Sample records for deposition pecvd method

  1. Exploration of plasma-enhanced chemical vapor deposition as a method for thin-film fabrication with biological applications.

    PubMed

    Vasudev, Milana C; Anderson, Kyle D; Bunning, Timothy J; Tsukruk, Vladimir V; Naik, Rajesh R

    2013-05-22

    Chemical vapor deposition (CVD) has been used historically for the fabrication of thin films composed of inorganic materials. But the advent of specialized techniques such as plasma-enhanced chemical vapor deposition (PECVD) has extended this deposition technique to various monomers. More specifically, the deposition of polymers of responsive materials, biocompatible polymers, and biomaterials has made PECVD attractive for the integration of biotic and abiotic systems. This review focuses on the mechanisms of thin-film growth using low-pressure PECVD and current applications of classic PECVD thin films of organic and inorganic materials in biological environments. The last part of the review explores the novel application of low-pressure PECVD in the deposition of biological materials.

  2. Plasma enhanced chemical vapour deposition of silica onto Ti: Analysis of surface chemistry, morphology and functional hydroxyl groups

    PubMed Central

    Szili, Endre J.; Kumar, Sunil; Smart, Roger St. C.; Lowe, Rachel; Saiz, Eduardo; Voelcker, Nicolas H.

    2009-01-01

    Previously, we have developed and characterised a procedure for the deposition of thin silica films by a plasma enhanced chemical vapour deposition (PECVD) procedure using tetraethoxysilane (TEOS) as the main precursor. We have used the silica coatings for improving the corrosion resistance of metals and for enhancing the bioactivity of biomedical metallic implants. Recently, we have been fine-tuning the PECVD method for producing high quality and reproducible PECVD-silica (PECVD-Si) coatings on metals, primarily for biomaterial applications. In order to understand the interaction of the PECVD-Si coatings with biological species (such as proteins and cells), it is important to first analyse the properties of the silica films deposited using the optimised parameters. Therefore, this current investigation was carried out to analyse the characteristic features of PECVD-Si deposited on Ti substrates (PECVD-Si-Ti). We determined that the PECVD-Si coatings on Ti were conformal to the substrate surface, strongly adhered to the underlying substrate and were resistant to delamination. The PECVD-Si surface was composed of stoichiometric SiO2, showed a low carbon content (below 10 at.%) and was very hydrophilic (contact angle <10°). Finally, we also showed that the PECVD-Si coatings contain functional hydroxyl groups. PMID:19809536

  3. Silicon Cluster Tool | Photovoltaic Research | NREL

    Science.gov Websites

    Material Deposition/Device Fabrication Very-high-frequency plasma-enhanced chemical vapor deposition (VHF PECVD) for microcrystalline silicon (µc-Si:H) Combinatorial plasma-enhanced chemical vapor deposition (Combi-PECVD) for p-type a-Si:H Plasma-enhanced chemical vapor deposition (PECVD) for n-type a-Si:H

  4. Structurally controlled deposition of silicon onto nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weijie; Liu, Zuqin; Han, Song

    Provided herein are nanostructures for lithium ion battery electrodes and methods of fabrication. In some embodiments, a nanostructure template coated with a silicon coating is provided. The silicon coating may include a non-conformal, more porous layer and a conformal, denser layer on the non-conformal, more porous layer. In some embodiments, two different deposition processes, e.g., a PECVD layer to deposit the non-conformal layer and a thermal CVD process to deposit the conformal layer, are used. Anodes including the nanostructures have longer cycle lifetimes than anodes made using either a PECVD or thermal CVD method alone.

  5. Deposition of single and layered amorphous fluorocarbon films by C8F18 PECVD

    NASA Astrophysics Data System (ADS)

    Yamauchi, Tatsuya; Mizuno, Kouichiro; Sugawara, Hirotake

    2008-10-01

    Amorphous fluorocarbon films were deposited by plasma-enhanced chemical vapor deposition (PECVD) using C8F18 in closed system at C8F18 pressures 0.1--0.3 Torr, deposition times 1--30 min and plasma powers 20--200 W@. The layered films were composed by repeated PECVD processes. We compared `two-layered' and `intermittently deposited' films, which were made by the PECVD, respectively, with and without renewal of the gas after the deposition of the first layer. The interlayer boundary was observed in the layered films, and that of the intermittently deposited films showed a tendency to be clearer when the deposition time until the interruption of the PECVD was shorter. The film thickness increased linearly in the beginning of the PECVD and it turned down after 10--15 min, that was similar between the single and intermittently deposited films. It was considered that large precursors made at a low decomposition degree of C8F18 contributed to the film deposition in the early phase and that the downturn was due to the development of the C8F18 decomposition. This explanation on the deposition mechanism agrees qualitatively with our experimental data of pressure change and optical emission spectra during the deposition. This work is supported by Grant-in-Aid from Japan Society for the Promotion of Science.

  6. Inductively and capacitively coupled plasmas at interface: A comparative study towards highly efficient amorphous-crystalline Si solar cells

    NASA Astrophysics Data System (ADS)

    Guo, Yingnan; Ong, Thiam Min Brian; Levchenko, I.; Xu, Shuyan

    2018-01-01

    A comparative study on the application of two quite different plasma-based techniques to the preparation of amorphous/crystalline silicon (a-Si:H/c-Si) interfaces for solar cells is presented. The interfaces were fabricated and processed by hydrogen plasma treatment using the conventional plasma-enhanced chemical vacuum deposition (PECVD) and inductively coupled plasma chemical vapour deposition (ICP-CVD) methods The influence of processing temperature, radio-frequency power, treatment duration and other parameters on interface properties and degree of surface passivation were studied. It was found that passivation could be improved by post-deposition treatment using both ICP-CVD and PECVD, but PECVD treatment is more efficient for the improvement on passivation quality, whereas the minority carrier lifetime increased from 1.65 × 10-4 to 2.25 × 10-4 and 3.35 × 10-4 s after the hydrogen plasma treatment by ICP-CVD and PECVD, respectively. In addition to the improvement of carrier lifetimes at low temperatures, low RF powers and short processing times, both techniques are efficient in band gap adjustment at sophisticated interfaces.

