Sample records for deposition current density

  1. Variation of magnetoimpedance of electrodeposited NiFe/Cu with deposition current density

    NASA Astrophysics Data System (ADS)

    Mishra, A. C.; Jha, A. K.

    2017-12-01

    An investigation about influence of deposition current density on electrodeposited magnetic film is reported in this paper. Ferromagnetic NiFe thin films were electrodeposited on copper wires of 100 μm diameter for various electrdepostion current densities ranging from 10 to 60 mA/cm2 maintaining equal thickness in all films. The composition of deposited film varied with deposition current density and in particular, a composition of Ni79Fe21 was achieved for a current density of 20 mA/cm2. The surface microstructure of the film deposited at the current density of 20 mA/cm2 was found to have excellent smoothness. The coercivity of the film was lowest and highest value of magnetoimpedance was measured for this film. The influence of current density on film composition and hence magnetic properties was attributed to the change of deposition mechanism.

  2. Influence of γ-phase on corrosion resistance of Zn–Ni alloy electrodeposition from acetate electrolytic bath

    NASA Astrophysics Data System (ADS)

    Selvaraju, V.; Thangaraj, V.

    2018-05-01

    The electrodeposition of Zn–Ni alloy containing 10% to 15% nickel was deposited from acetate electrolytic bath. The effect of current density, pH, temperature, cathodic current efficiency on the deposition of Zn–Ni alloy and the throwing power ability of the solution was investigated. The composition of the deposits and the morphology were strongly influenced by the temperature and applied current density. Corrosion resistance of a Zn–Ni alloy deposit was increases with the increase of current density. Zn–Ni alloy deposits shows higher corrosion resistance at optimum current density of 3.0 A dm‑2. X-Ray diffraction measurement confirms the presence of γ –phase Zn–Ni alloy deposition. The XRD reflection of Zn–Ni (831) was found to be increased with increase in current density. SEM studies reveal that the nanovial structure of Zn–Ni alloy deposited at 3.0 A dm‑2 gives high protection against corrosion.

  3. Towards the definition of AMS facies in the deposits of pyroclastic density currents

    USGS Publications Warehouse

    Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.

    2014-01-01

    Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.

  4. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  5. Fast electrochemical deposition of Ni(OH)2 precursor involving water electrolysis for fabrication of NiO thin films

    NASA Astrophysics Data System (ADS)

    Koyama, Miki; Ichimura, Masaya

    2018-05-01

    Ni(OH)2 precursor films were deposited by galvanostatic electrochemical deposition (ECD), and NiO thin films were fabricated by annealing in air. The effects of the deposition current densities were studied in a range that included current densities high enough to electrolyze water and generate hydrogen bubbles. The films fabricated by ECD involving water electrolysis had higher transparency and smoother surface morphology than those deposited with lower current densities. In addition, the annealed NiO films clearly had preferred (111) orientation when the deposition was accompanied by water electrolysis. p-type conduction was confirmed for the annealed films.

  6. Texture related unusual phenomena in electrodeposition and vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, D. N.; Han, H. N.

    2015-04-01

    The tensile strength of electrodeposits generally decreases with increasing bath temperature because the grain size increases and the dislocation density decreases with increasing bath temperature. Therefore, discontinuities observed in the tensile strength vs. bath temperature curves in electrodeposition of copper are unusual. The tensile strength of electrodeposits generally increases with increasing cathode current density because the rate of nucleation in electrodeposits increases with increasing current density, which in turn gives rise to a decrease in the grain size and in turn an increase in the strength. Therefore, a decrease in the tensile strength of copper electrodeposits at a high current density is unusual. The grain size of vapor deposits is expected to decrease with decreasing substrate temperature. However, rf sputtered Co-Cr deposits showed that deposits formed on water-cooled polyimide substrates had a larger grain size than deposits formed on polyimide substrates at 200 °C. These unusual phenomena can be explained by the preferred growth model for deposition texture evolution.

  7. The September 14, 2015 phreatomagmatic eruption of Nakadake first crater, Aso Volcano, Japan: Eruption sequence inferred from ballistic, pyroclastic density current and fallout deposits

    NASA Astrophysics Data System (ADS)

    Miyabuchi, Yasuo; Iizuka, Yoshiyuki; Hara, Chihoko; Yokoo, Akihiko; Ohkura, Takahiro

    2018-02-01

    An explosive eruption occurred at Nakadake first crater, Aso Volcano in central Kyushu, southwestern Japan, on September 14, 2015. The sequence and causes of the eruption were reconstructed from the distribution, textures, grain-size, component and chemical characteristics of the related deposits, and video record. The eruptive deposits are divided into ballistics, pyroclastic density current and ash-fall deposits. A large number of ballistic clasts (mostly < 10 cm in diameter; maximum size 1.6 m) are scattered within about 500 m from the center of the crater. Almost half of the ballistics appear as fresh and unaltered basaltic andesite rocks interpreted to be derived from a fresh batch of magma, while the rest is weakly to highly altered clasts. A relatively thin ash derived from pyroclastic density currents covered an area of 2.3 km2 with the SE-trending main axis and two minor axes to the NE and NW. The pyroclastic density current deposit (maximum thickness < 10 cm even at the crater rim) is wholly fine grained, containing no block-sized clasts. Based on the isopach map, the mass of the pyroclastic density current deposit was estimated at ca. 5.2 × 104 tons. The ash-fall deposit is finer grained and clearly distributed to about 8 km west of the source crater. The mass of the ash-fall deposit was calculated at about 2.7 × 104 tons. Adding the mass of the pyroclastic density current deposit, the total discharged mass of the September 14, 2015 eruption was 7.9 × 104 tons. The September 14 pyroclastic density current and ash-fall deposits consist of glass shards (ca. 30%), crystals (20-30%) and lithic (40-50%) grains. Most glass shards are unaltered poorly crystallized pale brown glasses which probably resulted from quenching of juvenile magma. This suggests that the September 14, 2015 event at the Nakadake first crater was a phreatomagmatic eruption. Similar phreatomagmatic eruptions occurred at the same crater on September 6, 1979 and April 20, 1990 whose eruptive masses were one order larger than that of the September 14, 2015 eruption. These events highlight the potential hazard from phreatic or phreatomagmatic eruptions at Nakadake first crater, and provide useful information that will assist in preventing or mitigating future disasters at other similar volcanoes worldwide.

  8. Differences observed in the surface morphology and microstructure of Ni-Fe-Cu ternary thin films electrochemically deposited at low and high applied current densities

    NASA Astrophysics Data System (ADS)

    Sarac, U.; Kaya, M.; Baykul, M. C.

    2016-10-01

    In this research, nanocrystalline Ni-Fe-Cu ternary thin films using electrochemical deposition technique were produced at low and high applied current densities onto Indium Tin Oxide (ITO) coated conducting glass substrates. Change of surface morphology and microstructural properties of the films were investigated. Energy dispersive X-ray spectroscopy (EDX) measurements showed that the Ni-Fe-Cu ternary thin films exhibit anomalous codeposition behaviour during the electrochemical deposition process. From the X-ray diffraction (XRD) analyses, it was revealed that there are two segregated phases such as Cu- rich and Ni-rich within the films. The crystallographic structure of the films was face-centered cubic (FCC). It was also observed that the film has lower lattice micro-strain and higher texture degree at high applied current density. Scanning electron microscopy (SEM) studies revealed that the films have rounded shape particles on the base part and cauliflower-like structures on the upper part. The film electrodeposited at high current density had considerably smaller rounded shape particles and cauliflower-like structures. From the atomic force microscopy (AFM) analyses, it was shown that the film deposited at high current density has smaller particle size and surface roughness than the film grown at low current density.

  9. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 1. Flow direction and deposition

    NASA Astrophysics Data System (ADS)

    Gurioli, L.; Zanella, E.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    To assess ways in which the products of explosive eruptions interact with human settlements, we performed volcanological and rock magnetic analyses on the deposits of the A.D. 79 eruption at the Pompeii excavations (Italy). During this eruption the Roman town of Pompeii was covered by 2.5 m of fallout pumice and then partially destroyed by pyroclastic density currents (PDCs). Anisotropy of magnetic susceptibility measurements performed on the fine matrix of the deposits allowed the quantification of the variations in flow direction and emplacement mechanisms of the parental PDCs that entered the town. These results, integrated with volcanological field investigations, revealed that the presence of buildings, still protruding through the fallout deposits, strongly affected the distribution and accumulation of the erupted products. All of the PDCs that entered the town, even the most dilute ones, were density stratified currents in which interaction with the urban fabric occurred in the lower part of the current. The degree of interaction varied mainly as a function of obstacle height and density stratification within the current. For examples, the lower part of the EU4pf current left deposits up to 3 m thick and was able to interact with 2- to 4-m-high obstacles. However, a decrease in thickness and grain size of the deposits across the town indicates that even though the upper portion of the current was able to decouple from the lower portion, enabling it to flow over the town, it was not able to fully restore the sediment supply to the lower portion in order to maintain the deposition observed upon entry into the town.

  10. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  11. Nonenzymatic detection of glucose using BaCuO2 thin layer

    NASA Astrophysics Data System (ADS)

    Ito, Takeshi; Asada, Tsuyoshi; Asai, Naoto; Shimizu, Tomohiro; Shingubara, Shoso

    2017-01-01

    A BaCuO2 thin layer was deposited on a glassy carbon electrode and used for the direct oxidation of glucose. The crystalline, electrochemical, and physicochemical properties that depend on the deposition temperature and deposition time were studied. X-ray diffraction (XRD) analysis showed that the thin layer was amorphous even at 400 °C. The current density of the glucose oxidation using the thin layer deposited at 200 °C was higher than those at other deposition temperatures. Under this condition, the current density increased with the glucose concentration and deposition time. These results indicate that a BaCuO2 thin layer has potential for measuring the blood glucose level without enzymes.

  12. PYFLOW 2.0. A new open-source software for quantifying the impact and depositional properties of dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Dellino, Pierfrancesco

    2017-04-01

    Dilute pyroclastic density currents (DPDC) are ground-hugging turbulent gas-particle flows that move down volcano slopes under the combined action of density contrast and gravity. DPDCs are dangerous for human lives and infrastructures both because they exert a dynamic pressure in their direction of motion and transport volcanic ash particles, which remain in the atmosphere during the waning stage and after the passage of a DPDC. Deposits formed by the passage of a DPDC show peculiar characteristics that can be linked to flow field variables with sedimentological models. Here we present PYFLOW_2.0, a significantly improved version of the code of Dioguardi and Dellino (2014) that was already extensively used for the hazard assessment of DPDCs at Campi Flegrei and Vesuvius (Italy). In the latest new version the code structure, the computation times and the data input method have been updated and improved. A set of shape-dependent drag laws have been implemented as to better estimate the aerodynamic drag of particles transported and deposited by the flow. A depositional model for calculating the deposition time and rate of the ash and lapilli layer formed by the pyroclastic flow has also been included. This model links deposit (e.g. componentry, grainsize) to flow characteristics (e.g. flow average density and shear velocity), the latter either calculated by the code itself or given in input by the user. The deposition rate is calculated by summing the contributions of each grainsize class of all components constituting the deposit (e.g. juvenile particles, crystals, etc.), which are in turn computed as a function of particle density, terminal velocity, concentration and deposition probability. Here we apply the concept of deposition probability, previously introduced for estimating the deposition rates of turbidity currents (Stow and Bowen, 1980), to DPDCs, although with a different approach, i.e. starting from what is observed in the deposit (e.g. the weight fractions ratios between the different grainsize classes). In this way, more realistic estimates of the deposition rate can be obtained, as the deposition probability of different grainsize constituting the DPDC deposit could be different and not necessarily equal to unity. Calculations of the deposition rates of large-scale experiments, previously computed with different methods, have been performed as experimental validation and are presented. Results of model application to DPDCs and turbidity currents will also be presented. Dioguardi, F, and P. Dellino (2014), PYFLOW: A computer code for the calculation of the impact parameters of Dilute Pyroclastic Density Currents (DPDC) based on field data, Powder Technol., 66, 200-210, doi:10.1016/j.cageo.2014.01.013 Stow, D. A. V., and A. J. Bowen (1980), A physical model for the transport and sorting of fine-grained sediment by turbidity currents, Sedimentology, 27, 31-46

  13. Phreatomagmatic eruptive and depositional processes during the 1949 eruption on La Palma (Canary Islands)

    NASA Astrophysics Data System (ADS)

    White, James D. L.; Schmincke, Hans-Ulrich

    1999-12-01

    In 1949, a 5-week-long magmatic and phreatomagmatic eruption took place along the active volcanic ridge of La Palma (Canary Islands). Two vents, Duraznero and Hoyo Negro, produced significant pyroclastic deposits. The eruption began from Duraznero vent, which produced a series of deposits with an upward decrease in accidental fragments and increase in fluidal ash and spatter, together inferred to indicate decreasing phreatomagmatic interaction. Hoyo Negro erupted over a 2-week period, producing a variety of pyroclastic density currents and ballistic blocks and bombs. Hoyo Negro erupted within and modified an older crater having high walls on the northern to southeastern edges. Southwestern to western margins of the crater lay 50 to 100 m lower. Strongly contrasting deposits in the different sectors (N-SE vs. SW-W) were formed as a result of interaction between topography, weak eruptive columns and stratified pyroclastic density currents. Tephra ring deposits are thicker and coarser-grained than upper rim deposits formed along the higher edges of the crater, and beyond the crater margin, valley-confined deposits are thicker than more thinly bedded mantling deposits on higher topography. These differences indicate that the impact zone for the bulk of the collapsing, tephra-laden column lay within the crater and that the high crater walls inhibited escape of pyroclastic density currents to the north and east. The impact zone lay outside the low SW-W rims, however, thus allowing stratified pyroclastic density currents to move freely away from the crater in those directions, depositing thin sections (<30 cm) of well-bedded ash (mantling deposits) on ridges and thicker sections (1-3 m) of structureless ash beds in valleys and small basins. Such segregation of dense pyroclastic currents from more dilute ones at the crater wall is likely to be common for small eruptions from pre-existing craters and is an important factor to be taken into account in volcanic hazards assessments.

  14. Zinc electrodeposition from flowing alkaline zincate solutions: Role of hydrogen evolution reaction

    NASA Astrophysics Data System (ADS)

    Dundálek, Jan; Šnajdr, Ivo; Libánský, Ondřej; Vrána, Jiří; Pocedič, Jaromír; Mazúr, Petr; Kosek, Juraj

    2017-12-01

    The hydrogen evolution reaction is known as a parasitic reaction during the zinc electrodeposition from alkaline zincate solutions and is thus responsible for current efficiency losses during the electrolysis. Besides that, the rising hydrogen bubbles may cause an extra convection within a diffusion layer, which leads to an enhanced mass transport of zincate ions to an electrode surface. In this work, the mentioned phenomena were studied experimentally in a flow through electrolyzer and the obtained data were subsequently evaluated by mathematical models. The results prove the indisputable influence of the rising hydrogen bubbles on the additional mixing of the diffusion layer, which partially compensates the drop of the current efficiency of the zinc deposition at higher current flows. Moreover, the results show that the current density ratio (i.e., the ratio of an overall current density to a zinc limiting current density) is not suitable for the description of the zinc deposition, because the hydrogen evolution current density is always involved in the overall current density.

  15. Boiling-over dense pyroclastic density currents during the formation of the 100 km3 Huichapan ignimbrite in Central Mexico: Stratigraphic and lithofacies analysis

    NASA Astrophysics Data System (ADS)

    Pacheco-Hoyos, Jaime G.; Aguirre-Díaz, Gerardo J.; Dávila-Harris, Pablo

    2018-01-01

    A lithofacies analysis of the Huichapan ignimbrite has been undertaken to evaluate its depositional history from large pyroclastic density currents. The Huichapan ignimbrite is a massive ignimbrite sheet with a maximum runout of at least 55 km and thickness variations between 6 and 80 m. The lower portion of the Huichapan ignimbrite consists of a large plateau [ 100 km3; 69 km3 as dense-rock equivalent (DRE)] of massive ignimbrites with welding variations from densely welded to partly welded, devitrification, and high-temperature vapor-phase alteration. The lower part grades laterally to moderately welded and non-devitrified ignimbrites. These variations are interpreted as the sedimentation of density-stratified pyroclastic density currents erupted as boiling-over pulses from the Huichapan-Donguinyó caldera complex at a continuous rate, supporting deposition by quasi-steady progressive aggradation of sustained and hot currents. To the north of the caldera, the lower portion of the ignimbrite consists of a small plateau (< 10 km3) in which the densely welded and devitrified lithofacies are absent. Our interpretation is that the pyroclastic density currents flowed late to the north of the caldera and formed a smaller ignimbrite plateau with respect to the western one. This northern ignimbrite plateau cooled faster than the western ignimbrite plateau. Deposition-induced topographic modifications suggest that topographic obstacles, such as remnants of older volcanoes, may have promoted the deviation of the density currents to the north. The upper portion of the ignimbrite is composed of extensive, massive, coarse clast-rich, non-devitrified, and non-welded ignimbrites with abundant fines-poor pipes. This upper part was deposited from largely sustained and rapidly aggrading high-concentration currents in a near end-member, fluid escape-dominated flow boundary zone. The absence of welding in the upper portion may record pyroclastic density currents cooling during the formation of a relatively high pyroclastic fountain at the vent. We have established a depositional model for the Huichapan ignimbrite that explains the differences between the western and northern plateaus. The Huichapan ignimbrite was formed during a large caldera-forming eruption with concentrated pyroclastic fountains. High mass-flow rate was maintained for long periods, promoting the mobility of the pyroclastic density currents.

  16. Basaltic ignimbrites in monogenetic volcanism: the example of La Garrotxa volcanic field

    NASA Astrophysics Data System (ADS)

    Martí, J.; Planagumà, L. l.; Geyer, A.; Aguirre-Díaz, G.; Pedrazzi, D.; Bolós, X.

    2017-05-01

    Ignimbrites are pyroclastic density current deposits common in explosive volcanism involving intermediate and silicic magmas and in less abundance in eruptions of basaltic central and shield volcanoes. However, they are not widely described in association with monogenetic volcanism, where typical products include lava flows, scoria and lapilli fall deposits, as well as various kinds of pyroclastic density current deposits and explosion breccias. In La Garrotxa basaltic monogenetic volcanic field, part of the Neogene-Quaternary European rift system located in the northeast of the Iberian Peninsula, we have identified a particular group of pyroclastic density current deposits that show similar textural characteristics to silicic ignimbrites, indicating an overlap in transport and depositional processes. These deposits can be clearly distinguished from other pyroclastic density current deposits generated during phreatomagmatic phases that typically correspond to thinly laminated units with planar-to-cross-bedded stratification. The monogenetic ignimbrite deposits correspond to a few meters to several tens of meters thick units rich in lithic- and lapilli scoria fragments, with an abundant ash matrix, and internally massive structure, emplaced along valleys and gullies, with run-out distances up to 6 km and individual volumes ranging from 106 to 1.5 × 107 m3. The presence of flattened scoria and columnar jointing in some of these deposits suggests relatively high emplacement temperatures, coinciding with available paleomagnetic data that suggests an emplacement temperature around 450-500 °C. In this work, we describe the main characteristics of these pyroclastic deposits that were generated by a number of phreatomagmatic episodes. Comparison with similar deposits from silicic eruptions and previous examples of ignimbrites associated with basaltic volcanism allows us to classify them as `basaltic ignimbrites'. The recognition in monogenetic volcanism of such pyroclastic products, which may extend several kilometres from source, has an important consequence for hazard assessment in these volcanic fields, which previously have been considered to present only minor hazards and risks.

  17. Structural transitions in electron beam deposited Co-carbonyl suspended nanowires at high electrical current densities.

    PubMed

    Gazzadi, Gian Carlo; Frabboni, Stefano

    2015-01-01

    Suspended nanowires (SNWs) have been deposited from Co-carbonyl precursor (Co2(CO)8) by focused electron beam induced deposition (FEBID). The SNWs dimensions are about 30-50 nm in diameter and 600-850 nm in length. The as-deposited material has a nanogranular structure of mixed face-centered cubic (FCC) and hexagonal close-packed (HCP) Co phases, and a composition of 80 atom % Co, 15 atom % O and 5 atom % C, as revealed by transmission electron microscopy (TEM) analysis and by energy-dispersive X-ray (EDX) spectroscopy, respectively. Current (I)-voltage (V) measurements with current densities up to 10(7) A/cm(2) determine different structural transitions in the SNWs, depending on the I-V history. A single measurement with a sudden current burst leads to a polycrystalline FCC Co structure extended over the whole wire. Repeated measurements at increasing currents produce wires with a split structure: one half is polycrystalline FCC Co and the other half is graphitized C. The breakdown current density is found at 2.1 × 10(7) A/cm(2). The role played by resistive heating and electromigration in these transitions is discussed.

  18. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less

  19. Influence of Electrolyte Modulus on the Local Current Density at a Dendrite Tip on a Lithium Metal Electrode

    DOE PAGES

    Harry, Katherine J.; Higa, Kenneth; Srinivasan, Venkat; ...

    2016-08-10

    Understanding and controlling the electrochemical deposition of lithium is imperative for the safe use of rechargeable batteries with a lithium metal anode. Solid block copolymer electrolyte membranes are known to enhance the stability of lithium metal anodes by mechanically suppressing the formation of lithium protrusions during battery charging. Time-resolved hard X-ray microtomography was used to monitor the internal structure of a symmetric lithium-polymer cell during galvanostatic polarization. The microtomography images were used to determine the local rate of lithium deposition, i.e. local current density, in the vicinity of a lithium globule growing through the electrolyte. Measurements of electrolyte displacement enabledmore » estimation of local stresses in the electrolyte. At early times, the current density was maximized at the globule tip, as expected from simple current distribution arguments. At later times, the current density was maximized at the globule perimeter. We show that this phenomenon is related to the local stress fields that arise as the electrolyte is deformed. The local current density, normalized for the radius of curvature, decreases with increasing compressive stresses at the lithium-polymer interface. To our knowledge, our study provides the first direct measurement showing the influence of local mechanical stresses on the deposition kinetics at lithium metal electrodes.« less

  20. Zn-Mn alloy coatings from acidic chloride bath: Effect of deposition conditions on the Zn-Mn electrodeposition-morphological and structural characterization

    NASA Astrophysics Data System (ADS)

    Loukil, N.; Feki, M.

    2017-07-01

    Zn-Mn alloy electrodeposition on steel electrode in chloride bath was investigated using cyclic voltammetric, chronopotentiometric and chronoamperometric techniques. Cyclic voltammetries (CV) reveal a deep understanding of electrochemical behaviors of each metal Zn, Mn, proton discharge and Zn-Mn co-deposition. The electrochemical results show that with increasing Mn2+ ions concentration in the electrolytic bath, Mn2+ reduction occurs at lower over-potential leading to an enhancement of Mn content into the Zn-Mn deposits. A dimensionless graph model was used to analyze the effect of Mn2+ ions concentration on Zn-Mn nucleation process. It was found that the nucleation process is not extremely affected by Mn2+ concentration. Nevertheless, it significantly depends on the applied potential. Several parameters such as Mn2+ ions concentration, current density and stirring were investigated with regard to the Mn content into the final Zn-Mn coatings. It was found that the Mn content increases with increasing the applied current density jimp and Mn2+ ions concentration in the electrolytic bath. However, stirring of the solution decreases the Mn content in the Zn-Mn coatings. The phase structure and surface morphology of Zn-Mn deposits are characterized by means of X-ray diffraction analysis and Scanning Electron Microscopy (SEM), respectively. The Zn-Mn deposited at low current density is tri-phasic and consisting of η-Zn, ζ-MnZn13 and hexagonal close packed ε-Zn-Mn. An increase in current density leads to a transition from crystalline to amorphous structure, arising from the hydroxide inclusions in the Zn-Mn coating at high current density.

  1. Relationship between plasma parameters and film microstructure in radio frequency magnetron sputter deposition of barium strontium titanate

    NASA Astrophysics Data System (ADS)

    Panda, B.; Dhar, A.; Nigam, G. D.; Bhattacharya, D.; Ray, S. K.

    1998-01-01

    Radio frequency magnetron sputtered Ba0.8Sr0.2TiO3 thin films have been deposited on silicon and Si/SiO2/SiN/Pt substrates. The analysis of plasma discharge has been carried out using the Langmuir probe technique. Both the pressure and power have been found to influence the ion density and self-bias of the target. Introduction of oxygen into the discharge effectively decreases the ion density. The structural and electrical properties have been investigated using x-ray diffraction, atomic force microscopy of deposited films and capacitance-voltage, conductance-voltage, and current density-electric field characteristics of fabricated capacitors. The growth and orientation of the films have been found to depend upon the type of substrates and deposition temperatures. The <100> texture in the film is promoted at a pressure 0.25 Torr with a moderately high value of ion density and low ion bombardment energy. Films deposited on Si/SiO2/SiN/Pt substrate have shown higher dielectric constant (191) and lower leakage current density (2.8×10-6 A/cm2 at 100 kV/cm) compared to that on silicon.

  2. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.

  3. Modeling dilute pyroclastic density currents on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Brand, B. D.; De'Michieli Vitturi, M.

    2013-12-01

    The surface of Mars has been shaped extensively by volcanic activity, including explosive eruptions that may have been heavily influenced by water- or ice-magma interaction. However, the dynamics of associated pyroclastic density currents (PDCs) under Martian atmospheric conditions and controls on deposition and runout from such currents are poorly understood. This work combines numerical modeling with terrestrial field measurements to explore the dynamics of dilute PDC dynamics on Earth and Mars, especially as they relate to deposit characteristics. We employ two numerical approaches. Model (1) consists of simulation of axi-symmetric flow and sedimentation from a steady-state, depth-averaged density current. Equations for conservation of mass, momentum, and energy are solved simultaneously, and the effects of atmospheric entrainment, particle sedimentation, basal friction, temperature changes, and variations in current thickness and density are explored. The Rouse number and Brunt-Väisälä frequency are used to estimate the wavelength of internal gravity waves in a density-stratified current, which allows us to predict deposit dune wavelengths. The model predicts realistic runout distances and bedform wavelengths for several well-documented field cases on Earth. The model results also suggest that dilute PDCs on Mars would have runout distances up to three times that of equivalent currents on Earth and would produce longer-wavelength bedforms. In both cases results are heavily dependent on source conditions, grain-size characteristics, and entrainment and friction parameters. Model (2) relaxes several key simplifications, resulting in a fully 3D, multiphase, unsteady model that captures more details of propagation, including density stratification, and depositional processes. Using this more complex approach, we focus on the role of unsteady or pulsatory vent conditions typically associated with phreatomagmatic eruptions. Runout distances from Model (2) agree reasonably well with Model (1) results, but details of deposit distribution vary between the two models. Model (2) shows that the Earth case initially outpaces the Mars case due to faster propagation velocities associated with higher gravitational acceleration. However, the Mars currents ultimately out-distance the Earth currents due to slower particle settling rates, which also largely explain the longer wavelength bedforms. Model (2) also predicts a peak in the streamwise distribution of deposits farther from the source compared to equivalent results from Model (1), and produces more complex patterns of vertical distribution of particles in the moving current, which varies significantly in time and space. This combination of modeling and deposit data results in a powerful tool for testing hypotheses related to PDCs on Mars, potentially improving our capacity to interpret Martian features on both the outcrop (e.g., Home Plate) and regional scale (e.g., Apollinaris Mons).

  4. Pulse electro-deposition of copper on molybdenum for Cu(In,Ga)Se2 and Cu2ZnSnSe4 solar cell applications

    NASA Astrophysics Data System (ADS)

    Bi, Jinlian; Yao, Liyong; Ao, Jianping; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2016-09-01

    The issues of rough surface morphology and the incorporated additives of the electro-deposited Cu layers, which exists in electrodeposition-based processes, is one of the major obstacles to improve the efficiency of Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) solar cells. In this study, the pulse current electro-deposition method is employed to deposit smooth Cu film on Mo substrate in CuSO4 solution without any additives. Grain size of the deposited Cu film is decreased by high cathode polarization successfully. And the concentration polarization, which results from high pulse current density, is controlled successfully by adjusting the pulse frequency. Flat Cu film with smooth surface and compact structure is deposited as pulse current density @ 62.5 mA cm-2, pulse frequency @100,000 Hz, and duty cycle @ 25%. CIGSe and CZTSe absorber films with flat surface and uniform elemental distribution are prepared by selenizing the stacking metal layers electro-deposited by pulse current method. Finally, the CIGSe and CZTSe solar cells with conversion efficiency of 10.39% and 7.83% respectively are fabricated based on the smooth Cu films, which are better than the solar cells fabricated by the rough Cu film deposited by direct current electro-deposition method.

  5. Ion beam sputter etching and deposition of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Banks, B. A.; Sovey, J. S.; Miller, T. B.; Crandall, K. S.

    1978-01-01

    Fluoropolymer etching and deposition techniques including thermal evaporation, RF sputtering, plasma polymerization, and ion beam sputtering are reviewed. Etching and deposition mechanism and material characteristics are discussed. Ion beam sputter etch rates for polytetrafluoroethylene (PTFE) were determined as a function of ion energy, current density and ion beam power density. Peel strengths were measured for epoxy bonds to various ion beam sputtered fluoropolymers. Coefficients of static and dynamic friction were measured for fluoropolymers deposited from ion bombarded PTFE.

  6. Effects of slope on the formation of dunes in dilute, turbulent pyroclastic currents: May 18th, 1980 Mt. St. Helens eruption

    NASA Astrophysics Data System (ADS)

    Bendana, Sylvana; Brand, Brittany D.; Self, Stephen

    2014-05-01

    The flanks of Mt St Helens volcano (MSH) are draped with thin, cross-stratified and stratified pyroclastic density current (PDC) deposits. These are known as the proximal bedded deposits produced during the May 18th, 1980 eruption of MSH. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The deposits along the flank thus vary greatly from those found in the pumice plain, which are generally thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow (Brand et al, accepted. Dynamics of pyroclastic density currents: Conditions that promote substrate erosion and self-channelization - Mount St Helens, Washington (USA). JVGR). We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs.

  7. Field characteristics of deposits from spatter-rich pyroclastic density currents at Summer Coon volcano, Colorado

    NASA Astrophysics Data System (ADS)

    Valentine, G. A.; Perry, F. V.; WoldeGabriel, G.

    2000-12-01

    The Oligocene, deeply eroded Summer Coon composite volcano contains mafic andesite deposits that are massive to poorly bedded, have abundant flattened and deformed spatter clasts, have varying proportions of dense lithic clasts, and are supported mostly by a coarse-ash matrix. Although superficially these deposits resemble typical facies from Strombolian eruptions (emplaced ballistically, by fallout, and by rolling and local grain-avalanches down steep cone slopes), there are several lines of evidence that lead to an interpretation that the deposits were emplaced by pyroclastic density currents. These include local coarse-tail grading, deformation of spatter clasts in a down-flow direction, incorporation of matrix ash and lapilli into flattened spatter clasts, imbrication of large clasts, plastering of spatter on stoss sides of large lithic blocks and lenses of lithic-rich material on lee sides, deposition on angles less than the angle of repose, and a paucity of clast shapes associated with Strombolian mechanisms. The deposit characteristics are consistent with rapid sedimentation from a low-particle-concentration, turbulent flow onto an aggrading bed. We infer two potential mechanisms for generating these density currents: (1) explosive magma-water interaction involving lithic debris and relatively unfragmented melt; and (2) collapse of oversteepened upper cone slopes due to rapid accumulation of spatter from voluminous Strombolian eruptions.

  8. Ion beam deposition system for depositing low defect density extreme ultraviolet mask blanks

    NASA Astrophysics Data System (ADS)

    Jindal, V.; Kearney, P.; Sohn, J.; Harris-Jones, J.; John, A.; Godwin, M.; Antohe, A.; Teki, R.; Ma, A.; Goodwin, F.; Weaver, A.; Teora, P.

    2012-03-01

    Extreme ultraviolet lithography (EUVL) is the leading next-generation lithography (NGL) technology to succeed optical lithography at the 22 nm node and beyond. EUVL requires a low defect density reflective mask blank, which is considered to be one of the top two critical technology gaps for commercialization of the technology. At the SEMATECH Mask Blank Development Center (MBDC), research on defect reduction in EUV mask blanks is being pursued using the Veeco Nexus deposition tool. The defect performance of this tool is one of the factors limiting the availability of defect-free EUVL mask blanks. SEMATECH identified the key components in the ion beam deposition system that is currently impeding the reduction of defect density and the yield of EUV mask blanks. SEMATECH's current research is focused on in-house tool components to reduce their contributions to mask blank defects. SEMATECH is also working closely with the supplier to incorporate this learning into a next-generation deposition tool. This paper will describe requirements for the next-generation tool that are essential to realize low defect density EUV mask blanks. The goal of our work is to enable model-based predictions of defect performance and defect improvement for targeted process improvement and component learning to feed into the new deposition tool design. This paper will also highlight the defect reduction resulting from process improvements and the restrictions inherent in the current tool geometry and components that are an impediment to meeting HVM quality EUV mask blanks will be outlined.

  9. Cathodic Deposition of Mg(OH)2 Coatings on Pure mg in Three mg Salts Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    Yongjun, Zhang; Xiaomeng, Pei; Shugong, Jia

    Film-forming effects of cathodic deposition on pure Mg substrate at constant DC in aqueous solutions of magnesium nitrate (Mg(NO3)2ṡ6H2O), magnesium chloride (MgCl2ṡ6H2O) and magnesium sulfate (MgSO4ṡ7H2O) respectively were investigated systematically. Typical processes were studied by potentiodynamic cathodic polarization and galvanostatic polarization and typical samples were analyzed by SEM and XRD. The results indicate that the depositing efficiency is not only the highest but stablest, and deposited coatings show the best uniformity with Mg(NO3)2ṡ6H2O solution employed as depositing medium and applied current density ≥1.0mA cm-2. Cathodic deposition leads to regular mass loss of Mg substrate. The cathodic polarization curve of pure Mg in magnesium nitrate solution shows more obvious pseudo-passivation, several Tafel regions with different slopes appearing before diffusion-limited current density region, and oxygen consumption is the major cathodic reduction reaction under specified current density. However, hydrogen evolution reaction is dominant in both Mg chloride and Mg sulfate solutions. The deposition coatings are all composed of continuous and uniform mesh-like “basic layer” adjacent to substrate and discrete distributed snowball-like particles on the microscopic scale. The phase compositions are all crystal Mg(OH)2, and the coatings deposited in Mg chloride solution have (011) preferred orientation.

  10. Effect of Target Density on Microstructural, Electrical, and Optical Properties of Indium Tin Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Zhu, Guisheng; Zhi, Li; Yang, Huijuan; Xu, Huarui; Yu, Aibing

    2012-09-01

    In this paper, indium tin oxide (ITO) targets with different densities were used to deposit ITO thin films. The thin films were deposited from these targets at room temperature and annealed at 750°C. Microstructural, electrical, and optical properties of the as-prepared films were studied. It was found that the target density had no effect on the properties or deposition rate of radiofrequency (RF)-sputtered ITO thin films, different from the findings for direct current (DC)-sputtered films. Therefore, when using RF sputtering, the target does not require a high density and may be reused.

  11. Electrodeposition of nickel-iridium alloy films from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Wu, Wangping; Jiang, Jinjin; Jiang, Peng; Wang, Zhizhi; Yuan, Ningyi; Ding, Jianning

    2018-03-01

    Nickel-iridium (Ni-Ir) alloy films were electrodeposited from aqueous solutions on copper substrates under galvanostatic conditions. The effects of bath composition and deposition time on the faradaic efficiency (FE), partial current densities, chemical composition, morphology and crystallographic structure of the films were studied. The results show that the Ni-Ir alloys with Ir content as high as 37 at% and FE as high as 44% were obtained. Increase in concentration of citric acid had little or no effect on the composition of the alloys, but resulted in a significant decrease in FE and partial current densities of Ni and Ir. The FE and the partial current density of Ni slightly decreased with increasing Ir3+ concentration, however, Ir content increased while partial current density of Ir remained stable. The increase of Ni2+ concentration could result in the increase of the FE and the rate of Ni-Ir deposition, and even no cracks formed on the surface. The surface average roughness and root mean square roughness of the film were 6.8 ± 0.3 nm and 5.4 ± 0.3 nm, respectively. The mixture phases contained significant amounts of Ni oxides and a small amount of metallic Ni, Ir and Ir oxides on the surface. After argon ion sputter cleaning, the film was mainly composed of metallic Ni and Ir. The film consisted of the amorphous and nanocrystalline phases. The Ni content in the deposits was higher than that in the electrolyte, the co-deposition of Ni-Ir alloy was a normal deposition.

  12. Plasma monitoring of the RLVIP-process with a Langmuir probe

    NASA Astrophysics Data System (ADS)

    Huber, D.; Hallbauer, A.; Pulker, H. K.

    2005-09-01

    The aim of this investigation was to study the characteristics of a reactive-low-voltage-high-current-ion-plating plasma and to correlate the observed plasma data with the properties of films deposited under such conditions. A Langmuir probe system (Smart Probe - Scientific Systems) was inserted into a Balzers BAP 800 ion plating plant above the e-gun evaporation source close to the insulated substrate holder. In this position during RLVIP deposition, plasma potential, floating potential, self-bias voltage, electron temperature, ion current density, and particle number density were measured and calculated, respectively. All measurements were performed in dependence of arc current (20-80A) and oxygen partial pressure (1 - 36 x 10-4mbar). With rising arc current the number of charged particles, the self-bias voltage between plasma and substrates as well as the energy of the condensing and bombarding species were increased. These data explain the increase of density, refractive index and mechanical stress of RLVIP-metal-oxide-layers, like Ta2O5 and Nb2O5, deposited with higher arc currents. An increase of gas pressure decreased the energy of the particles and therefore reduced slightly film density and refractive index. However, it improved chemistry and eliminated unwanted residual optical absorption and also decreased compressive mechanical film stress.

  13. Structure, mechanical and magnetic properties of Al4C3 reinforced nickel matrix nanocomposites

    NASA Astrophysics Data System (ADS)

    Chaudhari, Alok Kumar; Singh, Dhananjay Kumar; Singh, V. B.

    2018-05-01

    A new type of nanocomposite, Ni-Al4C3 was prepared using Al4C3 as reinforcement by cathodic co-deposition at different current densities (1.0 to 5.0 A dm‑2) from a nickel acetate-N-methyl formamide (non-aqueous) bath. Influence of current density and incorporation of Al4C3 particles in nickel matrix on the structure and properties of the composite coatings was investigated. Surface morphology and composition of the deposits were determined by SEM and EDAX. Crystallographic structure and orientation of the electrodeposited Ni-Al4C3 composite were studied by x-ray diffraction. Compared to nickel metal, these nanocomposites exhibited finer grains, higher microhardness, improved corrosion resistance and enhanced soft magnetic properties. Composite deposited at higher current densities (>2 A dm‑2) shows mild texturing along (200) plane. The effect of heat treatment on the microstructure, texture and microhardness of the nanocomposites was also investigated.

  14. Anneal-Hardening Behavior of Cr-Fe-C Alloy Deposits Prepared in a Cr3+-Based Bath with Fe2+ Ions

    PubMed Central

    Huang, Ching An; Chen, Jhih You; Wang, Hai

    2017-01-01

    Cr-Fe-C alloy deposits were successfully prepared on high-carbon tool steel in a Cr3+-based electroplating bath containing Fe2+ ions and suitable complex agents. A Cr-based alloy deposit was obtained with an electroplating current density higher than 25 Adm−2, and a Fe-based alloy deposit was obtained using a current density of 20 Adm−2. Following electroplating, these alloy deposited specimens were annealed via rapid thermal annealing (RTA) at 500 °C for different periods up to 30 s. The experimental results show that Cr- and Fe-based alloy deposits could be significantly hardened after RTA at 500 °C for a few seconds. The maximum hardness was that of the Cr-Fe-C alloy deposit annealed at 500 °C for 10 s. The maximum hardness of 1205 Hv was detected from the annealed Cr-based alloy deposit prepared with 30 ASD. The hardening mechanism of annealed Cr- and Fe-based alloy deposits is attributed to the precipitation of C-related membranes. The hardness values of the annealed Cr- and Fe-based alloy deposits increase with the increasing degree of crystallization of the C-related membranes. PMID:29206206

  15. Effects of slope on the dynamics of dilute pyroclastic density currents from May 18th, 1980 Mt. St. Helens eruption

    NASA Astrophysics Data System (ADS)

    Bendana, S.; Self, S.; Dufek, J.

    2012-12-01

    The infamous, May 18th, 1980 eruption of Mt St Helens in the state of Washington produced several episodes of pyroclastic density currents (PDCs) including the initial lateral blast, which traveled nearly 30 km, and later PDCs, which filled in the area up to 8 km north of the volcano. The focus of this research is on the later PDCs, which differed from the lateral blast in that they have a higher particle concentration and filled in the topography up to 40 m. While the concentrated portions of the afternoon PDCs followed deep topographic drainages down the steep flanks of the volcano, the dilute overriding cloud partially decoupled to develop fully dilute, turbulent PDCs on the flanks of the volcano (Beeson, D.L. 1988. Proximal Flank Facies of the May 18, 1980 Ignimbrite: Mt. St. Helens, Washington.). The dilute PDCs deposited thin, cross-stratified and stratified pyroclastic deposits, known as the proximal bedded deposits, which differ greatly in depositional characteristics from the thick, massive, poorly-sorted, block-rich deposits associated with the more concentrated portions of the flow. We explore the influence of topography on the formation of these dilute currents and influence of slope on the currents transport and depositional mechanisms. The deposits on steeper slopes (>15°) are fines depleted relative to the proximal bedded deposits on shallower slopes (<15°). Bedform amplitude and wavelength increase with increasing slope, as does the occurrence of regressive dunes. Increasing slope causes an increase in flow velocity and thus an increase in flow turbulence. The fines depleted deposits suggest that fine ash elutriation is more efficient in flows with stronger turbulence. The longer wavelength and amplitudes suggest that bedform morphology is directly related to flow velocity, an important finding since the controls on bedform wavelength and amplitude in density stratified flows remains poorly constrained. The occurrence of regressive dunes, often interpreted as high flow-regime bedforms, on steeper slopes relative to progressive dunes on shallower slopes further attests to the control of velocity and flow regime on bedform morphology. Samples collected from recently exposed deposits and analyzed by grain size measurements, density analyses, and crystal morphoscopy studies further assess modes of origin and transport of dilute PDCs. The collected data will be used to validate numerical models that attempt to quantify the hazards of decoupled, dilute PDCs.

  16. Engineered cost-effective growth of Co-based nanoflakes as a sustainable water oxidation electrocatalyst

    NASA Astrophysics Data System (ADS)

    Pourreza, M.; Naseri, N.

    2017-11-01

    Developing low-cost, scalable and reproducible synthesis methods for water oxidation reaction (WOR) catalysts is highly desirable and also challenging in energy, environmental and industrial applications. In this context, electrochemical deposition is known as an easy and cost-effective technique in nanomaterial growth. Herein, cobalt-based nanoflakes were grown on a flexible and commercially available steel mesh substrate by electrodeposition approach with a crystalline structure as a mixture of oxide, hydroxide and oxyhydroxide phases. For the first time, the correlation between electrodeposition parameters, time and current density, and morphological characteristics of the grown nanoflakes (density and aspect ratio based on SEM results) has been derived. According to a comprehensive study of the flakes’ electrocatalytic performance in WOR, the optimized sample fabricated with a moderate electrodeposition current density (7 mA cm-2) and duration time (2000 s) revealed the highest density (7.6  ×  108 cm-2) and aspect ratio (7.1) as well as the lowest values for overpotential (OP  =  324 mV) and charge transfer resistance (14 Ω). This designed array of Co-based nanoflakes also showed the lowest value of overpotential for bare cobalt-based WOR electrocatalysts reported yet. High and low values for deposition current density and/or deposition time had a negative effect on the sample surface, leaving some areas without any flakes or with incomplete and inefficient formation of nanoflakes with low densities and aspect ratios. A similar effect was observed for annealed samples in the range of 200-400 °C. Based on recorded overpotentials and extracted surface morphological parameters, a linear and logarithmic behavior in overpotential-flake density dependency was proposed for current density and time controlled systems, respectively.

  17. Influences of urban fabric on pyroclastic density currents at Pompeii (Italy): 2. Temperature of the deposits and hazard implications

    NASA Astrophysics Data System (ADS)

    Zanella, E.; Gurioli, L.; Pareschi, M. T.; Lanza, R.

    2007-05-01

    During the A.D. 79 eruption of Vesuvius, Italy, the Roman town of Pompeii was covered by 2.5 m of pyroclastic fall pumice and then partially destroyed by pyroclastic density currents (PDCs). Thermal remanent magnetization measurements performed on the lithic and roof tile fragments embedded in the PDC deposits allow us to quantify the variations in the temperature (Tdep) of the deposits within and around Pompeii. These results reveal that the presence of buildings strongly influenced the deposition temperature of the erupted products. The first two currents, which entered Pompeii at a temperature around 300-360°C, show drastic decreases in the Tdep, with minima of 100-140°C, found in the deposits within the town. We interpret these decreases in temperature as being the result of localized interactions between the PDCs and the city structures, which were only able to affect the lower part of the currents. Down flow of Pompeii, the lowermost portion of the PDCs regained its original physical characteristics, emplacing hot deposits once more. The final, dilute PDCs entered a town that was already partially destroyed by the previous currents. These PDCs left thin ash deposits, which mantled the previous ones. The lack of interaction with the urban fabric is indicated by their uniform temperature everywhere. However, the relatively high temperature of the deposits, between 140 and 300°C, indicates that even these distal, thin ash layers, capped by their accretionary lapilli bed, were associated with PDCs that were still hot enough to cause problems for unsheltered people.

  18. Mechanisms of anode power deposition in a low pressure free burning arc

    NASA Technical Reports Server (NTRS)

    Soulas, George C.; Myers, Roger M.

    1994-01-01

    Anode power deposition is a dominant power loss mechanism for arc jets and MPD thrusters. In this study, a free burning arc experiment was operated at pressures and current densities similar to those in arc jets and MPD thrusters in an attempt to identify the physics controlling this loss mechanism. Use of a free burning arc allowed for the isolation of independent variables controlling anode power deposition and provided a convenient and flexible way to cover a broad range of currents, anode surface pressures, and applied magnetic field strengths and orientations using an argon gas. Test results showed that anode power deposition decreased with increasing anode surface pressure up to 6.7 Pa (0.05 torr) and then became insensitive to pressure. Anode power increased with increasing arc current while the electron number density near the anode surface increased linearity. Anode power also increased with increasing applied magnetic field strength due to an increasing anode fall voltage. Applied magnetic field orientation had an effect only at high currents and low anode surface pressures, where anode power decreased when applied field lines intercepted the anode surface. The results demonstrated that anode power deposition was dominated by the current carrying electrons and that the anode fall voltage was the largest contributor. Furthermore, the results showed that anode power deposition can be reduced by operating at increased anode pressures, reduced arc currents, and applied magnetic field strengths and with magnetic field lines intercepting the anode.

  19. A note on coarse-grained gravity-flow deposits within proterozoic lacustrine sedimentary rocks, Transvaal sequence, South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, P. G.

    A widely developed, thin, coarse-matrix conglomerate occurs within early Proterozoic lacustrine mudrocks in the Transvaal Sequence, South Africa. The poorly sorted tabular chert clasts, alternation of a planar clast fabric with disorientated zones, plus normal and inverse grading in the former rock type suggest deposition by density-modified grain-flow and high density turbidity currents. The lower fan-delta slope palæenvironment inferred for the conglomerate is consistent with the lacustrine interpretation for the enclosing mudrock facies. This intracratonic setting contrasts with the marine environment generally associated with density-modified grain-flow deposits.

  20. Topographic controls on pyroclastic density current dynamics: Insight from 18 May 1980 deposits at Mount St. Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Brand, Brittany D.; Bendaña, Sylvana; Self, Stephen; Pollock, Nicholas

    2016-07-01

    Our ability to interpret the deposits of pyroclastic density currents (PDCs) is critical for understanding the transport and depositional processes that control PDC dynamics. This paper focuses on the influence of slope on flow dynamics and criticality as recorded in PDC deposits from the 18 May 1980 eruption of Mt. St. Helens (USA). PDC deposits are found along the steep flanks (10°-30°) and across the pumice plain ( 5°) up to 8 km north of the volcano. Granulometry, componentry and descriptions of depositional characteristics (e.g., bedform morphology) are recorded with distance from source. The pumice plain deposits are primarily thick (3-12 m), massive and poorly-sorted, and represent deposition from a series of concentrated PDCs. By contrast, the steep flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes. We propose that acceleration of the concentrated PDCs along the steep flanks resulted in thinning of the concentrated, basal region of the current(s). Enhanced entrainment of ambient air, and autofluidization from upward fluxes of air from substrate interstices and plunging breakers across rugged, irregular topography further inflated the currents to the point that the overriding turbulent region strongly influenced transport and depositional mechanisms. Acceleration in combination with partial confinement in slot canyons and high surface roughness would also increase basal shear stress, further promoting shear and traction transport in the basal region of the current. Conditions along the steep flank resulted in supercritical flow, as recorded by regressive bedforms, which gradually transitioned to subcritical flow downstream as the concentrated basal region thickness increased as a function of decreasing slope and flow energy. We also find that (1) PDCs were erosive into the underlying granular substrate along high slopes (> 25°) where currents were partially confined in steep slot canyons, suggesting that basal shear stress is an important control on erosive capacity, and (2) bedform amplitude, wavelength and the presence of regressive bedforms increase with increasing slope and proximity to source along the steep flank, suggesting a link between bedform morphology, flow velocity, and flow criticality. While our results indicate that slope and irregular topography strongly influence PDC dynamics, criticality and erosive capacity, the influence of these conditions on ultimate flow runout distance is unclear. The work here also highlights the issue that relationships between the controls on bedform size and morphology in density stratified flows remain poorly constrained, limiting our ability to extract important information about the currents that produced them. These final two points warrant further exploration through the combination of field, experimental and numerical approaches.

  1. The controls and consequences of substrate entrainment by pyroclastic density currents at Mount St Helens, Washington (USA)

    NASA Astrophysics Data System (ADS)

    Pollock, N. M.; Brand, B. D.; Roche, O.

    2016-10-01

    Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are necessary to fully understand these processes.

  2. Field-trip guide to subaqueous volcaniclastic facies in the Ancestral Cascades arc in southern Washington State—The Ohanapecosh Formation and Wildcat Creek beds

    USGS Publications Warehouse

    Jutzeler, Martin; McPhie, Jocelyn

    2017-06-27

    Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.

  3. Effect of the ZrCl4 concentration in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt and the electrolysis current density on the quantitative composition of UO2-ZrO2 cathode deposits. Calculation and experiment

    NASA Astrophysics Data System (ADS)

    Krotov, V. E.; Filatov, E. C.

    2014-08-01

    A method is proposed for calculating the ZrO2 content in the (NaCl-KCl)eqiv-UO2Cl2-ZrCl4 melt. Based on the known composition of a UO2-ZrO2 cathode deposit, the content is calculated at current densities of 0.08-0.63 A/cm2 and ZrCl4 concentrations of 0-12.3 wt %. The calculated and experimental ZrO2 contents in UO2-ZrO2 cathode deposits are in qualitative and adequate quantitative agreement.

  4. C-axis orientated AlN films deposited using deep oscillation magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Jianliang; Chistyakov, Roman

    2017-02-01

    Highly <0001> c-axis orientated aluminum nitride (AlN) films were deposited on silicon (100) substrates by reactive deep oscillation magnetron sputtering (DOMS). No epitaxial favored bond layer and substrate heating were applied for assisting texture growth. The effects of the peak target current density (varied from 0.39 to 0.8 Acm-2) and film thickness (varied from 0.25 to 3.3 μm) on the c-axis orientation, microstructure, residual stress and mechanical properties of the AlN films were investigated by means of X-ray diffraction rocking curve methodology, transmission electron microscopy, optical profilometry, and nanoindentation. All AlN films exhibited a <0001> preferred orientation and compressive residual stresses. At similar film thicknesses, an increase in the peak target current density to 0.53 Acm-2 improved the <0001> orientation. Further increasing the peak target current density to above 0.53 Acm-2 showed limited contribution to the texture development. The study also showed that an increase in the thickness of the AlN films deposited by DOMS improved the c-axis alignment accompanied with a reduction in the residual stress.

  5. Manganese oxide micro-supercapacitors with ultra-high areal capacitance

    NASA Astrophysics Data System (ADS)

    Wang, Xu; Myers, Benjamin D.; Yan, Jian; Shekhawat, Gajendra; Dravid, Vinayak; Lee, Pooi See

    2013-05-01

    A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2.A symmetric micro-supercapacitor is constructed by electrochemically depositing manganese oxide onto micro-patterned current collectors. High surface-to-volume ratio of manganese oxide and short diffusion distance between electrodes give an ultra-high areal capacitance of 56.3 mF cm-2 at a current density of 27.2 μA cm-2. Electronic supplementary information (ESI) available: Experimental procedures; optical images of micro-supercapacitors; areal capacitances of samples M-0.3C, M-0.6C and M-0.9C; illustration of interdigital finger electrodes; Nyquist plot of Co(OH)2 deposited on micro-electrodes. See DOI: 10.1039/c3nr00210a

  6. Ultrathin ZnS and ZnO Interfacial Passivation Layers for Atomic-Layer-Deposited HfO2 Films on InP Substrates.

    PubMed

    Kim, Seung Hyun; Joo, So Yeong; Jin, Hyun Soo; Kim, Woo-Byoung; Park, Tae Joo

    2016-08-17

    Ultrathin ZnS and ZnO films grown by atomic layer deposition (ALD) were employed as interfacial passivation layers (IPLs) for HfO2 films on InP substrates. The interfacial layer growth during the ALD of the HfO2 film was effectively suppressed by the IPLs, resulting in the decrease of electrical thickness, hysteresis, and interface state density. Compared with the ZnO IPL, the ZnS IPL was more effective in reducing the interface state density near the valence band edge. The leakage current density through the film was considerably lowered by the IPLs because the film crystallization was suppressed. Especially for the film with the ZnS IPL, the leakage current density in the low-voltage region was significantly lower than that observed for the film with the ZnO IPL, because the direct tunneling current was suppressed by the higher conduction band offset of ZnS with the InP substrate.

  7. Enhancement of the Electrical Conductivity and Interlaminar Shear Strength of CNT/GFRP Hierarchical Composite Using an Electrophoretic Deposition Technique

    PubMed Central

    Haghbin, Amin; Liaghat, Gholamhossein; Arabi, Amir Masoud; Pol, Mohammad Hossein

    2017-01-01

    In this work, an electrophoretic deposition (EPD) technique has been used for deposition of carbon nanotubes (CNTs) on the surface of glass fiber textures (GTs) to increase the volume conductivity and the interlaminar shear strength (ILSS) of CNT/glass fiber-reinforced polymers (GFRPs) composites. Comprehensive experimental studies have been conducted to establish the influence of electric field strength, CNT concentration in EPD suspension, surface quality of GTs, and process duration on the quality of deposited CNT layers. CNT deposition increased remarkably when the surface of glass fibers was treated with coupling agents. Deposition of CNTs was optimized by measuring CNT’s deposition mass and process current density diagrams. The effect of optimum field strength on CNT deposition mass is around 8.5 times, and the effect of optimum suspension concentration on deposition rate is around 5.5 times. In the optimum experimental setting, the current density values of EPD were bounded between 0.5 and 1 mA/cm2. Based on the cumulative deposition diagram, it was found that the first three minutes of EPD is the effective deposition time. Applying optimized EPD in composite fabrication of treated GTs caused a drastic improvement on the order of 108 times in the volume conductivity of the nanocomposite laminate in comparison with simple GTs specimens. Optimized CNT deposition also enhanced the ILSS of hierarchical nanocomposites by 42%. PMID:28937635

  8. Method for preparing superconductors

    DOEpatents

    Dahlgren, Shelley D.

    1976-01-01

    A superconductor having an equiaxed fine grain beta-tungsten crystalline structure found to have improved high field critical current densities is prepared by sputter-depositing superconductive material onto a substrate cooled to below 200.degree. C. and heat-treating the deposited material.

  9. Axial distribution of plasma fluctuations, plasma parameters, deposition rate and grain size during copper deposition

    NASA Astrophysics Data System (ADS)

    Gopikishan, S.; Banerjee, I.; Pathak, Anand; Mahapatra, S. K.

    2017-08-01

    Floating potential fluctuations, plasma parameters and deposition rate have been investigated as a function of axial distance during deposition of copper in direct current (DC) magnetron sputtering system. Fluctuations were analyzed using phase space, power spectra and amplitude bifurcation plots. It has been observed that the fluctuations are modified from chaotic to ordered state with increase in the axial distance from cathode. Plasma parameters such as electron density (ne), electron temperature (Te) and deposition rate (Dr) were measured and correlated with plasma fluctuations. It was found that more the deposition rate, greater the grain size, higher the electron density, higher the electron temperature and more chaotic the oscillations near the cathode. This observation could be helpful to the thin film technology industry to optimize the required film.

  10. Clast morphologies and heating experiments constrain the thermal conditions during pyroclastic density current emplacement at Tungurahua volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Garman, K. A.; Swarr, G. J.; Dufek, J.; Harpp, K. S.; Geist, D.

    2009-12-01

    Clasts within pyroclastic density current deposits (PDCs) record information about the dynamic processes and thermal history of erosion, transportation, and deposition. The August 2006 eruption of Tungurahua produced PDCs with exceptional clast abundances and morphologies. This eruption was of the “boiling over” type, where the PDCs were not accompanied by a high column. Rather, they were fed by strong, low (less than 2 km), and persistent fountaining. Granulometric, clast morphology, and flow dimension data were obtained by detailed study of the four largest PDC deposits produced during this eruption. The individual flow units have ratios of height loss to travel distance (H/L) ranging from 0.38 to 0.51, which lie in the upper range of H/L ratios for pyroclastic density currents, generally typical of small-volume events. The flow deposits are characterized by oblate scoria bombs up to 1.78 m in diameter, and the bombs are best preserved in levees, flow snouts, and the upper parts of some deposits. The interiors of the deposits are all poorly sorted, with particles less than 8 mm in diameter ranging from 0.55 to 0.87 weight percent. Pyroclastic surges originated from PDCs at locations of abrupt topographic steepening and channel curvature. In both of these locations, we observed evidence of bedload deposition and enhanced mobility of surge material. Some of the bombs were solid at the time of their deposition, whereas others deformed plastically after deposition, which constrains their thermal history. Clast size controls the internal forces and thermal evolution of a clast, which are critical in determining its post-fragmentation plastic deformation. Heating experiments on slabs made from the bombs constrain the deformation of the clasts as a function of temperature and torque. We will discuss the thermal history of individual clasts, field observation of individual clast deformation, and the information they provide on the entrainment of the ambient atmosphere.

  11. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  12. Transport and sedimentation in unconfined experimental dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Ramirez, G.; Andrews, B. J.; Dennen, R. L.

    2013-12-01

    We present results from experiments conducted in a new facility that permits the study of large, unconfined particle laden density currents that are dynamically similar to natural dilute pyroclastic density currents (PDCs). Experiments were run in a sealed, air-filled tank measuring 8.5 m long by 6.1 m wide by 2.6 m tall. Currents were generated by feeding mixture of heated particles (5 μm aluminum oxide, 25 μm talc, 27 μm walnut shell, 76 μm glass beads) down a chute at controlled rates to produce dilute, turbulent gravity currents. Comparison of experimental currents with natural PDCs shows good agreement between Froude, densimetric and thermal Richardson, and particle Stokes and settling numbers; experimental currents have lower Reynolds numbers than natural PDCs, but are fully turbulent. Currents were illuminated with 3 orthogonal laser sheets (650, 532, and 450 nm wavelengths) and recorded with an array of HD video cameras and a high speed camera (up to 3000 fps). Deposits were mapped using a grid of sedimentation traps. We observe distinct differences between ambient temperature and warm currents: * warm currents have shorter run out distances, narrow map view distributions of currents and deposits, thicken with distance from the source, and lift off to form coignimbrite plumes; * ambient temperature currents typically travel farther, spread out radially, do not thicken greatly with transport distance, and do not form coignimbrite plumes. Long duration currents (600 s compared to 30-100 s) oscillate laterally with time (e.g. transport to the right, then the left, and back); this oscillation happens prior to any interaction with the tank walls. Isopach maps of the deposits show predictable trends in sedimentation versus distance in response to eruption parameters (eruption rate, duration, temperature, and initial current mass), but all sedimentation curves can be fit with 2nd order polynomials (R2>.9). Proximal sedimentation is similar in comparable warm and ambient temperature currents, but distal sedimentation (beyond the current runout) increases in warm currents reflecting deposition from coignimbrite plumes. We are currently developing analytical models to link the observed transport and sedimentation results.

  13. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: controllable nanotwin density and growth orientation with enhanced electrical endurance performance

    NASA Astrophysics Data System (ADS)

    Chan, Tsung-Cheng; Lin, Yen-Miao; Tsai, Hung-Wei; Wang, Zhiming M.; Liao, Chien-Neng; Chueh, Yu-Lun

    2014-06-01

    Densely nanotwinned Cu nanowire (NW) arrays with an identical diameter of ~55 nm were fabricated by pulse electrochemical deposition at low temperature using anodic aluminum oxide as a template. Different growth orientations of nanotwinned Cu nanowire arrays were investigated. The endurance of the electrical current density before breakdown of the nanotwinned Cu NWs can reach up to 2.4 × 108 A cm-2. The formation of highly dense nanotwins is attributed to relaxation of coalescence induced stress and twin fault stacking when Cu NWs grow by two-dimensional kinetics. A mechanism based on the twinning structure effect on the electromigration was proposed to explain the improved electrical endurance of Cu. The result demonstrates that the formation of nanotwins into Cu NWs can effectively suppress the void growth, leading to extended life time for use in electronic devices.Densely nanotwinned Cu nanowire (NW) arrays with an identical diameter of ~55 nm were fabricated by pulse electrochemical deposition at low temperature using anodic aluminum oxide as a template. Different growth orientations of nanotwinned Cu nanowire arrays were investigated. The endurance of the electrical current density before breakdown of the nanotwinned Cu NWs can reach up to 2.4 × 108 A cm-2. The formation of highly dense nanotwins is attributed to relaxation of coalescence induced stress and twin fault stacking when Cu NWs grow by two-dimensional kinetics. A mechanism based on the twinning structure effect on the electromigration was proposed to explain the improved electrical endurance of Cu. The result demonstrates that the formation of nanotwins into Cu NWs can effectively suppress the void growth, leading to extended life time for use in electronic devices. Electronic supplementary information (ESI) available: X-ray diffraction spectra of Cu NWs grown by electrochemical deposition with a current density of 1.5 A cm-2 at -1 °C and room temperature; bright-field TEM images of Cu NWs deposited at -1 °C with a current density of 0.4, 0.8, 1.8, and 1.5 A cm-2, respectively; illustration of the effect of twin density on the MTTF of Cu NWs. See DOI: 10.1039/c3nr06194a

  14. A subaqueous eruption model for shallow-water, small volume eruptions: Evidence from two Precambrian examples

    NASA Astrophysics Data System (ADS)

    Mueller, Wulf U.

    Ancient, shallow-water, pyroclastic deposits are identified in the Paleoproterozoic Ketilidian Mobile belt, southeast Greenland at Kangerluluk and in the Neoproterozoic Gariep belt of Namibia in the Schakalsberg Mountains. The 1-30 m-thick tuff and lapilli tuff deposits are interpreted as eruption-fed density current deposits emanating from tephra jets that collapsed under subaqueous conditions due to water ingress. The presence of 1-10 mm diameter armoured lapilli, with a central vesicular lapillus or shard, suggests the existence of high velocity, gas, water vapour, and particle-rich tephra jets. A transition from a gas-steam supported tephra jet to a cold water-laden density current without an intermediate stage of storage and remobilization is inferred. Interpretation of a 5-15 m-thick lapilli tuff breccia further supports explosive subaqueous mechanisms. Pyroclasts in the lapilli tuff breccia are interpreted as bombs emplaced ballistically. Multiple bomb sags produced by the impact of rounded juvenile crystal-rich pyroclasts required a water-exclusion zone formed either by a continuous magma uprush or multiple jet activity occurring concurrently, rather than as isolated tephra jets. Intercalated density current deposits indicate uprush events of limited duration and their recurrence with rapid collapse after each pulse. A new subaqueous Surtseyan-type eruption model is proposed based on observations from these two Precambrian study areas.

  15. Study on electrochemically deposited Mg metal

    NASA Astrophysics Data System (ADS)

    Matsui, Masaki

    An electrodeposition process of magnesium metal from Grignard reagent based electrolyte was studied by comparing with lithium. The electrodeposition of magnesium was performed at various current densities. The obtained magnesium deposits did not show dendritic morphologies while all the lithium deposits showed dendritic products. Two different crystal growth modes in the electrodeposition process of magnesium metal were confirmed by an observation using scanning electron micro scope (SEM) and a crystallographic analysis using X-ray diffraction (XRD). An electrochemical study of the deposition/dissolution process of the magnesium showed a remarkable dependency of the overpotential of magnesium deposition on the electrolyte concentration compared with lithium. This result suggests that the dependency of the overpotential on the electrolyte concentration prevent the locally concentrated current resulting to form very uniform deposits.

  16. A closer look at the pyroclastic density current deposits of the May 18, 1980 eruption of Mt St Helens

    NASA Astrophysics Data System (ADS)

    Mackaman-Lofland, C. A.; Brand, B. D.; Dufek, J.

    2010-12-01

    Pyroclastic Density Currents (PDCs) are the most dangerous hazard associated with explosive volcanic eruptions. Due to the danger associated with observing these ground-hugging currents of searing hot gas, ash, and rock in real time, their processes are poorly understood. In order to understand flow dynamics, including what controls how far PDCs travel and how they interact with topography, it is necessary to study their deposits. The May 18th, 1980 eruption of Mt. St. Helens produced multiple PDCs, burying the area north of the volcano under 10s of meters of PDC deposits. Because the eruption is one of the best observed on record, individual flow units can be correlated to changes in eruptive intensity throughout the day (e.g., Criswell, 1987). Deep drainage erosion over the past 30 years has exposed the three-dimensional structure of the PDC deposits, making this intensive study possible. Up to six flow units have been identified along the large western drainage of the pumice plain. Each flow unit has intricate vertical and lateral facies changes and complex cross-cutting relationships away from source. The most proximal PDC deposits associated with the afternoon flows on May 18 are exposed 4 km from source in tributaries of the large drainage on the western side of the pumice plain. Hummocks from the debris avalanche are also exposed above and within these proximal drainages. It is apparent that the PDCs were often erosional, entraining large blocks from the hummocks and depositing them in close proximity downstream. The currents were also depositional, as thick sequences of PDC deposits are found in areas between hummocks, which thin to veneers above them. This indicates that the currents were interacting with complex topography early in their propagation, and is reflected by spatially variable bed conditions including rapid changes in bedding and granulometry characteristics within individual flow units. For example, within 20 lateral meters of a given flow unit, depositional features can vary from massive, diffusely-stratified to stratified, and cross stratified. We interpret this variability as a result of interaction with nearby topography, rapid sedimentation of large blocks, or a combination of the two; this implies rapid spatial and temporal instabilities in the current. For each flow unit we measure deposit thickness, bedding style, clast size, density and sorting, and degree of pumice rounding with distance from source. We use this data to better understand and interpret flow dynamics from depositional characteristics. The data we collect will be used to refine and validate numerical models of PDCs, ultimately providing a more accurate hazard assessment for explosive eruptions.

  17. Mechanisms of weak thickness dependence of the critical current density in strong-pinning ex situ metal organic-deposition-route YBa2Cu3O7-x coated conductors

    NASA Astrophysics Data System (ADS)

    Kim, S. I.; Gurevich, A.; Song, X.; Li, X.; Zhang, W.; Kodenkandath, T.; Rupich, M. W.; Holesinger, T. G.; Larbalestier, D. C.

    2006-09-01

    We report on the thickness dependence of the superconducting characteristics including critical current Ic, critical current density Jc, transition temperature Tc, irreversibility field Hirr, bulk pinning force plot Fp(H), and normal state resistivity curve ρ(T) measured after successive ion milling of ~1 µm thick high-Ic YBa2Cu3O7-x films made by an ex situ metal-organic deposition process on Ni-W rolling-assisted biaxially textured substrates (RABiTSTM). In contrast to many recent data, mostly on in situ pulsed laser deposition (PLD) films, which show strong depression of Jc with increasing film thickness t, our films exhibit only a weak dependence of Jc on t. The two better textured samples had full cross-section average Jc,avg (77 K, 0 T) ~4 MA cm-2 near the buffer layer interface and ~3 MA cm-2 at full thickness, despite significant current blocking due to ~30% porosity in the film. Taking account of the thickness dependence of the porosity, we estimate that the local, vortex-pinning current density is essentially independent of thickness, while accounting for the additional current-blocking effects of grain boundaries leads to local, vortex-pinning Jc values well above 5 MA cm-2. Such high local Jc values are produced by strong three-dimensional vortex pinning which subdivides vortex lines into weakly coupled segments much shorter than the film thickness.

  18. Nanofiber-deposited porous platinum enables glucose fuel cell anodes with high current density in body fluids

    NASA Astrophysics Data System (ADS)

    Frei, Maxi; Erben, Johannes; Martin, Julian; Zengerle, Roland; Kerzenmacher, Sven

    2017-09-01

    The poisoning of platinum anodes by body-fluid constituents such as amino acids is currently the main hurdle preventing the application of abiotic glucose fuel cells as battery-independent power supply for medical implants. We present a novel anode material that enables continuous operation of glucose oxidation anodes in horse serum for at least 30 days at a current density of (7.2 ± 1.9) μA cm-2. The fabrication process is based on the electro-deposition of highly porous platinum onto a 3-dimensional carbon nanofiber support, leading to approximately 2-fold increased electrode roughness factors (up to 16500 ± 2300). The material's superior performance is not only related to its high specific surface area, but also to an improved catalytic activity and/or poisoning resistance. Presumably, this results from the micro- and nanostructure of the platinum deposits. This represents a major step forward in the development of implantable glucose fuel cells based on long-term stable platinum electrodes.

  19. Improvement on the electrical characteristics of Pd/HfO2/6H-SiC MIS capacitors using post deposition annealing and post metallization annealing

    NASA Astrophysics Data System (ADS)

    Esakky, Papanasam; Kailath, Binsu J.

    2017-08-01

    HfO2 as a gate dielectric enables high electric field operation of SiC MIS structure and as gas sensor HfO2/SiC capacitors offer higher sensitivity than SiO2/SiC capacitors. The issue of higher density of oxygen vacancies and associated higher leakage current necessitates better passivation of HfO2/SiC interface. Effect of post deposition annealing in N2O plasma and post metallization annealing in forming gas on the structural and electrical characteristics of Pd/HfO2/SiC MIS capacitors are reported in this work. N2O plasma annealing suppresses crystallization during high temperature annealing thereby improving the thermal stability and plasma annealing followed by rapid thermal annealing in N2 result in formation of Hf silicate at the HfO2/SiC interface resulting in order of magnitude lower density of interface states and gate leakage current. Post metallization annealing in forming gas for 40 min reduces interface state density by two orders while gate leakage current density is reduced by thrice. Post deposition annealing in N2O plasma and post metallization annealing in forming gas are observed to be effective passivation techniques improving the electrical characteristics of HfO2/SiC capacitors.

  20. Superhard Nanocrystalline Homometallic Stainless Steel on Steel for Seamless Coatings

    NASA Technical Reports Server (NTRS)

    Tobin, Eric J.; Hafley, R. (Technical Monitor)

    2002-01-01

    The objective of this work is to deposit nanocrystalline stainless steel onto steel substrates (homometallic) for enhanced wear and corrosion resistance. Homometallic coatings provide superior adhesion, and it has been shown that ultrafine-grained materials exhibit the increased hardness and decreased permeability desired for protective coatings. Nanocrystals will be produced by controlling nucleation and growth and use of an ion beam during deposition by e-beam evaporation or sputtering. Phase I is depositing 31 6L nanocrystalline stainless steel onto 31 6L stainless steel substrates. These coatings exhibit hardnesses comparable to those normally obtained for ceramic coatings such ZrO2, and possess the superior adhesion of seamless, homometallic coatings. Hardening the surface with a similar material also enhances adhesion, by avoiding problems associated with thermal and lattice mismatch. So far we have deposited nanocrystalline homometallic 316L stainless steel coatings by varying the ions and the current density of the ion beams. For all deposition conditions we have produced smooth, uniform, superhard coatings. All coatings exhibit hardness of at least 200% harder than that of bulk materials. Our measurements indicate that there is a direct relationship between nanohardness and the current density of the ion beam. Stress measurements indicate that stress in the films is increasingly proportional to current density of the ion beam. TEM, XPS, and XRD results indicate that the coated layers consist of FCC structure nanocrystallites with a dimension of about 10 to 20 nm. The Ni and Mo concentration of these coating are lower than those of bulk 316L but the concentration of Cr is higher.

  1. Transport and deposition processes of the hydrothermal blast of the 6 August 2012 Te Maari eruption, Mt. Tongariro

    NASA Astrophysics Data System (ADS)

    Breard, E. C. P.; Lube, G.; Cronin, S. J.; Valentine, G. A.

    2015-11-01

    The 2012 eruption of Tongariro volcano (New Zealand) produced highly mobile, low-temperature, blast-derived pyroclastic density currents after partial collapse of the western flank of the Upper Te Maari crater. Despite a low volume (340,000 m3), the flows traveled up to 2.5 km from source, covering a total area of 6.1 km2. Along one of the blast axes, freshly exposed, proximal-to-distal sedimentary structures and grain-size data suggest emplacement of the fining upward tripartite depositional sequence (massive, stratified, and laminated) under a dilute and strongly longitudinally zoned turbulent density current. While the zoning formed in the deposit in the first 1500 m of runout, the current progressively waned to the extent where it transported a nearly homogenous grain-size mixture at the liftoff position. Our data indicate that after the passage of an erosive flow front, massive unit A was deposited under a rapid-suspension sedimentation regime. Unit B was deposited under a traction-dominated regime generated by a subsequent portion of the flow moving at lower velocities and with lower sediment transport capacity than the portion depositing unit A. The final and slowest flow zone deposited the finest particles under weakly tractive conditions. Transport and emplacement dynamics inferred in this study show strong similarities between hydrothermal explosions, magmatic blasts, and high-energy dilute PDCs. The common occurrence of hydrothermal fields on volcanic flanks points to this hazard being an under-appreciated one at stratovolcanoes worldwide.

  2. Study of Ni-Mo electrodeposition in direct and pulse-reverse current

    NASA Astrophysics Data System (ADS)

    Stryuchkova, Yu M.; Rybin, N. B.; Suvorov, D. V.; Gololobov, G. P.; Tolstoguzov, A. B.; Tarabrin, D. Yu; Serpova, M. A.; Korotchenko, V. A.; Slivkin, E. V.

    2017-05-01

    Process of electrochemical deposition of the coating based on a binary nickel-molybdenum alloy onto a nickel substrate under pulse mode with current reverse within the range of current density change from 2 to 9 A/dm2 has been researched. Coating structure and its surface morphology have been studied. Method of X-ray energy dispersive spectroscopy has determined a percentage ratio of alloy components in the coating. Mode to obtain the densest and smoothest deposits has been identified under considered terms.

  3. Hydraulic evolution of high-density turbidity currents from the Brushy Canyon Formation, Eddy County, New Mexico inferred by comparison to settling and sorting experiments

    NASA Astrophysics Data System (ADS)

    Motanated, Kannipa; Tice, Michael M.

