper, we present two studies examining how high school students learn to program in a mobile, social programming environment that we have developed and deployed ("IPRO"). IPRO is delivered, with an associated curriculum, as an iPod Touch app and is freely and publicly available. We find that the affordances of mobility and…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol6/pdf/CFR-2010-title49-vol6-sec552-12.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title49-vol6/pdf/CFR-2010-title49-vol6-sec552-12.pdf"><span>49 CFR 552.12 - Definitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... Expedited Rulemaking To Establish Dynamic Automatic Suppression System Test Procedures for Federal Motor... subpart, the following definitions apply: (a) Dynamic automatic suppression system (DASS) means a portion of an air bag system that automatically controls whether or not the air bag deploys during a crash by...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2013-title47-vol1/pdf/CFR-2013-title47-vol1-sec10-210.pdf','CFR2013'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2013-title47-vol1/pdf/CFR-2013-title47-vol1-sec10-210.pdf"><span>47 CFR 10.210 - WEA participation election procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2013&page.go=Go">Code of Federal Regulations, 2013 CFR</a></p> <p></p> <p>2013-10-01</p> <p>... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title47-vol1/pdf/CFR-2011-title47-vol1-sec10-210.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title47-vol1/pdf/CFR-2011-title47-vol1-sec10-210.pdf"><span>47 CFR 10.210 - CMAS participation election procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2012-title47-vol1/pdf/CFR-2012-title47-vol1-sec10-210.pdf','CFR2012'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2012-title47-vol1/pdf/CFR-2012-title47-vol1-sec10-210.pdf"><span>47 CFR 10.210 - CMAS participation election procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2012&page.go=Go">Code of Federal Regulations, 2012 CFR</a></p> <p></p> <p>2012-10-01</p> <p>... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2014-title47-vol1/pdf/CFR-2014-title47-vol1-sec10-210.pdf','CFR2014'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2014-title47-vol1/pdf/CFR-2014-title47-vol1-sec10-210.pdf"><span>47 CFR 10.210 - WEA participation election procedures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2014&page.go=Go">Code of Federal Regulations, 2014 CFR</a></p> <p></p> <p>2014-10-01</p> <p>... Section 10.210 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL WIRELESS EMERGENCY ALERTS... requirements implemented by the Commission; and (2) Commits to support the development and deployment of technology for the “C” interface, the CMS provider Gateway, the CMS provider infrastructure, and mobile...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5518785-operational-computer-program-control-self-defense-surface-missile-system-operations','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5518785-operational-computer-program-control-self-defense-surface-missile-system-operations"><span>An operational computer program to control Self Defense Surface Missile System operations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Roe, C.L.</p> <p>1991-12-01</p> <p>An account is given of the system architecture and operational protocols of the NATO Seasparrow Surface Missile System (NSSMS) Operational Computer Program (OCP) which has been developed, and is being deployed multinationally, to respond against antiship missiles. Flowcharts are presented for the target detection and tracking, control, and engagement phases of the Self Defense Surface Missile System that is controlled by the OCP. USN and other NATO vessels will carry the NSSMS well into the next century; the OCP presently described will be deployed in the course of 1992 to enhance the self-defense capabilities of the NSSMS-equipped fleet. 8 refs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820018481','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820018481"><span>LSST (Hoop/Column) Maypole Antenna Development Program, phase 1, part 1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sullivan, M. R.</p> <p>1982-01-01</p> <p>The first of a two-phase program was performed to develop the technology necessary to evaluate, design, manufacture, package, transport and deploy the hoop/column deployable antenna reflector by means of a ground based program. The hoop/column concept consists of a cable stiffened large diameter hoop and central column structure that supports and contours a radio frequency reflective mesh surface. Mission scenarios for communications, radiometer and radio astronomy, were studied. The data to establish technology drivers that resulted in a specification of a point design was provided. The point design is a multiple beam quadaperture offset antenna system wich provides four separate offset areas of illumination on a 100 meter diameter symmetrical parent reflector. The periphery of the reflector is a hoop having 48 segments that articulate into a small stowed volume around a center extendable column. The hoop and column are structurally connected by graphite and quartz cables. The prominence of cables in the design resulted in the development of advanced cable technology. Design verification models were built of the hoop, column, and surface stowage subassemblies. Model designs were generated for a half scale sector of the surface and a 1/6 scale of the complete deployable reflector.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1364025-technology-readiness-levels-advanced-nuclear-fuels-materials-development','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1364025-technology-readiness-levels-advanced-nuclear-fuels-materials-development"><span>Technology readiness levels for advanced nuclear fuels and materials development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Carmack, W. J.; Braase, L. A.; Wigeland, R. A.; ...</p> <p>2016-12-23</p> <p>The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1364025','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1364025"><span>Technology readiness levels for advanced nuclear fuels and materials development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carmack, W. J.; Braase, L. A.; Wigeland, R. A.</p> <p></p> <p>The Technology Readiness Level (TRL) process is used to quantitatively assess the maturity of a given technology. It was pioneered by the National Aeronautics and Space Administration (NASA) in the 1980s to develop and deploy new systems for space applications. The process was subsequently adopted by the Department of Defense (DoD) to develop and deploy new technology and systems for defense applications as well as the Department of Energy (DOE) to evaluate the maturity of new technologies in major construction projects. Advanced nuclear fuels and materials development is a critical technology needed for improving the performance and safety of currentmore » and advanced reactors, and ultimately closing the nuclear fuel cycle. Because deployment of new nuclear fuel forms requires a lengthy and expensive research, development, and demonstration program, applying the TRL concept to the advanced fuel development program is very useful as a management, communication and tracking tool. Furthermore, this article provides examples regarding the methods by which TRLs are currently used to assess the maturity of nuclear fuels and materials under development in the DOE Fuel Cycle Research and Development (FCRD) Program within the Advanced Fuels Campaign (AFC).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25916819','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25916819"><span>A new design concept for knitted external vein-graft support mesh.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Singh, Charanpreet; Wang, Xungai</p> <p>2015-08-01</p> <p>Autologous vein-graft failure significantly limits the long-term efficacy of coronary artery bypass procedures. The major cause behind this complication is biomechanical mismatch between the vein and coronary artery. The implanted vein experiences a sudden increase (10-12 fold) in luminal pressures. The resulting vein over-distension or 'ballooning' initiates wall thickening phenomenon and ultimate occlusion. Therefore, a primary goal in improving the longevity of a coronary bypass procedure is to inhibit vein over-distension using mechanical constriction. The idea of using an external vein-graft support mesh has demonstrated sustained benefits and wide acceptance in experimental studies. Nitinol based knitted structures have offered more promising mechanical features than other mesh designs owing to their unique loosely looped construction. However, the conventional plain knit construction still exhibits limitations (radial compliance, deployment ease, flexibility, and bending stresses) which limit this design from proving its real clinical advantage. The new knitted mesh design presented in this study is based on the concept of composite knitting utilising high modulus (nitinol and polyester) and low modulus (polyurethane) material components. The experimental comparison of the new design with a plain knit design demonstrated significant improvement in biomechanical (compliance, flexibility, extensibility, viscoelasticity) and procedural (deployment limit) parameters. The results are indicative of the promising role of new mesh in restoring the lost compliance and pulsatility of vein-graft at high arterial pressures. This way it can assist in controlled vein-graft remodelling and stepwise restoration of vein mechanical homoeostasis. Also, improvement in deployment limit parameter offers more flexibility for a surgeon to use a wide range of vein diameters, which may otherwise be rendered unusable for a plain knit mesh. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21608827-new-technique-preservation-left-common-carotid-artery-zone-endovascular-repair-thoracic-aortic-aneurysm','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21608827-new-technique-preservation-left-common-carotid-artery-zone-endovascular-repair-thoracic-aortic-aneurysm"><span>New Technique for the Preservation of the Left Common Carotid Artery in Zone 2a Endovascular Repair of Thoracic Aortic Aneurysm</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Juszkat, Robert, E-mail: radiologiamim@wp.pl; Kulesza, Jerzy; Zarzecka, Anna</p> <p>2011-02-15</p> <p>To describe a technique for the preservation of the left common carotid artery (CCA) in zone 2 endovascular repair of thoracic aortic aneurysm. This technique involves the placement of a guide wire into the left CCA via the right brachial artery before stent graft deployment to enable precise visualization and protection of the left CCA during the whole procedure. Of the 107 patients with thoracic endovascular aortic repair in our study, 32 (30%) had the left subclavian artery intentionally covered (landing zone 2). Eight (25%) of those 32 had landing zone 2a-the segment distally the origin of the left CCA,more » halfway between the origin of the left CCA and the left subclavian artery. In all patients, a guide wire was positioned into the left CCA via the right brachial artery before stent graft deployment. It is a retrospective study in design. In seven patients, stent grafts were positioned precisely. In the remaining patient, the positioning was imprecise; the origin of the left CCA was partially covered by the graft. A stent was implanted into the left CCA to restore the flow into the vessel. All procedures were performed successfully. The technique of placing a guide wire into the left CCA via the right brachial artery before stent graft deployment is a safe and effective method that enables the precise visualization of the left CCA during the whole procedure. Moreover, in case of inadvertent complete or partial coverage of the origin of the left CCA, it supplies safe and quick access to the artery for stent implantation.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4030517','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4030517"><span>Promoting Parenting to Support Reintegrating Military Families: After Deployment, Adaptive Parenting Tools</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gewirtz, Abigail H.; Pinna, Keri L. M.; Hanson, Sheila K.; Brockberg, Dustin</p> <p>2014-01-01</p> <p>The high operational tempo of the current conflicts and the unprecedented reliance on National Guard and Reserve forces highlights the need for services to promote reintegration efforts for those transitioning back to civilian family life. Despite evidence that parenting has significant influence on children’s functioning, and that parenting may be impaired during stressful family transitions, there is a dearth of empirically-supported psychological interventions tailored for military families reintegrating after deployment. This paper reports on the modification of an empirically-supported parenting intervention for families in which a parent has deployed to war. A theoretical rationale for addressing parenting during reintegration after deployment is discussed. We describe the intervention, After Deployment, Adaptive Parenting Tools (ADAPT), and report early feasibility and acceptability data from a randomized controlled effectiveness trial of ADAPT, a 14-week group-based, web-enhanced parenting training program. Among the first 42 families assigned to the intervention group, participation rates were high, and equal among mothers and fathers. Satisfaction was high across all fourteen sessions. Implications for psychological services to military families dealing with the deployment process are discussed. PMID:24564441</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1034309','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1034309"><span>Final Scientifc Report - Hydrogen Education State Partnership Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Leon, Warren</p> <p>2012-02-03</p> <p>Under the leadership of the Department of Energy Hydrogen and Fuel Cells program, Clean Energy States Alliance (CESA) educated and worked with state leaders to encourage wider deployment of fuel cell and hydrogen technologies. Through outreach to state policymakers, legislative leaders, clean energy funds, energy agencies, and public utility commissions, CESA worked to accomplish the following objectives of this project: 1. Provide information and technical assistance to state policy leaders and state renewable energy programs in the development of effective hydrogen fuel cell programs. 2. Identify and foster hydrogen program best practices. 3. Identify and promote strategic opportunities for statesmore » and the Department of Energy (DOE) to advance hydrogen technology deployment through partnerships, collaboration, and targeted activities. Over the three years of this project, CESA, with our partner National Conference of State Legislatures (NCSL), was able to provide credible information on fuel cell policies, finance, and technical assistance to hundreds of state officials and other stakeholders. CESA worked with its membership network to effectively educate state clean energy policymakers, program managers, and decision makers about fuel cell and hydrogen technologies and the efforts by states to advance those technologies. With the assistance of NCSL, CESA gained access to an effective forum for outreach and communication with state legislators from all 50 states on hydrogen issues and policies. This project worked to educate policymakers and stakeholders with the potential to develop and deploy stationary and portable fuel cell technologies.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26157585','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26157585"><span>Artificially designed pathogens - a diagnostic option for future military deployments.