  7. Two dimensional radial gas flows in atmospheric pressure plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Kim, Gwihyun; Park, Seran; Shin, Hyunsu; Song, Seungho; Oh, Hoon-Jung; Ko, Dae Hong; Choi, Jung-Il; Baik, Seung Jae

    2017-12-01

    Atmospheric pressure (AP) operation of plasma-enhanced chemical vapor deposition (PECVD) is one of promising concepts for high quality and low cost processing. Atmospheric plasma discharge requires narrow gap configuration, which causes an inherent feature of AP PECVD. Two dimensional radial gas flows in AP PECVD induces radial variation of mass-transport and that of substrate temperature. The opposite trend of these variations would be the key consideration in the development of uniform deposition process. Another inherent feature of AP PECVD is confined plasma discharge, from which volume power density concept is derived as a key parameter for the control of deposition rate. We investigated deposition rate as a function of volume power density, gas flux, source gas partial pressure, hydrogen partial pressure, plasma source frequency, and substrate temperature; and derived a design guideline of deposition tool and process development in terms of deposition rate and uniformity.

  8. Low-stress PECVD amorphous silicon carbide (α-SiC) layers for biomedical application

    NASA Astrophysics Data System (ADS)

    Wei, Jiashen; Chen, Bangtao; Poenar, Daniel P.; Lee, Yong Yeow; Iliescu, Ciprian

    2008-12-01

    A detailed characterization of PECVD to produce low stress amorphous silicon carbide (α-SiC) layers at high deposition rate has been done and the biomedical applications of α-SiC layers are reported in this paper. By investigating different working principles in high-frequency mode (13.56MHz) and in low frequency mode (380KHz), it is found that deposition in high-frequency mode can achieve low stress layers at high deposition rates due to the structural rearrangement from high HF power, rather than the ion bombardment effect from high LF power which results in high compressive stress for α-SiC layers. Furthermore, the effects of deposition temperature, pressure and reactant gas ratios are also investigated and then an optimal process is achieved to produce low stress α-SiC layers with high deposition rates. To characterize the PECVD α-SiC layers from optimized process, a series of wet etching experiments in KOH and HF solutions have been completed. The very low etching rates of PECVD α-SiC layers in these two solutions show the good chemical inertness and suitability for masking layers in micromachining. Moreover, cell culture tests by seeding fibroblast NIH3T3 cells on the monocrystalline SiC, low-stress PECVD α-SiC released membranes and non-released PECVD α-SiC films on silicon substrates have been done to check the feasibility of PECVD α-SiC layers as substrate materials for biomedical applications. The results indicate that PECVD α-SiC layers are good for cell culturing, especially after treated in NH4F.

  9. Microbridge testing of plasma-enhanced chemical-vapor deposited silicon oxide films on silicon wafers

    NASA Astrophysics Data System (ADS)

    Cao, Zhiqiang; Zhang, Tong-Yi; Zhang, Xin

    2005-05-01

    Plasma-enhanced chemical-vapor deposited (PECVD) silane-based oxides (SiOx) have been widely used in both microelectronics and microelectromechanical systems (MEMS) to form electrical and/or mechanical components. In this paper, a nanoindentation-based microbridge testing method is developed to measure both the residual stresses and Young's modulus of PECVD SiOx films on silicon wafers. Theoretically, we considered both the substrate deformation and residual stress in the thin film and derived a closed formula of deflection versus load. The formula fitted the experimental curves almost perfectly, from which the residual stresses and Young's modulus of the film were determined. Experimentally, freestanding microbridges made of PECVD SiOx films were fabricated using the silicon undercut bulk micromachining technique. Some microbridges were subjected to rapid thermal annealing (RTA) at a temperature of 400 °C, 600 °C, or 800 °C to simulate the thermal process in the device fabrication. The results showed that the as-deposited PECVD SiOx films had a residual stress of -155±17MPa and a Young's modulus of 74.8±3.3GPa. After the RTA, Young's modulus remained relatively unchanged at around 75 GPa, however, significant residual stress hysteresis was found in all the films. A microstructure-based mechanism was then applied to explain the experimental results of the residual stress changes in the PECVD SiOx films after the thermal annealing.

  10. Surface roughness analysis of SiO2 for PECVD, PVD and IBD on different substrates

    NASA Astrophysics Data System (ADS)

    Amirzada, Muhammad Rizwan; Tatzel, Andreas; Viereck, Volker; Hillmer, Hartmut

    2016-02-01

    This study compares surface roughness of SiO2 thin layers which are deposited by three different processes (plasma-enhanced chemical vapor deposition, physical vapor deposition and ion beam deposition) on three different substrates (glass, Si and polyethylene naphthalate). Plasma-enhanced chemical vapor deposition (PECVD) processes using a wide range of deposition temperatures from 80 to 300 °C have been applied and compared. It was observed that the nature of the substrate does not influence the surface roughness of the grown layers very much. It is also perceived that the value of the surface roughness keeps on increasing as the deposition temperature of the PECVD process increases. This is due to the increase in the surface diffusion length with the rise in substrate temperature. The layers which have been deposited on Si wafer by ion beam deposition (IBD) process are found to be smoother as compared to the other two techniques. The layers which have been deposited on the glass substrates using PECVD reveal the highest surface roughness values in comparison with the other substrate materials and techniques. Different existing models describing the dynamics of clusters on surfaces are compared and discussed.

  11. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon.

    PubMed

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca I

    2017-03-06

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C.

  12. Influence of deposition rate on the structural properties of plasma-enhanced CVD epitaxial silicon

    PubMed Central

    Chen, Wanghua; Cariou, Romain; Hamon, Gwenaëlle; Léal, Ronan; Maurice, Jean-Luc; Cabarrocas, Pere Roca i

    2017-01-01

    Solar cells based on epitaxial silicon layers as the absorber attract increasing attention because of the potential cost reduction. In this work, we studied the influence of the deposition rate on the structural properties of epitaxial silicon layers produced by plasma-enhanced chemical vapor deposition (epi-PECVD) using silane as a precursor and hydrogen as a carrier gas. We found that the crystalline quality of epi-PECVD layers depends on their thickness and deposition rate. Moreover, increasing the deposition rate may lead to epitaxy breakdown. In that case, we observe the formation of embedded amorphous silicon cones in the epi-PECVD layer. To explain this phenomenon, we develop a model based on the coupling of hydrogen and built-in strain. By optimizing the deposition conditions to avoid epitaxy breakdown, including substrate temperatures and plasma potential, we have been able to synthesize epi-PECVD layers up to a deposition rate of 8.3 Å/s. In such case, we found that the incorporation of hydrogen in the hydrogenated crystalline silicon can reach 4 at. % at a substrate temperature of 350 °C. PMID:28262840

  13. Preparation of Hydrophobic Metal-Organic Frameworks via Plasma Enhanced Chemical Vapor Deposition of Perfluoroalkanes for the Removal of Ammonia

    PubMed Central

    DeCoste, Jared B.; Peterson, Gregory W.