    2016-05-01

    Hydraulic transformations in turbidity currents are commonly driven by or reflected in changes in suspended sediment concentrations, but changes preceding transformations can be difficult to diagnose because they do not produce qualitative changes in resultant deposits. This study integrates particle settling experiments and in situ detection of hydraulically contrasting particles in turbidites in order to infer changes in suspended sediment concentration during deposition of massive (Bouma Ta) sandstone divisions. Because grains of contrasting density are differentially sorted during hindered settling from dense suspensions, relative grading patterns can be used to estimate suspended sediment concentrations and interpret hydraulic evolution of the depositing turbidity currents. Differential settling of dense particles (aluminum ballotini) through suspensions of hydraulically coarser light particles (silica ballotini) with volumetric concentration, Cv, were studied in a thin vessel by using particle-image-velocimetry. At high Cv, aluminum particles were less retarded than co-sedimenting silica particles, and effectively settled as hydraulically coarser grains. This was because particles were entrained into clusters dominated by the settling behavior of the silica particles. Terminal settling velocities of both particles converged at Cv ≥ 25%, and particle sorting was diminished. The results of settling experiments were applied to understand settling of analogous feldspar and zircon grains in natural turbidity flows. Distributions of light and heavy mineral grains in massive sandstones, Bouma Ta divisions, of turbidites from the Middle Permian Brushy Canyon Formation were observed in situ by X-ray fluorescence microscopy (μXRF). Hydraulic sorting of these grains resulted in characteristic patterns of zirconium abundance that decreased from base to top within Ta divisions. These profiles resulted from upward fining of zircon grains with respect to co-occurring feldspar grains. Although calculated settling velocity distributions for zircon grains in structureless sandstones were slower than those for feldspar grains at infinite dilution, calculated settling velocity distributions for zircon and feldspar grains in overlying black siltstone layers were identical. This evidence suggests that these sandstone divisions were deposited from hyperconcentrated suspensions where particle segregation was diminished and hydraulically fine grains were entrained with hydraulically coarse particles. Hydraulic fining of zircon grains during deposition implies that the suspended sediment concentration at the bases of turbidity currents increased even as the overall current evolved toward lower density as reflected by cessation of Ta deposition and by hydraulic equivalence of zircon and feldspar grains in overlying low-density turbiditic siltstones. This evolution likely resulted from volumetric collapse of the turbidity currents.

  4. Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy

    NASA Astrophysics Data System (ADS)

    Kim, Hyoungsub; Chui, Chi On; Saraswat, Krishna C.; McIntyre, Paul C.

    2003-09-01

    High-k dielectric deposition processes for gate dielectric preparation on Si surfaces usually result in the unavoidable and uncontrolled formation of a thin interfacial oxide layer. Atomic layer deposition of ˜55-Å ZrO2 film on a Ge (100) substrate using ZrCl4 and H2O at 300 °C was found to produce local epitaxial growth [(001) Ge//(001) ZrO2 and [100] Ge//[100] ZrO2] without a distinct interfacial layer, unlike the situation observed when ZrO2 is deposited using the same method on Si. Relatively large lattice mismatch (˜10%) between ZrO2 and Ge produced a high areal density of interfacial misfit dislocations. Large hysteresis (>200 mV) and high frequency dispersion were observed in capacitance-voltage measurements due to the high density of interface states. However, a low leakage current density, comparable to values obtained on Si substrates, was observed with the same capacitance density regardless of the high defect density.

  5. Dynamics of Braided Channels, Bars, and Associated Deposits Under Experimental Density Currents

    NASA Astrophysics Data System (ADS)

    Limaye, A. B. S.; Jean-Louis, G.; Paola, C.

    2015-12-01

    Turbidity currents are the principal agents that transfer clastic sediment from continental margins to the deep ocean. The extensive sedimentary deposits that result can record influences from fluvial transport, ocean currents, and seafloor bathymetry; decoding these controls is key to understanding long-term continental denudation and the formation of hydrocarbon reservoirs. Experimental turbidity currents often use pre-formed, single-thread channels, but more recent experiments and seafloor observations suggest that braided channels also develop in submarine environments. Yet controls on the formation of submarine braided channels and relationships between these channels and stratigraphic evolution remain largely untested. We have conducted a series of experiments to determine the conditions conducive to forming braided submarine channels, and to relate channel geometry and kinematics to deposit architecture. Dissolved salt supplies the excess density of the experimental turbidity currents, which transport plastic, sand-sized sediment as bedload across a test section two meters long and one meter wide. Our experiments indicate that braided channels can form as constructional features without prior erosion for a range of input water and sediment fluxes. Channel migration, avulsion, and aggradation construct sedimentary deposits with bars at a variety of scales. Bar geometry and channel kinematics are qualitatively similar under subaerial and subaqueous experiments with other parameters fixed. We will present quantitative analyses of the relationships between channel geometry and mobility and deposit architecture, at scales from individual bars to the entire deposit, and compare these results to control experiments with subaerial braiding. These experimental results suggest parallels between subaerial and subaqueous braiding, and help to constrain forward models for stratigraphic evolution and inverse methods for estimating flow conditions from turbidites.

  6. Burnout current density of bismuth nanowires

    NASA Astrophysics Data System (ADS)

    Cornelius, T. W.; Picht, O.; Müller, S.; Neumann, R.; Völklein, F.; Karim, S.; Duan, J. L.

    2008-05-01

    Single bismuth nanowires with diameters ranging from 100nmto1μm were electrochemically deposited in ion track-etched single-pore polycarbonate membranes. The maximum current density the wires are able to carry was investigated by ramping up the current until failure occurred. It increases by three to four orders of magnitude for nanowires embedded in the template compared to bulk bismuth and rises with diminishing diameter. Simulations show that the wires are heated up electrically to the melting temperature. Since the surface-to-volume ratio rises with diminishing diameter, thinner wires dissipate the heat more efficiently to the surrounding polymer matrix and, thus, can tolerate larger current densities.

  7. Vapor deposition polymerization of aniline on 3D hierarchical porous carbon with enhanced cycling stability as supercapacitor electrode

    NASA Astrophysics Data System (ADS)

    Zhao, Yufeng; Zhang, Zhi; Ren, Yuqin; Ran, Wei; Chen, Xinqi; Wu, Jinsong; Gao, Faming

    2015-07-01

    In this work, a polyaniline coated hierarchical porous carbon (HPC) composite (PANI@HPC) is developed using a vapor deposition polymerization technique. The as synthesized composite is applied as the supercapacitor electrode material, and presents a high specific capacitance of 531 F g-1 at current density of 0.5 A g-1 and superior cycling stability of 96.1% (after 10,000 charge-discharge cycles at current density of 10 A g-1). This can be attributed to the maximized synergistic effect of PANI and HPC. Furthermore, an aqueous symmetric supercapacitor device based on PANI@HPC is fabricated, demonstrating a high specific energy of 17.3 Wh kg-1.

  8. Evidence of coupling to Global Alfv{acute e}ne Eigenmodes during Alfv{acute e}n wave current drive experiments on the Phaedrus-T tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vukovic, M.; Wukitch, S.; Harper, M.

    1996-02-01

    A series of experiments designed to explore mechanisms of power deposition during Alfv{acute e}n wave current drive experiments on the Phaedrus-T tokamak has shown evidence of power deposition via mode conversion of Global Alfv{acute e}n Eigenmodes at the Alfv{acute e}n resonance. Observation of radially localized RF induced density fluctuations in the plasma and their location vs. {ital B}{sub {ital T}} is in agreement with the predictions of behaviour of GAE damping on the AR by the toroidal code LION. Furthermore, the change in the time evolution of the loop voltage, is consistent with the change of effective power deposition radius,more » {ital r}{sub PD}, and is in agreement with the density fluctuations radius. {copyright} {ital 1996 American Institute of Physics.}« less

  9. Enhanced Mobility in Concentrated Pyroclastic Density Currents: An Examination of a Self-Fluidization Mechanism

    NASA Astrophysics Data System (ADS)

    Breard, Eric C. P.; Dufek, Josef; Lube, Gert

    2018-01-01

    Pyroclastic density currents (PDCs) are a significant volcanic hazard. However, their dominant transport mechanisms remain poorly understood, in part because of the large variability of PDC types and deposits. Here we combine field data with experimental and numerical simulations to illuminate the twofold fate of particles settling from an ash cloud to form the dense PDC basal flow. At solid fractions >1 vol %, heterogeneous drag leads to formation of mesoscale particle clusters that favor rapid particle settling and result in a mobile dense layer with significant bed weight support. Conversely, at lower concentrations the absence of particle clusters typically leads to formation of poorly mobile dense beds that deposit massive layers. Based on this transport dichotomy, we present a numerical dense-dilute parameter that allows a PDC's dominant transport mechanism to be determined directly from the deposit geometry and grainsize characteristics.

  10. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  11. Crystalline orientation engineering and charge transport in thin film YBa(2)Cu(3)O(7-x) superconducting surface-coated conductors

    NASA Astrophysics Data System (ADS)

    Chudzik, Michael Patrick

    The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained in this dissertation successfully addresses the challenge in engineering low-angle grain boundary polycrystalline conductors for high-current high-field applications and develops a structure-property correlation, which is essential for advancing this technology.

  12. Effect of Propellant Flowrate and Purity on Carbon Deposition in LO2/Methane Gas Generators

    NASA Technical Reports Server (NTRS)

    Bossard, J. A.; Burkhardt, W. M.; Niiya, K. Y.; Braam, F.

    1989-01-01

    The generation and deposition of carbon was studied in the Carbon Deposition Program using subscale hardware with LO2/Liquid Natural Gas (LNG) and LO2/Methane propellants at low mixture ratios. The purpose of the testing was to evaluate the effect of methane purity and full scale injection density on carbon deposition. The LO2/LNG gas generator/preburner testing was performed at mixture ratios between 0.24 and 0.58 and chamber pressures from 5.8 to 9.4 MPa (840 to 1370 psia). A total of seven 200 second duration tests were performed. The LNG testing occurred at low injection densities, similar to the previous LO2/RP-1, LO2/propane, and LO2/methane testing performed on the carbon deposition program. The current LO2/methane test series occurred at an injection density factor of approximately 10 times higher than the previous testing. The high injection density LO2/methane testing was performed at mixture ratios between from 0.23 to 0.81 and chamber pressures from 6.4 to 15.2 MPa (925 to 2210 psia). A total of nine high injection density tests were performed. The testing performed demonstrated that low purity methane (LNG) did not produce any detectable change in carbon deposition when compared to pure methane. In addition, the C* performance and the combustion gas temperatures measured were similar to those obtained for pure methane. Similar results were obtained testing pure methane at higher propellant injection densities with coarse injector elements.

  13. Effect of UV lamp irradiation during oxidation of Zr/Pt/Si structure on electrical properties of Pt/ZrO 2/Pt/Si structure

    NASA Astrophysics Data System (ADS)

    Bae, Joon Woo; Lim, Jae-Won; Mimura, Kouji; Uchikoshi, Masahito; Miyazaki, Takamichi; Isshiki, Minoru

    2010-03-01

    Metal-insulator-metal (MIM) capacitors were fabricated using ZrO 2 films and the effects of structural and native defects of the ZrO 2 films on the electrical and dielectric properties were investigated. For preparing ZrO 2 films, Zr films were deposited on Pt/Si substrates by ion beam deposition (IBD) system with/without substrate bias voltages and oxidized at 200 °C for 60 min under 0.1 MPa O 2 atmosphere with/without UV light irradiation ( λ = 193 nm, Deep UV lamp). The ZrO 2(˜12 nm) films on Pt(˜100 nm)/Si were characterized by X-ray diffraction pattern (XRD), field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HRTEM), capacitance-voltage ( C- V) and current-voltage ( I- V) measurements were carried out on MIM structures. ZrO 2 films, fabricated by oxidizing the Zr film deposited with substrate bias voltage under UV light irradiation, show the highest capacitance (784 pF) and the lowest leakage current density. The active oxygen species formed by UV irradiation are considered to play an important role in the reduction of the leakage current density, because they can reduce the density of oxygen vacancies.

  14. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    NASA Astrophysics Data System (ADS)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Robaee, M.S.; Krishna, M.G.; Rao, K.N.

    Single layer films of CeO{sub 2} have been deposited both by conventional electron beam evaporation and ion assisted deposition with oxygen and argon ions. A broad beam Kaufman ion source (3 cm diam) has been used to generate the ions. A systematic study has been made on optical properties such as refractive index, extinction coefficient and inhomogeneity of the films as a function of: (1) oxygen partial pressure in the range 1{times}10{sup {minus}4} to 1{times}10{sup {minus}5} mbar. (2) Incidence of oxygen ions with energy in the range 300--700 eV and current density in the range 50--220 {mu}A/cm{sup 2}. (3) Incidencemore » of mixed argon and oxygen ions of different ratios. The refractive index of the films deposited under the influence of ion bombardment showed higher indices than the conventionally evaporated films. The maximum index obtained with an oxygen ion bombardment was 2.3 at an ion energy of 600 eV and current density of 220 {mu}A/cm{sup 2}. The bombardment of the films with a mixed argon--oxygen (25% Ar) ion beam of the same energy and current density was found to further increase the refractive index. The extinction coefficient in both cases was negligible.« less

  16. Low-energy ion irradiation in HiPIMS to enable anatase TiO2 selective growth

    NASA Astrophysics Data System (ADS)

    Cemin, Felipe; Tsukamoto, Makoto; Keraudy, Julien; Antunes, Vinícius Gabriel; Helmersson, Ulf; Alvarez, Fernando; Minea, Tiberiu; Lundin, Daniel

    2018-06-01

    High power impulse magnetron sputtering (HiPIMS) has already demonstrated great potential for synthesizing the high-energy crystalline phase of titanium dioxide (rutile TiO2) due to large quantities of highly energetic ions present in the discharge. In this work, it is shown that the metastable anatase phase can also be obtained by HiPIMS. The required deposition conditions have been identified by systematically studying the phase formation, microstructure and chemical composition as a function of mode of target operation as well as of substrate temperature, working pressure, and peak current density. It is found that films deposited in the metal and transition modes are predominantly amorphous and contain substoichiometric TiO x compounds, while in compound mode they are well-crystallized and present only O2‑ ions bound to Ti4+, i.e. pure TiO2. Anatase TiO2 films are obtained for working pressures between 1 and 2 Pa, a peak current density of ~1 A cm‑2 and deposition temperatures lower than 300 °C. Rutile is favored at lower pressures (<1 Pa) and higher peak current densities (>2 A cm‑2), while amorphous films are obtained at higher pressures (5 Pa). Microstructural characterization of selected films is also presented.

  17. Hybrid Pyroclastic Deposits Accumulated From The Eruptive Transitional Regime of Plinian Eruptions.

    NASA Astrophysics Data System (ADS)

    di Muro, Andrea; Rosi, Mauro

    In the past 15 years sedimentological studies (Valentine and Giannetti, 1995; Wilson and Hildreth, 1997; Rosi et al., 2001), physical models (Neri et al., 1988; Veitch and Woods, 2000; Kaminski and Jaupart, 2001) and laboratory experiments (Carey et al., 1988) converge at defining a new eruptive regime transitional between the fully convective and the fully collapsing end -members. Buoyant columns and density currents are contemporaneously fed in the transitional dynamic regime and fall beds are intercalated with the density current deposits in the area invested by them. The sedimentological analysis of the well exposed 800yr B.P. plinian eruption of the volcano Quilotoa (Ecuador) enabled us to i) recognize a gradual evolution of the eruptive regime, ii) characterize the fall and density current deposits emplaced during the transitional regime. The eruptive activity began with at least two phreatic explosions and the effusion of a small volume lava dome. Eruptive behaviour then switched to explosive and fed a purely convective column that accumulated a reverse graded pumice fall while rising up to an height of 30 km. A small volume, diluted and slow density current (S1 current) was emplaced in the proximal SW sector just before the column reached its maximum height. Two group s of more voluminous and faster intra-plinian density currents (S2 and S3 currents) were subsequently emplaced contemporaneously with the accumulation of the lower and upper part respectively of a normal graded pumice fall bed. S2 and S3 currents were radially distributed around the crater and deposited bedded layers with facies of decreasing energy when moving away from the crater. Massive beds of small volume were emplaced only i) inside the proximal valley channel near the topography break in slope, ii) outside the valley channel in medial area where the currents impinged against relieves. A thick sequence of pyroclastic flow deposits (S4 currents) accumulated in the valley channels around the crater only in a post-plinian phase. During this phase, the convective plume was purely coignimbritic. The runout (from 4 to 11 km) and the degree of valley -confinement progressively increased from S1 to S4 currents. The eruption ended with the collapse of a 2.6 km summit caldera. During this last eruptive phase, coarse lithic-rich flow units with runout shorter than previously were emplaced. The parallel evolution of column height (grain-size), fountain height (size of ballistics) and flow properties (surges vs. flows) compares well with the numerical simulations of pyroclastic dispersion performed by Neri et al. (2002). In the whole dispersion area, the fall bed has a polymodal grain-size. The coarse modes of the fall appear related to the plinian column, while the fines ones have a co-ignimbrite fall origin. Sub-pop ulation analysis shows that the fine modes are related to ash aggregation that in transitional eruptions plays a significant role in the deposition of very fine sizzes also in very proximal areas. The fall deposit is totally eroded and reworked by the syn-plinian currents in the proximal areas and partially eroded in the medial areas. Grain-size and maximum clast analysis indicate that a significant fraction of the intraplinian beds is of primary fall origin. Strong similarities are found between the Quilot oa deposits and that accumulated during the transitional phase of the 1991 Pinatubo eruption (Rosi et al., 2001). These evidences should be carefully taken in account for risk assessment when analysing deposits accumulated in the transitional eruptive regi me with the aim at calculating the physical parameters characterizing the density currents ( Brissette and Lajoie, 1990). References : Brissette FP and Lajoie J (1990) Depositional mechanics of turbulent nuées ardentes (surges) from their grain-sizes. Bull Volcanol 53:60-66. Carey S, Sigurdsson H, Sparks RSJ (1988) Experimental studies of particle-laden plumes. J Geophys Res 93:15314-15328 Kaminski E and Jaupart C (2001) Marginal stability of atmospheric eruption columns and pyroclastic flow generation J Geophys Res 106: 21785-21798 Neri A, Papale P and Macedonio G (1998) The role of magma composition and water content in explosive eruptions: 2. Pyroclastic dispersion dynamics. J Volcanol Geotherm Res 87: 95-115 Neri A, Di Muro A, Rosi M (2002) Mass partition during collapsing and transitional columns by using numerical simulations. In press on J Volcanol Geotherm Res Rosi M., Paladio-Melosantos M.L., Di Muro A., Leoni R., Bacolcol T. (2001) Fall vs Flow Activity During the 1991 Climactic Eruption of Mt. Pinatubo (Philippines). Bull Volcanol 62: 549-566 Valentine G.A., Giannetti B. (1995) Single Pyroclastic beds deposited by simultaneous fallout and surge processes: Roccamonfina volcano, Italy. J Volcanol Geotherm Res 64:129-137. Veitch G and Woods A (2002) Particle recycling and oscillations of volcanic eruption columns. J of Geophys Res, 105: 2829-2842. Wilson C.J.N., Hildreth W. (1997) The Bishop Tuff: new insights from eruptive stratigraphy J of Geol. 105:407-439.

  18. Combined experimental and theoretical description of direct current magnetron sputtering of Al by Ar and Ar/N2 plasma

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Ries, Stefan; Bibinov, Nikita; Awakowicz, Peter; Mráz, Stanislav; Schneider, Jochen M.; Mussenbrock, Thomas

    2018-05-01

    Direct current magnetron sputtering of Al by Ar and Ar/N2 low pressure plasmas was characterized by experimental and theoretical means in a unified consideration. Experimentally, the plasmas were analyzed by optical emission spectroscopy, while the film deposition rate was determined by weight measurements and laser optical microscopy, and the film composition by energy dispersive x-ray spectroscopy. Theoretically, a global particle and power balance model was used to estimate the electron temperature T e and the electron density n e of the plasma at constant discharge power. In addition, the sputtering process and the transport of the sputtered atoms were described using Monte Carlo models—TRIDYN and dsmcFoam, respectively. Initially, the non-reactive situation is characterized based on deposition experiment results, which are in agreement with predictions from simulations. Subsequently, a similar study is presented for the reactive case. The influence of the N2 addition is found to be twofold, in terms of (i) the target and substrate surface conditions (e.g., sputtering, secondary electron emission, particle sticking) and (ii) the volumetric changes of the plasma density n e governing the ion flux to the surfaces (e.g., due to additional energy conversion channels). It is shown that a combined experimental/simulation approach reveals a physically coherent and, in particular, quantitative understanding of the properties (e.g., electron density and temperature, target surface nitrogen content, sputtered Al density, deposited mass) involved in the deposition process.

  19. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    USGS Publications Warehouse

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  20. Numerical calculations of non-inductive current driven by microwaves in JET

    NASA Astrophysics Data System (ADS)

    Kirov, K. K.; Baranov, Yu; Mailloux, J.; Nave, M. F. F.; Contributors, JET

    2016-12-01

    Recent studies at JET focus on analysis of the lower hybrid (LH) wave power absorption and current drive (CD) calculations by means of a new ray tracing (RT)/Fokker-Planck (FP) package. The RT code works in real 2D geometry accounting for the plasma boundary and the launcher shape. LH waves with different parallel refractive index, {{N}\\parallel} , spectra in poloidal direction can be launched thus simulating authentic antenna spectrum with rows fed by different combinations of klystrons. Various FP solvers were tested most advanced of which is a relativistic bounce averaged FP code. LH wave power deposition profiles from the new RT/FP code were compared to the experimental results from electron cyclotron emission (ECE) analysis of pulses at 3.4 T low and high density. This kind of direct comparison between power deposition profiles from experimental ECE data and numerical model were carried out for the first time for waves in the LH range of frequencies. The results were in a reasonable agreement with experimental data at lower density, line averaged values of {{n}\\text{e}}≈ 2.4× {{10}19} {{\\text{m}}-3} . At higher density, {{n}\\text{e}}≈ 3× {{10}19} {{\\text{m}}-3} , the code predicted larger on-axis LH power deposition, which is inconsistent with the experimental observations. Both calculations were unable to produce LH wave absorption at the plasma periphery, which contradicts to the analysis of the ECE data and possible sources of these discrepancies have been briefly discussed in the paper. The code was also used to calculate the LH power deposition and CD profiles for the low-density preheat phase of JET’s advanced tokamak (AT) scenario. It was found that as the density evolves from hollow to flat and then to a more peaked profile the LH power and driven current move inward i.e. towards the plasma axis. A total driven current of about 70 kA for 1 MW of launched LH power was predicted in these conditions.

  1. Formation of a spatter-rich pyroclastic density current deposit in a Neogene sequence of trachytic-mafic igneous rocks at Mason Spur, Erebus volcanic province, Antarctica

    NASA Astrophysics Data System (ADS)

    Martin, A. P.; Smellie, J. L.; Cooper, A. F.; Townsend, D. B.

    2018-01-01

    Erosion has revealed a remarkable section through the heart of a volcanic island, Mason Spur, in the southwestern Ross Sea, Antarctica, including an unusually well-exposed section of caldera fill. The near-continuous exposure, 10 km laterally and > 1 km vertically, cuts through Cenozoic alkalic volcanic rocks of the Erebus volcanic province (McMurdo Volcanic Group) and permits the study of an ancient volcanic succession that is rarely available due to subsequent burial or erosion. The caldera filling sequence includes an unusual trachytic spatter-rich lapilli tuff (ignimbrite) facies that is particularly striking because of the presence of abundant black fluidal, dense juvenile spatter clasts of trachytic obsidian up to 2 m long supported in a pale cream-coloured pumiceous lapilli tuff matrix. Field mapping indicates that the deposit is an ignimbrite and, together with petrological considerations, it is suggested that mixing of dense spatter and pumiceous lapilli tuff in the investigated deposit occurred during emplacement, not necessarily in the same vent, with the mixed fragmental material emplaced as a pyroclastic density current. Liquid water was not initially present but a steam phase was probably generated during transport and may represent water ingested during passage of the current as it passed over either wet ground, stream, shallow lake or (possibly) snow. Well-exposed caldera interiors are uncommon and that at Mason Spur is helping understand eruption dynamics associated with a complex large island volcano. The results of our study should help to elucidate interpretations of other, less well exposed, pyroclastic density current deposits elsewhere in Antarctica and globally.

  2. Non-aqueous electrochemical deposition of lead zirconate titanate films for flexible sensor applications

    NASA Astrophysics Data System (ADS)

    Joseph, Sherin; Kumar, A. V. Ramesh; John, Reji

    2017-11-01

    Lead zirconate titanate (PZT) is one of the most important piezoelectric materials widely used for underwater sensors. However, PZTs are hard and non-compliant and hence there is an overwhelming attention devoted toward making it flexible by preparing films on flexible substrates by different routes. In this work, the electrochemical deposition of composition controlled PZT films over flexible stainless steel (SS) foil substrates using non-aqueous electrolyte dimethyl sulphoxide (DMSO) was carried out. Effects of various key parameters involved in electrochemical deposition process such as current density and time of deposition were studied. It was found that a current density of 25 mA/cm2 for 5 min gave a good film. The morphology and topography evaluation of the films was carried out by scanning electron microscopy (SEM) and atomic force microscopy (AFM), respectively, which showed a uniform morphology with a surface roughness of 2 nm. The PZT phase formation was studied using X-ray diffraction (XRD) and corroborated with Raman spectroscopic studies. The dielectric constant, dielectric loss, hysteresis and I-V characteristics of the film was evaluated.

  3. Ordered CdTe/CdS Arrays for High-Performance Solar Cells

    NASA Astrophysics Data System (ADS)

    Zubía, David; López, Cesar; Rodríguez, Mario; Escobedo, Arev; Oyer, Sandra; Romo, Luis; Rogers, Scott; Quiñónez, Stella; McClure, John

    2007-12-01

    The deposition of uniform arrays of CdTe/CdS heterostructures suitable for solar cells via close-spaced sublimation is presented. The approach used to create the arrays consists of two basic steps: the deposition of a patterned growth mask on CdS, and the selective-area deposition of CdTe. CdTe grains grow selectively on the CdS but not on the SiO2 due to the differential surface mobility between the two surfaces. Furthermore, the CdTe mesas mimic the size and shape of the window opening in the SiO2. Measurements of the current density in the CdTe were high at 28 mA/cm2. To our knowledge, this is the highest reported current density for these devices. This implies that either the quantum efficiency is very high or the electrons generated throughout the CdTe are being concentrated by the patterned structure analogous to solar concentration. The enhancement in crystal uniformity and the relatively unexplored current concentration phenomenon could lead to significant performance improvements.

  4. High performance YBCO films. Quarterly status report No. 6, 1 February-30 April 1993. [YBCO (yttrium barium copper oxides)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, E.J.; Fathy, A.; Kalokitis, D.

    1993-04-30

    YBCO on MgF2 withstood post annealing to 750 deg C without deterioration. This allows the deposition of high quality multiple layer YBCO films onto both sides of a MgF2 substrate. GdBaCuO films were deposited onto LaAlO3 and appear to be superior to YBCO in terms of lower particulate density, slightly higher T[sub c]'s, and higher critical current density. The ramifications could be very beneficial to the MCM program. Furthermore, the tolerance of these films to a wider range of deposition conditions indicates a possibility of using these films on MgF2.

  5. Biomonitoring for deposited sediment using benthic invertebrates: A test on 4 Missouri streams

    USGS Publications Warehouse

    Zweig, L.D.; Rabeni, Charles F.

    2001-01-01

    The response of stream benthic invertebrates to surficially deposited fine sediment was investigated in 4 Missouri streams. Twenty to 24 sampling sites in each stream were selected based on similarities of substrate particle-size distributions, depths, and current velocities but for differences in amounts of deposited sediment, which ranged from 0 to 100% surface cover. Deposited sediment was quantified 2 ways: a visual estimate of % surface cover, and a measurement of substrate embeddedness, which were highly correlated with each other and with the amount of sand. Invertebrates were collected using a kicknet for a specified time in a 1-m2 area. Five commonly used biomonitoring metrics (taxa richness, density, Ephemeroptera, Plecoptera, and Trichoptera [EPT] richness, EPT density, and EPT/Chironomidae richness) were consistently significantly correlated across streams to deposited sediment. Shannon diversity index, Chironomidae richness, Chironomidae density, a biotic index, and % dominant taxon did not relate to increasing levels of deposited sediment. Tolerance values representing taxa responses to deposited sediment were developed for 30 taxa. Deposited-sediment tolerance values were not correlated with biotic index tolerance values, indicating a different response by taxa to deposited sediment than to organic enrichment. Deposited-sediment tolerance values were used to develop the Deposited Sediment Biotic Index (DSBI). The DSBI was calculated for all samples (n = 85) to characterize sediment impairment of the sampled streams. DSBI values for each site were highly correlated with measures of deposited sediment. Model validation by a resampling procedure confirmed that the DSBI is a potentially useful tool for assessing ecological effects of deposited sediment.

  6. A Stratigraphic, Granulometric, and Textural Comparison of recent pyroclastic density current deposits exposed at West Island and Burr Point, Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Rath, C. A.; Browne, B. L.

    2011-12-01

    Augustine Volcano (Alaska) is the most active volcano in the eastern Aleutian Islands, with 6 violent eruptions over the past 200 years and at least 12 catastrophic debris-avalanche deposits over the past ~2,000 years. The frequency and destructive nature of these eruptions combined with the proximity of Augustine Volcano to commercial ports and populated areas represents a significant hazard to the Cook Inlet region of Alaska. The focus of this study examines the relationship between debris-avalanche events and the subsequent emplacement of pyroclastic density currents by comparing the stratigraphic, granulometric, and petrographic characteristics of pyroclastic deposits emplaced following the 1883 A.D. Burr Point debris-avalanche and those emplaced following the ~370 14C yr B.P. West Island debris-avalanche. Data from this study combines grain size and componentry analysis of pyroclastic deposits with density, textural, and compositional analysis of juvenile clasts contained in the pyroclastic deposits. The 1883 A.D. Burr Point pyroclastic unit immediately overlies the 1883 debris avalanche deposit and underlies the 1912 Katmai ash. It ranges in thickness from 4 to 48 cm and consists of fine to medium sand-sized particles and coarser fragments of andesite. In places, this unit is normally graded and exhibits cross-bedding. Many of these samples are fines-enriched, with sorting coefficients ranging from -0.1 to 1.9 and median grain size ranging from 0.1 to 2.4 mm. The ~370 14C yr B.P. West Island pyroclastic unit is sandwiched between the underlying West Island debris-avalanche deposit and the overlying 1912 Katmai Ash deposit, and at times a fine-grained gray ash originating from the 1883 eruption. West Island pyroclastic deposit is sand to coarse-sand-sized and either normally graded or massive with sorting coefficients ranging from 0.9 to 2.8 and median grain sizes ranging from 0.4 to 2.6 mm. Some samples display a bimodal distribution of grain sizes, while most display a fines-depleted distribution. Juvenile andesite clasts exist as either subrounded to subangular fragments with abundant vesicles that range in color from white to brown or dense clasts characterized by their porphyritic and glassy texture. Samples from neither eruption correlate in sorting or grain size with distance from the vent. Stratigraphic and granulometric data suggest differences in the manner in which these two pyroclastic density currents traveled and groundmass textures are interpreted as recording differences in how the two magmas ascended and erupted, whereas juvenile Burr Point clasts resemble other lava flows erupted from Augustine Volcano, vesicular and glassy juvenile West Island clasts bear resemblance to clasts derived from so-called "blast-generated" pyroclastic density deposits at Mt. St. Helens in 1980 and Bezymianny in 1956.

  7. Influence of external mechanical stress on electrical properties of single-crystal n-3C-SiC/p-Si heterojunction diode

    NASA Astrophysics Data System (ADS)

    Qamar, Afzaal; Veit Dao, Dzung; Tanner, Philip; Phan, Hoang-Phuong; Dinh, Toan; Dimitrijev, Sima

    2015-06-01

    This article reports for the first time the electrical properties of fabricated n-3C-SiC/p-Si heterojunction diodes under external mechanical stress in the [110] direction. An anisotype heterojunction diode of n-3C-SiC/p-Si was fabricated by depositing 3C-SiC onto the Si substrate by low-pressure chemical vapor deposition. The mechanical stress significantly affected the scaling current density of the heterojunction. The scaling current density increases with stress and is explained in terms of a band offset reduction at the SiC/Si interface under applied stress. A reduction in the barrier height across the junction owing to applied stress is also explained quantitatively.

  8. Efficient Suppression of Defects and Charge Trapping in High Density In-Sn-Zn-O Thin Film Transistor Prepared using Microwave-Assisted Sputter.

    PubMed

    Goh, Youngin; Ahn, Jaehan; Lee, Jeong Rak; Park, Wan Woo; Ko Park, Sang-Hee; Jeon, Sanghun

    2017-10-25

    Amorphous oxide semiconductor-based thin film transistors (TFTs) have been considered as excellent switching elements for driving active-matrix organic light-emitting diodes (AMOLED) owing to their high mobility and process compatibility. However, oxide semiconductors have inherent defects, causing fast transient charge trapping and device instability. For the next-generation displays such as flexible, wearable, or transparent displays, an active semiconductor layer with ultrahigh mobility and high reliability at low deposition temperature is required. Therefore, we introduced high density plasma microwave-assisted (MWA) sputtering method as a promising deposition tool for the formation of high density and high-performance oxide semiconductor films. In this paper, we present the effect of the MWA sputtering method on the defects and fast charge trapping in In-Sn-Zn-O (ITZO) TFTs using various AC device characterization methodologies including fast I-V, pulsed I-V, transient current, low frequency noise, and discharge current analysis. Using these methods, we were able to analyze the charge trapping mechanism and intrinsic electrical characteristics, and extract the subgap density of the states of oxide TFTs quantitatively. In comparison to conventional sputtered ITZO, high density plasma MWA-sputtered ITZO exhibits outstanding electrical performance, negligible charge trapping characteristics and low subgap density of states. High-density plasma MWA sputtering method has high deposition rate even at low working pressure and control the ion bombardment energy, resulting in forming low defect generation in ITZO and presenting high performance ITZO TFT. We expect the proposed high density plasma sputtering method to be applicable to a wide range of oxide semiconductor device applications.

  9. Non-cohesive silt turbidity current flow processes; insights from proximal sandy-silt and silty-sand turbidites, Fiordland, New Zealand

    NASA Astrophysics Data System (ADS)

    Strachan, Lorna J.; Bostock, Helen C.; Barnes, Philip M.; Neil, Helen L.; Gosling, Matthew

    2016-08-01

    Silt-rich turbidites are commonly interpreted as distal marine deposits. They are associated with interlaminated clay and silt deposition from the upper and rear portions of turbidity currents. Here, multibeam bathymetry and shallow sediment core data from the intra-slope Secretary Basin, Fiordland, New Zealand, located < 10 km from shore, are used to describe a suite of late Holocene proximal sandy-silt and silty-sand turbidites that contain negligible clay and a wide variety of vertical grading patterns. The steep, rugged catchment to the Secretary Basin is dominated by a complex tributary turbidite channel network that feeds the low gradient Secretary Basin floor intra-slope lobe. Sediment core T49 is located within the lobe and positioned between shallow channels that are prone to deposition from decelerating, silty-sand and sandy-silt turbidity currents. The wide variety of sedimentary structures and vertical grading patterns, dominated by inversely graded beds, implies a range of non-cohesive flow processes, with deposition from multiphase, mixed mode (turbulent and laminar) flows that have undergone a variety of up-dip flow transformations. Most flows were initially erosive followed by deposition of partitioned 2- or 3- phase mixed mode flows that include high-density transitional and laminar flows that can be fore- or after-runners to low-density turbulent flow sections. Turbulence is inferred to have been suppressed in high-density flows by increasing flow concentration of both sands and silts. The very fine and fine sand modal grain sizes of sandy-silt and silty-sand turbidites are significantly coarser than classical abyssal plain silt turbidites and are generally coarser than overbank silt turbidites. While the low percentage of clays within Secretary Basin sandy-silt and silty-sand turbidites represents a fundamental difference between these and other silt and mud turbidites, we suggest these beds represent a previously undescribed suite of proximal continental slope deposits.

  10. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  11. Lower Hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.

    2015-11-01

    For the first time, the power deposition of Lower Hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t <τE) response of the scrape-off-layer (SOL) plasma to LHRF power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be key for the LHRF edge power deposition physics. These observations support the existence a loss mechanism near the edge for LHRF at high density (ne > 1 . 0 .1020 [m-3]). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivates the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE award DE-FC02-99ER54512.

  12. A novel model for through-silicon via (TSV) filling process simulation considering three additives and current density effect

    NASA Astrophysics Data System (ADS)

    Wang, Fuliang; Zhao, Zhipeng; Wang, Feng; Wang, Yan; Nie, Nantian

    2017-12-01

    Through-silicon via (TSV) filling by electrochemical deposition is still a challenge for 3D IC packaging, and three-component additive systems (accelerator, suppressor, and leveler) were commonly used in the industry to achieve void-free filling. However, models considering three additive systems and the current density effect have not been fully studied. In this paper, a novel three-component model was developed to study the TSV filling mechanism and process, where the interaction behavior of the three additives (accelerator, suppressor, and leveler) were considered, and the adsorption, desorption, and consumption coefficient of the three additives were changed with the current density. Based on this new model, the three filling types (seam void, ‘V’ shape, and key hole) were simulated under different current density conditions, and the filling results were verified by experiments. The effect of the current density on the copper ion concentration, additives surface coverage, and local current density distribution during the TSV filling process were obtained. Based on the simulation and experimental results, the diffusion-adsorption-desorption-consumption competition behavior between the suppressor, the accelerator, and the leveler were discussed. The filling mechanisms under different current densities were also analyzed.

  13. Electrical characteristics of thin Ta2O5 films deposited by reactive pulsed direct-current magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kim, J.-Y.; Nielsen, M. C.; Rymaszewski, E. J.; Lu, T.-M.

    2000-02-01

    Room temperature deposition of tantalum oxide films on metallized silicon substrates was investigated by reactive pulsed magnetron sputtering of Ta in an Ar/O2 ambient. The dielectric constant of the tantalum oxide ranged from 19 to 31 depending on the oxygen percentage [P(%)=PO2/(PO2+PAr)] used during sputtering. The leakage current density was less than 10 nA/cm2 at 0.5 MV/cm electric field and the dielectric breakdown field was greater than 3.8 MV/cm for P=60%. A charge storage as high as 3.3 μF/cm2 was achieved for 70-Å-thick film. Pulse frequency variation (from 20 to 200 kHz) did not give a significant effect in the electrical properties (dielectric constant or leakage current density) of the Ta2O5 films.

  14. Relation of morphology of electrodeposited zinc to ion concentration profile

    NASA Technical Reports Server (NTRS)

    May, C. E.; Kautz, H. E.; Sabo, B. B.

    1977-01-01

    The morphology of electrodeposited zinc was studied with special attention to the ion concentration profile. The initial concentrations were 9M hydroxide ion and 1.21M zincate. Current densities were 6.4 to 64 mA/sq cm. Experiments were run with a horizontal cathode which was observed in situ using a microscope. The morphology of the zinc deposit was found to be a function of time as well as current density; roughly, the log of the transition time from mossy to large crystalline type deposit is inversely proportional to current density. Probe electrodes indicated that the electrolyte in the cathode chamber was mixed by self inducted convection. However, relatively large concentration gradients of the involved species existed across the boundary layer of the cathode. Analysis of the data suggests that the morphology converts from mossy to large crystalline when the hydroxide activity on the cathode surface exceeds about 12 M. Other experiments show that the pulse discharge technique had no effect on the morphology in the system where the bulk concentration of the electrolyte was kept homogeneous via self induced convection.

  15. A comparative study of radiofrequency antennas for Helicon plasma sources

    NASA Astrophysics Data System (ADS)

    Melazzi, D.; Lancellotti, V.

    2015-04-01

    Since Helicon plasma sources can efficiently couple power and generate high-density plasma, they have received interest also as spacecraft propulsive devices, among other applications. In order to maximize the power deposited into the plasma, it is necessary to assess the performance of the radiofrequency (RF) antenna that drives the discharge, as typical plasma parameters (e.g. the density) are varied. For this reason, we have conducted a comparative analysis of three Helicon sources which feature different RF antennas, namely, the single-loop, the Nagoya type-III and the fractional helix. These antennas are compared in terms of input impedance and induced current density; in particular, the real part of the impedance constitutes a measure of the antenna ability to couple power into the plasma. The results presented in this work have been obtained through a full-wave approach which (being hinged on the numerical solution of a system of integral equations) allows computing the antenna current and impedance self-consistently. Our findings indicate that certain combinations of plasma parameters can indeed maximize the real part of the input impedance and, thus, the deposited power, and that one of the three antennas analyzed performs best for a given plasma. Furthermore, unlike other strategies which rely on approximate antenna models, our approach enables us to reveal that the antenna current density is not spatially uniform, and that a correlation exists between the plasma parameters and the spatial distribution of the current density.

  16. Influence of Pulse Electrodeposition and Heat Treatment on Microstructure, Tribological, and Corrosion Behavior of Nano-Grain Size Co-W Coatings

    NASA Astrophysics Data System (ADS)

    Abazari, Somayeh; Rastegari, Saeed; Kheirandish, Shahram

    2017-07-01

    In the present study, Co-W nano-structured alloy coatings are produced on low-carbon steel substrate by means of pulse electrodeposition from a citrate-based bath under different average current densities and duty cycles. The results indicate that the coating deposited under 60% of duty cycle and 1 A/dm2 of average current density exhibit optimum pulse plating conditions with 44.38 wt.% W, 37 nm grain size, and 758 HV microhardness. The effect of heat treatment temperature on microstructure, composition, corrosion behavior, and morphology of amorphous deposited Co-W alloy with 44 wt.% W was investigated. The microhardness of the coating increased to 1052 HV after heat treatment at 600 °C, which is due to the formation of Co3W and CoWO4 phases in the deposit. Furthermore, the coatings heat-treated at 600 °C had lower friction coefficients and better wear resistance under various loads than before heating.

  17. Dynamics and Deposits of Coignimbrite Plumes

    NASA Astrophysics Data System (ADS)

    Engwell, Samantha; de'Michieli Vitturi, Mattia; Esposti Ongaro, Tomaso; Neri, Augusto

    2014-05-01

    Fine ash in the atmosphere poses a significant hazard, with potentially disastrous consequences for aviation and, on deposition, health and infrastructure. Fine-grained particles form a large proportion of ejecta in Plinian volcanic clouds. However, another common, but poorly studied phenomena exists whereby large amounts of fine ash are injected into the atmosphere. Coignimbrite plumes form as material is elutriated from the top of pyroclastic density currents. The ash in these plumes is considerably finer grained than that in Plinian plumes and can be distributed over thousands of kilometres in the atmosphere. Despite their significance, very little is known regarding coignimbrite plume formation and dispersion, predominantly due to the poor preservation of resultant deposits. As a result, consequences of coignimbrite plume formation are usually overlooked when conducting hazard and risk analysis. In this study, deposit characteristics and numerical models of plumes are combined to investigate the conditions required for coignimbrite plume formation. Coignimbrite deposits from the Campanian Ignimbrite eruption (Magnitude 7.7, 39 ka) are well sorted and very fine, with a mode of between 30 and 50 microns, and a significant component of respirable ash (less than 10 microns). Analogous distributions are found for coignimbrite deposits from Tungurahua 2006 and Volcan de Colima (2004-2006), amongst others, regardless of magnitude, type or chemistry of eruption. These results indicate that elutriation processes are the dominant control on coignimbrite grainsize distribution. To further investigate elutriation and coignimbrite plume dynamics, the numerical plume model of Bursik (2001) is applied. Model sensitivity analysis demonstrates that neutral buoyancy conditions (required for the formation of the plume) are controlled by a balance between temperature and gas mass flux in the upper most parts of the pyroclastic density current. In addition, results emphasize the importance of entrainment into the established plume, a process that is still poorly defined. The numerical results, and the consistent fine grained nature of ash in the deposits, highlight the importance of physical dynamics in the parent pyroclastic density currents for coignimbrite plume formation and stress the need for tailored methods to investigate hazard and risk from such events. Bursik, M. Effect of wind on the rise height of volcanic plumes. Geophysical Research Letters, 28(18), 3621-3624, 2001.

  18. Massive units deposited by bedload transport in sheet flow mode

    NASA Astrophysics Data System (ADS)

    Viparelli, E.; Hernandez Moreira, R. R.; Jafarinik, S.; Sanders, S.; Huffman, B.; Parker, G.; Kendall, C.

    2017-12-01

    A sandy massive (structureless) unit overlying a basal erosional surface and underlying a parallel or cross-laminated unit often characterizes turbidity current and coastal storm deposits. The basal massive units are thought to be the result of relatively rapid deposition of suspended sediment. However, suspension-based models fail to explain how basal massive units can be emplaced for long distances, far away from the source and can contain gravel particles as floating clasts. Here we present experimental results that can significantly change the understanding of the processes forming turbidity current and coastal storm deposits. The experiments were performed in open channel flow mode in the Hydraulics Laboratory at the University of South Carolina. The sediment was a mixture of sand size particles with a geometric mean diameter of 0.95 mm and a geometric standard deviation of 1.65. Five experiments were performed with a flow rate of 30 l/s and sediment feed rates varying between 1.5 kg/min and 20 kg/min. Each experiment was characterized by two phases, 1) the equilibration phase, in which we waited for the system to reach equilibrium condition, and 2) the aggradation phase, in which we slowly raised the water surface base level to induce channel bed aggradation under the same transport conditions observed over the equilibrium bed. Our experiments show that sandy massive units can be the result of deposition from a thick bedload layer of colliding grains, the sheet flow layer. The presence of this sheet flow layer explains how a strong, sustained current can emplace extensive massive units containing gravel clasts. Although our experiments were conducted in open-channel mode, observations of bedload driven by density underflows suggest that our results are directly applicable to sheet flows driven by deep-sea turbidity currents. More specifically, we believe that this mechanism offers an explanation for massive turbidites that heretofore have been identified as the deposits of "high density" turbidity currents.

  19. Ion beam sputtering of fluoropolymers

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Etching and deposition of fluoropolymers are of considerable industrial interest for applications dealing with adhesion, chemical inertness, hydrophobicity, and dielectric properties. This paper describes ion beam sputter processing rates as well as pertinent characteristics of etched targets and films. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Also presented are sputter target and film characteristics which were documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs.

  20. Dune bedforms produced by dilute pyroclastic density currents from the August 2006 eruption of Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Pacheco, Daniel Alejandro; Kueppers, Ulrich; Letort, Jean; Tsang-Hin-Sun, Ève; Bustillos, Jorge; Hall, Minard; Ramón, Patricio; Dingwell, Donald B

    A series of pyroclastic density currents were generated at Tungurahua volcano (Ecuador) during a period of heightened activity in August 2006. Dense pyroclastic flows were confined to valleys of the drainage network, while dilute pyroclastic density currents overflowed on interfluves where they deposited isolated bodies comprising dune bedforms of cross-stratified ash exposed on the surface. Here, the description, measurement, and classification of more than 300 dune bedforms are presented. Four types of dune bedforms are identified with respect to their shape, internal structure, and geometry (length, width, thickness, stoss and lee face angles, and stoss face length). (1) "Elongate dune bedforms" have smooth shapes and are longer (in the flow direction) than wide or thick. Internal stratification consists of stoss-constructional, thick lensoidal layers of massive and coarse-grained material, alternating with bedsets of fine laminae that deposit continuously on both stoss and lee sides forming aggrading structures with upstream migration of the crests. (2) "Transverse dune bedforms" show linear crests perpendicular to the flow direction, with equivalent lengths and widths. Internally, these bedforms exhibit finely stratified bedsets of aggrading ash laminae with upstream crest migration. Steep truncations of the bedsets are visible on the stoss side only. (3) "Lunate dune bedforms" display a barchanoidal shape and have stratification patterns similar to those of the transverse ones. Finally, (4) "two-dimensional dune bedforms" are much wider than long, exhibit linear crests and are organized into trains. Elongate dune bedforms are found exclusively in proximal deposition zones. Transverse, lunate, and two-dimensional dune bedforms are found in distal ash bodies. The type of dune bedform developed varies spatially within an ash body, transverse dune bedforms occurring primarily at the onset of deposition zones, transitioning to lunate dune bedforms in intermediate zones, and two-dimensional dune bedforms exclusively on the lateral and distal edges of the deposits. The latter are also found where flows moved upslope. Elongate dune bedforms were deposited from flows with both granular-based and tractional flow boundaries that possessed high capacity and competence. They may have formed in a subcritical context by the blocking of material on the stoss side. We do not interpret them as antidune or "chute-and-pool" structures. The dimensions and cross-stratification patterns of transverse dune bedforms are interpreted as resulting from low competence currents with a significant deposition rate, but we rule out their interpretation as "antidunes". A similar conclusion holds for lunate dune bedforms, whose curved shape results from a sedimentation rate dependent on the thickness of the bedform. Finally, two-dimensional dune bedforms were formed where lateral transport exceeds longitudinal transport; i.e., in areas where currents were able to spread laterally in low velocity zones. We suggest that the aggrading ash bedsets with upstream crest migration were formed under subcritical flow conditions where the tractional bedload transport was less important than the simultaneous fallout from suspension. This produced differential draping with no further reworking. We propose the name "regressive climbing dunes" for structures produced by this process. A rapid decrease in current velocity, possibly triggered by hydraulic jumps affecting the entire parent flows, is inferred to explain their deposition. This process can in principle hold for any kind of particulate density current.

  1. Ionic liquid gating on atomic layer deposition passivated GaN: Ultra-high electron density induced high drain current and low contact resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Hong; Du, Yuchen; Ye, Peide D., E-mail: yep@purdue.edu

    2016-05-16

    Herein, we report on achieving ultra-high electron density (exceeding 10{sup 14 }cm{sup −2}) in a GaN bulk material device by ionic liquid gating, through the application of atomic layer deposition (ALD) of Al{sub 2}O{sub 3} to passivate the GaN surface. Output characteristics demonstrate a maximum drain current of 1.47 A/mm, the highest reported among all bulk GaN field-effect transistors, with an on/off ratio of 10{sup 5} at room temperature. An ultra-high electron density exceeding 10{sup 14 }cm{sup −2} accumulated at the surface is confirmed via Hall-effect measurement and transfer length measurement. In addition to the ultra-high electron density, we also observe a reductionmore » of the contact resistance due to the narrowing of the Schottky barrier width on the contacts. Taking advantage of the ALD surface passivation and ionic liquid gating technique, this work provides a route to study the field-effect and carrier transport properties of conventional semiconductors in unprecedented ultra-high charge density regions.« less

  2. Large Eddy Simulations of Compositional Density Currents Flowing Over a Mobile Bed

    NASA Astrophysics Data System (ADS)

    Kyrousi, Foteini; Zordan, Jessica; Leonardi, Alessandro; Juez, Carmelo; Zanello, Francesca; Armenio, Vincenzo; Franca, Mário J.

    2017-04-01

    Density currents are a ubiquitous phenomenon caused by natural events or anthropogenic activities, and play an important role in the global sediment cycle; they are agents of long distance sediment transport in lakes, seas and oceans. Density gradients induced by salinity, temperature differences, or by the presence of suspended material are all possible triggers of a current. Such flows can travel long distances while eroding or depositing bed materials. This can provoke rapid topological changes, which makes the estimation of their transport capacity of prime interest for environmental engineering. Despite their relevance, field data regarding their dynamics is limited due to density currents scattered and unpredictable occurrence in nature. For this reason, laboratory experiments and numerical simulations have been a preferred way to investigate sediment transport processes associated to density currents. The study of entrainment and deposition processes requires detailed data of velocities spatial and temporal distributions in the boundary layer and bed shear stress, which are troublesome to obtain in laboratory. Motivated by this, we present 3D wall-resolved Large Eddy Simulations (LES) of density currents generated by lock-exchange. The currents travel over a smooth flat bed, which includes a section composed by erodible fine sediment susceptible of eroding. Several sediment sizes and initial density gradients are considered. The grid is set to resolve the velocity field within the boundary layer of the current (a tiny fraction of the total height), which in turn allows to obtain predictions of the bed shear stress. The numerical outcomes are compared with experimental data obtained with an analogous laboratory setting. In laboratory experiments salinity was chosen for generating the initial density gradient in order to facilitate the identification of entrained particles, since salt does not hinder the possibility to track suspended particles. Under these circumstances, it is possible to focus alone on the effect of the dynamics of the current on the particles entrainment. To achieve this, LES-filtered Navier-Stokes equations are coupled with two scalar transport equations: one for salinity and one for sediment concentration. We discuss the use of different sediment pick-up and settling formulations, which are key factors in reproducing the correct erosion and sedimentation mechanisms. The simulations show the emergence of longitudinal bed forms, and highlight the role of turbulent structures in the entrainment pattern for different regions within the current.

  3. Dome growth, collapse, and valley fill at Soufrière Hills Volcano, Montserrat, from 1995 to 2013: Contributions from satellite radar measurements of topographic change

    USGS Publications Warehouse

    Arnold, D. W. D.; Biggs, J.; Wadge, G.; Ebmeier, S. K.; Odbert, H. M.; Poland, Michael P.

    2016-01-01

    Frequent high-resolution measurements of topography at active volcanoes can provide important information for assessing the distribution and rate of emplacement of volcanic deposits and their influence on hazard. At dome-building volcanoes, monitoring techniques such as LiDAR and photogrammetry often provide a limited view of the area affected by the eruption. Here, we show the ability of satellite radar observations to image the lava dome and pyroclastic density current deposits that resulted from 15 years of eruptive activity at Soufrière Hills Volcano, Montserrat, from 1995 to 2010. We present the first geodetic measurements of the complete subaerial deposition field on Montserrat, including the lava dome. Synthetic aperture radar observations from the Advanced Land Observation Satellite (ALOS) and TanDEM-X mission are used to map the distribution and magnitude of elevation changes. We estimate a net dense-rock equivalent volume increase of 108 ± 15M m3 of the lava dome and 300 ± 220M m3 of talus and subaerial pyroclastic density current deposits. We also show variations in deposit distribution during different phases of the eruption, with greatest on-land deposition to the south and west, from 1995 to 2005, and the thickest deposits to the west and north after 2005. We conclude by assessing the potential of using radar-derived topographic measurements as a tool for monitoring and hazard assessment during eruptions at dome-building volcanoes.

  4. Merging field mapping and modeling to interpret the lithofacies variations from unsteady ash-rich pyroclastic density currents on uneven topography

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico

    2017-04-01

    In order to obtain significant volcanological results from computer simulations of explosive eruptions, one either needs a systematic statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions that generated ash-rich pyroclastic density currents, interacting with the high topographic obstacle of the La Fossa Caldera rim. We demonstrate that by merging field data with 3D numerical simulation it is possible to highlight the details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2s at the bed load can still be sheared by the overlying current, producing tractional structures in the deposit. Instead, a sedimentation rate in excess of that threshold can preclude the formation of tractional structures, producing thick massive deposits. We think that the approach used in this study could be applied to other case studies to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  5. Kinetic Monte Carlo simulations of nucleation and growth in electrodeposition.

    PubMed

    Guo, Lian; Radisic, Aleksandar; Searson, Peter C

    2005-12-22

    Nucleation and growth during bulk electrodeposition is studied using kinetic Monte Carlo (KMC) simulations. Ion transport in solution is modeled using Brownian dynamics, and the kinetics of nucleation and growth are dependent on the probabilities of metal-on-substrate and metal-on-metal deposition. Using this approach, we make no assumptions about the nucleation rate, island density, or island distribution. The influence of the attachment probabilities and concentration on the time-dependent island density and current transients is reported. Various models have been assessed by recovering the nucleation rate and island density from the current-time transients.

  6. Spreading of non-planar non-axisymmetric gravity and turbidity currents

    NASA Astrophysics Data System (ADS)

    Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.

    2014-11-01

    The dynamics of non-axisymmetric turbidity currents is considered here. The study comprises a series of experiments for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of diameter 280

  7. Ion beam sputtering of fluoropolymers. [etching polymer films and target surfaces

    NASA Technical Reports Server (NTRS)

    Sovey, J. S.

    1978-01-01

    Ion beam sputter processing rates as well as pertinent characteristics of etched targets and films are described. An argon ion beam source was used to sputter etch and deposit the fluoropolymers PTFE, FEP, and CTFE. Ion beam energy, current density, and target temperature were varied to examine effects on etch and deposition rates. The ion etched fluoropolymers yield cone or spire-like surface structures which vary depending upon the type of polymer, ion beam power density, etch time, and target temperature. Sputter target and film characteristics documented by spectral transmittance measurements, X-ray diffraction, ESCA, and SEM photomicrographs are included.

  8. Electrical properties of radio-frequency sputtered HfO2 thin films for advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Sarkar, Pranab Kumar; Roy, Asim

    2015-08-01

    The Hafnium oxide (HfO2) high-k thin films have been deposited by radio frequency (rf) sputtering technique on p-type Si (100) substrate. The thickness, composition and phases of films in relation to annealing temperatures have been investigated by using cross sectional FE-SEM (Field Emission Scanning Electron Microscope) and grazing incidence x-ray diffraction (GI-XRD), respectively. GI-XRD analysis revealed that at annealing temperatures of 350°C, films phases change to crystalline from amorphous. The capacitance-voltage (C-V) and current-voltage (I-V) characteristics of the annealed HfO2 film have been studied employing Al/HfO2/p-Si metal-oxide-semiconductor (MOS) structures. The electrical properties such as dielectric constant, interface trap density and leakage current density have been also extracted from C-V and I-V Measurements. The value of dielectric constant, interface trap density and leakage current density of annealed HfO2 film is obtained as 23,7.57×1011eV-1 cm-2 and 2.7×10-5 Acm-2, respectively. In this work we also reported the influence of post deposition annealing onto the trapping properties of hafnium oxide and optimized conditions under which no charge trapping is observed into the dielectric stack.

  9. Preparation of thin-film (Ba(0.5),Sr(0.5))TiO3 by the laser ablation technique and electrical properties

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Gil; Lee, Jai-Chan; Safari, A.

    1994-09-01

    The chemical composition and electrical properties were investigated for epitaxially crystallized (Ba(0.5),Sr(0.5))TiO3 (BST) films deposited on Pt/MgO and YBa2Cu3O(7-x) (YBCO)/MgO substrates by the laser ablation technique. Rutherford backscattering spectroscopy analysis shows that thin films on Pt/MgO have almost the same stoichiometric composition as the target material. Films deposited at 600 C exhibited an excellent epitaxial growth, a dielectric constant of 430, and a dissipation factor of 0.02 at 10 kHz frequency. They have a charge storage density of 40 fC/sq micron at an applied electric field of 0.15 MV/cm. Leakage current density of BST thin films on Pt/MgO was smaller than on YBCO/MgO. Their leakage current density is about 0.8 microA/sq cm at an applied electric field of 0.15 MV/cm.

  10. Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF 3SO 2) 2N – at High Current Densities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoo, Hyun Deog; Han, Sang-Don; Bolotin, Igor L.

    The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety,stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteriesmore » with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl 2. Hence, ethereal solutions of Mg(TFSI) 2 salt with MgCl 2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm -2 and an areal capacity of ~0.4 mAh cm -2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI - anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.« less

  11. Degradation Mechanisms of Magnesium Metal Anodes in Electrolytes Based on (CF 3SO 2) 2N – at High Current Densities

    DOE PAGES

    Yoo, Hyun Deog; Han, Sang-Don; Bolotin, Igor L.; ...

    2017-06-21

    The energy density of rechargeable batteries utilizing metals as anodes surpasses that of Li ion batteries, which employ carbon instead. Among possible metals, magnesium represents a potential alternative to the conventional choice, lithium, in terms of storage density, safety,stability, and cost. However, a major obstacle for metal-based batteries is the identification of electrolytes that show reversible deposition/dissolution of the metal anode and support reversible intercalation of ions into a cathode. Traditional Grignard-based Mg electrolytes are excellent with respect to the reversible deposition of Mg, but their limited anodic stability and compatibility with oxide cathodes hinder their applicability in Mg batteriesmore » with higher voltage. Non-Grignard electrolytes, which consist of ethereal solutions of magnesium(II) bis(trifluoromethanesulfonyl)imide (Mg(TFSI) 2), remain fairly stable near the potential of Mg deposition. The slight reactivity of these electrolytes toward Mg metal can be remedied by the addition of surface-protecting agents, such as MgCl 2. Hence, ethereal solutions of Mg(TFSI) 2 salt with MgCl 2 as an additive have been suggested as a representative non-Grignard Mg electrolyte. In this work, the degradation mechanisms of a Mg metal anode in the TFSI-based electrolyte were studied using a current density of 1 mA cm -2 and an areal capacity of ~0.4 mAh cm -2, which is close to those used in practical applications. The degradation mechanisms identified include the corrosion of Mg metal, which causes the loss of electronic pathways and mechanical integrity, the nonuniform deposition of Mg, and the decomposition of TFSI - anions. This study not only represents an assessment of the behavior of Mg metal anodes at practical current density and areal capacity but also details the outcomes of interfacial passivation, which was detected by simple cyclic voltammetry experiments. This study also points out the absolute absence of any passivation at the electrode-electrolyte interface for the premise of developing electrolytes compatible with a metal anode.« less

  12. Mössbauer and X-ray Diffraction Investigations of Sn-containing Binary and Ternary Electrodeposited Alloys from a Gluconate Bath

    NASA Astrophysics Data System (ADS)

    Kuzmann, E.; Stichleutner, S.; Doyle, O.; Chisholm, C. U.; El-Sharif, M.; Homonnay, Z.; Vértes, A.

    2005-04-01

    Constant current technique was applied to electrodeposit tin-containing coatings such as tin-cobalt (Sn-Co), tin-iron (Sn-Fe) and a novel tin-cobalt-iron (Sn-Co-Fe) from a gluconate bath. The effect of plating parameters (current density, deposition time at an electrolyte temperature of 60°C and pH=7.0) on phase composition, crystal structure and magnetic anisotropy of alloy deposits has been investigated mainly by 57Fe CEMS, 119Sn CEMS and transmission Mössbauer Spectroscopy as well as XRD. 57Fe and 119Sn CEM spectra and XRD reflect that the dominant phases of the deposits are orthorhombic Co3Sn2, tetragonal FeSn2 or amorphous Fe-Sn and amorphous Sn-Co-Fe in Sn-Co, Sn-Fe and Sn-Co-Fe coatings, respectively. Furthermore, the relative area of the 2nd and 5th lines of the sextets representing the magnetic iron containing phases decreases continuously with increasing current density in all Fe-containing deposits. At the same time, no essential change in the magnetic anisotropy can be found with the plating time. 119Sn spectra reveal the presence of small amount of β-Sn besides the main phases in Sn-Fe and in the Sn-Co coatings. Magnetically split 119Sn spectra reflecting transferred hyperfine field were observed in the case of Co-Sn-Fe coatings.

  13. Interaction of pyroclastic density currents with human settlements: Evidence from ancient Pompeii

    NASA Astrophysics Data System (ADS)

    Gurioli, Lucia; Pareschi, M. Teresa; Zanella, Elena; Lanza, Roberto; Deluca, Enrico; Bisson, Marina

    2005-06-01

    Integrating field observations and rock-magnetic measurements, we report how a turbulent pyroclastic density current interacted with and moved through an urban area. The data are from the most energetic, turbulent pyroclastic density current of the A.D. 79 eruption of Vesuvius, Italy, which partially destroyed the Roman city of Pompeii. Our results show that the urban fabric was able to divide the lower portion of the current into several streams that followed the city walls and the intracity roads. Vortices, revealed by upstream particle orientations and decreases in deposit temperature, formed downflow of obstacles or inside cavities. Although these perturbations affected only the lower part of the current and were localized, they could represent, in certain cases, cooler zones within which chances of human survival are increased. Our integrated field data for pyroclastic density current temperature and flow direction, collected for the first time across an urban environment, enable verification of coupled thermodynamic numerical models and their hazard simulation abilities.

  14. A facile one-step synthesis of Mn{sub 3}O{sub 4} nanoparticles-decorated TiO{sub 2} nanotube arrays as high performance electrode for supercapacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jianfang; Wang, Yan; Key Laboratory of Advance Functional Materials and Devices of Anhui Province, Hefei 230009

    Via a facile one-step chemical bath deposition route, homogeneously dispersed Mn{sub 3}O{sub 4} nanoparticles have been successfully deposited onto the inner surface of TiO{sub 2} nanotube arrays (TNAs). The content and size of Mn{sub 3}O{sub 4} can be controlled by changing the deposition time. Field emission scanning electron microscopy and transmission electron microscopy analysis reveal the morphologies structures of Mn{sub 3}O{sub 4}/TNAs composites. The crystal-line structures are characterized by the X-ray diffraction patterns and Raman spectra. X-ray photoelectron spectroscopy further confirms the valence states of the sample elements. The electrochemical properties of Mn{sub 3}O{sub 4}/TNAs electrodes are systematically investigated bymore » the combine use of cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. The resulting Mn{sub 3}O{sub 4}/TNAs electrode prepared by deposition time of 3 h shows the highest specific capacitance of 570 F g{sup −1} at a current density of 1 A g{sup −1}. And it also shows an excellent long-term cycling stability at a current density of 5 A g{sup −1}, which remaining 91.8% of the initial capacitance after 2000 cycles. Thus this kind of Mn{sub 3}O{sub 4} nanoparticles decorated TNAs may be considered as an alternative promising candidate for high performance supercapacitor electrodes. - Graphical abstract: Mn{sub 3}O{sub 4} nanoparticles have been uniformly deposited onto the inner surfaces of TiO{sub 2} nanotube arrays through a facile one-step chemical bath deposition method. As electrodes for supercapacitors, they exhibit a relatively high specific capacity and excellent cycling stability. - Highlights: • Mn{sub 3}O{sub 4} nanoparticles have been deposited onto TiO{sub 2} nanotube arrays by chemical bath deposition. • The Mn{sub 3}O{sub 4}/TNAs exhibits a highest specific capacitance of 570 F g{sup –1} at a current density of 1 A g{sup –1}. • The Mn{sub 3}O{sub 4}/TNAs electrode shows an excellent cycling stability of 91.8% after 2000 cycles.« less

  15. Effect of titanium oxide compact layer in dye-sensitized solar cell prepared by liquid-phase deposition

    NASA Astrophysics Data System (ADS)

    Huang, Jung-Jie; Chiu, Shih-Ping; Wu, Menq-Jion; Hsu, Chun-Fa

    2016-11-01

    In this study, titanium dioxide films were deposited on indium tin oxide glass substrates by liquid-phase deposition (LPD) for application as the compact layer in dye-sensitized solar cells (DSSCs). A deposition solution of ammonium hexafluorotitanate and boric acid was used for TiO2 deposition. Compact layer passivation can improve DSSC performance by decreasing carrier losses from recombination at the ITO/electrolyte interface and improving the electrical contact between the ITO and the TiO2 photo-electrode. The optimum thickness of the compact layer was found to be 48 nm, which resulted in a 50 % increase in the conversion efficiency compared with cells without compact layers. The conversion efficiency can be increased from 3.55 to 5.26 %. Therefore, the LPD-TiO2 compact layer inhibits the dark current and increases the short-circuit current density effectively.

  16. Growth mechanism of surface roughed platinum nanowires through electrodeposition current control and their electrochemical applications

    NASA Astrophysics Data System (ADS)

    Ruan, Dajiang

    The aim of this work is to investigate the effect of current density on the grain size and surface morphology of electrodeposited platinum nanowires and their applications. Platinum (Pt) nanowires were fabricated by a galvanostatic electrodeposition method in a porous anodic alumina oxide (AAO) template with different current densities. Both direct current and pulse current electrodeposition were used to synthesize the Pt nanowires. The grain size and surface morphology of the Pt nanowires were studied by field emission scanning electron microscopy (FE-SEM), transmission electron microcopy (TEM) and X-ray diffraction (XRD). The experimental results showed that the current density was the key factor to control the surface roughness. The surface of the Pt nanowires became rougher and the grain sizes were increased by increasing the current densities. From the experimental results, a growth mechanism of Pt nanowires based on progressive nucleation and crystallization was proposed in order to find out the relationship between the surface morphology and current density. The electrochemical properties and catalytic activities of these surface roughed Pt nanowires were investigated in the detection of H20 2 and for the methanol oxidation. Cyclic voltammograms of Pt nanowire modified electrodes were obtained using a potentiostat, which showed that rougher Pt nanowires have higher response and better activity than that of smooth nanowires. For H202 detection, the effect of scan rate and H202 concentration were studied and it was found that the peak current for hydrogen peroxide reduction became larger with the increasing of either scan rate or H202 concentration. It can be inferred that the process of electrocatalytic hydrogen peroxide reduction may be controlled by diffusion of hydrogen peroxide and the Pt nanowire modified glassy carbon electrode (GCE) is well suited for the detection of H202. From the relationship between the peak current and square root of scan rates for methanol oxidation, it can be inferred that the process of electrocatalytic methanol oxidation was controlled by diffusion of methanol. To understand the effect of the morphological feature on the electrocatalytic activity of the Pt nanowire catalysts, the electrochemically active surface area (ECSA) as a function of deposited current density was investigated, which suggests that Pt nanowire catalysts deposited at highest current density had the most ECSA surface morphology of the Pt nanowires. The chronoamperometric curves and electrochemical impedance spectroscopy (EIS) results confirmed that the Pt nanowire catalyst synthesized at higher current density possessed longer durability and gave more efficient electrochemical performance.

  17. The thermal evolution of pyroclastic density currents: Exploring the thermal histories of juvenile clasts of Tungurahua and Cotopaxi, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Degruyter, W.

    2010-12-01

    The thermal history of pyroclastic density currents (PDCs) is critical in determining flow dynamics and deposit characteristics. The thermal history of these flows depends on the particles’ internal rate of heat transfer and heat exchange between discrete particles and a gas phase. We examine the thermal history of a class of dense PDC exemplified by the eruption of Tungurahua (2006) and Cotopaxi (1877) that have abundant breadcrust bombs segregated in levees and in flow snouts. An open question in this type of PDC is the amount of air entrainment (and cooling) during transport. To understand the entrainment and cooling history of these flows we use a multiphase numerical model coupled with a Lagrangian model (Eulerian-Eulerian-Lagrangian [EEL]) that tracks the internal heat transfer and post-eruption bubble evolution in juvenile clasts. We combine the numerical study with the observation of the morphology and vesicularity of breadcrust bombs from dense pyroclastic density currents from Tungurahua and Cotopaxi. Breadcrust bombs are common in many deposits from mafic explosive eruptions, e.g. Montserrat, Cotopaxi, Guagua Pichincha, and Tungurahua volcanoes. At many locations these bombs have likely been transported as ballistics (interacting mostly with ambient air), although several instances of dense scoria bomb flows have been noted (e.g. Cotopaxi and Tungurahua, Ecuador). The dense flow deposits are generally rich in unabraided breadcrust bombs along the flow levee and occasionally along the entire transect of the flow. The breadcrust bombs range in size from tens of centimeters to meters. They can also be found draping around previous deposits suggesting a high temperature of deposition. We discuss the use of clast morphology with other thermal proxies to better understand the thermal evolution of individual PDC and the proportion of time clasts underwent transport in dense flows as compared to ballistic transport.

  18. Geochemical Identification of Windblown Dust Deposits in the Upper Permian Brushy Canyon Formation, Southern New Mexico

    NASA Astrophysics Data System (ADS)

    Tice, M. M.; Motanated, K.; Weiss, R.

    2009-12-01

    Windblown dust is a potentially important but difficult-to-quantify source of siliciclastics for sedimentary basins worldwide. Positively identifying windblown deposits requires distinguishing them from other low density suspension transport deposits. For instance, laminated very fine grained sandstones and siltstones of the Upper Permian Brushy Canyon Formation have been variously interpreted as 1) the deposits of slow-moving, low-density turbidity currents, 2) distal overbank deposits of turbidity currents, 3) the deposits of turbulent suspensions transported across a pycnocline (interflows), and 4) windblown dust. This facies forms the bulk of Brushy Canyon Formation slope deposits, so understanding its origin is critical to understanding the evolution of the basin as a whole. We use a geochemical mapping technique (x-ray fluorescence microscopy) to show that these rocks are up to two times enriched in very fine sand sized zircon and rutile grains relative to Bouma A divisions of interbedded turbidites, suggesting substantial turbulence during transport. However, in contrast with the A divisions, the laminated sandstones and siltstones never show evidence of scour or amalgamation, implying that flow turbulence did not interact with underlying beds. Moreover, proximal loess deposits are often characterized by elevated Zr/Al2O3. These observations are most consistent with windblown interpretations for Brushy Canyon Formation slope sediments, and suggest that evolution of this early deepwater slope system was controlled largely by short-distance aeolian transport of very fine sand and silt from the coast. Heavy mineral incorporation into Brushy Canyon Formation slope deposits as reflected in laminae-scale bulk Zr and Ti abundances may preserve a long-term record of local wind intensity during the Upper Permian.

  19. Contourites associated with pelagic mudrocks and distal delta-fed turbidites in the Lower Proterozoic Timeball Hill Formation epeiric basin (Transvaal Supergroup), South Africa

    NASA Astrophysics Data System (ADS)

    Eriksson, Patrick G.; Reczko, Boris F. F.

    1998-09-01

    Five genetic facies associations/architectural elements are recognised for the epeiric sea deposits preserved in the Early Proterozoic Timeball Hill Formation, South Africa. Basal carbonaceous mudrocks, interpreted as anoxic suspension deposits, grade up into sheet-like, laminated, graded mudrocks and succeeding sheets of laminated and cross-laminated siltstones and fine-grained sandstones. The latter two architectural elements are compatible with the Te, Td and Tc subdivisions of low-density turbidity current systems. Thin interbeds of stromatolitic carbonate within these first three facies associations support photic water depths up to about 100 m. Laterally extensive sheets of mature, cross-bedded sandstone disconformably overlie the turbidite deposits, and are ascribed to lower tidal flat processes. Interbedded lenticular, immature sandstones and mudrocks comprise the fifth architectural element, and are interpreted as medial to upper tidal flat sediments. Small lenses of coarse siltstone-very fine-grained sandstone, analogous to modern continental rise contourite deposits, occur within the suspension and distal turbidite sediments, and also form local wedges of inferred contourites at the transition from suspension to lowermost turbidite deposits. Blanketing and progressive shallowing of the floor of the Timeball Hill basin by basal suspension deposits greatly reduced wave action, thereby promoting preservation of low-density turbidity current deposits across the basin under stillstand or highstand conditions. A lowstand tidal flat facies tract laid down widespread sandy deposits of the medial Klapperkop Member within the formation. Salinity gradients and contemporaneous cold periglacial water masses were probably responsible for formation of the inferred contourites. The combination of the depositional systems interpreted for the Timeball Hill Formation may provide a provisional model for Early Proterozoic epeiric basin settings.

  20. Improvement of carbon nanotube field emission properties by ultrasonic nanowelding

    NASA Astrophysics Data System (ADS)

    Zhao, Bo; Yadian, Boluo; Chen, Da; Xu, Dong; Zhang, Yafei

    2008-12-01

    Ultrasonic nanowelding was used to improve the field emission properties of carbon nanotube (CNT) cathodes. The CNTs were deposited on the Ti-coated glass substrate by electrophoretic deposition. By pressing CNTs against metal (Ti) substrate under a vibrating force at ultrasonic frequency, a reliable and low resistance contact was obtained between CNTs and Ti. The scanning electron microscopy results show that CNTs are embedded into the metal substrate and act as stable field emitters. The welded cathode demonstrates an excellent field emission with high emission current density and good current stability.