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zautner, Andreas E; Masanta, Wycliffe O; Hinz, Rebecca; Hagen, Ralf Matthias; Frickmann, Hagen</p> <p>2015-01-01</p> <p>Diagnostic microbial isolates of bio-safety levels 3 and 4 are difficult to handle in medical field camps under military deployment settings. International transport of such isolates is challenging due to restrictions by the International Air Transport Association. An alternative option might be inactivation and sequencing of the pathogen at the deployment site with subsequent sequence-based revitalization in well-equipped laboratories in the home country for further scientific assessment. A literature review was written based on a PubMed search. First described for poliovirus in 2002, de novo synthesis of pathogens based on their sequence information has become a well-established procedure in science. Successful syntheses have been demonstrated for both viruses and prokaryotes. However, the technology is not yet available for routine diagnostic purposes. Due to the potential utility of diagnostic sequencing and sequence-based de novo synthesis of pathogens, it seems worthwhile to establish the technology for diagnostic purposes over the intermediate term. This is particularly true for resource-restricted deployment settings, where safe handling of harmful pathogens cannot always be guaranteed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA504008','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA504008"><span>The Value Proposition for Fractionated Space Architectures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-09-01</p> <p>transmission relying on electrostatic forces has been proposed for use in GEO by Parker et al.37 Demonstration Program The Defense Advanced...capability of the original monolithic system.6 One can envision the fractionation trade space to be defined by three high-level metrics. First, the ... by deploying additional modules. Thus, for instance, one could envision deploying an initial communications capability in the form of a power</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA621053','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA621053"><span>Comparing Web, Group and Telehealth Formats of a Military Parenting Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-06-01</p> <p>reintegration period post-deployment. Risks include increases in stress, anxiety and depression, PTSD, and substance use and abuse . These outcomes lead...deployment. Risks include increases in stress, anxiety and depression, PTSD, and substance use and abuse . These outcomes lead to disruptions in...risk behaviors associated with youth substance use by improving parenting, child, and parent adjustment. Specific aims are 1) examine the usability</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1022384','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1022384"><span>COmmunications and Networking with QUantum operationally Secure Technology for Maritime Deployment (CONQUEST)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-12-02</p> <p>Quantum Computing , University of Waterloo, Waterloo ON, N2L 3G1, Canada (Dated: December 1, 2016) Continuous variable (CV) quantum key distribution (QKD...Networking with QUantum operationally-Secure Technology for Maritime Deployment (CONQUEST) Contract Period of Performance: 2 September 2016 – 1 September...this letter or have any other questions. Sincerely, Raytheon BBN Technologies Kathryn Carson Program Manager Quantum Information Processing</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=95435&keyword=VR&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=95435&keyword=VR&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>EVALUATION OF THE MART CORPORATION'S EQ-1 WASTEWATER PROCESSING SYSTEM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The USEPA has created the Environmental Technology Verification (ETV) Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program is to further environment...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/15844','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/15844"><span>Highway and rail transit tunnel maintenance and rehabilitation manual</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2000-04-01</p> <p>This report presents the evaluation results of the Phoenix, Arizona Metropolitan Model Deployment Initiative (MMDI). The MMDI was a three-year program of the Intelligent Transportation Systems (ITS) Joint Program Office of the U.S. Department of Tran...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/11231','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/11231"><span>Socio-Economic Impact Assessment of Automated Transit Information Systems Technology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1984-03-01</p> <p>This report is the final product of a program to assess the socio-economic impacts of automated transit information system (ATIS) technology deployments on the transit industry's telephone information/marketing function. In the course of this program...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/31814','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/31814"><span>Dynamic mobility applications, program evaluation : national-level impacts and costs estimation : final report.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2016-07-01</p> <p>The vision of the Dynamic Mobility Applications (DMA) program is to expedite the development, testing, and deployment of innovative mobility applications that maximize system productivity and enhance mobility of individuals within the surface transpo...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sandia.gov/careers/special_programs/index.html','SCIGOVWS'); return false;" href="http://www.sandia.gov/careers/special_programs/index.html"><span>Sandia National Laboratories: Careers: Special Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & <em>Technology</em> Robotics R&D 100 Awards Laboratory Directed Research & Development <em>Technology</em> Deployment Centers Audit Sandia's Economic Impact Licensing & <em>Technology</em> Transfer Browse <em>Technology</em> Portfolios</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19201077','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19201077"><span>Initial experimental evaluation of wireless capsule endoscopes in the bladder: implications for capsule cystoscopy.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gettman, Matthew T; Swain, Paul</p> <p>2009-05-01</p> <p>Cystoscopy remains one of the most important diagnostic procedures for the lower urinary tract. Wireless capsule endoscopy was introduced in the 1990s but use to date is limited to gastroenterology. We evaluated the feasibility in the pig model of using wireless capsule endoscopes (WCEs) for cystoscopy. Experimental evaluation of capsule cystoscopy was performed in a 50-kg farm pig. The capsule was deployed into the bladder through a custom access sheath. Images were continuously transmitted at a rate of four frames per second to a laptop computer and processed using proprietary software. Manipulation of the WCE within the bladder was performed using a set protocol. The animal was then euthanized and gross inspection was performed. We measured the ability to deploy and manipulate the capsule within the bladder. Feasibility of capturing and retrieving images in real time was also assessed. The WCE was efficiently deployed and manipulated within the bladder passively and with the use of external magnets. The entire bladder mucosa was visualized. Real-time image transmission and capture were successful. No complications were seen during capsule cystoscopy. Minor urethral bleeding was observed after the experiment, likely related to placement of the access sheath required for deployment of the WCE. Limitations are that the evaluation of WCE was performed in the pig model, in only one female animal, using a nonsurvival approach. Furthermore, the study was not designed to differentiate normal from abnormal mucosal findings and focused solely on inspection of the bladder. This report suggests that cystoscopy with a WCE is feasible. With this device, all aspects of the bladder mucosa could be visualized, and ongoing technologic and procedural developments are warranted for this new approach.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27573316','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27573316"><span>Georeferenced and secure mobile health system for large scale data collection in primary care.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sa, Joao H G; Rebelo, Marina S; Brentani, Alexandra; Grisi, Sandra J F E; Iwaya, Leonardo H; Simplicio, Marcos A; Carvalho, Tereza C M B; Gutierrez, Marco A</p> <p>2016-10-01</p> <p>Mobile health consists in applying mobile devices and communication capabilities for expanding the coverage and improving the effectiveness of health care programs. The technology is particularly promising for developing countries, in which health authorities can take advantage of the flourishing mobile market to provide adequate health care to underprivileged communities, especially primary care. In Brazil, the Primary Care Information System (SIAB) receives primary health care data from all regions of the country, creating a rich database for health-related action planning. Family Health Teams (FHTs) collect this data in periodic visits to families enrolled in governmental programs, following an acquisition procedure that involves filling in paper forms. This procedure compromises the quality of the data provided to health care authorities and slows down the decision-making process. To develop a mobile system (GeoHealth) that should address and overcome the aforementioned problems and deploy the proposed solution in a wide underprivileged metropolitan area of a major city in Brazil. The proposed solution comprises three main components: (a) an Application Server, with a database containing family health conditions; and two clients, (b) a Web Browser running visualization tools for management tasks, and (c) a data-gathering device (smartphone) to register and to georeference the family health data. A data security framework was designed to ensure the security of data, which was stored locally and transmitted over public networks. The system was successfully deployed at six primary care units in the city of Sao Paulo, where a total of 28,324 families/96,061 inhabitants are regularly followed up by government health policies. The health conditions observed from the population covered were: diabetes in 3.40%, hypertension (age >40) in 23.87% and tuberculosis in 0.06%. This estimated prevalence has enabled FHTs to set clinical appointments proactively, with the aim of confirming or detecting cases of non-communicable diseases more efficiently, based on real-time information. The proposed system has the potential to improve the efficiency of primary care data collection and analysis. In terms of direct costs, it can be considered a low-cost solution, with an estimated additional monthly cost of U$ 0.040 per inhabitant of the region covered, or approximately U$ 0.106 per person, considering only those currently enrolled in the system. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25488335','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25488335"><span>Dynamic ambulance reallocation for the reduction of ambulance response times using system status management.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lam, Sean Shao Wei; Zhang, Ji; Zhang, Zhong Cheng; Oh, Hong Choon; Overton, Jerry; Ng, Yih Yng; Ong, Marcus Eng Hock</p> <p>2015-02-01</p> <p>Dynamically reassigning ambulance deployment locations throughout a day to balance ambulance availability and demands can be effective in reducing response times. The objectives of this study were to model dynamic ambulance allocation plans in Singapore based on the system status management (SSM) strategy and to evaluate the dynamic deployment plans using a discrete event simulation (DES) model. The geographical information system-based analysis and mathematical programming were used to develop the dynamic ambulance deployment plans for SSM based on ambulance calls data from January 1, 2011, to June 30, 2011. A DES model that incorporated these plans was used to compare the performance of the dynamic SSM strategy against static reallocation policies under various demands and travel time uncertainties. When the deployment plans based on the SSM strategy were followed strictly, the DES model showed that the geographical information system-based plans resulted in approximately 13-second reduction in the median response times compared to the static reallocation policy, whereas the mathematical programming-based plans resulted in approximately a 44-second reduction. The response times and coverage performances were still better than the static policy when reallocations happened for only 60% of all the recommended moves. Dynamically reassigning ambulance deployment locations based on the SSM strategy can result in superior response times and coverage performance compared to static reallocation policies even when the dynamic plans were not followed strictly. Copyright © 2014 Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=ELECTORAL+AND+PROCESS&pg=6&id=EJ756288','ERIC'); return false;" href="https://eric.ed.gov/?q=ELECTORAL+AND+PROCESS&pg=6&id=EJ756288"><span>Georgia's Unusual "Electoral College"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Foster, Andrea L.</p> <p>2007-01-01</p> <p>This article reports a unique partnership between Kennesaw State University and the Georgia state government involving the participation of computer experts in the deployment or electronic voting machines. The effort has received attention in Washington as scientists and government officials search for ways to reform election procedures across the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E3SWC..3001001B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E3SWC..3001001B"><span>Application of Information Technology Solution for Early Warning Systems at Water Utilities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bałut, Alicja</p> <p>2018-02-01</p> <p>Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure) or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017OptEn..56i0501L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017OptEn..56i0501L"><span>Forward and correctional OFDM-based visible light positioning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Wei; Huang, Zhitong; Zhao, Runmei; He, Peixuan; Ji, Yuefeng</p> <p>2017-09-01</p> <p>Visible light positioning (VLP) has attracted much attention in both academic and industrial areas due to the extensive deployment of light-emitting diodes (LEDs) as next-generation green lighting. Generally, the coverage of a single LED lamp is limited, so LED arrays are always utilized to achieve uniform illumination within the large-scale indoor environment. However, in such dense LED deployment scenario, the superposition of the light signals becomes an important challenge for accurate VLP. To solve this problem, we propose a forward and correctional orthogonal frequency division multiplexing (OFDM)-based VLP (FCO-VLP) scheme with low complexity in generating and processing of signals. In the first forward procedure of FCO-VLP, an initial position is obtained by the trilateration method based on OFDM-subcarriers. The positioning accuracy will be further improved in the second correctional procedure based on the database of reference points. As demonstrated in our experiments, our approach yields an improved average positioning error of 4.65 cm and an enhanced positioning accuracy by 24.2% compared with trilateration method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010TJSAI...8.Pc23S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010TJSAI...8.Pc23S"><span>Folding Properties of Two-Dimensional Deployable Membrane Using FEM Analyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Satou, Yasutaka; Furuya, Hiroshi</p> <p></p> <p>Folding FEM analyses are presented to examine folding properties of a two-dimensional deployable membrane for a precise deployment simulation. A fold model of the membrane is proposed by dividing the wrapping fold process into two regions which are the folded state and the transient process. The cross-section of the folded state is assumed to be a repeating structure, and analytical procedures of the repeating structure are constructed. To investigate the mechanical properties of the crease in detail, the bending stiffness is considered in the FEM analyses. As the results of the FEM analyses, the configuration of the membrane and the contact force by the adjacent membrane are obtained quantitatively for an arbitrary layer pitch. Possible occurrence of the plastic deformation is estimated using the Mises stress in the crease. The FEM results are compared with one-dimensional approximation analyses to evaluate these results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EaFut...5..128O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EaFut...5..128O"><span>Research for assessment, not deployment, of Climate Engineering: The German Research Foundation's Priority