    2013-01-01

    Plasma enhanced chemical vapor deposition (PECVD) of perfluoroalkanes has long been studied for tuning the wetting properties of surfaces. For high surface area microporous materials, such as metal-organic frameworks (MOFs), unique challenges present themselves for PECVD treatments. Herein the protocol for development of a MOF that was previously unstable to humid conditions is presented. The protocol describes the synthesis of Cu-BTC (also known as HKUST-1), the treatment of Cu-BTC with PECVD of perfluoroalkanes, the aging of materials under humid conditions, and the subsequent ammonia microbreakthrough experiments on milligram quantities of microporous materials. Cu-BTC has an extremely high surface area (~1,800 m2/g) when compared to most materials or surfaces that have been previously treated by PECVD methods. Parameters such as chamber pressure and treatment time are extremely important to ensure the perfluoroalkane plasma penetrates to and reacts with the inner MOF surfaces. Furthermore, the protocol for ammonia microbreakthrough experiments set forth here can be utilized for a variety of test gases and microporous materials. PMID:24145623

  14. Structural properties of a-Si films and their effect on aluminum induced crystallization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tankut, Aydin; Ozkol, Engin; Karaman, Mehmet

    2015-10-15

    In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECVD grown a-Si films has higher intermediate-range order, which is enhanced for increased hydrogen dilution during deposition. With increasing intermediate-range order of the a-Si, the rate of AICmore » is diminished, leading larger poly-Si grain size.« less

  15. On a non-thermal atmospheric pressure plasma jet used for the deposition of silicon-organic films

    NASA Astrophysics Data System (ADS)

    Schäfer, Jan; Sigeneger, Florian; Foest, Rüdiger; Loffhagen, Detlef; Weltmann, Klaus-Dieter

    2018-05-01

    This work represents a concise overview on the results achieved by the authors over the last years on the plasma of a non-thermal reactive plasma jet at atmospheric pressure and of related thin film formation by plasma enhanced chemical vapour deposition (PECVD). The source was developed considering the application of the plasma self-organization for PECVD. The experimental methods comprise spectroscopic measurements of plasma parameters in the active zone, temperature measurements in the active zone and the effluent as well as the analysis of deposited films at the substrate surface. The theoretical investigations are devoted to a single filament in the active zone using a phase-resolved model and to an overall description of the jet including the substrate using a period-averaged model.

  16. Gas diffusion ultrabarriers on polymer substrates using Al2O3 atomic layer deposition and SiN plasma-enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Carcia, P. F.; McLean, R. S.; Groner, M. D.; Dameron, A. A.; George, S. M.

    2009-07-01

    Thin films grown by Al2O3 atomic layer deposition (ALD) and SiN plasma-enhanced chemical vapor deposition (PECVD) have been tested as gas diffusion barriers either individually or as bilayers on polymer substrates. Single films of Al2O3 ALD with thicknesses of ≥10 nm had a water vapor transmission rate (WVTR) of ≤5×10-5 g/m2 day at 38 °C/85% relative humidity (RH), as measured by the Ca test. This WVTR value was limited by H2O permeability through the epoxy seal, as determined by the Ca test for the glass lid control. In comparison, SiN PECVD films with a thickness of 100 nm had a WVTR of ˜7×10-3 g/m2 day at 38 °C/85% RH. Significant improvements resulted when the SiN PECVD film was coated with an Al2O3 ALD film. An Al2O3 ALD film with a thickness of only 5 nm on a SiN PECVD film with a thickness of 100 nm reduced the WVTR from ˜7×10-3 to ≤5×10-5 g/m2 day at 38 °C/85% RH. The reduction in the permeability for Al2O3 ALD on the SiN PECVD films was attributed to either Al2O3 ALD sealing defects in the SiN PECVD film or improved nucleation of Al2O3 ALD on SiN.

  17. Switching Vertical to Horizontal Graphene Growth Using Faraday Cage-Assisted PECVD Approach for High-Performance Transparent Heating Device.

    PubMed

    Qi, Yue; Deng, Bing; Guo, Xiao; Chen, Shulin; Gao, Jing; Li, Tianran; Dou, Zhipeng; Ci, Haina; Sun, Jingyu; Chen, Zhaolong; Wang, Ruoyu; Cui, Lingzhi; Chen, Xudong; Chen, Ke; Wang, Huihui; Wang, Sheng; Gao, Peng; Rummeli, Mark H; Peng, Hailin; Zhang, Yanfeng; Liu, Zhongfan

    2018-02-01

    Plasma-enhanced chemical vapor deposition (PECVD) is an applicable route to achieve low-temperature growth of graphene, typically shaped like vertical nanowalls. However, for transparent electronic applications, the rich exposed edges and high specific surface area of vertical graphene (VG) nanowalls can enhance the carrier scattering and light absorption, resulting in high sheet resistance and low transmittance. Thus, the synthesis of laid-down graphene (LG) is imperative. Here, a Faraday cage is designed to switch graphene growth in PECVD from the vertical to the horizontal direction by weakening ion bombardment and shielding electric field. Consequently, laid-down graphene is synthesized on low-softening-point soda-lime glass (6 cm × 10 cm) at ≈580 °C. This is hardly realized through the conventional PECVD or the thermal chemical vapor deposition methods with the necessity of high growth temperature (1000 °C-1600 °C). Laid-down graphene glass has higher transparency, lower sheet resistance, and much improved macroscopic uniformity when compare to its vertical graphene counterpart and it performs better in transparent heating devices. This will inspire the next-generation applications in low-cost transparent electronics. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Microcrystalline silicon thin films deposited by matrix-distributed electron cyclotron resonance plasma enhanced chemical vapor deposition using an SiF4 /H2 chemistry

    NASA Astrophysics Data System (ADS)