  1. Reconstruction of a phreatic eruption on 27 September 2014 at Ontake volcano, central Japan, based on proximal pyroclastic density current and fallout deposits

    NASA Astrophysics Data System (ADS)

    Maeno, Fukashi; Nakada, Setsuya; Oikawa, Teruki; Yoshimoto, Mitsuhiro; Komori, Jiro; Ishizuka, Yoshihiro; Takeshita, Yoshihiro; Shimano, Taketo; Kaneko, Takayuki; Nagai, Masashi

    2016-05-01

    The phreatic eruption at Ontake volcano on 27 September 2014, which caused the worst volcanic disaster in the past half-century in Japan, was reconstructed based on observations of the proximal pyroclastic density current (PDC) and fallout deposits. Witness observations were also used to clarify the eruption process. The deposits are divided into three major depositional units (Units A, B, and C) which are characterized by massive, extremely poorly sorted, and multimodal grain-size distribution with 30-50 wt% of fine ash (silt-clay component). The depositional condition was initially dry but eventually changed to wet. Unit A originated from gravity-driven turbulent PDCs in the relatively dry, vent-opening phase. Unit B was then produced mainly by fallout from a vigorous moist plume during vent development. Unit C was derived from wet ash fall in the declining stage. Ballistic ejecta continuously occurred during vent opening and development. As observed in the finest population of the grain-size distribution, aggregate particles were formed throughout the eruption, and the effect of water in the plume on the aggregation increased with time and distance. Based on the deposit thickness, duration, and grain-size data, and by applying a scaling analysis using a depth-averaged model of turbulent gravity currents, the particle concentration and initial flow speed of the PDC at the summit area were estimated as 2 × 10-4-2 × 10-3 and 24-28 m/s, respectively. The tephra thinning trend in the proximal area shows a steeper slope than in similar-sized magmatic eruptions, indicating a large tephra volume deposited over a short distance owing to the wet dispersal conditions. The Ontake eruption provided an opportunity to examine the deposits from a phreatic eruption with a complex eruption sequence that reflects the effect of external water on the eruption dynamics.

  2. The study of lead vapor ionization in discharge with a hot cathode and efficiency of its deposition on the substrates applied for plasma separation method

    NASA Astrophysics Data System (ADS)

    Antonov, N. N.; Samokhin, A. A.; Zhabin, S. N.; Gavrikov, A. V.; Smirnov, V. P.

    2016-11-01

    Spent nuclear fuel plasma separation method approbation implies the use of model substances. Thus it is necessary to solve the problem of material conversion into a cold plasma flow, as well as the problem of deposition on collectors. For this purpose, we carried out a kinetic and hydrodynamic simulation of the discharge with hot cathode in the lead vapor (lead vapor was injected into the interelectrode gap). Dependencies of the ionization efficiency, electrostatic potential distribution, density distribution of ions and electrons in the discharge gap on the discharge current density and the model substance vapor concentration were obtained. The simulation results show that at discharge current density of about 3.5 A/cm2 and the lead vapor concentration of 2 × 1012 cm-3, the ionization efficiency is close to 60%. Experimental research of the discharge with a hot cathode in the lead vapor was carried out. We also carried out the research of the Pb condensation coefficients on various substrates. For experimental data analysis the numerical model based on Monte Carlo method was used. The research results show that deposition coefficients at medium temperatures of substrates near 70 °C do not drop lower than 75%.

  3. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 2: Corrosion and protection mechanisms

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the deposition current density. The corrosion resistance of the deposits was studied and compared with that of monolayers of Ni-P and Zn-Ni alloys via Tafel polarization, EIS and salt spray tests. Characterization of corrosion products by means of EDS and XRD revealed more details from the corrosion mechanism of the monolayers and multilayers. The corrosion current density of Ni-P/Zn-Ni CMMCs were around one tenth of Zn-Ni monolayer. The CMMC with incomplete layers performed lower polarization resistance and higher corrosion current density compared to the CMMC with complete layers. The electrical circuit that was proposed for modeling the corrosion process based on the EIS spectrum, proved that layering reduces the porosity and consequently improves the barrier properties. Although, layering of Zn-Ni layers with Ni-P deposits increased the time to red rust in salt spray test, the time for white rust formation decreased. The corrosion mechanism of both Zn-Ni and Ni-P (containing small amount of Zn) was preferential dissolution of Zn and the corrosion products were comprised of mainly Zn hydroxychloride and Zn hydroxycarbonate. Also, Ni and P did not take part in the corrosion products. Based on the electrochemical character of the layers and the morphology of the corroded surface, the corrosion mechanism of multilayers was discussed.

  4. Near-surface Density Currents Observed in the Southeast Pacific Stratocumulus-topped Marine Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbanks, Matt C.; Yuter, S. E.; de Szoeke, S.

    2015-09-01

    Density currents (i.e. cold pools or outflows) beneath marine stratocumulus clouds are characterized using a 30-d data set of ship-based observations obtained during the 2008 Variability of American Monsoon Systems (VAMOS) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) in the southeast Pacific. An objective method identifies 71 density current fronts using an air density criterion and isolates each density current’s core (peak density) and tail (dissipating) zone. Compared to front and core zones, most density current tails exhibited weaker density gradients and wind anomalies elongated about the axis of the mean wind. The mean cloud-level advection relative to the surface layer windmore » (1.9 m s-1) nearly matches the mean density current propagation speed (1.8 m s-1). The similarity in speeds allows drizzle cells to deposit tails in their wakes. Based on high-resolution scanning Doppler lidar data, prefrontal updrafts had a mean intensity of 0.91 m s-1, reached an average altitude of 800 m, and were often surmounted by low-lying shelf clouds not connected to the overlying stratocumulus cloud. Nearly 90% of density currents were identified when C-band radar estimated 30-km diameter areal average rain rates exceeded 1 mm d-1. Rather than peaking when rain rates are highest overnight, density current occurrence peaks between 0600 and 0800 local solar time when enhanced local drizzle co-occurs with shallow subcloud dry and stable layers. The dry layers may contribute to density current formation by enhancing subcloud evaporation of drizzle. Density currents preferentially occur in regions of open cells but also occur in regions of closed cells.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Polat, Ozgur; Ertugrul, Memhet; Thompson, James R

    To obtain an engineered surface for deposition of high-Tc superconductors, nanoscale modulations of the surface of the underlying LaMnO3 (LMO) cap layer is a potential source for generating microstructural defects in YBa2Cu3O7- (YBCO) films. These defects may improve the flux-pinning and consequently increase the critical current density, Jc. To provide such nanoscale modulation via a practical and scalable process, tantalum (Ta) and palladium (Pd) nano-islands were deposited using dc-magnetron sputtering on the surface of the cap layer of commercial metal tape templates for second-generation wires. The size and density of these nano-islands can be controlled by changing sputtering conditions suchmore » as the power and deposition time. Compared to the reference sample grown on an untreated LMO cap layer, the YBCO films grown on the LMO cap layers with Ta or Pd nano-islands exhibited improved in-field Jc performance. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were used to assess the evolving size and density of the nano-islands.« less

  6. Hysteresis in Lanthanide Zirconium Oxides Observed Using a Pulse CV Technique and including the Effect of High Temperature Annealing.

    PubMed

    Lu, Qifeng; Zhao, Chun; Mu, Yifei; Zhao, Ce Zhou; Taylor, Stephen; Chalker, Paul R

    2015-07-29

    A powerful characterization technique, pulse capacitance-voltage (CV) technique, was used to investigate oxide traps before and after annealing for lanthanide zirconium oxide thin films deposited on n-type Si (111) substrates at 300 °C by liquid injection Atomic Layer Deposition (ALD). The results indicated that: (1) more traps were observed compared to the conventional capacitance-voltage characterization method in LaZrO x ; (2) the time-dependent trapping/de-trapping was influenced by the edge time, width and peak-to-peak voltage of a gate voltage pulse. Post deposition annealing was performed at 700 °C, 800 °C and 900 °C in N₂ ambient for 15 s to the samples with 200 ALD cycles. The effect of the high temperature annealing on oxide traps and leakage current were subsequently explored. It showed that more traps were generated after annealing with the trap density increasing from 1.41 × 10 12 cm -2 for as-deposited sample to 4.55 × 10 12 cm -2 for the 800 °C annealed one. In addition, the leakage current density increase from about 10 - ⁶ A/cm² at V g = +0.5 V for the as-deposited sample to 10 -3 A/cm² at V g = +0.5 V for the 900 °C annealed one.

  7. Merging field mapping and numerical simulation to interpret the lithofacies variations from unsteady pyroclastic density currents on uneven terrain: The case of La Fossa di Vulcano (Aeolian Islands, Italy)

    NASA Astrophysics Data System (ADS)

    Doronzo, Domenico M.; Dellino, Pierfrancesco; Sulpizio, Roberto; Lucchi, Federico

    2017-01-01

    In order to obtain results from computer simulations of explosive volcanic eruptions, one either needs a statistical approach to test a wide range of initial and boundary conditions, or needs using a well-constrained field case study via stratigraphy. Here we followed the second approach, using data obtained from field mapping of the Grotta dei Palizzi 2 pyroclastic deposits (Vulcano Island, Italy) as input for numerical modeling. This case study deals with impulsive phreatomagmatic explosions of La Fossa Cone that generated ash-rich pyroclastic density currents, interacting with the topographic high of the La Fossa Caldera rim. One of the simplifications in dealing with well-sorted ash (one particle size in the model) is to highlight the topographic effects on the same pyroclastic material in an unsteady current. We demonstrate that by merging field data with 3D numerical simulation results it is possible to see key details of the dynamical current-terrain interaction, and to interpret the lithofacies variations of the associated deposits as a function of topography-induced sedimentation (settling) rate. Results suggest that a value of the sedimentation rate lower than 5 kg/m2 s at the bed load can still be sheared by the overlying current, producing tractional structures (laminae) in the deposits. Instead, a sedimentation rate higher than that threshold can preclude the formation of tractional structures, producing thicker massive deposits. We think that the approach used in this study could be applied to other case studies (both for active and ancient volcanoes) to confirm or refine such threshold value of the sedimentation rate, which is to be considered as an upper value as for the limitations of the numerical model.

  8. Electrodeposition of high-density lithium vanadate nanowires for lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Hua, Kang; Li, Xiujuan; Fang, Dong; Yi, Jianhong; Bao, Rui; Luo, Zhiping

    2018-07-01

    Lithium vanadate nanowires have been electrodeposited onto a titanium (Ti) foil by a direct current electrodeposition without template. The morphology, crystal structure, and the effects of deposition voltage, temperature and time on the prepared samples were tested and presented. The as-prepared lithium vanadate nanowires/Ti composite can be used as electrode for lithium-ion battery. Electrochemical measurements showed that the electrode displayed a specific discharge capacitance as high as 235.1 mAh g-1 after 100 cycles at a current density of 30 mA g-1. This research provides a new pathway to explore high tap density vanadates nanowires on metals with enhanced electrochemical performance.

  9. Construction of surface HA/TiO2 coating on porous titanium scaffolds and its preliminary biological evaluation.

    PubMed

    Chen, Hongjie; Wang, Chunli; Yang, Xiao; Xiao, Zhanwen; Zhu, Xiangdong; Zhang, Kai; Fan, Yujiang; Zhang, Xingdong

    2017-01-01

    A simple approach to fabricating hydroxyxapatite/titanium dioxide (HA/TiO 2 ) coating on porous titanium (Ti) scaffolds was developed in the present study. Surface TiO 2 layer was firstly formed on porous Ti scaffolds with multi-scale pores by acid-alkali (AA) treatment. The outer HA layer was then formed on the TiO 2 layer by subsequent pulse electrochemical deposition (ED) technique. All the three main process parameters, i.e. deposition times, current density and mass transfer mode affected the properties of the HA coating notably. Under the conditions of 90 deposition cycles, -10mA/cm 2 of pulse current density and stirring, a thin layer of homogeneous and nanorod-like HA sediments was formed on the substrate surface of porous Ti scaffolds. The results of protein adsorption and cellular experiments showed that compared to the single TiO 2 surface, the HA/TiO 2 surface allowed more adsorption of serum proteins and further enhanced the alkaline phosphatase (ALP) activity of MC3T3-E1 osteoblasts. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Studies of the Codeposition of Cobalt Hydroxide and Nickel Hydroxide

    NASA Technical Reports Server (NTRS)

    Ho, C. H.; Murthy, M.; VanZee, J. W.

    1997-01-01

    Topics considered include: chemistry, experimental measurements, planar film model development, impregnation model development, results and conclusion. Also included: effect of cobalt concentration on deposition/loading; effect of current density on loading distribution.

  11. Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode.

    PubMed

    Xu, Shaomao; McOwen, Dennis W; Wang, Chengwei; Zhang, Lei; Luo, Wei; Chen, Chaoji; Li, Yiju; Gong, Yunhui; Dai, Jiaqi; Kuang, Yudi; Yang, Chunpeng; Hamann, Tanner R; Wachsman, Eric D; Hu, Liangbing

    2018-06-13

    Solid-state electrolytes (SSEs) have been widely considered as enabling materials for the practical application of lithium metal anodes. However, many problems inhibit the widespread application of solid state batteries, including the growth of lithium dendrites, high interfacial resistance, and the inability to operate at high current density. In this study, we report a three-dimensional (3D) mixed electron/ion conducting framework (3D-MCF) based on a porous-dense-porous trilayer garnet electrolyte structure created via tape casting to facilitate the use of a 3D solid state lithium metal anode. The 3D-MCF was achieved by a conformal coating of carbon nanotubes (CNTs) on the porous garnet structure, creating a composite mixed electron/ion conductor that acts as a 3D host for the lithium metal. The lithium metal was introduced into the 3D-MCF via slow electrochemical deposition, forming a 3D lithium metal anode. The slow lithiation leads to improved contact between the lithium metal anode and garnet electrolyte, resulting in a low resistance of 25 Ω cm 2 . Additionally, due to the continuous CNT coating and its seamless contact with the garnet we observed highly uniform lithium deposition behavior in the porous garnet structure. With the same local current density, the high surface area of the porous garnet framework leads to a higher overall areal current density for stable lithium deposition. An elevated current density of 1 mA/cm 2 based on the geometric area of the cell was demonstrated for continuous lithium cycling in symmetric lithium cells. For battery operation of the trilayer structure, the lithium can be cycled between the 3D-MCF on one side and the cathode infused into the porous structure on the opposite side. The 3D-MCF created by the porous garnet structure and conformal CNT coating provides a promising direction toward new designs in solid-state lithium metal batteries.

  12. Insights into Proximal-Medial Pyroclastic Density Current Deposits at a High-Risk Glaciated Volcano: Mt Ruapehu, New Zealand

    NASA Astrophysics Data System (ADS)

    Cowlyn, J.; Kennedy, B.; Gravley, D. M.; Cronin, S. J.; Pardo, N.; Wilson, T. M.; Leonard, G.; Townsend, D.; Dufek, J.

    2014-12-01

    Pyroclastic density currents (PDCs) are a destructive volcanic hazard. Quantifying the types, frequency and magnitudes of PDC events in the geological record is essential for effective risk management. However small-medium volume valley-confined PDC deposits have low preservation potential, especially when emplaced in active drainages or onto snow or ice. Where PDC deposits are preserved they can be difficult to distinguish from other surficial deposits and are frequently misinterpreted or overlooked. This is the case at Mt. Ruapehu; a much visited, high-risk active volcano in New Zealand with no historical PDCs. Through systematic field observations we identified several young proximal-medial andesitic PDC deposits exposed on Ruapehu's eastern flanks. The oldest deposits (Ohinewairua PDCs, <13.6 ka) are massive pumice-rich deposits that are preserved at least 7km from source (North Crater) and correlate with Ruapehu's largest plinian eruptions. Overlying these, the pumice-rich Pourahu PDC deposit reaches >10km from source (South Crater) and correlates with Ruapehu's last known plinian eruption (~11.6 ka). Several younger locally preserved PDC deposits (Tukino PDCs) with denser juvenile clasts represent proximal PDCs from smaller eruptions at South Crater. Finally, a variably welded, bedded deposit containing clasts of welded spatter is interpreted to represent multiple failures of near-vent (North Ruapehu) accumulations of erupted material. Here, PDC initiation appears to have been controlled by the topographic gradient and deposition rate, without requiring a collapsing eruption column. The Ruapehu deposits highlight the limited preservation of PDC deposits, which appears to be favoured at PDC margins. Lateral and vertical flow stratification means the resulting deposits may not then represent the bulk flow. Additionally, deposit textures, distributions, and associations with moraines indicate that many of Ruapehu's PDCs encountered glacial ice during transport. This affected their distribution, mobility and preservation, and has implications for assessing the PDC hazard at Ruapehu and other glaciated volcanoes. The deposits reinforce that hazardous PDCs threatening life and infrastructure may be generated even from small eruptions and across a wide range of eruption styles.

  13. Cathodic Protection Measurement Through Inline Inspection Technology Uses and Observations

    NASA Astrophysics Data System (ADS)

    Ferguson, Briana Ley

    This research supports the evaluation of an impressed current cathodic protection (CP) system of a buried coated steel pipeline through alternative technology and methods, via an inline inspection device (ILI, CP ILI tool, or tool), in order to prevent and mitigate external corrosion. This thesis investigates the ability to measure the current density of a pipeline's CP system from inside of a pipeline rather than manually from outside, and then convert that CP ILI tool reading into a pipe-to-soil potential as required by regulations and standards. This was demonstrated through a mathematical model that utilizes applications of Ohm's Law, circuit concepts, and attenuation principles in order to match the results of the ILI sample data by varying parameters of the model (i.e., values for over potential and coating resistivity). This research has not been conducted previously in order to determine if the protected potential range can be achieved with respect to the predicted current density from the CP ILI device. Kirchhoff's method was explored, but certain principals could not be used in the model as manual measurements were required. This research was based on circuit concepts which indirectly affected electrochemical processes. Through Ohm's law, the results show that a constant current density is possible in the protected potential range; therefore, indicates polarization of the pipeline, which leads to calcareous deposit development with respect to electrochemistry. Calcareous deposit is desirable in industry since it increases the resistance of the pipeline coating and lowers current, thus slowing the oxygen diffusion process. This research conveys that an alternative method for CP evaluation from inside of the pipeline is possible where the pipe-to-soil potential can be estimated (as required by regulations) from the ILI tool's current density measurement.

  14. Modelling of the reactive sputtering process with non-uniform discharge current density and different temperature conditions

    NASA Astrophysics Data System (ADS)

    Vašina, P; Hytková, T; Eliáš, M

    2009-05-01

    The majority of current models of the reactive magnetron sputtering assume a uniform shape of the discharge current density and the same temperature near the target and the substrate. However, in the real experimental set-up, the presence of the magnetic field causes high density plasma to form in front of the cathode in the shape of a toroid. Consequently, the discharge current density is laterally non-uniform. In addition to this, the heating of the background gas by sputtered particles, which is usually referred to as the gas rarefaction, plays an important role. This paper presents an extended model of the reactive magnetron sputtering that assumes the non-uniform discharge current density and which accommodates the gas rarefaction effect. It is devoted mainly to the study of the behaviour of the reactive sputtering rather that to the prediction of the coating properties. Outputs of this model are compared with those that assume uniform discharge current density and uniform temperature profile in the deposition chamber. Particular attention is paid to the modelling of the radial variation of the target composition near transitions from the metallic to the compound mode and vice versa. A study of the target utilization in the metallic and compound mode is performed for two different discharge current density profiles corresponding to typical two pole and multipole magnetics available on the market now. Different shapes of the discharge current density were tested. Finally, hysteresis curves are plotted for various temperature conditions in the reactor.

  15. Truncation planes from a dilute pyroclastic density current: field data and analogue experiments.

    NASA Astrophysics Data System (ADS)

    Douillet, Guilhem Amin; Gegg, Lukas; Mato, Celia; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    Pyroclastic density currents (PDCs) are a catastrophic transport mode of ground hugging gas-particle mixtures associated with explosive volcanic eruptions. The extremely high sedimentation rates and turbulence levels of these particulate density currents can freeze and preserve dynamic phenomena that happen but are not recorded in other sedimentary environments. Several intriguing and unanticipated features have been identified in outcrops and reproduced via analogue experiments, with the potential to change our views on morphodynamics and particle motion. Three types of small-scale (ca. 10 cm) erosion structures were observed on the stoss side of dune bedforms in the field: 1) vertical erosion planes covered with stoss-aggrading, vertical lamination, 2) overturned laminations at the preserved limit of erosion planes and 3) loss of stratification at erosion planes. These features are interpreted to indicate rapidly evolving velocities, undeveloped boundary layers, and a diffuse zone rather than a sharp border defining the flow-bed interface. Most experimental work on particle motion and erosion from the literature has been accomplished under constant conditions and with planar particle beds. Here, in order to reproduce the field observations, short-lived air-jets generated with a compressor-gun were shot into stratified beds of coarse particles (300 μm) of low density (1000 kg/m3). These "eroding jets" were filmed with a high speed camera and the deposits were sectioned after the experiments. The three natural types of erosion characteristics were experimentally generated. Vertical erosion planes are produced by small-scale, relatively sustained jets. Overturned laminations are due to a fluidization-like behavior at the erosion front of short-lived, strong jets, demonstrating that the fluid's velocity profile penetrates into the deposit. Loss of lamination seems related to the nature of erosion onset in packages. Rather than providing simple answers, the dataset raises questions and the need for further work on the sedimentation of pyroclastic density currents and turbulence in general. Our threshold-based concepts to explain the formation and initiation of bedforms may be inadequate in many highly depositional settings. This presentation will hopefully trigger discussions and exchange of ideas between sedimentologists, geomorphologists and physicists from all backgrounds.

  16. Ion beam and dual ion beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1994-11-01

    Ion beam sputter deposition (IBS) and dual ion beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. Optical properties ie refractive index and extinction coefficient of IBS films were determined in the 250 - 1100 nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n equals 2.06 at (lambda) equals 550 nm. Films deposited using DIBS ie deposition assisted by low energy Ar and O2 ions (Ea equals 0 - 300 eV) and low current density (Ji equals 0 - 40 (mu) A/cm2) showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy while composition of the film and contaminants were determined by Rutherford scattering spectroscopy. Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target while assisted deposition slightly increased the Ar content. Stress in the IBS deposited films was measured by the bending technique. IBS deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction method.

  17. Ion-beam and dual-ion-beam sputter deposition of tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Cevro, Mirza; Carter, George

    1995-02-01

    Ion-beam sputter deposition (IBS) and dual-ion-beam sputter deposition (DIBS) of tantalum oxide films was investigated at room temperature and compared with similar films prepared by e-gun deposition. The optical properties, i.e., refractive index and extinction coefficient, of IBS films were determined in the 250- to 1100-nm range by transmission spectrophotometry and at (lambda) equals 632.8 nm by ellipsometry. They were found to be mainly sensitive to the partial pressure of oxygen used as a reactive gas in the deposition process. The maximum value of the refractive index of IBS deposited tantalum oxide films was n equals 2.15 at (lambda) equals 550 nm and the extinction coefficient of order k equals 2 X 10-4. Films deposited by e-gun deposition had refractive index n 2.06 at (lambda) equals 550 nm. Films deposited using DIBS, i.e., deposition assisted by low energy Ar and O2 ions (Ea equals 0 to 300 eV) and low current density (Ji equals 0 to 40 (mu) A/cm2), showed no improvement in the optical properties of the films. Preferential sputtering occurred at Ea(Ar) equals 300 eV and Ji equals 20 (mu) A/cm2 and slightly oxygen deficient films were formed. Different bonding states in the tantalum-oxide films were determined by x-ray spectroscopy, whereas composition of the film and contaminants were determined by Rutherford backscattering spectroscopy (RBS). Tantalum oxide films formed by IBS contained relatively high Ar content (approximately equals 2.5%) originating from the reflected argon neutrals from the sputtering target whereas assisted deposition slightly increased the Ar content. Stress in the IBS-deposited films was measured by the bending technique. IBS-deposited films showed compressive stress with a typical value of s equals 3.2 X 109 dyn/cm2. Films deposited by concurrent ion bombardment showed an increase in the stress as a function of applied current density. The maximum was s approximately equals 5.6 X 109 dyn/cm2 for Ea equals 300 eV and Ji equals 35 (mu) A/cm2. All deposited films were amorphous as measured by the x-ray diffraction (XRD) method.

  18. Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d'Aveto Formation case (Northern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Di Capua, Andrea; Groppelli, Gianluca

    2016-12-01

    The occurrence of PDC deposits in a foredeep basin sequence, named Val d'Aveto Formation (32-29 Ma, Northern Apennines, Italy), provides new information on the behavior of pyroclastic density currents entering the water. In this work, stratigraphic, petrographic and mineralogical features that characterize three pyroclastic deposits have been described and analyzed in the field (facies and lithological analysis on the blocky-size fraction) and in the laboratory (image analyses on the blocky-size detritus, optical analyses of the microtextures, mineralogical analyses through X-ray powder diffraction (XRPD) and scanning electron microscope with energy dispersive X-ray spectometry (SEM-EDS). The deposits are lapilli- to blocky-size, with a blocky-size fraction constituted of accidental detritus. In thin sections, their groundmass texture varies from porphyritic to eutaxitic where coarser particles become close each others. Growth rims have been also detected around plagioclase crystals. Pyrite habits and oxidation, and plagioclase albitization are consistent with hydrothermal temperature conditions of 200 °C. All these results have been compared with the information provided by modern examples of PDC deposits and laboratory experiments on the behavior of water/hot particles mixing. Grain-to-grain collision has been considered as the main flow mechanism that sustained and avoided the disaggregation of the PDCs entering the water.

  19. Syn-eruptive, soft-sediment deformation of dilute pyroclastic density current deposits: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, È.; Müller, S. K.; Kueppers, U.; Dingwell, D. B.

    2014-12-01

    Soft-sediment deformation produces intriguing sedimentary structures and can occur in diverse environments and from a variety of triggers. From the observation of such structures and their interpretation in terms of trigger mechanisms, valuable information can be extracted about former conditions. Here we document examples of syn-eruptive deformation in dilute pyroclastic density current deposits. Outcrops from 6 different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Ubehebe craters (USA), Tungurahua (Ecuador), Soufrière Hills (Montserrat), Laacher See (Germany), Tower Hill and Purrumbete lake (both Australia). Isolated slumps as well as sinking pseudonodules are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. Isolated, cm-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. The occurrence of degassing pipes together with basal intrusive dikes suggest fluidization during flow stages, and can facilitate the development of Kelvin-Helmholtz structures. The occurrence at the base of flow units of injection dikes in some outcrops compared with suction-driven local uplifts in others indicates the role of dynamic pore pressure. Variations of the latter are possibly related to local changes between depletive and accumulative dynamics of flows. Ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Finally, the passage of shock waves emanating from the vent may be preserved in the form of trains of isolated, fine-grained overturned beds which may disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of a vent. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. These are just some of the many possible triggers acting in a single environment, and reveal the potential for insights into the eruptive mechanisms of dilute pyroclastic density currents.

  20. Optimization of physicochemical characteristics of a lithium anode interface for high-efficiency cycling: an effect of electrolyte temperature

    NASA Astrophysics Data System (ADS)

    Ishikawa, Masashi; Tasaka, Yuko; Yoshimoto, Nobuko; Morita, Masayuki

    Precycling of lithium (Li) metal on a nickel substrate at a low-temperature (-20°C) in propylene carbonate (PC) mixed with dimethyl carbonate (DMC) and Li hexafluorophosphate (LiPF 6) (LiPF 6-PC/DMC) enhanced Li cycleability in the subsequent cycles at a room temperature (25°C). In LiPF 6-PC/DMC, not only the low-temperature precycling in the initial 10 cycles was effective in the improvement of Li cycle life but also the first low-temperature Li deposition followed by room temperature cycling enhanced the Li cycle life. Such a precycling effect was observed with various current densities at the initial Li deposition and the subsequent cycling. When the current density of the cycling was high, improved cycling efficiency was observed and the efficiency of the Li electrode undergoing the precycling was close to that at a constant temperature of -20°C.

  1. Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d

    NASA Astrophysics Data System (ADS)

    Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.

    2018-06-01

    YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.

  2. Correlations between critical current density, j(sub c), critical temperature, T(sub c),and structural quality of Y1B2Cu3O(7-x) thin superconducting films

    NASA Technical Reports Server (NTRS)

    Chrzanowski, J.; Xing, W. B.; Atlan, D.; Irwin, J. C.; Heinrich, B.; Cragg, R. A.; Zhou, H.; Angus, V.; Habib, F.; Fife, A. A.

    1995-01-01

    Correlations between critical current density (j(sub c)) critical temperature (T(sub c)) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO3 single crystals. Distinct maxima in j(sub c) as a function of the linewidths of the (00 l) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j(sub c) indicate that the magnetic flux lines, in films of structural quality approachingthat of single crystals, are insufficiently pinned which results in a decreased critical current density. T(sub c) increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j(sub c) and the density of edge dislocations ND was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N(sub D) approximately 1-2 x 10(exp 9)/sq cm.

  3. Enhanced field emission from hexagonal rhodium nanostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathe, Bhaskar R.; Kakade, Bhalchandra A.; Mulla, Imtiaz S.

    2008-06-23

    Shape selective synthesis of nanostructured Rh hexagons has been demonstrated with the help of a modified chemical vapor deposition using rhodium acetate. An ultralow threshold field of 0.72 V/{mu}m is observed to generate a field emission current density of 4x10{sup -3} {mu}A/cm{sup 2}. The high enhancement factor (9325) indicates that the origin of electron emission is from nanostructured features. The smaller size of emitting area, excellent current density, and stability over a period of more than 3 h are promising characteristics for the development of electron sources.

  4. Arctic Alaska’s Lower Cretaceous (Hauterivian and Barremian) mudstone succession - Linking lithofacies, texture, and geochemistry to marine processes: Chapter B in Studies by the U.S. Geological Survey in Alaska, vol. 15

    USGS Publications Warehouse

    Keller, Margaret A.; Macquaker, Joe H.S.

    2015-01-01

    Our results document the variation in facies and textures of the Hauterivian and Barremian Lower Cretaceous mudstone succession of Arctic Alaska. Comparison of these characteristics to the products of modern processes on the North Slope of Alaska, in the Beaufort Sea, and elsewhere suggest that this succession formed primarily from depositional processes related to seasonal sea ice with intermittent fluvial-sourced sediment deposited by density currents and episodic erosion and reworking by storms and other currents.

  5. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor.

    PubMed

    Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J

    2012-09-28

    This work demonstrates electron beam induced deposition of silicon from a SiCl(4) liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.

  6. Electron beam induced deposition of silicon nanostructures from a liquid phase precursor

    NASA Astrophysics Data System (ADS)

    Liu, Yin; Chen, Xin; Noh, Kyong Wook; Dillon, Shen J.

    2012-09-01

    This work demonstrates electron beam induced deposition of silicon from a SiCl4 liquid precursor in a transmission electron microscope and a scanning electron microscope. Silicon nanodots of tunable size are reproducibly grown in controlled geometries. The volume of these features increases linearly with deposition time. The results indicate that secondary electrons generated at the substrate surface serve as the primary source of silicon reduction. However, at high current densities the influence of the primary electrons is observed to retard growth. The results demonstrate a new approach to fabricating silicon nanostructures and provide fundamental insights into the mechanism for liquid phase electron beam induced deposition.

  7. Current transport and capacitance-voltage characteristics of an n-PbTe/p-GaP heterojunction prepared using the electron beam deposition technique

    NASA Astrophysics Data System (ADS)

    Nasr, Mahmoud; El Radaf, I. M.; Mansour, A. M.

    2018-04-01

    In this study, a crystalline n-PbTe/p-GaP heterojunction was fabricated using the electron beam deposition technique. The structural properties of the prepared heterojunction were examined by X-ray diffraction and scanning electron microscopy. The dark current-voltage characteristics of the heterojunction were investigated at different temperatures ranging from 298 to 398 K. The rectification factor, series resistance, shunt resistance, diode ideality factor, and effective barrier height (ϕb) were determined. The photovoltaic parameters were identified based on the current density-voltage characteristics under illumination. The capacitance-voltage characteristics showed that the junction was abrupt in nature.

  8. Creating Hybrid Plasmas With Off-Axis ECCD for Radiating Divertor Studies in DIII-D

    NASA Astrophysics Data System (ADS)

    Petty, C. C.; Ferron, J. R.; Luce, T. C.; Osborne, T. H.; Petrie, T. W.; Turco, F.; Holcomb, C. T.; Thome, K. E.

    2017-10-01

    A long duration, high density, high power hybrid scenario has been developed for use in radiative divertor studies in DIII-D. Using 11.2 MW of co-NBI power and 3.4 MW of ECCD, with a total injected energy of up to 56 MJ, high performance hybrid plasmas with βN = 3.7 and H98y2 = 1.5 were created. The hybrid plasmas were fully non-inductive at densities of n 4.2 ×1019 m-3 with central ECCD, but the EC deposition needed to be moved to ρ = 0.45 to avoid the right-hand cutoff when the density was raised to n 5.8 ×1019 m-3 for radiative divertor studies. Although moving the EC deposition to ρ = 0.45 had the effect of dropping τE by 10%, the energy confinement time increased with higher density like τE n0.4, allowing high beta to be maintained. While the plasma current profile displays the usual self-organizing properties of hybrids - an anomalously broad profile with qmin >1 - local current drive can still have a measurable effect on stability, either positively or negatively. For example, hybrid discharges with radial ECH deposited at ρ = 0.45 proved to be more robustly stable to n = 1 modes (can be either a 1/1 or 2/1 mode) than similar discharges with co-ECCD at the same location. Interestingly, the large 1/1 mode had almost no effect on energy confinement but strongly degraded particle confinement; thus this mode needed to be suppressed to achieve the high pedestal densities required for radiative divertor studies. Work supported by USDOE under DE-FC02-04ER54698.

  9. Experimental study on magnetically insulated transmission line electrode surface evolution process under MA/cm current density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, PengFei; Qiu, Aici; State Key Laboratory of Intense Pulse Radiation of Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an 710024

    The design of high-current density magnetically insulated transmission line (MITL) is a difficult problem of current large-scale Z-pinch device. In particular, a thorough understanding of the MITL electrode surface evolution process under high current density is lacking. On the “QiangGuang-I” accelerator, the load area possesses a low inductance short-circuit structure with a diameter of 2.85 mm at the cathode, and three reflux columns with a diameter of 3 mm and uniformly distributed circumference at the anode. The length of the high density MITL area is 20 mm. A laser interferometer is used to assess and analyze the state of the MITL cathode andmore » anode gap, and their evolution process under high current density. Experimental results indicate that evident current loss is not observed in the current density area at pulse leading edge, and peak when the surface current density reaches MA/cm. Analysis on electrode surface working conditions indicates that when the current leading edge is at 71.5% of the peak, the total evaporation of MITL cathode structure can be realized by energy deposition caused by ohmic heating. The electrode state changes, and diffusion conditions are reflected in the laser interferometer image. The MITL cathode area mainly exists in metal vapor form. The metal vapor density in the cathode central region is higher than the upper limit of laser penetration density (∼4 × 10{sup 21}/cm{sup 3}), with an expansion velocity of ∼0.96 km/s. The metal vapor density in the electrode outer area may lead to evident distortion of fringes, and its expansion velocity is faster than that in the center area (1.53 km/s).« less

  10. Steadiness in Dilute Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Andrews, B. J.

    2015-12-01

    Pyroclastic density currents (PDCs) are often unsteady, as evidenced by direct observations of dilute lobes or jets emerging from the fronts of larger currents and by deposits that indicate transient transport and depositional regimes. We used scaled experiments to investigate unsteadiness in dilute PDCs. The experimental currents were run in an 8.5x6.1x2.6 m tank and comprised heated or ambient temperature 20-μm talc powder turbulently suspended in air. Experiments were scaled such that densimetric and thermal Richardson numbers, Froude number, and particle Stokes and settling numbers were dynamically similar to natural dilute PDCs. Although the experiment Reynolds numbers are substantially lower than those of natural PDCs, the experiments are fully turbulent. Experiments were observed with video and high-speed cameras and high-frequency thermocouples. Currents were generated with total eruption durations of 100 s. Unsteadiness in source conditions was produced by interrupting supply for intervals, t, with durations of 1, 2.5, 5, and 10 s in the experimental runs at 35 and 70 s. When t<2.5 s, the currents are indistinguishable from currents with steady supply. In runs with t=2.5-5 s, the individual pulses comprising each current are readily apparent near the source, but decay with distance downstream until the currents appear as single (e.g. steady) flows. In experiments with t=10 s, the 3 pulses comprising each run never merge and the currents remain unsteady. Comparison with the integral turbulent timescale, τ, and current velocity, U, show that unsteadiness is persistent when t>3<τ but currents are steady when t<τ. In currents with 3τ>t>τ, unsteadiness decays such that at a distance of ~4Ut, the currents are again steady. Applied to natural dilute PDCs, our results suggest that currents and their resulting deposits, will only show evidence of unsteadiness if they are disrupted for many seconds and those breaks may "heal" over distances of 100s of meters.

  11. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-10-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density ( J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  12. Electrosynthesis of nanofibers and nano-composite films

    DOEpatents

    Lin, Yuehe; Liang, Liang; Liu, Jun

    2006-10-17

    A method for producing an array of oriented nanofibers that involves forming a solution that includes at least one electroactive species. An electrode substrate is brought into contact with the solution. A current density is applied to the electrode substrate that includes at least a first step of applying a first substantially constant current density for a first time period and a second step of applying a second substantially constant current density for a second time period. The first and second time periods are of sufficient duration to electrically deposit on the electrode substrate an array of oriented nanofibers produced from the electroactive species. Also disclosed are films that include arrays or networks of oriented nanofibers and a method for amperometrically detecting or measuring at least one analyte in a sample.

  13. RGO/Au NPs/N-doped CNTs supported on nickel foam as an anode for enzymatic biofuel cells.

    PubMed

    Zhang, He; Zhang, Lingling; Han, Yujie; Yu, You; Xu, Miao; Zhang, Xueping; Huang, Liang; Dong, Shaojun

    2017-11-15

    In this study, three-dimensional reduced graphene oxide/Au NPs/nitrogen-doped carbon nanotubes (RGO/Au NPs/N-doped CNTs) assembly supported on nickel foam was utilized as an anode for enzymatic biofuel cells (EBFCs). 3D RGO/Au NPs was obtained by electrodepositing reduced graphene oxide on nickel foam (Ni foam), while Au NPs were co-deposited during the process. Afterwards, nitrogen doped CNTs (N-CNTs) were allowed to grow seamlessly on the surfaces of 3D RGO/Au NPs via a simple chemical vapor deposition (CVD) process. In this nanostructure, Au NPs co-deposition and nitrogen doping offer more active sites for bioelectrocatalysis. Additionally, N-CNTs were demonstrated providing high specific surface area for enzyme immobilization and facilitating the electron transfer between glucose oxidase (GOx) and electrode. The resulting bioanode achieved efficient glucose oxidation with high current densities of 7.02mAcm -2 (0.3V vs. Ag/AgCl). Coupling with a Pt cathode, the fabricated glucose/air biofuel cell exhibited an open-circuit potential of 0.32V and generated a maximum power density 235µWcm -2 at 0.15V. This novel electrode substrate achieved high performance in current density at bioelectrochemical systems and could be useful for further exploiting the application of three dimensional carbon-based nanomaterials in EBFCs. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Electrical properties of HfO2 high- k thin-film MOS capacitors for advanced CMOS technology

    NASA Astrophysics Data System (ADS)

    Khairnar, A. G.; Patil, L. S.; Salunke, R. S.; Mahajan, A. M.

    2015-11-01

    We deposited the hafnium dioxide (HfO2) thin films on p-Si (100) substrates. The thin films were deposited with deposition time variations, viz 2, 4, 7 and 20 min using RF-sputtering technique. The thickness and refractive index of the films were measured using spectroscopic ellipsometer. The thicknesses of the films were measured to be 13.7, 21.9, 35.38 and 92.2 nm and refractive indices of 1.90, 1.93, 1.99 and 1.99, respectively, of the films deposited for 2, 4, 7 and 20 min deposition time. The crystal structures of the deposited HfO2 thin films were determined using XRD spectra and showed the monoclinic structure, confirmed with the ICDD card no 34-0104. Aluminum metallization was carried to form the Al/HfO2/ p-Si MOS structures by using thermal evaporation system with electrode area of 12.56 × 10-4 cm2. Capacitance voltage and current voltage measurements were taken to know electrical behavior of these fabricated MOS structures. The electrical parameters such as dielectric constant, flat-band shift and interface trap density determined through CV measurement were 7.99, 0.11 V and 6.94 × 1011 eV-1 cm-2, respectively. The low leakage current density was obtained from IV measurement of fabricated MOS structure at 1.5 V is 4.85 × 10-10 Acm-2. Aforesaid properties explored the suitability of the fabricated HfO2 high- k-based MOS capacitors for advanced CMOS technology.

  15. Ni-P/Zn-Ni compositionally modulated multilayer coatings - Part 1: Electrodeposition and growth mechanism, composition, morphology, roughness and structure

    NASA Astrophysics Data System (ADS)

    Bahadormanesh, Behrouz; Ghorbani, Mohammad

    2018-06-01

    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current density and shifted the crystallization potential of Ni to more nobble values. Codeposition of P with Zn-Ni alloy lead to crack formation in the monolayer that was deposited in 60 mA/cm2. However, the cracks were not observed in the Zn-Ni layers of multilayers. Zn-Ni layers in CMMCs exhibited a three-dimensional pattern of growth while that of Ni-P layers was two-dimensional. Also, the Ni-P deposits tends to fill the discontinuities in Zn-Ni layers and performed leveling properties and lowered the surface roughness of Zn-Ni layers and CMMCs. Structural analysis demonstrated that Ni-P layers were amorphous and the Zn-Ni layers exhibited crystallite phase of Zn11Ni2. Thus, the Ni-P/Zn-Ni CMMCs comprised of alternate layers of amorphous Ni-P and nanocrystalline Zn Ni.

  16. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, James G.; Daily, William D.

    1994-01-01

    A method for simultaneously heating the subsurface and imaging the effects of the heating. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  17. Physical understanding of trends in current collapse with atomic layer deposited dielectrics in AlGaN/GaN MOS heterojunction FETs

    NASA Astrophysics Data System (ADS)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena

    2016-03-01

    Many passivation dielectrics are pursued for suppressing current collapse due to trapping/detrapping of access-region surface traps in AlGaN/GaN based metal oxide semiconductor heterojuction field effect transistors (MOS-HFETs). The suppression of current collapse can potentially be achieved either by reducing the interaction of surface traps with the gate via surface leakage current reduction, or by eliminating surface traps that can interact with the gate. But, the latter is undesirable since a high density of surface donor traps is required to sustain a high 2D electron gas density at the AlGaN/GaN heterointerface and provide a low ON-resistance. This presents a practical trade-off wherein a passivation dielectric with the optimal surface trap characteristics and minimal surface leakage is to be chosen. In this work, we compare MOS-HFETs fabricated with popular ALD gate/passivation dielectrics like SiO2, Al2O3, HfO2 and HfAlO along with an additional thick plasma-enhanced chemical vapor deposition SiO2 passivation. It is found that after annealing in N2 at 700 °C, the stack containing ALD HfAlO provides a combination of low surface leakage and a high density of shallow donor traps. Physics-based TCAD simulations confirm that this combination of properties helps quick de-trapping and minimal current collapse along with a low ON resistance.

  18. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition.

    PubMed

    Lewis, Brett B; Stanford, Michael G; Fowlkes, Jason D; Lester, Kevin; Plank, Harald; Rack, Philip D

    2015-01-01

    Platinum-carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top-down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. In addition to purification, the post-deposition electron stimulated oxygen purification process enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.

  19. Nucleation and growth mechanism of Co-Pt alloy nanowires electrodeposited within alumina template

    NASA Astrophysics Data System (ADS)

    Srivastav, Ajeet K.; Shekhar, Rajiv

    2015-01-01

    Co-Pt alloy nanowires were electrodeposited by direct current electrodeposition within nanoporous alumina templates with varying deposition potentials. The effect of deposition potential on nucleation and growth mechanisms during electrodeposition of Co-Pt alloy nanowires was investigated. The less negative deposition potential (-0.9 V) favours the instantaneous nucleation mechanism. The positive deviation from theoretical instantaneous and progressive nucleation mechanisms occurs at higher negative deposition potentials. The hysteresis behaviour and magnetic properties of electrodeposited Co-Pt alloy nanowires altered with varying deposition potential. The easy magnetization direction was in direction perpendicular to the wire axis. The deposition potential dependent change in hysteresis behaviour with increased coercivity and scattered remanence ratio was observed. This is attributed to better crystallinity with reduced defect density and hydrogen evolution causing structural changes at more negative deposition potentials.

  20. High-current-density electrodeposition using pulsed and constant currents to produce thick CoPt magnetic films on silicon substrates

    NASA Astrophysics Data System (ADS)

    Ewing, Jacob; Wang, Yuzheng; Arnold, David P.

    2018-05-01

    This paper investigates methods for electroplating thick (>20 μm), high-coercivity CoPt films using high current densities (up to 1 A/cm2) and elevated bath temperatures (70 °C). Correlations are made tying current-density and temperature process parameters with plating rate, elemental ratio and magnetic properties of the deposited CoPt films. It also investigates how pulsed currents can increase the plating rate and film to substrate adhesion. Using 500 mA/cm2 and constant current, high-quality, dense CoPt films were successfully electroplated up to 20 μm thick in 1 hr on silicon substrates (0.35 μm/min plating rate). After standard thermal treatment (675°C, 30 min) to achieve the ordered L10 crystalline phase, strong magnetic properties were measured: coercivities up 850 kA/m, remanences >0.5 T, and maximum energy products up to 46 kJ/m3.

  1. Effects of substrate temperature on properties of pulsed dc reactively sputtered tantalum oxide films

    NASA Astrophysics Data System (ADS)

    Jain, Pushkar; Juneja, Jasbir S.; Bhagwat, Vinay; Rymaszewski, Eugene J.; Lu, Toh-Ming; Cale, Timothy S.

    2005-05-01

    The effects of substrate heating on the stoichiometry and the electrical properties of pulsed dc reactively sputtered tantalum oxide films over a range of film thickness (0.14 to 5.4 μm) are discussed. The film stoichiometry, and hence the electrical properties, of tantalum oxide films; e.g., breakdown field, leakage current density, dielectric constant, and dielectric loss are compared for two different cases: (a) when no intentional substrate/film cooling is provided, and (b) when the substrate is water cooled during deposition. All other operating conditions are the same, and the film thickness is directly related to deposition time. The tantalum oxide films deposited on the water-cooled substrates are stoichiometric, and exhibit excellent electrical properties over the entire range of film thickness. ``Noncooled'' tantalum oxide films are stoichiometric up to ~1 μm film thickness, beyond that the deposited oxide is increasingly nonstoichiometric. The presence of partially oxidized Ta in thicker (>~1 μm) noncooled tantalum oxide films causes a lower breakdown field, higher leakage current density, higher apparent dielectric constant, and dielectric loss. The growth of nonstoichiometric tantalum oxide in thicker noncooled films is attributed to decreased surface oxygen concentration due to oxygen recombination and desorption at higher film temperatures (>~100 °C). The quantitative results presented reflect experience with a specific piece of equipment; however, the procedures presented can be used to characterize deposition processes in which film stoichiometry can change.

  2. Forming a structure of the CoNiFe alloys by X-ray irradiation

    NASA Astrophysics Data System (ADS)

    Valko, Natalia; Kasperovich, Andrey; Koltunowicz, Tomasz N.

    The experimental data of electrodeposition kinetics researches and structure formation of ternary CoNiFe alloys deposited onto low-carbon steel 08kp in the presence of X-rays are presented. Relations of deposit rate, current efficiencies, element and phase compositions of CoNiFe coatings formed from sulfate baths with respect to cathode current densities (0.5-3A/dm2), electrolyte composition and irradiation were obtained. It is shown that, the CoNiFe coatings deposited by the electrochemical method involving exposure of the X-rays are characterized by more perfect morphology surfaces with less developed surface geometry than reference coatings. The effect of the X-ray irradiation on the electrodeposition of CoNiFe coatings promotes formatting of alloys with increased electropositive component and modified phase composition.

  3. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington

    USGS Publications Warehouse

    Glicken, Harry

    1996-01-01

    This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and created dispersive stress normal to the movement of material. The dispersive stress preserved the dilation of the material and allowed it to flow.

  4. Porphyry copper deposit density

    USGS Publications Warehouse

    Singer, Donald A.; Berger, Vladimir; Menzie, W. David; Berger, Byron R.

    2005-01-01

    Estimating numbers of undiscovered mineral deposits has been a source of unease among economic geologists yet is a fundamental task in considering future supplies of resources. Estimates can be based on frequencies of deposits per unit of permissive area in control areas around the world in the same way that grade and tonnage frequencies are models of sizes and qualities of undiscovered deposits. To prevent biased estimates it is critical that, for a particular deposit type, these deposit density models be internally consistent with descriptive and grade and tonnage models of the same type. In this analysis only deposits and prospects that are likely to be included in future grade and tonnage models are employed, and deposits that have mineralization or alteration separated by less than an arbitrary but consistent distance—2 km for porphyry copper deposits—are combined into one deposit. Only 286 deposits and prospects that have more than half of the deposit not covered by postmineral rocks, sediments, or ice were counted.Nineteen control areas were selected and outlined along borders of hosting magmatic arc terranes based on three main features: (1) extensive exploration for porphyry copper deposits, (2) definable geologic settings of the porphyry copper deposits in island and continental volcanic-arc subduction-boundary zones, and (3) diversity of epochs of porphyry copper deposit formation.Porphyry copper deposit densities vary from 2 to 128 deposits per 100,000 km2 of exposed permissive rock, and the density histogram is skewed to high values. Ninety percent of the control areas have densities of four or more deposits, 50 percent have densities of 15 or more deposits, and 10 percent have densities of 35 or more deposits per 100,000 km2. Deposit density is not related to age or depth of emplacement. Porphyry copper deposit density is inversely related to the exposed area of permissive rock. The linear regression line and confidence limits constructed with the 19 control areas can be used to estimate the number of undiscovered deposits, given the size of a permissive area. In an example of the use of the equations, we estimate a 90 percent chance of at least four, a 50 percent chance of at least 11, and a 10 percent chance of at least 34 undiscovered porphyry copper deposits in the exposed parts of the Andean belt of Antarctica, which has no known deposits in a permissive area of about 76,000 km2. Measures of densities of deposits presented here allow rather simple yet robust estimation of the number of undiscovered porphyry copper deposits in exposed or covered permissive terranes.

  5. Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films

    NASA Astrophysics Data System (ADS)

    Ducati, C.; Barborini, E.; Piseri, P.; Milani, P.; Robertson, J.

    2002-11-01

    Supersonic cluster beam deposition has been used to produce films with different nanostructures by controlling the deposition parameters such as the film thickness, substrate temperature and cluster mass distribution. The field emission properties of cluster-assembled carbon films have been characterized and correlated to the evolution of the film nanostructure. Threshold fields ranging between 4 and 10 V/mum and saturation current densities as high as 0.7 mA have been measured for samples heated during deposition. A series of voltage ramps, i.e., a conditioning process, was found to initiate more stable and reproducible emission. It was found that the presence of graphitic particles (onions, nanotube embryos) in the films substantially enhances the field emission performance. Films patterned on a micrometer scale have been conditioned spot by spot by a ball-tip anode, showing that a relatively high emission site density can be achieved from the cluster-assembled material.

  6. Measured density of copper atoms in the ground and metastable states in argon magnetron discharge correlated with the deposition rate

    NASA Astrophysics Data System (ADS)

    Naghshara, H.; Sobhanian, S.; Khorram, S.; Sadeghi, N.

    2011-01-01

    In a dc-magnetron discharge with argon feed gas, densities of copper atoms in the ground state Cu(2S1/2) and metastable state Cu*(2D5/2) were measured by the resonance absorption technique, using a commercial hollow cathode lamp as light source. The operating conditions were 0.3-14 µbar argon pressure and 10-200 W magnetron discharge power. The deposition rate of copper in a substrate positioned at 18 cm from the target was also measured with a quartz microbalance. The gas temperature, in the range 300-380 K, was deduced from the emission spectral profile of N2(C 3Πu - B 3Πg) 0-0 band at 337 nm when trace of nitrogen was added to the argon feed gas. The isotope-shifts and hyperfine structures of electronic states of Cu have been taken into account to deduce the emission and absorption line profiles, and hence for the determination of atoms' densities from the measured absorption rates. To prevent error in the evaluation of Cu density, attributed to the line profile distortion by auto-absorption inside the lamp, the lamp current was limited to 5 mA. Density of Cu(2S1/2) atoms and deposition rate both increased with the enhanced magnetron discharge power. But at fixed power, the copper density augmented with argon pressure whereas the deposition rate followed the opposite trend. Whatever the gas pressure, the density of Cu*(2D5/2) metastable atoms remained below the detection limit of 1 × 1010 cm-3 for magnetron discharge powers below 50 W and hence increased much more rapidly than the density of Cu(2S1/2) atoms, over passing this later at some discharge power, whose value decreases with increasing argon pressure. This behaviour is believed to result from the enhancement of plasma density with increasing discharge power and argon pressure, which would increase the excitation rate of copper into metastable states. At fixed pressure, the deposition rate followed the same trend as the total density of copper atoms in the ground and metastable states. Two important conclusions of this work are (i) copper atoms sputtered from the target under ion bombardment are almost all in the ground state Cu(2S1/2) and hence in the plasma volume they can be excited into the metastable states; (ii) all atoms in the long-lived ground and metastable states contribute to the deposition of copper layer on the substrate.

  7. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors.

    PubMed

    Rusi; Majid, S R

    2016-01-01

    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg-1 with energy and power densities of 1322 Wh kg-1 and 110.5 kW kg-1, respectively, at a current density of 20 Ag-1 in a mixed KOH/K3Fe(CN)6 electrolyte.

  8. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors

    PubMed Central

    Rusi; Majid, S. R.

    2016-01-01

    Nanostructured network-like MnO2-NiO composite electrodes were electrodeposited onto stainless steel substrates via different electrodeposition modes, such as chronopotentiometry, chronoamperometry, and cyclic voltammetry, and then subjected to heat treatment at 300°C for metal oxide conversion. X-ray diffraction, field emission scanning electron microscopy, and transmission electron microscopy were used to study the crystalline natures and morphologies of the deposited films. The electrochemical properties were investigated using cyclic voltammetry and charge/discharge tests. The results revealed that the electrochemical performance of the as-obtained composite electrodes depended on the electrodeposition mode. The electrochemical properties of MnO2-NiO composite electrodes prepared using cyclic voltammetry exhibited the highest capacitance values and were most influenced by the deposition cycle number. The optimum specific capacitance was 3509 Fg−1 with energy and power densities of 1322 Wh kg−1 and 110.5 kW kg−1, respectively, at a current density of 20 Ag−1 in a mixed KOH/K3Fe(CN)6 electrolyte. PMID:27182595

  9. Experimental investigation on the energy deposition and morphology of the electrical explosion of copper wire in vacuum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Zongqian; Shi, Yuanjie; Wang, Kun

    2016-03-15

    This paper presents the experimental results of the electrical explosion of copper wires in vacuum using negative nanosecond-pulsed current with magnitude of 1–2 kA. The 20 μm-diameter copper wires with different lengths are exploded with three different current rates. A laser probe is applied to construct the shadowgraphy and interferometry diagnostics to investigate the distribution and morphology of the exploding product. The interference phase shift is reconstructed from the interferogram, by which the atomic density distribution is calculated. Experimental results show that there exist two voltage breakdown modes depending on the amount of the specific energy deposition. For the strong-shunting mode, shuntingmore » breakdown occurs, leading to the short-circuit-like current waveform. For the weak-shunting mode with less specific energy deposition, the plasma generated during the voltage breakdown is not enough to form a conductive plasma channel, resulting in overdamped declining current waveform. The influence of the wire length and current rate on the characteristics of the exploding wires is also analyzed.« less

  10. Enhanced performance of solution-processed organic thin-film transistors with a low-temperature-annealed alumina interlayer between the polyimide gate insulator and the semiconductor.

    PubMed

    Yoon, Jun-Young; Jeong, Sunho; Lee, Sun Sook; Kim, Yun Ho; Ka, Jae-Won; Yi, Mi Hye; Jang, Kwang-Suk

    2013-06-12

    We studied a low-temperature-annealed sol-gel-derived alumina interlayer between the organic semiconductor and the organic gate insulator for high-performance organic thin-film transistors. The alumina interlayer was deposited on the polyimide gate insulator by a simple spin-coating and 200 °C-annealing process. The leakage current density decreased by the interlayer deposition: at 1 MV/cm, the leakage current densities of the polyimide and the alumina/polyimide gate insulators were 7.64 × 10(-7) and 3.01 × 10(-9) A/cm(2), respectively. For the first time, enhancement of the organic thin-film transistor performance by introduction of an inorganic interlayer between the organic semiconductor and the organic gate insulator was demonstrated: by introducing the interlayer, the field-effect mobility of the solution-processed organic thin-film transistor increased from 0.35 ± 0.15 to 1.35 ± 0.28 cm(2)/V·s. Our results suggest that inorganic interlayer deposition could be a simple and efficient surface treatment of organic gate insulators for enhancing the performance of solution-processed organic thin-film transistors.

  11. Apparatus and method for controlling plating uniformity

    DOEpatents

    Hachman Jr., John T.; Kelly, James J.; West, Alan C.

    2004-10-12

    The use of an insulating shield for improving the current distribution in an electrochemical plating bath is disclosed. Numerical analysis is used to evaluate the influence of shield shape and position on plating uniformity. Simulation results are compared to experimental data for nickel deposition from a nickel--sulfamate bath. The shield is shown to improve the average current density at a plating surface.

  12. The effect of pulsed current electrodeposition parameters of calcium phosphates coating on Ti6Al4V ELI

    NASA Astrophysics Data System (ADS)

    Sierra-Herrera, D. K.; Sandoval-Amador, A.; Montañez-Supelano, N. D.; Y Peña-Ballesteros, D.

    2017-12-01

    Pulse current electrodeposition is a technique of special interest, due to the advantages it has, like easy operation, high control in the amount, homogeneity and purity of the deposited material, and low cost. This work studies the influence of the pulsed electrodeposition parameters variation on the characteristics of calcium phosphates coatings, including the composition, crystallinity and morphology. The influence of the current density and pulse on and off time on the physicochemical properties of the obtained coatings were evaluated. The coatings were electrodeposited on Ti6Al4V using Ca(NO3)2·H2O and NH4H2PO4 with a Ca/P molar ratio of 1.67. The coatings were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The analysis of DRX confirmed the formation of HAP. The results revealed that the variation of the current density modified the morphology of the coating. Also, the amount of material deposited increases as the off-time pulse increases, allowing the diffusion of the ions in the solution towards the working electrode.

  13. Low dark current and high speed ZnO metal–semiconductor–metal photodetector on SiO{sub 2}/Si substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Çalışkan, Deniz, E-mail: dcaliskan@fen.bilkent.edu.tr; Department of Nanotechnology and Nanomedicine, Hacettepe University, 06800 Beytepe, Ankara; Bütün, Bayram

    2014-10-20

    ZnO thin films are deposited by radio-frequency magnetron sputtering on thermally grown SiO{sub 2} on Si substrates. Pt/Au contacts are fabricated by standard photolithography and lift-off in order to form a metal-semiconductor-metal (MSM) photodetector. The dark current of the photodetector is measured as 1 pA at 100 V bias, corresponding to 100 pA/cm{sup 2} current density. Spectral photoresponse measurement showed the usual spectral behavior and 0.35 A/W responsivity at a 100 V bias. The rise and fall times for the photocurrent are measured as 22 ps and 8 ns, respectively, which are the lowest values to date. Scanning electron microscope image shows high aspect ratio andmore » dense grains indicating high surface area. Low dark current density and high speed response are attributed to high number of recombination centers due to film morphology, deducing from photoluminescence measurements. These results show that as deposited ZnO thin film MSM photodetectors can be used for the applications needed for low light level detection and fast operation.« less

  14. Gold nanoparticles deposited on linker-free silicon substrate and embedded in aluminum Schottky contact.

    PubMed

    Gorji, Mohammad Saleh; Razak, Khairunisak Abdul; Cheong, Kuan Yew

    2013-10-15

    Given the enormous importance of Au nanoparticles (NPs) deposition on Si substrates as the precursor for various applications, we present an alternative approach to deposit Au NPs on linker-free n- and p-type Si substrates. It is demonstrated that, all conditions being similar, there is a significant difference between densities of the deposited NPs on both substrates. The Zeta-potential and polarity of charges surrounding the hydroxylamine reduced seeded growth Au NPs, are determined by a Zetasizer. To investigate the surface properties of Si substrates, contact angle measurement is performed. Field-emission scanning electron microscope is then utilized to distinguish the NPs density on the substrates. Finally, Al/Si Schottky barrier diodes with embedded Au NPs are fabricated, and their structural and electrical characteristics are further evaluated using an energy-filtered transmission electron microscope and current-voltage measurements, respectively. The results reveal that the density of NPs is significantly higher on n-type Si substrate and consequently has more pronounced effects on the electrical characteristics of the diode. It is concluded that protonation of Si-OH group on Si surface in low pH is responsible for the immobilization of Au NPs, which eventually contributes to the lowering of barrier height and enhances the electrical characteristics. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Lithography-Free Fabrication of Core-Shell GaAs Nanowire Tunnel Diodes.

    PubMed

    Darbandi, A; Kavanagh, K L; Watkins, S P

    2015-08-12

    GaAs core-shell p-n junction tunnel diodes were demonstrated by combining vapor-liquid-solid growth with gallium oxide deposition by atomic layer deposition for electrical isolation. The characterization of an ensemble of core-shell structures was enabled by the use of a tungsten probe in a scanning electron microscope without the need for lithographic processing. Radial tunneling transport was observed, exhibiting negative differential resistance behavior with peak-to-valley current ratios of up to 3.1. Peak current densities of up to 2.1 kA/cm(2) point the way to applications in core-shell photovoltaics and tunnel field effect transistors.

  16. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  17. Uniform Li deposition regulated via three-dimensional polyvinyl alcohol nanofiber networks for effective Li metal anodes.

    PubMed

    Wang, Gang; Xiong, Xunhui; Lin, Zhihua; Zheng, Jie; Fenghua, Zheng; Li, Youpeng; Liu, Yanzhen; Yang, Chenghao; Tang, Yiwei; Liu, Meilin

    2018-05-31

    Lithium metal anodes are considered to be the most promising anode material for next-generation advanced energy storage devices due to their high reversible capacity and extremely low anode potential. Nevertheless, the formation of dendritic Li, induced by the repeated breaking and repairing of solid electrolyte interphase layers, always causes poor cycling performance and low coulombic efficiency, as well as serious safety problems, which have hindered the practical application of Li anodes for a long time. Herein, we design an electrode by covering a polyvinyl alcohol layer with a three-dimensional nanofiber network structure through an electrospinning technique. The polar functional groups on the surface of the polymer nanofibers can restrict the deposition of Li along the fibers and regulate the deposition of Li uniformly in the voids between the nanofibers. Owing to the structural features of the polymer, the modified Li|Cu electrode displays excellent cycle stability, with a high coulombic efficiency of 98.6% after 200 cycles at a current density of 1 mA cm-2 under a deposition capacity of 1 mA h cm-2, whilst the symmetric cell using the polymer modified Li anode shows stable cycling with a low hysteresis voltage of ∼80 mV over 600 h at a current density of 5 mA cm-2.

  18. Pyroclastic density current dynamics and associated hazards at ice-covered volcanoes

    NASA Astrophysics Data System (ADS)

    Dufek, J.; Cowlyn, J.; Kennedy, B.; McAdams, J.

    2015-12-01

    Understanding the processes by which pyroclastic density currents (PDCs) are emplaced is crucial for volcanic hazard prediction and assessment. Snow and ice can facilitate PDC generation by lowering the coefficient of friction and by causing secondary hydrovolcanic explosions, promoting remobilisation of proximally deposited material. Where PDCs travel over snow or ice, the reduction in surface roughness and addition of steam and meltwater signficantly changes the flow dynamics, affecting PDC velocities and runout distances. Additionally, meltwater generated during transit and after the flow has come to rest presents an immediate secondary lahar hazard that can impact areas many tens of kilometers beyond the intial PDC. This, together with the fact that deposits emplaced on ice are rarely preserved means that PDCs over ice have been little studied despite the prevalence of summit ice at many tall stratovolcanoes. At Ruapehu volcano in the North Island of New Zealand, a monolithologic welded PDC deposit with unusually rounded clasts provides textural evidence for having been transported over glacial ice. Here, we present the results of high-resolution multiphase numerical PDC modeling coupled with experimentaly determined rates of water and steam production for the Ruapehu deposits in order to assess the effect of ice on the Ruapehu PDC. The results suggest that the presence of ice significantly modified the PDC dynamics, with implications for assessing the PDC and associated lahar hazards at Ruapehu and other glaciated volcanoes worldwide.

  19. Plasma Deposited SiO2 for Planar Self-Aligned Gate Metal-Insulator-Semiconductor Field Effect Transistors on Semi-Insulating InP

    NASA Technical Reports Server (NTRS)

    Tabory, Charles N.; Young, Paul G.; Smith, Edwyn D.; Alterovitz, Samuel A.

    1994-01-01

    Metal-insulator-semiconductor (MIS) field effect transistors were fabricated on InP substrates using a planar self-aligned gate process. A 700-1000 A gate insulator of Si02 doped with phosphorus was deposited by a direct plasma enhanced chemical vapor deposition at 400 mTorr, 275 C, 5 W, and power density of 8.5 MW/sq cm. High frequency capacitance-voltage measurements were taken on MIS capacitors which have been subjected to a 700 C anneal and an interface state density of lxl0(exp 11)/eV/cq cm was found. Current-voltage measurements of the capacitors show a breakdown voltage of 107 V/cm and a insulator resistivity of 10(exp 14) omega cm. Transistors were fabricated on semi-insulating InP using a standard planar self-aligned gate process in which the gate insulator was subjected to an ion implantation activation anneal of 700 C. MIS field effect transistors gave a maximum extrinsic transconductance of 23 mS/mm for a gate length of 3 microns. The drain current drift saturated at 87.5% of the initial current, while reaching to within 1% of the saturated value after only 1x10(exp 3). This is the first reported viable planar InP self-aligned gate transistor process reported to date.

  20. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE PAGES

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.; ...

    2014-10-15

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  1. Atomic layer deposition TiO 2-Al 2O 3 stack: An improved gate dielectric on Ga-polar GaN metal oxide semiconductor capacitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Daming; Edgar, James H.; Briggs, Dayrl P.

    This research focuses on the benefits and properties of TiO 2-Al 2O 3 nano-stack thin films deposited on Ga 2O 3/GaN by plasma-assisted atomic layer deposition (PA-ALD) for gate dielectric development. This combination of materials achieved a high dielectric constant, a low leakage current, and a low interface trap density. Correlations were sought between the films’ structure, composition, and electrical properties. The gate dielectrics were approximately 15 nm thick and contained 5.1 nm TiO 2, 7.1 nm Al 2O 3 and 2 nm Ga 2O 3 as determined by spectroscopic ellipsometry. The interface carbon concentration, as measured by x-ray photoelectronmore » spectroscopy (XPS) depth profile, was negligible for GaN pretreated by thermal oxidation in O 2 for 30 minutes at 850°C. The RMS roughness slightly increased after thermal oxidation and remained the same after ALD of the nano-stack, as determined by atomic force microscopy. The dielectric constant of TiO 2-Al 2O 3 on Ga2O3/GaN was increased to 12.5 compared to that of pure Al 2O 3 (8~9) on GaN. In addition, the nano-stack's capacitance-voltage (C-V) hysteresis was small, with a total trap density of 8.74 × 10 11 cm -2. The gate leakage current density (J=2.81× 10 -8 A/cm 2) was low at +1 V gate bias. These results demonstrate the promising potential of plasma ALD deposited TiO 2/Al 2O 3 for serving as the gate oxide on Ga 2O 3/GaN based MOS devices.« less

  2. Accurate characterization and understanding of interface trap density trends between atomic layer deposited dielectrics and AlGaN/GaN with bonding constraint theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanan, Narayanan; Lee, Bongmook; Misra, Veena, E-mail: vmisra@ncsu.edu

    2015-06-15

    Many dielectrics have been proposed for the gate stack or passivation of AlGaN/GaN based metal oxide semiconductor heterojunction field effect transistors, to reduce gate leakage and current collapse, both for power and RF applications. Atomic Layer Deposition (ALD) is preferred for dielectric deposition as it provides uniform, conformal, and high quality films with precise monolayer control of film thickness. Identification of the optimum ALD dielectric for the gate stack or passivation requires a critical investigation of traps created at the dielectric/AlGaN interface. In this work, a pulsed-IV traps characterization method has been used for accurate characterization of interface traps withmore » a variety of ALD dielectrics. High-k dielectrics (HfO{sub 2}, HfAlO, and Al{sub 2}O{sub 3}) are found to host a high density of interface traps with AlGaN. In contrast, ALD SiO{sub 2} shows the lowest interface trap density (<2 × 10{sup 12 }cm{sup −2}) after annealing above 600 °C in N{sub 2} for 60 s. The trend in observed trap densities is subsequently explained with bonding constraint theory, which predicts a high density of interface traps due to a higher coordination state and bond strain in high-k dielectrics.« less

  3. The reasons for the high power density of fuel cells fabricated with directly deposited membranes

    NASA Astrophysics Data System (ADS)

    Vierrath, Severin; Breitwieser, Matthias; Klingele, Matthias; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Thiele, Simon

    2016-09-01

    In a previous study, we reported that polymer electrolyte fuel cells prepared by direct membrane deposition (DMD) produced power densities in excess of 4 W/cm2. In this study, the underlying origins that give rise to these high power densities are investigated and reported. The membranes of high power, DMD-fabricated fuel cells are relatively thin (12 μm) compared to typical benchmark, commercially available membranes. Electrochemical impedance spectroscopy, at high current densities (2.2 A/cm2) reveals that mass transport resistance was half that of reference, catalyst-coated-membranes (CCM). This is attributed to an improved oxygen supply in the cathode catalyst layer by way of a reduced propensity of flooding, and which is facilitated by an enhancement in the back diffusion of water from cathode to anode through the thin directly deposited membrane. DMD-fabricated membrane-electrode-assemblies possess 50% reduction in ionic resistance (15 mΩcm2) compared to conventional CCMs, with contributions of 9 mΩcm2 for the membrane resistance and 6 mΩcm2 for the contact resistance of the membrane and catalyst layer ionomer. The improved mass transport is responsible for 90% of the increase in power density of the DMD fuel cell, while the reduced ionic resistance accounts for a 10% of the improvement.

  4. Optimal joule heating of the subsurface

    DOEpatents

    Berryman, J.G.; Daily, W.D.

    1994-07-05

    A method for simultaneously heating the subsurface and imaging the effects of the heating is disclosed. This method combines the use of tomographic imaging (electrical resistance tomography or ERT) to image electrical resistivity distribution underground, with joule heating by electrical currents injected in the ground. A potential distribution is established on a series of buried electrodes resulting in energy deposition underground which is a function of the resistivity and injection current density. Measurement of the voltages and currents also permits a tomographic reconstruction of the resistivity distribution. Using this tomographic information, the current injection pattern on the driving electrodes can be adjusted to change the current density distribution and thus optimize the heating. As the heating changes conditions, the applied current pattern can be repeatedly adjusted (based on updated resistivity tomographs) to affect real time control of the heating.

  5. Enhancement mechanism of field electron emission properties in hybrid carbon nanotubes with tree- and wing-like features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a

    2009-12-15

    In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less

  6. Effect of current density during electrodeposition on microstructure and hardness of textured Cu coating in the application of antimicrobial Al touch surface.

    PubMed

    Augustin, Arun; Huilgol, Prashant; Udupa, K Rajendra; Bhat K, Udaya

    2016-10-01

    Copper is a well proven antimicrobial material which can be used in the form of a coating on the touch surfaces. Those coating can offer a good service as touch surface for very long time if only they possess good mechanical properties like scratch resistance and microhardness. In the present work the above mentioned mechanical properties were determined on the electrodeposited copper thin film; deposited on double zincated aluminium. During deposition, current density was varied from 2Adm(-2) to 10Adm(-2), to produce crystallite size in the range of 33.5nm to 66nm. The crystallite size was calculated from the X-ray peak broadening (Scherrer׳s formula) which were later confirmed by TEM micrographs. The scratch hardness and microhardness of the coating were measured and correlated with the crystallite size in the copper coating. Both characteristic values were found to increase with the reduction in crystallite size. Reduced crystallite size (Hall-Petch effect) and preferred growth of copper films along (111) plane play a significant role on the increase in the hardness of the coating. Further, TEM analysis reveals the presence of nano-twins in the film deposited at higher current density, which contributed to a large extent to the sharp increase of coating hardness compared to the mechanism of Hall-Petch effect. The antimicrobial ability of the coated sample has been evaluated against Escherichia coli bacteria and which is compared with that of commercially available bulk copper using the colony count method. 94% of E. coli cells were died after six hours of exposure to the copper coated surface. The morphology of the copper treated cells was studied using SEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Density of Spray-Formed Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kevin M. McHugh; Volker Uhlenwinkel; Nils Ellendr

    2008-06-01

    Spray Forming is an advanced materials processing technology that transforms molten metal into a near-net-shape solid by depositing atomized droplets onto a substrate. Depending on the application, the spray-formed material may be used in the as-deposited condition or it may undergo post-deposition processing. Regardless, the density of the as-deposited material is an important issue. Porosity is detrimental because it can significantly reduce strength, toughness, hardness and other properties. While it is not feasible to achieve fully-dense material in the as-deposited state, density greater than 99% of theoretical density is possible if the atomization and impact conditions are optimized. Thermal conditionsmore » at the deposit surface and droplet impact angle are key processing parameters that influence the density of the material. This paper examines the factors that contribute to porosity formation during spray forming and illustrates that very high as-deposited density is achieved by optimizing processing parameters.« less

  8. Correlations between critical current density, j{sub c}, critical temperature, T{sub c}, and structural quality of Y{sub 1}B{sub 2}Cu{sub 3}O{sub 7-x} thin superconducting films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chrzanowski, J.; Xing, W.B.; Atlan, D.

    1994-12-31

    Correlations between critical current density (j{sub c}) critical temperature (T{sub c}) and the density of edge dislocations and nonuniform strain have been observed in YBCO thin films deposited by pulsed laser ablation on (001) LaAlO{sub 3} single crystals. Distinct maxima in j{sub c} as a function of the linewidths of the (00{ell}) Bragg reflections and as a function of the mosaic spread have been found in the epitaxial films. These maxima in j{sub c} indicate that the magnetic flux lines, in films of structural quality approaching that of single crystals, are insufficiently pinned which results in a decreased critical currentmore » density. T{sub c} increased monotonically with improving crystalline quality and approached a value characteristic of a pure single crystal. A strong correlation between j{sub c} and the density of edge dislocations N{sub D} was found. At the maximum of the critical current density the density of edge dislocations was estimated to be N{sub D}{approximately}1-2 x 10{sup 9}/cm{sup 2}.« less

  9. Rapid welding and rheomorphism in unconfined (sheet-like) ignimbrites in Idaho, England and Pantelleria

    NASA Astrophysics Data System (ADS)

    Barry, T. L.; Branney, M. J.; Andrews, G.

    2003-04-01

    Sheet-like rheomorphic ignimbrites of diverse chemistry and geological setting preserve evidence of very rapid welding and rheomorphism, with time-scales of the same order-of-magnitude as the duration of the pyroclastic density current (mins-hrs). This is in contrast to rheomorphism that occurs primarily after emplacement; for example, in the Crinkles Tuffs of Scafell caldera in England individual rheomorphic folds affect more than one ignimbrite. In this case two or more ignimbrites were emplaced and then underwent rheomorphism together, prior to cooling. In contrast to valley-filling rheomorphic ignimbrites, in which the orientation of sheathfold axes and elongation lineations remain parallel to the valley (1) (i.e. the valley served to maintain the flow direction by chanelling), sheathfolds axes and elongation lineations in sheet-like ignimbrites emplaced onto low-angle slopes vary at each individual geographic location. At individual heights in the ignimbrite sheet, the orientation trends cluster, and the azimuth orientation of the clusters change systematically with height. We interpret this as indicating that the flow-direction of the pyroclastic density current changed with time during progressive aggradation of the ignimbrite. During deposition, agglutination and rheomorphism occurred in a relatively narrow, rising ductile shear zone. The transport direction at a particular moment was preserved as rheomorphic fabrics became frozen into the deposit when this shear zone migrated away upwards. Each level in the ignimbrite thus provides a snap-shot of the flow direction at a particular time. Changes in flow-direction in sustained pyroclastic density currents occur due to depositional and erosional modification of topography (2). Chilled basal vitrophyres of rheomorphic ignimbrites are particularly instructive, as rapid chilling uniquely preserves early stages of welding and deformation. Oblique fabrics are typical, and record agglutination and initial rheomorphism that elsewhere is transposed and overprinted by more protracted shear and attenuation. In contrast, upper vitrophyres of some rheomorphic ignimbrites show well-developed sheath and flow-perturbation folds(3). (1) Branney MJ and Barry TL (2003) Abstract in this volume. (2) Branney MJ and Kokelaar P (2003) Pyroclastic density currents and the sedimentation of ignimbrites. Geol. Soc. London Mem. 27. 150 pp. (3) Alsop GI and Holdsworth RE (2002) Tectonophysics 6605.