Program SPP 1689</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oschlies, Andreas; Klepper, Gernot</p> <p>2017-01-01</p> <p>The historical developments are reviewed that have led from a bottom-up responsibility initiative of concerned scientists to the emergence of a nationwide interdisciplinary Priority Program on the assessment of Climate Engineering (CE) funded by the German Research Foundation (DFG). Given the perceived lack of comprehensive and comparative appraisals of different CE methods, the Priority Program was designed to encompass both solar radiation management (SRM) and carbon dioxide removal (CDR) ideas and to cover the atmospheric, terrestrial, and oceanic realm. First, key findings obtained by the ongoing Priority Program are summarized and reveal that, compared to earlier assessments such as the 2009 Royal Society report, more detailed investigations tend to indicate less efficiency, lower effectiveness, and often lower safety. Emerging research trends are discussed in the context of the recent Paris agreement to limit global warming to less than two degrees and the associated increasing reliance on negative emission technologies. Our results show then when deployed at scales large enough to have a significant impact on atmospheric CO2, even CDR methods such as afforestation—often perceived as "benign"—can have substantial side effects and may raise severe ethical, legal, and governance issues. We suppose that before being deployed at climatically relevant scales, any negative emission or CE method will require careful analysis of efficiency, effectiveness, and undesired side effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27598627','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27598627"><span>Cost of intensive routine control and incremental cost of insecticide-treated curtain deployment in a setting with low Aedes aegypti infestation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Baly, Alberto; Toledo, Maria Eugenia; Lambert, Isora; Benítez, Elizabeth; Rodriguez, Karina; Rodriguez, Esther; Vanlerberghe, Veerle; Stuyft, Patrick Van der</p> <p>2016-01-01</p> <p>Information regarding the cost of implementing insecticide-treated curtains (ITCs) is scarce. Therefore, we evaluated the ITC implementation cost, in addition to the costs of intensive conventional routine activities of the Aedes control program in the city of Guantanamo, Cuba. A cost-analysis study was conducted from the perspective of the Aedes control program, nested in an ITC effectiveness trial, during 2009-2010. Data for this study were obtained from bookkeeping records and activity registers of the Provincial Aedes Control Programme Unit and the account records of the ITC trial. The annual cost of the routine Aedes control program activities was US$16.80 per household (p.h). Among 3,015 households, 6,714 ITCs were distributed. The total average cost per ITC distributed was US$3.42, and 74.3% of this cost was attributed to the cost of purchasing the ITCs. The annualized costs p.h. of ITC implementation was US$3.80. The additional annualized cost for deploying ITCs represented 19% and 48.4% of the total cost of the routine Aedes control and adult-stage Aedes control programs, respectively. The trial did not lead to further reductions in the already relatively low Aedes infestation levels. At current curtain prices, ITC deployment can hardly be considered an efficient option in Guantanamo and other comparable environments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140011877','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140011877"><span>Update on Progress of Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS) - Cyclops</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Newswander, Daniel; Smith, James P.; Lamb, Craig R.; Ballard, Perry G.</p> <p>2014-01-01</p> <p>The Space Station Integrated Kinetic Launcher for Orbital Payload Systems (SSIKLOPS), known as "Cyclops" to the International Space Station (ISS) community, was introduced last August (2013) during Technical Session V: From Earth to Orbit of the 27th Annual AIAA/USU Conference on Small Satellites. Cyclops is a collaboration between the NASA ISS Program, NASA Johnson Space Center Engineering, and Department of Defense (DoD) Space Test Program (STP) communities to develop a dedicated 50-100 kg class ISS small satellite deployment system. This paper will address the progress of Cyclops through its fabrication, assembly, flight certification, and on-orbit demonstration phases. It will also go into more detail regarding its anatomy, its satellite deployment concept of operations, and its satellite interfaces and requirements. Cyclops is manifested to fly on Space-X 4 which is currently scheduled in July 2014 with its initial satellite deployment demonstration of DoD STP's SpinSat and UT/TAMU's Lonestar satellites being late summer or fall of 2014.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090026515','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090026515"><span>Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, Karen E.; Kellas, Sotiris; Fuchs, Yvonne T.</p> <p>2009-01-01</p> <p>This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080014173','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080014173"><span>Overview of the NASA Subsonic Rotary Wing Aeronautics Research Program in Rotorcraft Crashworthiness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jackson, Karen E.; Fuchs, Yvonne T.; Kellas, Sotiris</p> <p>2008-01-01</p> <p>This paper provides an overview of rotorcraft crashworthiness research being conducted at NASA Langley Research Center under sponsorship of the Subsonic Rotary Wing (SRW) Aeronautics Program. The research is focused in two areas: development of an externally deployable energy attenuating concept and improved prediction of rotorcraft crashworthiness. The deployable energy absorber (DEA) is a composite honeycomb structure, with a unique flexible hinge design that allows the honeycomb to be packaged and remain flat until needed for deployment. The capabilities of the DEA have been demonstrated through component crush tests and vertical drop tests of a retrofitted fuselage section onto different surfaces or terrain. The research on improved prediction of rotorcraft crashworthiness is focused in several areas including simulating occupant responses and injury risk assessment, predicting multi-terrain impact, and utilizing probabilistic analysis methods. A final task is to perform a system-integrated simulation of a full-scale helicopter crash test onto a rigid surface. A brief description of each research task is provided along with a summary of recent accomplishments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890006000','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890006000"><span>Scientific tradeoffs in pinhole/occulter facility accommodation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hudson, Hugh S.</p> <p>1988-01-01</p> <p>The Pinhole/Occulter Facility (P/OF) consists of state-of-the-art instruments for the study of particle acceleration in the solar corona, and uses a large structure to obtain very high angular resolution. P/OF has been studied in the past as an attached payload for the Space Shuttle, and has been the subject of study by a NASA Science Working Group (P/OFSWG). Appendix A lists various technical studies and reports carried out under the auspices of P/OFSWG and the Program Development Office of NASA Marshall Space Flight Center. Under the rationalization of NASA flight opportunities following the Challenger disaster, and the beginning of the Space Station Freedom program, the sortie-mode deployment of P/OF seemed less efficient and desirable. Thus, NASA decided to reconsider P/OF for deployment on the Space Station Freedom. The technical studies for this deployment continue at the present and will evolve as our knowledge of Space Station architecture and capabilities increase. MSFC contracted with Teledyne Brown Engineering for these technical studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2010/1240/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2010/1240/"><span>Palos Verdes Shelf oceanographic study; data report for observations December 2007–April 2008</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosenberger, Kurt J.; Noble, Marlene A.; Sherwood, Christopher R.; Martini, Marinna M.; Ferreira, Joanne T.; Montgomery, Ellyn T.</p> <p>2011-01-01</p> <p>Beginning in 1997, the Environmental Protection Agency (EPA) defined a contaminated section of the Palos Verdes Shelf region in southern California as a Superfund Site, initiating a continuing investigation of this area. The investigation involved the EPA, the U.S. Geological Survey (USGS), Science Applications International Corporation (SAIC), Los Angeles County Sanitation Districts (LACSD) data, and other allied agencies. In mid-2007, the Palos Verdes Shelf project team identified the need for additional data on the sediment properties and oceanographic conditions at the Palos Verdes Superfund Site and deployed seven bottom platforms, three subsurface moorings, and three surface moorings on the shelf. This additional data was needed to support ongoing modeling and feasibility studies and to improve our ability to model the fate of the effluent-affected deposit over time. It provided more detail on the spatial variability and magnitude of resuspension of the deposit during multiple storms that are expected to transit the region during a winter season. The operation began in early December 2007 and ended in early April 2008. The goal was to measure the sediment response (threshold of resuspension, suspended-sediment concentrations, and suspended-sediment transport rates) to bed stresses associated with waves and currents. Other objectives included determining the structure of the bottom boundary layer (BBL) relating nearbed currents with those measured at 10 m above bottom (mab) and comparing those with the long-term data from the LACSD Acoustic Doppler Current Profiler (ADCP) deployments for nearbed current speed and direction. Low-profile tripods with high-frequency ADCPs co-located with two of the large tripods were selected for this goal. This report describes the data obtained during the field program, the instruments and data-processing procedures used, and the archive that contains the data sets that have passed our quality-assurance procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhDT........93D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhDT........93D"><span>Construction, Deployment and Data Analysis of the E and B EXperiment: A Cosmic Microwave Background Polarimeter</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Didier, Joy</p> <p></p> <p>The E and B EXperiment (EBEX) is a pointed balloon-borne telescope designed to measure the polarization of the cosmic microwave background (CMB) as well as that from Galactic dust. The instrument is equipped with a 1.5 meter aperture Gregorian-Dragone telescope, providing an 8' beam at three frequency bands centered on 150, 250 and 410 GHz. The telescope is designed to measure or place an upper limit on inflationary B-mode signals and to probe B-modes originating from gravitationnal lensing of the CMB. The higher EBEX frequencies are designed to enable the measurement and removal of polarized Galactic dust foregrounds which currently limit the measurement of inflationary B-modes. Polarimetry is achieved by rotating an achromatic half-wave plate (HWP) on a superconducting magnetic bearing. In January 2013, EBEX completed 11 days of observations in a flight over Antarctica covering 6,000 square degrees of the southern sky. This marks the first time that kilo-pixel TES bolometer arrays have made science observations on a balloon-borne platform. In this thesis we report on the construction, deployment and data analysis of EBEX. We review the development of the pointing sensors and software used for real-time attitude determination and control, including pre-flight testing and calibration. We then report on the 2013 long duration flight (LD2013) and review all the major stages of the analysis pipeline used to transform the ˜1 TB of raw data into polarized sky maps. We review "LEAP", the software framework developed to support the analysis pipeline. We discuss in detail the novel program developed to reconstruct the attitude post-flight and estimate the effect of attitude errors on measured B-mode signals. We describe the bolometer time-stream cleaning procedure including removing the HWP-synchronous signal, and we detail the map making procedure. Finally we present a novel method to measure and subtract instrumental polarization, after which we show Galaxy and CMB maps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22926302','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22926302"><span>CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma: specific technical aspects and clinical results.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sommer, C M; Lemm, G; Hohenstein, E; Bellemann, N; Stampfl, U; Goezen, A S; Rassweiler, J; Kauczor, H U; Radeleff, B A; Pereira, P L</p> <p>2013-06-01</p> <p>This study was designed to evaluate the clinical efficacy of CT-guided bipolar and multipolar radiofrequency ablation (RF ablation) of renal cell carcinoma (RCC) and to analyze specific technical aspects between both technologies. We included 22 consecutive patients (3 women; age 74.2 ± 8.6 years) after 28 CT-guided bipolar or multipolar RF ablations of 28 RCCs (diameter 2.5 ± 0.8 cm). Procedures were performed with a commercially available RF system (Celon AG Olympus, Berlin, Germany). Technical aspects of RF ablation procedures (ablation mode [bipolar or multipolar], number of applicators and ablation cycles, overall ablation time and deployed energy, and technical success rate) were analyzed. Clinical results (local recurrence-free survival and local tumor control rate, renal function [glomerular filtration rate (GFR)]) and complication rates were evaluated. Bipolar RF ablation was performed in 12 procedures and multipolar RF ablation in 16 procedures (2 applicators in 14 procedures and 3 applicators in 2 procedures). One ablation cycle was performed in 15 procedures and two ablation cycles in 13 procedures. Overall ablation time and deployed energy were 35.0 ± 13.6 min and 43.7 ± 17.9 kJ. Technical success rate was 100 %. Major and minor complication rates were 4 and 14 %. At an imaging follow-up of 15.2 ± 8.8 months, local recurrence-free survival was 14.4 ± 8.8 months and local tumor control rate was 93 %. GFR did not deteriorate after RF ablation (50.8 ± 16.6 ml/min/1.73 m(2) before RF ablation vs. 47.2 ± 11.9 ml/min/1.73 m(2) after RF ablation; not significant). CT-guided bipolar and multipolar RF ablation of RCC has a high rate of clinical success and low complication rates. At short-term follow-up, clinical efficacy is high without deterioration of the renal function.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-09-18/pdf/2013-22600.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-09-18/pdf/2013-22600.pdf"><span>78 FR 57449 - Notice Rescinding a Notice of Intent To Prepare a Programmatic Environmental Impact Statement...</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-09-18</p> <p>... California-Nevada Interstate Maglev Project in cooperation with the project sponsor, the Nevada Department of.... During the late 1990s, FRA was implementing the Maglev Deployment Program (Program) created by Congress... the Program was to demonstrate the feasibility of maglev technology. In addition to a number of...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=NIST&id=EJ1005724','ERIC'); return false;" href="https://eric.ed.gov/?q=NIST&id=EJ1005724"><span>Development and Deployment of the Purdue TAP Green Enterprise Development Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Rogers, Ethan A.</p> <p>2013-01-01</p> <p>Purdue University--Mechanical, Engineering, and Technology (MET) faculty and Purdue Technical Assistance Program (TAP) staff partnered with the Society of Manufacturing Engineers (SME) to create a new workforce training program and certificate exam in the field of green manufacturing. This article describes how the body of knowledge for the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20090001948&hterms=Mather&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DMather','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20090001948&hterms=Mather&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DMather"><span>Sub-orbital Programs and their Influence upon Space Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mather, John C.