    Wang, Junkang; Bulkin, Pavel; Florea, Ileana; Maurice, Jean-Luc; Johnson, Erik

    2016-07-01

    For the growth of hydrogenated microcrystalline silicon (μc-Si:H) thin films by low temperature plasma-enhanced chemical vapor deposition (PECVD), silicon tetrafluoride (SiF4) has recently attracted interest as a precursor due to the resilient optoelectronic performance of the resulting material and devices. In this work, μc-Si:H films are deposited at high rates (7 Å s-1) from a SiF4 and hydrogen (H2) gas mixture by matrix-distributed electron cyclotron resonance PECVD (MDECR-PECVD). Increased substrate temperature and moderate ion bombardment energy (IBE) are demonstrated to be of vital importance to achieve high quality μc-Si:H films under such low process pressure and high plasma density conditions, presumably due to thermally-induced and ion-induced enhancement of surface species migration. Two well-defined IBE thresholds at 12 eV and 43 eV, corresponding respectively to SiF+ ion-induced surface and bulk atomic displacement, are found to be determinant to the final film properties, namely the surface roughness, feature size and crystalline content. Moreover, a study of the growth dynamics shows that the primary challenge to producing highly crystallized μc-Si:H films by MDECR-PECVD appears to be the nucleation step. By employing a two-step method to first prepare a highly crystallized seed layer, μc-Si:H films lacking any amorphous incubation layer have been obtained. A crystalline volume fraction of 68% is achieved with a substrate temperature as low as 120 °C, which is of great interest to broaden the process window for solar cell applications.

  19. Optical, mechanical and surface properties of amorphous carbonaceous thin films obtained by plasma enhanced chemical vapor deposition and plasma immersion ion implantation and deposition

    NASA Astrophysics Data System (ADS)

    Turri, Rafael G.; Santos, Ricardo M.; Rangel, Elidiane C.; da Cruz, Nilson C.; Bortoleto, José R. R.; Dias da Silva, José H.; Antonio, César Augusto; Durrant, Steven F.

    2013-09-01

    Diverse amorphous hydrogenated carbon-based films (a-C:H, a-C:H:F, a-C:H:N, a-C:H:Cl and a-C:H:Si:O) were obtained by radiofrequency plasma enhanced chemical vapor deposition (PECVD) and plasma immersion ion implantation and deposition (PIIID). The same precursors were used in the production of each pair of each type of film, such as a-C:H, using both PECVD and PIIID. Optical properties, namely the refractive index, n, absorption coefficient, α, and optical gap, ETauc, of these films were obtained via transmission spectra in the ultraviolet-visible near-infrared range (wavelengths from 300 to 3300 nm). Film hardness, elastic modulus and stiffness were obtained as a function of depth using nano-indentation. Surface energy values were calculated from liquid drop contact angle data. Film roughness and morphology were assessed using atomic force microscopy (AFM). The PIIID films were usually thinner and possessed higher refractive indices than the PECVD films. Determined refractive indices are consistent with literature values for similar types of films. Values of ETauc were increased in the PIIID films compared to the PECVD films. An exception was the a-C:H:Si:O films, for which that obtained by PIIID was thicker and exhibited a decreased ETauc. The mechanical properties - hardness, elastic modulus and stiffness - of films produced by PECVD and PIIID generally present small differences. An interesting effect is the increase in the hardness of a-C:H:Cl films from 1.0 to 3.0 GPa when ion implantation is employed. Surface energy correlates well with surface roughness. The implanted films are usually smoother than those obtained by PECVD.

  20. Characterization of Diamond-like Carbon (DLC) films deposited by RF ICP PECVD method

    NASA Astrophysics Data System (ADS)

    Oleszkiewicz, Waldemar; Kijaszek, Wojciech; Gryglewicz, Jacek; Zakrzewski, Adrian; Gajewski, Krzysztof; Kopiec, Daniel; Kamyczek, Paulina; Popko, Ewa; Tłaczała, Marek

    2013-07-01

    The work presents the results of a research carried out with Plasmalab Plus 100 system, manufactured by Oxford Instruments Company. The system was configured for deposition of diamond-like carbon films by ICP PECVD method. The deposition processes were carried out in CH4 or CH4/H2 atmosphere and the state of the plasma was investigated by the OES method. The RF plasma was capacitively coupled by 13.56 MHz generator with supporting ICP generator (13.56 Mhz). The deposition processes were conducted in constant value of RF generator's power and resultant value of the DC Bias. The power values of RF generator was set at 70 W and the power values of ICP generator was set at 300 W. In this work we focus on the influence of DLC film's thickness on optical, electrical and structural properties of the deposited DLC films. The quality of deposited DLC layers was examined by the Raman spectroscopy, AFM microscopy and spectroscopic ellipsometry. In the investigated DLC films the calculated sp3 content was ranging from 60 % to 70 %. The films were characterized by the refractive index ranging from 2.03 to 2.1 and extinction coefficient ranging from 0.09 to 0.12.

  1. Silicon surface passivation by silicon nitride deposition

    NASA Technical Reports Server (NTRS)

    Olsen, L. C.

    1984-01-01

    Silicon nitride deposition was studied as a method of passivation for silicon solar cell surfaces. The following three objectives were the thrust of the research: (1) the use of pecvd silicon nitride for passivation of silicon surfaces; (2) measurement techniques for surface recombination velocity; and (3) the importance of surface passivation to high efficiency solar cells.

  2. Development of Advanced Deposition Technology for Microcrystalline Si Based Solar Cells and Modules: Final Technical Report, 1 May 2002-31 July 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y. M.

    2004-12-01

    The key objective of this subcontract was to take the first steps to extend the radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) manufacturing technology of Energy Photovoltaics, Inc. (EPV), to the promising field of a-Si/nc-Si solar cell fabrication by demonstrating ''proof-of-concept'' devices of good efficiencies that previously were believed to be unobtainable in single-chamber reactors owing to contamination problems. A complementary goal was to find a new high-rate deposition method that can conceivably be deployed in large PECVD-type reactors. We emphasize that our goal was not to produce 'champion' devices of near-record efficiencies, but rather, to achieve modestly high efficiencies usingmore » a far simpler (cheaper) system, via practical processing methods and materials. To directly attack issues in solar-cell fabrication at EPV, the nc-Si thin films were studied almost exclusively in the p-i-n device configuration (as absorbers or i-layers), not as stand-alone films. Highly efficient, p-i-n type, nc-Si-based solar cells are generally grown on expensive, laboratory superstrates, such as custom ZnO/glass of high texture (granular surface) and low absorption. Also standard was the use of a highly effective back-reflector ZnO/Ag, where the ZnO can be surface-textured for efficient diffuse reflection. The high-efficiency ''champion'' devices made by the PECVD methods were invariably prepared in sophisticated (i.e., expensive), multi-chamber, or at least load-locked deposition systems. The electrode utilization efficiency, defined as the surface-area ratio of the powered electrode to that of the substrates, was typically low at about one (1:1). To evaluate the true potential of nc-Si absorbers for cost-competitive, commercially viable manufacturing of large-area PV modules, we took a more down-to-earth approach, based on our proven production of a-Si PV modules by a massively parallel batch process in single-chamber RF-PECVD systems, to the study of nc-Si solar cells, with the aim of producing high-efficiency a-Si/nc-Si solar cells and sub-modules.« less