  10. A contribution to the hazards assessment at Copahue volcano (Argentina-Chile) by facies analysis of a recent pyroclastic density current deposit

    NASA Astrophysics Data System (ADS)

    Balbis, C.; Petrinovic, I. A.; Guzmán, S.

    2016-11-01

    We recognised and interpreted a recent pyroclastic density current (PDC) deposit at the Copahue volcano (Southern Andes), through a field survey and a sedimentological study. The relationships between the behaviour of the PDCs, the morphology of the Río Agrio valley and the eruptive dynamics were interpreted. We identified two lithofacies in the deposit that indicate variations in the eruptive dynamics: i) the opening of the conduit and the formation of a highly explosive eruption that formed a diluted PDC through the immediate collapse of the eruptive column; ii) a continued eruption which followed immediately and records the widening of the conduit, producing a dense PDC. The eruption occurred in 2000 CE, was phreatomagmatic (VEI ≤ 2), with a vesiculation level above 4000 m depth and fragmentation driven by the interaction of magma with an hydrothermal system at ca. 1500 m depth. As deduced from the comparison between the accessory lithics of this deposit and those of the 2012 CE eruption, the depth of onset of vesiculation and fragmentation level in this volcano is constant in depth. In order to reproduce the distribution pattern of this PDC's deposit and to simulate potential PDC's forming-processes, we made several computational modelling from "denser" to "more diluted" conditions. The latter fairly reproduces the distribution of the studied deposit and represents perhaps one of the most dangerous possible scenarios of the Copahue volcanic activity. PDCs occurrence has been considered in the last volcanic hazards map as a low probability process; evidences found in this contribution suggest instead to include them as more probable and thus very important for the hazards assessment of the Copahue volcano.

  11. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of explosion centers. Finally, ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. These are just some of the many possible triggers acting in a single environment, and they reveal the potential for insights into the eruptive and flow mechanisms of dilute pyroclastic density currents.

  12. A Pt/TiO(2)/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays.

    PubMed

    Park, Woo Young; Kim, Gun Hwan; Seok, Jun Yeong; Kim, Kyung Min; Song, Seul Ji; Lee, Min Hwan; Hwang, Cheol Seong

    2010-05-14

    This study examined the properties of Schottky-type diodes composed of Pt/TiO(2)/Ti, where the Pt/TiO(2) and TiO(2)/Ti junctions correspond to the blocking and ohmic contacts, respectively, as the selection device for a resistive switching cross-bar array. An extremely high forward-to-reverse current ratio of approximately 10(9) was achieved at 1 V when the TiO(2) film thickness was 19 nm. TiO(2) film was grown by atomic layer deposition at a substrate temperature of 250 degrees C. Conductive atomic force microscopy revealed that the forward current flew locally, which limits the maximum forward current density to < 10 A cm(-2) for a large electrode (an area of approximately 60 000 microm(2)). However, the local current measurement showed a local forward current density as high as approximately 10(5) A cm(-2). Therefore, it is expected that this type of Schottky diode effectively suppresses the sneak current without adverse interference effects in a nano-scale resistive switching cross-bar array with high block density.

  13. An Electrochemical Capacitor with Applicable Energy Density of 7.4 Wh/kg at Average Power Density of 3000 W/kg.

    PubMed

    Zhai, Teng; Lu, Xihong; Wang, Hanyu; Wang, Gongming; Mathis, Tyler; Liu, Tianyu; Li, Cheng; Tong, Yexiang; Li, Yat

    2015-05-13

    Electrochemical capacitors represent a new class of charge storage devices that can simultaneously achieve high energy density and high power density. Previous reports have been primarily focused on the development of high performance capacitor electrodes. Although these electrodes have achieved excellent specific capacitance based on per unit mass of active materials, the gravimetric energy densities calculated based on the weight of entire capacitor device were fairly small. This is mainly due to the large mass ratio between current collector and active material. We aimed to address this issue by a 2-fold approach of minimizing the mass of current collector and increasing the electrode performance. Here we report an electrochemical capacitor using 3D graphene hollow structure as current collector, vanadium sulfide and manganese oxide as anode and cathode materials, respectively. 3D graphene hollow structure provides a lightweight and highly conductive scaffold for deposition of pseudocapacitive materials. The device achieves an excellent active material ratio of 24%. Significantly, it delivers a remarkable energy density of 7.4 Wh/kg (based on the weight of entire device) at the average power density of 3000 W/kg. This is the highest gravimetric energy density reported for asymmetric electrochemical capacitors at such a high power density.

  14. Effect of sulfur passivation on the InP surface prior to plasma-enhanced chemical vapor deposition of SiNx

    NASA Astrophysics Data System (ADS)

    Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei

    2008-03-01

    The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.

  15. Microwave plasma-assisted chemical vapor deposition of porous carbon film as supercapacitive electrodes

    NASA Astrophysics Data System (ADS)

    Wu, Ai-Min; Feng, Chen-Chen; Huang, Hao; Paredes Camacho, Ramon Alberto; Gao, Song; Lei, Ming-Kai; Cao, Guo-Zhong

    2017-07-01

    Highly porous carbon film (PCF) coated on nickel foam was prepared successfully by microwave plasma-assisted chemical vapor deposition (MPCVD) with C2H2 as carbon source and Ar as discharge gas. The PCF is uniform and dense with 3D-crosslinked nanoscale network structure possessing high degree of graphitization. When used as the electrode material in an electrochemical supercapacitor, the PCF samples verify their advantageous electrical conductivity, ion contact and electrochemical stability. The test results show that the sample prepared under 1000 W microwave power has good electrochemical performance. It displays the specific capacitance of 62.75 F/g at the current density of 2.0 A/g and retains 95% of its capacitance after 10,000 cycles at the current density of 2.0 A/g. Besides, its near-rectangular shape of the cyclic voltammograms (CV) curves exhibits typical character of an electric double-layer capacitor, which owns an enhanced ionic diffusion that can fit the requirements for energy storage applications.

  16. Electrochemical fabrication and interfacial charge-transfer process of Ni/GaN(0001) electrodes.

    PubMed

    Qin, Shuang-Jiao; Peng, Fei; Chen, Xue-Qing; Pan, Ge-Bo

    2016-02-17

    The electrodeposition of Ni on single-crystal n-GaN(0001) film from acetate solution was investigated using scanning electron microscopy, X-ray diffraction, energy dispersive X-ray analysis, atomic force microscopy, and electrochemical techniques. The as-deposited Ni/n-GaN(0001) had a flat band potential of Ufb = -1.0 V vs. Ag/AgCl, which was much lower than that of bare GaN(0001). That is, a more feasible charge-transfer process occurred at the Ni/n-Ga(0001) interface. On the basis of a Tafel plot, an exchange current density of ∼1.66 × 10(-4) mA cm(-2) was calculated. The nuclei density increased when the applied potential was varied from -0.9 V to -1.2 V and, eventually the whole substrate was covered. In addition, the current transient measurements revealed that the Ni deposition process followed instantaneous nucleation in 5 mM Ni(CH3COO)2 + 0.5 M H3BO3.

  17. Size-dependent electrocatalytic activity of gold nanoparticles on HOPG and highly boron-doped diamond surfaces.

    PubMed

    Brülle, Tine; Ju, Wenbo; Niedermayr, Philipp; Denisenko, Andrej; Paschos, Odysseas; Schneider, Oliver; Stimming, Ulrich

    2011-12-06

    Gold nanoparticles were prepared by electrochemical deposition on highly oriented pyrolytic graphite (HOPG) and boron-doped, epitaxial 100-oriented diamond layers. Using a potentiostatic double pulse technique, the average particle size was varied in the range from 5 nm to 30 nm in the case of HOPG as a support and between < 1 nm and 15 nm on diamond surfaces, while keeping the particle density constant. The distribution of particle sizes was very narrow, with standard deviations of around 20% on HOPG and around 30% on diamond. The electrocatalytic activity towards hydrogen evolution and oxygen reduction of these carbon supported gold nanoparticles in dependence of the particle sizes was investigated using cyclic voltammetry. For oxygen reduction the current density normalized to the gold surface (specific current density) increased for decreasing particle size. In contrast, the specific current density of hydrogen evolution showed no dependence on particle size. For both reactions, no effect of the different carbon supports on electrocatalytic activity was observed.

  18. Intestinal absorption and renal reabsorption of calcium throughout postnatal development

    PubMed Central

    Beggs, Megan R

    2017-01-01

    Calcium is vital for many physiological functions including bone mineralization. Postnatal deposition of calcium into bone is greatest in infancy and continues through childhood and adolescence until peek mineral density is reached in early adulthood. Thereafter, bone mineral density remains static until it eventually declines in later life. A positive calcium balance, i.e. more calcium absorbed than excreted, is crucial to bone deposition during growth and thus to peek bone mineral density. Dietary calcium is absorbed from the intestine into the blood. It is then filtered by the renal glomerulus and either reabsorbed by the tubule or excreted in the urine. Calcium can be (re)absorbed across intestinal and renal epithelia via both transcellular and paracellular pathways. Current evidence suggests that significant intestinal and renal calcium transport changes occur throughout development. However, the molecular details of these alterations are incompletely delineated. Here we first briefly review the current model of calcium transport in the intestine and renal tubule in the adult. Then, we describe what is known with regard to calcium handling through postnatal development, and how alterations may aid in mediating a positive calcium balance. The role of transcellular and paracellular calcium transport pathways and the contribution of specific intestinal and tubular segments vary with age. However, the current literature highlights knowledge gaps in how specifically intestinal and renal calcium (re)absorption occurs early in postnatal development. Future research should clarify the specific changes in calcium transport throughout early postnatal development including mediators of these alterations enabling appropriate bone mineralization. Impact statement This mini review outlines the current state of knowledge pertaining to the molecules and mechanisms maintaining a positive calcium balance throughout postnatal development. This process is essential to achieving optimal bone mineral density in early adulthood, thereby lowering the lifetime risk of osteoporosis. PMID:28346014

  19. Electrochemical disinfection of simulated ballast water on PbO2/graphite felt electrode.

    PubMed

    Chen, Shuiping; Hu, Weidong; Hong, Jianxun; Sandoe, Steve

    2016-04-15

    A novel PbO2/graphite felt electrode was constructed by electrochemical deposition of PbO2 on graphite felt and characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) analysis. The prepared electrode is a viable technology for inactivation of Escherichia coli, Enterococcus faecalis, and Artemia salina as indicator organisms in simulated ballast water treatment, which meets the International Maritime Organization (IMO) Regulation D-2. The effects of contact time and current density on inactivation were investigated. An increase in current density generally had a beneficial effect on the inactivation of the three species. E.faecalis and A.salina were more resistant to electrochemical disinfection than E. coli. The complete disinfection of E.coli was achieved in <8min at an applied current density of 253A/m(2). Complete inactivation of E. faecalis and A.salina was achieved at the same current density after 60 and 40min of contact time, respectively. A. salina inactivation follows first-order kinetics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Methods and systems for fabricating high quality superconducting tapes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Majkic, Goran; Selvamanickam, Venkat

    An MOCVD system fabricates high quality superconductor tapes with variable thicknesses. The MOCVD system can include a gas flow chamber between two parallel channels in a housing. A substrate tape is heated and then passed through the MOCVD housing such that the gas flow is perpendicular to the tape's surface. Precursors are injected into the gas flow for deposition on the substrate tape. In this way, superconductor tapes can be fabricated with variable thicknesses, uniform precursor deposition, and high critical current densities.

  1. Cathode buffer composed of fullerene-ethylenediamine adduct for an organic solar cell

    NASA Astrophysics Data System (ADS)

    Kimoto, Yoshinori; Akiyama, Tsuyoshi; Fujita, Katsuhiko

    2017-02-01

    We developed a fullerene-ethylenediamine adduct (C60P-DC) for a cathode buffer material in organic bulk heterojunction solar cells, which enhance the open-circuit voltage (V oc). The evaporative spray deposition using ultra dilute solution (ESDUS) technique was employed to deposit the buffer layer onto the organic active layer to avoid damage during the deposition. By the insertion of a C60P-DC buffer layer, V oc and power conversion efficiency (PCE) were increased from 0.41 to 0.57 V and from 1.65 to 2.10%, respectively. The electron-only device with the C60P-DC buffer showed a much lower current level than that without the buffer, indicating that the V oc increase is caused not by vacuum level shift but by hole blocking. The curve fitting of current density-voltage (J-V) characteristics to the equivalent circuit with a single diode indicated that the decrease in reversed saturation current by hole blocking increased caused the V oc.

  2. Fabrication of p-type CuO thin films using chemical bath deposition technique and their solar cell applications with Si nanowires

    NASA Astrophysics Data System (ADS)

    Akgul, Funda Aksoy; Akgul, Guvenc

    2017-02-01

    Recently, CuO has attracted much interest owing to its suitable material properties, inexpensive fabrication cost and potential applications for optoelectronic devices. In this study, CuO thin films were deposited on glass substrates using chemical bath deposition technique and post-deposition annealing effect on the properties of the prepared samples were investigated. p-n heterojunction solar cells were then constructed by coating of p-type CuO films onto the vertically well-aligned n-type Si nanowires synthesized through MACE method. Photovoltaic performance of the fabricated devices were determined with current-voltage (I-V) measurements under AM 1.5 G illumination. The optimal short-circuit current density, open-circuit voltage, fill factor and power conversion efficiency were found to be 3.2 mA/cm-2, 337 mV, 37.9 and 0.45%, respectively. The observed performance clearly indicates that the investigated device structure could be a promising candidate for high-performance low-cost new-generation photovoltaic diodes.

  3. Evolution of Mars' northern polar seasonal CO2 deposits: Variations in surface brightness and bulk density

    NASA Astrophysics Data System (ADS)

    Mount, Christopher P.; Titus, Timothy N.

    2015-07-01

    Small-scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct end-members across the NPSC: (1) Snow deposits may anneal to form an overlying slab layer that fractures. These low-density deposits maintain relatively constant densities over springtime. (2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high-density deposits dramatically increase in density over time. The end-members appear to be correlated with latitude.

  4. Evolution of Mars’ Northern Polar Seasonal CO2 deposits: variations in surface brightness and bulk density

    USGS Publications Warehouse

    Mount, Christopher P.; Titus, Timothy N.

    2015-01-01

    Small scale variations of seasonal ice are explored at different geomorphic units on the Northern Polar Seasonal Cap (NPSC). We use seasonal rock shadow measurements, combined with visible and thermal observations, to calculate density over time. The coupling of volume density and albedo allows us to determine the microphysical state of the seasonal CO2 ice. We find two distinct endmembers across the NPSC: 1) Snow deposits may anneal to form an overlying slab layer that fractures. These low density deposits maintain relatively constant densities over springtime. 2) Porous slab deposits likely anneal rapidly in early spring and fracture in late spring. These high density deposits dramatically increase in density over time. The endmembers appear to be correlated with latitude.

  5. Thermal interactions of the AD79 Vesuvius pyroclastic density currents and their deposits at Villa dei Papiri (Herculaneum archaeological site, Italy)

    NASA Astrophysics Data System (ADS)

    Giordano, G.; Zanella, E.; Trolese, M.; Baffioni, C.; Vona, A.; Caricchi, C.; De Benedetti, A. A.; Corrado, S.; Romano, C.; Sulpizio, R.; Geshi, N.

    2018-05-01

    Pyroclastic density currents (PDCs) can have devastating impacts on urban settlements, due to their dynamic pressure and high temperatures. Our degree of understanding of the interplay between these hot currents and the affected infrastructures is thus fundamental not only to implement our strategies for risk reduction, but also to better understand PDC dynamics. We studied the temperature of emplacement of PDC deposits that destroyed and buried the Villa dei Papiri, an aristocratic Roman edifice located just outside the Herculaneum city, during the AD79 plinian eruption of Mt Vesuvius (Italy) by using the thermal remanent magnetization of embedded lithic clasts. The PDC deposits around and inside the Villa show substantial internal thermal disequilibrium. In areas affected by convective mixing with surface water or with collapsed walls, temperatures average at around 270 °C (min 190 °C, max 300 °C). Where the deposits show no evidence of mixing with external material, the temperature is much higher, averaging at 350 °C (min 300 °C; max 440 °C). Numerical simulations and comparison with temperatures retrieved at the very same sites from the reflectance of charcoal fragments indicate that such thermal disequilibrium can be maintained inside the PDC deposit for time-scales well over 24 hours, i.e. the acquisition time of deposit temperatures for common proxies. We reconstructed in detail the history of the progressive destruction and burial of Villa dei Papiri and infer that the rather homogeneous highest deposit temperatures (average 350 °C) were carried by the ash-sized fraction in thermal equilibrium with the fluid phase of the incoming PDCs. These temperatures can be lowered on short time- (less than hours) and length-scales (meters to tens of meters) only where convective mixing with external materials or fluids occurs. By contrast, where the Villa walls remained standing the thermal exchange was only conductive and very slow, i.e. negligible at 50 cm distance from contact after 24 hours. We then argue that the state of conservation of materials buried by PDC deposits largely depends on the style of the thermal interactions. Here we also suggest that PDC deposit temperatures are excellent proxies for the temperatures of basal parts of PDCs close to their depositional boundary layer. This general conclusion stresses the importance of mapping of deposit temperatures for the understanding of thermal processes associated with PDC flow dynamics and during their interaction with the affected environment.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawase, Kazumasa; Uehara, Yasushi; Teramoto, Akinobu

    Silicon dioxide (SiO{sub 2}) films formed by chemical vapor deposition (CVD) were treated with oxygen radical oxidation using Ar/O{sub 2} plasma excited by microwave. The mass density depth profiles, carrier trap densities, and current-voltage characteristics of the radical-oxidized CVD-SiO{sub 2} films were investigated. The mass density depth profiles were estimated with x ray reflectivity measurement using synchrotron radiation of SPring-8. The carrier trap densities were estimated with x ray photoelectron spectroscopy time-dependent measurement. The mass densities of the radical-oxidized CVD-SiO{sub 2} films were increased near the SiO{sub 2} surface. The densities of the carrier trap centers in these films weremore » decreased. The leakage currents of the metal-oxide-semiconductor capacitors fabricated by using these films were reduced. It is probable that the insulation properties of the CVD-SiO{sub 2} film are improved by the increase in the mass density and the decrease in the carrier trap density caused by the restoration of the Si-O network with the radical oxidation.« less

  7. Probing RFP Density Limits and the Interaction of Pellet Fueling and NBI Heating on MST

    NASA Astrophysics Data System (ADS)

    Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.

    2013-10-01

    Pellet fueling on MST has previously achieved Greenwald fractions of up to 1.5 in 200 kA improved confinement discharges. Additionally, pellet fueling to densities above the Greenwald limit in 200 kA standard discharges resulted in early termination of the plasma, but pellet size was insufficient to exceed the limit for higher current discharges. To this end, the pellet injector on MST has been upgraded to increase the maximum fueling capability by increasing the size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, to accommodate pellets of up to 4.0 mm in diameter. These 4.0 mm pellets are capable of triggering density limit terminations for MST's peak current of 600 kA. An unexpected improvement in the pellet speed and mass control was also observed compared to the smaller diameter pellets. Exploring the effect of increased density on NBI particle and heat deposition shows that for MST's 1 MW tangential NBI, core deposition of 25 keV neutrals is optimized for densities of 2-3 × 1019 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. An observed toroidal deflection of pellets injected into NBI heated discharges is consistent with asymmetric ablation due to the fast ion population. In 200 kA improved confinement plasmas with NBI heating, pellet fueling has achieved a Greenwald fraction of 2.0. Work supported by US DoE.

  8. Effect of mass density on surface morphology of electrodeposited manganese oxide films

    NASA Astrophysics Data System (ADS)

    Singh, Avtar; Kumar, Davinder; Thakur, Anup; Kaur, Raminder

    2018-05-01

    This work focus on high surface area morphology of manganese oxide films which are currently required for electrochemical capacitor electrode to enhance their performance. Electrodeposition of manganese oxide films was carried out using Chronoamperometry for different deposition time ranging from 30 to 120 sec. Cronoamperomertic I-T integrated data have been used to analyze active mass of all electrodeposited films. Morphological study of the deposited films with different mass was carried out through scanning electron microscopy. Film deposited for 30 sec time show highest porous morphology than others. Manganese oxide films with high porosity are suitable for electrochemical capacitor electrode.

  9. Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

    DOE PAGES

    Lewis, Brett B.; Stanford, Michael G.; Fowlkes, Jason D.; ...

    2015-04-08

    In this paper, platinum–carbon nanostructures deposited via electron beam induced deposition from MeCpPt(IV)Me 3 are purified during a post-deposition electron exposure treatment in a localized oxygen ambient at room temperature. Time-dependent studies demonstrate that the process occurs from the top–down. Electron beam energy and current studies demonstrate that the process is controlled by a confluence of the electron energy loss and oxygen concentration. Furthermore, the experimental results are modeled as a 2nd order reaction which is dependent on both the electron energy loss density and the oxygen concentration. Finally, in addition to purification, the post-deposition electron stimulated oxygen purification processmore » enhances the resolution of the EBID process due to the isotropic carbon removal from the as-deposited materials which produces high-fidelity shape retention.« less

  10. Fabrication and photovoltaic properties of ZnO nanorods/perovskite solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirahata, Yasuhiro; Tanaike, Kohei; Akiyama, Tsuyoshi

    2016-02-01

    ZnO nanorods/perovskite solar cells with different lengths of ZnO nanorods were fabricated. The ZnO nanorods were prepared by chemical bath deposition and directly confirmed to be hexagon-shaped nanorods. The lengths of the ZnO nanorads were controlled by deposition condition of ZnO seed layer. Photovoltaic properties of the ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} solar cells were investigated by measuring current density-voltage characteristics and incident photon to current conversion efficiency. The highest conversion efficiency was obtained in ZnO nanorods/CH{sub 3}NH{sub 3}PbI{sub 3} with the longest ZnO nanorods.

  11. Superconducting MgB2 films via precursor postprocessing approach

    NASA Astrophysics Data System (ADS)

    Paranthaman, M.; Cantoni, C.; Zhai, H. Y.; Christen, H. M.; Aytug, T.; Sathyamurthy, S.; Specht, E. D.; Thompson, J. R.; Lowndes, D. H.; Kerchner, H. R.; Christen, D. K.

    2001-06-01

    Superconducting MgB2 films with Tc=38.6 K were prepared using a precursor-deposition, ex situ postprocessing approach. Precursor films of boron, ˜0.5 μm thick, were deposited onto Al2O3 (102) substrates by electron-beam evaporation; a postanneal at 890 °C in the presence of bulk MgB2 and Mg metal produced highly crystalline MgB2 films. X-ray diffraction indicated that the films exhibit some degree of c-axis alignment, but are randomly oriented in plane. Transport current measurements of the superconducting properties show high values of the critical current density and yield an irreversibility line that exceeds that determined by magnetic measurements on bulk polycrystalline materials.

  12. Fabrication of biaxially oriented YBCO on (001) biaxially oriented yttria-stabilized-zirconia on polycrystalline substrates

    NASA Astrophysics Data System (ADS)

    Arendt, P.; Foltyn, S.; Wu, Xin Di; Townsend, J.; Adams, C.; Hawley, M.; Tiwari, P.; Maley, M.; Willis, J.; Moseley, D.

    Ion-assisted, ion-beam sputter deposition is used to obtain (001) biaxially oriented films of cubic yttria stabilized zirconia (YSZ) on polycrystalline metal substrates. Yttrium barium copper oxide (YBCO) is then heteroepitaxially pulse laser deposited onto the YSZ. Phi scans of the films show the full-width-half maxima of the YSZ (202) and the YBCO (103) reflections to be 14 deg and 10 deg, respectively. Our best dc transport critical current density measurement for the YBCO is 800,000 A/sq cm at 75 K and 0 T. At 75 K, the total dc transport current in a 1 cm wide YBCO film is 23 A.

  13. Photoluminescence and cathodoluminescence properties of green emitting SrGa2{S}4 : Eu2+ thin film

    NASA Astrophysics Data System (ADS)

    Chartier, Céline; Benalloul, Paul; Barthou, Charles; Frigerio, Jean-Marc; Mueller, Gerd O.; Mueller-Mach, Regina; Trottier, Troy

    2002-02-01

    Photoluminescence and cathodoluminescence properties of SrGa2S4 : Eu2+ thin films prepared by reactive RF magnetron sputtering are investigated. Luminescence performances of the phosphor in the thin film form are compared to those of powder samples: the brightness efficiency of thin films is found to be about 30% of the efficiency of powder at low current density. A ratio higher than 40% is expected at higher current density. Thin film screens for FEDs will become a positive alternative to powder screens provided that film quality and light extraction could be improved by optimization of thickness and deposition parameters.

  14. High density operation for reactor-relevant power exhaust

    NASA Astrophysics Data System (ADS)

    Wischmeier, M.; ASDEX Upgrade Team; Jet Efda Contributors

    2015-08-01

    With increasing size of a tokamak device and associated fusion power gain an increasing power flux density towards the divertor needs to be handled. A solution for handling this power flux is crucial for a safe and economic operation. Using purely geometric arguments in an ITER-like divertor this power flux can be reduced by approximately a factor 100. Based on a conservative extrapolation of current technology for an integrated engineering approach to remove power deposited on plasma facing components a further reduction of the power flux density via volumetric processes in the plasma by up to a factor of 50 is required. Our current ability to interpret existing power exhaust scenarios using numerical transport codes is analyzed and an operational scenario as a potential solution for ITER like divertors under high density and highly radiating reactor-relevant conditions is presented. Alternative concepts for risk mitigation as well as strategies for moving forward are outlined.

  15. Influence of coil current modulation on polycrystalline diamond film deposition by irradiation of Ar/CH4/H2 inductively coupled thermal plasmas

    NASA Astrophysics Data System (ADS)

    Betsuin, Toshiki; Tanaka, Yasunori; Arai, T.; Uesugi, Y.; Ishijima, T.

    2018-03-01

    This paper describes the application of an Ar/CH4/H2 inductively coupled thermal plasma with and without coil current modulation to synthesise diamond films. Induction thermal plasma with coil current modulation is referred to as modulated induction thermal plasma (M-ITP), while that without modulation is referred to as non-modulated ITP (NM-ITP). First, spectroscopic observations of NM-ITP and M-ITP with different modulation waveforms were made to estimate the composition in flux from the thermal plasma by measuring the time evolution in the spectral intensity from the species. Secondly, we studied polycrystalline diamond film deposition tests on a Si substrate, and we studied monocrystalline diamond film growth tests using the irradiation of NM-ITP and M-ITP. From these tests, diamond nucleation effects by M-ITP were found. Finally, following the irradiation results, we attempted to use a time-series irradiation of M-ITP and NM-ITP for polycrystalline diamond film deposition on a Si substrate. The results indicated that numerous larger diamond particles were deposited with a high population density on the Si substrate by time-series irradiation.

  16. Metallic Ni3S2 Films Grown by Atomic Layer Deposition as an Efficient and Stable Electrocatalyst for Overall Water Splitting.

    PubMed

    Ho, Thi Anh; Bae, Changdeuck; Nam, Hochul; Kim, Eunsoo; Lee, Seung Yong; Park, Jong Hyeok; Shin, Hyunjung

    2018-04-18

    We describe the direct preparation of crystalline Ni 3 S 2 thin films via atomic layer deposition (ALD) techniques at temperatures as low as 250 °C without postthermal treatments. A new ALD chemistry is proposed using bis(1-dimethylamino-2-methyl-2-butoxy) nickel(II) [Ni(dmamb) 2 ] and H 2 S as precursors. Homogeneous and conformal depositions of Ni 3 S 2 films were achieved on 4 in. wafers (both metal and oxide substrates, including Au and SiO 2 ). The resulting crystalline Ni 3 S 2 layers exhibited highly efficient and stable performance as electrocatalysts for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline solutions, with a low overpotential of 300 mV and a high turnover frequency for HER and an overpotential of 400 mV for OER (at a current density of 10 mA/cm 2 ). Using our Ni 3 S 2 films as both the cathode and the anode, two-electrode full-cell electrolyzers were constructed, which showed stable operation for 100 h at a current density of 10 mA/cm 2 . The proposed ALD electrocatalysts on planar surfaces exhibited the best performance among Ni 3 S 2 materials for overall water splitting recorded to date.

  17. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    NASA Astrophysics Data System (ADS)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  18. Critical current density of high-quality Bi2Sr2Ca2Cu3Ox thin films prepared by metalorganic chemical-vapor deposition

    NASA Astrophysics Data System (ADS)

    Yamasaki, H.; Endo, K.; Nakagawa, Y.; Umeda, M.; Kosaka, S.; Misawa, S.; Yoshida, S.; Kajimura, K.

    1992-10-01

    Critical current densities Jc were measured in as-deposited, c-axis-oriented Bi2Sr2Ca2Cu3Ox thin films with Tc values as high as 97 K, which were prepared by metalorganic chemical-vapor deposition. These films showed high Jc (≳109 A/m2) at 77.3 K in high magnetic fields (≥1 T, H∥a-b plane). The best values are 3.3×109 A/m2 at 1 T and 9.1×108 A/m2 at 8 T, which are the highest Jc for Bi-oxide thin films among those reported so far. There were no signs of weak links in the Jc(H) behavior, and the surface morphology examined by scanning electron microscopy showed no apparent grain boundaries. The values of Jc decreased sharply when the applied field deviated from the a-b plane, and went to zero at the angles where the field component in the c direction is nearly equal to the irreversibility field Hc2* parallel to the c axis. The angular dependence of Jc of these films is most reasonably explained by the theory of intrinsic pinning.

  19. Deposition and properties of Fe(Se,Te) thin films on vicinal CaF2 substrates

    NASA Astrophysics Data System (ADS)

    Bryja, Hagen; Hühne, Ruben; Iida, Kazumasa; Molatta, Sebastian; Sala, Alberto; Putti, Marina; Schultz, Ludwig; Nielsch, Kornelius; Hänisch, Jens

    2017-11-01

    We report on the growth of epitaxial Fe1+δ Se0.5Te0.5 thin films on 0°, 5°, 10°, 15° and 20° vicinal cut CaF2 single crystals by pulsed laser deposition. In situ electron and ex situ x-ray diffraction studies reveal a tilted growth of the Fe1+δ Se0.5Te0.5 films, whereby under optimized deposition conditions the c-axis alignment coincides with the substrate [001] tilted axis up to a vicinal angle of 10°. Atomic force microscopy shows a flat island growth for all films. From resistivity measurements in longitudinal and transversal directions, the ab- and c-axis components of resistivity are derived and the mass anisotropy parameter is determined. Analysis of the critical current density indicates that no effective c-axis correlated defects are generated by vicinal growth, and pinning by normal point core defects dominates. However, for H∣∣ab the effective pinning centers change from surface defects to point core defects near the superconducting transition due to the vicinal cut. Furthermore, we show in angular-dependent critical current density data a shift of the ab-planes maxima position with the magnetic field strength.

  20. Tuning vertical alignment and field emission properties of multi-walled carbon nanotube bundles

    NASA Astrophysics Data System (ADS)

    Sreekanth, M.; Ghosh, S.; Srivastava, P.

    2018-01-01

    We report the growth of vertically aligned carbon nanotube bundles on Si substrate by thermal chemical vapor deposition technique. Vertical alignment was achieved without any carrier gas or lithography-assisted deposition. Growth has been carried out at 850 °C for different quantities of solution of xylene and ferrocene ranging from 2.25 to 3.00 ml in steps of 0.25 ml at a fixed concentration of 0.02 gm (ferrocene) per ml. To understand the growth mechanism, deposition was carried out for different concentrations of the solution by changing only the ferrocene quantity, ranging from 0.01 to 0.03 gm/ml. A tunable vertical alignment of multi-walled carbon nanotubes (CNTs) has been achieved by this process and examined by scanning and transmission electron microscopic techniques. Micro-crystalline structural analysis has been done using Raman spectroscopy. A systematic variation in field emission (FE) current density has been observed. The highest FE current density is seen for the film grown with 0.02 gm/ml concentration, which is attributed to the better alignment of CNTs, less structural disorder and less entanglement of CNTs on the surface. The alignment of CNTs has been qualitatively understood on the basis of self-assembled catalytic particles.

  1. Three-Dimensional Grain Shape-Fabric from Unconsolidated Pyroclastic Density Current Deposits: Implications for Extracting Flow Direction and Insights on Rheology

    NASA Astrophysics Data System (ADS)

    Hawkins, T. T.; Brand, B. D.; Sarrochi, D.; Pollock, N.

    2016-12-01

    One of the greatest challenges volcanologists face is the ability to extrapolate information about eruption dynamics and emplacement conditions from deposits. Pyroclastic density current (PDC) deposits are particularly challenging given the wide range of initial current conditions, (e.g., granular, fluidized, concentrated, dilute), and rapid flow transformations due to interaction with evolving topography. Analysis of particle shape-fabric can be used to determine flow direction, and may help to understand the rheological characteristics of the flows. However, extracting shape-fabric information from outcrop (2D) apparent fabric is limited, especially when outcrop exposure is incomplete or lacks context. To better understand and quantify the complex flow dynamics reflected in PDC deposits, we study the complete shape-fabric data in 3D using oriented samples. In the field, the prospective sample is carved from the unconsolidated deposit in blocks, the dimensions of which depend on the average clast size in the sample. The sample is saturated in situ with a water-based sodium silicate solution, then wrapped in plaster-soaked gauze to form a protective cast. The orientation of the sample is recorded on the block faces. The samples dry for five days and are then extracted in intact blocks. In the lab, the sample is vacuum impregnated with sodium silicate and cured in an oven. The fully lithified sample is first cut along the plan view to identify orientations of the long axes of the grains (flow direction), and then cut in the two plains perpendicular to grain elongation. 3D fabric analysis is performed using high resolution images of the cut-faces using computer assisted image analysis software devoted to shape-fabric analysis. Here we present the results of samples taken from the 18 May 1980 PDC deposit facies, including massive, diffuse-stratified and cross-stratified lapilli tuff. We show a relationship between the strength of iso-orientation of the elongated particles and different facies architectures, which is used to interpret rheological conditions of the flow. We chose the 18 May PDC deposits because their well-exposed and well-studied outcrops provide context, which allow us to test the method and extract information useful for interpreting ancient deposits that lack context.

  2. Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors with atomic layer deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Yang, T.; Sharifi, H.; Kim, S. K.; Xuan, Y.; Shen, T.; Mohammadi, S.; Ye, P. D.

    2007-11-01

    Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors (MOS-HEMTs) with ex situ atomic-layer-deposited Al2O3 as gate dielectrics are studied. Maximum drain currents of 211 and 263mA/mm are obtained for 1μm gate-length Al2O3 MOS-HEMTs with 3 and 6nm thick gate oxide, respectively. C-V characteristic shows negligible hysteresis and frequency dispersion. The gate leakage current density of the MOS-HEMTs is 3-5 orders of magnitude lower than the conventional HEMTs under similar bias conditions. The drain current on-off ratio of MOS-HEMTs is ˜3×103 with a subthreshold swing of 90mV/decade. A maximum cutoff frequency (fT) of 27.3GHz and maximum oscillation frequency (fmax) of 39.9GHz and an effective channel mobility of 4250cm2/Vs are measured for the 1μm gate-length Al2O3 MOS-HEMT with 6nm gate oxide. Hooge's constant measured by low frequency noise spectral density characterization is 3.7×10-5 for the same device.

  3. T-Nb2O5 quantum dots prepared by electrodeposition for fast Li ion intercalation/deintercalation

    NASA Astrophysics Data System (ADS)

    Zhao, Guangyu; Ye, Chen; Zhang, Li; Li, Changle; Sun, Kening

    2017-05-01

    T-Nb2O5 quantum dots were electrodeposited on Ti nanorod arrays to prepare Ti@T-Nb2O5 core-shell array electrodes. The particle size of T-Nb2O5 could be manipulated by adjusting the depositing current density, and quantum dots several nanometers in size could be obtained at a deposition current of 6 mA cm-2. Benefiting from the ultra-small particle size of T-Nb2O5 and the array structure, Ti@T-Nb2O5 nanorod arrays exhibited good rate capability and durability when used as self-supported Li ion battery anodes. The arrays possessed capacities of 350 and 70 mAh g-1 at rate currents of 0.06 and 30 A g-1, respectively. Furthermore, the electrodes maintained 500 cycles without obvious decay at a high rate current of 30 A g-1.

  4. Preparation of Al-Si Master Alloy by Electrochemical Reduction of Fly Ash in Molten Salt

    NASA Astrophysics Data System (ADS)

    Liu, Aimin; Li, Liangxing; Xu, Junli; Shi, Zhongning; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen; Yu, Jiangyu; Chen, Gong

    2014-05-01

    An electrochemical method on preparation of Al-Si master alloy was investigated in fluoride-based molten salts of 47.7wt.%NaF-43.3wt.%AlF3-4wt.%CaF2 containing 5 wt.% fly ash at 1233 K. The cathodic products obtained by galvanostatic electrolysis were analyzed by means of x-ray diffraction, x-ray fluorescence, scanning electron microscopy, and energy-dispersive spectrometry. The result showed that the compositions of the products are Al, Si, and Al3.21Si0.47. Meanwhile, the cathodic electrochemical process was studied by cyclic voltammetry, and the results showed the reduction peak of aluminum deposition is at -1.3 V versus the platinum quasi-reference electrode in 50.3wt.%NaF-45.7wt.%AlF3-4wt.%CaF2 molten salts, while the reduction peak at -1.3 V was the co-deposition of aluminum and silicon when the fly ash was added. The silicon and iron were formed via both co-deposition and aluminothermic reduction. In the electrolysis experiments, current efficiency first increased to a maximum value of 40.7% at a current density of 0.29 A/cm2, and then it decreased with the increase of current density. With the electrolysis time lasting, the content of aluminum in the alloys decreased from 76.05 wt.% to 48.29 wt.% during 5 h, while the content of silicon increased from 15.94 wt.% to 37.89 wt.%.

  5. The effect of PS porosity on the structure, optical and electrical properties of ZnS/PS

    NASA Astrophysics Data System (ADS)

    Wang, Cai-Feng; Hu, Bo; Yi, Hou-Hui; Li, Wei-Bing

    2014-03-01

    ZnS films were deposited on porous silicon (PS) substrates with different porosities by pulsed laser deposition (PLD). The crystalline structure, surface morphology of ZnS films on PS substrates and optical, electrical properties of ZnS/PS composites were studied. The results show that, ZnS films deposited on PS substrates were grown in preferred orientation along β-ZnS (111) direction corresponding to crystalline structure of cubic phase. With the increase of PS porosity, the XRD diffraction peak intensity of ZnS films decreases. Some voids and cracks appear in the films. Compared with as-prepared PS, the PL peak of PS for ZnS/PS has a blueshift. The larger the porosity of PS, the greater the blueshift is. A new green light emission located around 550 nm is observed with increasing PS porosity, which is ascribed to defect-center luminescence of ZnS. The blue, green emission of ZnS combined with the red emission of PS, a broad photoluminescence band (450-750 nm) is formed. ZnS/PS composites exhibited intense white light emission. The I-V characteristics of ZnS/PS heterojunctions showed rectifying behavior. Under forward bias conditions, the current density is large. Under reverse bias conditions, the current density nearly to be zero. The forward current increases with increasing PS porosity. This work lay a foundation for the realization of electroluminescence of ZnS/PS and solid white light emission devices.

  6. Runout distance and dynamic pressure of pyroclastic density currents: Evidence from 18 May 1980 blast surge of Mount St. Helens

    NASA Astrophysics Data System (ADS)

    Gardner, J. E.; Andrews, B. J.

    2016-12-01

    Pyroclastic density currents (flows and surges) are one of the most deadly hazards associated with volcanic eruptions. Understanding what controls how far such currents will travel, and how their dynamic pressure evolves, could help mitigate their hazards. The distance a ground hugging, pyroclastic density current travels is partly limited by when it reverses buoyancy and lifts off into the atmosphere. The 1980 blast surge of Mount St. Helens offers an example of a current seen to lift off. Before lofting, it had traveled up to 20 km and leveled more than 600 km3 of thick forest (the blowdown zone). The outer edge of the devastated area - where burned trees that were left standing (the singe zone) - is where the surge is thought to have lifted off. We recently examined deposits in the outer parts of the blowdown and in the singe zone at 32 sites. The important finding is that the laterally moving surge travelled into the singe zone, and hence the change in tree damage does not mark the run out distance of the ground hugging surge. Eyewitness accounts and impacts on trees and vehicles reveal that the surge consisted of a fast, dilute "overcurrent" and a slower "undercurrent", where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that when the overcurrent began to lift off, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, burning trees but it lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from 30 m/s when it entered the singe zone to 3 m/s at the far end. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards.

  7. MnO2/carbon nanowalls composite electrode for supercapacitor application

    NASA Astrophysics Data System (ADS)

    Hassan, Sameh; Suzuki, Masaaki; Mori, Shinsuke; El-Moneim, Ahmed Abd

    2014-03-01

    Amorphous MnO2/carbon nanowalls composite films are developed for the supercapacitor applications. Synthesis of carbon nanowalls template is performed by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. A well dispersion of amorphous MnO2 domains throughout carbon nanowalls template is obtained by potentiostatic anodic deposition technique. Carbon nanowalls enable to improve the capacitive behavior and rate capability of MnO2, a specific capacitance of 851 F g-1 at a current density of 1 mA cm-2 and charge transfer resistance of 1.02 Ω are obtained. MnO2/carbon nanowalls composite film exhibits energy density of 118 wh kg-1, power density of 783 wh kg-1, and capacitance retention of 92% after long cycle life of 2000 cycles by charging and discharging at 3 mA cm-2. The high density of atomic scale graphitic edges and large surface area of carbon nanowalls in conjunction with the presence of amorphous MnO2 domains facilitate rapid electron and ion transport and hence offering the potential of the improved capacitive behavior.

  8. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors.

    PubMed

    Rusi; Majid, S R

    2015-11-05

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg(-1) and 68 kWkg(-1) at current density of 20 Ag(-1) in mixed KOH/K3Fe(CN)6 electrolyte.

  9. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    NASA Astrophysics Data System (ADS)

    Rusi; Majid, S. R.

    2015-11-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg-1 and 68 kWkg-1 at current density of 20 Ag-1 in mixed KOH/K3Fe(CN)6 electrolyte.

  10. Green synthesis of in situ electrodeposited rGO/MnO2 nanocomposite for high energy density supercapacitors

    PubMed Central

    Rusi; Majid, S. R.

    2015-01-01

    This paper presents the preparation of in situ electrodeposited rGO/MnO2 nanocomposite as a binder-free electrode for supercapacitor application. The work describes and evaluates the performance of prepared electrode via green and facile electrodeposition technique of in situ rGO/MnO2-glucose carbon nanocomposites. The carbon content in the composite electrode increased after GO and D (+) glucose solution has been added in the deposition electrolyte. This study found that a suitable concentration of D (+) glucose in the deposition electrolyte can slow down the nucleation process of MnO2 particles and lead to uniform and ultrathin nanoflakes structure. The optimize electrode exhibited low transfer resistance and resulted on excellent electrochemical performance in three electrolyte systems viz. Na2SO4, KOH and KOH/K3Fe(CN)6 redox electrolytes. The optimum energy density and power density were 1851 Whkg−1 and 68 kWkg−1 at current density of 20 Ag−1 in mixed KOH/K3Fe(CN)6 electrolyte. PMID:26537363

  11. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    NASA Astrophysics Data System (ADS)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (< 3.1 ka) is one of the best exposed and widely dispersed pyroclastic deposits, related to both fall and flow activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the arrival of new magma (represented in the deposit by P1 clasts) into a small, outgassed magma body which was accumulated at shallow level (mainly represented by P2 clasts). A new Chaimilla-type eruption could significantly affect the communities that have recently developed around Villarrica volcano and subsist mainly on tourism and forestry. As a result, a better understanding of the dynamics and evolution of the Chaimilla eruption is necessary for the identification of potential hazard scenarios at Villarrica volcano and, ultimately, for the risk mitigation of this populated area of Southern Chile.

  12. Directed blasts and blast-generated pyroclastic density currents: a comparison of the Bezymianny 1956, Mount St Helens 1980, and Soufrière Hills, Montserrat 1997 eruptions and deposits

    USGS Publications Warehouse

    Belousov, Alexander; Voight, Barry; Belousova, Marina

    2007-01-01

    We compare eruptive dynamics, effects and deposits of the Bezymianny 1956 (BZ), Mount St Helens 1980 (MSH), and Soufrière Hills volcano, Montserrat 1997 (SHV) eruptions, the key events of which included powerful directed blasts. Each blast subsequently generated a high-energy stratified pyroclastic density current (PDC) with a high speed at onset. The blasts were triggered by rapid unloading of an extruding or intruding shallow magma body (lava dome and/or cryptodome) of andesitic or dacitic composition. The unloading was caused by sector failures of the volcanic edifices, with respective volumes for BZ, MSH, and SHV c. 0.5, 2.5, and 0.05 km3 . The blasts devastated approximately elliptical areas, axial directions of which coincided with the directions of sector failures. We separate the transient directed blast phenomenon into three main parts, the burst phase, the collapse phase, and the PDC phase. In the burst phase the pressurized mixture is driven by initial kinetic energy and expands rapidly into the atmosphere, with much of the expansion having an initially lateral component. The erupted material fails to mix with sufficient air to form a buoyant column, but in the collapse phase, falls beyond the source as an inclined fountain, and thereafter generates a PDC moving parallel to the ground surface. It is possible for the burst phase to comprise an overpressured jet, which requires injection of momentum from an orifice; however some exploding sources may have different geometry and a jet is not necessarily formed. A major unresolved question is whether the preponderance of strong damage observed in the volcanic blasts should be attributed to shock waves within an overpressured jet, or alternatively to dynamic pressures and shocks within the energetic collapse and PDC phases. Internal shock structures related to unsteady flow and compressibility effects can occur in each phase. We withhold judgment about published shock models as a primary explanation for the damage sustained at MSH until modern 3D numerical modeling is accomplished, but argue that much of the damage observed in directed blasts can be reasonably interpreted to have been caused by high dynamic pressures and clast impact loading by an inclined collapsing fountain and stratified PDC. This view is reinforced by recent modeling cited for SHV. In distal and peripheral regions, solids concentration, maximum particle size, current speed, and dynamic pressure are diminished, resulting in lesser damage and enhanced influence by local topography on the PDC. Despite the different scales of the blasts (devastated areas were respectively 500, 600, and >10 km2 for BZ, MSH, and SHV), and some complexity involving retrogressive slide blocks and clusters of explosions, their pyroclastic deposits demonstrate strong similarity. Juvenile material composes >50% of the deposits, implying for the blasts a dominantly magmatic mechanism although hydrothermal explosions also occurred. The character of the magma fragmented by explosions (highly viscous, phenocryst-rich, variable microlite content) determined the bimodal distributions of juvenile clast density and vesicularity. Thickness of the deposits fluctuates in proximal areas but in general decreases with distance from the crater, and laterally from the axial region. The proximal stratigraphy of the blast deposits comprises four layers named A, B, C, D from bottom to top. Layer A is represented by very poorly sorted debris with admixtures of vegetation and soil, with a strongly erosive ground contact; its appearance varies at different sites due to different ground conditions at the time of the blasts. The layer reflects intense turbulent boundary shear between the basal part of the energetic head of the PDC and the substrate. Layer B exhibits relatively well-sorted fines depleted debris with some charred plant fragments; its deposition occurred by rapid suspension sedimentation in rapidly waning, high-concentration conditions. Layer C is mainly a poorly sorted massive layer enriched by fines with its uppermost part laminated, created by rapid sedimentation under moderate-concentration, weakly tractive conditions, with the uppermost laminated part reflecting a dilute depositional regime with grain-by-grain traction deposition. By analogy to laboratory experiments, mixing at the flow head of the PDC created a turbulent dilute wake above the body of a gravity current, with layer B deposited by the flow body and layer C by the wake. The uppermost layer D of fines and accretionary lapilli is an ash fallout deposit of the finest particles from the high-rising buoyant thermal plume derived from the sediment-depleted pyroclastic density current. The strong similarity among these eruptions and their deposits suggests that these cases represent similar source, transport and depositional phenomena.

  13. Synthesis of zinc oxide nanostructures on graphene/glass substrate by electrochemical deposition: effects of current density and temperature.

    PubMed

    Hambali, Nur Ashikyn; Yahaya, Hafizal; Mahmood, Mohamad Rusop; Terasako, Tomoaki; Hashim, Abdul Manaf

    2014-01-01

    The electrochemical growth of zinc oxide (ZnO) nanostructures on graphene on glass using zinc nitrate hexahydrate was studied. The effects of current densities and temperatures on the morphological, structural, and optical properties of the ZnO structures were studied. Vertically aligned nanorods were obtained at a low temperature of 75°C, and the diameters increased with current density. Growth temperature seems to have a strong effect in generating well-defined hexagonal-shape nanorods with a smooth top edge surface. A film-like structure was observed for high current densities above -1.0 mA/cm(2) and temperatures above 80°C due to the coalescence between the neighboring nanorods with large diameter. The nanorods grown at a temperature of 75°C with a low current density of -0.1 mA/cm(2) exhibited the highest density of 1.45 × 10(9) cm(-2). X-ray diffraction measurements revealed that the grown ZnO crystallites were highly oriented along the c-axis. The intensity ratio of the ultraviolet (UV) region emission to the visible region emission, I UV/I VIS, showed a decrement with the current densities for all grown samples. The samples grown at the current density below -0.5 mA/cm(2) showed high I UV/I VIS values closer to or higher than 1.0, suggesting their fewer structural defects. For all the ZnO/graphene structures, the high transmittance up to 65% was obtained at the light wavelength of 550 nm. Structural and optical properties of the grown ZnO structures seem to be effectively controlled by the current density rather than the growth temperature. ZnO nanorod/graphene hybrid structure on glass is expected to be a promising structure for solar cell which is a conceivable candidate to address the global need for an inexpensive alternative energy source.

  14. Quasi-steady-state high confinement at high density by lower hybrid waves in the HT-6M tokamak

    NASA Astrophysics Data System (ADS)

    Li, Jiangang; Luo, Jiarong; Wan, Baonian; Wan, Yuanxi; Liu, Yuexiu; Yin, Finxian; Gong, Xianzu; Li, Duochuan; Liu, Shen; Jie, Yinxian; Gao, Xiang; Luo, Nancang; Jiang, Jiaguang; Han, Yuqing; Wu, Mingjun; Wang, Guangxin; Liang, Yunfeng; Yao, Ailing; Wu, Zhenwei; Zhang, Shouyin; Mao, Jiansan; Cui, Lingzhuo; Xu, Yuhong; Meng, Yuedong; Zhao, Junyu; Ding, Bolong; Li, Guiming; Xu, Xiangdong; Lin, Bili; Wei, Meishen; Yie, Weiwei

    2000-03-01

    The quasi-steady-state (tH > 10 τEoh) H mode with high plasma density (ELMy and ELM free) was routinely obtained by the injection of lower hybrid wave heating and lower hybrid current drive with a power threshold of 50 kW. The antenna spectrum was scanned over a wide range and τE was about 1.5-2.0 times that of the L mode scaling. The density increases by almost a factor of 3 during the H phase by gas puffing and the particle confinement time increases by more than this factor even with a line averaged density of 3 × 1013cm-3, which is about 60% of the Greenwald density limit. A hollow Te profile was achieved in the high density case. The experimental results reproducibly show a good agreement with the theoretical prediction for the LH off-axis power deposition profile. When a certain fraction of the plasma current is non-inductively sustained by the LH waves, a hollow current density profile is formed and the magnetic shear is reversed. This off-axis hollow profile and enhanced confinement improvement are attributed to a strong reduction of the electron thermal diffusivity in the reversed shear region.

  15. Low temperature formation of electrode having electrically conductive metal oxide surface

    DOEpatents

    Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping

    1998-01-01

    A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.

  16. The Influence of Marcellus Shale Extraction Emissions on Regionally Monitored Dry Reactive Nitrogen Deposition.

    PubMed

    Coughlin, Justin G; Rose, Lucy A; Bain, Daniel J; Elliott, Emily M

    2017-03-21

    Emissions of nitrogen oxides (NO x ) in the United States (U.S.) from large stationary sources, such as electric generating units, have decreased since 1995, driving decreases in nitrogen deposition. However, increasing NO x emissions from emerging industries, such as unconventional natural gas (UNG) extraction, could offset stationary source emission reductions in shale gas producing regions of the U.S. The Marcellus Shale in the northeastern U.S. has seen dramatic increases in the number of wells and associated natural gas production during the past 10 years. In this study, we examine the potential impacts of shale gas development on regional NO x emission inventories and dry deposition fluxes to Clean Air Status and Trends (CASTNET) sites in Pennsylvania and New York. Our results demonstrate that the current distribution of CASTNET sites is ineffective for monitoring the influence of Marcellus well NO x emissions on regional nitrogen deposition. Despite the fact that existing CASTNET sites are not influenced by UNG extraction activity, NO x emissions densities from shale gas extraction are substantial and are estimated to reach up to 21 kg NO x ha -1 year -1 in some regions. If these emissions deposit locally, UNG extraction activity could contribute to critical nitrogen load exceedances in areas of high well density.

  17. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.

    PubMed

    Wang, Wei-Cheng; Tsai, Meng-Chen; Yang, Jason; Hsu, Chuck; Chen, Miin-Jang

    2015-05-20

    In this study, efficient nanotextured black silicon (NBSi) solar cells composed of silicon nanowire arrays and an Al2O3/TiO2 dual-layer passivation stack on the n(+) emitter were fabricated. The highly conformal Al2O3 and TiO2 surface passivation layers were deposited on the high-aspect-ratio surface of the NBSi wafers using atomic layer deposition. Instead of the single Al2O3 passivation layer with a negative oxide charge density, the Al2O3/TiO2 dual-layer passivation stack treated with forming gas annealing provides a high positive oxide charge density and a low interfacial state density, which are essential for the effective field-effect and chemical passivation of the n(+) emitter. In addition, the Al2O3/TiO2 dual-layer passivation stack suppresses the total reflectance over a broad range of wavelengths (400-1000 nm). Therefore, with the Al2O3/TiO2 dual-layer passivation stack, the short-circuit current density and efficiency of the NBSi solar cell were increased by 11% and 20%, respectively. In conclusion, a high efficiency of 18.5% was achieved with the NBSi solar cells by using the n(+)-emitter/p-base structure passivated with the Al2O3/TiO2 stack.

  18. Pyroclastic density currents associated with the 2008-2009 eruption of Chaitén Volcano (Chile): forest disturbances, deposits, and dynamics

    USGS Publications Warehouse

    Major, Jon J.; Pierson, Thomas C.; Hoblitt, Richard P.; Moreno, Hugo

    2013-01-01

    Explosive activity at Chaitén Volcano in May 2008 and subsequent dome collapses over the following nine months triggered multiple, small-volume pyroclastic density currents (PDCs). The explosive activity triggered PDCs to the north and northeast, which felled modest patches of forest as far as 2 km from the caldera rim. Felled trees pointing in the down-current direction dominate the disturbance zones. The PDC on the north flank of Chaitén left a decimeters-thick, bipartite deposit having a basal layer of poorly sorted, fines-depleted pumice-and-lithic coarse ash and lapilli, which transitions abruptly to fines-enriched pumice-and-lithic coarse ash. The deposit contains fragments of mostly uncharred organics near its base; vegetation protruding above the deposit is uncharred. The nature of the forest disturbance and deposit characteristics suggest the PDC was dilute, of relatively low temperature (-1. It was formed by directionally focused explosions throughout the volcano's prehistoric, intracaldera lava dome. Dilute, low-temperature PDCs that exited the caldera over a low point on the east-southeast caldera rim deposited meters-thick fill of stratified beds of pumice-and-lithic coarse ash and lapilli. They did not fell large trees more than a few hundred of meters from the caldera rim and were thus less energetic than those on the north and northeast flanks. They likely formed by partial collapses of the margins of vertical eruption columns. In the Chaitén River valley south of the volcano, several-meter-thick deposits of two block-and-ash flow (BAF) PDCs are preserved. Both have a coarse ash matrix that supports blocks and lapilli predominantly of lithic rhyolite dome rock, minor obsidian, and local bedrock. One deposit was emplaced by a BAF that traveled an undetermined distance downvalley between June and November 2008, apparently triggered by partial collapse of a newly effused lava dome on that started growing on 12 May. A second, and larger, BAF related to another collapse of the new lava dome on 19 February 2009 traveled to within 3 km of the village of Chaitén, 10 km downstream of the volcano. It deposited as much as 8-10 m of diamict having sedimentary characteristics very similar to the previous BAF deposit. Charred trees locally encased within the BAD deposits suggest that the flows were of moderate temperature, perhaps as much as 300°C. Erosion of the BAD deposits filling the Chaitén River channel has delivered substantial sediment loads downstream, contributing to channel instability and challenged river management.

  19. A flexible curvilinear electromagnetic filter for direct current cathodic arc source.

    PubMed

    Dai, Hua; Shen, Yao; Li, Liuhe; Li, Xiaoling; Cai, Xun; Chu, Paul K

    2007-09-01

    Widespread applications of direct current (dc) cathodic arc deposition are hampered by macroparticle (MP) contamination, although a cathodic arc offers many unique merits such as high ionization rate, high deposition rate, etc. In this work, a flexible curvilinear electromagnetic filter is described to eliminate MPs from a dc cathodic arc source. The filter which has a relatively large size with a minor radius of about 85 mm is suitable for large cathodes. The filter is open and so the MPs do not rebound inside the filter. The flexible design allows the ions to be transported from the cathode to the sample surface optimally. Our measurements with a saturated ion current probe show that the efficiency of this flexible filter reaches about 2.0% (aluminum cathode) when the filter current is about 250 A. The MP density measured from TiN films deposited using this filter is two to three orders of magnitude less than that from films deposited with a 90 degrees duct magnetic filter and three to four orders of magnitude smaller than those deposited without a filter. Furthermore, our experiments reveal that the potential of the filter coil and the magnetic field on the surface of the cathode are two important factors affecting the efficacy of the filter. Different biasing potentials can enhance the efficiency to up to 12-fold, and a magnetic field at about 4.0 mT can improve it by a factor of 2 compared to 5.4 mT.

  20. Electrical Properties and Interfacial Studies of HfxTi1–xO2 High Permittivity Gate Insulators Deposited on Germanium Substrates

    PubMed Central

    Lu, Qifeng; Mu, Yifei; Roberts, Joseph W.; Althobaiti, Mohammed; Dhanak, Vinod R.; Wu, Jingjin; Zhao, Chun; Zhao, Ce Zhou; Zhang, Qian; Yang, Li; Mitrovic, Ivona Z.; Taylor, Stephen; Chalker, Paul R.

    2015-01-01

    In this research, the hafnium titanate oxide thin films, TixHf1–xO2, with titanium contents of x = 0, 0.25, 0.9, and 1 were deposited on germanium substrates by atomic layer deposition (ALD) at 300 °C. The approximate deposition rates of 0.2 Å and 0.17 Å per cycle were obtained for titanium oxide and hafnium oxide, respectively. X-ray Photoelectron Spectroscopy (XPS) indicates the formation of GeOx and germanate at the interface. X-ray diffraction (XRD) indicates that all the thin films remain amorphous for this deposition condition. The surface roughness was analyzed using an atomic force microscope (AFM) for each sample. The electrical characterization shows very low hysteresis between ramp up and ramp down of the Capacitance-Voltage (CV) and the curves are indicative of low trap densities. A relatively large leakage current is observed and the lowest leakage current among the four samples is about 1 mA/cm2 at a bias of 0.5 V for a Ti0.9Hf0.1O2 sample. The large leakage current is partially attributed to the deterioration of the interface between Ge and TixHf1–xO2 caused by the oxidation source from HfO2. Consideration of the energy band diagrams for the different materials systems also provides a possible explanation for the observed leakage current behavior. PMID:28793705

  1. Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Sadrnezhaad, Sayed Khatiboleslam

    2015-12-01

    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of nucleation sites was larger on ITO than on Cu layer; while the average diameter of the crystallites on ITO was smaller than on Cu layer.

  2. Constructing, connecting and soldering nanostructures by environmental electron beam deposition

    NASA Astrophysics Data System (ADS)

    Mølhave, Kristian; Nørgaard Madsen, Dorte; Dohn, Søren; Bøggild, Peter

    2004-08-01

    Highly conductive nanoscale deposits with solid gold cores can be made by electron beam deposition in an environmental scanning electron microscope (ESEM), suggesting the method to be used for constructing, connecting and soldering nanostructures. This paper presents a feasibility study for such applications. We identify several issues related to contamination and unwanted deposition, relevant for deposition in both vacuum (EBD) and environmental conditions (EEBD). We study relations between scan rate, deposition rate, angle and line width for three-dimensional structures. Furthermore, we measure the conductivity of deposits containing gold cores, and find these structures to be highly conductive, approaching the conductivity of solid gold and capable of carrying high current densities. Finally, we study the use of the technique for soldering nanostructures such as carbon nanotubes. Based on the presented results we are able to estimate limits for the applicability of the method for the various applications, but also demonstrate that it is a versatile and powerful tool for nanotechnology within these limits.

  3. The Bouma Sequence and the turbidite mind set

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.

    1997-11-01

    Conventionally, the Bouma Sequence [Bouma, A.H., 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.], composed of T a, T b, T c, T d, and T e divisions, is interpreted to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences can also be interpreted to be deposits formed by processes other than turbidity currents, such as sandy debris flows and bottom-current reworking. Many published examples of turbidites, most of them hydrocarbon-bearing sands, in the North Sea, the Norwegian Sea, offshore Nigeria, offshore Gabon, Gulf of Mexico, and the Ouachita Mountains, are being reinterpreted by the present author as dominantly deposits of sandy debris flows and bottom-current reworking with only a minor percentage of true turbidites (i.e., deposits of turbidity currents with fluidal or Newtonian rheology in which sediment is suspended by fluid turbulence). This reinterpretation is based on detailed description of 21,000 ft (6402 m) of conventional cores and 1200 ft (365 m) of outcrop sections. The predominance of interpreted turbidites in these areas by other workers can be attributed to the following: (1) loose applications of turbidity-current concepts without regard for fluid rheology, flow state, and sediment-support mechanism that result in a category of 'turbidity currents' that includes debris flows and bottom currents; (2) field description of deep-water sands using the Bouma Sequence (an interpretive model) that invariably leads to a model-driven turbidite interpretation; (3) the prevailing turbidite mind set that subconsciously forces one to routinely interpret most deep-water sands as some kind of turbidites; (4) the use of our inability to interpret transport mechanism from the depositional record as an excuse for assuming deep-water sands as deposits of turbidity currents; (5) the flawed concept of high-density turbidity currents that allows room for interpreting debris-flow deposits as turbidites; (6) the flawed comparison of subaerial river currents (fluid-gravity flows dominated by bed-load transport) with subaqueous turbidity currents (sediment-gravity flows dominated by suspended load transport) that results in misinterpreting ungraded or parallel-stratified deep-sea deposits as turbidites; and (7) the attraction to use obsolete submarine-fan models with channels and lobes that require a turbidite interpretation. Although the turbidite paradigm is alive and well for now, the turbidites themselves are becoming an endangered facies!

  4. Radial particle-size segregation during packing of particulates into cylindrical containers

    USGS Publications Warehouse

    Ripple, C.D.; James, R.V.; Rubin, J.

    1973-01-01

    In a series of experiments, soil materials were placed in long cylindrical containers, using various packing procedures. Soil columns produced by deposition and simultaneous vibratory compaction were dense and axially uniform, but showed significant radial segregation of particle sizes. Similar results were obtained with deposition and simultaneous impact-type compaction when the impacts resulted in significant container "bouncing". The latter procedure, modified to minimize "bouncing" produced dense, uniform soil columns, showing little radial particle-size segregation. Other procedures tested (deposition alone and deposition followed by compaction) did not result in radial segregation, but produced columns showing either relatively low or axially nonuniform densities. Current data suggest that radial particle-size segregation is mainly due to vibration-induced particle circulation in which particles of various sizes have different circulation rates and paths. ?? 1973.

  5. On the energy deposition into the plasma for an inverted fireball geometry

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Gruenwald, Johannes

    2017-10-01

    Energy deposition into a plasma for an inverted fireball geometry is studied using a self-consistent two-dimensional Particle-in-Cell Monte Carlo collision model. In this model, the cathode is a pin which injects the fixed electron current and the anode is a hollow metal tube covered with the metal grid. We obtain an almost constant ratio between the densities of plasmas generated in the cathode-grid gap and inside the hollow anode. The results of the simulations show that there is no energy exchange between the beam and plasma electrons at low emission currents. For increasing current, however, we observe the increasing coupling between the electron beam and the thermal plasma electrons. This leads to the heating of plasma electrons and the generation of the so-called supra-thermal electrons.

  6. Increased mobility and on/off ratio in organic field-effect transistors using low-cost guanine-pentacene multilayers

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Zheng, Yifan; Taylor, André D.; Yu, Junsheng; Katz, Howard E.

    2017-07-01

    Layer-by-layer deposited guanine and pentacene in organic field-effect transistors (OFETs) is introduced. Through adjusting the layer thickness ratio of guanine and pentacene, the tradeoff of two electronic parameters in OFETs, charge carrier mobility and current on/off ratio, was controlled. The charge mobility was enhanced by depositing pentacene over and between guanine layers and by increasing the proportion of pentacene in the layer-by-layer system, while the current on/off ratio was increased via the decreased off current induced by the guanine layers. The tunable device performance was mainly ascribed to the trap and dopant neutralizing properties of the guanine layers, which would decrease the density of free hydroxyl groups in the OFETs. Furthermore, the cost of the devices could be reduced remarkably via the adoption of low-cost guanine.

  7. Mineral deposit densities for estimating mineral resources

    USGS Publications Warehouse

    Singer, Donald A.

    2008-01-01

    Estimates of numbers of mineral deposits are fundamental to assessing undiscovered mineral resources. Just as frequencies of grades and tonnages of well-explored deposits can be used to represent the grades and tonnages of undiscovered deposits, the density of deposits (deposits/area) in well-explored control areas can serve to represent the number of deposits. Empirical evidence presented here indicates that the processes affecting the number and quantity of resources in geological settings are very general across many types of mineral deposits. For podiform chromite, porphyry copper, and volcanogenic massive sulfide deposit types, the size of tract that geologically could contain the deposits is an excellent predictor of the total number of deposits. The number of mineral deposits is also proportional to the type’s size. The total amount of mineralized rock is also proportional to size of the permissive area and the median deposit type’s size. Regressions using these variables provide a means to estimate the density of deposits and the total amount of mineralization. These powerful estimators are based on analysis of ten different types of mineral deposits (Climax Mo, Cuban Mn, Cyprus massive sulfide, Franciscan Mn, kuroko massive sulfide, low-sulfide quartz-Au vein, placer Au, podiform Cr, porphyry Cu, and W vein) from 108 permissive control tracts around the world therefore generalizing across deposit types. Despite the diverse and complex geological settings of deposit types studied here, the relationships observed indicate universal controls on the accumulation and preservation of mineral resources that operate across all scales. The strength of the relationships (R 2=0.91 for density and 0.95 for mineralized rock) argues for their broad use. Deposit densities can now be used to provide a guideline for expert judgment or used directly for estimating the number of most kinds of mineral deposits.

  8. Factors associated with the deposition of Cladophora on Lake Michigan beaches in 2012

    USGS Publications Warehouse

    Riley, Stephen C.; Tucker, Taaja R.; Adams, Jean V.; Fogarty, Lisa R.; Lafrancois, Brenda Moraska

    2015-01-01

    Deposition of the macroalgae Cladophora spp. was monitored on 18 beaches around Lake Michigan during 2012 at a high temporal frequency. We observed a high degree of spatial variability in Cladophora deposition among beaches on Lake Michigan, even within local regions, with no clear regional pattern in the intensity of Cladophora deposition. A strong seasonal pattern in Cladophora deposition was observed, with the heaviest deposition occurring during mid-summer. Several beaches exhibited high temporal variability in Cladophora deposition over short time scales, suggesting that drifting algal mats may be extremely dynamic in nearshore environments of the Great Lakes. Cladophora deposition on Lake Michigan beaches was primarily related to the presence of nearshore structures, local population density, and nearshore bathymetry. There was relatively little evidence that waves, winds, or currents were associated with Cladophora deposition on beaches, but this may be due to the relatively poor resolution of existing nearshore hydrodynamic data. Developing a predictive understanding of beach-cast Cladophora dynamics in Great Lakes environments may require both intensive Cladophora monitoring and fine-scale local hydrodynamic modeling efforts.

  9. Varying stopping and self-focusing of intense proton beams as they heat solid density matter

    NASA Astrophysics Data System (ADS)

    Kim, J.; McGuffey, C.; Qiao, B.; Wei, M. S.; Grabowski, P. E.; Beg, F. N.

    2016-04-01

    Transport of intense proton beams in solid-density matter is numerically investigated using an implicit hybrid particle-in-cell code. Both collective effects and stopping for individual beam particles are included through the electromagnetic fields solver and stopping power calculations utilizing the varying local target conditions, allowing self-consistent transport studies. Two target heating mechanisms, the beam energy deposition and Ohmic heating driven by the return current, are compared. The dependences of proton beam transport in solid targets on the beam parameters are systematically analyzed, i.e., simulations with various beam intensities, pulse durations, kinetic energies, and energy distributions are compared. The proton beam deposition profile and ultimate target temperature show strong dependence on intensity and pulse duration. A strong magnetic field is generated from a proton beam with high density and tight beam radius, resulting in focusing of the beam and localized heating of the target up to hundreds of eV.

  10. Scaling relations for a needle-like electron beam plasma from the self-similar behavior in beam propagation

    NASA Astrophysics Data System (ADS)

    Bai, Xiaoyan; Chen, Chen; Li, Hong; Liu, Wandong; Chen, Wei

    2017-10-01

    Scaling relations of the main parameters of a needle-like electron beam plasma (EBP) to the initial beam energy, beam current, and discharge pressures are presented. The relations characterize the main features of the plasma in three parameter space and can provide great convenience in plasma design with electron beams. First, starting from the self-similar behavior of electron beam propagation, energy and charge depositions in beam propagation were expressed analytically as functions of the three parameters. Second, according to the complete coupled theoretical model of an EBP and appropriate assumptions, independent equations controlling the density and space charges were derived. Analytical expressions for the density and charges versus functions of energy and charge depositions were obtained. Finally, with the combination of the expressions derived in the above two steps, scaling relations of the density and potential to the three parameters were constructed. Meanwhile, numerical simulations were used to test part of the scaling relations.

  11. Particulate deposition in the human lung under lunar habitat conditions.

    PubMed

    Darquenne, Chantal; Prisk, G Kim

    2013-03-01

    Lunar dust may be a toxic challenge to astronauts. While deposition in reduced gravity is less than in normal gravity (1 G), reduced gravitational sedimentation causes particles to penetrate deeper in the lung, potentially causing more harm. The likely design of the lunar habitat has a reduced pressure environment and low-density gas has been shown to reduce upper airway deposition and increase peripheral deposition. Breathing air and a reduced-density gas approximating the density of the proposed lunar habitat atmosphere, five healthy subjects inhaled 1 -microm diameter aerosol boluses at penetration volumes (V(p)) of 200 ml (central airways), 500 ml, and 1000 ml (lung periphery) in microgravity during parabolic flight, and in 1 G. Deposition in the lunar habitat was significantly less than for Earth conditions (and less than in 1 G with the low-density gas) with a relative decrease in deposition of -59.1 +/- 14.0% (-46.9 +/- 11.7%), -50.7 +/- 9.2% (-45.8 +/- 11.2%), and -46.0 +/- 8.3% (-45.3 +/- 11.1%) at V(p) = 200, 500, and 1000 ml, respectively. There was no significant effect of reduced density on deposition in 1 G. While minimally affected by gas density, deposition was significantly less in microgravity than in 1 G for both gases, with a larger portion of particles depositing in the lung periphery under lunar conditions than Earth conditions. Thus, gravity, and not gas properties, mainly affects deposition in the peripheral lung, suggesting that studies of aerosol transport in the lunar habitat need not be performed at the low density proposed for the atmosphere in that environment.

  12. A symmetric supercapacitor/biofuel cell hybrid device based on enzyme-modified nanoporous gold: An autonomous pulse generator.

    PubMed

    Xiao, Xinxin; Conghaile, Peter Ó; Leech, Dónal; Ludwig, Roland; Magner, Edmond

    2017-04-15

    The integration of supercapacitors with enzymatic biofuel cells (BFCs) can be used to prepare hybrid devices in order to harvest significantly higher power output. In this study, a supercapacitor/biofuel cell hybrid device was prepared by the immobilisation of redox enzymes with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and the redox polymer [Os(2,2'-bipyridine) 2 (polyvinylimidazole) 10 Cl] +/2+ (Os(bpy) 2 PVI) on dealloyed nanoporous gold. The thickness of the deposition layer can be easily controlled by tuning the deposition conditions. Once charged by the internal BFC, the device can be discharged as a supercapacitor at a current density of 2mAcm -2 providing a maximum power density of 608.8μWcm -2 , an increase of a factor of 468 when compared to the power output from the BFC itself. The hybrid device exhibited good operational stability for 50 charge/discharge cycles and ca. 7h at a discharge current density of 0.2mAcm -2 . The device could be used as a pulse generator, mimicking a cardiac pacemaker delivering pulses of 10μA for 0.5ms at a frequency of 0.2Hz. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Effects of substrate heating and post-deposition annealing on characteristics of thin MOCVD HfO2 films

    NASA Astrophysics Data System (ADS)

    Gopalan, Sundararaman; Ramesh, Sivaramakrishnan; Dutta, Shibesh; Virajit Garbhapu, Venkata

    2018-02-01

    It is well known that Hf-based dielectrics have replaced the traditional SiO2 and SiON as gate dielectric materials for conventional CMOS devices. By using thicker high-k materials such as HfO2 rather than ultra-thin SiO2, we can bring down leakage current densities in MOS devices to acceptable levels. HfO2 is also one of the potential candidates as a blocking dielectric for Flash memory applications for the same reason. In this study, effects of substrate heating and oxygen flow rate while depositing HfO2 thin films using CVD and effects of post deposition annealing on the physical and electrical characteristics of HfO2 thin films are presented. It was observed that substrate heating during deposition helps improve the density and electrical characteristics of the films. At higher substrate temperature, Vfb moved closer to zero and also resulted in significant reduction in hysteresis. Higher O2 flow rates may improve capacitance, but also results in slightly higher leakage. The effect of PDA depended on film thickness and O2 PDA improved characteristics only for thick films. For thinner films forming gas anneal resulted in better electrical characteristics.

  14. Guiding supersonic projectiles using optically generated air density channels

    NASA Astrophysics Data System (ADS)

    Johnson, Luke A.; Sprangle, Phillip

    2015-09-01

    We investigate the feasibility of using optically generated channels of reduced air density to provide trajectory correction (guiding) for a supersonic projectile. It is shown that the projectile experiences a force perpendicular to its direction of motion as one side of the projectile passes through a channel of reduced air density. A single channel of reduced air density can be generated by the energy deposited from filamentation of an intense laser pulse. We propose changing the laser pulse energy from shot-to-shot to build longer effective channels. Current femtosecond laser systems with multi-millijoule pulses could provide trajectory correction of several meters on 5 km trajectories for sub-kilogram projectiles traveling at Mach 3.