</p> <p>2009-01-01</p> <p>Sub-orbital programs can push science to new limits by deploying the very latest in instrument concepts and technologies. Many space missions have sprung from sub-orbital programs, scientifically, technologically, and personally. I will illustrate the sub-orbital potential with examples from cosmology, interferometry, high-energy astrophysics, and others foreseen in NASA roadmaps.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2013-08-19/pdf/2013-20148.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2013-08-19/pdf/2013-20148.pdf"><span>78 FR 50399 - Spectrum Monitoring Pilot Program</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2013-08-19</p> <p>... National Telecommunications and Information Administration (NTIA) to design and conduct a pilot program to... to Congress for fiscal year (FY) 2014 seeks an initial $7.5 million research and development... design, features, deployment options, operational parameters, expected utility, potential benefits, and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2284','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2284"><span>National ITS Program Plan Intelligent Transportation Systems Volume I</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1995-03-01</p> <p>ADVANCED TRAVELER INFORMATION SYSTEMS OR ATIS : THE PURPOSE OF THE NATIONAL ITS PROGRAM PLAN IS TO GUIDE THE DEVELOPMENT AND DEPLOYMENT OF INTELLIGENT TRANSPORTATION SYSTEMS (ITS) IN THE UNITED STATES. THIS, THE FIRST EDITION OF THE PLAN WAS A JOINT ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2285','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2285"><span>National ITS Program Plan Executive Summary</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1995-03-01</p> <p>THE PURPOSE OF THE NATIONAL ITS PROGRAM PLAN IS TO GUIDE THE DEVELOPMENT AND DEPLOYMENT OF INTELLIGENT TRANSPORTATION SYSTEMS (ITS) IN THE UNITED STATES. THIS FIRST EDITION OF THE PLAN WAS A JOINT EFFORT OF ITS AMERICA AND THE UNITED STATES DEPARTMEN...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/15508','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/15508"><span>National Airspace System : status of FAA's Standard Terminal Automation Replacement System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2002-09-01</p> <p>Comparing the currently projected cost and deployment schedule for : STARS with the original cost and schedule is difficult because the program : presently bears little resemblance to the program envisioned in 1996. At : that time, FAA contracted wit...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.epa.gov/office-inspector-general/report-epa-could-improve-smartway-transport-partnership-program','PESTICIDES'); return false;" href="https://www.epa.gov/office-inspector-general/report-epa-could-improve-smartway-transport-partnership-program"><span>Report: EPA Could Improve the SmartWay Transport Partnership Program by Implementing a Direct Data Verification Process</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.epa.gov/pesticides/search.htm">EPA Pesticide Factsheets</a></p> <p></p> <p></p> <p>Report #12-P-0747, August 30, 2012. Recent studies corroborate EPA’s claims that its SmartWay Transport Partnership program helps remove marketplace barriers in order to deploy fuel efficient technologies faster.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=154106&Lab=NRMRL&keyword=sand+AND+quality&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=154106&Lab=NRMRL&keyword=sand+AND+quality&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>PERFORMANCE VERIFICATION OF STORMWATER TREATMENT DEVICES UNDER EPA�S ENVIRONMENTAL TECHNOLOGY VERIFICATION PROGRAM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The Environmental Technology Verification (ETV) Program was created to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The program�s goal is to further environmental protection by a...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.sandia.gov/about/community/volunteer_programs.html','SCIGOVWS'); return false;" href="http://www.sandia.gov/about/community/volunteer_programs.html"><span>Sandia National Laboratories: Community Involvement: Volunteer Programs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Programs Nuclear Weapons About Nuclear Weapons Safety & Security Weapons Science & <em>Technology</em> Robotics R&D 100 Awards Laboratory Directed Research & Development <em>Technology</em> Deployment Centers Audit Sandia's Economic Impact Licensing & <em>Technology</em> Transfer Browse <em>Technology</em> Portfolios</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/13032','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/13032"><span>Air Quality Programs and Provisions of the Intermodal Surface Transportation Efficiency Act of 1991</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2012-11-01</p> <p>The US DOT sponsored Dynamic Mobility Applications (DMA) program seeks to identify, develop, and deploy applications that leverage the full potential of connected vehicles, travelers and infrastructure to enhance current operational practices and tra...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1375022','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1375022"><span>The VolturnUS 1:8 Floating Wind Turbine: Design, Construction, Deployment, Testing, Retrieval, and Inspection of the First Grid-Connected Offshore Wind Turbine in US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dagher, Habib; Viselli, Anthony; Goupee, Andrew</p> <p></p> <p>Volume II of the Final Report for the DeepCwind Consortium National Research Program funded by US Department of Energy Award Number: DE-EE0003278.001 summarizes the design, construction, deployment, testing, numerical model validation, retrieval, and post-deployment inspection of the VolturnUS 1:8-scale floating wind turbine prototype deployed off Castine, Maine on June 2nd, 2013. The 1:8 scale VolturnUS design served as a de-risking exercise for a commercial multi-MW VolturnUS design. The American Bureau of Shipping Guide for Building and Classing Floating Offshore Wind Turbine Installations was used to design the prototype. The same analysis methods, design methods, construction techniques, deployment methods, mooring, andmore » anchoring planned for full-scale were used. A commercial 20kW grid-connected turbine was used and was the first offshore wind turbine in the US.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100021935','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100021935"><span>Qualification of a High Accuracy Dual-Axis Antenna Deployment and Trimming Mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gossant, Alain; Morichon, Francois</p> <p>2010-01-01</p> <p>The Antenna Deployment and Trimming Mechanism Mark 2 (ADTM Mk2) has been developed to answer today's need for a generic antenna deployment and high accuracy pointing mechanism, allowing RF sensing applications and easier dual deployments configurations. This paper presents the design and evolution from its predecessor, the experience of the design team from kick off to qualification and batch manufacture, as well as some lessons learned from ramping up "mass-production" capabilities while implementing customer driven changes. Astrium has manufactured and flown ADTM units for the past 20 years, from an initial deployment-only mechanism developed for the Orion program to today's Eurostar E3000 ADTM family. The Antenna ADTM Mk2 is an evolution of the original ADTM Mk1. Although it uses Mk1 building blocks to minimize risks associated with the development of a new product, it incorporates major evolutions and is the new baseline for Astrium latest generation of Eurostar E3000 telecom satellites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780013254','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780013254"><span>Shuttle orbiter - IUS/DSP satellite interface contamination study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rantanen, R. O.; Strange, D. A.</p> <p>1978-01-01</p> <p>The results of a contamination analysis on the Defense Support Program (DSP) satellite during launch and deployment by the Space Transportation System (STS) are presented. Predicted contaminant deposition was also included on critical DSP surfaces during the period soon after launch when the DSP is in the shuttle orbiter bay with the doors closed, the bay doors open, and during initial deployment. Additionally, a six sided box was placed at the spacecraft position to obtain directional contaminant flux information for a general payload while in the bay and during deployment. The analysis included contamination sources from the shuttle orbiter, IUS and cradle, the DSP sensor and the DSP support package.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.S41E..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.S41E..06B"><span>EarthScope's Transportable Array: Status of the Alaska Deployment and Guide to Resources for Lower48 Deployment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Busby, R. W.; Woodward, R.; Aderhold, K.; Frassetto, A.</p> <p>2017-12-01</p> <p>The Alaska Transportable Array deployment is completely installed, totaling 280 stations, with 194 new stations and 86 existing stations, 28 of those upgraded with new sensor emplacement. We briefly summarize the deployment of this seismic network, describe the added meteorological instruments and soil temperature gauges, and review our expectations for operation and demobilization. Curation of data from the contiguous Lower-48 States deployment of Transportable Array (>1800 stations, 2004-2015) has continued with the few gaps in real-time data replaced by locally archived files as well as minor adjustments in metadata. We highlight station digests that provide more detail on the components and settings of individual stations, documentation of standard procedures used throughout the deployment and other resources available online. In cooperation with IRIS DMC, a copy of the complete TA archive for the Lower-48 period has been transferred to a local disk to experiment with data access and software workflows that utilize most or all of the seismic timeseries, in contrast to event segments. Assembling such large datasets reliably - from field stations to a well managed data archive to a user's workspace - is complex. Sharing a curated and defined data volume with researchers is a potentially straightforward way to make data intensive analyses less difficult. We note that data collection within the Lower-48 continues with 160 stations of the N4 network operating at increased sample rates (100 sps) as part of the CEUSN, as operational support transitions from NSF to USGS.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMED22C..03M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMED22C..03M"><span>Everybody Wins: How the IceCube Collaboration Capitalizes Teacher Deployments to the South Pole</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Madsen, J.</p> <p>2017-12-01</p> <p>Over the last fifteen years, the IceCube Collaboration and its predecessor AMANDA have hosted eight teachers at South Pole with the ninth scheduled to deploy in the upcoming 2017-18 season. These deployments have been organized in conjunction with NSF funded programs that pair polar researchers with teachers. Teachers Experiencing the Arctic and Antarctica in the early years, and now PolarTREC, provide valuable structure, general training, build community among polar researchers and teachers, and archive resources developed by participants. The IceCube Collaboration has developed a successful team building approach for newly selected teachers that utilizes past polar teachers. For about a decade, we have provided a two week summer residential science course for a diverse group of ninth to twelve grade students in the University of Wisconsin-River Falls Upward Bound program. An authentic research experience is delivered by focusing on the process of science using a different accessible and meaningful project each year. For example, this summer students learned about design and construction by creating their own LED-embedded clothing. They programmed a microcontroller so the LEDs responded to an external input such as motion or sound. This panel presentation in the K-12 Education/Outreach: Effective Partnerships between Scientists and K-12 Teachers/Informal Educators including Authentic Student Research session will describe how this is a win for all involved. It gives the new teacher extensive opportunities to learn about living and working at the South Pole from past teachers, experience integrating into to an established team as they will do when they deploy, and lets them see creative ways to incorporate IceCube research into the classroom. It also provides a rich active learning experience for the UWRF Upward Bound students, and a way to keep engaged with teachers who have deployed in the past.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA141148','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA141148"><span>Optimizing Force Deployment and Force Structure for the Rapid Deployment Force</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-03-01</p> <p>Analysis . . . . .. .. ... ... 97 Experimental Design . . . . . .. .. .. ... 99 IX. Use of a Flexible Response Surface ........ 10.2 Selection of a...setS . ere designe . arun, programming methodology , where the require: s.stem re..r is input and the model optimizes the num=er. :::pe, cargo. an...to obtain new computer outputs" (Ref 38:23). The methodology can be used with any decision model, linear or nonlinear. Experimental Desion Since the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19730046644&hterms=System+Dynamics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D40%26Ntt%3DSystem%2BDynamics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19730046644&hterms=System+Dynamics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D40%26Ntt%3DSystem%2BDynamics"><span>An advanced technique for the prediction of decelerator system dynamics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Talay, T. A.; Morris, W. D.; Whitlock, C. H.</p> <p>1973-01-01</p> <p>An advanced two-body six-degree-of-freedom computer model employing an indeterminate structures approach has been developed for the parachute deployment process. The program determines both vehicular and decelerator responses to aerodynamic and physical property inputs. A better insight into the dynamic processes that occur during parachute deployment has been developed. The model is of value in sensitivity studies to isolate important parameters that affect the vehicular response.