  3. Optimization of silicon oxynitrides by plasma-enhanced chemical vapor deposition for an interferometric biosensor

    NASA Astrophysics Data System (ADS)

    Choo, Sung Joong; Lee, Byung-Chul; Lee, Sang-Myung; Park, Jung Ho; Shin, Hyun-Joon

    2009-09-01

    In this paper, silicon oxynitride layers deposited with different plasma-enhanced chemical vapor deposition (PECVD) conditions were fabricated and optimized, in order to make an interferometric sensor for detecting biochemical reactions. For the optimization of PECVD silicon oxynitride layers, the influence of the N2O/SiH4 gas flow ratio was investigated. RF power in the PEVCD process was also adjusted under the optimized N2O/SiH4 gas flow ratio. The optimized silicon oxynitride layer was deposited with 15 W in chamber under 25/150 sccm of N2O/SiH4 gas flow rates. The clad layer was deposited with 20 W in chamber under 400/150 sccm of N2O/SiH4 gas flow condition. An integrated Mach-Zehnder interferometric biosensor based on optical waveguide technology was fabricated under the optimized PECVD conditions. The adsorption reaction between bovine serum albumin (BSA) and the silicon oxynitride surface was performed and verified with this device.

  4. Simulation and experimental verification of silicon dioxide deposition by PECVD

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Li, Yu-Xing; Li, Xiao-Ning; Wang, Jia-Bin; Yang, Fan; Yang, Yi; Ren, Tian-Ling

    2017-02-01

    Deposition of silicon dioxide in high-density plasma is an important process in integrated circuit manufacturing. A software named CFD-ACE was used to simulate the mechanism of plasma in the chamber of plasma enhanced chemical vapor deposition (PECVD) system, and the evolution of the feature profile was simulated based on CFD-TOPO. Simulation and experiment of silicon dioxide that deposited in SiH4/N2O mixture by PECVD system was researched. The particle density, energy and angular distribution in the chamber were simulated and discussed. We also studied how the depth/width ratio affected the step coverage of the trench and analyzed the deposition rate of silicon dioxide on the feature scale. X-ray photoelectron spectroscopy (XPS) was used to analyze the elemental composition of thin films. Images of the feature profiles were taken by scanning electron microscope (SEM). The simulation results were in good agreement with experimental, which could guide the semiconductor device manufacture.

  5. Formation of nanocrystalline diamond in polymer like carbon films deposited by plasma CVD.

    PubMed

    Bhaduri, A; Chaudhuri, P

    2009-09-01

    Conventional plasma enhanced chemical vapour deposition (PECVD) method is generally not suitable for the growth of nanocrystalline diamond (NCD) films. However, our study shows that conditions favourable for powder formation help to grow large amount of nanocrystallites in conventional PECVD. With CH4 as the carbon source gas, dilution with Ar and moderate (50 W) rf power enhances formations of powders (nanoparticles) and C2 dimers within the plasma. On the other hand, with pure CH4 or with hydrogen diluted CH4, powder formation as also NCD growth is hindered. It is proposed that the nanoparticles formed in the plasma act as the "islands" while the C2 dimers are the "seeds" for the NCD growth. The structure of the films deposited on the grounded anode under different conditions of dilution has been studied. It is observed that with high Ar dilution the films contain NCD embedded in polymer like carbon (PLC) matrix.

  6. Fabrication technology of CNT-Nickel Oxide based planar pseudocapacitor for MEMS and NEMS

    NASA Astrophysics Data System (ADS)

    Lebedev, E. A.; Kitsyuk, E. P.; Gavrilin, I. M.; Gromov, D. G.; Gruzdev, N. E.; Gavrilov, S. A.; Dronov, A. A.; Pavlov, A. A.

    2015-11-01

    Fabrication technology of planar pseudocapacitor (PsC) based on carbon nanotube (CNT) forest, synthesized using plasma enhanced chemical vapor deposition (PECVD) method, covered with thin nickel oxide layer deposited by successive ionic layer adsorption and reaction (SILAR) method, is demonstrated. Dependences of deposited oxide layers thickness on device specific capacities is studied. It is shown that pseudocapacity of nickel oxide thin layer increases specific capacity of the CNT's based device up to 2.5 times.

  7. Photonic band gap and defects modes in inorganic/organic photonic crystal based on Si and HMDSO layers deposited by sputtering and PECVD

    NASA Astrophysics Data System (ADS)

    Amri, R.; Sahel, S.; Gamra, D.; Lejeune, M.; Clin, M.; Zellama, K.; Bouchriha, H.

    2018-02-01

    Hybrid inorganic/organic one dimensional photonic crystal based on alternating layers of Si/HMDSO is elaborated. The inorganic silicon is deposited by radiofrequency magnetron sputtering and the organic HMDSO is deposited by PECVD technique. As the Si refractive index is n = 3.4, and the refractive index of HMDSO layer depend on the deposition conditions, to get a photonic crystal with high and low refractive index presenting a good contrast, we have varied the radiofrequency power of PECVD process to obtain HMDSO layer with low refractive index (n = 1.45). Photonic band gap of this hybrid structure is obtained from the transmission and reflection spectra and appears after 9 alternative layers of Si/HMDSO. The introduction of defects in our photonic crystal leads to the emergence of localized modes within the photonic band gap. Our results are interpreted by using a theoretical model based on transfer matrix.

  8. Detection Of Gas-Phase Polymerization in SiH4 And GeH4

    NASA Technical Reports Server (NTRS)

    Shing, Yuh-Han; Perry, Joseph W.; Allevato, Camillo E.

    1990-01-01

    Inelastic scattering of laser light found to indicate onset of gas-phase polymerization in plasma-enhanced chemical-vapor deposition (PECVD) of photoconductive amorphous hydrogenated silicon/germanium alloy (a-SiGe:H) film. In PECVD process, film deposited from radio-frequency glow-discharge plasma of silane (SiH4) and germane (GeH4) diluted with hydrogen. Gas-phase polymerization undesirable because it causes formation of particulates and defective films.

  9. Design and fabrication of asymmetric nanopores using pulsed PECVD

    NASA Astrophysics Data System (ADS)

    Kelkar, Sanket S.