  15. Electrodeposition and characterization of Ni-Mo-ZrO2 composite coatings

    NASA Astrophysics Data System (ADS)

    Laszczyńska, A.; Winiarski, J.; Szczygieł, B.; Szczygieł, I.

    2016-04-01

    Ni-Mo-ZrO2 composite coatings were produced by electrodeposition technique from citrate electrolytes containing dispersed ZrO2 nanopowder. The influence of deposition parameters i.e. concentration of molybdate and ZrO2 nanoparticles in the electrolyte, bath pH and deposition current density on the composition and surface morphology of the coating has been investigated. The structure, microhardness and corrosion properties of Ni-Mo-ZrO2 composites with different molybdenum and ZrO2 content have been also examined. It was found that ZrO2 content in the deposit is increased by rising the nanoparticles concentration in the plating solution up to 20 g dm-3. An increase in molybdate concentration in the electrolyte affects negatively the amount of codeposited ZrO2 nanoparticles. The correlation between the deposition current efficiency and ZrO2 content in the composite coating has been also observed. A decrease in deposition current efficiency leads to deposition of Ni-Mo-ZrO2 composite with low nanoparticles content. This may be explained by formation of higher amounts of gas bubbles on the cathode surface, which prevent the adsorption of ZrO2 nanoparticles on the growing deposit. The XRD analysis revealed that all the studied Ni-Mo-ZrO2 coatings were composed of a single, nanocrystalline phase with FCC structure. It was found that the incorporation of ZrO2 nanoparticles into Ni-Mo alloy matrix affects positively the microhardness and also slightly improves the corrosion properties of Ni-Mo alloy coating.

  16. Application of the rotating cylinder electrode in molten LiCl-KCl eutectic containing uranium(III)- and magnesium(II)-chloride

    NASA Astrophysics Data System (ADS)

    Rappleye, Devin; Simpson, Michael F.

    2017-04-01

    The application of the rotating cylinder electrode (RCE) to molten LiCl-KCl eutectic mixtures for electroanalytical measurements is presented. This enabled the measurement of the limiting current which was observed to follow a linear trend with the rotational rate raised to 0.64-0.65 power on average, which closely agrees with existing RCE mass-transfer correlations. This is the first publication of electroanalytical RCE measurements in LiCl-KCl eutectic based molten salt mixtures, to our knowledge. These measurements were made in mixtures of molten LiCl-KCl eutectic containing UCl3 and MgCl2. Kinetic parameters were calculated for Mg2+ in LiCl-KCl eutectic. The exchange current density (io) of Mg2+ deposition varied with mole fraction (x) according to io(A cm-2) = 1.64x0.689. The parameters from RCE measurements were also applied in an electrochemical co-deposition model entitled DREP to detect and predict the deposition rate of U and Mg. DREP succeeded in detecting the co-deposition of U and Mg, even when Mg constituted less than 0.5 wt% of the deposit.

  17. Fabrication of ordered bulk heterojunction organic photovoltaic cells using nanopatterning and electrohydrodynamic spray deposition methods.

    PubMed

    Park, Sung-Eun; Kim, Sehwan; Kim, Kangmin; Joe, Hang-Eun; Jung, Buyoung; Kim, Eunkyoung; Kim, Woochul; Min, Byung-Kwon; Hwang, Jungho

    2012-12-21

    Organic photovoltaic cells with an ordered heterojunction (OHJ) active layer are expected to show increased performance. In the study described here, OHJ cells were fabricated using a combination of nanoimprinting and electrohydrodynamic (EHD) spray deposition methods. After an electron donor material was nanoimprinted with a PDMS stamp (valley width: 230 nm, period: 590 nm) duplicated from a Si nanomold, an electron acceptor material was deposited onto the nanoimprinted donor layer using an EHD spray deposition method. The donor-acceptor interface layer was observed by obtaining cross-sectional images with a focused ion beam (FIB) microscope. The photocurrent generation performance of the OHJ cells was evaluated with the current density-voltage curve under air mass (AM) 1.5 conditions. It was found that the surface morphology of the electron acceptor layer affected the current and voltage outputs of the photovoltaic cells. When an electron acceptor layer with a smooth thin (250 nm above the valley of the electron donor layer) surface morphology was obtained, power conversion efficiency was as high as 0.55%. The electrohydrodynamic spray deposition method used to produce OHJ photovoltaic cells provides a means for the adoption of large area, high throughput processes.

  18. Ca/Alq3 hybrid cathode buffer layer for the optimization of organic solar cells based on a planar heterojunction

    NASA Astrophysics Data System (ADS)

    El Jouad, Z.; Barkat, L.; Stephant, N.; Cattin, L.; Hamzaoui, N.; Khelil, A.; Ghamnia, M.; Addou, M.; Morsli, M.; Béchu, S.; Cabanetos, C.; Richard-Plouet, M.; Blanchard, P.; Bernède, J. C.

    2016-11-01

    Use of efficient anode cathode buffer layer (CBL) is crucial to improve the efficiency of organic photovoltaic cells. Here we show that using a double CBL, Ca/Alq3, allows improving significantly cell performances. The insertion of Ca layer facilitates electron harvesting and blocks hole collection, leading to improved charge selectivity and reduced leakage current, whereas Alq3 blocks excitons. After optimisation of this Ca/Alq3 CBL using CuPc as electron donor, it is shown that it is also efficient when SubPc is substituted to CuPc in the cells. In that case we show that the morphology of the SubPc layer, and therefore the efficiency of the cells, strongly depends on the deposition rate of the SubPc film. It is necessary to deposit slowly (0.02 nm/s) the SubPc films because at higher deposition rate (0.06 nm/s) the films are porous, which induces leakage currents and deterioration of the cell performances. The SubPc layers whose formations are kinetically driven at low deposition rates are more uniform, whereas those deposited faster exhibit high densities of pinholes.

  19. Carbon deposition thresholds on nickel-based solid oxide fuel cell anodes II. Steam:carbon ratio and current density

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2015-03-01

    For the second part of a two part publication, coking thresholds with respect to molar steam:carbon ratio (SC) and current density in nickel-based solid oxide fuel cells were determined. Anode-supported button cell samples were exposed to 2-component and 5-component gas mixtures with 1 ≤ SC ≤ 2 and zero fuel utilization for 10 h, followed by measurement of the resulting carbon mass. The effect of current density was explored by measuring carbon mass under conditions known to be prone to coking while increasing the current density until the cell was carbon-free. The SC coking thresholds were measured to be ∼1.04 and ∼1.18 at 600 and 700 °C, respectively. Current density experiments validated the thresholds measured with respect to fuel utilization and steam:carbon ratio. Coking thresholds at 600 °C could be predicted with thermodynamic equilibrium calculations when the Gibbs free energy of carbon was appropriately modified. Here, the Gibbs free energy of carbon on nickel-based anode support cermets was measured to be -6.91 ± 0.08 kJ mol-1. The results of this two part publication show that thermodynamic equilibrium calculations with appropriate modification to the Gibbs free energy of solid-phase carbon can be used to predict coking thresholds on nickel-based anodes at 600-700 °C.

  20. Effects of surface passivation dielectrics on carrier transport in AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Oh, Sejoon; Jang, Han-Soo; Choi, Chel-Jong; Cho, Jaehee

    2018-04-01

    Dielectric layers prepared by different deposition methods were used for the surface passivation of AlGaN/GaN heterostructure field-effect transistors (HFETs) and the corresponding electrical characteristics were examined. Increases in the sheet charge density and the maximum drain current by approximately 45% and 28%, respectively, were observed after the deposition of a 100 nm-thick SiO2 layer by plasma-enhanced chemical vapor deposition (PECVD) on the top of the AlGaN/GaN HFETs. However, SiO2 deposited by a radio frequency (rf) sputter system had the opposite effect. As the strain applied to AlGaN was influenced by the deposition methods used for the dielectric layers, the carrier transport in the two-dimensional electron gas formed at the interface between AlGaN and GaN was affected accordingly.

  1. Greatly improved 3C-SiC p-n junction diodes grown by chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.; Larkin, David J.; Starr, Jonathan E.; Powell, J. A.; Salupo, Carl S.; Matus, Lawrence G.

    1993-01-01

    This paper reports the fabrication and initial electrical characterization of greatly improved 3C-SiC (beta-SiC) p-n junction diodes. These diodes, which were grown on commercially available 6H-SiC substrates by chemical vapor deposition, demonstrate rectification to -200 V at room temperature, representing a fourfold improvement in reported 3C-SiC diode blocking voltage. The reverse leakage currents and saturation current densities measured on these diodes also show significant improvement compared to previously reported 3C-SiC p-n junction diodes. When placed under sufficient forward bias, the diodes emit significantly bright green-yellow light. These results should lead to substantial advancements in 3C-SiC transistor performance.

  2. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    NASA Astrophysics Data System (ADS)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podestà, Alessandro; Milani, Paolo; Piseri, Paolo

    2013-02-01

    Nanostructured porous films of carbon with density of about 0.5 g/cm3 and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  3. Cape Wanbrow: A stack of Surtseyan-style volcanoes built over millions of years in the Waiareka-Deborah volcanic field, New Zealand

    NASA Astrophysics Data System (ADS)

    Moorhouse, B. L.; White, J. D. L.; Scott, J. M.

    2015-06-01

    Volcanic fields typically include many small, monogenetic, volcanoes formed by single eruptions fed by short-lived magma plumbing systems that solidify after eruption. The Cape Wanbrow coastline of the northeast Otago region in the South Island of New Zealand exposes an Eocene-Oligocene intraplate basaltic field that erupted in Surtseyan style onto a submerged continental shelf, and the stratigraphy of Cape Wanbrow suggests that eruptions produced multiple volcanoes whose edifices overlapped within a small area, but separated by millions of years. The small Cape Wanbrow highland is shown to include the remains of 6 volcanoes that are distinguished by discordant to locally concordant inter-volcano contacts marked by biogenic accumulations or other slow-formed features. The 6 volcanoes contain several lithofacies associations: (a) the dominantly pyroclastic E1 comprising well-bedded tuff and lapilli-tuff, emplaced by traction-dominated unsteady, turbulent high-density currents; (b) E2, massive to diffusely laminated block-rich tuff deposited by grain-dominant cohesionless debris flows; (c) E3, broadly cross-stratified tuff with local lenses of low- to high-angle cross-stratification which was deposited by either subaerial pyroclastic currents or subaqueously by unstable antidune- and chute-and-pool-forming supercritical flows; (d) E4, very-fine- to medium-grained tuff deposited by turbidity currents; (e) E5, bedded bioclast-rich tuff with increasing glaucony content upward, emplaced by debris flows; (f) E6, pillow lava and inter-pillow bioclastic sediment; and (g) E7, hyaloclastite breccia. These lithofacies associations aid interpretation of the eruptive evolution of each separate volcano, which in turn grew and degraded during build-up of the overall volcanic pile. Sedimentary processes played a prominent role in the evolution of the volcanic pile with both syn- and post-eruptive re-mobilization of debris from the growing pile of primary pyroclastic deposits of multiple volcanoes separated by time. An increase in bioclastic detritus upsequence suggests that the stack of deposits from overlapping volcanoes built up into shallow enough waters for colonization to occur. This material was periodically shed from the top of the edifice to form bioclast-rich debris flow deposits of volcanoes 4, 5 and 6. Since the eruption of Surtsey (1963-1965) many studies have been made of the resulting island, but the pre-emergent base remains submarine, unincised and little studied. Eruption-fed density currents that formed deposits of the volcanoes of Cape Wanbrow are inferred to be typical products of submarine processes such as those that built Surtsey to the sea surface.

  4. Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2014-12-01

    We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.

  5. MIS capacitor studies on silicon carbide single crystals

    NASA Technical Reports Server (NTRS)

    Kopanski, J. J.

    1990-01-01

    Cubic SIC metal-insulator-semiconductor (MIS) capacitors with thermally grown or chemical-vapor-deposited (CVD) insulators were characterized by capacitance-voltage (C-V), conductance-voltage (G-V), and current-voltage (I-V) measurements. The purpose of these measurements was to determine the four charge densities commonly present in an MIS capacitor (oxide fixed charge, N(f); interface trap level density, D(it); oxide trapped charge, N(ot); and mobile ionic charge, N(m)) and to determine the stability of the device properties with electric-field stress and temperature. The section headings in the report include the following: Capacitance-voltage and conductance-voltage measurements; Current-voltage measurements; Deep-level transient spectroscopy; and Conclusions (Electrical characteristics of SiC MIS capacitors).

  6. METHOD FOR ELECTRODEPOSITING POLONIUM

    DOEpatents

    Wehrmann, R.F.

    1960-08-30

    The deposition of a thick uniform layer of polonium metal from aqueous solutions can be carried out by electrolyzing an aqueous solution of 1 N hydrofluoric acid containing about 0.13 curie of polonium per cubic centimeter of solution with platinum electrodes and a current density of about 1.2 ma/cm/sup 2/ of cathode surface.

  7. Highly Reversible Water Oxidation at Ordered Nanoporous Iridium Electrodes Based on an Original Atomic Layer Deposition.

    PubMed

    Schlicht, Stefanie; Haschke, Sandra; Mikhailovskii, Vladimir; Manshina, Alina; Bachmann, Julien

    2018-05-01

    Nanoporous iridium electrodes are prepared and electrochemically investigated towards the water oxidation (oxygen evolution) reaction. The preparation is based on 'anodic' aluminum oxide templates, which provide straight, cylindrical nanopores. Their walls are coated using atomic layer deposition (ALD) with a newly developed reaction which results in a metallic iridium layer. The ALD film growth is quantified by spectroscopic ellipsometry and X-ray reflectometry. The morphology and composition of the electrodes are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction. Their catalytic activity is quantified for various pore geometries by cyclic voltammetry, steady-state electrolysis, and electrochemical impedance spectroscopy. With an optimal pore length of L ≈17-20 μm, we achieve current densities of J =0.28 mA cm -2 at pH 5 and J =2.4 mA cm -2 at pH 1. This platform is particularly competitive for achieving moderate current densities at very low overpotentials, that is, for a high degree of reversibility in energy storage.

  8. Contrast studies of the process optimization and characterization of shielding fabric by amorphous Ni-Fe-P and Ni-P alloy

    NASA Astrophysics Data System (ADS)

    Yao, Kai; Wu, Xueyan; An, Zhentao

    2017-01-01

    A flexible shielding fabric with dense uniform coating was prepared after electrical deposition of amorphous Ni-Fe-P and Ni-P alloy on copper-coated polyethylene terephthalate (PET) fabric. The effects of coating composition and the deposition rate were discussed by the current density, temperature and pH value. The morphology, composition, and structure of coating were analyzed by SEM, EDS, and XRD characterizations. The EMI shielding effectiveness and corrosion resistance were also tested. The results fabric possesses dense, smooth, and uniform coating, when the processing conditions are 60°C, pH=1.5, and current density =8.7A/dm2. The coating fabric consists of amorphous Ni-Fe-P alloy with 16.62% P (weight percent), which has excellent of corrosion resistance. By contrast the EMI shielding effectiveness of amorphous Ni-Fe-P was better than amorphous Ni-P. The EMI shielding effectiveness of this coated fabric achieves 69.20dB-80.30dB in a broad frequency range between 300 kHz˜1.5 GHz.

  9. Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhao, Fenglin; Huang, Wanxia; Zhang, Hongtao; Zhou, Dengmei

    2017-12-01

    In this paper, a facile chemical bath deposition method was utilized to synthesize three-dimensional nanostructured CoNi2S4/Co9S8 (CNSCS) composites as advanced electrode materials for high performance supercapacitors. CNSCS composites showed remarkable electrochemical performance owing to the high porosity, appropriate pore size distribution, novel architecture and synergistic effect of Ni/Co ions. The electrochemical tests revealed that CNSCS composites exhibited high specific capacitance (1183.3 Fg-1 at the current density of 2 Ag-1), excellent rate performance (74.9% retention with tenfold current density increase) and outstanding cycle life stability. Moreover, the effect of temperature on electrochemical performance of CNSCS composites was investigated and the results indicated the specific capacitance of CoNi2S4/Co9S8 can keep relatively stable in a wide temperature from 0 °C to 50 °C. These results indicated that the synthesized CNSCS composites can be a promising electrode materials candidate for supercapacitors and chemical bath deposition is a promising processing route for CNSCS composites production.

  10. Calcium-bismuth electrodes for large-scale energy storage (liquid metal batteries)

    NASA Astrophysics Data System (ADS)

    Kim, Hojong; Boysen, Dane A.; Ouchi, Takanari; Sadoway, Donald R.

    2013-11-01

    Calcium is an attractive electrode material for use in grid-scale electrochemical energy storage due to its low electronegativity, earth abundance, and low cost. The feasibility of combining a liquid Ca-Bi positive electrode with a molten salt electrolyte for use in liquid metal batteries at 500-700 °C was investigated. Exhibiting excellent reversibility up to current densities of 200 mA cm-2, the calcium-bismuth liquid alloy system is a promising positive electrode candidate for liquid metal batteries. The measurement of low self-discharge current suggests that the solubility of calcium metal in molten salt electrolytes can be sufficiently suppressed to yield high coulombic efficiencies >98%. The mechanisms giving rise to Ca-Bi electrode overpotentials were investigated in terms of associated charge transfer and mass transport resistances. The formation of low density Ca11Bi10 intermetallics at the electrode-electrolyte interface limited the calcium deposition rate capability of the electrodes; however, the co-deposition of barium into bismuth from barium-containing molten salts suppressed Ca-Bi intermetallic formation thereby improving the discharge capacity.

  11. Synthesis of calcium hydrogen phosphate and hydroxyapatite coating on SS316 substrate through pulsed electrodeposition.

    PubMed

    Chakraborty, Rajib; Sengupta, Srijan; Saha, Partha; Das, Karabi; Das, Siddhartha

    2016-12-01

    The orthopaedic implants for human body are generally made of different biomaterials like stainless steels or Ti based alloys. However, it has been found that from surface properties point of view, none of these materials is attractive for fast tissue or cell growth on the surface of implant. This is one of the most important criteria to assure quick bonding between implant and body tissues vis-à-vis minimum recovery time for the patient. Keeping in view of the above facts, this work involves the pulsed electro-deposition coating of biocompatible hydroxyapatite and its group compounds from a diluted bath of calcium and phosphate salt at various current densities over the biomaterial sheet of SS316. SEM study confirms different morphologies of the coatings at different current densities. Characterization techniques like X-ray diffraction, SEM with EDX and FTIR have been used to confirm the phase and percentage quantity of hydroxyapatite compound in the depositions. This coating can serve as a medium for faster tissue growth over the metallic implants. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Electrostatic spray deposition of porous SnO₂/graphene anode films and their enhanced lithium-storage properties.

    PubMed

    Jiang, Yinzhu; Yuan, Tianzhi; Sun, Wenping; Yan, Mi

    2012-11-01

    Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron microscopy (SEM) results. Such an assembly mode of graphene and SnO₂ is highly beneficial to the electrochemical performance improvement by increasing the electrical conductivity and releasing the volume change of the anode. The novel engineered anode possesses 2134.3 mA h g⁻¹ of initial discharge capacity and good capacity retention of 551.0 mA h g⁻¹ up to the 100th cycle at a current density of 200 mA g⁻¹. This anode also exhibits excellent rate capability, with a reversible capacity of 507.7 mA h g⁻¹ after 100 cycles at a current density of 800 mA g⁻¹. The results demonstrate that such a film-type hybrid anode shows great potential for application in high-energy lithium-ion batteries.

  13. A Lower Permian sandwave-containing shelf sequence exposed at Zungwini Mountain, Republic of South Africa

    NASA Astrophysics Data System (ADS)

    Smith, A. M.

    1989-08-01

    As a result of railway excavations the Pietermaritzburg Shale-Vryheid Formation transition is spectacularly exposed on the southern slope of Zungwini Mountain. Nine facies and three facies associations are recognised. Deposition occurred in a palaeoshelf and offshore setting. The reconstructed coastline was SW-NE with land to the northwest. The inner shelf was tide- and the outer-shelf storm-influenced. Fluvial input supplied sediment which was reworked into flood-tidal sandwaves, probably within the confines of an estuary. A rising sea level brought the sandwaves into the realm of a more distal, coast-parallel, storm-tidal current regime where reworking of the sediment occurred. Intense storm-augmented tidal currents swept some of the better-sorted material seaward to be deposited as storm layers in the inner and outer shelf. These same currents formed the low-density turbidites and sediment plumes from which the offshore argillaceous deposits were formed. The shelf edge poorly sorted rhythmite facies may have developed from sediment flushed out of the rivers during flood or from the flood-tidal sandwave system as a result of exceptional coastal storms.

  14. Are fractal dimensions of the spatial distribution of mineral deposits meaningful?

    USGS Publications Warehouse

    Raines, G.L.

    2008-01-01

    It has been proposed that the spatial distribution of mineral deposits is bifractal. An implication of this property is that the number of deposits in a permissive area is a function of the shape of the area. This is because the fractal density functions of deposits are dependent on the distance from known deposits. A long thin permissive area with most of the deposits in one end, such as the Alaskan porphyry permissive area, has a major portion of the area far from known deposits and consequently a low density of deposits associated with most of the permissive area. On the other hand, a more equi-dimensioned permissive area, such as the Arizona porphyry permissive area, has a more uniform density of deposits. Another implication of the fractal distribution is that the Poisson assumption typically used for estimating deposit numbers is invalid. Based on datasets of mineral deposits classified by type as inputs, the distributions of many different deposit types are found to have characteristically two fractal dimensions over separate non-overlapping spatial scales in the range of 5-1000 km. In particular, one typically observes a local dimension at spatial scales less than 30-60 km, and a regional dimension at larger spatial scales. The deposit type, geologic setting, and sample size influence the fractal dimensions. The consequence of the geologic setting can be diminished by using deposits classified by type. The crossover point between the two fractal domains is proportional to the median size of the deposit type. A plot of the crossover points for porphyry copper deposits from different geologic domains against median deposit sizes defines linear relationships and identifies regions that are significantly underexplored. Plots of the fractal dimension can also be used to define density functions from which the number of undiscovered deposits can be estimated. This density function is only dependent on the distribution of deposits and is independent of the definition of the permissive area. Density functions for porphyry copper deposits appear to be significantly different for regions in the Andes, Mexico, United States, and western Canada. Consequently, depending on which regional density function is used, quite different estimates of numbers of undiscovered deposits can be obtained. These fractal properties suggest that geologic studies based on mapping at scales of 1:24,000 to 1:100,000 may not recognize processes that are important in the formation of mineral deposits at scales larger than the crossover points at 30-60 km. ?? 2008 International Association for Mathematical Geology.

  15. Purification of nuclear grade Zr scrap as the high purity dense Zr deposits from Zirlo scrap by electrorefining in LiF-KF-ZrF4 molten fluorides

    NASA Astrophysics Data System (ADS)

    Park, Kyoung Tae; Lee, Tae Hyuk; Jo, Nam Chan; Nersisyan, Hayk H.; Chun, Byong Sun; Lee, Hyuk Hee; Lee, Jong Hyeon

    2013-05-01

    Zirconium (Zr) has commonly been used as a cladding material of nuclear fuel. Moreover, it is regarded as the only material that can be used for nuclear fuel cladding because it has the lowest neutron capture cross section of any metal element and because it has high corrosion resistance and size stability. In this study, Hf-free Zr tubes (Zr-1Nb-1Sn-0.1Fe) were used as anode materials and electrorefining was performed in a LiF-KF eutectic 6 wt.% ZrF4 molten fluoride salt system. As a result of electrolysis, Zr scrap metal was recycled into pure Zr with low levels of impurities, and the size and density of the Zr deposit was controlled using applied current density.

  16. Atomic layer deposited Ta2O5 gate insulation for enhancing breakdown voltage of AlN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Deen, D. A.; Storm, D. F.; Bass, R.; Meyer, D. J.; Katzer, D. S.; Binari, S. C.; Lacis, J. W.; Gougousi, T.

    2011-01-01

    AlN/GaN heterostructures with a 3.5 nm AlN cap have been grown by molecular beam epitaxy followed by a 6 nm thick atomic layer deposited Ta2O5 film. Transistors fabricated with 150 nm length gates showed drain current density of 1.37 A/mm, transconductance of 315 mS/mm, and sustained drain-source biases up to 96 V while in the off-state before destructive breakdown as a result of the Ta2O5 gate insulator. Terman's method has been modified for the multijunction capacitor and allowed the measurement of interface state density (˜1013 cm-2 eV-1). Small-signal frequency performance of 75 and 115 GHz was obtained for ft and fmax, respectively.

  17. POx/Al2O3 stacks: Highly effective surface passivation of crystalline silicon with a large positive fixed charge

    NASA Astrophysics Data System (ADS)

    Black, Lachlan E.; Kessels, W. M. M. Erwin

    2018-05-01

    Thin-film stacks of phosphorus oxide (POx) and aluminium oxide (Al2O3) are shown to provide highly effective passivation of crystalline silicon (c-Si) surfaces. Surface recombination velocities as low as 1.7 cm s-1 and saturation current densities J0s as low as 3.3 fA cm-2 are obtained on n-type (100) c-Si surfaces passivated by 6 nm/14 nm thick POx/Al2O3 stacks deposited in an atomic layer deposition system and annealed at 450 °C. This excellent passivation can be attributed in part to an unusually large positive fixed charge density of up to 4.7 × 1012 cm-2, which makes such stacks especially suitable for passivation of n-type Si surfaces.

  18. Enhanced pH sensitivity of AlGaN/GaN ion-sensitive field effect transistor with Al2O3 synthesized by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Li, Liuan; Zhang, Tong; Liu, Xinke; Ao, Jin-Ping

    2018-01-01

    In this study, we evaluated the pH sensitivity enhancement of AlGaN/GaN ion-sensitive field-effect transistor (ISFET) coated by Al2O3 film on the sensing area utilizing atomic layer deposition (ALD). The presence of the Al2O3 film leads to an obvious reduction of surface state density as well as leakage current in the solution, which is beneficial for improving the stability of the ISFET. Furthermore, the sensitivity of the ISFET was improved to 57.8 mV/pH, which is very close to the Nernstian limit at room temperature. The pH sensitivity enhancement can be explained by the higher density of sensing site as well as better surface hydrophilicity.

  19. Sputtered deposited nanocrystalline ZnO films: A correlation between electrical, optical and microstructural properties

    NASA Astrophysics Data System (ADS)

    Lee, J.; Gao, W.; Li, Z.; Hodgson, M.; Metson, J.; Gong, H.; Pal, U.

    2005-05-01

    Zinc oxide thin films were prepared by dc (direct current) and rf (radio frequency) magnetron sputtering on glass substrates. ZnO films produced by dc sputtering have a high resistance, while the films produced using rf sputtering are significantly more conductive. While the conductive films have a compact nodular surface morphology, the resistive films have a relatively porous surface with columnar structures in cross section. Compared to the dc sputtered films, rf sputtered films have a microstructure with smaller d spacing, lower internal stress, higher band gap energy and higher density. Dependence of conductivity on the deposition technique and the resulting d spacing , stress, density, band gap, film thickness and Al doping are discussed. Correlations between the electrical conductivity, microstructural parameters and optical properties of the films have been made.

  20. Electrical characteristics of paraelectric lead lanthanum zirconium titanate thin films for dynamic random access memory applications

    NASA Astrophysics Data System (ADS)

    Jones, R. E., Jr.; Maniar, P. D.; Olowolafe, J. O.; Campbell, A. C.; Mogab, C. J.

    1992-02-01

    Paraelectric lead lanthanum zirconium titanate (PLZT) films, 150 nm thick, were deposited using a spin-coat, sol-gel process followed by a 650 °C oxygen anneal. X-ray diffraction indicated complete conversion to the perovskite phase. Sputter-deposited platinum electrodes were employed with the PLZT films to form thin-film capacitors with the best combination of high charge storage density (26.1 μC/cm2 at 3 V and 36.4 μC/cm2 at 5 V) and leakage current density (0.2 μA/cm2 at 3 V and 0.5 μA/cm2 at 5 V ) reported to date. The electrical characteristics of these thin-film capacitors meet the requirements for a planar bit cell capacitor for 64-Mbit dynamic random access memories.

  1. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    PubMed

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  2. Synthesis and properties of CS x F y thin films deposited by reactive magnetron sputtering in an Ar/SF6 discharge

    NASA Astrophysics Data System (ADS)

    Lai, Chung-Chuan; Goyenola, Cecilia; Broitman, Esteban; Näslund, Lars-Åke; Högberg, Hans; Hultman, Lars; Gueorguiev, Gueorgui K.; Rosen, Johanna

    2017-05-01

    A theoretical and experimental study on the growth and properties of a ternary carbon-based material, CS x F y , synthesized from SF6 and C as primary precursors is reported. The synthetic growth concept was applied to model the possible species resulting from the fragmentation of SF6 molecules and the recombination of S-F fragments with atomic C. The possible species were further evaluated for their contribution to the film growth. Corresponding solid CS x F y thin films were deposited by reactive direct current magnetron sputtering from a C target in a mixed Ar/SF6 discharge with different SF6 partial pressures ({{P}\\text{S{{\\text{F}}\\text{6}}}} ). Properties of the films were determined by x-ray photoelectron spectroscopy, x-ray reflectivity, and nanoindentation. A reduced mass density in the CS x F y films is predicted due to incorporation of precursor species with a more pronounced steric effect, which also agrees with the low density values observed for the films. Increased {{P}\\text{S{{\\text{F}}\\text{6}}}} leads to decreasing deposition rate and increasing density, as explained by enhanced fluorination and etching on the deposited surface by a larger concentration of F/F2 species during the growth, as supported by an increment of the F relative content in the films. Mechanical properties indicating superelasticity were obtained from the film with lowest F content, implying a fullerene-like structure in CS x F y compounds.

  3. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    NASA Astrophysics Data System (ADS)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  4. PYFLOW_2.0: a computer program for calculating flow properties and impact parameters of past dilute pyroclastic density currents based on field data

    NASA Astrophysics Data System (ADS)

    Dioguardi, Fabio; Mele, Daniela

    2018-03-01

    This paper presents PYFLOW_2.0, a hazard tool for the calculation of the impact parameters of dilute pyroclastic density currents (DPDCs). DPDCs represent the dilute turbulent type of gravity flows that occur during explosive volcanic eruptions; their hazard is the result of their mobility and the capability to laterally impact buildings and infrastructures and to transport variable amounts of volcanic ash along the path. Starting from data coming from the analysis of deposits formed by DPDCs, PYFLOW_2.0 calculates the flow properties (e.g., velocity, bulk density, thickness) and impact parameters (dynamic pressure, deposition time) at the location of the sampled outcrop. Given the inherent uncertainties related to sampling, laboratory analyses, and modeling assumptions, the program provides ranges of variations and probability density functions of the impact parameters rather than single specific values; from these functions, the user can interrogate the program to obtain the value of the computed impact parameter at any specified exceedance probability. In this paper, the sedimentological models implemented in PYFLOW_2.0 are presented, program functionalities are briefly introduced, and two application examples are discussed so as to show the capabilities of the software in quantifying the impact of the analyzed DPDCs in terms of dynamic pressure, volcanic ash concentration, and residence time in the atmosphere. The software and user's manual are made available as a downloadable electronic supplement.

  5. Low-Cost and High-Productivity Three-Dimensional Nanocapacitors Based on Stand-Up ZnO Nanowires for Energy Storage.

    PubMed

    Wei, Lei; Liu, Qi-Xuan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Lu, Hong-Liang; Jiang, Anquan; Zhang, David Wei

    2016-12-01

    Highly powered electrostatic capacitors based on nanostructures with a high aspect ratio are becoming critical for advanced energy storage technology because of their high burst power and energy storage capability. We report the fabrication process and the electrical characteristics of high capacitance density capacitors with three-dimensional solid-state nanocapacitors based on a ZnO nanowire template. Stand-up ZnO nanowires are grown face down on p-type Si substrates coated with a ZnO seed layer using a hydrothermal method. Stacks of AlZnO/Al2O3/AlZnO are then deposited sequentially on the ZnO nanowires using atomic layer deposition. The fabricated capacitor has a high capacitance density up to 92 fF/μm(2) at 1 kHz (around ten times that of the planar capacitor without nanowires) and an extremely low leakage current density of 3.4 × 10(-8) A/cm(2) at 2 V for a 5-nm Al2O3 dielectric. Additionally, the charge-discharge characteristics of the capacitor were investigated, indicating that the resistance-capacitance time constants were 550 ns for both the charging and discharging processes and the time constant was not dependent on the voltage. This reflects good power characteristics of the fabricated capacitors. Therefore, the current work provides an exciting strategy to fabricate low-cost and easily processable, high capacitance density capacitors for energy storage.

  6. Field Investigations of the July 2015 Pyroclastic Density Current Deposits of Volcán de Colima, Mexico

    NASA Astrophysics Data System (ADS)

    Atlas, Z. D.; Macorps, E.; Charbonnier, S. J.; Varley, N. R.

    2016-12-01

    Small-volume pyroclastic density currents (PDCs) occur relatively frequently and pose severe threats to surrounding populations and infrastructures at active explosive volcanoes. They are characterized by short duration and complex multiphase flow dynamics due to time and space variability in their properties, which include amongst others, particle concentration, granulometry, componentry, bulk rheology and velocity. Field investigations of the deposits emplaced by small-volume concentrated PDCs aim to improve our understanding of the transport and depositional processes of these flows: time and space variations in flow dynamics within a PDC moving downslope will reflect on the distribution, grainsize and component characteristics of its deposits. Our study focuses on the recent events of July 10th and 11th, 2015 at Volcán de Colima (Mexico) where the collapse of the recent lava dome complex and a portion of the southern crater rim led to the emplacement of successive pulses of small-volume concentrated PDCs on the southern flank, along the Montegrande and San Antonio ravines. A 3-dimensional field analysis of the PDCs' deposit architecture, total grain size distribution and component properties together with a geomorphic analysis of the affected ravines provide new insights on the lateral and vertical variations of flow dynamics for some of these small-volume concentrated PDCs. Preliminary results reveal three stratigraphic units with massive block, lapilli, ash facies within the valley confined and concentrated overbank deposits with increasing content in fines with distance from the summit, suggesting an increase in fragmentation processes within the PDCs. The middle unit is characterized by a finer grainsize, a higher accidental lithic content and a lower free crystal content. Moreover, direct correlations are found between rapid changes in channel morphology and generation of overbank (unconfined) flows that escaped valley confines, which could provide the basis for defining hazard zonations of key areas at risk from future eruptions at Colima.

  7. Onset of submarine debris flow deposition far from original giant landslide.

    PubMed

    Talling, P J; Wynn, R B; Masson, D G; Frenz, M; Cronin, B T; Schiebel, R; Akhmetzhanov, A M; Dallmeier-Tiessen, S; Benetti, S; Weaver, P P E; Georgiopoulou, A; Zühlsdorff, C; Amy, L A

    2007-11-22

    Submarine landslides can generate sediment-laden flows whose scale is impressive. Individual flow deposits have been mapped that extend for 1,500 km offshore from northwest Africa. These are the longest run-out sediment density flow deposits yet documented on Earth. This contribution analyses one of these deposits, which contains ten times the mass of sediment transported annually by all of the world's rivers. Understanding how this type of submarine flow evolves is a significant problem, because they are extremely difficult to monitor directly. Previous work has shown how progressive disintegration of landslide blocks can generate debris flow, the deposit of which extends downslope from the original landslide. We provide evidence that submarine flows can produce giant debris flow deposits that start several hundred kilometres from the original landslide, encased within deposits of a more dilute flow type called turbidity current. Very little sediment was deposited across the intervening large expanse of sea floor, where the flow was locally very erosive. Sediment deposition was finally triggered by a remarkably small but abrupt decrease in sea-floor gradient from 0.05 degrees to 0.01 degrees. This debris flow was probably generated by flow transformation from the decelerating turbidity current. The alternative is that non-channelized debris flow left almost no trace of its passage across one hundred kilometres of flat (0.2 degrees to 0.05 degrees) sea floor. Our work shows that initially well-mixed and highly erosive submarine flows can produce extensive debris flow deposits beyond subtle slope breaks located far out in the deep ocean.

  8. Temperature-dependent leakage current behavior of epitaxial Bi0.5Na0.5TiO3-based thin films made by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Hejazi, M. M.; Safari, A.

    2011-11-01

    This paper discusses the electrical conduction mechanisms in a 0.88 Bi0.5Na0.5TiO3-0.08 Bi0.5K0.5TiO3-0.04 BaTiO3 thin film in the temperature range of 200-350 K. The film was deposited on a SrRuO3/SrTiO3 substrate by pulsed laser deposition technique. At all measurement temperatures, the leakage current behavior of the film matched well with the Lampert's triangle bounded by three straight lines of different slopes. The relative location of the triangle sides varied with temperature due to its effect on the density of charge carriers and un-filled traps. At low electric fields, the ohmic conduction governed the leakage mechanism. The calculated activation energy of the trap is 0.19 eV implying the presence of shallow traps in the film. With increasing the applied field, an abrupt increase in the leakage current was observed. This was attributed to a trap-filling process by the injected carriers. At sufficiently high electric fields, the leakage current obeyed the Child's trap-free square law suggesting the space charge limited current was the dominant mechanism.

  9. Stratigraphy of Late Pleistocene-Holocene pyroclastic deposits of Tacana Volcano, Mexico-Guatemala

    NASA Astrophysics Data System (ADS)

    Macias, J. L.; Arce, J. L.; Garcia-Palomo, A.; Mora, J. C.; Saucedo, R.; Hughes, S.; Scolamacchia, T.

    2005-12-01

    Tacana volcano (4,060 masl), the highest peak of the Tacana Volcanic Complex, is an acitve volcano located on the Mexico-Guatemala border. Tacana resumed phreatic activity in 1950 and again in 1986. After this last event, the volcano became the locus of attention of authorities and local scientists began to study the complex. Tacana's stratigraphic record has been studied using radiocarbon dating and these indicate that the volcano has been very active in the past producing at least 12 explosive eruptions during the last 40 ka years as follow: a) Four partial dome destruction events with the generation of block-and-ash flow deposits at 40, 28, <26, and 16 ka. b) Four small-volume phreatomagmatic events that emplaced dilute density currents at 10.6, 7.5, 6, and 2.5 ka. c) Four eruptions that emplaced pumice-rich fall deposits, three of them widely dispersed towards the NE flank of the volcano in Guatemala and dated at ~32, <24 and <14 ka, and finally a 0.8 ka fall deposit restricted to the crater vicinity that might represent the youngest magmatic eruption of the volcano. Although refining of these stratigraphic sequence is still underway, the eruptive chronology of Tacana volcano cleary indicates that explosive eruptions producing plinian fall and pyroclastic density currents have taken place every 1 to 8 ka years. This record constrasts with the small phreatic eruptions that occur 1-2 per century. So, this indicates that Tacana volcano is more active than previously considered and these results must be considered for future researches on hazards maps and mitigation.

  10. PtCu substrates subjected to AC and DC electric fields in a solution of benzene sulfonic acid-phenol as novel batteries and their use in glucose biofuel cells

    NASA Astrophysics Data System (ADS)

    Ammam, Malika; Fransaer, Jan

    2013-11-01

    We describe how bi-metal PtCu connected wires, immersed in a solution of benzene sulfonic acid (BSA)-phenol (P) or 2,2‧-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS)-phenol (P), then subjected to simultaneous alternating current (AC) and direct current (DC) electric fields generate power. We discovered that PtCu substrate covered by the deposit containing (BSA-PP-Pt-Cu), abbreviated as PtCu(BSA-PP-Pt-Cu) electrode, plays the role of a substantial anode and cathode. The latter was related to the formation of micro-batteries in the deposited film (BSA-PP-Pt-Cu) that are able to take or deliver electrons from the deposited Pt and Cu, respectively. PP-BSA plays probably the role of bridge for proton conduction in the formed micro-batteries. The power density of the fuel cell (FC)-based PtCu(BSA-PP-Pt-Cu) anode and PtCu(BSA-PP-Pt-Cu) cathode in phosphate buffer solution pH 7.4 at room temperature reaches ˜10.8 μW mm-2. Addition of enzymes, glucose oxidase at the anode and laccase at the cathode and, replacement of BSA by ABTS at the cathode in the deposited films increases the power density to 13.3 μW mm-2. This new procedure might be of great relevance for construction of a new generation of FCs operating at mild conditions or boost the power outputs of BFCs and make them suitable for diverse applications.

  11. Probing anode degradation in automotive Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Kwon, Ou Jung

    The lithium-ion battery is drawing attention as a power source for future clean and fuel-efficient vehicles. Although the Li-ion battery presently shows best performance for energy density and power density compared to other rechargeable batteries, some degradation problems still remain as key challenges for long-term durability in automotive applications. Among those problems, Li deposition is well known for causing permanent capacity loss. Fundamental mechanisms of Li deposition in the carbon anode are, however, not fully understood, especially at subzero temperature and/or under high rate charge. This dissertation introduces comprehensive study of Li deposition using automotive 18650 Li-ion cells. The mechanism and relevant diagnostic methods as well as preventive charging protocol are discussed. In part one, a new diagnostic tool is introduced utilizing 3-electrode cell system, which measures thermodynamic and kinetic parameters of cathode and anode, respectively, as a function of temperature and SOC (state of charge): open circuit potential (OCP); Li diffusion coefficient in active particles; and internal resistance. These data are employed to understand electrochemical reaction and its thermal interaction under charging conditions that result in Li deposition. Part two provides a threshold parameter for the onset of Li deposition, which is not commonly used anode potential but charge capacity, or more specifically the amount of Li+ ions participating in intercalation reaction without Li deposition at given charging circumstances. This is called the critical charge capacity in this thesis, beyond which capacity loss at normal operating condition is observed, which becomes more serious as temperature is lowered and/or charge C-rate increases. Based on these experimental results, the mechanism of Li deposition is proposed as the concept of anode particle surface saturation, meaning that once the anode particle surface is saturated with Li in any charging circumstances, no more Li+ ions can be intercalated but should be reduced to metallic form on the anode particle surface. This is validated by calculating the distribution of Li concentration inside the anode particle with electrochemical modeling. In part three, a novel pulse charge protocol is developed, which consists of two steps. First high current charge/discharge pulses increase the cell temperature from a subzero temperature up to above room temperature in a short time, and next, high current charge provides the net charge capacity. Sluggish Li diffusion at low temperature becomes fast thanks to cell temperature elevation by high current pulses (1st step), which plays a role of preventing surface saturation during high current charge (2nd step). Thus, this charge protocol is not only Li deposition-free but also leads to rapid charge at subzero temperatures.

  12. Effects of parallel magnetic field on electrocodeposition behavior of Fe/nano-Si particles composite electroplating

    NASA Astrophysics Data System (ADS)

    Zhou, Pengwei; Zhong, Yunbo; Wang, Huai; Long, Qiong; Li, Fu; Sun, Zongqian; Dong, Licheng; Fan, Lijun

    2013-10-01

    The influence of an external parallel strong parallel magnetic field (respect to current) on the electrocodeposition of nano-silicon particles into an iron matrix has been studied in this paper. Test results show that magnetic field has a great influence on the distribution of silicon, as well as the surface morphology and the thickness of the composite coatings. When no magnetic field was applied, a high current density was needed to get high concentration of silicon particles, while that could be easily obtained at a low current density with a 2 T parallel magnetic field. However, Owing to the unevenness of the current density J-distribution on the surface of the electrode in 8 T, the thicker and rougher composite deposits appear in the edge region (L or R region), and the thinner and smoother ones appear in the middle region (M). Meanwhile, the distribution curve of silicon content looks like a “pan” along the center line of coatings. A possible mechanism combining to the numerical simulation results was suggested out to illustrate the obtained experiment results.

  13. Over 15 MA/cm2 of critical current density in 4.8 µm thick, Zr-doped (Gd,Y)Ba2Cu3Ox superconductor at 30 K, 3T.

    PubMed

    Majkic, Goran; Pratap, Rudra; Xu, Aixia; Galstyan, Eduard; Selvamanickam, Venkat

    2018-05-03

    An Advanced MOCVD (A-MOCVD) reactor was used to deposit 4.8 µm thick (Gd,Y)BaCuO tapes with 15 mol% Zr addition in a single pass. A record-high critical current density (J c ) of 15.11 MA/cm 2 has been measured over a bridge at 30 K, 3T, corresponding to an equivalent (I c ) value of 8705 A/12 mm width. This corresponds to a lift factor in critical current of ~11 which is the highest ever reported to the best of author's knowledge. The measured critical current densities at 3T (B||c) and 30, 40 and 50 K, respectively, are 15.11, 9.70 and 6.26 MA/cm 2 , corresponding to equivalent Ic values of 8705, 5586 and 3606 A/12 mm and engineering current densities (J e ) of 7068, 4535 and 2928 A/mm 2 . The engineering current density (J e ) at 40 K, 3T is 7 times higher than that of the commercial HTS tapes available with 7.5 mol% Zr addition. Such record-high performance in thick films (>1 µm) is a clear demonstration that growing thick REBCO films with high critical current density (J c ) is possible, contrary to the usual findings of strong J c degradation with film thickness. This achievement was possible due to a combination of strong temperature control and uniform laminar flow achieved in the A-MOCVD system, coupled with optimization of BaZrO 3 nanorod growth parameters.

  14. Tricobalt tetroxide nanoplate arrays on flexible conductive fabric substrate: Facile synthesis and application for electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Nagaraju, Goli; Ko, Yeong Hwan; Yu, Jae Su

    2015-06-01

    Tricobalt tetroxide (Co3O4) nanoplate arrays (NPAs) were synthesized on flexible conductive fabric substrate (FCFs) by a facile two-electrode system based electrochemical deposition method, followed by a simple heat treatment process. Initially, cobalt hydroxide (Co(OH)2) NPAs were electrochemically deposited on FCFs by applying an external voltage of -1.5 V for 30 min. Then, the Co3O4 NPAs on FCFs was obtained by thermal treatment of as-deposited Co(OH)2 NPAs on FCFs at 200 °C for 2 h. From the analysis of morphological and crystal properties, the Co3O4 NPAs were well integrated and uniformly covered over the entire surface of substrate with good crystallinity in the cubic phase. Additionally, the fabricated sample was directly used as a binder-free electrode to examine the feasibility for electrochemical supercapacitors using cyclic voltammetry and galvanic charge-discharge measurements in 1 M KOH electrolyte solution. The Co3O4 NPAs coated FCFs electrode exhibited a maximum specific capacitance of 145.6 F/g at a current density of 1 A/g and an excellent rate capability after 1000 cycles at a current density of 3 A/g. This facile fabrication method for integrating the Co3O4 nanostructures on FCFs could be a promising approach for advanced flexible electronic and energy-storage device applications.

  15. Application of amorphous carbon based materials as antireflective coatings on crystalline silicon solar cells

    NASA Astrophysics Data System (ADS)

    da Silva, D. S.; Côrtes, A. D. S.; Oliveira, M. H.; Motta, E. F.; Viana, G. A.; Mei, P. R.; Marques, F. C.

    2011-08-01

    We report on the investigation of the potential application of different forms of amorphous carbon (a-C and a-C:H) as an antireflective coating for crystalline silicon solar cells. Polymeric-like carbon (PLC) and hydrogenated diamond-like carbon films were deposited by plasma enhanced chemical vapor deposition. Tetrahedral amorphous carbon (ta-C) was deposited by the filtered cathodic vacuum arc technique. Those three different amorphous carbon structures were individually applied as single antireflective coatings on conventional (polished and texturized) p-n junction crystalline silicon solar cells. Due to their optical properties, good results were also obtained for double-layer antireflective coatings based on PLC or ta-C films combined with different materials. The results are compared with a conventional tin dioxide (SnO2) single-layer antireflective coating and zinc sulfide/magnesium fluoride (ZnS/MgF2) double-layer antireflective coatings. An increase of 23.7% in the short-circuit current density, Jsc, was obtained using PLC as an antireflective coating and 31.7% was achieved using a double-layer of PLC with a layer of magnesium fluoride (MgF2). An additional increase of 10.8% was obtained in texturized silicon, representing a total increase (texturization + double-layer) of about 40% in the short-circuit current density. The potential use of these materials are critically addressed considering their refractive index, optical bandgap, absorption coefficient, hardness, chemical inertness, and mechanical stability.

  16. Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold.

    PubMed

    Xie, Keyu; Wei, Wenfei; Yuan, Kai; Lu, Wei; Guo, Min; Li, Zhihua; Song, Qiang; Liu, Xingrui; Wang, Jian-Gan; Shen, Chao

    2016-10-05

    Owing to its ultrahigh specific capacity and low electrochemical potential, lithium (Li) metal is regarded as one of the most attractive anode materials for next-generation lithium batteries. Nevertheless, the commercialization of Li-metal-based rechargeable batteries (LiMBs) has been retarded by the uncontrollable growth of Li dendrites, as well as the resulting poor cycle stability and safety hazards. In this work, a 3D graphene@Ni scaffold has been proposed to accomplish dendrite-free Li deposition via structural and interfacial synergistic effects. Due to the intrinsic high surface area used to reduce the effective electrode current density and the surface-coated graphene working as an artificial protection layer to provide high cycle stability as well as suppress the growth of Li dendrites, the Coulombic efficiencies of Li deposition on 3D graphene@Ni foam after 100 cycles can be sustained as high as 96, 98, and 92% at the current densities of 0.25, 0.5, and 1.0 mA cm -2 , respectively, which shows more excellent cycle stability than that of its planar Cu foil and bare Ni foam counterparts. The results obtained here demonstrate that the comprehensive consideration of multiaspect factors could be more help to enhance the performance of Li metal anode so as to achieve its real application in next-generation LiMBs.

  17. Impact of the AD 79 explosive eruption on Pompeii, I. Relations amongst the depositional mechanisms of the pyroclastic products, the framework of the buildings and the associated destructive events

    NASA Astrophysics Data System (ADS)

    Luongo, Giuseppe; Perrotta, Annamaria; Scarpati, Claudio

    2003-08-01

    A quantitative and qualitative evaluation of the damage caused by the products of explosive eruptions to buildings provides an excellent contribution to the understanding of the various eruptive processes during such dramatic events. To this end, the impact of the products of the two main phases (pumice fallout and pyroclastic density currents) of the Vesuvius AD 79 explosive eruption onto the Pompeii buildings has been evaluated. Based on different sources of data, such as photographs and documents referring to the archaeological excavations of Pompeii, the stratigraphy of the pyroclastic deposits, and in situ inspection of the damage suffered by the buildings, the present study has enabled the reconstruction of the events that occurred inside the city when the eruption was in progress. In particular, we present new data related to the C.J. Polibius' house, a large building located inside Pompeii. From a comparison of all of the above data sets, it has been possible to reconstruct, in considerable detail, the stratigraphy of the pyroclastic deposits accumulated in the city, to understand the direction of collapse of the destroyed walls, and to evaluate the stratigraphic level at which the walls collapsed. Finally, the distribution and style of the damage allow us to discuss how the emplacement mechanisms of the pyroclastic currents are influenced by their interaction with the urban centre. All the data suggest that both structure and shape of the town buildings affected the transport and deposition of the erupted products. For instance, sloping roofs 'drained' a huge amount of fall pumice into the 'impluvia' (a rectangular basin in the centre of the hall with the function to collect the rain water coming from a hole in the centre of the roof), thus producing anomalous deposit thicknesses. On the other hand, flat and low-sloping roofs collapsed under the weight of the pyroclastic material produced during the first phase of the eruption (pumice fall). In addition, it is evident that the walls that happened to be parallel to the direction of the pyroclastic density currents produced during the second eruptive phase were minimally damaged in comparison to those walls oriented perpendicular to the flow direction. We suggest that the lower depositional parts of the pyroclastic currents were partially blocked (locally reflected) and slowed down because of recurring encounters with the closely spaced walls within buildings. Locally, the percentage of demolished walls decreases down-current, which has been interpreted as a loss in kinetic energy within the depositional system of the flow. However, it seems that the upper transport system by-passed these obstacles, then supplied new pyroclasts to the depositional system that restored its physical characteristics and restored enough kinetic energy to demolish the next walls and buildings further along its path.

  18. AlGaN/GaN HEMT grown on large size silicon substrates by MOVPE capped with in-situ deposited Si 3N 4

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Leys, M.; Derluyn, J.; Degroote, S.; Xiao, D. P.; Lorenz, A.; Boeykens, S.; Germain, M.; Borghs, G.

    2007-01-01

    AlGaN/GaN high electron mobility transistors (HEMTs) have been grown on 4 and 6 in Si(1 1 1) substrates by metal organic vapor phase epitaxy (MOVPE). A record sheet resistance of 256 Ω/□ has been measured by contactless eddy current mapping on 4 in silicon substrates. The wafer also shows an excellent uniformity and the standard variation is 3.6 Ω/□ over the whole wafer. These values were confirmed by Hall-Van der Pauw measurements. In the 2DEG at the AlGaN/GaN interface, the electron mobility is in the range of 1500-1800 cm 2/Vs and the electron density is between 1.3×10 13 and 1.7×10 13 cm -2. The key step in obtaining these results is an in-situ deposited Si 3N 4 passivation layer. This in-situ Si 3N 4, deposited directly after AlGaN top layer growth in the MOVPE reactor chamber, not only prevents the stress relaxation in AlGaN/GaN hetero-structures but also passivates the surface states of the AlGaN cap layer. HEMT transistors have been processed on the epitaxial structures and the maximum source-drain current density is 1.1 A/mm for a gate-source voltage of 2 V. The current collapse is minimized thanks to in-situ Si 3N 4. First results on AlGaN/GaN structures grown on 6 in Si(1 1 1) are also presented.

  19. Propagation and deposition of non-circular finite release particle-laden currents

    NASA Astrophysics Data System (ADS)

    Zgheib, Nadim; Bonometti, Thomas; Balachandar, S.

    2015-08-01

    The dynamics of non-axisymmetric turbidity currents is considered here for a range of Reynolds numbers of O (104) when based on the initial height of the release. The study comprises a series of experiments and highly resolved simulations for which a finite volume of particle-laden solution is released into fresh water. A mixture of water and polystyrene particles of mean diameter d ˜ p = 300 μ m and mixture density ρ ˜ c = 1012 kg / m 3 is initially confined in a hollow cylinder at the centre of a large tank filled with fresh water. Cylinders with two different cross-sectional shapes, but equal cross-sectional areas, are examined: a circle and a rounded rectangle in which the sharp corners are smoothened. The time evolution of the front is recorded as well as the spatial distribution of the thickness of the final deposit via the use of a laser triangulation technique. The dynamics of the front and final deposits are significantly influenced by the initial geometry, displaying substantial azimuthal variation especially for the rectangular case where the current extends farther and deposits more particles along the initial minor axis of the rectangular cross section. Several parameters are varied to assess the dependence on the settling velocity, initial height aspect ratio, and volume fraction. Even though resuspension is not taken into account in our simulations, good agreement with experiments indicates that it does not play an important role in the front dynamics, in terms of velocity and extent of the current. However, wall shear stress measurements show that incipient motion of particles and particle transport along the bed are likely to occur in the body of the current and should be accounted to properly capture the final deposition profile of particles.

  20. Mitigation of Electrical Failure of Silver Nanowires under Current Flow and the Application for Long Lifetime Organic Light-Emitting Diodes

    DOE PAGES

    Chen, Dustin; Zhao, Fangchao; Tong, Kwing; ...

    2016-07-08

    Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less

  1. Negative differential resistance in low Al-composition p-GaN/Mg-doped Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liang, Hongwei; Shen, Rensheng; Wang, Dongsheng; Tao, Pengcheng; Liu, Yang; Xia, Xiaochuan; Luo, Yingmin; Du, Guotong

    2014-02-01

    Negative differential resistance (NDR) behavior was observed in low Al-composition p-GaN/Mg-doped-Al0.15Ga0.85N/n+-GaN hetero-junction grown by metal-organic chemical vapor deposition on sapphire substrate. The energy band and free carrier concentration of hetero-junction were studied by the model of the self-consistent solution of Schrödinger-Poisson equations combined with polarization engineering theory. At the forward bias of 0.95 V, the NDR effect has a high peak-to-valley current ratio of ˜9 with a peak current of 22.4 mA (˜current density of 11.4 A/cm2). An interesting phenomenon of NDR disappearance after consecutive scans and recurrence after electrical treatment was observed, which was associated with Poole-Frenkel effect.

  2. Comprehensive electrical analysis of metal/Al2O3/O-terminated diamond capacitance

    NASA Astrophysics Data System (ADS)

    Pham, T. T.; Maréchal, A.; Muret, P.; Eon, D.; Gheeraert, E.; Rouger, N.; Pernot, J.

    2018-04-01

    Metal oxide semiconductor capacitors were fabricated using p - type oxygen-terminated (001) diamond and Al2O3 deposited by atomic layer deposition at two different temperatures 250 °C and 380 °C. Current voltage I(V), capacitance voltage C(V), and capacitance frequency C(f) measurements were performed and analyzed for frequencies ranging from 1 Hz to 1 MHz and temperatures from 160 K to 360 K. A complete model for the Metal-Oxide-Semiconductor Capacitors electrostatics, leakage current mechanisms through the oxide into the semiconductor and small a.c. signal equivalent circuit of the device is proposed and discussed. Interface states densities are then evaluated in the range of 1012eV-1cm-2 . The strong Fermi level pinning is demonstrated to be induced by the combined effects of the leakage current through the oxide and the presence of diamond/oxide interface states.

  3. Computational Examination of Orientation-Dependent Morphological Evolution during the Electrodeposition and Electrodissolution of Magnesium

    DOE PAGES

    DeWitt, S.; Hahn, N.; Zavadil, K.; ...

    2015-12-30

    Here a new model of electrodeposition and electrodissolution is developed and applied to the evolution of Mg deposits during anode cycling. The model captures Butler-Volmer kinetics, facet evolution, the spatially varying potential in the electrolyte, and the time-dependent electrolyte concentration. The model utilizes a diffuse interface approach, employing the phase field and smoothed boundary methods. Scanning electron microscope (SEM) images of magnesium deposited on a gold substrate show the formation of faceted deposits, often in the form of hexagonal prisms. Orientation-dependent reaction rate coefficients were parameterized using the experimental SEM images. Three-dimensional simulations of the growth of magnesium deposits yieldmore » deposit morphologies consistent with the experimental results. The simulations predict that the deposits become narrower and taller as the current density increases due to the depletion of the electrolyte concentration near the sides of the deposits. Increasing the distance between the deposits leads to increased depletion of the electrolyte surrounding the deposit. Two models relating the orientation-dependence of the deposition and dissolution reactions are presented. Finally, the morphology of the Mg deposit after one deposition-dissolution cycle is significantly different between the two orientation-dependence models, providing testable predictions that suggest the underlying physical mechanisms governing morphology evolution during deposition and dissolution.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dustin; Zhao, Fangchao; Tong, Kwing

    Here, the extended lifetime of organic light-emitting diodes (OLEDs) based on enhanced electrical stability of a silver nanowire (AgNW) transparent conductive electrode is reported. Specifically, in depth investigation is performed on the ability of atomic layer deposition deposited zinc oxide (ZnO) on AgNWs to render the nanowires electrically stable during electrical stressing at the range of operational current density used for OLED lighting. ZnO-coated AgNWs have been observed to show no electrical, optical, or morphological degradation, while pristine AgNW electrodes have become unusable for optoelectronic devices due to dramatic decreases in conductivity, transparency, and fragmentation of the nanowire network atmore » ≈150 mA cm -2. When fabricated into OLED substrates, resulting OLEDs fabricated on the ZnO-AgNW platform exhibit a 140% increase in lifetime when compared to OLEDs fabricated on indium tin oxide (ITO)/glass, and ≈20% when compared to OLEDs fabricated on AgNW based substrates. While both ZnO-coated and pristine AgNW substrates outperform ITO/glass due to the lower current densities required to drive the device, morphological stability in response to current stressing is responsible for the enhancement of lifetime of ZnO-AgNW based OLEDs compared to pristine AgNW based OLEDs.« less

  5. Slumping and a sandbar deposit at the Cretaceous-Tertiary boundary in the El Tecolote section (northeastern Mexico): An impact-induced sediment gravity flow

    NASA Astrophysics Data System (ADS)

    Soria, Ana R.; Liesa, Carlos L.; Mata, Maria Pilar; Arz, José A.; Alegret, Laia; Arenillas, Ignacio; Meléndez, Alfonso

    2001-03-01

    Slumps affecting uppermost Méndez Formation marls, as well as the spherulitic layer and basal part of the sandy deposits of the Cretaceous-Tertiary (K-T) boundary clastic unit, are described at the new K-T El Tecolote section (northeastern Mexico). These K-T clastic deposits represent sedimentation at middle-bathyal water depths in channel and nonchannel or levee areas of reworked materials coming from environments ranging from outer shelf to shallower slope via a unidirectional, high- to low-density turbidite flow. We emphasize the development and accretion of a lateral bar in a channel area from a surging low-density turbidity current and under a high-flow regime. The slumps discovered on land and the sedimentary processes of the K-T clastic unit reflect destabilization and collapse of the continental margin, support the mechanism of gravity flows in the deep sea, and represent important and extensive evidence for the impact effects in the Gulf of México triggered by the Chicxulub event.

  6. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris Alfredo; Sato, Michio; ...

    2017-11-17

    Because of pressing global environmental challenges, focus has been placed on materials for efficient energy use, and this has triggered the search for nanostructural modification methods to improve performance. Achieving a high density of tunable-sized second-phase nanoparticles while ensuring the matrix remains intact is a long-sought goal. In this paper, we present an effective, scalable method to achieve this goal using metal organic deposition in a perovskite system REBa 2Cu 3O 7 (rare earth (RE)) that enhances the superconducting properties to surpass that of previous achievements. We present two industrially compatible routes to tune the nanoparticle size by controlling diffusionmore » during the nanoparticle formation stage by selecting the second-phase material and modulating the precursor composition spatially. Combining these routes leads to an extremely high density (8 × 10 22 m -3) of small nanoparticles (7 nm) that increase critical currents and reduce detrimental effects of thermal fluctuations at all magnetic field strengths and temperatures. This method can be directly applied to other perovskite materials where nanoparticle addition is beneficial.« less

  7. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    NASA Astrophysics Data System (ADS)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  8. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Masashi; Maiorov, Boris Alfredo; Sato, Michio

    Because of pressing global environmental challenges, focus has been placed on materials for efficient energy use, and this has triggered the search for nanostructural modification methods to improve performance. Achieving a high density of tunable-sized second-phase nanoparticles while ensuring the matrix remains intact is a long-sought goal. In this paper, we present an effective, scalable method to achieve this goal using metal organic deposition in a perovskite system REBa 2Cu 3O 7 (rare earth (RE)) that enhances the superconducting properties to surpass that of previous achievements. We present two industrially compatible routes to tune the nanoparticle size by controlling diffusionmore » during the nanoparticle formation stage by selecting the second-phase material and modulating the precursor composition spatially. Combining these routes leads to an extremely high density (8 × 10 22 m -3) of small nanoparticles (7 nm) that increase critical currents and reduce detrimental effects of thermal fluctuations at all magnetic field strengths and temperatures. This method can be directly applied to other perovskite materials where nanoparticle addition is beneficial.« less

  9. Tuning the density profile of surface-grafted hyaluronan and the effect of counter-ions.

    PubMed

    Berts, Ida; Fragneto, Giovanna; Hilborn, Jöns; Rennie, Adrian R

    2013-07-01

    The present paper investigates the structure and composition of grafted sodium hyaluronan at a solid-liquid interface using neutron reflection. The solvated polymer at the surface could be described with a density profile that decays exponentially towards the bulk solution. The density profile of the polymer varied depending on the deposition protocol. A single-stage deposition resulted in denser polymer layers, while layers created with a two-stage deposition process were more diffuse and had an overall lower density. Despite the diffuse density profile, two-stage deposition leads to a higher surface excess. Addition of calcium ions causes a strong collapse of the sodium hyaluronan chains, increasing the polymer density near the surface. This effect is more pronounced on the sample prepared by two-stage deposition due to the initial less dense profile. This study provides an understanding at a molecular level of how surface functionalization alters the structure and how surface layers respond to changes in calcium ions in the solvent.

  10. Influence of deposition time on the surface morphology and photoelectrochemical properties of copper doped titania nanotubes prepared by electrodeposition

    NASA Astrophysics Data System (ADS)

    Mahmud, M. A.; Chin, L. Y.; Khusaimi, Z.; Zainal, Z.

    2018-05-01

    A great attention has focused on Cu doped titania nanotubes (Cu/TiNT) as a versatile advance material since it can be employed in various promising technological applications. The current study reported on the influence of various deposition times on the surface morphology and photoelectrochemical properties of Cu/TiNT via electrodeposition technique. Cu loaded on the TiNT surface was detected with prolonged deposition time. For photoelectrochemical (PEC) measurement, the highest responsive photocurrent density was obtained at 20 minutes with 54.3 µA/cm2. Too long duration (40 mins) resulted in poor performance of Cu/TiNT as only 22.6 µA/cm2 of photocurrent being generated.

  11. Low temperature improvement method on characteristics of Ba(Zr0.1Ti0.9)O3 thin films deposited on indium tin oxide/glass substrates

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Huang; Chang, Ting-Chang; Chang, Guan-Chang; Hsu, Yung-En; Chen, Ying-Chung; Xu, Hong-Quan

    2010-04-01

    To improve the electrical properties of as-deposited BZ1T9 ferroelectric thin films, the supercritical carbon dioxide fluid (SCF) process were used by a low temperature treatment. In this study, the BZ1T9 ferroelectric thin films were post-treated by SCF process which mixed with propyl alcohol and pure H2O. After SCF process treatment, the remnant polarization increased in hysteresis curves, and the passivation of oxygen vacancy and defect in leakage current density curves were found. Additionally, the improvement qualities of as-deposited BZ1T9 thin films after SCF process treatment were carried out XPS, C- V, and J- E measurements.

  12. Hybrid Organic/ZnO p-n Junctions with n-Type ZnO Grown by Atomic Layer Deposition

    NASA Astrophysics Data System (ADS)

    Łuka, G.; Krajewski, T.; Szczerbakow, A.; Łusakowska, E.; Kopalko, K.; Guziewicz, E.; Wachnicki, Ł.; Szczepanik, A.; Godlewski, M.; Fidelus, J. D.

    2008-11-01

    We report on fabrication of hybrid inorganic-on-organic thin film structures with polycrystalline zinc oxide films grown by atomic layer deposition technique. ZnO films were deposited on two kinds of thin organic films, i.e. pentacene and poly(dimethylosiloxane) elastomer with a carbon nanotube content (PDMS:CNT). Surface morphology as well as electrical measurements of the films and devices were analyzed. The current density versus voltage (I-V) characteristics of ITO/pentacene/ZnO/Au structure show a low-voltage switching phenomenon typical of organic memory elements. The I-V studies of ITO/PDMS:CNT/ZnO/Au structure indicate some charging effects in the system under applied voltages.

  13. Dependence of performance of Si nanowire solar cells on geometry of the nanowires.

    PubMed

    Khan, Firoz; Baek, Seong-Ho; Kim, Jae Hyun

    2014-01-01

    The dependence of performance of silicon nanowires (SiNWs) solar cells on the growth condition of the SiNWs has been described. Metal-assisted electroless etching (MAE) technique has been used to grow SiNWs array. Different concentration of aqueous solution containing AgNO3 and HF for Ag deposition is used. The diameter and density of SiNWs are found to be dependent on concentration of solution used for Ag deposition. The diameter and density of SiNWs have been used to calculate the filling ratio of the SINWs arrays. The filling ratio is increased with increase in AgNO3 concentration, whereas it is decreased with increase in HF concentration. The minimum reflectance value achieved is ~1% for SiNWs of length of ~1.2 μ m in the wavelength range of 300-1000 nm. The performance and diode parameters strongly depend on the geometry of SiNWs. The maximum short circuit current density achieved is 35.6 mA/cm(2). The conversion efficiency of solar cell is 9.73% for SiNWs with length, diameter, and wire density of ~1.2 μ m, ~75 nm, and 90 μ m(-2), respectively.

  14. High Tc YBCO superconductor deposited on biaxially textured Ni substrate

    DOEpatents

    Budai, John D.; Christen, David K.; Goyal, Amit; He, Qing; Kroeger, Donald M.; Lee, Dominic F.; List, III, Frederick A.; Norton, David P.; Paranthaman, Mariappan; Sales, Brian C.; Specht, Eliot D.

    1999-01-01

    A superconducting article includes a biaxially-textured Ni substrate, and epitaxial buffer layers of Pd (optional), CeO.sub.2 and YSZ, and a top layer of in-plane aligned, c-axis oriented YBCO having a critical current density (J.sub.c) in the range of at least 100,000 A/cm.sup.2 at 77 K.

  15. Substance deposition assessment in obstructed pulmonary system through numerical characterization of airflow and inhaled particles attributes.

    PubMed

    Lalas, Antonios; Nousias, Stavros; Kikidis, Dimitrios; Lalos, Aris; Arvanitis, Gerasimos; Sougles, Christos; Moustakas, Konstantinos; Votis, Konstantinos; Verbanck, Sylvia; Usmani, Omar; Tzovaras, Dimitrios

    2017-12-20

    Chronic obstructive pulmonary disease (COPD) and asthma are considered as the two most widespread obstructive lung diseases, whereas they affect more than 500 million people worldwide. Unfortunately, the requirement for detailed geometric models of the lungs in combination with the increased computational resources needed for the simulation of the breathing did not allow great progress to be made in the past for the better understanding of inflammatory diseases of the airways through detailed modelling approaches. In this context, computational fluid dynamics (CFD) simulations accompanied by fluid particle tracing (FPT) analysis of the inhaled ambient particles are deemed critical for lung function assessment. Also they enable the understanding of particle depositions on the airways of patients, since these accumulations may affect or lead to inflammations. In this direction, the current study conducts an initial investigation for the better comprehension of particle deposition within the lungs. More specifically, accurate models of the airways obstructions that relate to pulmonary disease are developed and a thorough assessment of the airflow behavior together with identification of the effects of inhaled particle properties, such as size and density, is conducted. Our approach presents a first step towards an effective personalization of pulmonary treatment in regards to the geometric characteristics of the lungs and the in depth understanding of airflows within the airways. A geometry processing technique involving contraction algorithms is established and used to employ the different respiratory arrangements associated with lung related diseases that exhibit airways obstructions. Apart from the normal lung case, two categories of obstructed cases are examined, i.e. models with obstructions in both lungs and models with narrowings in the right lung only. Precise assumptions regarding airflow and deposition fraction (DF) over various sections of the lungs are drawn by simulating these distinct incidents through the finite volume method (FVM) and particularly the CFD and FPT algorithms. Moreover, a detailed parametric analysis clarifies the effects of the particles size and density in terms of regional deposition upon several parts of the pulmonary system. In this manner, the deposition pattern of various substances can be assessed. For the specific case of the unobstructed lung model most particles are detected on the right lung (48.56% of total, when the air flowrate is 12.6 L/min), a fact that is also true when obstructions arise symmetrically in both lungs (51.45% of total, when the air flowrate is 6.06 L/min and obstructions occur after the second generation). In contrast, when narrowings are developed on the right lung only, most particles are pushed on the left section (68.22% of total, when the air flowrate is 11.2 L/min) indicating that inhaled medication is generally deposited away from the areas of inflammation. This observation is useful when designing medical treatment of lung diseases. Furthermore, particles with diameters from 1 μm to 10 μm are shown to be mainly deposited on the lower airways, whereas particles with diameters of 20 μm and 30 μm are mostly accumulated in the upper airways. As a result, the current analysis indicates increased DF levels in the upper airways when the particle diameter is enlarged. Additionally, when the particles density increases from 1000 Kg/m 3 to 2000 Kg/m 3 , the DF is enhanced on every generation and for all cases investigated herein. The results obtained by our simulations provide an accurate and quantitative estimation of all important parameters involved in lung modeling. The treatment of respiratory diseases with inhaled medical substances can be advanced by the clinical use of accurate CFD and FPT simulations and specifically by evaluating the deposition of inhaled particles in a regional oriented perspective in regards to different particle sizes and particle densities. Since a drug with specific characteristics (i.e. particle size and density) exhibits maximum deposition on particular lung areas, the current study provides initial indications to a qualified physician for proper selection of medication.

  16. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X. Z.; Qian, J.; Chen, J.; Li, G.; Li, K.; Li, M. H.; Zhai, X.; Bonoli, P.; Brower, D.; Cao, L.; Cui, L.; Ding, S.; Ding, W. X.; Guo, W.; Holcomb, C.; Huang, J.; Hyatt, A.; Lanctot, M.; Lao, L. L.; Liu, H.; Lyu, B.; McClenaghan, J.; Peysson, Y.; Ren, Q.; Shiraiwa, S.; Solomon, W.; Zang, Q.; Wan, B.

    2017-07-01

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2 ~ 1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drive (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.

  17. Development of high poloidal beta, steady-state scenario with ITER-like tungsten divertor on EAST

    DOE PAGES

    Garofalo, Andrea M.; Gong, X. Z.; Qian, J.; ...

    2017-06-07

    Recent experiments on EAST have achieved the first long pulse H-mode (61 s) with zero loop voltage and an ITER-like tungsten divertor, and have demonstrated access to broad plasma current profiles by increasing the density in fully-noninductive lower hybrid current-driven discharges. These long pulse discharges reach wall thermal and particle balance, exhibit stationary good confinement (H 98y2~1.1) with low core electron transport, and are only possible with optimal active cooling of the tungsten armors. In separate experiments, the electron density was systematically varied in order to study its effect on the deposition profile of the external lower hybrid current drivemore » (LHCD), while keeping the plasma in fully-noninductive conditions and with divertor strike points on the tungsten divertor. A broadening of the current profile is found, as indicated by lower values of the internal inductance at higher density. A broad current profile is attractive because, among other reasons, it enables internal transport barriers at large minor radius, leading to improved confinement as shown in companion DIII-D experiments. These experiments strengthen the physics basis for achieving high performance, steady state discharges in future burning plasmas.« less

  18. DC current induced metal-insulator transition in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3}/LaAlO{sub 3} thin film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Haoliang; CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026; Luo, Zhenlin, E-mail: zlluo@ustc.edu.cn

    2014-05-15

    The metal-insulator transition (MIT) in strong correlated electron materials can be induced by external perturbation in forms of thermal, electrical, optical, or magnetic fields. We report on the DC current induced MIT in epitaxial Sm{sub 0.6}Nd{sub 0.4}NiO{sub 3} (SNNO) thin film deposited by pulsed laser deposition on (001)-LaAlO{sub 3} substrate. It was found that the MIT in SNNO film not only can be triggered by thermal, but also can be induced by DC current. The T{sub MI} of SNNO film decreases from 282 K to 200 K with the DC current density increasing from 0.003 × 10{sup 9} A•m{sup −2}more » to 4.9 × 10{sup 9} A•m{sup −2}. Based on the resistivity curves measured at different temperatures, the MIT phase diagram has been successfully constructed.« less

  19. Electron-cyclotron wave scattering by edge density fluctuations in ITER

    NASA Astrophysics Data System (ADS)

    Tsironis, Christos; Peeters, Arthur G.; Isliker, Heinz; Strintzi, Dafni; Chatziantonaki, Ioanna; Vlahos, Loukas

    2009-11-01

    The effect of edge turbulence on the electron-cyclotron wave propagation in ITER is investigated with emphasis on wave scattering, beam broadening, and its influence on localized heating and current drive. A wave used for electron-cyclotron current drive (ECCD) must cross the edge of the plasma, where density fluctuations can be large enough to bring on wave scattering. The scattering angle due to the density fluctuations is small, but the beam propagates over a distance of several meters up to the resonance layer and even small angle scattering leads to a deviation of several centimeters at the deposition location. Since the localization of ECCD is crucial for the control of neoclassical tearing modes, this issue is of great importance to the ITER design. The wave scattering process is described on the basis of a Fokker-Planck equation, where the diffusion coefficient is calculated analytically as well as computed numerically using a ray tracing code.