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024423','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024423"><span>Parachute Drag Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cuthbert, Peter</p> <p>2010-01-01</p> <p>DTV-SIM is a computer program that implements a mathematical model of the flight dynamics of a missile-shaped drop test vehicle (DTV) equipped with a multistage parachute system that includes two simultaneously deployed drogue parachutes and three main parachutes deployed subsequently and simultaneously by use of pilot parachutes. DTV-SIM was written to support air-drop tests of the DTV/parachute system, which serves a simplified prototype of a proposed crew capsule/parachute landing system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1019851','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1019851"><span>Teleport Generation 3 (Teleport Gen 3)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-01</p> <p>Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA - Information...144A) reported since the previous MAIS Annual Report to Congress. The program recently achieved a FDD from the MDA on February 13, 2015. Teleport Gen 3...February 13, 2015 granting approval of the FDD . Acronyms and Abbreviations MLGC - MUOS to Legacy UHF SATCOM Gateway Component MOT&E - Multiservice</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4425126','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4425126"><span>Assessment of a Post-deployment Yellow Ribbon Reintegration Program for National Guard Members and Supporters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Scherrer, Jeffrey F.; Widner, Greg; Shroff, Manan; Matthieu, Monica; Balan, Sundari; van den Berk-Clark, Carissa; Price, Rumi Kato</p> <p>2014-01-01</p> <p>The Yellow Ribbon Reintegration Program (YRRP) was created to meet the needs of National Guard members and their families throughout the deployment cycle. This study examined the perceived utility of the YRRP’s delivery of information and assistance during the post-deployment reintegration period by National Guard members and accompanying supporters who were mostly spouses. Over 22 months, from 10 YRRP events, 683 service members and 411 supporters completed questionnaires immediately after the YRRP. We analyzed questions on information and help provision, timeliness and concerns related to education, employment, legal, family, and health. Service members and supporters most often endorsed education needs being met (76.8% and 78.2% respectively) and were least likely to endorse legal needs being met (63.5% and 60% respectively). Significantly more supporters than service members (p < 0.0001) reported that the YRRP was the first time they learned of available services across all domains. Service members were significantly more likely than supporters to report concerns about education, employment, and health; while supporters were significantly more likely to report concerns about family. Results suggest the YRRP fills gaps in supporter knowledge and provides needed information and resources to most National Guard families 2-4 months after a deployment. PMID:25373071</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20020066784','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20020066784"><span>Graduating to Postdoc: Information-Sharing in Support of Organizational Structures and Needs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Keller, Richard M.; Lucas, Paul J.; Compton, Michael M.; Stewart, Helen J.; Baya, Vinod; DelAlto, Martha</p> <p>1999-01-01</p> <p>The deployment of information-sharing systems in large organizations can significantly impact existing policies and procedures with regard to authority and control over information. Unless information-sharing systems explicitly support organizational structures and needs, these systems will be rejected summarily. The Postdoc system is a deployed Web-based information-sharing system created specifically to address organizational needs. Postdoc contains various organizational support features including a shared, globally navigable document space, as well as specialized access control, distributed administration, and mailing list features built around the key notion of hierarchical group structures. We review successes and difficulties in supporting organizational needs with Postdoc</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2012-11-21/pdf/2012-28240.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2012-11-21/pdf/2012-28240.pdf"><span>77 FR 69807 - Privacy Act of 1974; System of Records</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2012-11-21</p> <p>... (rank, assignment/ deployment, length of service, military occupation, education, and benefit usage... occupation and employment information; education benefit eligibility and usage; special military pay... (FVAP); DoD Instruction 1100.13, Surveys of DoD Personnel; DoD Instruction 1341.2, DEERS Procedures; DoD...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-9414430.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-9414430.html"><span>International Space Station (ISS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1994-12-16</p> <p>Artist's concept of the International Space Station (ISS) Alpha deployed and operational. This figure also includes the docking procedures for the Space Shuttle (shown with cargo bay open). The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22356989','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22356989"><span>Using the Battlefield Telemedicine System (BTS) to train deployed medical personnel in complicated medical tasks - a proof of concept.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Irizarry, Daniel; Wadman, Michael C; Bernhagen, Mary A; Miljkovic, Nikola; Boedeker, Ben H</p> <p>2012-01-01</p> <p>This work describes the use of Adobe Connect software along with algorithm software to provide the necessary audio visual communication platform for telementoring a complex medical procedure to novice providers located at a distant site.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA282096','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA282096"><span>Army Experiences with Deployment Planning in Operation Desert Shield</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-01-01</p> <p>Hindered Operations ........................ 53 Recommendatior . ........................................ 55 Procedures... 55 System s ............................................... 57 Persomnel ................................................ 59 Appendix A...litwes should stress and facilitate concurrent lanninlg anlad tecit i011 thley hoLild ackno vledge tha: nao:.t w.,c: ,ill re,’,iie t, -- tr a i"V</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3491','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3491"><span>Connected commercial vehicles — retrofit safety device kit project : safety applications performance and functional test plan and procedure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2014-03-01</p> <p>Connected vehicle wireless data communications can enable safety applications that may reduce injuries and fatalities. Cooperative vehicle-to-vehicle (V2V) safety applications will be effective only if a high fraction of vehicles are equipped. Deploy...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2014/1041/pdf/ofr2014-1041.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2014/1041/pdf/ofr2014-1041.pdf"><span>Measurements of slope currents and internal tides on the Continental Shelf and slope off Newport Beach, California</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rosenberger, Kurt J.; Noble, Marlene A.; Norris, Benjamin</p> <p>2014-01-01</p> <p>An array of seven moorings housing current meters and oceanographic sensors was deployed for 6 months at 5 sites on the Continental Shelf and slope off Newport Beach, California, from July 2011 to January 2012. Full water-column profiles of currents were acquired at all five sites, and a profile of water-column temperature was also acquired at two of the five sites for the duration of the deployment. In conjunction with this deployment, the Orange County Sanitation District deployed four bottom platforms with current meters on the San Pedro Shelf, and these meters provided water-column profiles of currents. The data from this program will provide the basis for an investigation of the interaction between the deep water flow over the slope and the internal tide on the Continental Shelf.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-97pc599.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-97pc599.html"><span>KSC-97pc599</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1997-04-08</p> <p>KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle Columbia hurtles down Runway 33 at KSCþs Shuttle Landing Facility to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. With main gear touchdown at 2:33:11 p.m. EDT, April 8, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to a mechanical problem. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-KSC-97pc604.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-KSC-97pc604.html"><span>KSC-97pc604</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1997-04-08</p> <p>KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle Columbia hurtles down Runway 33 at KSC's Shuttle Landing Facility to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. With main gear touchdown at 2:33:11 p.m. EDT, April 8, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to a mechanical problem. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017CG....105...43G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017CG....105...43G"><span>StackSplit - a plugin for multi-event shear wave splitting analyses in SplitLab</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grund, Michael</p> <p>2017-08-01</p> <p>SplitLab is a powerful and widely used tool for analysing seismological shear wave splitting of single event measurements. However, in many cases, especially temporary station deployments close to the noisy seaside, ocean bottom or for recordings affected by strong anthropogenic noise, only multi-event approaches provide stable and reliable splitting results. In order to extend the original SplitLab environment for such analyses, I present the StackSplit plugin that can easily be implemented within the well accepted main program. StackSplit grants easy access to several different analysis approaches within SplitLab, including a new multiple waveform based inversion method as well as the most established standard stacking procedures. The possibility to switch between different analysis approaches at any time allows the user for the most flexible processing of individual multi-event splitting measurements for a single recording station. Besides the provided functions of the plugin, no other external program is needed for the multi-event analyses since StackSplit performs within the available SplitLab structure which is based on MATLAB. The effectiveness and use of this plugin is demonstrated with data examples of a long running seismological recording station in Finland.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21326049-progress-hanford-double-shell-tank-integrity-project','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21326049-progress-hanford-double-shell-tank-integrity-project"><span>Progress in Hanford's Double-Shell Tank Integrity Project</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Bryson, D.C.; Washenfelder, D.J.; Boomer, K.D.</p> <p>2008-07-01</p> <p>The U.S. Department of Energy's Office of River Protection has an extensive integrity assessment program for the Hanford Site Double-Shell Tank System. The DOE Orders and environmental protection regulations provide the guidelines for the activities used to inspect and maintain 28 double-shell tanks (DSTs), the waste evaporator, and ancillary equipment that compose this system. This program has been reviewed by oversight and regulatory bodies and found to comply with the established guidelines. The basis for the DOE Order 435.1-1 for tank integrity comes from the Tank Structural Integrity Panel led by Brookhaven National Laboratory during the late 1990's. These guidelinesmore » established criteria for performing Non-Destructive Examination (NDE), for acceptance of the NDE results, for waste chemistry control, and for monitoring the tanks. The environmental regulations mirror these requirements and allow for the tank integrity program to provide compliant storage of the tanks. Both sets of requirements provide additional guidance for the protection of ancillary equipment. CH2M HILL uses two methods of NDE: visual inspection and Ultrasonic Testing (UT). The visual inspection program examines the primary tank and secondary liner of the DST. The primary tank is examined both on the interior surface above the waste in the tank and on the exterior surface facing the annulus of the DST. The interior surface of the tank liner is examined at the same time as the outer surface of the primary tank. The UT program examines representative areas of the primary tank and secondary liner by deploying equipment in the annulus of the tank. Both programs have led to the development of new equipment for remote inspection of the tanks. Compact camera and enhanced lighting systems have been designed and deployed through narrow access ports (called risers) into the tanks. The UT program has designed two generations of crawlers and equipment for deployment through risers into the thermally hot and radioactive environment. Also extensions were developed to allow inspection of the tank's curve upper (haunch) and lower (knuckle) surfaces. CH2M HILL primarily maintains chemistry control of the DST by ensuring that the concentrations of hydroxide and nitrite ions are favorable with respect to the nitrate ion concentration in the waste. This control program is supported by an extensive sampling program that obtains samples from the supernatant and solid layers in the tank to ensure compliance with the chemical specification. At DOE direction, CH2M HILL has embarked on a waste chemistry optimization program to enhance the protection of the tank surface and the understanding of the parameters that affect general and localized corrosion in the tanks. Over the past decade, DOE has deployed Electrochemical Noise corrosion probes in the DST to monitor localized corrosion. From the information gathered as part of the chemistry control, new information has been identified about the parameters requiring control to ensure tank integrity. CH2M HILL is deploying a series of corrosion probes to test and employ these parameters to provide real time corrosion monitoring of the DSTs. (authors)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25003854','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25003854"><span>Lessons learned from Dutch deployed surgeons and anesthesiologists to Afghanistan: 2006-2010.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hoencamp, Rigo; Idenburg, Floris; Vermetten, Eric; Leenen, Luke; Hamming, Jaap</p> <p>2014-07-01</p> <p>Care for battle casualties demands special skills from surgeons and anesthesiologists. The experiences of Dutch military surgeons and anesthesiologists that deployed to South Afghanistan provided an opportunity to evaluate predeployment training and preparation of military medical specialists. A survey was conducted among all surgeons and anesthesiologists (n = 40) that deployed to South Afghanistan between February 2006 and November 2010. They were asked about their medical preparedness, deployment experience, and postdeployment impact. Most (35/40) participants reported high levels of preparedness before their deployment. All (40/40) surgeons and anesthesiologists described a positive influence of their deployment on their professional skills and 33/40 described a positive effect on their personal development. Knowledge of maxillofacial, ophthalmic, neurological, urological, gynecological, vascular, and thoracic surgery scored below average. Impact on mental health and social support network was reported as negative by 11/40 participants, 24/40 reported a neutral, and 5/40 a positive effect. A standardized predeployment training program to prepare Dutch surgeons and anesthesiologists for combat surgery is currently lacking. These results emphasize the need for a standardized predeployment medical training, despite high levels of perceived preparedness. Also, the high mental and psychological impact on the deployed surgeons and anesthesiologists warrants further assessment. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19960025600','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19960025600"><span>New Antenna Deployment, Pointing and Supporting Mechanism</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Costabile, V.; Lumaca, F.; Marsili, P.; Noni, G.; Portelli, C.</p> <p>1996-01-01</p> <p>On ITALSAT Flight 2, the Italian telecommunications satellite, the two L-Ka antennas (Tx and Rx) use two large deployable reflectors (2000-mm diameter), whose deployment and fine pointing functions are accomplished by means of an innovative mechanism concept. The Antenna Deployment & Pointing Mechanism and Supporting Structure (ADPMSS) is based on a new configuration solution, where the reflector and mechanisms are conceived as an integrated, self-contained assembly. This approach is different from the traditional configuration solution. Typically, a rigid arm is used to deploy and then support the reflector in the operating position, and an Antenna Pointing Mechanism (APM) is normally interposed between the reflector and the arm for steering operation. The main characteristics of the ADPMSS are: combined implementation of deployment, pointing, and reflector support; optimum integration of active components and interface matching with the satellite platform; structural link distribution to avoid hyperstatic connections; very light weight and; high performance in terms of deployment torque margin and pointing range/accuracy. After having successfully been subjected to all component-level qualification and system-level acceptance tests, two flight ADPMSS mechanisms (one for each antenna) are now integrated on ITALSAT F2 and are ready for launch. This paper deals with the design concept, development, and testing program performed to qualify the ADPMSS mechanism.