    Manipulating matter at nanometric length scales is important for many electronic, chemical and biological applications. Structures such as nanopores demonstrate a phenomenon known as hindered transport which can be exploited in analytical applications such as DNA sequencing, ionic transistors, and molecular sieving. Precisely controlling the size, geometry and surface characteristics of the nanopores is important for realizing these applications. In this work, we employ relatively large template structures (˜ 100 nm) produced by track-etching or electron beam lithography. The pore size is then reduced to the desired level by deposition of material using pulsed plasma enhanced chemical vapor deposition (PECVD). Pulsed PECVD has been developed as a high throughput alternative to atomic layer deposition (ALD) to deliver self-limiting growth of thin films. The goal of this thesis is to extend the application of pulsed PECVD to fabricate asymmetric nanopores. In contrast to ALD, pulsed PECVD does not result in perfectly conformal deposition profiles, and predicting the final nanostructure is more complicated. A two dimensional feature scale model was developed to predict film profile evolution. The model was built in COMSOL, and is based on a diffusion reaction framework with a spatially varying Knudsen diffusion coefficient to account for the molecular transport inside the features. A scaling analysis was used to account for ALD exposure limitations that commonly occur when coating these extremely high aspect ratio features. The model was verified by cross-section microscopy of deposition profiles on patterned cylinders and trenches. The model shows that it is possible to obtain unique nanopore morphologies in pulsed PECVD that are distinct from either steady state deposition processes such as physical vapor deposition (PVD) or conventional ALD. Polymeric track etched (TE) membrane supports with a nominal size of 100 nm were employed as model template structures to demonstrate the capability of pulsed PECVD for precise pore size reduction of model supports. The efficacy of pulsed PECVD for nanopore fabrication was compared to both ALD and PVD. Flux and solute rejection measurements demonstrate that the pulsed PECVD-modified TE membranes exhibit higher selectivity without compromising on the flux due to their asymmetric structure. For example, the TiO2 modified supports were demonstrated to deliver high retention (˜ 75%) of bovine serum albumin (BSA) protein while maintaining 70% of their initial pure water flux. PVD also forms asymmetric membranes that enable high flux. But due to morphological instabilities, reproducibility and control were poor in the PVD-modified membranes, and it was not possible to optimize the flux and the selectivity of the membranes simultaneously. Excellent agreement between measured flux and model predictions based on feature scale simulations provided further validation of the tool's fidelity. Since surface energetics can often dominate hindered transport, the kinetics and thermodynamics of the octadecyltrichlorosilane (OTS) attachment was investigated in-depth as an approach to convert hydrophilic metal oxides into hydrophobic surfaces. It was shown that a simple ozone treatment was a satisfactory alternative to hazardous acids to create the highly hydroxylated surface required for OTS attachment, and that using heptane as the solvent enabled the process to be conducted under ambient conditions without the need of a glovebox. The kinetics of OTS self-assembled monolayer (SAM) formation and the saturation contact angle (˜100°) on alumina are comparable to what has been observed for OTS attachment on silicon. The OTS SAMs also demonstrated excellent thermal stability, and the modified surface showed a critical surface tension of 21.4 dyne/cm.

  10. Methods for passivating silicon devices at low temperature to achieve low interface state density and low recombination velocity while preserving carrier lifetime

    DOEpatents

    Chen, Zhizhang; Rohatgi, Ajeet

    1995-01-01

    A new process has been developed to achieve a very low SiO.sub.x /Si interface state density D.sub.it, low recombination velocity S (<2 cm/s), and high effective carrier lifetime T.sub.eff (>5 ms) for oxides deposited on silicon substrates at low temperature. The technique involves direct plasma-enhanced chemical vapor deposition (PECVD), with appropriate growth conditions, followed by a photo-assisted rapid thermal annealing (RTA) process. Approximately 500-A-thick SiO.sub.x layers are deposited on Si by PECVD at 250.degree. C. with 0.02 W/cm.sup.-2 rf power, then covered with SiN or an evaporated thin aluminum layer, and subjected to a photo-assisted anneal in forming gas ambient at 350.degree. C., resulting in an interface state density D.sub.it in the range of about 1-4.times.10.sup.10 cm.sup.-2 eV.sup.-1, which sets a record for the lowest interface state density D.sub.it for PECVD oxides fabricated to date. Detailed analysis shows that the PECVD deposition conditions, photo-assisted anneal, forming gas ambient, and the presence of an aluminum layer on top of the oxides during the anneal, all contributed to this low value of interface state density D.sub.it. Detailed metal-oxide semiconductor analysis and model calculations show that such a low recombination velocity S is the result of moderately high positive oxide charge (5.times.10.sup.11 -1.times.10.sup.12 cm.sup.-2) and relatively low midgap interface state density (1.times.10.sup.10 -4.times.10.sup.10 cm.sup.-2 eV.sup.-1). Photo-assisted anneal was found to be superior to furnace annealing, and a forming gas ambient was better than a nitrogen ambient for achieving a very low surface recombination velocity S.

  11. Low temperature synthesis of silicon nitride thin films deposited by VHF/RF PECVD for gas barrier application

    NASA Astrophysics Data System (ADS)

    Lee, Jun S.; Shin, Kyung S.; Sahu, B. B.; Han, Jeon G.

    2015-09-01

    In this work, silicon nitride (SiNx) thin films were deposited on polyethylene terephthalate (PET) substrates as barrier layers by plasma enhanced chemical vapor deposition (PECVD) system. Utilizing a combination of very high-frequency (VHF 40.68 MHz) and radio-frequency (RF 13.56 MHz) plasmas it was possible to adopt PECVD deposition at low-temperature using the precursors: Hexamethyldisilazane (HMDSN) and nitrogen. To investigate relationship between film properties and plasma properties, plasma diagnostic using optical emission spectroscopy (OES) was performed along with the film analysis using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). OES measurements show that there is dominance of the excited N2 and N2+ emissions with increase in N2 dilution, which has a significant impact on the film properties. It was seen that all the deposited films contains mainly silicon nitride with a small content of carbon and no signature of oxygen. Interestingly, upon air exposure, films have shown the formation of Si-O bonds in addition to the Si-N bonds. Measurements and analysis reveals that SiNx films deposited with high content of nitrogen with HMDSN plasma can have lower gas barrier properties as low as 7 . 3 ×10-3 g/m2/day. Also at Chiang Mai University.