  20. Electrical transport properties of thermally evaporated phthalocyanine (H 2Pc) thin films

    NASA Astrophysics Data System (ADS)

    El-Nahass, M. M.; Farid, A. M.; Attia, A. A.; Ali, H. A. M.

    2006-08-01

    Thin films of H 2Pc of various thicknesses have been deposited onto glass substrates using thermal evaporation technique at room temperature. The dark electrical resistivity measurements were carried out at different temperatures in the range 298-473 K. An estimation of mean free path ( lo) of charge carriers in H 2Pc thin films was attempted. Measurements of thermoelectric power confirm that H 2Pc thin films behave as a p-type semiconductor. The current density-voltage characteristics of Au/H 2Pc/Au at room temperature showed ohmic conduction mechanism at low voltages. At higher voltages the space-charge-limited conduction (SCLC) accompanied by an exponential trap distribution was dominant. The temperature dependence of current density allows the determination of some essential parameters such as the hole mobility ( μh), the total trap concentration ( Nt), the characteristic temperature ( Tt) and the trap density P( E).

  1. Current rectifying and resistive switching in high density BiFeO3 nanocapacitor arrays on Nb-SrTiO3 substrates

    PubMed Central

    Zhao, Lina; Lu, Zengxing; Zhang, Fengyuan; Tian, Guo; Song, Xiao; Li, Zhongwen; Huang, Kangrong; Zhang, Zhang; Qin, Minghui; SujuanWu; Lu, Xubing; Zeng, Min; Gao, Xingsen; Dai, Jiyan; Liu, Jun-Ming

    2015-01-01

    Ultrahigh density well-registered oxide nanocapacitors are very essential for large scale integrated microelectronic devices. We report the fabrication of well-ordered multiferroic BiFeO3 nanocapacitor arrays by a combination of pulsed laser deposition (PLD) method and anodic aluminum oxide (AAO) template method. The capacitor cells consist of BiFeO3/SrRuO3 (BFO/SRO) heterostructural nanodots on conductive Nb-doped SrTiO3 (Nb-STO) substrates with a lateral size of ~60 nm. These capacitors also show reversible polarization domain structures, and well-established piezoresponse hysteresis loops. Moreover, apparent current-rectification and resistive switching behaviors were identified in these nanocapacitor cells using conductive-AFM technique, which are attributed to the polarization modulated p-n junctions. These make it possible to utilize these nanocapacitors in high-density (>100 Gbit/inch2) nonvolatile memories and other oxide nanoelectronic devices. PMID:25853937

  2. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode

    NASA Astrophysics Data System (ADS)

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-08-01

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm-2 (specific capacitance of 50 F g-1) at a charge/discharge current density of 1 mA cm-2 and a maximum energy density of 39.9 W h kg-1 (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm-2, with a capacitance retention of 95% after 3000 cycles.

  3. High energy density asymmetric supercapacitors with a nickel oxide nanoflake cathode and a 3D reduced graphene oxide anode.

    PubMed

    Luan, Feng; Wang, Gongming; Ling, Yichuan; Lu, Xihong; Wang, Hanyu; Tong, Yexiang; Liu, Xiao-Xia; Li, Yat

    2013-09-07

    Here we demonstrate a high energy density asymmetric supercapacitor with nickel oxide nanoflake arrays as the cathode and reduced graphene oxide as the anode. Nickel oxide nanoflake arrays were synthesized on a flexible carbon cloth substrate using a seed-mediated hydrothermal method. The reduced graphene oxide sheets were deposited on three-dimensional (3D) nickel foam by hydrothermal treatment of nickel foam in graphene oxide solution. The nanostructured electrodes provide a large effective surface area. The asymmetric supercapacitor device operates with a voltage of 1.7 V and achieved a remarkable areal capacitance of 248 mF cm(-2) (specific capacitance of 50 F g(-1)) at a charge/discharge current density of 1 mA cm(-2) and a maximum energy density of 39.9 W h kg(-1) (based on the total mass of active materials of 5.0 mg). Furthermore, the device showed an excellent charge/discharge cycling performance in 1.0 M KOH electrolyte at a current density of 5 mA cm(-2), with a capacitance retention of 95% after 3000 cycles.

  4. Preparation of dielectric coating of variable dielectric constant by plasma polymerization

    NASA Technical Reports Server (NTRS)

    Hudis, M.; Wydeven, T. (Inventor)

    1979-01-01

    A plasma polymerization process for the deposition of a dielectric polymer coating on a substrate comprising disposing of the substrate in a closed reactor between two temperature controlled electrodes connected to a power supply is presented. A vacuum is maintained within the closed reactor, causing a monomer gas or gas mixture of a monomer and diluent to flow into the reactor, generating a plasma between the electrodes. The vacuum varies and controls the dielectric constant of the polymer coating being deposited by regulating the gas total and partial pressure, the electric field strength and frequency, and the current density.

  5. Effects of complexing agents on electrochemical deposition of FeS x O y in ZnO/FeS x O y heterostructures

    NASA Astrophysics Data System (ADS)

    Supee, A.; Ichimura, M.

    2017-12-01

    Heterostructures which consist of ZnO and FeS x O y were deposited via electrochemical deposition (ECD) for application to solar cells. Galvanostatic ECD was used in FeS x O y deposition with a solution containing 100 mM Na2S2O3 and 30 mM FeSO4. To alter the film properties, L(+)-tartaric acid (C4H6O6) and lactic acid [CH3CH(OH)COOH] were introduced as the complexing agents into the FeS x O y deposition solution. Larger film thickness and smaller oxygen content were obtained for the films deposited with the complexing agents. ZnO was deposited on FeS x O y by two-step pulse ECD from a solution containing Zn(NO3)2. For the ZnO/FeS x O y heterostructures fabricated with/without complexing agents, rectifying properties were confirmed in the current density-voltage ( J- V) characteristics. However, photovoltaic properties were not improved with addition of both complexing agents.

  6. The current-density distribution in a pulsed dc magnetron deposition discharge

    NASA Astrophysics Data System (ADS)

    Vetushka, Alena; Bradley, James W.

    2007-04-01

    Using a carefully constructed magnetic probe (a B-dot probe) the spatial and temporal evolution of the perturbation in the magnetic field ΔB in an unbalanced pulsed dc magnetron has been determined. The plasma was run in argon at a pressure of 0.74 Pa and the plasma ions sputtered a pure graphite target. The pulse frequency and duty were set at 100 kHz and 55%, respectively. From the ΔB measurements (measured with magnitudes up to about 0.01 mT) the axial, azimuthal and radial components of the total current density j in the plasma bulk were determined. In the plasma 'on' phase, the axial current density jz has a maximum value of approximately 200 A m-2 above the racetrack region, while high values in the azimuthal current density jΦ are distributed in a region from 1 to 3 cm into the bulk plasma with jΦ exceeding 350 A m-2. In the 'off' phase of the plasma, jz decays almost instantaneously (at least within the 100 ns time-resolution of the ΔB measurements) as the electric field collapses; however, jΦ decays with a characteristic time constant of about 1 µs. This slow decay can be attributed to the presence of decaying Grad-B and curvature drifts, with their rates controlled by the decay in the plasma density. A comparison between axial and azimuthal current densities in the plasma 'on' time, when the plasma is being driven, strongly indicates that classical transport does not operate in the magnetron discharge.

  7. Geometry and lithofacies of coarse-grained injectites and extrudites in a late Pliocene trench-slope basin on the southern Boso Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ito, Makoto; Ishimoto, Sakumi; Ito, Kento; Kotake, Nobuhiro

    2016-10-01

    This study investigates the geometry and internal structures of coarse- to very coarse-grained volcanic sandstones and volcanic breccias with many siltstone clasts (interpreted to be sill-like injectites and extrudites) occurring in an upper Pliocene trench-slope basin succession on the southern Boso Peninsula, Japan. The injectites occur in the uppermost Shiramazu Formation, and pinch out laterally into siltstone-dominated deposits of the Mera Formation. Their thicknesses vary from a few centimeters to 2 m. The basal and upper contacts of the injectites with host muddy deposits are sharp and/or erosional, and are locally discordant with the bedding of the host deposits. Siltstone clasts, which were ripped up or ripped down from the host muddy deposits, are commonly incorporated into the injectites, although some siltstone clasts have geological ages older than those of the host deposits. Seven lithofacies have been identified in the injectites based on the internal structures. The combinations of internal structures are different from those of high-density turbidity current deposits and debrites, and suggest that injection was promoted by a combination of turbulent and laminar flow conditions. The extrudites show an overall convex-up geometry and possess lithological features similar to those of the injectites. They have been identified in the Rendaiji Conglomerate Member, which is encased in the Mera Formation, and which rests on the uppermost Shiramazu Formation. The extrudites are characterized by gently undulating waveforms that show upstream migration and climbing stacking patterns similar to the cross-sectional geometry of cyclic steps or upstream-migrating antidunes. The active eruption of solid-liquid mixtures onto the seafloor and sedimentary piles may have subsequently collapsed to produce supercritical high-density gravity currents down the flanks of a neptunian volcano. The injectites and extrudites locally contain Calyptogena shells and shell fragments, as well as fragments of carbonate concretions that exhibit low carbon isotopic ratios, suggesting that fluidization of the source sediments was triggered by a combination of seepage of cold methane-bearing water into the source sediments and seismic shaking. Volcaniclastic deposits older than the host muddy deposits are present in the trench-slope basin deposits and these are the likely source of the injectites and extrudites.

  8. Discharge current measurements on Venera 13 & 14 - Evidence for charged aerosols in the Venus lower atmosphere?

    NASA Astrophysics Data System (ADS)

    Lorenz, Ralph D.

    2018-06-01

    Measurements of discharge currents on the Venera 13 and 14 landers during their descent in the lowest 35 km of the Venus atmosphere are interpreted as driven either by an ambient electric field, or by deposition of charge from aerosols. The latter hypothesis is favored (`triboelectric charging' in aeronautical parlance), and would entail an aerosol opacity and charge density somewhat higher than that observed in Saharan dust transported over long distances on Earth.

  9. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  10. Metal Alloy ICF Capsules Created by Electrodeposition

    DOE PAGES

    Horwood, Corie; Stadermann, Michael; Bunn, Thomas L.

    2017-12-04

    Electrochemical deposition is an attractive alternative to physical vapor deposition and micromachining to produce metal capsules for inertial confinement fusion (ICF). Electrochemical deposition (also referred to as electrodeposition or plating) is expected to produce full-density metal capsules without seams or inclusions of unwanted atomic constituents, the current shortcomings of micromachine and physical vapor deposition, respectively. In this paper, we discuss new cathode designs that allow for the rapid electrodeposition of gold and copper alloys on spherical mandrels by making transient contact with the constantly moving spheres. Electrodeposition of pure gold, copper, platinum, and alloys of gold-copper and gold-silver are demonstrated,more » with nonporous coatings of >40 µm achieved in only a few hours of plating. The surface roughness of the spheres after electrodeposition is comparable to the starting mandrel, and the coatings appear to be fully dense with no inclusions. A detailed understanding of the electrodeposition conditions that result in different alloy compositions and plating rates will allow for the electrodeposition of graded alloys on spheres in the near future. Finally, this report on the electrodeposition of metals on spherical mandrels is an important first step toward the fabrication of graded-density metal capsules for ICF experiments at the National Ignition Facility.« less

  11. Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuan, Lee Te, E-mail: gd130079@siswa.uthm.edu.my; Abdullah, Hasan Zuhudi, E-mail: hasan@uthm.edu.my; Idris, Maizlinda Izwana, E-mail: izwana@uthm.edu.my

    Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm{sup −2}) at room temperature. Anodisedmore » titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO{sub 2}.« less

  12. In situ hydrostatic pressure induced improvement of critical current density and suppression of magnetic relaxation in Y(Dy0.5)Ba2Cu3O7‑δ coated conductors

    NASA Astrophysics Data System (ADS)

    Sang, Lina; Gutiérrez, Joffre; Cai, Chuanbing; Dou, Shixue; Wang, Xiaolin

    2018-07-01

    We report on the effect of in situ hydrostatic pressure on the enhancement of the in-magnetic-field critical current density parallel to the crystallographic c-axis and vortex pinning in epitaxial Y(Dy0.5)Ba2Cu3O7‑δ coated conductors prepared by metal organic deposition. Our results show that in situ hydrostatic pressure greatly enhances the critical current density at high fields and high temperatures. At 80 K and 5 T we observe a ten-fold increase in the critical current density under the pressure of 1.2 GPa, and the irreversibility line is shifted to higher fields without changing the critical temperature. The normalized magnetic relaxation rate shows that vortex creep rates are strongly suppressed due to applied pressure, and the pinning energy is significantly increased based on the collective creep theory. After releasing the pressure, we recover the original superconducting properties. Therefore, we speculate that the in situ hydrostatic pressure exerted on the coated conductor enhances the pinning of existing extended defects. This is totally different from what has been observed in REBa2Cu3O7‑δ melt-textured crystals, where the effect of pressure generates point-like defects.

  13. Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)

    NASA Astrophysics Data System (ADS)

    Chuan, Lee Te; Abdullah, Hasan Zuhudi; Idris, Maizlinda Izwana

    2015-07-01

    Anodic oxidation is an electrochemical method for the production of ceramic films on a metallic substrate. It had been widely used to deposit the ceramic coatings on the metals surface. This method has been widely used in surface modification of biomaterials especially for dental implants. In this study, the surface morphology, crystallinity and optical properties of titanium foil was modified by anodising in mixture of β-glycerophosphate disodium salt pentahydrate (β-GP) and calcium acetate monohydrate (CA). The experiments were carried out at high voltage (350 V), different anodising time (5 and 10 minutes) and current density (10-70 mA.cm-2) at room temperature. Anodised titanium was characterised by using field emission scanning electron microscopy (FESEM), X-ray diffractometer (XRD), and UV-Vis spectrometry. The result of the experiment showed that surface morphology, crystallinity and optical properties depended strongly on the current density and anodising time. More porous surface and large amount of anatase and rutile was produced at higher current density and longer anodising time. Apart from that, it is also revealed that the energy band gap of anodised titanium increases as the increase in current density due to the presence of anatase and rutile TiO2.

  14. Group-III Nitride Field Emitters

    NASA Technical Reports Server (NTRS)

    Bensaoula, Abdelhak; Berishev, Igor

    2008-01-01

    Field-emission devices (cold cathodes) having low electron affinities can be fabricated through lattice-mismatched epitaxial growth of nitrides of elements from group III of the periodic table. Field emission of electrons from solid surfaces is typically utilized in vacuum microelectronic devices, including some display devices. The present field-emission devices and the method of fabricating them were developed to satisfy needs to reduce the cost of fabricating field emitters, make them compatible with established techniques for deposition of and on silicon, and enable monolithic integration of field emitters with silicon-based driving circuitry. In fabricating a device of this type, one deposits a nitride of one or more group-III elements on a substrate of (111) silicon or other suitable material. One example of a suitable deposition process is chemical vapor deposition in a reactor that contains plasma generated by use of electron cyclotron resonance. Under properly chosen growth conditions, the large mismatch between the crystal lattices of the substrate and the nitride causes strains to accumulate in the growing nitride film, such that the associated stresses cause the film to crack. The cracks lie in planes parallel to the direction of growth, so that the growing nitride film becomes divided into microscopic growing single-crystal columns. The outer ends of the fully-grown columns can serve as field-emission tips. By virtue of their chemical compositions and crystalline structures, the columns have low work functions and high electrical conductivities, both of which are desirable for field emission of electrons. From examination of transmission electron micrographs of a prototype device, the average column width was determined to be about 100 nm and the sharpness of the tips was determined to be characterized by a dimension somewhat less than 100 nm. The areal density of the columns was found to about 5 x 10(exp 9)/sq cm . about 4 to 5 orders of magnitude greater than the areal density of tips in prior field-emission devices. The electric field necessary to turn on the emission current and the current per tip in this device are both lower than in prior field-emission devices, such that it becomes possible to achieve longer operational lifetime. Moreover, notwithstanding the lower current per tip, because of the greater areal density of tips, it becomes possible to achieve greater current density averaged over the cathode area. The thickness of the grown nitride film (equivalently, the length of the columns) could lie between about 0.5 microns and a few microns; in any event, a thickness of about 1 micron is sufficient and costs less than do greater thicknesses. It may be possible to grow nitride emitter columns on glass or other substrate materials that cost less than silicon does. What is important in the choice of substrate material is the difference between the substrate and nitride crystalline structures. Inasmuch as the deposition process is nondestructive, an ability to grow emitter columns on a variety of materials would be advantageous in that it would facilitate the integration of field-emitter structures onto previously processed integrated circuits.

  15. Field-trip guide for exploring pyroclastic density current deposits from the May 18, 1980, eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Brand, Brittany D.; Pollock, Nicholas; Sarocchi, Damiano; Dufek, Josef; Clynne, Michael A.

    2017-07-05

    Pyroclastic density currents (PDCs) are one of the most dangerous phenomena associated with explosive volcanism. To help constrain damage potential, a combination of field studies, laboratory experiments, and numerical modeling are used to establish conditions that influence PDC dynamics and depositional processes, including runout distance. The objective of this field trip is to explore field relations that may constrain PDCs at the time of emplacement.The PDC deposits from the May 18, 1980, eruption of Mount St. Helens are well exposed along the steep flanks (10–30° slopes) and across the pumice plain (5–12° slopes) as far as 8 km north of the volcano. The pumice plain deposits represent deposition from a series of concentrated PDCs and are primarily thick (3–12 m), massive, and poorly sorted. In contrast, the steep east-flank deposits are stratified to cross-stratified, suggesting deposition from PDCs where turbulence strongly influenced transport and depositional processes.The PDCs that descended the west flank were largely nondepositional; they maintained a higher flow energy and carrying capacity than PDCs funneled through the main breach, as evidenced by the higher concentration of large blocks in their deposits. The PDC from the west flank collided with PDCs funneled through the breach at various points along the pumice plain. Evidence for flow collision will be explored and debated throughout the field trip.Evidence for substrate erosion and entrainment is found (1) along the steep eastern flank of the volcano, which has a higher degree of rough, irregular topography relative to the west flanks where PDCs were likely nonerosive, (2) where PDCs encountered debris-avalanche hummocks across the pumice plain, and (3) where PDCs eroded and entrained material deposited by PDCs produced during earlier phases of the eruption. Two features interpreted as large-scale (tens of meters wide) levees and a large (~200 m wide) channel scour-and-fill feature provide the first evidence of self-channelization within PDCs sustained for minutes to tens of minutes (total volume of deposits is ~0.12 km3; area covered is ~15.5 km2; Rowley and others, 1981).Our ability to interpret the deposits of PDCs is critical for understanding transport and depositional processes that control PDC dynamics. The results of extensive work on the May 18, 1980, PDC deposits show that slope and irregular topography strongly influence PDC flow path, dynamics, criticality (for example, supercritical versus subcritical), carrying capacity, and erosive capacity. However, the influence of these conditions on ultimate flow runout and damage potential warrants further exploration through the combination of field, experimental, and numerical approaches.

  16. [Copper recovery from artificial bioleaching lixivium of waste printed circuit boards].

    PubMed

    Cheng, Dan; Zhu, Neng-Wu; Wu, Ping-Xiao; Zou, Ding-Hui; Xing, Yi-Jia

    2014-04-01

    The key step to realize metal recovery from bioleaching solutions is the recovery of copper from bioleaching lixivium of waste printed circuit boards in high-grade form. The influences of cathode material, current density, initial pH and initial copper ion concentration on the efficiency and energy consumption of copper recovery from artificial bioleaching lixivium under condition of constant current were investigated using an electro-deposition approach. The results showed that the larger specific surface area of the cathode material (carbon felt) led to the higher copper recovery efficiency (the recovery efficiencies of the anode and the cathode chambers were 96.56% and 99.25%, respectively) and the smaller the total and unit mass product energy consumption (the total and unit mass product energy consumptions were 0.022 kW x h and 15.71 kW x h x kg(-1), respectively). The copper recovery efficiency and energy consumption increased with the increase of current density. When the current density was 155.56 mA x cm(-2), the highest copper recovery efficiencies in the anode and cathode chambers reached 98.51% and 99.37%, respectively. Accordingly, the highest total and unit mass product energy consumptions were 0.037 kW x h and 24.34 kW x h x kg(-1), respectively. The copper recovery efficiency was also significantly affected by the initial copper ion concentration. The increase of the initial copper ion concentration would lead to faster decrease of copper ion concentration, higher total energy consumption, and lower unit mass product consumption. However, the initial pH had no significant effect on the copper recovery efficiency. Under the optimal conditions (carbon felt for cathode materials, current density of 111.11 mA x cm(-2), initial pH of 2.0, and initial copper ion concentration of 10 g x L(-1)), the copper recovery efficiencies of the anode and cathode chambers were 96.75% and 99.35%, and the total and unit mass product energy consumptions were 0.021 kW x h and 14.61 kW x h x kg(-1), respectively. The deposited copper on the cathode material was fascicularly distributed and no oxygen was detected.

  17. Comparison of high-voltage ac and pulsed operation of a surface dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Williamson, James M.; Trump, Darryl D.; Bletzinger, Peter; Ganguly, Biswa N.

    2006-10-01

    A surface dielectric barrier discharge (DBD) in atmospheric pressure air was excited either by low frequency (0.3-2 kHz) high-voltage ac or by short, high-voltage pulses at repetition rates from 50 to 600 pulses s-1. The short-pulse excited discharge was more diffuse and did not have the pronounced bright multiple cathode spots observed in the ac excited discharge. The discharge voltage, current and average power deposited into the discharge were calculated for both types of excitation. As a measure of plasma-chemical efficiency, the ozone number density was measured by UV absorption as a function of average deposited power. The density of ozone produced by ac excitation did not increase so rapidly as that produced by short-pulse excitation as a function of average power, with a maximum measured density of ~3 × 1015 cm-3 at 25 W. The maximum ozone production achieved by short-pulse excitation was ~8.5 × 1015 cm-3 at 20 W, which was four times greater than that achieved by ac excitation at the same power level.

  18. Fabrication of Cu-Ni mixed phase layer using DC electroplating and suppression of Kirkendall voids in Sn-Ag-Cu solder joints

    NASA Astrophysics Data System (ADS)

    Chee, Sang-Soo; Lee, Jong-Hyun

    2014-05-01

    A solderable layer concurrently containing Cu-rich and Ni-rich phases (mixed-phase layer, MPL) was fabricated by direct current electroplating under varying process conditions. Current density was considered as the main parameter to adjust the microstructure and composition of MPL during the electroplating process, and deposit thickness were evaluated as functions of plating time. As a result, it was observed that the coral-like structure that consisted of Cu-rich and Ni-rich phases grew in the thickness direction. The most desirable microstructure was obtained at a relatively low current density of 0.4 mA/cm2. In other words, the surface was the smoothest and defect-free at this current density. The electroplating rate was slightly enhanced with an increase in current density. Investigations of its solid-state reaction properties, including the formation of Kirkendall voids, were also carried out after reflow soldering with Sn-3.0 Ag-0.5 Cu solder balls. In the solid-state aging experiment at 125°C, Kirkendall voids at the normal Sn-3.0 Ag-0.5 Cu solder/Cu interface were easily formed after just 240 h. Meanwhile, the presence of an intermetallic compound (IMC) layer created in the solder/MPL interface indicated a slightly lower growth rate, and no Kirkendall voids were observed in the IMC layer even after 720 h.

  19. Operating Mechanisms of Mesoscopic Perovskite Solar Cells through Impedance Spectroscopy and J-V Modeling.

    PubMed

    Zarazúa, Isaac; Sidhik, Siraj; Lopéz-Luke, Tzarara; Esparza, Diego; De la Rosa, Elder; Reyes-Gomez, Juan; Mora-Seró, Iván; Garcia-Belmonte, Germà

    2017-12-21

    The performance of perovskite solar cell (PSC) is highly sensitive to deposition conditions, the substrate, humidity, and the efficiency of solvent extraction. However, the physical mechanism involved in the observed changes of efficiency with different deposition conditions has not been elucidated yet. In this work, PSCs were fabricated by the antisolvent deposition (AD) and recently proposed air-extraction antisolvent (AAD) process. Impedance analysis and J-V curve fitting were used to analyze the photogeneration, charge transportation, recombination, and leakage properties of PSCs. It can be elucidated that the improvement in morphology of perovskite film promoted by AAD method leads to increase in light absorption, reduction in recombination sites, and interstitial defects, thus enhancing the short-circuit current density, open-circuit voltage, and fill factor. This study will open up doors for further improvement of device and help in understanding its physical mechanism and its relation to the deposition methods.

  20. Low Temperature Metal Free Growth of Graphene on Insulating Substrates by Plasma Assisted Chemical Vapor Deposition

    PubMed Central

    Muñoz, R.; Munuera, C.; Martínez, J. I.; Azpeitia, J.; Gómez-Aleixandre, C.; García-Hernández, M.

    2016-01-01

    Direct growth of graphene films on dielectric substrates (quartz and silica) is reported, by means of remote electron cyclotron resonance plasma assisted chemical vapor deposition r-(ECR-CVD) at low temperature (650°C). Using a two step deposition process- nucleation and growth- by changing the partial pressure of the gas precursors at constant temperature, mostly monolayer continuous films, with grain sizes up to 500 nm are grown, exhibiting transmittance larger than 92% and sheet resistance as low as 900 Ω·sq-1. The grain size and nucleation density of the resulting graphene sheets can be controlled varying the deposition time and pressure. In additon, first-principles DFT-based calculations have been carried out in order to rationalize the oxygen reduction in the quartz surface experimentally observed. This method is easily scalable and avoids damaging and expensive transfer steps of graphene films, improving compatibility with current fabrication technologies. PMID:28070341

  1. Controllable Growth of Ga Film Electrodeposited from Aqueous Solution and Cu(In,Ga)Se2 Solar Cells.

    PubMed

    Bi, Jinlian; Ao, Jianping; Gao, Qing; Zhang, Zhaojing; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2017-06-07

    Electrodepositon of Ga film is very challenging due to the high standard reduction potential (-0.53 V vs SHE for Ga 3+ ). In this study, Ga film with compact structure was successfully deposited on the Mo/Cu/In substrate by the pulse current electrodeposition (PCE) method using GaCl 3 aqueous solution. A high deposition rate of Ga 3+ and H + can be achieved by applying a large overpotential induced by high pulse current. In the meanwhile, the concentration polarization induced by cation depletion can be minimized by changing the pulse frequency and duty cycle. Uniform and smooth Ga film was fabricated at high deposition rate with pulse current density 125 mA/cm 2 , pulse frequency 5 Hz, and duty cycle 0.25. Ga film was then selenized together with electrodeposited Cu and In films to make a CIGSe absorber film for solar cells. The solar cell based on the Ga film presents conversion efficiency of 11.04%, fill factor of 63.40%, and V oc of 505 mV, which is much better than those based on the inhomogeneous and rough Ga film prepared by the DCE method, indicating the pulse current electrodeposition process is promising for the fabrication of CIGSe solar cell.

  2. TiN/Al2O3/ZnO gate stack engineering for top-gate thin film transistors by combination of post oxidation and annealing

    NASA Astrophysics Data System (ADS)

    Kato, Kimihiko; Matsui, Hiroaki; Tabata, Hitoshi; Takenaka, Mitsuru; Takagi, Shinichi

    2018-04-01

    Control of fabrication processes for a gate stack structure with a ZnO thin channel layer and an Al2O3 gate insulator has been examined for enhancing the performance of a top-gate ZnO thin film transistor (TFT). The Al2O3/ZnO interface and the ZnO layer are defective just after the Al2O3 layer formation by atomic layer deposition. Post treatments such as plasma oxidation, annealing after the Al2O3 deposition, and gate metal formation (PMA) are promising to improve the interfacial and channel layer qualities drastically. Post-plasma oxidation effectively reduces the interfacial defect density and eliminates Fermi level pinning at the Al2O3/ZnO interface, which is essential for improving the cut-off of the drain current of TFTs. A thermal effect of post-Al2O3 deposition annealing at 350 °C can improve the crystalline quality of the ZnO layer, enhancing the mobility. On the other hand, impacts of post-Al2O3 deposition annealing and PMA need to be optimized because the annealing can also accompany the increase in the shallow-level defect density and the resulting electron concentration, in addition to the reduction in the deep-level defect density. The development of the interfacial control technique has realized the excellent TFT performance with a large ON/OFF ratio, steep subthreshold characteristics, and high field-effect mobility.

  3. Fabrication and investigation of the optoelectrical properties of MoS2/CdS heterojunction solar cells

    PubMed Central

    2014-01-01

    Molybdenum disulfide (MoS2)/cadmium sulfide (CdS) heterojunction solar cells were successfully synthesized via chemical bath deposition (CBD) and chemical vapor deposition (CVD). The as-grown CdS film on a fluorine tin oxide (FTO) substrate deposited by CBD is continuous and compact. The MoS2 film deposited by CVD is homogeneous and continuous, with a uniform color and a thickness of approximately 10 nm. The optical absorption range of the MoS2/CdS heterojunction covers the visible and near-infrared spectral regions of 350 to 800 nm, which is beneficial for the improvement of solar cell efficiency. Moreover, the MoS2/CdS solar cell exhibits good current-voltage (I-V) characteristics and pronounced photovoltaic behavior, with an open-circuit voltage of 0.66 V and a short-circuit current density of 0.227 × 10-6 A/cm2, comparable to the results obtained from other MoS2-based solar cells. This research is critical to investigate more efficient and stable solar cells based on graphene-like materials in the future. PMID:25593552

  4. Accumulation of Amyloid β-Protein in the Low-Density Membrane Domain Accurately Reflects the Extent of β-Amyloid Deposition in the Brain

    PubMed Central

    Oshima, Noriko; Morishima-Kawashima, Maho; Yamaguchi, Haruyasu; Yoshimura, Masahiro; Sugihara, Shiro; Khan, Karen; Games, Dora; Schenk, Dale; Ihara, Yasuo

    2001-01-01

    To learn more about the process of amyloid β-protein (Aβ) deposition in the brain, human prefrontal cortices were fractionated by sucrose density gradient centrifugation, and the Aβ content in each fraction was quantified by a two-site enzyme-linked immunosorbent assay. The fractionation protocol revealed two pools of insoluble Aβ. One corresponded to a low-density membrane domain; the other was primarily composed of extracellular Aβ deposits in those cases in which Aβ accumulated to significant levels. Aβ42 levels in the low-density membrane domain were proportional to the extent of total Aβ42 accumulation, which is known to correlate well with overall amyloid burden. In PDAPP mice that form senile plaques and accumulate Aβ in a similar manner to aging humans, Aβ42 accumulation in the low-density membrane domain also increased as Aβ deposition progressed with aging. These observations indicate that the Aβ42 associated with low-density membrane domains is tightly coupled with the process of extracellular Aβ deposition. PMID:11395399

  5. Comparison of characteristics of fluorine doped zinc and gallium tin oxide composite thin films deposited on stainless steel 316 bipolar plate by electron cyclotron resonance-metal organic chemical vapor deposition for proton exchange membrane fuel cells.

    PubMed

    Park, Jihun; Hudaya, Chairul; Lee, Joong Kee

    2011-09-01

    In order to replace the brittle graphite bipolar plates currently used for the PEMFC stack, coated SUS 316 was employed. As a metallic bipolar plate, coated SUS 316 can provide higher mechanical strength, better durability to shocks and vibration, less permeability, improved thermal and bulk electrical conductivity, as well as being thinner and lighter. To enhance the interfacial contact resistance and corrosion resistance of SUS 316, the deposition of GTO:F and ZTO:F composite films was carried out by ECR-MOCVD. The surface morphology of the films consisted of tiny elliptically shaped grains with a thickness of 1 microm. The corrosion current for GTO:F was 0.13 Acm(-2) which was much lower than that of bare SUS 316 (50.16 Acm(-2)). The GTO:F coated film had the smallest corrosion current due to the formation of a tight surface morphology with very few pin-holes. The GTO:F coated film exhibited the highest cell voltage and power density due to its lower ICR values.

  6. NH3 assisted photoreduction and N-doping of graphene oxide for high performance electrode materials in supercapacitors

    NASA Astrophysics Data System (ADS)

    Huang, Haifu; Luo, Guangsheng; Xu, Lianqiang; Lei, Chenglong; Tang, Yanmei; Tang, Shaolong; Du, Youwei

    2015-01-01

    Nitrogen-doped graphene was synthesized by simple photoreduction of graphene oxide (GO) deposited on nickel foam under NH3 atmosphere. The combination of photoreduction and NH3 not only reduces the GO in a shorter time but also induces nitrogen doping easily. The nitrogen doped content of N-rGO@NF reaches a high of 5.99 at% with 15 min of irradiation. The nitrogen-doped graphene deposited on Ni foam (N-rGO@NF) can be directly used as an electrode for supercapacitors, without any conductive agents and polymer binders. In the electrochemical measurement, N-rGO@NF displays remarkable electrochemical performance. In particular, the N-rGO@NF irradiated for 45 min at a high current density of 92.3 A g-1 retained about 77% (190.4 F g-1) of its initial specific capacitance (247.1 F g-1 at 0.31 A g-1). Furthermore, the stable voltage window could be extended to 2.0 and 1.5 V by using Li2SO4 and a mixed Li2SO4/KOH electrolyte, and the maximum energy density was high up to 32.6 and 21.2 Wh kg-1, respectively. The results show that compared to Li2SO4, a mixed electrolyte (Li2SO4/KOH) more efficiently balances the relationship between the high energy densities and high power densities.Nitrogen-doped graphene was synthesized by simple photoreduction of graphene oxide (GO) deposited on nickel foam under NH3 atmosphere. The combination of photoreduction and NH3 not only reduces the GO in a shorter time but also induces nitrogen doping easily. The nitrogen doped content of N-rGO@NF reaches a high of 5.99 at% with 15 min of irradiation. The nitrogen-doped graphene deposited on Ni foam (N-rGO@NF) can be directly used as an electrode for supercapacitors, without any conductive agents and polymer binders. In the electrochemical measurement, N-rGO@NF displays remarkable electrochemical performance. In particular, the N-rGO@NF irradiated for 45 min at a high current density of 92.3 A g-1 retained about 77% (190.4 F g-1) of its initial specific capacitance (247.1 F g-1 at 0.31 A g-1). Furthermore, the stable voltage window could be extended to 2.0 and 1.5 V by using Li2SO4 and a mixed Li2SO4/KOH electrolyte, and the maximum energy density was high up to 32.6 and 21.2 Wh kg-1, respectively. The results show that compared to Li2SO4, a mixed electrolyte (Li2SO4/KOH) more efficiently balances the relationship between the high energy densities and high power densities. Electronic supplementary information (ESI) available: Digital images of nickel foam, GO deposited in nickel foam, N-rGO@NF, and N-rGO@NF electrodes (1.0 × 1.0 cm); Digital images: (1) N-rGO@NF sheet was put into 1 M FeCl3 at room temperature dissolve the Ni metal and (2) a whole N-rGO sheet without Ni foam support after nickel etching; image of film with fragile features after being irradiated by a high-pressure Hg lamp (500 W) in Ar and NH3 atmosphere. See DOI: 10.1039/c4nr05776g

  7. Residual Defect Density in Random Disks Deposits.

    PubMed

    Topic, Nikola; Pöschel, Thorsten; Gallas, Jason A C

    2015-08-03

    We investigate the residual distribution of structural defects in very tall packings of disks deposited randomly in large channels. By performing simulations involving the sedimentation of up to 50 × 10(9) particles we find all deposits to consistently show a non-zero residual density of defects obeying a characteristic power-law as a function of the channel width. This remarkable finding corrects the widespread belief that the density of defects should vanish algebraically with growing height. A non-zero residual density of defects implies a type of long-range spatial order in the packing, as opposed to only local ordering. In addition, we find deposits of particles to involve considerably less randomness than generally presumed.

  8. Al{sub 2}O{sub 3} multi-density layer structure as a moisture permeation barrier deposited by radio frequency remote plasma atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, Hyunsoo; Samsung Display Co. Ltd., Tangjeong, Chungcheongnam-Do 336-741; Jeon, Heeyoung

    2014-02-21

    Al{sub 2}O{sub 3} films deposited by remote plasma atomic layer deposition have been used for thin film encapsulation of organic light emitting diode. In this study, a multi-density layer structure consisting of two Al{sub 2}O{sub 3} layers with different densities are deposited with different deposition conditions of O{sub 2} plasma reactant time. This structure improves moisture permeation barrier characteristics, as confirmed by a water vapor transmission rate (WVTR) test. The lowest WVTR of the multi-density layer structure was 4.7 × 10{sup −5} gm{sup −2} day{sup −1}, which is one order of magnitude less than WVTR for the reference single-density Al{submore » 2}O{sub 3} layer. This improvement is attributed to the location mismatch of paths for atmospheric gases, such as O{sub 2} and H{sub 2}O, in the film due to different densities in the layers. This mechanism is analyzed by high resolution transmission electron microscopy, elastic recoil detection, and angle resolved X-ray photoelectron spectroscopy. These results confirmed that the multi-density layer structure exhibits very good characteristics as an encapsulation layer via location mismatch of paths for H{sub 2}O and O{sub 2} between the two layers.« less

  9. Barium-Dispenser Thermionic Cathode

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Green, M.; Feinleib, M.

    1989-01-01

    Improved reservoir cathode serves as intense source of electrons required for high-frequency and often high-output-power, linear-beam tubes, for which long operating lifetime important consideration. High emission-current densities obtained through use of emitting surface of relatively-low effective work function and narrow work-function distribution, consisting of coat of W/Os deposited by sputtering. Lower operating temperatures and enhanced electron emission consequently possible.

  10. CdS/p-Si solar cells made by serigraphy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, F.J.; Ortiz-Conde, A.; Sa-Neto, A.

    1988-04-11

    CdS/p-Si solar cells have been fabricated depositing the CdS layer by serigraphy. Open circuit voltages of 538 mV, short circuit current densities of 32 mA cm/sup -2/, fill factors of 0.52, and conversion efficiencies of 8.1% have been measured under 100 mW cm/sup -2/ (AM1) simulated solar illumination.

  11. Ultrathin MnO2 nanoflakes deposited on carbon nanotube networks for symmetrical supercapacitors with enhanced performance

    NASA Astrophysics Data System (ADS)

    Sun, Peng; Yi, Huan; Peng, Tianquan; Jing, Yuting; Wang, Ruijing; Wang, Huanwen; Wang, Xuefeng

    2017-02-01

    Manganese dioxide is a promising electrode material for electrochemical supercapacitors, but its poor electronic conductivity (10-5∼10-6 S cm-1) limits the fast charge/discharge rate for practical applications. In the present work, we use the chemical vapor deposition (CVD) method to grow highly conductive carbon nanotube (CNT) networks on flexible Ni mesh, on which MnO2 nanoflake layers are deposited by a simple solution method, forming a hierarchical core-shell structure. Under the optimized mass loading, the as-fabricated MnO2 nanoflake@CNTs/Ni mesh electrode exhibits a high specific capacitance of 1072 F g-1 at 1 A g-1 in three-electrode configuration. Due to advantageous features of these core-shell electrodes (e.g., high conductivity, direct current path, structure stability), the as-assembled symmetric supercapacitor (SSC) based on MnO2@CNTs/Ni mesh has a wide working voltage (2.0 V) in 1 M Na2SO4 aqueous electrolyte. Finally an impressive energy density of 94.4 Wh kg-1 at 1000 W kg-1 and a high power density of 30.2 kW kg-1 at 33.6 Wh kg-1 have been achieved for the as-assembled SSC, which exhibits a great potential as a low-cost, high energy density and attractive wearable energy storage device.

  12. Fabrication & Characterization of AIAS/pSi Heterojunction Solar Cell

    NASA Astrophysics Data System (ADS)

    Hassun, Hanan K.; Shaban, Auday H.; Salman, Ebtisam M. T.

    2018-05-01

    Silver Indium Aluminum Selenium AgIn1xAlxSe2 AIAS for x=01 thin films was deposited by thermal evaporation at RT and different thickness 100, 150 and 200 nm on the glass substrate and p2Si wafer to produce AIAS/p3Si heterojunction solar cell 4. Structural optical electrical and photovoltaic properties 6 are investigated for the samples XRD analysis reveals that all the deposited AIAS films show polycrystalline structure without any change due to increase of thickness. Average diameter and roughness calculated from AFM images shows an increase in its value with increasing thickness. The optical absorbance and transmittance for samples are measured using a spectrometer type UV Visible 1800 spectrophotometer to study the energy 6 gap. The electrical properties 7 of heterojunction were obtained by IV8 dark and illuminated 9 and C10V measurement. The ideality 1 factor and the saturation 2 current density were calculated. Under illuminated 3 the open circuit voltage Voc4 short circuit current density Jsc6 fill factor 6FF and quantum efficiencies were calculated. The built in potential 7Vbi carrier concentration and depletion width are measured with different 9 thickness.

  13. GaAsP/InGaP HBTs grown epitaxially on Si substrates: Effect of dislocation density on DC current gain

    NASA Astrophysics Data System (ADS)

    Heidelberger, Christopher; Fitzgerald, Eugene A.

    2018-04-01

    Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.

  14. Model for turbidite-to-contourite continuum and multiple process transport in deep marine settings: examples in the rock record

    NASA Astrophysics Data System (ADS)

    Stanley, Daniel Jean

    1993-01-01

    Petrological analysis of geological sections in St. Croix in the Caribbean, the Niesenflysch in Switzerland and the Annot Sandstone in the French Maritime Alps sheds light on multiple process transport in deep marine settings. A model depicting a turbidite-to-contourite continuum of stratal types is applied to these three rock units. Recognition of a diverse suite of bedforms, coupled with analysis of paleocurrents, helps to better interpret depositional origin and basin paleogeography. The St. Croix strata record emplacement by gravity flows and, subsequently, by bottom currents flowing parallel to the base of slope; these sediments accumulated on a lower slope apron. A Niesenflysch section in the Swiss Alps west of Adelboden includes turbidites which were deposited at fairly regular intervals beyond the base of slope, in a setting more distal than that of the St. Croix sequences. Most of these turbidites appear to have been partially reworked by bottom currents related to basin circulation or to density flows from the basin margins. In the Annot Sandstone, reworked turbidites (termed transitional variants) and packets of entirely rippled strata are observed in submarine fan and slope sequences in the Peira-Cava area. In contrast to those in St. Croix and the Niesenflysch, the current-emplaced deposits of the Annot Sandstone are directly associated with fan-valley deposits. Such rippled strata in channels are deposits of gravity flow origin which were subsequently reworked downslope by currents generated by successive gravity flows; they also occur on levees by overbank flow. Consideration of multiple process transport is of special help to interpret sections which are poorly exposed, or which can be examined in cores, or which are located in sequences that have been highly deformed structurally.

  15. Metallic nanoparticle deposition techniques for enhanced organic photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Cacha, Brian Joseph Gonda

    Energy generation via organic photovoltaic (OPV) cells provide many advantages over alternative processes including flexibility and price. However, more efficient OPVs are required in order to be competitive for applications. One way to enhance efficiency is through manipulation of exciton mechanisms within the OPV, for example by inserting a thin film of bathocuproine (BCP) and gold nanoparticles between the C60/Al and ZnPc/ITO interfaces, respectively. We find that BCP increases efficiencies by 330% due to gains of open circuit voltage (Voc) by 160% and short circuit current (Jsc) by 130%. However, these gains are complicated by the anomalous photovoltaic effect and an internal chemical potential. Exploration in the tuning of metallic nanoparticle deposition on ITO was done through four techniques. Drop casting Ag nanoparticle solution showed arduous control on deposited morphology. Spin-coating deposited very low densities of nanoparticles. Drop casting and spin-coating methods showed arduous control on Ag nanoparticle morphology due to clustering and low deposition density, respectively. Sputtered gold on glass was initially created to aid the adherence of Ag nanoparticles but instead showed a quick way to deposit aggregated gold nanoparticles. Electrodeposition of gold nanoparticles (AuNP) proved a quick method to tune nanoparticle morphology on ITO substrates. Control of deposition parameters affected AuNP size and distribution. AFM images of electrodeposited AuNPs showed sizes ranging from 39 to 58 nm. UV-Vis spectroscopy showed the presence of localized plasmon resonance through absorption peaks ranging from 503 to 614 nm. A linear correlation between electrodeposited AuNP size and peak absorbance was seen with a slope of 3.26 wavelength(nm)/diameter(nm).

  16. Chemical vapor deposited monolayer MoS2 top-gate MOSFET with atomic-layer-deposited ZrO2 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Hu, Yaoqiao; Jiang, Huaxing; Lau, Kei May; Li, Qiang

    2018-04-01

    For the first time, ZrO2 dielectric deposition on pristine monolayer MoS2 by atomic layer deposition (ALD) is demonstrated and ZrO2/MoS2 top-gate MOSFETs have been fabricated. ALD ZrO2 overcoat, like other high-k oxides such as HfO2 and Al2O3, was shown to enhance the MoS2 channel mobility. As a result, an on/off current ratio of over 107, a subthreshold slope of 276 mV dec-1, and a field-effect electron mobility of 12.1 cm2 V-1 s-1 have been achieved. The maximum drain current of the MOSFET with a top-gate length of 4 μm and a source/drain spacing of 9 μm is measured to be 1.4 μA μm-1 at V DS = 5 V. The gate leakage current is below 10-2 A cm-2 under a gate bias of 10 V. A high dielectric breakdown field of 4.9 MV cm-1 is obtained. Gate hysteresis and frequency-dependent capacitance-voltage measurements were also performed to characterize the ZrO2/MoS2 interface quality, which yielded an interface state density of ˜3 × 1012 cm-2 eV-1.

  17. Sedimentary architecture and depositional environment of Kudat Formation, Sabah, Malaysia

    NASA Astrophysics Data System (ADS)

    Ghaheri, Samira; Suhaili, Mohd; Sapari, Nasiman; Momeni, Mohammadsadegh

    2017-12-01

    Kudat Formation originated from deep marine environment. Three lithofacies association of deep marine turbidity channel was discovered in three Members of the Kudat Formation in Kudat Peninsula, Sabah, Malaysia. Turbidite and deep marine architecture elements was described based on detailed sedimentological studies. Four architecture elements were identified based on each facies association and their lithology properties and character: inner external levee that was formed by turbidity flows spill out from their confinement of channel belt; Lobes sheet that was formed during downslope debris flows associated with levee; Channel fill which sediments deposited from high to low density currents with different value of sediment concentration; and overbank terrace which was formed by rapid suspension sedimentation. The depositional environment of Kudat Formation is shelf to deep marine fan.

  18. Optical absorption and photoluminescence studies of gold nanoparticles deposited on porous silicon

    PubMed Central

    2013-01-01

    We present an investigation on a coupled system consists of gold nanoparticles and silicon nanocrystals. Gold nanoparticles (AuNPs) embedded into porous silicon (PSi) were prepared using the electrochemical deposition method. Scanning electron microscope images and energy-dispersive X-ray results indicated that the growth of AuNPs on PSi varies with current density. X-ray diffraction analysis showed the presence of cubic gold phases with crystallite sizes around 40 to 58 nm. Size dependence on the plasmon absorption was studied from nanoparticles with various sizes. Comparison with the reference sample, PSi without AuNP deposition, showed a significant blueshift with decreasing AuNP size which was explained in terms of optical coupling between PSi and AuNPs within the pores featuring localized plasmon resonances. PMID:23331761

  19. Hafnium oxide films for application as gate dielectrics

    NASA Astrophysics Data System (ADS)

    Hsu, Shuo-Lin

    The deposition and characterization of HfO2 films for potential application as a high-kappa gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-kappa, films. The changes in the film properties due to the annealing are also discussed in this work. Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposited films exhibit an amorphous, regardless of the film thickness. During post-deposition annealing, the thicker films crystallized at lower temperature (< 600°C), and ultra-thin (5.8 nm) film crystallized at higher temperature (600--720°C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the 10--20 nm annealed films, and high temperature phase (tetragonal) formed in the ultra-thin annealed HfO2 film. TEM cross-section studies of as deposited samples show that an interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment. I-V measurements show the leakage current density of the Al/as deposited-HfO 2/Si MOS diode is of the order of 10-3 A/cm 2, two orders of magnitude lower than that of a ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky emission at lower electric fields, and by Frenkel-Poole emission in the higher electric field region. After annealing, the leakage current density decreases significantly as the structure remains amorphous structure. It is suggested that this decrease is assorted with the densification and defect healing which accures when the porous as-deposited amorphous structure is annealed. The leakage current density increases of the HfO2 layer crystallizes on annealing, which is attributed to the presence of grain boundaries. C-V measurements of the as deposited film shows typical C-V characteristics, with negligible hystersis, a small flat band voltage shift, but great frequency dispersion. The relative permittivity of HfO2/interfacial layer stack obtained from the capacitance at accumulation is 15, which corresponds to an EOT (equivalent oxide thickness) = 1.66 nm. After annealing, the frequency dispersion is greatly enhanced, and the C-V curve is shifted toward the negative voltage. Reliability tests show that the HfO2 films which remain amorphous after annealing possess superior resistance to constant voltage stress and ambient aging. This study concluded that the sputtered HfO 2 films exhibit an amorphous as deposited. Postdeposition annealing alters the crystallinity, interfacial properties, and electrical characteristics. The HfO2 films which remain amorphous structure after annealing possess the best electrical properties.

  20. Single- and double-ion type cross-linked polysiloxane solid electrolytes for lithium cells

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Hiromori; Yamamoto, Masahiro; Morita, Masayuki; Matsuda, Yoshiharu; Nakamura, Takashi; Asai, Hiroyuki

    Polymeric solid electrolytes, that have poly(dimethylsiloxane) (PMS) backbone and cross-linked network, were applied to a rechargeable lithium battery system. Single- (PMS-Li) and double-ion type (PMS-LiClO 4) electrolytes were prepared from the same prepolymers. Lithium electrode in the both electrolytes showed reversible stripping and deposition of lithium. Intercalation and deintercalation processes of lithium ion between lithium-manganese composite oxide (Li xMnO 2) electrode and the electrolytes were also confirmed by cyclic voltammetry, however, peak current decreased with several cycles in both cases. The model cell, Li/PMS-Li/Li xMnO 2 cell had 1.4 mA h g -1 (per 1 g of active material, current density: 3.77 μA cm -2), and the Li/PMS-LiClO 4/Li xMnO 2 cell had 1.6 mA h g -1 (current density: 75.3 μA cm -2).

  1. Paramagnetic defects and charge trapping behavior of ZrO2 films deposited on germanium by plasma-enhanced CVD

    NASA Astrophysics Data System (ADS)

    Mahata, C.; Bera, M. K.; Bose, P. K.; Maiti, C. K.

    2009-02-01

    Internal photoemission and magnetic resonance studies have been performed to investigate the charge trapping behavior and chemical nature of defects in ultrathin (~14 nm) high-k ZrO2 dielectric films deposited on p-Ge (1 0 0) substrates at low temperature (<200 °C) by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma at a pressure of ~65 Pa. Both the band and defect-related electron states have been characterized using electron paramagnetic resonance, internal photoemission, capacitance-voltage and current-voltage measurements under UV illumination. Capacitance-voltage and photocurrent-voltage measurements were used to determine the centroid of oxide charge within the high-k gate stack. The observed shifts in photocurrent response of the Al/ZrO2/GeO2/p-Ge metal-insulator-semiconductor (MIS) capacitors indicate the location of the centroids to be within the ZrO2 dielectric near to the gate electrode. Moreover, the measured flat band voltage and photocurrent shifts also indicate a large density of traps in the dielectric. The impact of plasma nitridation on the interfacial quality of the oxides has been investigated. Different N sources, such as NO and NH3, have been used for nitrogen engineering. Oxynitride samples show a lower defect density and trapping over the non-nitrided samples. The charge trapping and detrapping properties of MIS capacitors under stressing in constant current and voltage modes have been investigated in detail.

  2. ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalal, Paresh V., E-mail: paresh10dalal@gmail.com; Deshpande, Milind P., E-mail: vishwadeshpande@yahoo.co.in; Solanki, Bharat G., E-mail: bhrt.solanki17@gmail.com

    2016-05-06

    Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (< 373K) is described. The different preparative parameters such as deposition time, bath temperature, concentration of precursor solution and, pH of the bath etc. were optimized. Nanograined ZnO was deposited on FTO coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2more » and conversion efficiency 1.05% are observed for ZnO/CdS-10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.« less

  3. Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations

    NASA Astrophysics Data System (ADS)

    Doronzo, D. M.; Valentine, G. A.; Dellino, P.; de Tullio, M. D.

    2012-04-01

    Explosive activity and lava dome collapse at stratovolcanoes can lead to pyroclastic density currents (PDCs; mixtures of volcanic gas, air, and volcanic particles) that produce complex deposits and pose a hazard to surrounding populations. Two-dimensional numerical simulations of dilute PDCs (characterized by a turbulent suspended load and deposition through a bed load) are carried out with the Euler-Lagrange approach of multiphase physics. The fluid phase is modeled as a dusty gas (1.88 kg/m3 dense), and the solid phase is modeled as discrete particles (1 mm, 5 mm, and 10 mm; 1500 kg/m3 dense and irregularly-shaped), which are two-way coupled to the gas, i.e. they affect the fluid turbulence. The initial PDC, which enters a volcano domain 5 km long and 1.9 km high, has the following characteristics: thickness of 200 m, velocity of 20 m/s, temperature of 573 K, turbulence of 5 %, and sediment concentration of 3 % by volume. The actual physics of flow boundary zone is simulated at the PDC base, by monitoring the sediment flux toward the substrate, which acts through the flow boundary zone, and the grain-size distribution. Also, the PDC velocity and dynamic pressure are calculated. The simulations show that PDC transport, deposition, and hazard potential are sensitive to the shape of the volcano slope (profile) down which they flow. In particular, three generic volcano profiles, straight, concave-upward, and convex-upward are focused on. Dilute PDCs that flow down a constant slope gradually decelerate over the simulated run-out distance (5 km in the horizontal direction) due to a combination of sedimentation, which reduces the density of the PDC, and mixing with the atmosphere. However, dilute PDCs down a concave-upward slope accelerate high on the volcano flanks and have less sedimentation until they begin to decelerate over the shallow lower slopes. A convex-upward slope causes dilute PDCs to lose relatively more of their pyroclast load on the upper slopes of a volcano, and although they accelerate as they reach the lower, steeper slopes, the acceleration is reduced because of the upstream loss of pyroclasts (lower density contrast with the atmosphere). The dynamic pressure, a measure of the damage that can be caused by PDCs, reflects these complex relations. Details are found in Valentine et al. (2011). Reference Valentine G.A., Doronzo D.M., Dellino P., de Tullio M.D. (2011), Effects of volcano profile on dilute pyroclastic density currents: Numerical simulations, Geology, 39, 947-950.

  4. Schottky barrier SOI-MOSFETs with high-k La2O3/ZrO2 gate dielectrics

    PubMed Central

    Henkel, C.; Abermann, S.; Bethge, O.; Pozzovivo, G.; Klang, P.; Stöger-Pollach, M.; Bertagnolli, E.

    2011-01-01

    Schottky barrier SOI-MOSFETs incorporating a La2O3/ZrO2 high-k dielectric stack deposited by atomic layer deposition are investigated. As the La precursor tris(N,N′-diisopropylformamidinato) lanthanum is used. As a mid-gap metal gate electrode TiN capped with W is applied. Processing parameters are optimized to issue a minimal overall thermal budget and an improved device performance. As a result, the overall thermal load was kept as low as 350, 400 or 500 °C. Excellent drive current properties, low interface trap densities of 1.9 × 1011 eV−1 cm−2, a low subthreshold slope of 70-80 mV/decade, and an ION/IOFF current ratio greater than 2 × 106 are obtained. PMID:21461054

  5. The flow structure of pyroclastic density currents: evidence from particle models and large-scale experiments

    NASA Astrophysics Data System (ADS)

    Dellino, Pierfrancesco; Büttner, Ralf; Dioguardi, Fabio; Doronzo, Domenico Maria; La Volpe, Luigi; Mele, Daniela; Sonder, Ingo; Sulpizio, Roberto; Zimanowski, Bernd

    2010-05-01

    Pyroclastic flows are ground hugging, hot, gas-particle flows. They represent the most hazardous events of explosive volcanism, one striking example being the famous historical eruption of Pompeii (AD 79) at Vesuvius. Much of our knowledge on the mechanics of pyroclastic flows comes from theoretical models and numerical simulations. Valuable data are also stored in the geological record of past eruptions, i.e. the particles contained in pyroclastic deposits, but they are rarely used for quantifying the destructive potential of pyroclastic flows. In this paper, by means of experiments, we validate a model that is based on data from pyroclastic deposits. It allows the reconstruction of the current's fluid-dynamic behaviour. We show that our model results in likely values of dynamic pressure and particle volumetric concentration, and allows quantifying the hazard potential of pyroclastic flows.

  6. Structure zone diagram and particle incorporation of nickel brush plated composite coatings

    PubMed Central

    Isern, L.; Impey, S.; Almond, H.; Clouser, S. J.; Endrino, J. L.

    2017-01-01

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%. PMID:28300159

  7. First Volcanological-Probabilistic Pyroclastic Density Current and Fallout Hazard Map for Campi Flegrei and Somma Vesuvius Volcanoes.

    NASA Astrophysics Data System (ADS)

    Mastrolorenzo, G.; Pappalardo, L.; Troise, C.; Panizza, A.; de Natale, G.

    2005-05-01

    Integrated volcanological-probabilistic approaches has been used in order to simulate pyroclastic density currents and fallout and produce hazard maps for Campi Flegrei and Somma Vesuvius areas. On the basis of the analyses of all types of pyroclastic flows, surges, secondary pyroclastic density currents and fallout events occurred in the volcanological history of the two volcanic areas and the evaluation of probability for each type of events, matrixs of input parameters for a numerical simulation have been performed. The multi-dimensional input matrixs include the main controlling parameters of the pyroclasts transport and deposition dispersion, as well as the set of possible eruptive vents used in the simulation program. Probabilistic hazard maps provide of each points of campanian area, the yearly probability to be interested by a given event with a given intensity and resulting demage. Probability of a few events in one thousand years are typical of most areas around the volcanoes whitin a range of ca 10 km, including Neaples. Results provide constrains for the emergency plans in Neapolitan area.

  8. Optimization of electrode characteristics for the Br₂/H₂ redox flow cell

    DOE PAGES

    Tucker, Michael C.; Cho, Kyu Taek; Weber, Adam Z.; ...

    2014-10-17

    The Br₂/H₂ redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (–) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (–) catalyst layer on the membrane instead of on the carbon-paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm -2 and a peak power density of 1.4 W cm -2. Maximummore » energy efficiency of 79% is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br - reversibly adsorbs at the Pt (–) electrode for potentials exceeding a critical value, and the extent of Br - coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.« less

  9. Structure zone diagram and particle incorporation of nickel brush plated composite coatings

    NASA Astrophysics Data System (ADS)

    Isern, L.; Impey, S.; Almond, H.; Clouser, S. J.; Endrino, J. L.

    2017-03-01

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%.

  10. Novel ultrathin Bi2O3 nanowires for supercapacitor electrode materials with high performance

    NASA Astrophysics Data System (ADS)

    Qiu, Yongfu; Fan, Hongbo; Chang, Xueyi; Dang, Haifeng; Luo, Qun; Cheng, Zhiyu

    2018-03-01

    In this paper, the ultrathin Bi2O3 nanowires are synthesized by an oxidative metal vapor transport deposition technique. Their diameters and length are about 10 nm and several tens of micrometers, the growth direction is along [101] and the specific surface area is about 7.34 m2 g-1. The galvanostatic charge-discharge measurement results show that the specific capacitances of the Bi2O3 nanowires-based electrodes increase with the decrease of the current densities. The maximum capacitance is 691.3 F g-1 at the current density of 2.0 A g-1. The Ragone plot shows that the Bi2O3 nanowires has excellent supercapacitive performance. Moreover, the cyclic stability is measured by the galvanostatic charge/discharge technique at a constant current density of 10.0 A g-1 in 6.0 M KOH electrolyte. The results show the excellent capacitance retention of 75.5% over 3000 cycles. In a word, the Bi2O3 nanowires should be the ideal potential electrode materials for low-costing and effective electrochemical supercapacitors.

  11. Structure zone diagram and particle incorporation of nickel brush plated composite coatings.

    PubMed

    Isern, L; Impey, S; Almond, H; Clouser, S J; Endrino, J L

    2017-03-16

    This work studies the deposition of aluminium-incorporated nickel coatings by brush electroplating, focusing on the electroplating setup and processing parameters. The setup was optimised in order to increase the volume of particle incorporation. The optimised design focused on increasing the plating solution flow to avoid sedimentation, and as a result the particle transport experienced a three-fold increase when compared with the traditional setup. The influence of bath load, current density and the brush material used was investigated. Both current density and brush material have a significant impact on the morphology and composition of the coatings. Higher current densities and non-abrasive brushes produce rough, particle-rich samples. Different combinations of these two parameters influence the surface characteristics differently, as illustrated in a Structure Zone Diagram. Finally, surfaces featuring crevices and peaks incorporate between 3.5 and 20 times more particles than smoother coatings. The presence of such features has been quantified using average surface roughness Ra and Abbott-Firestone curves. The combination of optimised setup and rough surface increased the particle content of the composite to 28 at.%.

  12. Effects of glycine and current density on the mechanism of electrodeposition, composition and properties of Ni-Mn films prepared in ionic liquid

    NASA Astrophysics Data System (ADS)

    Guo, Jiacheng; Guo, Xingwu; Wang, Shaohua; Zhang, Zhicheng; Dong, Jie; Peng, Liming; Ding, Wenjiang

    2016-03-01

    The effects of glycine on the mechanism of electrodeposition of Ni-Mn alloy film prepared in ChCl-urea ionic liquid were studied in order to control the composition, microstructure and properties of the film. The cyclic voltammograms revealed that the presence of glycine in the ionic liquid can inhibit the reduction of Ni2+ ions but promote the reduction of Mn2+ ions in the cathodic scan. However, it promoted the dissolution of both Ni and Mn deposits in the ChCl-urea ionic liquids during the reverse scan. Glycine changed the mode of Ni-Mn film growth from Volmer-Weber mode into Stranski-Krastanov mode. The Mn content in the Ni-Mn film increased with the increase of concentration of glycine and current density. The Ni-Mn alloy film with 3.1 at.% Mn exhibited the lowest corrosion current density of 3 × 10-7 A/cm2 compared with other films prepared and exhibited better corrosion resistance than pure Ni film in 3.5 wt.% NaCl solution.

  13. Facile preparation of MnO2 nanorods and evaluation of their supercapacitive characteristics

    NASA Astrophysics Data System (ADS)

    Aghazadeh, Mustafa; Asadi, Maryam; Maragheh, Mohammad Ghannadi; Ganjali, Mohammad Reza; Norouzi, Parviz; Faridbod, Farnoush

    2016-02-01

    The first time pulsed base (OH-) electrogeneration to the cathodic electrodeposition of MnO2 in nitrate bath was applied and MnO2 nanorods were obtained. The deposition experiments were performed under a pulse current mode with typical on-times and off-times (ton = 10 ms and toff = 50 ms) and a peak current density of 2 mA cm-2 (Ia = 2 mA cm-2). The structural characterization with XRD and FTIR revealed that the prepared MnO2 is composed of both α and γ phases. Morphological evaluations through SEM and TEM revealed that the prepared MnO2 contains nanorods of relative uniform structures (with an average diameter of 50 nm). The electrochemical measurements through cyclic voltammetry and charge-discharge techniques revealed that the prepared MnO2 nanostructures reveal an excellent capacitive behavior with specific capacitance values of 242, 167 and 98 F g-1 under the applied current densities of 2, 5 and 10 A g-1, respectively. Also, excellent long-term cycling stabilities of 94.8%, 89.1%, and 76.5% were observed after 1000 charge-discharge cycles at the current densities of 2, 5 and 10 A g-1.

  14. Erosion products of plasma facing materials formed under ITER-like transient load and deuterium retention in them

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Putrik, A. B., E-mail: putrik@triniti.ru; Klimov, N. S.; Gasparyan, Yu. M., E-mail: yura@plasma.mephi.ru

    2015-12-15

    Erosion of the plasma-facing materials in particular evaporation of the materials in a fusion reactor under intense transient events is one of the problems of the ITER. The current experimental data are insufficient to predict the properties of the erosion products, a significant part of which will be formed during transient events (edge-localized modes (ELMs) and disruptions). The paper concerns the experimental investigation of the graphite and tungsten erosion products deposited under pulsed plasma load at the QSPA-T: heat load on the target was 2.6 MJ/m{sup 2} with 0.5 ms pulse duration. The designed diagnostics for measuring the deposition ratemore » made it possible to determine that the deposition of eroded material occurs during discharge, and the deposition rate is in the range (0.1–100) × 10{sup 19} at/(cm{sup 2} s), which is much higher than that for stationary processes. It is found that the relative atomic concentrations D/C and D/(W + C) in the erosion products deposited during the pulse process are on the same level as for the stationary processes. An exposure of erosion products to photonic energy densities typical of those expected at mitigated disruptions in the ITER (pulse duration of 0.5–1 ms, integral energy density of radiation of 0.1–0.5 MJ/m2) significantly decreases the concentration of trapped deuterium.« less

  15. Structural and Electrical Characterization of SiO2 Gate Dielectrics Deposited from Solutions at Moderate Temperatures in Air.

    PubMed

    Esro, Mazran; Kolosov, Oleg; Jones, Peter J; Milne, William I; Adamopoulos, George

    2017-01-11

    Silicon dioxide (SiO 2 ) is the most widely used dielectric for electronic applications. It is usually produced by thermal oxidation of silicon or by using a wide range of vacuum-based techniques. By default, the growth of SiO 2 by thermal oxidation of silicon requires the use of Si substrates whereas the other deposition techniques either produce low quality or poor interface material and mostly require high deposition or annealing temperatures. Recent investigations therefore have focused on the development of alternative deposition paradigms based on solutions. Here, we report the deposition of SiO 2 thin film dielectrics deposited by spray pyrolysis in air at moderate temperatures of ≈350 °C from pentane-2,4-dione solutions of SiCl 4 . SiO 2 dielectrics were investigated by means of UV-vis absorption spectroscopy, spectroscopic ellipsometry, XPS, XRD, UFM/AFM, admittance spectroscopy, and field-effect measurements. Data analysis reveals smooth (R RMS < 1 nm) amorphous films with a dielectric constant of about 3.8, an optical band gap of ≈8.1 eV, leakage current densities in the order of ≈10 -7 A/cm 2 at 1 MV/cm, and high dielectric strength in excess of 5 MV/cm. XPS measurements confirm the SiO 2 stoichiometry and FTIR spectra reveal features related to SiO 2 only. Thin film transistors implementing spray-coated SiO 2 gate dielectrics and C 60 and pentacene semiconducting channels exhibit excellent transport characteristics, i.e., negligible hysteresis, low leakage currents, high on/off current modulation ratio on the order of 10 6 , and high carrier mobility.

  16. Surface modification of biomaterials by pulsed laser ablation deposition and plasma/gamma polymerization

    NASA Astrophysics Data System (ADS)

    Rau, Kaustubh R.

    Surface modification of stainless-steel was carried out by two different methods: pulsed laser ablation deposition (PLAD) and a combined plasma/gamma process. A potential application was the surface modification of endovascular stents, to enhance biocompatibility. The pulsed laser ablation deposition process, had not been previously reported for modifying stents and represented a unique and potentially important method for surface modification of biomaterials. Polydimethylsiloxane (PDMS) elatomer was studied using the PLAD technique. Cross- linked PDMS was deemed important because of its general use for biomedical implants and devices as well as in other fields. Furthermore, PDMS deposition using PLAD had not been previously studied and any information gained on its ablation characteristics could be important scientifically and technologically. The studies reported here showed that the deposited silicone film properties had a dependence on the laser energy density incident on the target. Smooth, hydrophobic, silicone-like films were deposited at low energy densities (100-150 mJ/cm2). At high energy densities (>200 mJ/cm2), the films had an higher oxygen content than PDMS, were hydrophilic and tended to show a more particulate morphology. It was also determined that (1)the deposited films were stable and extremely adherent to the substrate, (2)silicone deposition exhibited an `incubation effect' which led to the film properties changing with laser pulse number and (3)films deposited under high vacuum were similar to films deposited at low vacuum levels. The mechanical properties of the PLAD films were determined by nanomechanical measurements which are based on the Atomic Force Microscope (AFM). From these measurements, it was possible to determine the modulus of the films and also study their scratch resistance. Such measurement techniques represent a significant advance over current state-of-the-art thin film characterization methods. An empirical model for ablation was developed for the 248 nm laser irradiation of silicone. The model demonstrated a good fit to the experimental data and showed that silicone underwent ablation by a thermal mechanism. In addition to PLAD studies, functionalization of stainless steel was carried out by a combined plasma/gamma method involving deposition of a hexane plasma polymer by RF plasma polymerization, followed by gamma radiation graft polymerization of methacrylic acid. The hydrograft modified surfaces were further modified by chemisorption reactions with poly(ethylene imine) to produce amine-rich surfaces. Bovine serum albumin was then bound via amino groups using glutaraldehyde coupling. A streaming potential cell was also built and used to measure the zeta potential of these ionic surfaces.

  17. Investigating compositional effects of atomic layer deposition ternary dielectric Ti-Al-O on metal-insulator-semiconductor heterojunction capacitor structure for gate insulation of InAlN/GaN and AlGaN/GaN

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colon, Albert; Stan, Liliana; Divan, Ralu

    Gate insulation/surface passivation in AlGaN/GaN and InAlN/GaN heterojunction field-effect transistors is a major concern for passivation of surface traps and reduction of gate leakage current. However, finding the most appropriate gate dielectric materials is challenging and often involves a compromise of the required properties such as dielectric constant, conduction/valence band-offsets, or thermal stability. Creating a ternary compound such as Ti-Al-O and tailoring its composition may result in a reasonably good gate material in terms of the said properties. To date, there is limited knowledge of the performance of ternary dielectric compounds on AlGaN/GaN and even less on InAlN/GaN. To approachmore » this problem, the authors fabricated metal-insulator-semiconductor heterojunction (MISH) capacitors with ternary dielectrics Ti-Al-O of various compositions, deposited by atomic layer deposition (ALD). The film deposition was achieved by alternating cycles of TiO2 and Al2O3 using different ratios of ALD cycles. TiO2 was also deposited as a reference sample. The electrical characterization of the MISH capacitors shows an overall better performance of ternary compounds compared to the pure TiO2. The gate leakage current density decreases with increasing Al content, being similar to 2-3 orders of magnitude lower for a TiO2:Al2O3 cycle ratio of 2:1. Although the dielectric constant has the highest value of 79 for TiO2 and decreases with increasing the number of Al2O3 cycles, it is maintaining a relatively high value compared to an Al2O3 film. Capacitance voltage sweeps were also measured in order to characterize the interface trap density. A decreasing trend in the interface trap density was found while increasing Al content in the film. In conclusion, our study reveals that the desired high-kappa properties of TiO2 can be adequately maintained while improving other insulator performance factors. The ternary compounds may be an excellent choice as a gate material for both AlGaN/GaN and InAlN/GaN based devices.« less

  18. Electrical characterization of MIM capacitor comprises an adamantane film at room temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tiwari, Rajanish N., E-mail: rajanisht@gmail.com; Toyota Technological Institute, 2-12-1Hisakata, Tempaku-Ku, Nagoya 468-8511; Yoshimura, Masamichi

    2016-06-15

    We fabricated a new metal-insulator-metal capacitor at room temperature, comprising a ∼90 nm thin low–k adamantane film on a Si substrate. The surface morphology of deposited organic film was investigated by using scanning electron microscopy and Raman spectroscopy, which is confirmed that the adamantane thin film was uniformly distributed on the Si surface. The adamantane film exhibits a low leakage current density of 7.4 x 10{sup −7} A/cm{sup 2} at 13.5 V, better capacitance density of 2.14 fF/μm{sup 2} at 100 KHz.

  19. Modeling of electron cyclotron resonance discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyyappan, M.; Govindan, T.R.

    The current trend in plasma processing is the development of high density plasma sources to achieve high deposition and etch rates, uniformity over large ares, and low wafer damage. Here, is a simple model to predict the spatially-averaged plasma characteristics of electron cyclotron resonance (ECR) reactors is presented. The model consists of global conservation equations for species concentration, electron density and energy. A gas energy balance is used to predict the neutral temperature self-consistently. The model is demonstrated for an ECR argon discharge. The predicted behavior of the discharge as a function of system variables agrees well with experimental observations.

  20. Arc initiation in cathodic arc plasma sources

    DOEpatents

    Anders, Andre

    2002-01-01

    A "triggerless" arc initiation method and apparatus is based on simply switching the arc supply voltage to the electrodes (anode and cathode). Neither a mechanical trigger electrode nor a high voltage flashover from a trigger electrode is required. A conducting path between the anode and cathode is provided, which allows a hot spot to form at a location where the path connects to the cathode. While the conductive path is eroded by the cathode spot action, plasma deposition ensures the ongoing repair of the conducting path. Arc initiation is achieved by simply applying the relatively low voltage of the arc power supply, e.g. 500 V-1 kV, with the insulator between the anode and cathode coated with a conducting layer and the current at the layer-cathode interface concentrated at one or a few contact points. The local power density at these contact points is sufficient for plasma production and thus arc initiation. A conductive surface layer, such as graphite or the material being deposited, is formed on the surface of the insulator which separates the cathode from the anode. The mechanism of plasma production (and arc initiation) is based on explosive destruction of the layer-cathode interface caused by joule heating. The current flow between the thin insulator coating and cathode occurs at only a few contact points so the current density is high.

  1. Dendritic Ag-Fe nanocrystalline alloy synthesized by pulsed electrodeposition and its characterization

    NASA Astrophysics Data System (ADS)

    Santhi, Kalavathy; Revathy, T. A.; Narayanan, V.; Stephen, A.

    2014-10-01

    Synthesis of dendrite shaped Ag-Fe alloy nanomaterial by pulsed electrodeposition route was investigated. The alloy samples were deposited at different current densities from electrolytes of different compositions to study the influence of current density and bath composition on metal contents in the alloy, which was determined by ICP-OES analysis. The XRD studies were carried out to determine the structure of these samples. Magnetic characterization at room temperature and during heating was carried out to understand their magnetic behaviour and to confirm the inferences drawn from the XRD results. The XPS spectra proved the presence of Fe and Ag in the metallic form in the alloy samples. The FESEM and TEM micrographs were taken to view the surface morphology of the nanosized particles.

  2. The effects of sea level and palaeotopography on lithofacies distribution and geometries in heterozoan carbonates, south-eastern Spain

    USGS Publications Warehouse

    Johnson, C.L.; Franseen, E.K.; Goldstein, R.H.

    2005-01-01

    This study utilized three-dimensional exposures to evaluate how sea-level position and palaeotopography control the facies and geometries of heterozoan carbonates. Heterozoan carbonates were deposited on top of a Neogene volcanic substrate characterized by palaeotopographic highs, palaeovalleys, and straits that were formed by subaerial erosion, possibly original volcanic topography, and faults prior to carbonate deposition. The depositional sequence that is the focus of this study (DS1B) consists of 7-10 fining upward cycles that developed in response to relative sea-level fluctuations. A complete cycle has a basal erosion surface overlain by deposits of debrisflows and high-density turbidity currents, which formed during relative sea-level fall. Overlying tractive deposits most likely formed during the lowest relative position of sea level. Overlying these are debrites grading upward to high-density turbidites and low-density turbidites that formed during relative sea-level rise. The tops of the cycles consist of hemipelagic deposits that formed during the highest relative position of sea level. The cycles fine upward because upslope carbonate production decreased as relative sea level rose due to less surface area available for shallow-water carbonate production and partial drowning of substrates. The cycles are dominated by two end-member types of facies associations and stratal geometries that formed in response to fluctuating sea-level position over variable substrate palaeotopography. One end-member is termed 'flank flow cycle' because this type of cycle indicates dominant sediment transport down the flanks of palaeovalleys. Those cycles drape the substrate, have more debrites, high-density turbidites and erosion on palaeovalley flanks, and in general, the lithofacies fine down the palaeovalley flanks into the palaeovalley axes. The second end-member is termed 'axial flow cycle' because it indicates a dominance of sediment transport down the axes of palaeovalleys. Those cycles are characterized by debrites and high-density turbidites in palaeovalley axes, and lap out of strata against the flanks of palaeovalleys. Where and when an axial flow cycle or flank flow cycle developed appears to be related to the intersection of sea level with areas of gentle or steep substrate slopes, during an overall relative rise in sea level. Results from this study provide a model for similar systems that must combine carbonate principles for sediment production, palaeotopographic controls, and physical principles of sediment remobilization into deep water. ?? 2005 International Association of Sedimentologists.