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63162&keyword=financing+AND+project&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63162&keyword=financing+AND+project&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, GROUNDWATER SAMPLING TECHNOLOGIES, GEOLOG, INC., MICRO-FLO BLADDER PUMP MODEL 57400</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The U.S. Environmental Protection Agency has created the Environmental Technology Verification Program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The goal of the ETV Program...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19980202360&hterms=michael+frost&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmichael%2Bfrost','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19980202360&hterms=michael+frost&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmichael%2Bfrost"><span>Space Tethers Design Criteria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Tomlin, Donald D.; Faile, Gwyn C.; Hayashida, Kazuo B.; Frost, Cynthia L.; Wagner, Carole Y.; Mitchell, Michael L.; Vaughn, Jason A.; Galuska, Michael J.</p> <p>1998-01-01</p> <p>The small expendable deployable system and tether satellite system programs did not have a uniform written criteria for tethers. The JSC safety panel asked what criteria was used to design the tethers. Since none existed, a criteria was written based on past experience for future tether programs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63207&Lab=NRMRL&keyword=transformer&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=63207&Lab=NRMRL&keyword=transformer&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ETV REPORT AND STATEMENT, ABB INC. BIOTEMP VETABLE OIL - BASED INSULATING DIELECTRIC FLUID</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>THE USEPA has created the ETV program to facilitate the deployment of innovative of improved environmental technologies through performance verification and information dissemination. The goal of the ETV Program is to further environmental protection by substantially acceleratin...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/FR-2010-06-08/pdf/2010-13658.pdf','FEDREG'); return false;" href="https://www.gpo.gov/fdsys/pkg/FR-2010-06-08/pdf/2010-13658.pdf"><span>75 FR 32535 - ITS Joint Program Office; IntelliDriveSM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collection.action?collectionCode=FR">Federal Register 2010, 2011, 2012, 2013, 2014</a></p> <p></p> <p>2010-06-08</p> <p>... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; IntelliDrive\\SM\\ Deployment Scenarios Workshop; Notice of Workshop AGENCY: Research and Innovative Technology Administration, Department of... participants to identify advantages and disadvantages of each of the draft scenarios and critical policy and...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/35957','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/35957"><span>The Innovative Technology Deployment (ITD) Grant Program, 2017 Annual Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2018-05-01</p> <p>On December 4, 2015, the Fixing America's (FMCSA) works to reduce crashes, injuries, and Surface Transportation Act, 2015 (FAST Act) fatalities involving large trucks and buses. (Pub. L. 114-94) established the Innovative The ITD program is a key com...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2706','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2706"><span>National ITS Program Plan, Intelligent Transportation Systems, Synopsis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p></p> <p>THE PURPOSE OF THE NATIONAL ITS PROGRAM PLAN IS TO GUIDE THE DEVELOPMENT AND DEPLOYMENT OF INTELLIGENT TRANSPORTATION SYSTEMS (ITS) IN THE UNITED STATES. THIS, THE FIRST EDITION OF THE PLAN WAS A JOINT EFFORT OF ITS AMERICA AND THE UNITED STATES DEPA...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10562E..27D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10562E..27D"><span>Design and end-to-end modelling of a deployable telescope</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolkens, Dennis; Kuiper, Hans</p> <p>2017-09-01</p> <p>Deployable optics have the potential of revolutionizing the field of high resolution Earth Observation. By offering the same resolutions as a conventional telescope, while using a much smaller launch volume and mass, the costs of high resolution image data can be brought down drastically. In addition, the technology will ultimately enable resolutions that are currently unattainable due to limitations imposed by the size of launcher fairings. To explore the possibilities and system complexities of a deployable telescope, a concept study was done to design a competitive deployable imager. A deployable telescope was designed for a ground sampling distance of 25 cm from an orbital altitude of 550 km. It offers an angular field of view of 0.6° and has a panchromatic channel as well as four multispectral bands in the visible and near infrared spectrum. The optical design of the telescope is based on an off-axis Korsch Three Mirror Anastigmat. A freeform tertiary mirror is used to ensure a diffraction limited image quality for all channels, while maintaining a compact design. The segmented primary mirror consists of four tapered aperture segments, which can be folded down during launch, while the secondary mirror is mounted on a deployable boom. In its stowed configuration, the telescope fits within a quarter of the volume of a conventional telescope reaching the same resolution. To reach a diffraction limited performance while operating in orbit, the relative position of each individual mirror segment must be controlled to a fraction of a wavelength. Reaching such tolerances with deployable telescope challenging, due to inherent uncertainties in the deployment mechanisms. Adding to the complexity is the fact that the telescope will be operating in a Low Earth Orbit (LEO) where it will be exposed to very dynamic thermal conditions. Therefore, the telescope will be equipped with a robust calibration system. Actuators underneath the primary mirror will be controlled using a closed-loop system based on measurements of the image sharpness as well as measurements obtained with edge sensors placed between the mirror segments. In addition, a phase diversity system will be used to recover residual wavefront aberrations. To aid the design of the deployable telescope, an end-to-end performance model was developed. The model is built around a dedicated ray-trace program written in Matlab. This program was built from the ground up for the purpose of modelling segmented telescope systems and allows for surface data computed with Finite Element Models (FEM) to be imported in the model. The program also contains modules which can simulate the closed-loop calibration of the telescope and it can use simulated images as an input for phase diversity and image processing algorithms. For a given thermo-mechanical state, the end-to-end model can predict the image quality that will be obtained after the calibration has been completed and the image has been processed. As such, the model is a powerful systems engineering tool, which can be used to optimize the in-orbit performance of a segmented, deployable telescope.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993STIN...9411893.','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993STIN...9411893."><span>Special investigation report: Commercial space launch incident, launch procedure anomaly orbital sciences corporation PEGASUS/SCD-1, 80 nautical miles east of Cape Canaveral, Florida, February 9, 1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p></p> <p></p> <p>This report explains the procedural anomaly that occurred during the launch sequence of an Orbital Sciences Corporation Pegasus expendable launch vehicle, which was subsequently deployed successfully from an NB-52B airplane, on 9 Feb. 1993. The safety issues discussed in the report include command, control and communications responsibility, launch crew fatigue, launch interphone procedures, efficiency of launch constraints, and the lack of common launch documents. Safety recommendations concerning these issues were made to the Department of Transportation, the National Aeronautics and Space Administration, and the Orbital Sciences Corporation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940007421','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940007421"><span>Special Investigation Report: Commercial Space Launch Incident, Launch Procedure Anomaly Orbital Sciences Corporation PEGASUS/SCD-1, 80 Nautical Miles East of Cape Canaveral, Florida, February 9, 1993</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1993-01-01</p> <p>This report explains the procedural anomaly that occurred during the launch sequence of an Orbital Sciences Corporation Pegasus expendable launch vehicle, which was subsequently deployed successfully from an NB-52B airplane, on 9 Feb. 1993. The safety issues discussed in the report include command, control and communications responsibility, launch crew fatigue, launch interphone procedures, efficiency of launch constraints, and the lack of common launch documents. Safety recommendations concerning these issues were made to the Department of Transportation, the National Aeronautics and Space Administration, and the Orbital Sciences Corporation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040090584','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040090584"><span>Numerical Roll Reversal Predictor Corrector Aerocapture and Precision Landing Guidance Algorithms for the Mars Surveyor Program 2001 Missions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Powell, Richard W.</p> <p>1998-01-01</p> <p>This paper describes the development and evaluation of a numerical roll reversal predictor-corrector guidance algorithm for the atmospheric flight portion of the Mars Surveyor Program 2001 Orbiter and Lander missions. The Lander mission utilizes direct entry and has a demanding requirement to deploy its parachute within 10 km of the target deployment point. The Orbiter mission utilizes aerocapture to achieve a precise captured orbit with a single atmospheric pass. Detailed descriptions of these predictor-corrector algorithms are given. Also, results of three and six degree-of-freedom Monte Carlo simulations which include navigation, aerodynamics, mass properties and atmospheric density uncertainties are presented.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2011-title46-vol8/pdf/CFR-2011-title46-vol8-sec340-3.pdf','CFR2011'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2011-title46-vol8/pdf/CFR-2011-title46-vol8-sec340-3.pdf"><span>46 CFR 340.3 - General provisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2011&page.go=Go">Code of Federal Regulations, 2011 CFR</a></p> <p></p> <p>2011-10-01</p> <p>... procedures shall be applicable: (1) In connection with deployment of the Armed Forces of the United States... SECURITY AND NATIONAL DEFENSE RELATED OPERATIONS § 340.3 General provisions. (a) The provisions of this rule apply pursuant to authority granted to the President by title I, Defense Production Act of 1950...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.gpo.gov/fdsys/pkg/CFR-2010-title46-vol8/pdf/CFR-2010-title46-vol8-sec340-3.pdf','CFR'); return false;" href="https://www.gpo.gov/fdsys/pkg/CFR-2010-title46-vol8/pdf/CFR-2010-title46-vol8-sec340-3.pdf"><span>46 CFR 340.3 - General provisions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.gpo.gov/fdsys/browse/collectionCfr.action?selectedYearFrom=2010&page.go=Go">Code of Federal Regulations, 2010 CFR</a></p> <p></p> <p>2010-10-01</p> <p>... procedures shall be applicable: (1) In connection with deployment of the Armed Forces of the United States... SECURITY AND NATIONAL DEFENSE RELATED OPERATIONS § 340.3 General provisions. (a) The provisions of this rule apply pursuant to authority granted to the President by title I, Defense Production Act of 1950...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://in.water.usgs.gov/newreports/rehmel_teth_dop.pdf','USGSPUBS'); return false;" href="http://in.water.usgs.gov/newreports/rehmel_teth_dop.pdf"><span>Tethered acoustic doppler current profiler platforms for measuring streamflow</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Rehmel, Michael S.; Stewart, James A.; Morlock, Scott E.</p> <p>2003-01-01</p> <p>A tethered-platform design with a trimaran hull and 900-megahertz radio modems is now commercially available. Continued field use has resulted in U.S. Geological Survey procedures for making tethered-platform discharge measurements, including methods for tethered-boat deployment, moving-bed tests, and measurement of edge distances.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16450817','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16450817"><span>Burn injury care for Special Forces and far-forward deployed troops.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Brown, Tim La H; Skinner, Adrian M</p> <p>2005-11-01</p> <p>Special Forces are at risk of serious burn injury. We have suggested standard operating procedures for burn injury management in a constrained environment, with novel uses of operational kit components for trauma care. In addition, we propose instruction in basic skills of escharotomy for forward troops.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/52837','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/52837"><span>Financial and Economic Analysis of Reduced Impact Logging</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Tom Holmes</p> <p>2016-01-01</p> <p>Concern regarding extensive damage to tropical forests resulting from logging increased dramatically after World War II when mechanized logging systems developed in industrialized countries were deployed in the tropics. As a consequence, tropical foresters began developing logging procedures that were more environmentally benign, and by the 1990s, these practices began...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24564441','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24564441"><span>Promoting parenting to support reintegrating military families: after deployment, adaptive parenting tools.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gewirtz, Abigail H; Pinna, Keri L M; Hanson, Sheila K; Brockberg, Dustin</p> <p>2014-02-01</p> <p>The high operational tempo of the current conflicts and the unprecedented reliance on National Guard and Reserve forces highlights the need for services to promote reintegration efforts for those transitioning back to civilian family life. Despite evidence that parenting has significant influence on children's functioning, and that parenting may be impaired during stressful family transitions, there is a dearth of empirically supported psychological interventions tailored for military families reintegrating after deployment. This article reports on the modification of an empirically supported parenting intervention for families in which a parent has deployed to war. A theoretical rationale for addressing parenting during reintegration after deployment is discussed. We describe the intervention, After Deployment, Adaptive Parenting Tools (ADAPT), and report early feasibility and acceptability data from a randomized controlled effectiveness trial of ADAPT, a 14-week group-based, Web-enhanced parenting training program. Among the first 42 families assigned to the intervention group, participation rates were high, and equal among mothers and fathers. Satisfaction was high across all 14 sessions. Implications for psychological services to military families dealing with the deployment process are discussed. PsycINFO Database Record (c) 2014 APA, all rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=165886&keyword=information+AND+dissemination&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50','EPA-EIMS'); return false;" href="https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=165886&keyword=information+AND+dissemination&actType=&TIMSType=+&TIMSSubTypeID=&DEID=&epaNumber=&ntisID=&archiveStatus=Both&ombCat=Any&dateBeginCreated=&dateEndCreated=&dateBeginPublishedPresented=&dateEndPublishedPresented=&dateBeginUpdated=&dateEndUpdated=&dateBeginCompleted=&dateEndCompleted=&personID=&role=Any&journalID=&publisherID=&sortBy=revisionDate&count=50"><span>ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT: BAGHOUSE FILTRATION PRODUCTS—SOUTHERN FILTER MEDIA, LLC, PE-16/M-SPES FILTER SAMPLE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://oaspub.epa.gov/eims/query.page">EPA Science Inventory</a></p> <p></p> <p></p> <p>The U.S. EPA has created the Environmental Technology Verification program to facilitate the deployment of innovative or improved environmental technologies through performance verification and dissemination of information. The program tested the performance of baghouse filtrati...