  12. Effect of dual-dielectric hydrogen-diffusion barrier layers on the performance of low-temperature processed transparent InGaZnO thin-film transistors

    NASA Astrophysics Data System (ADS)

    Tari, Alireza; Wong, William S.

    2018-02-01

    Dual-dielectric SiOx/SiNx thin-film layers were used as back-channel and gate-dielectric barrier layers for bottom-gate InGaZnO (IGZO) thin-film transistors (TFTs). The concentration profiles of hydrogen, indium, gallium, and zinc oxide were analyzed using secondary-ion mass spectroscopy characterization. By implementing an effective H-diffusion barrier, the hydrogen concentration and the creation of H-induced oxygen deficiency (H-Vo complex) defects during the processing of passivated flexible IGZO TFTs were minimized. A bilayer back-channel passivation layer, consisting of electron-beam deposited SiOx on plasma-enhanced chemical vapor-deposition (PECVD) SiNx films, effectively protected the TFT active region from plasma damage and minimized changes in the chemical composition of the semiconductor layer. A dual-dielectric PECVD SiOx/PECVD SiNx gate-dielectric, using SiOx as a barrier layer, also effectively prevented out-diffusion of hydrogen atoms from the PECVD SiNx-gate dielectric to the IGZO channel layer during the device fabrication.

  13. Ultrathin Carbon Film Protected Silver Nanostructures for Surface-Enhanced Raman Scattering.

    PubMed

    Peng, Yinshan; Zheng, Xianliang; Tian, Hongwei; Cui, Xiaoqiang; Chen, Hong; Zheng, Weitao

    2016-06-23

    In this article, ultrathin carbon film protected silver substrate (Ag/C) was prepared via a plasma-enhanced chemical vapor deposition (PECVD) method. The morphological evolution of silver nanostructures underneath, as well as the surface-enhanced Raman scattering (SERS) activity of Ag/C hybrid can be tuned by controlling the deposition time. The stability and reproducibility of the as-prepared hybrid were also studied. © The Author(s) 2016.

  14. PECVD silicon-rich nitride and low stress nitride films mechanical characterization using membrane point load deflection

    NASA Astrophysics Data System (ADS)

    Bagolini, Alvise; Picciotto, Antonino; Crivellari, Michele; Conci, Paolo; Bellutti, Pierluigi

    2016-02-01

    An analysis of the mechanical properties of plasma enhanced chemical vapor (PECVD) silicon nitrides is presented, using micro fabricated silicon nitride membranes under point load deflection. The membranes are made of PECVD silicon-rich nitride and low stress nitride films. The mechanical performance of the bended membranes is examined both with analytical models and finite element simulation in order to extract the elastic modulus and residual stress values. The elastic modulus of low stress silicon nitride is calculated using stress free analytical models, while for silicon-rich silicon nitride and annealed low stress silicon nitride it is estimated with a pre-stressed model of point-load deflection. The effect of annealing both in nitrogen and hydrogen atmosphere is evaluated in terms of residual stress, refractive index and thickness variation. It is demonstrated that a hydrogen rich annealing atmosphere induces very little change in low stress silicon nitride. Nitrogen annealing effects are measured and shown to be much higher in silicon-rich nitride than in low stress silicon nitride. An estimate of PECVD silicon-rich nitride elastic modulus is obtained in the range between 240-320 GPa for deposited samples and 390 GPa for samples annealed in nitrogen atmosphere. PECVD low stress silicon nitride elastic modulus is estimated to be 88 GPa as deposited and 320 GPa after nitrogen annealing.

  15. Towards high frequency heterojunction transistors: Electrical characterization of N-doped amorphous silicon-graphene diodes

    NASA Astrophysics Data System (ADS)

    Strobel, C.; Chavarin, C. A.; Kitzmann, J.; Lupina, G.; Wenger, Ch.; Albert, M.; Bartha, J. W.

    2017-06-01

    N-type doped amorphous hydrogenated silicon (a-Si:H) is deposited on top of graphene (Gr) by means of very high frequency (VHF) and radio frequency plasma-enhanced chemical vapor deposition (PECVD). In order to preserve the structural integrity of the monolayer graphene, a plasma excitation frequency of 140 MHz was successfully applied during the a-Si:H VHF-deposition. Raman spectroscopy results indicate the absence of a defect peak in the graphene spectrum after the VHF-PECVD of (n)-a-Si:H. The diode junction between (n)-a-Si:H and graphene was characterized using temperature dependent current-voltage (IV) and capacitance-voltage measurements, respectively. We demonstrate that the current at the (n)-a-Si:H-graphene interface is dominated by thermionic emission and recombination in the space charge region. The Schottky barrier height (qΦB), derived by temperature dependent IV-characteristics, is about 0.49 eV. The junction properties strongly depend on the applied deposition method of (n)-a-Si:H with a clear advantage of the VHF(140 MHz)-technology. We have demonstrated that (n)-a-Si:H-graphene junctions are a promising technology approach for high frequency heterojunction transistors.

  16. Hydrogen dissociation in the deposition of GaN films with ECR-PECVD process

    NASA Astrophysics Data System (ADS)

    Fu, S. L.; Wang, C. A.; Ding, L. C.; Qin, Y. X.

    2018-05-01

    The hydrogen dissociation and its effect on the GaN film growth in the ECR-PECVD process are investigated in this paper. We use N2 and trimethylgallium (TMG) as N and Ga sources respectively in the ECR- PECVD process. The results show that the rate of hydrogen dissociation increases with the microwave power and it becomes higher at high microwave power (> 500 W). However, this population increase of the H species dissociated from the TMG gas in ECR plasma is not enough to change the growth condition from Ga-rich to N-rich.

  17. Electrical dependence on the chemical composition of the gate dielectric in indium gallium zinc oxide thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tari, Alireza, E-mail: atari@uwaterloo.ca; Lee, Czang-Ho; Wong, William S.

    Bottom-gate thin-film transistors were fabricated by depositing a 50 nm InGaZnO (IGZO) channel layer at 150 °C on three separate gate dielectric films: (1) thermal SiO{sub 2}, (2) plasma-enhanced chemical-vapor deposition (PECVD) SiN{sub x}, and (3) a PECVD SiO{sub x}/SiN{sub x} dual-dielectric. X-ray photoelectron and photoluminescence spectroscopy showed the V{sub o} concentration was dependent on the hydrogen concentration of the underlying dielectric film. IGZO films on SiN{sub x} (high V{sub o}) and SiO{sub 2} (low V{sub o}) had the highest and lowest conductivity, respectively. A PECVD SiO{sub x}/SiN{sub x} dual-dielectric layer was effective in suppressing hydrogen diffusion from the nitride layer intomore » the IGZO and resulted in higher resistivity films.« less

  18. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    NASA Astrophysics Data System (ADS)

    Mehedi, H.-A.; Baudrillart, B.; Alloyeau, D.; Mouhoub, O.; Ricolleau, C.; Pham, V. D.; Chacon, C.; Gicquel, A.; Lagoute, J.; Farhat, S.