  3. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  4. Thermal emission from large area chemical vapor deposited graphene devices

    NASA Astrophysics Data System (ADS)

    Luxmoore, I. J.; Adlem, C.; Poole, T.; Lawton, L. M.; Mahlmeister, N. H.; Nash, G. R.

    2013-09-01

    The spatial variation of thermal emission from large area graphene grown by chemical vapor deposition, transferred onto SiO2/Si substrates and fabricated into field effect transistor structures, has been investigated using infra-red microscopy. A peak in thermal emission occurs, the position of which can be altered by reversal of the current direction. The experimental results are compared with a one dimensional finite element model, which accounts for Joule heating and electrostatic effects, and it is found that the thermal emission is governed by the charge distribution in the graphene and maximum Joule heating occurs at the point of minimum charge density.

  5. ELECTRO-DEPOSITION OF NICKEL ALLOYS FROM THE PYROPHOSPHATE BATH: NICKEL- ZINC AND NICKEL-MOLYBDENUM ALLOYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panikkar, S.K.; Char, T.L.R.

    1958-02-01

    Results of studies on the electrodeposition of nickel-zinc and nickel-- molybdenum alloys in a pyrophosphate bath using platinium electrodes are presented. The fects of varying current density and metal contents of the electrolyte on alloy deposit composition, cathode efficiency, and cathode potential are presented in tabular form. (J.R.D.) l2432 A study was made of the effect of homogenization on the mechanical properties of solution-treated and aged aluminum and the quantitative effects of several variables on hardness. The effect of alloying elements on the increase in hardness of aluminum is shown. (J.E.D.)

  6. Systems and Methods for the Electrodeposition of a Nickel-cobalt Alloy

    NASA Technical Reports Server (NTRS)

    Ogozalek, Nance Jo (Inventor); Wistrand, Richard E. (Inventor)

    2013-01-01

    Systems and methods for electrodepositing a nickel-cobalt alloy using a rotating cylinder electrode assembly with a plating surface and an electrical contact. The assembly is placed within a plating bath and rotated while running a plating cycle. Nickel-cobalt alloy deposition is selectively controlled by controlling current density distribution and/or cobalt content in the plating bath while running the plating cycle to deposit an alloy of a desired yield strength onto the plating surface in a single plating cycle. In various embodiments, the rotating cylinder may be used as an insitu monitoring method to assist in obtaining the properties desired.

  7. Neutralization of an ion beam from the end-Hall ion source by a plasma electron source based on a discharge in crossed E × H fields

    NASA Astrophysics Data System (ADS)

    Dostanko, A. P.; Golosov, D. A.

    2009-10-01

    The possibility of using a plasma electron source (PES) with a discharge in crossed E × H field for compensating the ion beam from an end-Hall ion source (EHIS) is analyzed. The PES used as a neutralizer is mounted in the immediate vicinity of the EHIS ion generation and acceleration region at 90° to the source axis. The behavior of the discharge and emission parameters of the EHIS is determined for operation with a filament neutralizer and a plasma electron source. It is found that the maximal discharge current from the ion source attains a value of 3.8 A for operation with a PES and 4 A for operation with a filament compensator. It is established that the maximal discharge current for the ion source strongly depends on the working gas flow rate for low flow rates (up to 10 ml/min) in the EHIS; for higher flow rates, the maximum discharge current in the EHIS depends only on the emissivity of the PES. Analysis of the emission parameters of EHISs with filament and plasma neutralizers shows that the ion beam current and the ion current density distribution profile are independent of the type of the electron source and the ion current density can be as high as 0.2 mA/cm2 at a distance of 25 cm from the EHIS anode. The balance of currents in the ion source-electron source system is considered on the basis of analysis of operation of EHISs with various sources of electrons. It is concluded that the neutralization current required for operation of an ion source in the discharge compensation mode must be equal to or larger than the discharge current of the ion source. The use of PES for compensating the ion beam from an end-Hall ion source proved to be effective in processes of ion-assisted deposition of thin films using reactive gases like O2 or N2. The application of the PES technique makes it possible to increase the lifetime of the ion-assisted deposition system by an order of magnitude (the lifetime with a Ti cathode is at least 60 h and is limited by the replacement life of the deposited cathode insertion).

  8. Characterization of Pulse Reverses Electroforming on Hard Gold Coating.

    PubMed

    Byoun, Young-Min; Noh, Young-Tai; Kim, Young-Geun; Ma, Seung-Hwan; Kim, Gwan-Hoon

    2018-03-01

    Effect of pulse reverse current (PRC) method on brass coatings electroplated from gold solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. The reversed current results in a significant change in the morphology of electrodeposits, improvement of the overall current efficiency and reduction of deposit porosity. With longer pulses, hemispherical surface features are generated, while larger grains result from shorter pulse widths. The porosity of the plated samples is found to decrease compared with results at the same time-average plating rate obtained from DC or Pulse plating. A major impediment to reducing gold later thickness is the corrosion of the underlying substrate, which is affected by the porosity of the gold layer. Both the morphology and the hydrogen evolution reaction have significant impact on porosity. PRC plating affect hydrogen gold and may oxidize hydrogen produced during the cathodic portion of the waveform. Whether the dissolution of gold and oxidation of hydrogen occur depends on the type of plating bath and the plating conditions adapted. In reversed pulse plating, the amount of excess near-surface cyanide is changed after the cathodic current is applied, and the oxidation of gold under these conditions has not been fully addressed. The effects of the current density, pulse-reverse ratio and brightener concentration of the electroplating process were investigated and optimized for suitable performance.

  9. Assessment of Global Mercury Deposition through Litterfall.

    PubMed

    Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin

    2016-08-16

    There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.

  10. Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition.

    PubMed

    Santhanagopalan, Sunand; Balram, Anirudh; Meng, Dennis Desheng

    2013-03-26

    It is commonly perceived that reduction-oxidation (redox) capacitors have to sacrifice power density to achieve higher energy density than carbon-based electric double layer capacitors. In this work, we report the synergetic advantages of combining the high crystallinity of hydrothermally synthesized α-MnO2 nanorods with alignment for high performance redox capacitors. Such an approach is enabled by high voltage electrophoretic deposition (HVEPD) technology which can obtain vertically aligned nanoforests with great process versatility. The scalable nanomanufacturing process is demonstrated by roll-printing an aligned forest of α-MnO2 nanorods on a large flexible substrate (1 inch by 1 foot). The electrodes show very high power density (340 kW/kg at an energy density of 4.7 Wh/kg) and excellent cyclability (over 92% capacitance retention over 2000 cycles). Pretreatment of the substrate and use of a conductive holding layer have also been shown to significantly reduce the contact resistance between the aligned nanoforests and the substrates. High areal specific capacitances of around 8500 μF/cm(2) have been obtained for each electrode with a two-electrode device configuration. Over 93% capacitance retention was observed when the cycling current densities were increased from 0.25 to 10 mA/cm(2), indicating high rate capabilities of the fabricated electrodes and resulting in the very high attainable power density. The high performance of the electrodes is attributed to the crystallographic structure, 1D morphology, aligned orientation, and low contact resistance.

  11. MST Pellet Injector Upgrades to Probe Beta and Density Limits and Impurity Particle Transport

    NASA Astrophysics Data System (ADS)

    Caspary, K. J.; Chapman, B. E.; Anderson, J. K.; Kumar, S. T. A.; Limbach, S. T.; Oliva, S. P.; Sarff, J. S.; Waksman, J.; Combs, S. K.; Foust, C. R.

    2012-10-01

    Upgrades to the pellet injector on MST will allow for significantly increased fueling capability enabling density limit studies for previously unavailable density regimes. Thus far, Greenwald fractions of 1.2 and 1.5 have been achieved in 500 kA and 200 kA improved confinement plasmas, respectively. The size of the pellet guide tubes, which constrain the lateral motion of the pellet in flight, was increased to accommodate pellets of up to 4.0 mm in diameter, capable of fueling to Greenwald fractions > 2.0 for MST's peak current of 600 kA. Exploring the effect of increased density on NBI deposition shows that for MST's NBI, core deposition of 25 keV neutrals is optimized for densities of 2 -- 3 x 10^19 m-3. This is key for beta limit studies in pellet fueled discharges with improved confinement where maximum NBI heating is desired. In addition, a modification to the injector has allowed operation using alternative pellet fuels with triple points significantly higher than that of deuterium (18.7 K). A small flow of helium into the pellet formation vacuum chamber introduces a controllable heat source capable of elevating the operating temperature of the injector. Injection of methane pellets with a triple point of 90.7 K results in a 12-fold increase in the core carbon impurity density. The flow rate is easily adjusted to optimize injector operating temperature for other fuel gases as well. Work supported by US DoE.

  12. Passivation of GaSb using molecular beam epitaxy Y{sub 2}O{sub 3} to achieve low interfacial trap density and high-performance self-aligned inversion-channel p-metal-oxide-semiconductor field-effect-transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, R. L.; Chiang, T. H.; Hsueh, W. J.

    2014-11-03

    Molecular beam epitaxy deposited rare-earth oxide of Y{sub 2}O{sub 3} has effectively passivated GaSb, leading to low interfacial trap densities of (1–4) × 10{sup 12 }cm{sup −2} eV{sup −1} across the energy bandgap of GaSb. A high saturation drain current density of 130 μA/μm, a peak transconductance of 90 μS/μm, a low subthreshold slope of 147 mV/decade, and a peak field-effect hole mobility of 200 cm{sup 2}/V-s were obtained in 1 μm-gate-length self-aligned inversion-channel GaSb p-Metal-Oxide-Semiconductor Field-Effect-Transistors (MOSFETs). In this work, high-κ/GaSb interfacial properties were better in samples with a high substrate temperature of 200 °C than in those with high κ's deposited at room temperature, in terms of themore » interfacial electrical properties, particularly, the reduction of interfacial trap densities near the conduction band and the MOSFET device performance.« less

  13. Electrodeposition and Characterization of Mn-Cu-Zn Alloys for Corrosion Protection Coating

    NASA Astrophysics Data System (ADS)

    Tsurtsumia, Gigla; Gogoli, David; Koiava, Nana; Kakhniashvili, Izolda; Jokhadze, Nunu; Lezhava, Tinatin; Nioradze, Nikoloz; Tatishvili, Dimitri

    2017-12-01

    Mn-Cu-Zn alloys were electrodeposited from sulphate bath, containing citrate or EDTA and their mixtures as complexing ligands. The influence of bath composition and deposition parameters on alloys composition, cathodic current efficiency and structural and electrochemical properties were studied. At a higher current density (≥ 37.5 A dm-2) a uniform surface deposit of Mn-Cu-Zn was obtained. Optimal pH of electrolyte (0.3 mol/dm3Mn2+ + 0.6 mol/dm3 (NH4)2SO4 +0.1 mol/dm3Zn2++0.005 mol/dm3 Cu2++ 0.05mol/dm3Na3Cit + 0.15mol/dm3 EDTA; t=300C; τ=20 min) for silvery, nonporous coating of Mn-Cu-Zn alloy was within 6.5-7.5; coating composition: 71-83% Mn, 6-7.8% Cu, 11.5-20% Zn, current efficiency up to 40%. XRD patterns revealed BCT (body centred tetragonal) γ-Mn solid phase solution (lattice constants a=2.68 Å c=3.59 Å). Corrosion measurements of deposited alloys were performed in aerated 3.5% NaCl solution. The corrosion current density (icorr) of the electrodeposited alloys on carbon steel was 10 times lower than corrosion rate of pure zinc and manganese coatings. Triple alloy coatings corrosion potential (Ecorr = -1140 mV vs. Ag/AgCl) preserved negative potential value longer (more than three months) compared to carbon steel substrate (Ecorr = -670 mV vs. Ag/AgCl). Tafel polarization curves taken on Mn-Cu-Zn alloy coating in aerated 3.5% NaCl solution did not show a typical passivation behaviour which can be explained by formation oflow solubility of adherent corrosion products on the alloy surface. Corrosion test of Mn-Cu-Zn electrocoating in chlorine environment shows that it is the best cathodic protective coating for a steel product.

  14. Experimental volcanic ash aggregation: Internal structuring of accretionary lapilli and the role of liquid bonding

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Kueppers, Ulrich; Ayris, Paul M.; Jacob, Michael; Dingwell, Donald B.

    2016-01-01

    Explosive volcanic eruptions can release vast quantities of pyroclastic material into Earth's atmosphere, including volcanic ash, particles with diameters less than two millimeters. Ash particles can cluster together to form aggregates, in some cases reaching up to several centimeters in size. Aggregation alters ash transport and settling behavior compared to un-aggregated particles, influencing ash distribution and deposit stratigraphy. Accretionary lapilli, the most commonly preserved type of aggregates within the geologic record, can exhibit complex internal stratigraphy. The processes involved in the formation and preservation of these aggregates remain poorly constrained quantitatively. In this study, we simulate the variable gas-particle flow conditions which may be encountered within eruption plumes and pyroclastic density currents via laboratory experiments using the ProCell Lab System® of Glatt Ingenieurtechnik GmbH. In this apparatus, solid particles are set into motion in a fluidized bed over a range of well-controlled boundary conditions (particle concentration, air flow rate, gas temperature, humidity, liquid composition). Experiments were conducted with soda-lime glass beads and natural volcanic ash particles under a range of experimental conditions. Both glass beads and volcanic ash exhibited the capacity for aggregation, but stable aggregates could only be produced when materials were coated with high but volcanically-relevant concentrations of NaCl. The growth and structure of aggregates was dependent on the initial granulometry, while the rate of aggregate formation increased exponentially with increasing relative humidity (12-45% RH), before overwetting promoted mud droplet formation. Notably, by use of a broad granulometry, we generated spherical, internally structured aggregates similar to some accretionary pellets found in volcanic deposits. Adaptation of a powder-technology model offers an explanation for the origin of natural accretionary pellets, suggesting them to be the result of a particular granulometry and fast-acting selective aggregation processes. For such aggregates to survive deposition and be preserved in the deposits of eruption plumes and pyroclastic density currents likely requires a significant pre-existing salt load on ash surfaces, and rapid aggregate drying prior to deposition or interaction with a more energetic environment. Our results carry clear benefits for future efforts to parameterize models of ash transport and deposition in the field.

  15. Highly conductive ultrathin Co films by high-power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Jablonka, L.; Riekehr, L.; Zhang, Z.; Zhang, S.-L.; Kubart, T.

    2018-01-01

    Ultrathin Co films deposited on SiO2 with conductivities exceeding that of Cu are demonstrated. Ionized deposition implemented by high-power impulse magnetron sputtering (HiPIMS) is shown to result in smooth films with large grains and low resistivities, namely, 14 µΩ cm at a thickness of 40 nm, which is close to the bulk value of Co. Even at a thickness of only 6 nm, a resistivity of 35 µΩ cm is obtained. The improved film quality is attributed to a higher nucleation density in the Co-ion dominated plasma in HiPIMS. In particular, the pulsed nature of the Co flux as well as shallow ion implantation of Co into SiO2 can increase the nucleation density. Adatom diffusion is further enhanced in the ionized process, resulting in a dense microstructure. These results are in contrast to Co deposited by conventional direct current magnetron sputtering where the conductivity is reduced due to smaller grains, voids, rougher interfaces, and Ar incorporation. The resistivity of the HiPIMS films is shown to be in accordance with models by Mayadas-Shatzkes and Sondheimer which consider grain-boundary and surface-scattering.

  16. High areal capacity hybrid magnesium-lithium-ion battery with 99.9% Coulombic efficiency for large-scale energy storage.

    PubMed

    Yoo, Hyun Deog; Liang, Yanliang; Li, Yifei; Yao, Yan

    2015-04-01

    Hybrid magnesium-lithium-ion batteries (MLIBs) featuring dendrite-free deposition of Mg anode and Li-intercalation cathode are safe alternatives to Li-ion batteries for large-scale energy storage. Here we report for the first time the excellent stability of a high areal capacity MLIB cell and dendrite-free deposition behavior of Mg under high current density (2 mA cm(-2)). The hybrid cell showed no capacity loss for 100 cycles with Coulombic efficiency as high as 99.9%, whereas the control cell with a Li-metal anode only retained 30% of its original capacity with Coulombic efficiency well below 90%. The use of TiS2 as a cathode enabled the highest specific capacity and one of the best rate performances among reported MLIBs. Postmortem analysis of the cycled cells revealed dendrite-free Mg deposition on a Mg anode surface, while mossy Li dendrites were observed covering the Li surface and penetrated into separators in the Li cell. The energy density of a MLIB could be further improved by developing electrolytes with higher salt concentration and wider electrochemical window, leading to new opportunities for its application in large-scale energy storage.

  17. LaAlO{sub 3}/Si capacitors: Comparison of different molecular beam deposition conditions and their impact on electrical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelloquin, Sylvain; Baboux, Nicolas; Albertini, David

    2013-01-21

    A study of the structural and electrical properties of amorphous LaAlO{sub 3} (LAO)/Si thin films fabricated by molecular beam deposition (MBD) is presented. Two substrate preparation procedures have been explored namely a high temperature substrate preparation technique-leading to a step and terraces surface morphology-and a chemical HF-based surface cleaning. The LAO deposition conditions were improved by introducing atomic plasma-prepared oxygen instead of classical molecular O{sub 2} in the chamber. An Au/Ni stack was used as the top electrode for its electrical characteristics. The physico-chemical properties (surface topography, thickness homogeneity, LAO/Si interface quality) and electrical performance (capacitance and current versus voltagemore » and TunA current topography) of the samples were systematically evaluated. Deposition conditions (substrate temperature of 550 Degree-Sign C, oxygen partial pressure settled at 10{sup -6} Torr, and 550 W of power applied to the O{sub 2} plasma) and post-depositions treatments were investigated to optimize the dielectric constant ({kappa}) and leakage currents density (J{sub Gate} at Double-Vertical-Line V{sub Gate} Double-Vertical-Line = Double-Vertical-Line V{sub FB}- 1 Double-Vertical-Line ). In the best reproducible conditions, we obtained a LAO/Si layer with a dielectric constant of 16, an equivalent oxide thickness of 8.7 A, and J{sub Gate} Almost-Equal-To 10{sup -2}A/cm{sup 2}. This confirms the importance of LaAlO{sub 3} as an alternative high-{kappa} for ITRS sub-22 nm technology node.« less

  18. Interface-state density estimation of n-type nanocrystalline FeSi2/p-type Si heterojunctions fabricated by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nopparuchikun, Adison; Promros, Nathaporn; Sittimart, Phongsaphak; Onsee, Peeradon; Duangrawa, Asanlaya; Teakchaicum, Sakmongkon; Nogami, Tomohiro; Yoshitake, Tsuyoshi

    2017-09-01

    By utilizing pulsed laser deposition (PLD), heterojunctions comprised of n-type nanocrystalline (NC) FeSi2 thin films and p-type Si substrates were fabricated at room temperature in this study. Both dark and illuminated current density-voltage (J-V) curves for the heterojunctions were measured and analyzed at room temperature. The heterojunctions demonstrated a large reverse leakage current as well as a weak near-infrared light response. Based on the analysis of the dark forward J-V curves, at the V value  ⩽  0.2 V, we show that a carrier recombination process was governed at the heterojunction interface. When the V value was  >  0.2 V, the probable mechanism of carrier transportation was a space-charge limited-current process. Both the measurement and analysis for capacitance-voltage-frequency (C-V-f ) and conductance-voltage-frequency (G-V-f ) curves were performed in the applied frequency (f ) range of 50 kHz-2 MHz at room temperature. From the C-V-f and G-V-f curves, the density of interface states (N ss) for the heterojunctions was computed by using the Hill-Coleman method. The N ss values were 9.19  ×  1012 eV-1 cm-2 at 2 MHz and 3.15  ×  1014 eV-1 cm-2 at 50 kHz, which proved the existence of interface states at the heterojunction interface. These interface states are the probable cause of the degraded electrical performance in the heterojunctions. Invited talk at 5th Thailand International Nanotechnology Conference (Nano Thailand-2016), 27-29 November 2016, Nakhon Ratchasima, Thailand.

  19. Influence of calcareous deposit on corrosion behavior of Q235 carbon steel with sulfate-reducing bacteria

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Li, Xiaolong; Wang, Jiangwei; Xu, Weichen; Duan, Jizhou; Chen, Shougang; Hou, Baorong

    2017-12-01

    Cathodic protection is a very effective method to protect metals, which can form calcareous deposits on metal surface. Research on the interrelationship between fouling organism and calcareous deposits is very important but very limited, especially sulfate-reducing bacteria (SRB). SRB is a kind of very important fouling organism that causes microbial corrosion of metals. A study of the influence of calcareous deposit on corrosion behavior of Q235 carbon steel in SRB-containing culture medium was carried out using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface spectroscopy (EDS). The calcareous deposit was formed with good crystallinity and smooth surface under the gradient current density of -30 μA cm-2 in natural seawater for 72 h. Our results can help elucidate the formation of calcareous deposits and reveal the interrelationship between SRB and calcareous deposits under cathodic protection. The results indicate that the corrosion tendency of carbon steel was obviously affected by Sulfate-reducing Bacteria (SRB) metabolic activity and the calcareous deposit formed on the surface of carbon steel under cathodic protection was favourable to reduce the corrosion rate. Calcareous deposits can promote bacterial adhesion before biofilm formation. The results revealed the interaction between biofouling and calcareous deposits, and the anti-corrosion ability was enhanced by a kind of inorganic and organic composite membranes formed by biofilm and calcareous deposits.

  20. Patterning of colloidal particles in the galvanic microreactor

    NASA Astrophysics Data System (ADS)

    Jan, Linda

    A Cu-Au galvanic microreactor is used to demonstrate the autonomous patterning of two-dimensional colloidal crystals with spatial and orientational order which are adherent to the electrode substrate. The microreactor is comprised of a patterned array of copper and gold microelectrodes in a coplanar arrangement that is immersed in a dilute hydrochloric acid solution in which colloidal polystyrene microspheres are suspended. During the electrochemical dissolution of copper, polystyrene colloids are transported to the copper electrodes. The spatial arrangement of the electrodes determines whether the colloids initiate aggregation at the edges or centers of the copper electrodes. Depending on the microreactor parameters, two-dimensional colloidal crystals can form and adhere to the electrode. This thesis investigates the mechanisms governing the autonomous particle motion, the directed particle trajectory (inner- versus edge-aggregation) as affected by the spatial patterning of the electrodes, and the adherence of the colloidal particles onto the substrate. Using in situ current density measurements, particle velocimetry, and order-of-magnitude arguments, it is shown that particle motion is governed by bulk fluid motion and electrophoresis induced by the electrochemical reactions. Bulk electrolyte flow is most likely driven by electrochemical potential gradients of reaction products formed during the inhomogeneous copper dissolution, particularly due to localized high current density at the electrode junction. Preferential aggregation of the colloidal particles resulting in inner- and edge-aggregation is influenced by changes to the flow pattern in response to difference in current density profiles as affected by the spatial patterning of the electrode. Finally, by determining the onset of particle cementation through particle tracking analysis, and by monitoring the deposition of reaction products through the observation of color changes of the galvanic electrodes in situ, it is shown that particle cementation coincides with the precipitation and deposition of reaction products. The precipitation process is caused by shifts in the chemical equilibria of the microreactor due to changes in the composition of the electrolyte during the reactions, which can be used to control particle cementation. The corrosion driven transport, deposition and adherence of colloidal particles at corrosion sites have implications for the development of autonomous self-healing materials.

  1. Spectral, thermal and optical-electrical properties of the layer-by-layer deposited thin film of nano Zn(II)-8-hydroxy-5-nitrosoquinolate complex.

    PubMed

    Haggag, Sawsan M S; Farag, A A M; Abdelrafea, Mohamed

    2013-06-01

    Zinc(II)-8-hydroxy-5-nitrosoquinolate, [Zn(II)-(HNOQ)2], was synthesized and assembled as a deposited thin film of nano-metal complex by a rapid, direct, simple and efficient procedure based on layer-by-layer chemical deposition technique. Stoichiometric identification and structural characterization of [Zn(II)-(HNOQ)2] were confirmed by electron impact mass spectrometry (EI-MS) and Fourier Transform infrared spectroscopy (FT-IR). Surface morphology was studied by using a scanning electron microscope imaging (SEM) and the particle size was found to be in the range of 23-49 nm. Thermal stability of [Zn(II)-(HNOQ)2] was studied and the thermal parameters were evaluated using thermal gravimetric analysis (TGA). The current density-voltage measurements showed that the current flow is dominated by a space charge limited and influenced by traps under high bias. The optical properties of [Zn(II)-(HNOQ)2] thin films were found to exhibit two direct allowed transitions at 2.4 and 1.0 eV, respectively. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Growth of ZnO films in sol-gel electrophoretic deposition by different solvents

    NASA Astrophysics Data System (ADS)

    Hallajzadeh, Amir Mohammad; Abdizadeh, Hossein; Taheri, Mahtab; Golobostanfard, Mohammad Reza

    2018-01-01

    This article introduces a process to fabricate zinc oxide (ZnO) films through combining sol preparation and electrophoretic deposition (EPD). The experimental results have proved that the EPD process is a powerful route to fabricate ZnO films with desire thickness from stable colloidal suspension under a direct current (DC) electric field. In this method, ZnO sol is prepared by dissolving zinc acetate dehydrate (ZAD) as the main precursor and diethanolamine (DEA) as the additive in various solvents such as methanol (MeOH), ethanol (EtOH), and 2-proponal (2-PrOH). The deposition was performed under a constant voltage of 30 V for 2 min. Scanning electron microscopy (SEM), X-ray diffraction (XRD), and diffuse reflectance spectroscopy (DRS) were used to characterize ZnO films. XRD pattern of the ZnO film prepared by MeOH shows the highest degree of preferential orientation and this is mainly attributed to the higher dielectric constant of the MeOH which results in higher current density in electrophoretic deposit ion. The SEM cross section images also show that the thickness of the ZnO film enhances by decreasing the solvent chain length. According to SEM results, as the viscosity of the medium increased, more compact layers are formed, which can be attributed to the lower deposition rates in heavier alcohols.

  3. Post-deposition-annealing effect on current conduction in Al2O3 films formed by atomic layer deposition with H2O oxidant

    NASA Astrophysics Data System (ADS)

    Hiraiwa, Atsushi; Matsumura, Daisuke; Okubo, Satoshi; Kawarada, Hiroshi

    2017-02-01

    Atomic-layer-deposition (ALD) Al2O3 films are promising as gate insulators of non-Si semiconductor devices. Although they allow relatively small leakage currents just after deposition, ALD Al2O3 films formed at low temperatures are subject to high temperature during fabrication or operation of devices. Therefore, the effect of post-deposition annealing (PDA) on the properties of Al2O3 films is investigated in this study. ALD Al2O3 films formed using H2O oxidant at low temperatures are compacted by PDA, but their mass density and dielectric constant remain approximately unchanged or slightly decrease owing to the desorption of methyl groups contained in the films as impurities. In accordance with these results, the wet etching rate of Al2O3 films is not much reduced by PDA. The conduction current in ALD Al2O3 films formed on Si is reduced by PDA and becomes smaller than that in films formed at the same ALD temperatures as those of PDA. The conduction current for PDA temperatures above 250 °C, however, increases and, accordingly, spoils the merit of low-temperature ALD. Therefore, given that the dielectric constant of annealed films remains low, high-temperature ALD is practically more significant than applying PDA to low-temperature ALD Al2O3 films from the viewpoint of leakage current under the same thermal budget. Space-charge-controlled field emission analysis revealed that, at the aforementioned threshold temperature, PDA abruptly increases the Al2O3/SiO2 interfacial dipoles and simultaneously reduces the amount of the positive charge near the interface. The so-called negative-charge buildup by PDA might be caused by this decrease in the positive charge.

  4. Scaling of Energy Deposition in Fast Ignition Targets

    NASA Astrophysics Data System (ADS)

    Campbell, R. B.; Welch, Dale

    2005-10-01

    We examine the scaling to ignition of the energy deposition of laser generated electrons in compressed fast ignition cores. Relevant cores have densities of several hundred g/cm^3, with a few keV initial temperature. As the laser intensities increase approaching ignition systems, on the order of a few 10^21W/cm^2, the hot electron energies expected to approach 100MeV[1]. Most certainly anomalous processes must play a role in the energy transfer, but the exact nature of these processes, as well as a practical way to model them, remain open issues. Traditional PIC explicit methods are limited to low densities on current and anticipated computing platforms, so the study of relevant parameter ranges has received so far little attention. We use LSP[2] to examine a relativistic electron beam (presumed generated from a laser plasma interaction) of legislated energy and angular distribution is injected into a 3D block of compressed DT. Collective effects will determine the stopping, most likely driven by magnetic field filamentation. The scaling of the stopping as a function of block density and temperature, as well as hot electron current and laser intensity is presented. Sub-grid models may be profitably used and degenerate effects included in the solution of this problem. Sandia is operated by Sandia Corporation, for the USDOE. [1] A. Pukhov, et. al., Phys. Plas. 6, p2847 (1999) [2] D. R. Welch et al., Comput. Phys.Commun. 164, p183 (2004).

  5. Low-frequency noise properties in Pt-indium gallium zinc oxide Schottky diodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiawei; Zhang, Linqing; Ma, Xiaochen

    2015-08-31

    The low-frequency noise properties of Pt-indium gallium zinc oxide (IGZO) Schottky diodes at different forward biases are investigated. The IGZO layer and Pt contact were deposited by RF sputtering at room temperature. The diode showed an ideality factor of 1.2 and a barrier height of 0.94 eV. The current noise spectral density exhibited 1/f behavior at low frequencies. The analysis of the current dependency of the noise spectral density revealed that for the as-deposited diode, the noise followed Luo's mobility and diffusivity fluctuation model in the thermionic-emission-limited region and Hooge's empirical theory in the series-resistance-limited region. A low Hooge's constant ofmore » 1.4 × 10{sup −9} was found in the space-charge region. In the series-resistance-limited region, the Hooge's constant was 2.2 × 10{sup −5}. After annealing, the diode showed degradation in the electrical performance. The interface-trap-induced noise dominated the noise spectrum. By using the random walk model, the interface-trap density was obtained to be 3.6 × 10{sup 15 }eV{sup −1 }cm{sup −2}. This work provides a quantitative approach to analyze the properties of Pt-IGZO interfacial layers. These low noise properties are a prerequisite to the use of IGZO Schottky diodes in switch elements in memory devices, photosensors, and mixer diodes.« less

  6. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor

    PubMed Central

    Rusi; Chan, P. Y.; Majid, S. R.

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm-2. The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg-1 at current density of 1.85 Ag-1 in 0.5M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5M KOH and 0.5M KOH/0.04M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 103 Fg-1 and an energy density of 309 Whkg-1 in a 0.5MKOH/0.04MK3Fe(CN) 6 electrolyte at a current density of 10 Ag-1. The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications. PMID:26158447

  7. Layer by Layer Ex-Situ Deposited Cobalt-Manganese Oxide as Composite Electrode Material for Electrochemical Capacitor.

    PubMed

    Rusi; Chan, P Y; Majid, S R

    2015-01-01

    The composite metal oxide electrode films were fabricated using ex situ electrodeposition method with further heating treatment at 300°C. The obtained composite metal oxide film had a spherical structure with mass loading from 0.13 to 0.21 mg cm(-2). The structure and elements of the composite was investigated using X-ray diffraction (XRD) and energy dispersive X-ray (EDX). The electrochemical performance of different composite metal oxides was studied by cyclic voltammetry (CV) and galvanostatic charge-discharge (CD). As an active electrode material for a supercapacitor, the Co-Mn composite electrode exhibits a specific capacitance of 285 Fg(-1) at current density of 1.85 Ag(-1) in 0.5 M Na2SO4 electrolyte. The best composite electrode, Co-Mn electrode was then further studied in various electrolytes (i.e., 0.5 M KOH and 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolytes). The pseudocapacitive nature of the material of Co-Mn lead to a high specific capacitance of 2.2 x 10(3) Fg(-1) and an energy density of 309 Whkg(-1) in a 0.5 M KOH/0.04 M K3Fe(CN) 6 electrolyte at a current density of 10 Ag(-1). The specific capacitance retention obtained 67% of its initial value after 750 cycles. The results indicate that the ex situ deposited composite metal oxide nanoparticles have promising potential in future practical applications.

  8. Kinetic Monte Carlo simulations of water ice porosity: extrapolations of deposition parameters from the laboratory to interstellar space.

    PubMed

    Clements, Aspen R; Berk, Brandon; Cooke, Ilsa R; Garrod, Robin T

    2018-02-21

    Dust grains in cold, dense interstellar clouds build up appreciable ice mantles through the accretion and subsequent surface chemistry of atoms and molecules from the gas. These mantles, of thicknesses on the order of 100 monolayers, are primarily composed of H 2 O, CO, and CO 2 . Laboratory experiments using interstellar ice analogues have shown that porosity could be present and can facilitate diffusion of molecules along the inner pore surfaces. However, the movement of molecules within and upon the ice is poorly described by current chemical kinetics models, making it difficult either to reproduce the formation of experimental porous ice structures or to extrapolate generalized laboratory results to interstellar conditions. Here we use the off-lattice Monte Carlo kinetics model MIMICK to investigate the effects that various deposition parameters have on laboratory ice structures. The model treats molecules as isotropic spheres of a uniform size, using a Lennard-Jones potential. We reproduce experimental trends in the density of amorphous solid water (ASW) for varied deposition angle, rate and surface temperature; ice density decreases when the incident angle or deposition rate is increased, while increasing temperature results in a more-compact water ice. The models indicate that the density behaviour at higher temperatures (≥80 K) is dependent on molecular rearrangement resulting from thermal diffusion. To reproduce trends at lower temperatures, it is necessary to take account of non-thermal diffusion by newly-adsorbed molecules, which bring kinetic energy both from the gas phase and from their acceleration into a surface binding site. Extrapolation of the model to conditions appropriate to protoplanetary disks, in which direct accretion of water from the gas-phase may be the dominant ice formation mechanism, indicate that these ices may be less porous than laboratory ices.

  9. Metal coordination polymer derived mesoporous Co3O4 nanorods with uniform TiO2 coating as advanced anodes for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Geng, Hongbo; Ang, Huixiang; Ding, Xianguang; Tan, Huiteng; Guo, Guile; Qu, Genlong; Yang, Yonggang; Zheng, Junwei; Yan, Qingyu; Gu, Hongwei

    2016-01-01

    In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling.In this work, a one-dimensional Co3O4@TiO2 core-shell electrode material with superior electrochemical performance is fabricated by a convenient and controllable route. The approach involves two main steps: the homogeneous deposition of polydopamine and TiO2 layers in sequence on the cobalt coordination polymer and the thermal decomposition of the polymer matrix. The as-prepared electrode material can achieve excellent electrochemical properties and stability as an anode material for lithium ion batteries, such as a high specific capacity of 1279 mA h g-1, good cycling stability (around 803 mA h g-1 at a current density of 200 mA g-1 after 100 cycles), and stable rate performance (around 520 mA h g-1 at a current density of 1000 mA g-1). This dramatic electrochemical performance is mainly attributed to the excellent structural characteristics, which could improve the electrical conductivity and lithium ion mobility, as well as electrolyte permeability and architectural stability during cycling. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08570e

  10. Field-trip guide to Mount St. Helens, Washington - An overview of the eruptive history and petrology, tephra deposits, 1980 pyroclastic density current deposits, and the crater

    USGS Publications Warehouse

    Pallister, John S.; Clynne, Michael A.; Wright, Heather M.; Van Eaton, Alexa R.; Vallance, James W.; Sherrod, David R.; Kokelaar, B. Peter

    2017-08-02

    This field trip will provide an introduction to several fascinating features of Mount St. Helens. The trip begins with a rigorous hike of about 15 km from the Johnston Ridge Observatory (9 km north-northeast of the crater vent), across the 1980 Pumice Plain, to Windy Ridge (3.6 km northeast of the crater vent) to examine features that document the dynamics and progressive emplacement of pyroclastic flows. The next day, we examine classic tephra outcrops of the past 3,900 years and observe changes in thickness and character of these deposits as we traverse their respective lobes. We examine clasts in the deposits and discuss how the petrology and geochemistry of Mount St. Helens deposits reveal the evolution of the magmatic system through time. We also investigate the stratigraphy of the 1980 blast deposit and review the chronology of this iconic eruption as we travel through the remains of the blown-down forest. The third day is another rigorous hike, about 13 km round trip, climbing from the base of Windy Ridge (elevation 1,240 m) to the front of the Crater Glacier (elevation 1,700 m). En route we examine basaltic andesite and basalt lava flows emplaced between 1,800 and 1,700 years before present, a heterolithologic flow deposit produced as the 1980 blast and debris avalanche interacted, debris-avalanche hummocks that are stranded on the north flank and in the crater mouth, and shattered dacite lava domes that were emplaced between 3,900 and 2,600 years before present. These domes underlie the northern part of the volcano. In addition, within the crater we traverse well-preserved pyroclastic-flow deposits that were emplaced on the crater floor during the summer of 1980, and a beautiful natural section through the 1980 deposits in the upper canyon of the Loowit River.Before plunging into the field-trip log, we provide an overview of Mount St. Helens geology, geochemistry, petrology, and volcanology as background. The volcano has been referred to as a “master teacher.” The 1980 eruption and studies both before and after 1980 played a major role in the establishment of the modern U.S. Geological Survey Volcano Hazards Program and our understanding of flank collapses, debris avalanches, cryptodomes, blasts, pyroclastic density currents, and lahars, as well as the dynamics of magma ascent and eruption.

  11. Method of Fabrication of High Power Density Solid Oxide Fuel Cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2008-09-09

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O(LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  12. Mud deposit formation on the open coast of the larger Patos Lagoon-Cassino Beach system

    NASA Astrophysics Data System (ADS)

    Vinzon, S. B.; Winterwerp, J. C.; Nogueira, R.; de Boer, G. J.

    2009-03-01

    This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the -5 and -20 isobaths. Two hydrodynamic models of the larger Patos Lagoon-Cassino Beach system were calibrated against water elevation measured for a 5 months period, and against currents and salinity measured for a week period. The circulation patterns and water exchange through the mouth were analyzed as a function of local and remote wind effects, and river discharges. The remote wind effect mainly governs the quantity of water exchange with the Lagoon through its effect on mean sea level as a result of Ekman dynamics, while river discharges are important for the salinity of the exchanged water masses. Local winds augment the export-import rates by set-up and set-down within the Lagoon, but their effects are much smaller than those of the remote wind. Currents patterns on the inner Shelf during water outflow revealed a recirculation zone south of the Lagoon, induced by the local geometry and bathymetry of the system. This recirculation zone coincides with observed locations of mud deposition. Water, hence suspended sediment export occurs when remote and local winds are from the N-E, which explains why fine sediment deposits are mainly found south of the Lagoon's breakwater. A sensitivity analysis with the numerical model quantified the contribution of the various mechanisms driving the transport and fate of the fine suspended sediments, i.e. the effects of remote and local wind, of the astronomical tide, of river discharge and fresh-salt water-induced density currents, and of earth rotation. It is concluded that gravitational circulation and earth rotation affects the further dispersion of the deposits largely, whereas the remote wind effect has the largest influence on the amount of sediment released from the Lagoon. It is noted that this paper analyzes the initial deposition patterns induced by current effects only. However, in reality, these deposits are further redistributed over the Shelf by wave effects—these are subject of a next study on the sediment dynamics of the larger Patos Lagoon-Cassino Beach system.

  13. Development of a Contactless Technique for Electrodeposition and Porous Silicon Formation

    NASA Astrophysics Data System (ADS)

    Zhao, Mingrui

    One of the key active manufacturing technologies for 3D integration is through silicon vias (TSVs), which involves etching of deep vias in a silicon substrate that are filled with an electrodeposited metal, and subsequent removal of excess metal by chemical mechanical planarization (CMP). Electrodeposition often results in undesired voids in the TSV metal fill as well as a thick overburden layer. These via plating defects can severely degrade interconnect properties and lead to variation in via resistance, electrically open vias, and trapped plating chemicals that present a reliability hazard. Thick overburden layers result in lengthy and expensive CMP processing. We are proposing a technique that pursues a viable method of depositing a high quality metal inside vias with true bottom-up filling, using an additive-free deposition solution. The mechanism is based on a novel concept of electrochemical oxidation of backside silicon that releases electrons, and subsequent chemical etching of silicon dioxide for regeneration of the surface. Electrons are transported through the bulk silicon to the interface of the via bottom and the deposition solution, where the metal ions accept these electrons and electrodeposit resulting in the bottom-up filling of the large aspect ratio vias. With regions outside the vias covered bydielectric, no metal electrodeposition should occur in these regions. Our new bottom-up technique was initially examined and successfully demonstrated on blanket silicon wafers and shown to supply electrons to provide bottom-up filling advantage of through-hole plating and the depth tailorability of blind vias. We have also conducted a fundamental study that investigated the effect of various process parameters on the characteristics of deposited Cu and Ni and established correlations between metal filling properties and various electrochemical and solution variables. A copper sulfate solution with temperature of about 65°C was shown to be suitable for achieving stable and high values of current density that translated to copper deposition rates of 2.4 mum/min with good deposition uniformity. The importance of backside silicon oxidation and subsequent oxide etching on the kinetics of metal deposition on front side silicon has also been highlighted. Further, a process model was also developed to simulate the through silicon via copper filling process using conventional and contactless electrodeposition methods with no additives being used in the electrolyte solution. A series of electrochemical measurements were employed and integrated in the development of the comprehensive process simulator. The experimental data not only provided the necessary parameters for the model but also validated the simulation accuracy. From the simulation results, the "pinch-off" effect was observed for the additive-free conventional deposition process, which further causes partial filling and void formation. By contrast, a void-free filling with higher deposition rates was achieved by the use of the contactless technique. Moreover, experimental results of contactless electrodeposition on patterned wafers showed fast rate bottom-up filling ( 3.3 mum/min) in vias of 4 mum diameter and 50 mum depth (aspect ratio = 12.5) without void formation and no copper overburden in the regions outside the vias. Efforts were also made to extend the use of the contactless technique to other applications such as synthesis of porous silicon. We were able to fabricate porous silicon with a morphological gradient using a novel design of the experimental cell. The resulted porous silicon layers show a large distribution in porosity, pore size and depth along the radius of the samples. Symmetrical arrangements were attributed to decreasing current density radially inward on the silicon surface exposed to surfactant containing HF based etchant solution. The formation mechanism as well as morphological properties and their dependence on different process parameters has been investigated in detail. In the presence of surfactants, an increase in the distribution range of porosity, pore diameter and depth was observed by increasing HF concentration or lowering pH of the etchant solution, as the formation of pores was considered to be limited by the etch rates of silicon dioxide. Gradient porous silicon was also found to be successfully formulated both at high and low current densities. Interestingly, the morphological gradient was not developed when dimethyl sulfoxide (instead of surfactants) was used in etchant solution potentially due to limitations in the availability of oxidizing species at the silicon-etchant solution interface. In the last part of the dissertation, we have discussed the gradient bottom up filling of Cu in porous silicon substrates using the contactless electrochemical method. The radially symmetric current that gradually varied across the radius of the sample area was achieved by utilizing the modified cell design, which resulted in gradient filling in the vias. Effect of different deposition parameters such as applied current density, copper sulfate concentration and etching to deposition area ratio has been examined and discussed. (Abstract shortened by ProQuest.).

  14. Uniform hexagonal graphene flakes and films grown on liquid copper surface.

    PubMed

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-05-22

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm(2)), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density.

  15. Uniform hexagonal graphene flakes and films grown on liquid copper surface

    PubMed Central

    Geng, Dechao; Wu, Bin; Guo, Yunlong; Huang, Liping; Xue, Yunzhou; Chen, Jianyi; Yu, Gui; Jiang, Lang; Hu, Wenping; Liu, Yunqi

    2012-01-01

    Unresolved problems associated with the production of graphene materials include the need for greater control over layer number, crystallinity, size, edge structure and spatial orientation, and a better understanding of the underlying mechanisms. Here we report a chemical vapor deposition approach that allows the direct synthesis of uniform single-layered, large-size (up to 10,000 μm2), spatially self-aligned, and single-crystalline hexagonal graphene flakes (HGFs) and their continuous films on liquid Cu surfaces. Employing a liquid Cu surface completely eliminates the grain boundaries in solid polycrystalline Cu, resulting in a uniform nucleation distribution and low graphene nucleation density, but also enables self-assembly of HGFs into compact and ordered structures. These HGFs show an average two-dimensional resistivity of 609 ± 200 Ω and saturation current density of 0.96 ± 0.15 mA/μm, demonstrating their good conductivity and capability for carrying high current density. PMID:22509001

  16. Growing Platinum-Ruthenium-Tin ternary alloy nanoparticles on reduced graphene oxide for strong ligand effect toward enhanced ethanol oxidation reaction.

    PubMed

    Xia, Qing Qing; Zhang, Lian Ying; Zhao, Zhi Liang; Li, Chang Ming

    2017-11-15

    Uniform Pt 1 Ru 0.5 Sn 0.5 ternary alloy nanoparticles are in situ deposited on reduced graphene oxide (Pt 1 Ru 0.5 Sn 0.5 -RGO) through its functional groups and defects as nucleation sites to greatly electrocatalyze ethanol oxidation reaction for much higher mass current densities, larger apparent specific current densities and better stability than commercial Pt-C catalyst (Pt-C(commer)). Mechanistic studies indicate that the excellent electrocatalytic activity and anti-poisoning are resulted from a strong ligand effect of the ternary alloy components, in which the charge transfer is boosted while decreasing the density of states close to the Fermi level of Pt to reduce bond energy between Pt and CO-like adsorbates for greatly improved anti-poisoning ability. This work holds a great promise to fabricate a high performance anode catalyst with a low Pt loading for direct ethanol fuel cells. Copyright © 2017. Published by Elsevier Inc.

  17. Fabrication of Ta2O5/GeNx gate insulator stack for Ge metal-insulator-semiconductor structures by electron-cyclotron-resonance plasma nitridation and sputtering deposition techniques

    NASA Astrophysics Data System (ADS)

    Otani, Yohei; Itayama, Yasuhiro; Tanaka, Takuo; Fukuda, Yukio; Toyota, Hiroshi; Ono, Toshiro; Mitsui, Minoru; Nakagawa, Kiyokazu

    2007-04-01

    The authors have fabricated germanium (Ge) metal-insulator-semiconductor (MIS) structures with a 7-nm-thick tantalum pentaoxide (Ta2O5)/2-nm-thick germanium nitride (GeNx) gate insulator stack by electron-cyclotron-resonance plasma nitridation and sputtering deposition. They found that pure GeNx ultrathin layers can be formed by the direct plasma nitridation of the Ge surface without substrate heating. X-ray photoelectron spectroscopy revealed no oxidation of the GeNx layer after the Ta2O5 sputtering deposition. The fabricated MIS capacitor with a capacitance equivalent thickness of 4.3nm showed excellent leakage current characteristics. The interface trap density obtained by the modified conductance method was 4×1011cm-2eV-1 at the midgap.

  18. Direct fabrication of gas diffusion cathode by pulse electrodeposition for proton exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Hyanjoo; Choe, Seunghoe; Kim, Hoyoung; Kim, Dong-Kwon; Cho, GeonHee; Park, YoonSu; Jang, Jong Hyun; Ha, Don-Hyung; Ahn, Sang Hyun; Kim, Soo-Kil

    2018-06-01

    Pt catalysts for water electrolysis were prepared on carbon paper by using both direct current and pulse electrodeposition. Controlling the mass transfer of Pt precursor in the electrolyte by varying the deposition potential enables the formation of various Pt particle shapes such as flower-like and polyhedral particles. Further control of the deposition parameters for pulse electrodeposition resulted in changes to the particle size and density. In particular, the upper potential of pulse was found to be the critical parameter controlling the morphology of the particles and their catalytic activity. In addition to the typical electrochemical measurements, Pt samples deposited on carbon paper were used as cathodes for a proton exchange membrane water electrolyser. This single cell test revealed that our Pt particle samples have exceptional mass activity while being cost effective.

  19. Estimated global nitrogen deposition using NO2 column density

    USGS Publications Warehouse

    Lu, Xuehe; Jiang, Hong; Zhang, Xiuying; Liu, Jinxun; Zhang, Zhen; Jin, Jiaxin; Wang, Ying; Xu, Jianhui; Cheng, Miaomiao

    2013-01-01

    Global nitrogen deposition has increased over the past 100 years. Monitoring and simulation studies of nitrogen deposition have evaluated nitrogen deposition at both the global and regional scale. With the development of remote-sensing instruments, tropospheric NO2 column density retrieved from Global Ozone Monitoring Experiment (GOME) and Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) sensors now provides us with a new opportunity to understand changes in reactive nitrogen in the atmosphere. The concentration of NO2 in the atmosphere has a significant effect on atmospheric nitrogen deposition. According to the general nitrogen deposition calculation method, we use the principal component regression method to evaluate global nitrogen deposition based on global NO2 column density and meteorological data. From the accuracy of the simulation, about 70% of the land area of the Earth passed a significance test of regression. In addition, NO2 column density has a significant influence on regression results over 44% of global land. The simulated results show that global average nitrogen deposition was 0.34 g m−2 yr−1 from 1996 to 2009 and is increasing at about 1% per year. Our simulated results show that China, Europe, and the USA are the three hotspots of nitrogen deposition according to previous research findings. In this study, Southern Asia was found to be another hotspot of nitrogen deposition (about 1.58 g m−2 yr−1 and maintaining a high growth rate). As nitrogen deposition increases, the number of regions threatened by high nitrogen deposits is also increasing. With N emissions continuing to increase in the future, areas whose ecosystem is affected by high level nitrogen deposition will increase.

  20. N-Doped Porous Carbon Nanofibers/Porous Silver Network Hybrid for High-Rate Supercapacitor Electrode.

    PubMed

    Meng, Qingshi; Qin, Kaiqiang; Ma, Liying; He, Chunnian; Liu, Enzuo; He, Fang; Shi, Chunsheng; Li, Qunying; Li, Jiajun; Zhao, Naiqin

    2017-09-13

    A three-dimensional cross-linked porous silver network (PSN) is fabricated by silver mirror reaction using polymer foam as the template. The N-doped porous carbon nanofibers (N-PCNFs) are further prepared on PSN by chemical vapor deposition and treated by ammonia gas subsequently. The PSN substrate serving as the inner current collector will improve the electron transport efficiency significantly. The ammonia gas can not only introduce nitrogen doping into PCNFs but also increase the specific surface area of PCNFs at the same time. Because of its large surface area (801 m 2 /g), high electrical conductivity (211 S/cm), and robust structure, the as-constructed N-PCNFs/PSN demonstrates a specific capacitance of 222 F/g at the current density of 100 A/g with a superior rate capability of 90.8% of its initial capacitance ranging from 1 to 100 A/g while applied as the supercapacitor electrode. The symmetric supercapacitor device based on N-PCNFs/PSN displays an energy density of 8.5 W h/kg with power density of 250 W/kg and excellent cycling stability, which attains 103% capacitance retention after 10 000 charge-discharge cycles at a high current density of 20 A/g, which indicates that N-PCNFs/PSN is a promising candidate for supercapacitor electrode materials.

  1. Direct sampling during multiple sediment density flows reveals dynamic sediment transport and depositional environment in Monterey submarine canyon

    NASA Astrophysics Data System (ADS)

    Maier, K. L.; Gales, J. A.; Paull, C. K.; Gwiazda, R.; Rosenberger, K. J.; McGann, M.; Lundsten, E. M.; Anderson, K.; Talling, P.; Xu, J.; Parsons, D. R.; Barry, J.; Simmons, S.; Clare, M. A.; Carvajal, C.; Wolfson-Schwehr, M.; Sumner, E.; Cartigny, M.

    2017-12-01

    Sediment density flows were directly sampled with a coupled sediment trap-ADCP-instrument mooring array to evaluate the character and frequency of turbidity current events through Monterey Canyon, offshore California. This novel experiment aimed to provide links between globally significant sediment density flow processes and their resulting deposits. Eight to ten Anderson sediment traps were repeatedly deployed at 10 to 300 meters above the seafloor on six moorings anchored at 290 to 1850 meters water depth in the Monterey Canyon axial channel during 6-month deployments (October 2015 - April 2017). Anderson sediment traps include a funnel and intervalometer (discs released at set time intervals) above a meter-long tube, which preserves fine-scale stratigraphy and chronology. Photographs, multi-sensor logs, CT scans, and grain size analyses reveal layers from multiple sediment density flow events that carried sediment ranging from fine sand to granules. More sediment accumulation from sediment density flows, and from between flows, occurred in the upper canyon ( 300 - 800 m water depth) compared to the lower canyon ( 1300 - 1850 m water depth). Sediment accumulated in the traps during sediment density flows is sandy and becomes finer down-canyon. In the lower canyon where sediment directly sampled from density flows are clearly distinguished within the trap tubes, sands have sharp basal contacts, normal grading, and muddy tops that exhibit late-stage pulses. In at least two of the sediment density flows, the simultaneous low velocity and high backscatter measured by the ADCPs suggest that the trap only captured the collapsing end of a sediment density flow event. In the upper canyon, accumulation between sediment density flow events is twice as fast compared to the lower canyon; it is characterized by sub-cm-scale layers in muddy sediment that appear to have accumulated with daily to sub-daily frequency, likely related to known internal tidal dynamics also measured in the experiment. The comprehensive scale of the Monterey Coordinated Canyon Experiment allows us to integrate sediment traps with ADCP instrument data and seafloor core samples, which provides important new data to constrain how, when, and what sediment is transported through submarine canyons and how this is archived in seafloor deposits.

  2. III-V compound semiconductor growth on silicon via germanium buffer and surface passivation for CMOS technology

    NASA Astrophysics Data System (ADS)

    Choi, Donghun

    Integration of III-V compound semiconductors on silicon substrates has recently received much attention for the development of optoelectronic and high speed electronic devices. However, it is well known that there are some key challenges for the realization of III-V device fabrication on Si substrates: (i) the large lattice mismatch (in case of GaAs: 4.1%), and (ii) the formation of antiphase domain (APD) due to the polar compound semiconductor growth on non-polar elemental structure. Besides these growth issues, the lack of a useful surface passivation technology for compound semiconductors has precluded development of metal-oxide-semiconductor (MOS) devices and causes high surface recombination parasitics in scaled devices. This work demonstrates the growth of high quality III-V materials on Si via an intermediate Ge buffer layer and some surface passivation methods to reduce interface defect density for the fabrication of MOS devices. The initial goal was to achieve both low threading dislocation density (TDD) and low surface roughness on Ge-on-Si heterostructure growth. This was achieved by repeating a deposition-annealing cycle consisting of low temperature deposition + high temperature-high rate deposition + high temperature hydrogen annealing, using reduced-pressure chemical-vapor deposition (CVD). We then grew III-V materials on the Ge/Si virtual substrates using molecular-beam epitaxy (MBE). The relationship between initial Ge surface configuration and antiphase boundary formation was investigated using surface reflection high-energy electron diffraction (RHEED) patterns and atomic force microscopy (AFM) image analysis. In addition, some MBE growth techniques, such as migration enhanced epitaxy (MEE) and low temperature GaAs growth, were adopted to improve surface roughness and solve the Ge self-doping problem. Finally, an Al2O3 gate oxide layer was deposited using atomic-layer-deposition (ALD) system after HCl native oxide etching and ALD in-situ pre-annealing at 400 °C. A 100 nm thick aluminum layer was deposited to form the gate contact for a MOS device fabrication. C-V measurement results show very small frequency dispersion and 200-300 mV hysteresis, comparable to our best results for InGaAs/GaAs MOS structures on GaAs substrate. Most notably, the quasi-static C-V curve demonstrates clear inversion layer formation. I-V curves show a reasonable leakage current level. The inferred midgap interface state density, Dit, of 2.4 x 1012 eV-1cm-2 was calculated by combined high-low frequency capacitance method. In addition, we investigated the interface properties of amorphous LaAlO 3/GaAs MOS capacitors fabricated on GaAs substrate. The surface was protected during sample transfer between III-V and oxide molecular beam deposition (MBD) chambers by a thick arsenic-capping layer. An annealing method, a low temperature-short time RTA followed by a high temperature RTA, was developed, yielding extremely small hysteresis (˜ 30 mV), frequency dispersion (˜ 60 mV), and interface trap density (mid 1010 eV-1cm -2). We used capacitance-voltage (C-V) and current-voltage (I-V) measurements for electrical characterization of MOS devices, tapping-mode AFM for surface morphology analysis, X-ray photoelectron spectroscopy (XPS) for chemical elements analysis of interface, cross section transmission-electron microscopy (TEM), X-ray diffraction (XRD), secondary ion mass spectrometry (SIMS), and photoluminescence (PL) measurement for film quality characterization. This successful growth and appropriate surface treatments of III-V materials provides a first step for the fabrication of III-V optical and electrical devices on the same Si-based electronic circuits.

  3. The improvement of retention time of metal-ferroelectric (PbZr0.53Ti0.47O3)-insulator (ZrO2)-semiconductor transistors and capacitors by leakage current reduction using surface treatment

    NASA Astrophysics Data System (ADS)

    Shih, Wen-Chieh; Kang, Kun-Yung; Lee, Joseph Ya-Min

    2007-11-01

    Metal-ferroelectric-insulator-semiconductor transistors (MFISFETs) and capacitors with the structure of Al /Pb (Zr0.53,Ti0.47) O3/ZrO2/Si were fabricated. The wafers were pretreated with H2O2 before ZrO2 deposition and/or post-treated with HCl after ZrO2 deposition. The leakage current density at 5V is reduced from 10-1to5×10-6A /cm2. The subthreshold slope was improved to 91mV/decade. The MFISFETs maintain a threshold voltage window of about 1.1V after an elapsed time of 3000s. The mobility is 267cm2/Vs. The improvements are most likely due to the reduction of interfacial layer thickness and the interface states at the ZrO2/Si interface.

  4. Electrical hysteresis in p-GaN metal-oxide-semiconductor capacitor with atomic-layer-deposited Al2O3 as gate dielectric

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liao, Meiyong; Imura, Masataka; Nabatame, Toshihide; Ohi, Akihiko; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-12-01

    The electrical hysteresis in current-voltage (I-V) and capacitance-voltage characteristics was observed in an atomic-layer-deposited Al2O3/p-GaN metal-oxide-semiconductor capacitor (PMOSCAP). The absolute minimum leakage currents of the PMOSCAP for forward and backward I-V scans occurred not at 0 V but at -4.4 and +4.4 V, respectively. A negative flat-band voltage shift of 5.5 V was acquired with a capacitance step from +4.4 to +6.1 V during the forward scan. Mg surface accumulation on p-GaN was demonstrated to induce an Mg-Ga-Al-O oxidized layer with a trap density on the order of 1013 cm-2. The electrical hysteresis is attributed to the hole trapping and detrapping process in the traps of the Mg-Ga-Al-O layer via the Poole-Frenkel mechanism.

  5. Impact of hydrogen dilution on optical properties of intrinsic hydrogenated amorphous silicon films prepared by high density plasma chemical vapor deposition for solar cell applications

    NASA Astrophysics Data System (ADS)

    Chen, Huai-Yi; Lee, Yao-Jen; Chang, Chien-Pin; Koo, Horng-Show; Lai, Chiung-Hui

    2013-01-01

    P-i-n single-junction hydrogenated amorphous silicon (a-Si:H) thin film solar cells were successfully fabricated in this study on a glass substrate by high density plasma chemical vapor deposition (HDP-CVD) at low power of 50 W, low temperature of 200°C and various hydrogen dilution ratios (R). The open circuit voltage (Voc ), short circuit current density (Jsc ), fill factor (FF) and conversion efficiency (η) of the solar cell as well as the refractive index (n) and absorption coefficient (α) of the i-layer at 600 nm wavelength rise with increasing R until an abrupt drop at high hydrogen dilution, i.e. R > 0.95. However, the optical energy bandgap (Eg ) of the i-layer decreases with the R increase. Voc and α are inversely correlated with Eg . The hydrogen content affects the i-layer and p/i interface quality of the a-Si:H thin film solar cell with an optimal value of R = 0.95, which corresponds to solar cell conversion efficiency of 3.85%. The proposed a-Si:H thin film solar cell is expected to be improved in performance.

  6. Microstructure Characteristics of High Lift Factor MOCVD REBCO Coated Conductors With High Zr Content

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galstyan, E; Gharahcheshmeh, MH; Delgado, L

    We report the microstructural characteristics of high levels of Zr-added REBa2Cu3O7-x (RE = Gd, Y rare earth) coated conductors fabricated by Metal Organic Chemical Vapor Deposition (MOCVD). The enhancements of the lift factor defined as a ratio of the in-field (3 T, B parallel to c-axis) critical current density (J(c)) at 30 K and self-field J(c) at 77 K have been achieved for Zr addition levels of 20 and 25 mol% via optimization of deposition parameters. The presence of strong flux pinning is attributed to the aligned nanocolumns of BaZrO3 and nanoprecipitates embedded in REBa2Cu3O7-x matrix with good crystal quality.more » A high density of BZO nanorods with a typical size 6-8 nm and spacing of 20 nm has been observed. Moreover, the high Zr content was found to induce a high density of intrinsic defects, including stacking faults and dislocations. The correlation between in-field performance along the c-axis and microstructure of (Gd, Y) BCO film with a high level of Zr addition is discussed.« less

  7. Study of corrosion behavior on the addition of sodium citrate in nickel electroplating on SPCC steel using EIS

    NASA Astrophysics Data System (ADS)

    Riastuti, R.; Ramadini, C.; Siallagan, S. T.; Rifki, A.; Herdino, F.

    2018-04-01

    The addition of sodium citrate to nickel electroplating process as additive is useful for refining the grain size of nickel deposit. The refining of grain size in nickel deposit as coating layer can improve surface performance, one of which corrosion resistance. This paper aims to investigate the effect of sodium citrate addition as grain refiner to promote corrosion resistance on SPCC steel. This experiment used Watt’s Bath solution of NiSO4 300 g/L, NiCl4 45 g/L, H3BO3 60 g/L, wetting agent 0.2 cc/L. Sodium citrate was added in composition of 45g/L and 60g/L. Nickel were deposited by direct current using current density on 6 A/dm2 at the acidity level of 5 for 30 minutes by keeping the operating temperature stable at 50°C. The grain size of nickel deposit was observed through Optical Microscope and Atomic Force Microscope (AFM). The corrosion behavior of SPCC was observed by linear polarization and Electrochemical Impedance Spectroscopy (EIS) methods using 3% NaCl solution. Based on the research, the addition of sodium citrate as grain refiner will increasing corrosion resistance on SPCC steel from 0.35 to 0.05 mm/year.

  8. Engineering hierarchical ultrathin CuCo2O4 nanosheets array on Ni foam by rapid electrodeposition method toward high-performance binder-free supercapacitors

    NASA Astrophysics Data System (ADS)

    Abbasi, Laleh; Arvand, Majid

    2018-07-01

    In the present work, we engineer hierarchical ultrathin CuCo2O4 nanosheets arrays on Ni foam through a facile, controllable and low-cost electrodeposition method by controlling deposition time and adjusting precursor's type, as a binder-free electrode for high performance supercapacitors. The effects of deposition time and types of precursors on the morphology of the as-prepared electrodes were investigated by X-ray diffraction, energy dispersive X-ray analysis, field-emission scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. As a results, the CuCo2O4 electrode prepared by nitrate salts at the deposition time of 10 min, includes the most uniform and ultrathin nanosheet arrays and exhibits the highest capacitance performance, such as ultrahigh specific capacitance of 1330 F g-1 at 2 A g-1 with 70% capacitance retention (938 F g-1) at ultrahigh current density of 60 A g-1, excellent cycling stability of 93.6% capacitance retention after 5000CD cycles and the maximum energy density of 29.55 Wh kg-1 at the power density of 0.4 kW kg-1. These superior electrochemical performances have been attributed to its unique structures with direct connected ultrathin nanosheets on the surface of Ni foam and abundant pores provide large electroactive sites for electrochemical reactions, as well as facile electron, ion transport and high electrical conductivity.

  9. Fully-flexible supercapacitors using spray-deposited carbon-nanotube films as electrodes

    NASA Astrophysics Data System (ADS)

    Lee, Churl Seung; Bae, Joonho

    2013-12-01

    Fully-flexible carbon-nanotube-based supercapacitors were successfully fabricated using a spray method. For electrodes, multiwalled carbon-nanotube films sprayed on polyethylene terephthalate (PET) substrates were employed. Thin Al films on PET were used as current collectors. The electrolyte was 1 M KNO3. Cyclic voltammetry and galvanostatic charge-discharge measurements on the flexible supercapacitors revealed that the area-specific capacitance was 0.11 mF/cm2. Electrochemical impedance spectroscopy of the supercapacitors resulted in a low internal resistance (3.7 Ω). The energy density and the power density of the flexible supercapacitor were measured to be 3.06 × 10-8 Wh/cm2 and 2.65 × 10-7 W/cm2, respectively. The Bode | z| and phase-angle plots showed that the supercapacitors functioned close to ideal capacitors at the frequencies near 2 kHz. These results indicate that the spray deposition method of carbon nanotubes could be promising for fabricating flexible energy devices or electronics.

  10. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  11. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  12. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  13. Electrodeposition of Isolated Platinum Atoms and Clusters on Bismuth-Characterization and Electrocatalysis.

    PubMed

    Zhou, Min; Dick, Jeffrey E; Bard, Allen J

    2017-12-06

    We describe a method for the electrodeposition of an isolated single Pt atom or small cluster, up to 9 atoms, on a bismuth ultramicroelectrode (UME). This deposition was immediately followed by electrochemical characterization via the hydrogen evolution reaction (HER) that occurs readily on the electrodeposited Pt but not on Bi. The observed voltammetric current plateau, even for a single atom, which behaves as an electrode, allows the estimation of deposit size. Pt was plated from solutions of femtomolar PtCl 6 2- , which allowed precise control of the arrival of ions and thus the plating rate on the Bi UME, to one ion every few seconds. This allowed the atom-by-atom fabrication of isolated platinum deposits, ranging from single atoms to 9-atom clusters. The limiting currents in voltammetry gave the size and number of atoms of the clusters. Given the stochasticity of the plating process, we show that the number of atoms plated over a given time (10 and 20 s) follows a Poisson distribution. Taking the potential at a certain current density as a measure of the relative rate of the HER, we found that the potential shifted positively as the size increased, with single atoms showing the largest overpotentials compared to bulk Pt.

  14. Correlations between properties and applications of the CVD amorphous silicon carbide films

    NASA Astrophysics Data System (ADS)

    Kleps, Irina; Angelescu, Anca

    2001-12-01

    The aim of this paper is to emphasise the correlation between film preparation conditions, film properties and their applications. Low pressure chemical vapour deposition amorphous silicon carbide (a-SiC) and silicon carbonitride (SiCN) films obtained from liquid precursors have different structure and composition depending on deposition conditions. Thus, the films deposited under kinetic working conditions reveal a stable structure and composition. Deposition at moderate temperature leads to stoichiometric SiC, while the films deposited at high temperatures have a composition closer to Si 1- xC x, with x=0.75. These films form a very reactive interface with metallic layers. The films realised under kinetic working regime can be used in Si membrane fabrication process or as coating films for field emission applications. SiC layers field emission properties were investigated; the field emission current density of the a-SiC/Si structures was 2.4 mA/cm 2 at 25 V/μm. An Si membrane technology based on moderate temperatures (770-850 °C) a-SiC etching mask is presented.

  15. Parameters influencing the deposition of methylammonium lead halide iodide in hole conductor free perovskite-based solar cells

    NASA Astrophysics Data System (ADS)

    Cohen, Bat-El; Gamliel, Shany; Etgar, Lioz

    2014-08-01

    Perovskite is a promising light harvester for use in photovoltaic solar cells. In recent years, the power conversion efficiency of perovskite solar cells has been dramatically increased, making them a competitive source of renewable energy. An important parameter when designing high efficiency perovskite-based solar cells is the perovskite deposition, which must be performed to create complete coverage and optimal film thickness. This paper describes an in-depth study on two-step deposition, separating the perovskite deposition into two precursors. The effects of spin velocity, annealing temperature, dipping time, and methylammonium iodide concentration on the photovoltaic performance are studied. Observations include that current density is affected by changing the spin velocity, while the fill factor changes mainly due to the dipping time and methylammonium iodide concentration. Interestingly, the open circuit voltage is almost unaffected by these parameters. Hole conductor free perovskite solar cells are used in this work, in order to minimize other possible effects. This study provides better understanding and control over the perovskite deposition through highly efficient, low-cost perovskite-based solar cells.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, J.J.

    The effects on the properties of Ta/sub 2/O/sub 5/, Al/sub 2/O/sub 3/, SiO/sub 2/ and HfO/sub 2/ single- and multi-layer optical coatings deposited using ion-assisted deposition (IAD) were investigated. IAD is a novel deposition technique which utilizes a separate ion source to direct a beam of ions at the growing film. A Kaufman ion source was used to provide a monoenergetic, neutralized beam of oxygen ions independent of the material evaporation process. The optical and physical properties, as well as laser induced damage threshold (LIDT) values, were studied for coatings bombarded with 200, 300, 500 and 1000 eV oxygen ionsmore » at values of current density from 0 to 200 microAmp/sq cm. IAD was successfully applied to deposit coatings at low temperature on heavy metal fluoride (HMF) glass substrates. The coatings deposited using IAD were hard and dense. The IAD coatings improved the durability and abrasion resistance of the HMF glass substrates. The results of this investigation show that IAD can be used to improve the optical and physical properties of optical coatings.« less

  17. Effect of Zn(NO3)2 concentration in hydrothermal-electrochemical deposition on morphology and photoelectrochemical properties of ZnO nanorods

    NASA Astrophysics Data System (ADS)

    Yilmaz, Ceren; Unal, Ugur

    2016-04-01

    Zn(NO3)2 concentration had been reported to be significantly influential on electrodeposition of ZnO structures. In this work, this issue is revisited using hydrothermal-electrochemical deposition (HED). Seedless, cathodic electrochemical deposition of ZnO films is carried out on ITO electrode at 130 °C in a closed glass reactor with varying Zn(NO3)2 concentration. Regardless of the concentration of Zn2+ precursor (0.001-0.1 M) in the deposition solution, vertically aligned 1-D ZnO nanorods are obtained as opposed to electrodepositions at lower temperatures (70-80 °C). We also report the effects of high bath temperature and pressure on the photoelectrochemical properties of the ZnO films. Manipulation of precursor concentration in the deposition solution allows adjustment of the aspect ratio of the nanorods and the degree of texturation along the c-axis; hence photoinduced current density. HED is shown to provide a single step synthesis route to prepare ZnO rods with desired aspect ratio specific for the desired application just by controlling the precursor concentration.

  18. Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules

    NASA Astrophysics Data System (ADS)

    Ràfols-Ribé, Joan; Dettori, Riccardo; Ferrando-Villalba, Pablo; Gonzalez-Silveira, Marta; Abad, Llibertat; Lopeandía, Aitor F.; Colombo, Luciano; Rodríguez-Viejo, Javier

    2018-03-01

    Vapor deposited organic glasses are currently in use in many optoelectronic devices. Their operation temperature is limited by the glass transition temperature of the organic layers and thermal management strategies become increasingly important to improve the lifetime of the device. Here we report the unusual finding that molecular orientation heavily influences heat flow propagation in glassy films of small molecule organic semiconductors. The thermal conductivity of vapor deposited thin-film semiconductor glasses is anisotropic and controlled by the deposition temperature. We compare our data with extensive molecular dynamics simulations to disentangle the role of density and molecular orientation on heat propagation. Simulations do support the view that thermal transport along the backbone of the organic molecule is strongly preferred with respect to the perpendicular direction. This is due to the anisotropy of the molecular interaction strength that limits the transport of atomic vibrations. This approach could be used in future developments to implement small molecule glassy films in thermoelectric or other organic electronic devices.

  19. Investigation of microstructural and electrical properties of composition dependent co-sputtered Hf1-x Ta x O2 thin films

    NASA Astrophysics Data System (ADS)

    Das, K. C.; Tripathy, N.; Ghosh, S. P.; Mohanta, S. K.; Nakamura, A.; Kar, J. P.

    2017-11-01

    Tantalum doped HfO2 gate dielectric thin films were deposited on silicon substrates using RF reactive co-sputtering by varying RF power of Ta target from 15 W to 90 W. The morphological, compositional and electrical properties of Hf1-x Ta x O2 films were systematically investigated. The Ta content was found to be increased up to 21% for a Ta target power of 90 W. The evolution of monoclinic phase of Hf1-x Ta x O2 was seen from XRD study upto RF power of 60 W and afterwards, the amorphous like behaviour is appeared. The featureless smooth surface with the decrease in granular morphology has been observed from FESEM micrographs of the doped films at higher RF powers of Ta. The flatband voltage is found to be shifted towards negative voltage in the capacitance-voltage plot, which was attributed to the enhancement in positive oxide charge density with rise in RF power. The interface charge density has a minimum value of 7.85  ×  1011 eV-1 cm-2 for the film deposited at Ta RF power of 75 W. The Hf1-x Ta x O2 films deposited at Ta target RF power of 90 W has shown lower leakage current. The high on/off ratio of the current during the set process in Hf1-x Ta x O2 based memristors is found suitable for bipolar resistive switching memory device applications.

  20. Atomic-layer-deposited Al2O3 and HfO2 on InAlAs: A comparative study of interfacial and electrical characteristics

    NASA Astrophysics Data System (ADS)

    Wu, Li-Fan; Zhang, Yu-Ming; Lv, Hong-Liang; Zhang, Yi-Men

    2016-10-01

    Al2O3 and HfO2 thin films are separately deposited on n-type InAlAs epitaxial layers by using atomic layer deposition (ALD). The interfacial properties are revealed by angle-resolved x-ray photoelectron spectroscopy (AR-XPS). It is demonstrated that the Al2O3 layer can reduce interfacial oxidation and trap charge formation. The gate leakage current densities are 1.37 × 10-6 A/cm2 and 3.22 × 10-6 A/cm2 at +1 V for the Al2O3/InAlAs and HfO2/InAlAs MOS capacitors respectively. Compared with the HfO2/InAlAs metal-oxide-semiconductor (MOS) capacitor, the Al2O3/InAlAs MOS capacitor exhibits good electrical properties in reducing gate leakage current, narrowing down the hysteresis loop, shrinking stretch-out of the C-V characteristics, and significantly reducing the oxide trapped charge (Q ot) value and the interface state density (D it). Project supported by the National Basic Research Program of China (Grant No. 2010CB327505), the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advance Research Project, China (Grant No. 513xxxxx306), the National Natural Science Foundation of China (Grant No. 51302215), the Scientific Research Program Funded by Shaanxi Provincial Education Department, China (Grant No. 14JK1656), and the Science and Technology Project of Shaanxi Province, China (Grant No. 2016KRM029).