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/3853','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/3853"><span>Evaluation of intelligent transportation infrastructure program (ITIP) in Pittsburgh and Philadelphia, Pennsylvania</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>2003-03-20</p> <p>The Transportation Equity Act for the 21st Century (TEA-21) Public Laws 105-178 and 105-206, Title V, Section 5117(b) (3) provides for an Intelligent Transportation Infrastructure Program (ITIP) to advance the deployment of operational intelligent tr...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://rosap.ntl.bts.gov/view/dot/2704','DOTNTL'); return false;" href="https://rosap.ntl.bts.gov/view/dot/2704"><span>National ITS Program Plan, Intelligent Transportation Systems Volume II</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntlsearch.bts.gov/tris/index.do">DOT National Transportation Integrated Search</a></p> <p></p> <p>1995-03-01</p> <p>THE PURPOSE OF THE NATIONAL ITS PROGRAM PLAN IS TO GUIDE THE DEVELOPMENT AND DEPLOYMENT OF INTELLIGENT TRANSPORTATION SYSTEMS (ITS) IN THE UNITED STATES. THIS, THE FIRST EDITION OF THE PLAN WAS A JOINT EFFORT OF ITS AMERICA AND THE UNITED STATES DEPA...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=martial+AND+arts&pg=3&id=EJ848707','ERIC'); return false;" href="https://eric.ed.gov/?q=martial+AND+arts&pg=3&id=EJ848707"><span>Treating Violence in the School through Traditional Martial Arts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Kim, Israel</p> <p>2004-01-01</p> <p>In a comprehensive survey of the literature title "Coping With Violence in the School System," Benbenisti, Astor, and Marachi (2003) map out the programs being deployed throughout the school system today. Those programs listed are "peace builders," "second step," "Richmond's youth against violence,"…</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/6617390','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/6617390"><span>Physical oceanographic data from the OTEC Punta Tuna, Puerto Rico Site, September 1979-June 1980</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Frye, D.; Davison, A.; Leavitt, K.</p> <p>1981-01-01</p> <p>The first results of an oceanographic measurement program being conducted off the southeast corner of Puerto Rico are presented. The study site is a proposed OTEC site and is located about 20 km off Punta Tuna. The objectives of the measurement program are to document the physical oceanography of the site as related to the engineering and environmental factors involved in OTEC design and operation. Oceanographic measurements include: (1) a subsurface mooring instrumented with five current, temperature, and pressure recorders; and (2) quarterly hydrographic cruises to measure salinity, temperature, and depth profiles on a grid of 33 stations in themore » vicinity of the mooring site. The first cruise, conducted between 16 and 21 June 1980, included the initial mooring deployment and a CTD (conductivity, temperature, and depth) and XBT (expendable bathythermograph) survey. The CTD/XBT measurements are presented. Also included are results of in situ current, temperature, and pressure measurements made during two previous programs. In September 1979, Coastal Marine Research (CMR) deployed a mooring at approximately the same site as the present mooring. Results from three of these instruments are included. The Naval Underwater Systems Center deployed a mooring at this site in February 1979 and partial results from one instrument on this mooring are also presented. (WHK)« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28232035','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28232035"><span>Cognitive systems at the point of care: The CREDO program.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Fox, John</p> <p>2017-04-01</p> <p>CREDO is a framework for understanding human expertise and for designing and deploying systems that support cognitive tasks like situation and risk assessment, decision-making, therapy planning and workflow management. The framework has evolved through an extensive program of research on human decision-making and clinical practice. It draws on concepts from cognitive science, and has contributed new results to cognitive theory and understanding of human expertise and knowledge-based AI. These results are exploited in a suite of technologies for designing, implementing and deploying clinical services, early versions of which were reported by Das et al. (1997) [9] and Fox and Das (2000) [26]. A practical outcome of the CREDO program is a technology stack, a key element of which is an agent specification language (PROforma: Sutton and Fox (2003) [55]) which has proved to be a versatile tool for designing point of care applications in many clinical specialties and settings. Since software became available for implementing and deploying PROforma applications many kinds of services have been successfully built and trialed, some of which are in large-scale routine use. This retrospective describes the foundations of the CREDO model, summarizes the main theoretical, technical and clinical contributions, and discusses benefits of the cognitive approach. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA519676','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA519676"><span>Operation Iraqi Freedom 06-08</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-02-14</p> <p>Managemen 15.6.6 Results Related t 15.6.7 NCOs and Multiple-Deployments 15.6.8 Validated Trainin 15.6.9 Theater Suicide Prevention Program and Suicide...include mental health providers who have deployed to the IT0 and are experienced using AHLTA- T . As noted above, as the operational theater matures in...Mental Health Advisory Team (MHAT) V Operation Iraqi Freedom 06-08 14 February 2008 Office of the Surgeon Multi-National Force-Iraq and Office</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1119921','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1119921"><span>High Performance Computing Operations Review Report</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cupps, Kimberly C.</p> <p>2013-12-19</p> <p>The High Performance Computing Operations Review (HPCOR) meeting—requested by the ASC and ASCR program headquarters at DOE—was held November 5 and 6, 2013, at the Marriott Hotel in San Francisco, CA. The purpose of the review was to discuss the processes and practices for HPC integration and its related software and facilities. Experiences and lessons learned from the most recent systems deployed were covered in order to benefit the deployment of new systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1019839','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1019839"><span>Logistics Modernization Program Increment 2 (LMP Inc 2)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2016-03-01</p> <p>Executive DoD - Department of Defense DoDAF - DoD Architecture Framework FD - Full Deployment FDD - Full Deployment Decision FY - Fiscal Year IA...Documentation within the LMP Increment 2 MS C ADM, the LMP Increment 2 Business Case was updated for the FDD using change pages to remove information...following approval of the Army Cost Position being developed for the FDD . The LMP Increment 2 Business Case Change Pages were approved and signed by the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA204324','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA204324"><span>The Soviet Military Leadership and the Question of Soviet Deployment Retreats</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-11-01</p> <p>change, within Project AIR FORCE’s National Security Strategies Program. Earlier studies published in this project include: Jeremy R. Azrael, The...of a weapon system inherited from thi past for the sake of anticipated tradeoffs, notably in disruptive effecfs on the Western alliance. Anticipation...extensively test what the market will bear in negotiation with the West. - The second largest Soviet conventional force deployments are in Siberia and the</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5172849','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5172849"><span>Simulation for Operational Readiness in a New Freestanding Emergency Department</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kerner, Robert L.; Gallo, Kathleen; Cassara, Michael; D'Angelo, John; Egan, Anthony; Simmons, John Galbraith</p> <p>2016-01-01</p> <p>Summary Statement Simulation in multiple contexts over the course of a 10-week period served as a core learning strategy to orient experienced clinicians before opening a large new urban freestanding emergency department. To ensure technical and procedural skills of all team members, who would provide care without on-site recourse to specialty backup, we designed a comprehensive interprofessional curriculum to verify and regularize a wide range of competencies and best practices for all clinicians. Formulated under the rubric of systems integration, simulation activities aimed to instill a shared culture of patient safety among the entire cohort of 43 experienced emergency physicians, physician assistants, nurses, and patient technicians, most newly hired to the health system, who had never before worked together. Methods throughout the preoperational term included predominantly hands-on skills review, high-fidelity simulation, and simulation with standardized patients. We also used simulation during instruction in disaster preparedness, sexual assault forensics, and community outreach. Our program culminated with 2 days of in-situ simulation deployed in simultaneous and overlapping timeframes to challenge system response capabilities, resilience, and flexibility; this work revealed latent safety threats, lapses in communication, issues of intake procedure and patient flow, and the persistence of inapt or inapplicable mental models in responding to clinical emergencies. PMID:27607095</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23460162','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23460162"><span>Integrating advanced practice providers into medical critical care teams.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>McCarthy, Christine; O'Rourke, Nancy C; Madison, J Mark</p> <p>2013-03-01</p> <p>Because there is increasing demand for critical care providers in the United States, many medical ICUs for adults have begun to integrate nurse practitioners and physician assistants into their medical teams. Studies suggest that such advanced practice providers (APPs), when appropriately trained in acute care, can be highly effective in helping to deliver high-quality medical critical care and can be important elements of teams with multiple providers, including those with medical house staff. One aspect of building an integrated team is a practice model that features appropriate coding and billing of services by all providers. Therefore, it is important to understand an APP's scope of practice, when they are qualified for reimbursement, and how they may appropriately coordinate coding and billing with other team providers. In particular, understanding when and how to appropriately code for critical care services (Current Procedural Terminology [CPT] code 99291, critical care, evaluation and management of the critically ill or critically injured patient, first 30-74 min; CPT code 99292, critical care, each additional 30 min) and procedures is vital for creating a sustainable program. Because APPs will likely play a growing role in medical critical care units in the future, more studies are needed to compare different practice models and to determine the best way to deploy this talent in specific ICU settings.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28811394','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28811394"><span>Overview and current management of computerized adaptive testing in licensing/certification examinations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Seo, Dong Gi</p> <p>2017-01-01</p> <p>Computerized adaptive testing (CAT) has been implemented in high-stakes examinations such as the National Council Licensure Examination-Registered Nurses in the United States since 1994. Subsequently, the National Registry of Emergency Medical Technicians in the United States adopted CAT for certifying emergency medical technicians in 2007. This was done with the goal of introducing the implementation of CAT for medical health licensing examinations. Most implementations of CAT are based on item response theory, which hypothesizes that both the examinee and items have their own characteristics that do not change. There are 5 steps for implementing CAT: first, determining whether the CAT approach is feasible for a given testing program; second, establishing an item bank; third, pretesting, calibrating, and linking item parameters via statistical analysis; fourth, determining the specification for the final CAT related to the 5 components of the CAT algorithm; and finally, deploying the final CAT after specifying all the necessary components. The 5 components of the CAT algorithm are as follows: item bank, starting item, item selection rule, scoring procedure, and termination criterion. CAT management includes content balancing, item analysis, item scoring, standard setting, practice analysis, and item bank updates. Remaining issues include the cost of constructing CAT platforms and deploying the computer technology required to build an item bank. In conclusion, in order to ensure more accurate estimations of examinees' ability, CAT may be a good option for national licensing examinations. Measurement theory can support its implementation for high-stakes examinations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5676016','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5676016"><span>Overview and current management of computerized adaptive testing in licensing/certification examinations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p></p> <p>2017-01-01</p> <p>Computerized adaptive testing (CAT) has been implemented in high-stakes examinations such as the National Council Licensure Examination-Registered Nurses in the United States since 1994. Subsequently, the National Registry of Emergency Medical Technicians in the United States adopted CAT for certifying emergency medical technicians in 2007. This was done with the goal of introducing the implementation of CAT for medical health licensing examinations. Most implementations of CAT are based on item response theory, which hypothesizes that both the examinee and items have their own characteristics that do not change. There are 5 steps for implementing CAT: first, determining whether the CAT approach is feasible for a given testing program; second, establishing an item bank; third, pretesting, calibrating, and linking item parameters via statistical analysis; fourth, determining the specification for the final CAT related to the 5 components of the CAT algorithm; and finally, deploying the final CAT after specifying all the necessary components. The 5 components of the CAT algorithm are as follows: item bank, starting item, item selection rule, scoring procedure, and termination criterion. CAT management includes content balancing, item analysis, item scoring, standard setting, practice analysis, and item bank updates. Remaining issues include the cost of constructing CAT platforms and deploying the computer technology required to build an item bank. In conclusion, in order to ensure more accurate estimations of examinees’ ability, CAT may be a good option for national licensing examinations. Measurement theory can support its implementation for high-stakes examinations. PMID:28811394</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS53A1173Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS53A1173Z"><span>Improving OBS operations in ultra-deep ocean during the Southern Mariana Trench expeditions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeng, X.; Lin, J.; Xu, M.; Zhou, Z.