  1. From hot rocks to glowing avalanches: Numerical modelling of gravity-induced pyroclastic density currents and hazard maps at the Stromboli volcano (Italy)

    NASA Astrophysics Data System (ADS)

    Salvatici, Teresa; Di Roberto, Alessio; Di Traglia, Federico; Bisson, Marina; Morelli, Stefano; Fidolini, Francesco; Bertagnini, Antonella; Pompilio, Massimo; Hungr, Oldrich; Casagli, Nicola

    2016-11-01

    Gravity-induced pyroclastic density currents (PDCs) can be produced by the collapse of volcanic crater rims or due to the gravitational instability of materials deposited in proximal areas during explosive activity. These types of PDCs, which are also known as ;glowing avalanches;, have been directly observed, and their deposits have been widely identified on the flanks of several volcanoes that are fed by mafic to intermediate magmas. In this research, the suitability of landslide numerical models for simulating gravity-induced PDCs to provide hazard assessments was tested. This work also presents the results of a back-analysis of three events that occurred in 1906, 1930 and 1944 at the Stromboli volcano by applying a depth-averaged 3D numerical code named DAN-3D. The model assumes a frictional internal rheology and a variable basal rheology (i.e., frictional, Voellmy and plastic). The numerical modelling was able to reproduce the gravity-induced PDCs' extension and deposit thicknesses to an order of magnitude of that reported in the literature. The best results when compared with field data were obtained using a Voellmy model with a frictional coefficient of f = 0.19 and a turbulence parameter ξ = 1000 m s- 1. The results highlight the suitability of this numerical code, which is generally used for landslides, to reproduce the destructive potential of these events in volcanic environments and to obtain information on hazards connected with explosive-related, mass-wasting phenomena in Stromboli Island and at volcanic systems characterized by similar phenomena.

  2. Preliminary report on the July 10-11, 2015 eruption at Volcán de Colima: Pyroclastic density currents with exceptional runouts and volume

    NASA Astrophysics Data System (ADS)

    Capra, L.; Macías, J. L.; Cortés, A.; Dávila, N.; Saucedo, R.; Osorio-Ocampo, S.; Arce, J. L.; Gavilanes-Ruiz, J. C.; Corona-Chávez, P.; García-Sánchez, L.; Sosa-Ceballos, G.; Vázquez, R.

    2016-01-01

    On July 10-11, 2015 an eruption occurred at Colima volcano produced 10.5 km long pyroclastic density currents (PDCs) along the Montegrande, and 6.5 km long along the San Antonio ravines. The summit dome was destroyed and a new crater excavated and breached to the south. This new breach connects to a narrow channel that descends along Colima's southern flank and was used by a subsequent lava flow. The Montegrande PDCs represent the longest and hottest flow of this type recorded during the past 30 years but are still smaller in comparison to the 15-km long PDCs produced during the 1913 Plinian eruption. Data obtained from field reconnaissance, lahar monitoring stations, and satellite imagery suggest that at least six PDCs occurred. The two largest PDCs (H/L 0.2) were able to surmount topographic barriers or bends. Based on field reconnaissance and digital elevation models extracted from SPOT satellite imageries we estimate a minimum volume for the valley-pond and distal fan deposits of 4.5 × 106 m3. After one week, the deposits were still hot with burning trees on the surface and millimeter-sized holes from which fumes were emanating. The juvenile components of the deposits consist of gray dense blocks and vesicular dark-gray blocks and bombs with bread-crust textures and cooling joints. The mineral association of these rocks consists of plagioclase + clinopyroxene + orthopyroxene + FeTi-oxides ± olivine and resorbed hornblende in a dark glassy matrix that corresponds to an andesitic composition.

  3. Samaria-doped Ceria Modified Ni/YSZ Anode for Direct Methane Fuel in Tubular Solid Oxide Fuel Cells by Impregnation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Long-shan; Gao, Jian-feng; Tian, Rui-fen; Xia, Chang-rong

    2009-08-01

    A porous NiO/yttria-stabilized zirconia anode substrate for tubular solid oxide fuel cells was prepared by gel casting technique. Nano-scale samaria-doped ceria (SDC) particles were formed onto the anode substrate to modify the anode microstructure by the impregnation of solution of Sm(NO3)3 and Ce(NO3)3. Electrochemical impedance spectroscopy, current-voltage and current-powder curves of the cells were measured using an electrochemical workstation. Scanning electron microcopy was used to observe the microstructure. The results indicate that the stability of the performance of the cell operated on humidified methane can be significantly improved by incorporating the nano-structured SDC particles, compared with the unmodified cell. This verifies that the coated SDC electrodes are very effective in suppressing catalytic carbon formation by blocking methane from approaching the Ni, which is catalytically active towards methane pyrolysis. In addition, it was found that a small amount of deposited carbon is beneficial to the performance of the anode. The cell showed a peak power density of 225 mW/cm2 when it was fed with H2 fuel at 700 °C, but the power density increased to 400 mW/cm2 when the fuel was switched from hydrogen to methane at the same flow rate. Methane conversion achieved about 90%, measured by gas chromatogram with a 10.0 mL/min flow rate of fuel at 700 °C. Although the carbon deposition was not suppressed absolutely, some deposited carbon was beneficial for performance improvement.

  4. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions

    PubMed Central

    Tikekar, Mukul D.; Archer, Lynden A.; Koch, Donald L.

    2016-01-01

    Ion transport–driven instabilities in electrodeposition of metals that lead to morphological instabilities and dendrites are receiving renewed attention because mitigation strategies are needed for improving rechargeability and safety of lithium batteries. The growth rate of these morphological instabilities can be slowed by immobilizing a fraction of anions within the electrolyte to reduce the electric field at the metal electrode. We analyze the role of elastic deformation of the solid electrolyte with immobilized anions and present theory combining the roles of separator elasticity and modified transport to evaluate the factors affecting the stability of planar deposition over a wide range of current densities. We find that stable electrodeposition can be easily achieved even at relatively high current densities in electrolytes/separators with moderate polymer-like mechanical moduli, provided a small fraction of anions are immobilized in the separator. PMID:27453943

  5. Investigation of vapor-deposited amorphous ice and irradiated ice by molecular dynamics simulation.

    PubMed

    Guillot, Bertrand; Guissani, Yves

    2004-03-01

    With the purpose of clarifying a number of points raised in the experimental literature, we investigate by molecular dynamics simulation the thermodynamics, the structure and the vibrational properties of vapor-deposited amorphous ice (ASW) as well as the phase transformations experienced by crystalline and vitreous ice under ion bombardment. Concerning ASW, we have shown that by changing the conditions of the deposition process, it is possible to form either a nonmicroporous amorphous deposit whose density (approximately 1.0 g/cm3) is essentially invariant with the temperature of deposition, or a microporous sample whose density varies drastically upon temperature annealing. We find that ASW is energetically different from glassy water except at the glass transition temperature and above. Moreover, the molecular dynamics simulation shows no evidence for the formation of a high-density phase when depositing water molecules at very low temperature. In order to model the processing of interstellar ices by cosmic ray protons and heavy ions coming from the magnetospheric radiation environment around the giant planets, we bombarded samples of vitreous ice and cubic ice with 35 eV water molecules. After irradiation the recovered samples were found to be densified, the lower the temperature, the higher the density of the recovered sample. The analysis of the structure and vibrational properties of this new high-density phase of amorphous ice shows a close relationship with those of high-density amorphous ice obtained by pressure-induced amorphization. Copyright 2004 American Institute of Physics

  6. Magnetron sputtering system for coatings deposition with activation of working gas mixture by low-energy high-current electron beam

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Kamenetskikh, A. S.; Men'shakov, A. I.; Bureyev, O. A.

    2015-11-01

    For the purposes of efficient decomposition and ionization of the gaseous mixtures in a system for coatings deposition using reactive magnetron sputtering, a low-energy (100-200 eV) high-current electron beam is generated by a grid-stabilized plasma electron source. The electron source utilizes both continuous (up to 20 A) and pulse-periodic mode of discharge with a self-heated hollow cathode (10-100 A; 0.2 ms; 10-1000 Hz). The conditions for initiation and stable burning of the high-current pulse discharge are studied along with the stable generation of a low-energy electron beam within the gas pressure range of 0.01 - 1 Pa. It is shown that the use of the electron beam with controllable parameters results in reduction of the threshold values both for the pressure of gaseous mixture and for the fluxes of molecular gases. Using such a beam also provides a wide range (0.1-10) of the flux density ratios of ions and sputtered atoms over the coating surface, enables an increase in the maximum pulse density of ion current from plasma up to 0.1 A, ensures an excellent adhesion, optimizes the coating structure, and imparts improved properties to the superhard nanocomposite coatings of (Ti,Al)N/a-Si3N4 and TiC/-a-C:H. Mass-spectrometric measurements of the beam-generated plasma composition proved to demonstrate a twofold increase in the average concentration of N+ ions in the Ar-N2 plasma generated by the high-current (100 A) pulsed electron beam, as compared to the dc electron beam.

  7. Al-C hybrid nanoclustered anodes for lithium ion batteries with high electrical capacity and cyclic stability.

    PubMed

    Park, Ji Hun; Hudaya, Chairul; Kim, A-Young; Rhee, Do Kyung; Yeo, Seon Ju; Choi, Wonchang; Yoo, Pil J; Lee, Joong Kee

    2014-03-18

    Structurally regulated and hybridized Al-C nanoclusters are prepared from C60 and Al precursors by thermal evaporation-combined plasma-enhanced chemical vapour deposition. The resulting Al-C hybrid nanoclustered anodes for Li-ion batteries exhibit a high reversible capacity of >900 mA h g(-1) at an optimized current density of 6 A g(-1) for over 100 cycles.

  8. Reconstructing the deadly eruptive events of 1790 CE at Kīlauea Volcano, Hawai‘i

    USGS Publications Warehouse

    Swanson, Don; Weaver, Samantha J; Houghton, Bruce F.

    2014-01-01

    A large number of people died during an explosive eruption of Kīlauea Volcano in 1790 CE. Detailed study of the upper part of the Keanakāko‘i Tephra has identified the deposits that may have been responsible for the deaths. Three successive units record shifts in eruption style that agree well with accounts of the eruption based on survivor interviews 46 yr later. First, a wet fall of very fine, accretionary-lapilli–bearing ash created a “cloud of darkness.” People walked across the soft deposit, leaving footprints as evidence. While the ash was still unconsolidated, lithic lapilli fell into it from a high eruption column that was seen from 90 km away. Either just after this tephra fall or during its latest stage, pulsing dilute pyroclastic density currents, probably products of a phreatic eruption, swept across the western flank of Kīlauea, embedding lapilli in the muddy ash and crossing the trail along which the footprints occur. The pyroclastic density currents were most likely responsible for the fatalities, as judged from the reported condition and probable location of the bodies. This reconstruction is relevant today, as similar eruptions will probably occur in the future at Kīlauea and represent its most dangerous and least predictable hazard.

  9. The Study of Electrical Properties for Multilayer La2O3/Al2O3 Dielectric Stacks and LaAlO3 Dielectric Film Deposited by ALD.

    PubMed

    Feng, Xing-Yao; Liu, Hong-Xia; Wang, Xing; Zhao, Lu; Fei, Chen-Xi; Liu, He-Lei

    2017-12-01

    The capacitance and leakage current properties of multilayer La 2 O 3 /Al 2 O 3 dielectric stacks and LaAlO 3 dielectric film are investigated in this paper. A clear promotion of capacitance properties is observed for multilayer La 2 O 3 /Al 2 O 3 stacks after post-deposition annealing (PDA) at 800 °C compared with PDA at 600 °C, which indicated the recombination of defects and dangling bonds performs better at the high-k/Si substrate interface for a higher annealing temperature. For LaAlO 3 dielectric film, compared with multilayer La 2 O 3 /Al 2 O 3 dielectric stacks, a clear promotion of trapped charges density (N ot ) and a degradation of interface trap density (D it ) can be obtained simultaneously. In addition, a significant improvement about leakage current property is observed for LaAlO 3 dielectric film compared with multilayer La 2 O 3 /Al 2 O 3 stacks at the same annealing condition. We also noticed that a better breakdown behavior for multilayer La 2 O 3 /Al 2 O 3 stack is achieved after annealing at a higher temperature for its less defects.

  10. GaAs metal-oxide-semiconductor based non-volatile flash memory devices with InAs quantum dots as charge storage nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, Sk Masiul, E-mail: masiulelt@gmail.com; Chowdhury, Sisir; Sarkar, Krishnendu

    2015-06-24

    Ultra-thin InP passivated GaAs metal-oxide-semiconductor based non-volatile flash memory devices were fabricated using InAs quantum dots (QDs) as charge storing elements by metal organic chemical vapor deposition technique to study the efficacy of the QDs as charge storage elements. The grown QDs were embedded between two high-k dielectric such as HfO{sub 2} and ZrO{sub 2}, which were used for tunneling and control oxide layers, respectively. The size and density of the QDs were found to be 5 nm and 1.8×10{sup 11} cm{sup −2}, respectively. The device with a structure Metal/ZrO{sub 2}/InAs QDs/HfO{sub 2}/GaAs/Metal shows maximum memory window equivalent to 6.87 V. Themore » device also exhibits low leakage current density of the order of 10{sup −6} A/cm{sup 2} and reasonably good charge retention characteristics. The low value of leakage current in the fabricated memory device is attributed to the Coulomb blockade effect influenced by quantum confinement as well as reduction of interface trap states by ultra-thin InP passivation on GaAs prior to HfO{sub 2} deposition.« less

  11. Modeling Cape- and Ridge-Associated Marine Sand Deposits; A Focus on the U.S. Atlantic Continental Shelf

    USGS Publications Warehouse

    Bliss, James D.; Williams, S. Jeffress; Bolm, Karen S.

    2009-01-01

    Cape- and ridge-associated marine sand deposits, which accumulate on storm-dominated continental shelves that are undergoing Holocene marine transgression, are particularly notable in a segment of the U.S. Atlantic Continental Shelf that extends southward from the east tip of Long Island, N.Y., and eastward from Cape May at the south end of the New Jersey shoreline. These sand deposits commonly contain sand suitable for shore protection in the form of beach nourishment. Increasing demand for marine sand raises questions about both short- and long-term potential supply and the sustainability of beach nourishment with the prospects of accelerating sea-level rise and increasing storm activity. To address these important issues, quantitative assessments of the volume of marine sand resources are needed. Currently, the U.S. Geological Survey is undertaking these assessments through its national Marine Aggregates and Resources Program (URL http://woodshole.er.usgs.gov/project-pages/aggregates/). In this chapter, we present a hypothetical example of a quantitative assessment of cape-and ridge-associated marine sand deposits in the study area, using proven tools of mineral-resource assessment. Applying these tools requires new models that summarize essential data on the quantity and quality of these deposits. Two representative types of model are descriptive models, which consist of a narrative that allows for a consistent recognition of cape-and ridge-associated marine sand deposits, and quantitative models, which consist of empirical statistical distributions that describe significant deposit characteristics, such as volume and grain-size distribution. Variables of the marine sand deposits considered for quantitative modeling in this study include area, thickness, mean grain size, grain sorting, volume, proportion of sand-dominated facies, and spatial density, of which spatial density is particularly helpful in estimating the number of undiscovered deposits within an assessment area. A Monte Carlo simulation that combines the volume of sand-dominated-facies models with estimates of the hypothetical probable number of undiscovered deposits provides a probabilistic approach to estimating marine sand resources within parts of the U.S. Atlantic Continental Shelf and other comparable marine shelves worldwide.

  12. Ruthenium films by digital chemical vapor deposition: Selectivity, nanostructure, and work function

    NASA Astrophysics Data System (ADS)

    Dey, Sandwip K.; Goswami, Jaydeb; Gu, Diefeng; de Waard, Henk; Marcus, Steve; Werkhoven, Chris

    2004-03-01

    Ruthenium electrodes were selectively deposited on photoresist-patterned HfO2 surface [deposited on a SiOx/Si wafer by atomic layer deposition (ALD)] by a manufacturable, digital chemical vapor deposition (DCVD) technique. DCVD of Ru was carried out at 280-320 °C using an alternate delivery of Bis (2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)Ru (dissolved in tetrahydrofuran) and oxygen. The as-deposited Ru films were polycrystalline, dense, and conducting (resistivity ˜20.6 μΩ cm). However, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, and high-resolution electron microscopy results indicate the presence of an amorphous RuOx at the Ru grain boundaries and at the DCVD-Ru/ALD-HfO2 interface. The estimated work function of DCVD-Ru on ALD-HfO2 was ˜5.1 eV. Moreover, the equivalent oxide thickness, hysteresis in capacitance-voltage, and leakage current density at -2 V of the HfO2/SiOx dielectric, after forming gas (95% N2+5% H2) annealing at 450 °C for 30 min, were 1.4 nm, 20 mV, and 7.4×10-7 A cm-2, respectively.

  13. Improvement of diamond-like carbon electrochemical corrosion resistance by addition of nanocrystalline diamond.

    PubMed

    Marciano, F R; Almeida, E C; Bonetti, L F; Corat, E J; Trava-Airoldi, V J

    2010-02-15

    Nanocrystalline diamond (NCD) particles were incorporated into diamond-like carbon (DLC) films in order to investigate NCD-DLC electrochemical corrosion resistance. The films were grown over 304 stainless steel using plasma-enhanced chemical vapor deposition. NCD particles were incorporated into DLC during the deposition process. The investigation of NCD-DLC electrochemical corrosion behavior was performed using potentiodynamic polarization against NaCl. NCD-DLC films presented more negative corrosion potential and lower anodic and cathodic current densities. The electrochemical analysis indicated that NCD-DLC films present superior impedance and polarization resistance compared to the pure DLC, which indicate that they are promising corrosion protective coatings in aggressive solutions. Copyright 2009 Elsevier Inc. All rights reserved.

  14. Structure and properties of composite iron-based coatings obtained by the electromechanical technique

    NASA Astrophysics Data System (ADS)

    Dubinskii, N. A.

    2007-09-01

    The influence of the electrolyte temperature and current density on the content of inclusions of powder particles in composite coatings obtained by the electrochemical technique has been investigated. It has been found that the wear resistance of iron coatings with inclusions of powder particles of aluminum, kaolin, and calcium silicate increases from 5 to 10 times compared to coating without inclusions of disperse particles, and the friction coefficient therewith decreases from 0.097 to 0.026. It has been shown that the mechanical properties of iron obtained by the method of electrochemical deposition depend on their fine structure. The regimes of deposition of iron-based coatings have been optimized.

  15. RAPID COMMUNICATION: Large-area uniform ultrahigh-Jc YBa2Cu3O7-x film fabricated by the metalorganic deposition method using trifluoroacetates

    NASA Astrophysics Data System (ADS)

    Araki, Takeshi; Yamagiwa, Katsuya; Hirabayashi, Izumi; Suzuki, Katsumi; Tanaka, Shoji

    2001-07-01

    Ultrahigh-Jc YBa2Cu3O7-x (YBCO) films have been successfully fabricated by the metalorganic deposition method using a trifluoroacetate coating solution which is prepared by a newly developed purification technique, the solvent-into-gel (SIG) method. The prepared pure coating solution has less than 0.25% impurities and has a wide flexibility in process conditions to obtain high-Jc YBCO film. Using this feature, we have successfully formed 50 mm diameter YBCO films, which have a critical current density over 10 MA cm-2 (77 K, 0 T) on LaAlO3 single crystalline substrates.

  16. Large-Area Permanent-Magnet ECR Plasma Source

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2007-01-01

    A 40-cm-diameter plasma device has been developed as a source of ions for material-processing and ion-thruster applications. Like the device described in the immediately preceding article, this device utilizes electron cyclotron resonance (ECR) excited by microwave power in a magnetic field to generate a plasma in an electrodeless (noncontact) manner and without need for an electrically insulating, microwave-transmissive window at the source. Hence, this device offers the same advantages of electrodeless, windowless design - low contamination and long operational life. The device generates a uniform, high-density plasma capable of sustaining uniform ion-current densities at its exit plane while operating at low pressure [<10(exp -4) torr (less than about 1.3 10(exp -2) Pa)] and input power <200 W at a frequency of 2.45 GHz. Though the prototype model operates at 2.45 GHz, operation at higher frequencies can be achieved by straightforward modification to the input microwave waveguide. Higher frequency operation may be desirable in those applications that require even higher background plasma densities. In the design of this ECR plasma source, there are no cumbersome, power-hungry electromagnets. The magnetic field in this device is generated by a permanent-magnet circuit that is optimized to generate resonance surfaces. The microwave power is injected on the centerline of the device. The resulting discharge plasma jumps into a "high mode" when the input power rises above 150 W. This mode is associated with elevated plasma density and high uniformity. The large area and uniformity of the plasma and the low operating pressure are well suited for such material-processing applications as etching and deposition on large silicon wafers. The high exit-plane ion-current density makes it possible to attain a high rate of etching or deposition. The plasma potential is <3 V low enough that there is little likelihood of sputtering, which, in plasma processing, is undesired because it is associated with erosion and contamination. The electron temperature is low and does not vary appreciably with power.

  17. Chemical vapor deposited carbon nanotubes for aqueous H2-Cl2 fuel cells.

    PubMed

    Suryavanshi, U B; Bhosale, C H

    2010-06-01

    Carbon nanotubes having large surface area is an interesting material to develop H2-Cl2 fuel cell electrodes. The attempts were made to deposit carbon nanotubes on porous substrates by chemical vapour deposition. Turpentine oil (C10H16) was used as a precursor, decomposed at 1100 degrees C reactor temperature. Nickel, platinum, tin, Ni-Pt, Ni-Sn, Pt-Sn, Ni-Pt-Sn catalysts were used to grow carbon nanotubes. Nickel was deposited with electrodeposition, platinum with sputter coater and tin with vacuum deposition technique. The developed electrodes were characterized by XRD, SEM, TEM, FTIR, and resistivity by van-der Pauw method. Carbon nanotubes have been formed for 0.25 N nickel deposited for 45 and 60 min; 0.5 N, 0.75 N and 1 N nickel deposited for 15 to 60 min, at the interval of 15. Ni-Pt, Ni-Sn, Pt-Sn and Ni-Pt-Sn activated carbon also shows the well grown CNTs. Aqueous H2-Cl2 fuel cell performance was tested with these grown carbon nanotubes. 40% KCl with 1067 mohm(-1) cm(-1) conductivity was used as electrolyte. Linear sweep voltametry shows reduction potential for hydrogen gas. Chronoamperometry results show better half cell performance for nickel, deposited with 1 N, 45 min deposition time period; and combination of Ni-Pt-Sn with 140, and 110-100 mA/cm2 stable current density respectively.

  18. Fallout Deposition in the Marshall Islands from Bikini and Enewetak Nuclear Weapons Tests

    PubMed Central

    Beck, Harold L.; Bouville, André; Moroz, Brian E.; Simon, Steven L.

    2009-01-01

    Deposition densities (Bq m-2) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for all the 31 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 25 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers. PMID:20622548

  19. Fallout deposition in the Marshall Islands from Bikini and Enewetak nuclear weapons tests.

    PubMed

    Beck, Harold L; Bouville, André; Moroz, Brian E; Simon, Steven L

    2010-08-01

    Deposition densities (Bq m(-2)) of all important dose-contributing radionuclides occurring in nuclear weapons testing fallout from tests conducted at Bikini and Enewetak Atolls (1946-1958) have been estimated on a test-specific basis for 32 atolls and separate reef islands of the Marshall Islands. A complete review of various historical and contemporary data, as well as meteorological analysis, was used to make judgments regarding which tests deposited fallout in the Marshall Islands and to estimate fallout deposition density. Our analysis suggested that only 20 of the 66 nuclear tests conducted in or near the Marshall Islands resulted in substantial fallout deposition on any of the 23 inhabited atolls. This analysis was confirmed by the fact that the sum of our estimates of 137Cs deposition from these 20 tests at each atoll is in good agreement with the total 137Cs deposited as estimated from contemporary soil sample analyses. The monitoring data and meteorological analyses were used to quantitatively estimate the deposition density of 63 activation and fission products for each nuclear test, plus the cumulative deposition of 239+240Pu at each atoll. Estimates of the degree of fractionation of fallout from each test at each atoll, as well as of the fallout transit times from the test sites to the atolls were used in this analysis. The estimates of radionuclide deposition density, fractionation, and transit times reported here are the most complete available anywhere and are suitable for estimations of both external and internal dose to representative persons as described in companion papers.

  20. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  1. High rate copper and energy recovery in microbial fuel cells

    PubMed Central

    Rodenas Motos, Pau; ter Heijne, Annemiek; van der Weijden, Renata; Saakes, Michel; Buisman, Cees J. N.; Sleutels, Tom H. J. A.

    2015-01-01

    Bioelectrochemical systems (BESs) are a novel, promising technology for the recovery of metals. The prerequisite for upscaling from laboratory to industrial size is that high current and high power densities can be produced. In this study we report the recovery of copper from a copper sulfate stream (2 g L-1 Cu2+) using a laboratory scale BES at high rate. To achieve this, we used a novel cell configuration to reduce the internal voltage losses of the system. At the anode, electroactive microorganisms produce electrons at the surface of an electrode, which generates a stable cell voltage of 485 mV when combined with a cathode where copper is reduced. In this system, a maximum current density of 23 A m-2 in combination with a power density of 5.5 W m-2 was produced. XRD analysis confirmed 99% purity in copper of copper deposited onto cathode surface. Analysis of voltage losses showed that at the highest current, most voltage losses occurred at the cathode, and membrane, while anode losses had the lowest contribution to the total voltage loss. These results encourage further development of BESs for bioelectrochemical metal recovery. PMID:26150802

  2. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    NASA Astrophysics Data System (ADS)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  3. Fabrication and characteristics of excellent current spreading GaN-based LED by using transparent electrode-insulator-semiconductor structure

    NASA Astrophysics Data System (ADS)

    Qi, Chenglin; Huang, Yang; Zhan, Teng; Wang, Qinjin; Yi, Xiaoyan; Liu, Zhiqiang

    2017-08-01

    GaN-based vertical light-emitting-diodes (V-LEDs) with an improved current injection pattern were fabricated and a novel current injection pattern of LEDs which consists of electrode-insulator-semiconductor (EIS) structure was proposed. The EIS structure was achieved by an insulator layer (20-nm Ta2O5) deposited between the p-GaN and the ITO layer. This kind of EIS structure works through a defect-assisted tunneling mechanism to realize current injection and obtains a uniform current distribution on the chip surface, thus greatly improving the current spreading ability of LEDs. The appearance of this novel current injection pattern of V-LEDs will subvert the impression of the conventional LEDs structure, including simplifying the chip manufacture technology and reducing the chip cost. Under a current density of 2, 5, 10, and 25 A/cm2, the luminous uniformity was better than conventional structure LEDs. The standard deviation of power density distribution in light distribution was 0.028, which was much smaller than that of conventional structure LEDs and illustrated a huge advantage on the current spreading ability of EIS-LEDs. Project supported by the Natural Science Foundation of China (Nos. 61306051, 61306050) and the National High Technology Program of China (No. 2014AA032606).

  4. Channel Extension in Deep-Water Distributive Systems

    NASA Astrophysics Data System (ADS)

    Hoyal, D. C.; Sheets, B. A.

    2007-12-01

    The cyclic nature of channel and lobe formation in submarine fans is the result of the unstable and ephemeral nature of newly formed distributary channels. Avulsion cycles are initiated as unconfined sheet flow immediately following avulsion followed by stages of channel incision and extension, deposition of channel mouth deposits, and often channel backfilling. In contrast with those in alluvial and deltaic environments, avulsion cycles in submarine fans are relatively poorly understood due to the difficulty of observing deep ocean processes, either over short timescales needed to measure the hydrodynamics of active turbidity currents, or over longer timescales needed for the morphodynamic evolution of individual distributary channels and avulsion events. Here we report the results of over 80 experiments in a 5m x 3m x1m deep tank using saline (NaCl) density flows carrying low-density plastic sediment (SG 1.5) flowing down an inclined ramp. These experiments were designed to investigate trends observed in earlier self-organized experimental submarine fans with well-developed avulsion cycles, in which distributive lobes were observed to form on relatively high slopes. In particular, we were interested in investigating the relationship between channel extension length (distance from the inlet to the point where the flow becomes de-channelized, transitioning into a mouth-bar/lobe) and slope. The results of the experiments are clear but counter-intuitive. Channels appear to extend in discrete segments and channel extension length is inversely related to slope over a wide range of slopes (5-17 degrees). In addition, channel extension seems largely independent of inlet flow density (salt concentration) over the experimental range (10-24 g/cc). Measurements of densimetric Froude number (Fr') indicate Fr' increases downstream to near critical conditions at the channel lobe transition. Our preliminary interpretation is that distributary channels become unstable due to acceleration to Fr'-critical conditions and the formation of a depositional hydraulic jump, which perturbs sediment transport and ends channel extension. Similar morphodynamic length scale controls are observed in shallow water fan-delta experiments (e.g., SAFL DB-03) and in 2-D depositional cyclic steps. The experiments seem to explain two interesting observations from the earlier self-organized fan experiments and from real submarine fans. Firstly, the observation of 'perched' fills at the steep entrances to salt withdrawal minibasins (e.g., in the Gulf of Mexico) suggesting higher sedimentation rates (or inefficient sediment transport) on higher slopes (initially higher than at the slope break downstream). Secondly, strong progradation as the fan evolves and slope decreases in 'perched' fans suggests increasing flow efficiency on lower slopes, at least over a certain window of parameter space. Apparently deep water systems have a tendency to self-regulate even when flows differ significantly in initial density. The observed modulation to Fr'-critical flow appears to be an important control on length scales in deep- water distributive channel systems, potentially explaining strong deepwater progradation or 'delta-like' patterns that have remained paradoxical. Near critical conditions have been inferred from observations of many active submarine fans but the extent to which these results from conservative density currents apply to non-conservative and potentially 'ignitive' turbidity currents is the subject of ongoing investigation.

  5. Simulations of thermionic suppression during tungsten transient melting experiments

    NASA Astrophysics Data System (ADS)

    Komm, M.; Tolias, P.; Ratynskaia, S.; Dejarnac, R.; Gunn, J. P.; Krieger, K.; Podolnik, A.; Pitts, R. A.; Panek, R.

    2017-12-01

    Plasma-facing components receive enormous heat fluxes under steady state and especially during transient conditions that can even lead to tungsten (W) melting. Under these conditions, the unimpeded thermionic current density emitted from the W surfaces can exceed the incident plasma current densities by several orders of magnitude triggering a replacement current which drives melt layer motion via the {\\boldsymbol{J}}× {\\boldsymbol{B}} force. However, in tokamaks, the thermionic current is suppressed by space-charge effects and prompt re-deposition due to gyro-rotation. We present comprehensive results of particle-in-cell modelling using the 2D3V code SPICE2 for the thermionic emissive sheath of tungsten. Simulations have been performed for various surface temperatures and selected inclinations of the magnetic field corresponding to the leading edge and sloped exposures. The surface temperature dependence of the escaping thermionic current and its limiting value are determined for various plasma parameters; for the leading edge geometry, the results agree remarkably well with the Takamura analytical model. For the sloped geometry, the limiting value is observed to be proportional to the thermal electron current and a simple analytical expression is proposed that accurately reproduces the numerical results.

  6. Transparent nanotubular capacitors based on transplanted anodic aluminum oxide templates.

    PubMed

    Zhang, Guozhen; Wu, Hao; Chen, Chao; Wang, Ti; Wu, Wenhui; Yue, Jin; Liu, Chang

    2015-03-11

    Transparent AlZnO/Al2O3/AlZnO nanocapacitor arrays have been fabricated by atomic layer deposition in anodic aluminum oxide templates transplanted on the AlZnO/glass substrates. A high capacitance density of 37 fF/μm(2) is obtained, which is nearly 5.8 times bigger than that of planar capacitors. The capacitance density almost remains the same in a broad frequency range from 1 kHz to 200 kHz. Moreover, a low leakage current density of 1.7 × 10(-7) A/cm(2) at 1 V has been achieved. The nanocapacitors exhibit an average optical transmittance of more than 80% in the visible range, and thus open the door to practical applications in transparent integrated circuits.

  7. Multiphase modeling of channelized pyroclastic density currents and the effect of confinement on mobility and entrainment

    NASA Astrophysics Data System (ADS)

    Kubo, A. I.; Dufek, J.

    2017-12-01

    Around explosive volcanic centers such as Mount Saint Helens, pyroclastic density currents (PDCs) pose a great risk to life and property. Understanding of the mobility and dynamics of PDCs and other gravity currents is vital to mitigating hazards of future eruptions. Evidence from pyroclastic deposits at Mount Saint Helens and one-dimensional modeling suggest that channelization of flows effectively increases run out distances. Dense flows are thought to scour and erode the bed leading to confinement for subsequent flows and could result in significant changes to predicted runout distance and mobility. Here, we present the results of three-dimensional multiphase models comparing confined and unconfined flows using simplified geometries. We focus on bed stress conditions as a proxy for conditions that could influence subsequent erosion and self-channelization. We also explore the controls on gas entrainment in all scenarios to determine how confinement impacts the particle concentration gradient, granular interactions, and mobility.

  8. Large pinning forces and matching effects in YBa2Cu3O7-δ thin films with Ba2Y(Nb/Ta)O6 nano-precipitates

    NASA Astrophysics Data System (ADS)

    Opherden, Lars; Sieger, Max; Pahlke, Patrick; Hühne, Ruben; Schultz, Ludwig; Meledin, Alexander; van Tendeloo, Gustaaf; Nast, Rainer; Holzapfel, Bernhard; Bianchetti, Marco; MacManus-Driscoll, Judith L.; Hänisch, Jens

    2016-02-01

    The addition of mixed double perovskite Ba2Y(Nb/Ta)O6 (BYNTO) to YBa2Cu3O7-δ (YBCO) thin films leads to a large improvement of the in-field current carrying capability. For low deposition rates, BYNTO grows as well-oriented, densely distributed nanocolumns. We achieved a pinning force density of 25 GN/m3 at 77 K at a matching field of 2.3 T, which is among the highest values reported for YBCO. The anisotropy of the critical current density shows a complex behavior whereby additional maxima are developed at field dependent angles. This is caused by a matching effect of the magnetic fields c-axis component. The exponent N of the current-voltage characteristics (inversely proportional to the creep rate S) allows the depinning mechanism to be determined. It changes from a double-kink excitation below the matching field to pinning-potential-determined creep above it.

  9. Atomic layer deposition-based functionalization of materials for medical and environmental health applications

    PubMed Central

    Narayan, Roger J.; Adiga, Shashishekar P.; Pellin, Michael J.; Curtiss, Larry A.; Hryn, Alexander J.; Stafslien, Shane; Chisholm, Bret; Shih, Chun-Che; Shih, Chun-Ming; Lin, Shing-Jong; Su, Yea-Yang; Jin, Chunming; Zhang, Junping; Monteiro-Riviere, Nancy A.; Elam, Jeffrey W.

    2010-01-01

    Nanoporous alumina membranes exhibit high pore densities, well-controlled and uniform pore sizes, as well as straight pores. Owing to these unusual properties, nanoporous alumina membranes are currently being considered for use in implantable sensor membranes and water purification membranes. Atomic layer deposition is a thin-film growth process that may be used to modify the pore size in a nanoporous alumina membrane while retaining a narrow pore distribution. In addition, films deposited by means of atomic layer deposition may impart improved biological functionality to nanoporous alumina membranes. In this study, zinc oxide coatings and platinum coatings were deposited on nanoporous alumina membranes by means of atomic layer deposition. PEGylated nanoporous alumina membranes were prepared by self-assembly of 1-mercaptoundec-11-yl hexa(ethylene glycol) on platinum-coated nanoporous alumina membranes. The pores of the PEGylated nanoporous alumina membranes remained free of fouling after exposure to human platelet-rich plasma; protein adsorption, fibrin networks and platelet aggregation were not observed on the coated membrane surface. Zinc oxide-coated nanoporous alumina membranes demonstrated activity against two waterborne pathogens, Escherichia coli and Staphylococcus aureus. The results of this work indicate that nanoporous alumina membranes may be modified using atomic layer deposition for use in a variety of medical and environmental health applications. PMID:20308114

  10. Improved interfacial and electrical properties of atomic layer deposition HfO2 films on Ge with La2O3 passivation

    NASA Astrophysics Data System (ADS)

    Li, Xue-Fei; Liu, Xiao-Jie; Cao, Yan-Qiang; Li, Ai-Dong; Li, Hui; Wu, Di

    2013-01-01

    We report the characteristics of HfO2 films deposited on Ge substrates with and without La2O3 passivation at 250 °C by atomic layer deposition (ALD) using La[N(SiMe3)2]3 and Hf[N(CH3)(C2H5)]4 as the precursors. The HfO2 is observed to form defective HfGeOx at its interface during 500 °C postdeposition annealing. The insertion of an ultrathin La2O3 interfacial passivation layer effectively prevents the Ge outdiffusion and improves interfacial and electrical properties. Capacitance equivalent thickness (CET) of 1.35 nm with leakage current density JA of 8.3 × 10-4 A/cm2 at Vg = 1 V is achieved for the HfO2/La2O3 gate stacks on Ge substrates.

  11. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    PubMed

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  12. Optimization and testing of solid thin film lubrication deposition processes

    NASA Astrophysics Data System (ADS)

    Danyluk, Michael J.

    A novel method for testing solid thin films in rolling contact fatigue (RCF) under ultra-high vacuum (UHV) and high rotational speeds (130 Hz) is presented in this thesis. The UHV-RCF platform is used to quantify the adhesion and lubrication aspects of two thin film coatings deposited on ball-bearings using a physical vapor deposition ion plating process. Plasma properties during ion plating were measured using a Langmuir probe and there is a connection between ion flux, film stress, film adhesion, process voltage, pressure, and RCF life. The UHV-RCF platform and vacuum chamber were constructed using off-the-shelf components and 88 RCF tests in high vacuum have been completed. Maximum RCF life was achieved by maintaining an ion flux between 10 13 to 1015 (cm-2 s-1) with a process voltage and pressure near 1.5 kV and 15 mTorr. Two controller schemes were investigated to maintain optimal plasma conditions for maximum RCF life: PID and LQR. Pressure disturbances to the plasma have a detrimental effect on RCF life. Control algorithms that mitigate pressure and voltage disturbances already exist. However, feedback from the plasma to detect disturbances has not been explored related to deposition processes in the thin-film science literature. Manometer based pressure monitoring systems have a 1 to 2 second delay time and are too slow to detect common pressure bursts during the deposition process. Plasma diagnostic feedback is much faster, of the order of 0.1 second. Plasma total-current feedback was used successfully to detect a typical pressure disturbance associated with the ion plating process. Plasma current is related to ion density and process pressure. A real-time control application was used to detect the pressure disturbance by monitoring plasma-total current and converting it to feedback-input to a pressure control system. Pressure overshoot was eliminated using a nominal PID controller with feedback from a plasma-current diagnostic measurement tool.

  13. MnO2-deposited lignin-based carbon nanofiber mats for application as electrodes in symmetric pseudocapacitors.

    PubMed

    Youe, Won-Jae; Kim, Seok Ju; Lee, Soo-Min; Chun, Sang-Jin; Kang, Juwon; Kim, Yong Sik

    2018-06-01

    Low-cost, high-performance electrodes are highly attractive for practical supercapacitor applications. MnO 2 -deposited carbon nanofiber mats (MnO 2 -CNFMs) are prepared for use as binder-free supercapacitor electrodes. MnO 2 is deposited on the mats in situ by hydrothermally decomposing aqueous KMnO 4 , leading to the formation of nanocrystals of MnO 2 . The MnO 2 -CNFM electrode produced with 38.0μmol KMnO 4 (this electrode) shows a high specific capacitance of ~171.6F·g -1 at a scan rate of 5mV·s -1 . Moreover, a symmetric supercapacitor with the electrode exhibits a specific capacitance of 67.0F·g -1 , an energy density of 6.0Wh·kg -1 and a power density of 160W·kg -1 at a special current of 0.1A·g -1 . Further, the symmetric supercapacitor displays excellent cycling stability, retains approximately 99% of the capacitance after 1000cycles. The simplicity and ease of preparation of the MnO 2 -CNFMs as well as their suitability for use in coin-type supercapacitor cells make them ideal for application in cost-effective and high-performance electrodes for supercapacitors. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Conditions and timescales for welding block-and-ash flow deposits

    NASA Astrophysics Data System (ADS)

    Heap, M. J.; Kolzenburg, S.; Russell, J. K.; Campbell, M. E.; Welles, J.; Farquharson, J. I.; Ryan, A.

    2014-12-01

    Welding of pyroclastic deposits to reform a coherent rock mass is a common phenomenon, especially for pumiceous pyroclastic density current deposits (i.e., ignimbrites). However, and despite the pervasive abundance of block-and-ash flow (BAF) deposits in the geological and modern record, instances of strongly welded BAF deposits are few. Here, we present a series of high-temperature (800-900 °C) compaction experiments designed to map the conditions (deposit thickness/stress and temperature/viscosity) and timescales that permit or inhibit the welding of BAF deposits. Our experiments were performed on unconsolidated aggregates (containing an ash and lapilli component) derived from crushed and sieved lava blocks (containing 25% crystals) taken from the well-documented welded BAF deposit at Mount Meager volcano (British Columbia, Canada). The experiments demonstrate that welding efficiency increases with increasing time and temperature. Progressive welding is expressed by increasing axial strain, porosity loss, and bulk density. The rate of change of each of these physical properties reduces as welding progresses. Microstructural analysis of the experimental products shows that the loss of interclast porosity during welding results from the progressive sintering and amalgamation of vitric fragments, and that the pore shape changes from sub-equant pores to stretched lenses sandwiched between vitric and crystal fragments. The coincidence between the microstructure and rock physical properties of the natural and experimental samples highlight that we have successfully reproduced welded BAF in the laboratory. Furthermore, our permeability measurements highlight a hysteresis in the return journey of the "there-and-back-again" volcanic permeability cycle (expressed by an increase in permeability due to vesiculation and fragmentation followed by a decrease due to welding). This hysteresis cannot be described by a single porosity-permeability power law relationship and reflects the change in pore shape and connectivity during welding. Finally, we show that a simple model for welding can accurately forecast the welding timescales of the BAF deposit at Mount Meager (as reconstructed from the collapse of the Lillooet River valley dam) using our experimental data. We use this validation as a platform to provide a universal window for the welding of BAF deposits, also applicable for comparable welded deposits (e.g., welded autobreccias in block-lavas and lava domes), for a broad range of deposit thickness (or stress) and effective viscosity.

  15. InGaN laser diode with metal-free laser ridge using n+-GaN contact layers

    NASA Astrophysics Data System (ADS)

    Malinverni, Marco; Tardy, Camille; Rossetti, Marco; Castiglia, Antonino; Duelk, Marcus; Vélez, Christian; Martin, Denis; Grandjean, Nicolas

    2016-06-01

    We report on InGaN edge emitting laser diodes with a top metal electrode located beside the laser ridge. Current spreading over the ridge is achieved via a highly doped n+-type GaN layer deposited on top of the structure. The low sheet resistance of the n+-GaN layer ensures excellent lateral current spreading, while carrier injection is confined all along the ridge thanks to current tunneling at the interface between the n+-GaN top layer and the p++-GaN layer. Continuous-wave lasing at 400 nm with an output power of 100 mW is demonstrated on uncoated facet devices with a threshold current density of 2.4 kA·cm-2.

  16. Si /SiGe n-type resonant tunneling diodes fabricated using in situ hydrogen cleaning

    NASA Astrophysics Data System (ADS)

    Suet, Z.; Paul, D. J.; Zhang, J.; Turner, S. G.

    2007-05-01

    In situ hydrogen cleaning to reduce the surface segregation of n-type dopants in SiGe epitaxy has been used to fabricate Si /SiGe resonant tunneling diodes in a joint gas source chemical vapor deposition and molecular beam epitaxial system. Diodes fabricated without the in situ clean demonstrate linear current-voltage characteristics, while a 15min hydrogen clean produces negative differential resistance with peak-to-valley current ratios up to 2.2 and peak current densities of 5.0A/cm2 at 30K. Analysis of the valley current and the band structure of the devices suggest methods for increasing the operating temperature of Si /SiGe resonant tunneling diodes as required for applications.

  17. Metal-based anode for high performance bioelectrochemical systems through photo-electrochemical interaction

    NASA Astrophysics Data System (ADS)

    Liang, Yuxiang; Feng, Huajun; Shen, Dongsheng; Long, Yuyang; Li, Na; Zhou, Yuyang; Ying, Xianbin; Gu, Yuan; Wang, Yanfeng

    2016-08-01

    This paper introduces a novel composite anode that uses light to enhance current generation and accelerate biofilm formation in bioelectrochemical systems. The composite anode is composed of 316L stainless steel substrate and a nanostructured α-Fe2O3 photocatalyst (PSS). The electrode properties, current generation, and biofilm properties of the anode are investigated. In terms of photocurrent, the optimal deposition and heat-treatment times are found to be 30 min and 2 min, respectively, which result in a maximum photocurrent of 0.6 A m-2. The start-up time of the PSS is 1.2 days and the maximum current density is 2.8 A m-2, twice and 25 times that of unmodified anode, respectively. The current density of the PSS remains stable during 20 days of illumination. Confocal laser scanning microscope images show that the PSS could benefit biofilm formation, while electrochemical impedance spectroscopy indicates that the PSS reduce the charge-transfer resistance of the anode. Our findings show that photo-electrochemical interaction is a promising way to enhance the biocompatibility of metal anodes for bioelectrochemical systems.

  18. Simulation of turbid underflows generated by the plunging of a river

    NASA Astrophysics Data System (ADS)

    Kassem, Ahmed; Imran, Jasim

    2001-07-01

    When the density of sediment-laden river water exceeds that of the lake or ocean into which it discharges, the river plunges to the bottom of the receiving water body and continues to flow as a hyperpycnal flow. These particle-laden underflows, also known as turbidity currents, can travel remarkable distances and profoundly influence the seabed morphology from shoreline to abyss by depositing, eroding, and dispersing large quantities of sediment particles. Here we present a new approach to investigating the transformation of a plunging river flow into a turbidity current. Unlike previous workers using experimental and numerical treatments, we consider the evolution of a turbidity current from a river as different stages of a single flow process. From initial commotion to final stabilization, the transformation of a river (open channel flow) into a density-driven current (hyperpycnal flow) is captured in its entirety by a numerical model. Successful implementation of the model in laboratory and field cases has revealed the dynamics of a complex geophysical flow that is extremely difficult to observe in the field or model in the laboratory.

  19. The Relationships Between ELM Suppression, Pedestal Profiles, and Lithium Wall Coatings in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D.P. Boyle, R. Maingi, P.B. Snyder, J. Manickam, T.H. Osborne, R.E. Bell, B.P. LeBlanc, and the NSTX Team

    2012-08-17

    Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated to wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX« less

  20. The relationships between edge localized modes suppression, pedestal profiles and lithium wall coatings in NSTX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyle, D. P.; Maingi, R.; Snyder, P. B.

    2011-01-01

    Recently in the National Spherical Torus Experiment (NSTX), increasing lithium wall coatings suppressed edge localized modes (ELMs), gradually but not quite monotonically. This work details profile and stability analysis as ELMs disappeared throughout the lithium scan. While the quantity of lithium deposited between discharges did not uniquely determine the presence of ELMs, profile analysis demonstrated that lithium was correlated with wider density and pressure pedestals with peak gradients farther from the separatrix. Moreover, the ELMy and ELM-free discharges were cleanly separated by their density and pedestal widths and peak gradient locations. Ultimately, ELMs were only suppressed when lithium caused themore » density pedestal to widen and shift inward. These changes in the density gradient were directly reflected in the pressure gradient and calculated bootstrap current. This supports the theory that ELMs in NSTX are caused by peeling and/or ballooning modes, as kink/peeling modes are stabilized when the edge current and pressure gradient shift away from the separatrix. Edge stability analysis using ELITE corroborated this picture, as reconstructed equilibria from ELM-free discharges were generally farther from their kink/peeling stability boundaries than ELMy discharges. We conclude that density profile control provided by lithium is the key first step to ELM suppression in NSTX.« less

  1. Effect of particle entrainment on the runout of pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Fauria, Kristen E.; Manga, Michael; Chamberlain, Michael

    2016-09-01

    Pyroclastic density currents (PDCs) can erode soil and bedrock, yet we currently lack a mechanistic understanding of particle entrainment that can be incorporated into models and used to understand how PDC bulking affects runout. Here we quantify how particle splash, the ejection of particles due to impact by a projectile, entrains particles into dilute PDCs. We use scaled laboratory experiments to measure the mass of sand ejected by impacts of pumice, wood, and nylon spheres. We then derive an expression for particle splash that we validate with our experimental results as well as results from seven other studies. We find that the number of ejected particles scales with the kinetic energy of the impactor and the depth of the crater generated by the impactor. Last, we use a one-dimensional model of a dilute, compressible density current—where runout distance is controlled by air entrainment and particle exchange with the substrate—to examine how particle entrainment by splash affects PDC density and runout. Splash-driven particle entrainment can increase the runout distance of dilute PDCs by an order of magnitude. Furthermore, the temperature of entrained particles greatly affects runout and PDCs that entrain ambient temperature particles runout farther than those that entrain hot particles. Particle entrainment by splash therefore not only increases the runout of dilute PDCs but demonstrates that the temperature and composition of the lower boundary have consequences for PDC density, temperature, runout, hazards and depositional record.

  2. The Baia-Fondi di Baia eruption at Campi Flegrei: stratigraphy and dynamics of a multi-stage caldera reactivation event

    NASA Astrophysics Data System (ADS)

    Pistolesi, Marco; Bertagnini, Antonella; Di Roberto, Alessio; Isaia, Roberto; Vona, Alessandro; Cioni, Raffaello; Giordano, Guido

    2017-09-01

    The Baia-Fondi di Baia eruption is one of the sporadic events that have occurred in the western sector of the Campi Flegrei caldera. It dates back to 9525-9696 bp and opened Epoch 2 of the caldera activity after a 1000-year-long period of quiescence. Although relatively small in terms of erupted volume with respect to most of the events of the past 15 ka, the Baia-Fondi di Baia eruption was characterized by a complex series of events, which have led to different interpretations in the literature. We present a detailed stratigraphic study of 40 outcrops in a sector of about 90 km2, coupled with sedimentological (grain size, componentry), physical (density, vesicularity), textural, and compositional analyses of the erupted deposits. Based on these data, we interpret the stratigraphic succession as being related to two distinct eruptive episodes (Baia and Fondi di Baia). These were separated by a short time interval, and each was characterized by different eruptive phases. The Baia eruptive episode started in a shallow-water environment with an explosive vent-opening phase that formed a breccia deposit (Unit I), rapidly followed by alternating fallout activity and dense, pyroclastic density current deposits generation (Unit II). Sedimentological features and pumice textural analyses suggest that deposition of Unit II coincided with the intensity peak of the eruption, with the fallout deposit being characterized by a volume of 0.06 ± 0.008 km3 (corresponding to a total erupted mass of 4.06 ± 0.5 × 1010 kg), a column height of 17 km, and a corresponding mass flow rate of 1.8 × 107 kg s-1. The associated tephra also shows the highest vesicularity (up to 81 vol.%) the highest vesicle number density (1.01 × 108 cm-3) and decompression rate (0.69 MPa s-1). This peak phase waned to turbulent, surge-like activity possibly associated with Vulcanian explosions and characterized by progressively lower intensity, as shown by density/vesicularity and textural properties of the erupted juvenile material (Unit III). This first eruptive episode was followed by a short quiescence, interrupted by the onset of a second eruptive episode (Fondi di Baia) whose vent opening deposited a breccia bed (Unit IV) which at some key outcrops directly overlies the fallout deposit of Unit II. The final phase of the Fondi di Baia episode strongly resembles Unit II, although sedimentological (presence of obsidian clasts which are absent in the Baia deposits) and textural (lower vesicularity, vesicle number density, and decompression rate values) features, together with a more limited dispersal, suggest that this phase of the eruption had a lower intensity. The large range of groundmass glass compositions, associated with variable proportions of highly (phonolitic-trachytic) and mildly (tephriphonolitic-latitic) evolved end-members in the erupted products, also suggests that these eruptive episodes were fed by at least two different magma batches that interacted during the different phases, with an increase of tephriphonolitic-latitic magma occurring during the Fondi di Baia stage.

  3. Liftoff of the 18 May 1980 surge of Mount St. Helens (USA) and the deposits left behind

    NASA Astrophysics Data System (ADS)

    Gardner, James E.; Andrews, Benjamin J.; Dennen, Robert

    2017-01-01

    The distance that ground-hugging pyroclastic density currents travel is limited partly by when they reverse buoyancy and liftoff into the atmosphere. It is not clear, however, what deposits are left behind by lofting flows. One current that was seen to liftoff was the surge erupted from Mount St. Helens on the morning of 18 May 1980. Before lofting, it had leveled a large area of thick forest (the blowdown zone). The outer edge of the devastated area—where trees were scorched but left standing (the scorched zone)—is where the surge is thought to have lifted off. Deposits in the outer parts of the blowdown and in the scorched zone were examined at 32 sites. The important finding is that the laterally moving surge traveled through the scorched zone, and hence, the change in tree damage does not mark the runout distance of the surge. Buoyancy reversal and liftoff are thus not preserved in the deposits where the surge lofted upwards. We propose, based on interpretation of eyewitness accounts and the impacts of the surge on trees and vehicles, that the surge consisted of a faster, dilute "overcurrent" and a slower "undercurrent," where most of the mass (and heat) was retained. Reasonable estimates for flow density and velocity show that dynamic pressure of the surge (i.e., its ability to topple trees) peaked near the base of the overcurrent. We propose that where the overcurrent began to liftoff, the height of peak dynamic pressure rose above the trees and stopped toppling them. The slower undercurrent continued forward, however, scorching trees, but lacked the dynamic pressure needed to topple them. Grain-size variations argue that it slowed from ˜30 m s-1 when it entered the scorched zone to ˜3 m s-1 at the far end.

  4. Emplacement temperature estimation of the 2015 dome collapse of Volcán de Colima as key proxy for flow dynamics of confined and unconfined pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Pensa, Alessandra; Capra, Lucia; Giordano, Guido; Corrado, Sveva

    2018-05-01

    The recent 10th-11th of July 2015 Volcán de Colima eruption involved the collapse of the summit dome that breached to the south generating pyroclastic density currents (PDCs) along the Montegrande ravine on the southern flank of the volcano. Trees within the valley were buried, uprooted and variably transported by the PDCs, while the trees on the edges of the valley and on the overbanks, were mainly burned and folded. The emplacement temperature of valley confined and overbank PDC deposits were reconstructed using Partial Thermal Remanent Magnetization (pTRM) analysis of lithic clasts and Charcoal Reflectance analysis (Ro %) applied to the charred wood. A total of 13 sites were sampled for the pTRM study and 39 charcoaled wood fragments were collected for the charcoal optical analysis along the entire deposit length in order to detect temperature variation from proximal to distal zone. The result overlap from both data sets display a T max from ≃345°-385 °C in valley-confined area (from 3.5 to 8.5 km from the vent) and ≃170°-220 °C (from 8.0 to 10.5 km from the vent) in unconfined distal area. The emplacement temperature pattern along the 10.5 km long deposit appears related to the degree of topography confinement: valley confined and unconfined. In particular the valley confined setting is very conservative in terms of temperature, while the major drop occurs in a very narrow space where the PDC expanded over unconfined flat topography just at the exit of the main valley. This study represents the first attempt in determining the relationship between PDCs flow dynamics variation and topographic confining using deposit emplacement temperature as key proxy.

  5. The 3640-3510 BC rhyodacite eruption of Chachimbiro compound volcano, Ecuador: a violent directed blast produced by a satellite dome

    NASA Astrophysics Data System (ADS)

    Bernard, Benjamin; Hidalgo, Silvana; Robin, Claude; Beate, Bernardo; Quijozaca, Jenny

    2014-09-01

    Based on geochronological, petrological, stratigraphical, and sedimentological data, this paper describes the deposits left by the most powerful Holocene eruption of Chachimbiro compound volcano, in the northern part of Ecuador. The eruption, dated between 3640 and 3510 years BC, extruded a ˜650-m-wide and ˜225-m-high rhyodacite dome, located 6.3 km east of the central vent, that exploded and produced a large pyroclastic density current (PDC) directed to the southeast followed by a sub-Plinian eruptive column drifted by the wind to the west. The PDC deposit comprises two main layers. The lower layer (L1) is massive, typically coarse-grained and fines-depleted, with abundant dense juvenile fragments from the outgassed dome crust. The upper layer (L2) consists of stratified coarse ash and lapilli laminae, with juvenile clasts showing a wide density range (0.7-2.6 g cm-3). The thickness of the whole deposit ranges from few decimeters on the hills to several meters in the valleys. Deposits extending across six valleys perpendicular to the flow direction allowed us to determine a minimum velocity of 120 m s-1. These characteristics show striking similarities with deposits of high-energy turbulent stratified currents and in particular directed blasts. The explosion destroyed most of the dome built during the eruption. Subsequently, the sub-Plinian phase left a decimeter-thick accidental-fragment-rich pumice layer in the Chachimbiro highlands. Juvenile clasts, rhyodacitic in composition (SiO2 = 68.3 wt%), represent the most differentiated magma of Chachimbiro volcano. Magma processes occurred at two different depths (˜14.4 and 8.0 km). The hot (˜936 °C) deep reservoir fed the central vent while the shallow reservoir (˜858 °C) had an independent evolution, probably controlled by El Angel regional fault system. Such destructive eruptions, related to peripheral domes, are of critical importance for hazard assessment in large silicic volcanic complexes such as those forming the Frontal Volcanic Arc of Ecuador and Colombia.

  6. Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness

    NASA Astrophysics Data System (ADS)

    Li, Yujing; Wang, Zhi Wei; Chiu, Chin-Yi; Ruan, Lingyan; Yang, Wenbing; Yang, Yang; Palmer, Richard E.; Huang, Yu

    2012-01-01

    Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications.Bimetallic Pt-Pd core-shell nanocrystals (NCs) are synthesized through a two-step process with controlled Pd thickness from sub-monolayer to multiple atomic layers. The oxygen reduction reaction (ORR) catalytic activity and methanol oxidation reactivity of the core-shell NCs for fuel cell applications in alkaline solution are systematically studied and compared based on different Pd thickness. It is found that the Pd shell helps to reduce the over-potential of ORR by up to 50mV when compared to commercial Pd black, while generating up to 3-fold higher kinetic current density. The carbon monoxide poisoning test shows that the bimetallic NCs are more resistant to the CO poisoning than Pt NCs and Pt black. It is also demonstrated that the bimetallic Pt-Pd core-shell NCs can enhance the current density of the methanol oxidation reaction, lowering the over-potential by 35 mV with respect to the Pt core NCs. Further investigation reveals that the Pd/Pt ratio of 1/3, which corresponds to nearly monolayer Pd deposition on Pt core NCs, gives the highest oxidation current density and lowest over-potential. This study shows for the first time the systematic investigation of effects of Pd atomic shells on Pt-Pd bimetallic nanocatalysts, providing valuable guidelines for designing high-performance catalysts for fuel cell applications. Electronic supplementary information (ESI) available: Supplementary TEM, EELS, EDS, Electro-chemical measurement data can be found. See DOI: 10.1039/c1nr11374g

  7. Three-Dimensional Expanded Graphene-Metal Oxide Film via Solid-State Microwave Irradiation for Aqueous Asymmetric Supercapacitors.

    PubMed

    Yang, MinHo; Lee, Kyoung G; Lee, Seok Jae; Lee, Sang Bok; Han, Young-Kyu; Choi, Bong Gill

    2015-10-14

    Carbon-based electrochemical double-layer capacitors and pseudocapacitors, consisting of a symmetric configuration of electrodes, can deliver much higher power densities than batteries, but they suffer from low energy densities. Herein, we report the development of high energy and power density supercapacitors using an asymmetric configuration of Fe2O3 and MnO2 nanoparticles incorporated into 3D macroporous graphene film electrodes that can be operated in a safe and low-cost aqueous electrolyte. The gap in working potential windows of Fe2O3 and MnO2 enables the stable expansion of the cell voltage up to 1.8 V, which is responsible for the high energy density (41.7 Wh kg(-1)). We employ a household microwave oven to simultaneously create conductivity, porosity, and the deposition of metal oxides on graphene films toward 3D hybrid architectures, which lead to a high power density (13.5 kW kg(-1)). Such high energy and power densities are maintained for over 5000 cycles, even during cycling at a high current density of 16.9 A g(-1).

  8. Nanostructural engineering of nitride nucleation layers for GaN substrate dislocation reduction.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koleske, Daniel David; Lee, Stephen Roger; Lemp, Thomas Kerr

    2009-07-01

    With no lattice matched substrate available, sapphire continues as the substrate of choice for GaN growth, because of its reasonable cost and the extensive prior experience using it as a substrate for GaN. Surprisingly, the high dislocation density does not appear to limit UV and blue LED light intensity. However, dislocations may limit green LED light intensity and LED lifetime, especially as LEDs are pushed to higher current density for high end solid state lighting sources. To improve the performance for these higher current density LEDs, simple growth-enabled reductions in dislocation density would be highly prized. GaN nucleation layers (NLs)more » are not commonly thought of as an application of nano-structural engineering; yet, these layers evolve during the growth process to produce self-assembled, nanometer-scale structures. Continued growth on these nuclei ultimately leads to a fully coalesced film, and we show in this research program that their initial density is correlated to the GaN dislocation density. In this 18 month program, we developed MOCVD growth methods to reduce GaN dislocation densities on sapphire from 5 x 10{sup 8} cm{sup -2} using our standard delay recovery growth technique to 1 x 10{sup 8} cm{sup -2} using an ultra-low nucleation density technique. For this research, we firmly established a correlation between the GaN nucleation thickness, the resulting nucleation density after annealing, and dislocation density of full GaN films grown on these nucleation layers. We developed methods to reduce the nuclei density while still maintaining the ability to fully coalesce the GaN films. Ways were sought to improve the GaN nuclei orientation by improving the sapphire surface smoothness by annealing prior to the NL growth. Methods to eliminate the formation of additional nuclei once the majority of GaN nuclei were developed using a silicon nitride treatment prior to the deposition of the nucleation layer. Nucleation layer thickness was determined using optical reflectance and the nucleation density was determined using atomic force microscopy (AFM) and Nomarski microscopy. Dislocation density was measured using X-ray diffraction and AFM after coating the surface with silicon nitride to delineate all dislocation types. The program milestone of producing GaN films with dislocation densities of 1 x 10{sup 8} cm{sup -2} was met by silicon nitride treatment of annealed sapphire followed by the multiple deposition of a low density of GaN nuclei followed by high temperature GaN growth. Details of this growth process and the underlying science are presented in this final report along with problems encountered in this research and recommendations for future work.« less

  9. Towards time-dependent current-density-functional theory in the non-linear regime

    NASA Astrophysics Data System (ADS)

    Escartín, J. M.; Vincendon, M.; Romaniello, P.; Dinh, P. M.; Reinhard, P.-G.; Suraud, E.

    2015-02-01

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  10. Towards time-dependent current-density-functional theory in the non-linear regime.

    PubMed

    Escartín, J M; Vincendon, M; Romaniello, P; Dinh, P M; Reinhard, P-G; Suraud, E

    2015-02-28

    Time-Dependent Density-Functional Theory (TDDFT) is a well-established theoretical approach to describe and understand irradiation processes in clusters and molecules. However, within the so-called adiabatic local density approximation (ALDA) to the exchange-correlation (xc) potential, TDDFT can show insufficiencies, particularly in violently dynamical processes. This is because within ALDA the xc potential is instantaneous and is a local functional of the density, which means that this approximation neglects memory effects and long-range effects. A way to go beyond ALDA is to use Time-Dependent Current-Density-Functional Theory (TDCDFT), in which the basic quantity is the current density rather than the density as in TDDFT. This has been shown to offer an adequate account of dissipation in the linear domain when the Vignale-Kohn (VK) functional is used. Here, we go beyond the linear regime and we explore this formulation in the time domain. In this case, the equations become very involved making the computation out of reach; we hence propose an approximation to the VK functional which allows us to calculate the dynamics in real time and at the same time to keep most of the physics described by the VK functional. We apply this formulation to the calculation of the time-dependent dipole moment of Ca, Mg and Na2. Our results show trends similar to what was previously observed in model systems or within linear response. In the non-linear domain, our results show that relaxation times do not decrease with increasing deposited excitation energy, which sets some limitations to the practical use of TDCDFT in such a domain of excitations.

  11. Optimization of Cold Spray Deposition of High-Density Polyethylene Powders

    NASA Astrophysics Data System (ADS)

    Bush, Trenton B.; Khalkhali, Zahra; Champagne, Victor; Schmidt, David P.; Rothstein, Jonathan P.

    2017-10-01

    When a solid, ductile particle impacts a substrate at sufficient velocity, the resulting heat, pressure and plastic deformation can produce bonding between the particle and the substrate. The use of a cool supersonic gas flow to accelerate these solid particles is known as cold spray deposition. The cold spray process has been commercialized for some metallic materials, but further research is required to unlock the exciting potential material properties possible with polymeric particles. In this work, a combined computational and experimental study was employed to study the cold spray deposition of high-density polyethylene powders over a wide range of particle temperatures and impact velocities. Cold spray deposition of polyethylene powders was demonstrated across a range broad range of substrate materials including several different polymer substrates with different moduli, glass and aluminum. A material-dependent window of successful deposition was determined for each substrate as a function of particle temperature and impact velocity. Additionally, a study of deposition efficiency revealed the optimal process parameters for high-density polyethylene powder deposition which yielded a deposition efficiency close to 10% and provided insights into the physical mechanics responsible for bonding while highlighting paths toward future process improvements.

  12. Preliminary Results of Field Emission Cathode Tests

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Kovaleski, Scott D.

    2001-01-01

    Preliminary screening tests of field emission cathodes such as chemical vapor deposited (CVD) diamond, textured pyrolytic graphite, and textured copper were conducted at background pressures typical of electric thruster test facilities to assess cathode performance and stability. Very low power electric thrusters which provide tens to hundreds micronewtons of thrust may need field emission neutralizers that have a capability of tens to hundreds of microamperes. From current voltage characteristics, it was found that the CVD diamond and textured metals cathodes clearly satisfied the Fowler-Nordheim emission relation. The CVD diamond and a textured copper cathode had average current densities of 270 and 380 mA/sq cm, respectively, at the beginning-of-life. After a few hours of operation the cathode emission currents degraded by 40 to 75% at background pressures in the 10(exp -5) Pa to 10(exp -4) Pa range. The textured pyrolytic graphite had a modest current density at beginning-of-life of 84 mA/sq cm, but this cathode was the most stable of all. Extended testing of the most promising cathodes is warranted to determine if current degradation is a burn-in effect or whether it is a long-term degradation process. Preliminary experiments with ferroelectric emission cathodes, which are ceramics with spontaneous electric polarization, were conducted. Peak current densities of 30 to 120 mA/sq cm were obtained for pulse durations of about 500 ns in the 10(exp -4) Pa pressure range.

  13. Modelling of plasma-wall interaction and impurity transport in fusion devices and prompt deposition of tungsten as application

    NASA Astrophysics Data System (ADS)

    Kirschner, A.; Tskhakaya, D.; Brezinsek, S.; Borodin, D.; Romazanov, J.; Ding, R.; Eksaeva, A.; Linsmeier, Ch

    2018-01-01

    Main processes of plasma-wall interaction and impurity transport in fusion devices and their impact on the availability of the devices are presented and modelling tools, in particular the three-dimensional Monte-Carlo code ERO, are introduced. The capability of ERO is demonstrated on the example of tungsten erosion and deposition modelling. The dependence of tungsten deposition on plasma temperature and density is studied by simulations with a simplified geometry assuming (almost) constant plasma parameters. The amount of deposition increases with increasing electron temperature and density. Up to 100% of eroded tungsten can be promptly deposited near to the location of erosion at very high densities (˜1 × 1014 cm-3 expected e.g. in the divertor of ITER). The effect of the sheath characteristics on tungsten prompt deposition is investigated by using particle-in-cell (PIC) simulations to spatially resolve the plasma parameters inside the sheath. Applying PIC data instead of non-resolved sheath leads in general to smaller tungsten deposition, which is mainly due to a density and temperature decrease towards the surface within the sheath. Two-dimensional tungsten erosion/deposition simulations, assuming symmetry in toroidal direction but poloidally spatially varying plasma parameter profiles, have been carried out for the JET divertor. The simulations reveal, similar to experimental findings, that tungsten gross erosion is dominated in H-mode plasmas by the intra-ELM phases. However, due to deposition, the net tungsten erosion can be similar within intra- and inter-ELM phases if the inter-ELM electron temperature is high enough. Also, the simulated deposition fraction of about 84% in between ELMs is in line with spectroscopic observations from which a lower limit of 50% has been estimated.

  14. Facile design and stabilization of a novel one-dimensional silicon-based photonic crystal microcavity

    NASA Astrophysics Data System (ADS)

    Salem, Mohamed Shaker; Ibrahim, Shaimaa Moustafa; Amin, Mohamed

    2017-07-01

    A novel silicon-based optical microcavity composed of a defect layer sandwiched between two parallel rugate mirrors is created by the electrochemical anodization of silicon in a hydrofluoric acid-based electrolyte using a precisely controlled current density profile. The profile consists of two sinusoidally modulated current waveforms separated by a fixed current that is applied to produce a defect layer between the mirrors. The spectral response of the rugate-based microcavity is simulated using the transfer matrix method and compared to the conventional Bragg-based microcavity. It is found that the resonance position of both microcavities is unchanged. However, the rugate-based microcavity exhibits a distinct reduction of the sidebands' intensity. Further attenuation of the sidebands' intensity is obtained by creating refractive index matching layers with optimized thickness at the bottom and top of the rugate-based microcavity. In order to stabilize the produced microcavity against natural oxidation, atomic layer deposition of an ultra-thin titanium dioxide layer on the pore wall is carried out followed by thermal annealing. The microcavity resonance position shows an observable sensitivity to the deposition and annealing processes.

  15. Comparative Study on Graded-Barrier AlxGa1‑xN/AlN/GaN/Si Metal-Oxide-Semiconductor Heterostructure Field-Effect Transistor by Using Ultrasonic Spray Pyrolysis Deposition Technique

    NASA Astrophysics Data System (ADS)

    Lee, Ching-Sung; Hsu, Wei-Chou; Huang, Yi-Ping; Liu, Han-Yin; Yang, Wen-Luh; Yang, Shen-Tin

    2018-06-01

    Comparative study on a novel Al2O3-dielectric graded-barrier (GB) AlxGa1‑xN/AlN/GaN/Si (x = 0.22 ∼ 0.3) metal-oxide-semiconductor heterostructure field-effect transistor (MOS-HFET) formed by using the ultrasonic spray pyrolysis deposition (USPD) technique has been made with respect to a conventional-barrier (CB) Al0.26Ga0.74N/AlN/GaN/Si MOS-HFET and the reference Schottky-gate HFET devices. The GB AlxGa1‑xN was devised to improve the interfacial quality and enhance the Schottky barrier height at the same time. A cost-effective ultrasonic spray pyrolysis deposition (USPD) method was used to form the high-k Al2O3 gate dielectric and surface passivation on the AlGaN barrier of the present MOS-HFETs. Comprehensive device performances, including maximum extrinsic transconductance (g m,max), maximum drain-source current density (I DS,max), gate-voltage swing (GVS) linearity, breakdown voltages, subthreshold swing (SS), on/off current ratio (I on /I off ), high frequencies, and power performance are investigated.

  16. Novel applications of ionic liquids in materials processing

    NASA Astrophysics Data System (ADS)

    Reddy, Ramana G.

    2009-05-01

    Ionic liquids are mixtures of organic and inorganic salts which are liquids at room temperature. Several potential applications of ionic liquids in the field of materials processing are electrowinning and electrodeposition of metals and alloys, electrolysis of active metals at low temperature, liquid-liquid extraction of metals. Results using 1-butyl-3-methylimidazolium chloride with AlCl3 at low temperatures yielded high purity aluminium deposits (>99.9% pure) and current efficiencies >98%. Titanium and aluminium were co-deposited with/without the addition of TiCl4 with up to 27 wt% Ti in the deposit with current efficiencies in the range of 78-85 %. Certain ionic liquids are potential replacements for thermal oils and molten salts as heat transfer fluids in solar energy applications due to high thermal stability, very low corrosivity and substantial sensible heat retentivity. The calculated storage densities for several chloride and fluoride ionic liquids are in the range of 160-210 MJ/m3. A 3-D mathematical model was developed to simulate the large scale electrowinning of aluminium. Since ionic liquids processing results in their low energy consumption, low pollutant emissions many more materials processing applications are expected in future.

  17. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    NASA Astrophysics Data System (ADS)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (<1 m in diameter) that were blown down by dilute PDCs up to 0.7-0.9 km from the vent. Beyond this trees were encapsulated and buried in growth position up to the total runout distance of 1.6-1.8 km. This observation suggests that the dynamic pressure of the current quickly dropped as it travelled away from source. Using the tree diameter and yield strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and <10 kPa beyond 0.9 km, and (b) the total run-out distance must be between 1.6 and 1.8 km. Model results suggest the two main forces controlling the runout distance and Pdyn over the extent of the current are sedimentation rate and entrainment of ambient atmosphere, which are a function of the grain size and initial bulk density, thickness and velocity of a given current. Initial velocities of 60 m s-1, initial bulk densities of 35 kg m-3 and initial current thickness of 70 m are the input parameters that reproduce the best fit to our field data. This preliminary validation of the model allows us to estimate the impact of dilute PDCs from future larger phreatomagmatic eruptions. In the case of a dilute PDC traveling 5-7 km from source: Pdyn >35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and extent of past and future eruptions in the AVF or other similar volcanically active regions.

  18. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance was compared. A series of p-type c-Si wafers with varying resistivity/doping density were used for this study in order to evaluate the effect of carrier diffusion length on device performance. The saturation current densities (J0) of the radial junction devices were consistently larger than that of the planar devices as a result of the larger junction area. Despite the increased leakage currents, the radial junction HIT cells exhibited similar Voc compared to the planar cells. In addition, at high doping densities (5˜1018 cm-3), the J sc (16.7mA/cm2) and collection efficiency (6.3%) of the radial junction devices was higher than that of comparable planar cells (J sc 12.7 mA/cm2 and efficiency 5.2%), demonstrating improved collection of photogenerated carriers in this geometry.

  19. Preparation and the Electrochemical Performance of MnO2/PANI@CNT Composite for Supercapacitors.

    PubMed

    Wang, Hongjuan; Wang, Xiaohui; Peng, Cheng; Peng, Feng; Yu, Hao

    2015-01-01

    Polyaniline (PANI) was settled on the surface of CNTs in advance and then used as self-sacrifice reducing agent that would react with KMnO4 to prepare MnO2/PANI@CNT supercapacitor material. With PANI substituting for CNTs to participant the redox reaction, CNTs was protected from being destroyed and could maintain its original morphology and conductivity. The results of cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) show that the optimal capacitive performance can be reached at the MnO2 loading of 64.4 wt% and the pH of 1 during the deposition of MnO2. With the protective PANI, MnO2/PANI@CNT composite exhibits the superior specific capacitance of 215.8 F/g at a current density of 200 mA/g and remains 86.5% of its maximal specific capacitance at a current density of 1000 mA/g.

  20. Increased fracture depth range in controlled spalling of (100)-oriented germanium via electroplating

    DOE PAGES

    Crouse, Dustin; Simon, John; Schulte, Kevin L.; ...

    2018-01-31

    Controlled spalling in (100)-oriented germanium using a nickel stressor layer shows promise for semiconductor device exfoliation and kerfless wafering. Demonstrated spall depths of 7-60 um using DC sputtering to deposit the stressor layer are appropriate for the latter application but spall depths < 5 um may be required to minimize waste for device applications. This work investigates the effect of tuning both electroplating current density and electrolyte chemistry on the residual stress in the nickel and on the achievable spall depth range for the Ni/Ge system as a lower-cost, higher-throughput alternative to sputtering. By tuning current density and electrolyte phosphorousmore » concentration, it is shown that electroplating can successfully span the same range of spalled thicknesses as has previously been demonstrated by sputtering and can reach sufficiently high stresses to enter a regime of thickness (<7 um) appropriate to minimize substrate consumption for device applications.« less

Top