</p> <p>2017-12-01</p> <p>The Mariana Trench Research Initiative, led by the South China Sea Institute of Oceanology of the Chinese Academy of Sciences and through international collaboration, focuses on investigating the deep and shallow lithospheric structure, earthquake characteristics, extreme geological environments, and the controlling geodynamic mechanisms for the formation of Earth's deepest basins in the southern Mariana Trench. Two multidisciplinary research expeditions were executed during December 2016 and June 2017, respectively, on board R/V Shiyan 3. A main task of the Mariana Initiative is to conduct the Southern Mariana OBS Experiment (SMOE), the first OBS seismic experiment across the Challenger Deep. The SMOE expeditions include both active and passive source seismic experiments and employed a large number of broadband OBS instruments. Due to the deep water, rough weather, strong winds, and other unfavorable factors, it was challenging to deploy/recover the OBSs. During the two expeditions we developed and experimented with a number of ways to improve the success rate of OBS operations in the harsh ultra-deep ocean environment of the Southern Mariana Trench. All newly acquired OBSs underwent a series of uniquely designed deep-ocean tests to improve the instrument performance and maximize reliability during their deployment under the ultra-high pressure conditions. The OBS deployment and recovery followed a unified standard operation procedure and aided by an instrumental checklist, which were specifically designed and strictly enforced for operation during the expeditions. Furthermore, an advanced ship-based radio positioning system was developed to rapidly and accurately locate the OBS instruments when they reached the sea surface; the system proved its effectiveness even under extreme weather conditions. Through the development and application of the novel methods for operation in deep oceans, we overcame the rough sea and other unfavorable factors during the first two expeditions to the southern Mariana Trench and achieved a highly successful OBS operation program.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130013462','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130013462"><span>Identity Federation and Its Importance for NASA's Future: The SharePoint Extranet Pilot</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Baturin, Rebecca R.</p> <p>2013-01-01</p> <p>My project at Kennedy Space Center (KSC) during the spring 2013 Project Management and Systems Engineering Internship was to functionalJy test and deploy the SharePoint Extranet system and ensure successful completion of the project's various lifecycle milestones as described by NASA Procedural Requirement (NPR) 7 120.7. I worked alongside NASA Project Managers, Systems Integration Engineers, and Information Technology (IT) Professionals to pilot this collaboration capability between NASA and its External Partners. The use of identity federation allows NASA to leverage externally-issued credentials of other federal agencies and private aerospace and defense companies, versus the traditional process of granting and maintaining full NASA identities for these individuals. This is the first system of its kind at NASA and it will serve as a pilot for the Federal Government. Recognizing the novelty of this service, NASA's initial approach for deployment included a pilot period where nearby employees of Patrick Air Force Base would assist in testing and deployment. By utilizing a credential registration process, Air Force users mapped their Air Force-issued Common Access Cards (CAC) to a NASA identity for access to the External SharePoint. Once the Air Force stands up an Active Directory Federation Services (ADFS) instance within their Data Center and establishes a direct trust with NASA, true identity federation can be established. The next partner NASA is targeting for collaboration is Lockheed Martin (LMCO), since they collaborate frequently for the ORION Program. Through the use of Exostar as an identity hub, LMCO employees will be able to access NASA data on a need to know basis, with NASA ultimately managing access. In a time when every dollar and resource is being scrutinized, this capability is an exciting new way for NASA to continue its collaboration efforts in a cost and resource effective manner.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12891604','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12891604"><span>Direct stenting with a combined intravascular ultrasound-coronary stent delivery platform: a feasibility trial.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Eeckhout, Eric; Berger, Alexandre; Roguelov, Christan; Lyon, Xavier; Imsand, Christophe; Fivaz-Arbane, Malika; Girod, Grégoire; De Benedetti, Edoardo</p> <p>2003-08-01</p> <p>IVUS is considered as the most accurate tool for the assessment of optimal stent deployment. Direct stenting has shown to be a safe, efficient, and resource-saving procedure in selected patients. In a prospective 1-month feasibility trial, a new combined IVUS-coronary stent delivery platform (Josonics Flex, Jomed, Helsingborn, Sweden) was evaluated during direct stenting in consecutive patients considered eligible for direct stenting. The feasibility endpoint was successful stent deployment without any clinical adverse event, while the efficacy endpoint was strategic adaptation according to standard IVUS criteria for optimal stent deployment at the intermediate phase (after a result considered angiographically optimal) and at the end of the intervention (after optimization according to IVUS standards). A total of 16 patients were successfully treated with this device without any major clinical complication. At the intermediate phase, optimal stent deployment was achieved in four patients only, while at the end only one patient had nonoptimal IVUS stent deployment. In particular, the minimal in-stent cross-section area increased from 6.3 +/- 1.2 to 8.3 +/- 2.5 mm(2). These preliminary data demonstrate the feasibility of direct stenting with a combined IVUS-stent catheter in selected patients and confirm the results from larger randomized trials on the impact of IVUS on strategic adaptations during coronary stent placement. Copyright 2003 Wiley-Liss, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040084298','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040084298"><span>Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meyers, Stew; Sturm, James</p> <p>2004-01-01</p> <p>The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25-kilogram micro-class spacecraft in formation through the Earth's magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25-kg Micosat resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state-of-the-art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper. This paper describes the development efforts and resulting self-deploying magnetometer boom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040082152','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040082152"><span>Development of a Strain Energy Deployable Boom for the Space Technology 5 Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Meyers, Stew; Sturm, James</p> <p>2004-01-01</p> <p>The Space Technology 5 (ST5) mission is one of a series of technology demonstration missions for the New Millennium Program. This mission will fly three fully functional 25 kilogram micro class spacecraft in formation through the Earth s magnetosphere; the primary science instrument is a very sensitive magnetometer. The constraints of a 25 kg "Micosat" resulted in a spin stabilized, octagonal spacecraft that is 30 cm tall by 50 cm diameter and has state of the art solar cells on all eight sides. A non-magnetic boom was needed to place the magnetometer as far from the spacecraft and its residual magnetic fields as possible. The ST-5 spacecraft is designed to be spun up and released from its deployer with the boom and magnetometer stowed for later release. The deployer is the topic of another paper, This paper describes the development efforts and resulting self-deploying magnetometer boom.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170011133','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170011133"><span>The Adaptable, Deployable Entry and Placement Technology (ADEPT)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wercinski, Paul</p> <p>2017-01-01</p> <p>The initial system-level development of the nano-ADEPT architecture will culminate in the launch of a 0.7 meter deployed diameter ADEPT sounding rocket flight experiment named, SR-1. Launch is planned for August 2017. The test will utilize the NASA Flight Opportunities Program sounding rocket platform provided by UP Aerospace to launch SR-1 to an apogee over 100 km and achieve re-entry conditions with a peak velocity near Mach 3. The SR-1 flight experiment will demonstrate most of the primary end-to-end mission stages including: launch in a stowed configuration, separation and deployment in exo-atmospheric conditions, and passive ballistic re-entry of a 70-degree half-angle faceted cone geometry.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/863347','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/863347"><span>Rapidly deployable emergency communication system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Gladden, Charles A.; Parelman, Martin H.</p> <p>1979-01-01</p> <p>A highly versatile, highly portable emergency communication system which permits deployment in a very short time to cover both wide areas and distant isolated areas depending upon mission requirements. The system employs a plurality of lightweight, fully self-contained repeaters which are deployed within the mission area to provide communication between field teams, and between each field team and a mobile communication control center. Each repeater contains a microcomputer controller, the program for which may be changed from the control center by the transmission of digital data within the audible range (300-3,000 Hz). Repeaters are accessed by portable/mobile transceivers, other repeaters, and the control center through the transmission and recognition of digital data code words in the subaudible range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/2015/1210/ofr20151210.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/2015/1210/ofr20151210.pdf"><span>Evaluation of the 8310-N-S manufactured by Sutron–Results of bench, temperature, and field deployment testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kunkle, Gerald A.</p> <p>2016-01-07</p> <p>The Sutron 8310-N-S (8310) data collection platform (DCP) manufactured by Sutron Corporation was evaluated by the U.S. Geological Survey (USGS) Hydrologic Instrumentation Facility (HIF) for conformance to the manufacturer’s specifications for recording and transmitting data. The 8310-N-S is a National Electrical Manufacturers Association (NEMA)-enclosed DCP with a built-in Geostationary Operational Environmental Satellite transmitter that operates over a temperature range of −40 to 60 degrees Celsius (°C). The evaluation procedures followed and the results obtained are described in this report for bench, temperature chamber, and outdoor deployment testing. The three units tested met the manufacturer’s stated specifications for the tested conditions, but two of the units had transmission errors either during temperature chamber or deployment testing. During outdoor deployment testing, 6.72 percent of transmissions by serial number 1206109 contained errors, resulting in missing data. Transmission errors were also observed during temperature chamber testing with serial number 1208283, at an error rate of 3.22 percent. Overall, the 8310 has good logging capabilities, but the transmission errors are a concern for users who require reliable telemetered data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29326127','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29326127"><span>Skill sets required for the management of military head, face and neck trauma: a multidisciplinary consensus statement.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Breeze, John; Blanch, R; Baden, J; Monaghan, A M; Evriviades, D; Harrisson, S E; Roberts, S; Gibson, A; MacKenzie, N; Baxter, D; Gibbons, A J; Heppell, S; Combes, J G; Rickard, R F</p> <p>2018-05-01</p> <p>The evolution of medical practice is resulting in increasing subspecialisation, with head, face and neck (HFN) trauma in a civilian environment usually managed by a combination of surgical specialties working as a team. However, the full combination of HFN specialties commonly available in the NHS may not be available in future UK military-led operations, necessitating the identification of a group of skill sets that could be delivered by one or more deployed surgeons. A systematic review was undertaken to identify those surgical procedures performed to treat acute military head, face, neck and eye trauma. A multidisciplinary consensus group was convened following this with military HFN trauma expertise to define those procedures commonly required to conduct deployed, in-theatre HFN surgical combat trauma management. Head, face, neck and eye damage control surgical procedures were identified as comprising surgical cricothyroidotomy, cervico-facial haemorrhage control and decompression of orbital haemorrhage through lateral canthotomy. Acute in-theatre surgical skills required within 24 hours consist of wound debridement, surgical tracheostomy, decompressive craniectomy, intracranial pressure monitor placement, temporary facial fracture stabilisation for airway management or haemorrhage control and primary globe repair. Delayed in-theatre procedures required within 5 days prior to predicted evacuation encompass facial fracture fixation, delayed lateral canthotomy, evisceration, enucleation and eyelid repair. The identification of those skill sets required for deployment is in keeping with the General Medical Council's current drive towards credentialing consultants, by which a consultant surgeon's capabilities in particular practice areas would be defined. Limited opportunities currently exist for trainees and consultants to gain experience in the management of traumatic head, face, neck and eye injuries seen in a kinetic combat environment. Predeployment training requires that the surgical techniques described in this paper are covered and should form the curriculum of future military-specific surgical fellowships. Relevant continued professional development will be necessary to maintain required clinical competency. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5351886','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5351886"><span>Programming and Runtime Support to Blaze FPGA Accelerator Deployment at Datacenter Scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Huang, Muhuan; Wu, Di; Yu, Cody Hao; Fang, Zhenman; Interlandi, Matteo; Condie, Tyson; Cong, Jason</p> <p>2017-01-01</p> <p>With the end of CPU core scaling due to dark silicon limitations, customized accelerators on FPGAs have gained increased attention in modern datacenters due to their lower power, high performance and energy efficiency. Evidenced by Microsoft’s FPGA deployment in its Bing search engine and Intel’s 16.7 billion acquisition of Altera, integrating FPGAs into datacenters is considered one of the most promising approaches to sustain future datacenter growth. However, it is quite challenging for existing big data computing systems—like Apache Spark and Hadoop—to access the performance and energy benefits of FPGA accelerators. In this paper we design and implement Blaze to provide programming and runtime support for enabling easy and efficient deployments of FPGA accelerators in datacenters. In particular, Blaze abstracts FPGA accelerators as a service (FaaS) and provides a set of clean programming APIs for big data processing applications to easily utilize those accelerators. Our Blaze runtime implements an FaaS framework to efficiently share FPGA accelerators among multiple heterogeneous threads on a single node, and extends Hadoop YARN with accelerator-centric scheduling to efficiently share them among multiple computing tasks in the cluster. Experimental results using four representative big data applications demonstrate that Blaze greatly reduces the programming efforts to access FPGA accelerators in systems like Apache Spark and YARN, and improves the system throughput by 1.7 × to 3× (and energy efficiency by 1.5× to 2.7×) compared to a conventional CPU-only cluster. PMID:28317049</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>