    2016-08-01

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700-850 °C), molar concentration of methane (2%-20%), growth time (30-90 s), and microwave power (300-400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline quality and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2-7 high quality graphene layers.

  19. Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehedi, H.-A.; Baudrillart, B.; Gicquel, A.

    2016-08-14

    This article describes the significant roles of process parameters in the deposition of graphene films via cobalt-catalyzed decomposition of methane diluted in hydrogen using plasma-enhanced chemical vapor deposition (PECVD). The influence of growth temperature (700–850 °C), molar concentration of methane (2%–20%), growth time (30–90 s), and microwave power (300–400 W) on graphene thickness and defect density is investigated using Taguchi method which enables reaching the optimal parameter settings by performing reduced number of experiments. Growth temperature is found to be the most influential parameter in minimizing the number of graphene layers, whereas microwave power has the second largest effect on crystalline qualitymore » and minor role on thickness of graphene films. The structural properties of PECVD graphene obtained with optimized synthesis conditions are investigated with Raman spectroscopy and corroborated with atomic-scale characterization performed by high-resolution transmission electron microscopy and scanning tunneling microscopy, which reveals formation of continuous film consisting of 2–7 high quality graphene layers.« less

  20. The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation quality

    NASA Astrophysics Data System (ADS)

    Descoeudres, A.; Barraud, L.; Bartlome, R.; Choong, G.; De Wolf, Stefaan; Zicarelli, F.; Ballif, C.

    2010-11-01

    In silicon heterojunction solar cells, thin amorphous silicon layers passivate the crystalline silicon wafer surfaces. By using in situ diagnostics during plasma-enhanced chemical vapor deposition (PECVD), the authors report how the passivation quality of such layers directly relate to the plasma conditions. Good interface passivation is obtained from highly depleted silane plasmas. Based upon this finding, layers deposited in a large-area very high frequency (40.68 MHz) PECVD reactor were optimized for heterojunction solar cells, yielding aperture efficiencies up to 20.3% on 4 cm2 cells.

  1. Plasma-deposited amorphous silicon carbide films for micromachined fluidic channels

    NASA Astrophysics Data System (ADS)

    Wuu, Dong-Sing; Horng, Ray-Hua; Chan, Chia-Chi; Lee, Yih-Shing

    1999-04-01

    The stress properties of the a-SiC:H films on Si by plasma-enhanced chemical vapor deposition (PECVD) are investigated. It is found that the stability of the a-SiC:H films relates to Si-H bonds breaking and changes the stress toward tensile. No evident reduction in the content of Si-H bonds after thermal cycles was found in the carbon-rich samples. Moreover, a new method to fabricate microchannels by through-hole etching with subsequent planarization is proposed. The process is based on etching out the deep grooves through a perforated a-SiC:H membrane, where poly-Si is used as a sacrificial layer to define the channel structure, followed by PECVD sealing the SiC:H membrane. In order to improve the etching performance, the agitated KOH etch is performed at low temperatures (<50°C). The process technology is demonstrated on the fabrication of microfluidic channels with the low-stress (<0.1 GPa) a-SiC:H membranes.

  2. One-step microwave plasma enhanced chemical vapor deposition (MW-PECVD) for transparent superhydrophobic surface

    NASA Astrophysics Data System (ADS)

    Thongrom, Sukrit; Tirawanichakul, Yutthana; Munsit, Nantakan; Deangngam, Chalongrat

    2018-02-01

    We demonstrate a rapid and environmental friendly fabrication technique to produce optically clear superhydrophobic surfaces using poly (dimethylsiloxane) (PDMS) as a sole coating material. The inert PDMS chain is transformed into a 3-D irregular solid network through microwave plasma enhanced chemical vapor deposition (MW-PECVD) process. Thanks to high electron density in the microwave-activated plasma, coating can be done in just a single step with rapid deposition rate, typically much shorter than 10 s. Deposited layers show excellent superhydrophobic properties with water contact angles of ∼170° and roll-off angles as small as ∼3°. The plasma-deposited films can be ultrathin with thicknesses under 400 nm, greatly diminishing the optical loss. Moreover, with appropriate coating conditions, the coating layer can even enhance the transmission over the entire visible spectrum due to a partial anti-reflection effect.

  3. Deposition of amorphous silicon using a tubular reactor with concentric-electrode confinement

    NASA Astrophysics Data System (ADS)

    Conde, J. P.; Chan, K. K.; Blum, J. M.; Arienzo, M.; Cuomo, J. J.

    1992-04-01

    High-quality, hydrogenated amorphous silicon (a-Si:H) is deposited at room temperature by rf glow discharge at a high deposition rate using a tubular reactor with cylindrical symmetry (concentric-electrode plasma-enhanced chemical vapor deposition, CE-PECVD). Using the novel CE-PECVD design, room-temperature deposition of a-Si:H with growth rates up to 14 Å s-1, low hydrogen concentration (≲10%), and the bonded hydrogen in the Si-H monohydride configuration, is achieved for the first time using an rf glow-discharge technique. The influence of the deposition parameters (silane flow rate, pressure, and power density) on the growth rate, optical band gap, and silicon-hydrogen bonding configuration, is quantitatively predicted using a deposition mechanism based on the additive contribution of three growth precursors, SiH2, SiH3, and Si2H6, with decreasing sticking coefficients of 0.7, 0.1, and 0.001, respectively. The low hydrogen concentration is due to the enhanced ion bombardment resulting from the concentric electrode design.

  4. PECVD Growth of Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    McAninch, Ian; Arnold, James O. (Technical Monitor)

    2001-01-01

    Plasma enhanced chemical vapor deposition (PECVD), using inductively coupled plasma, has been used to grow carbon nanotubes (CNTs) and graphitic carbon fibers (GCF) on substrates sputtered with aluminum and iron catalyst. The capacitive plasma's power has been shown to cause a transition from nanotubes to nanofibers, depending on the strength of the plasma. The temperature, placement, and other factors have been shown to affect the height and density of the tube and fiber growth.

  5. Upcycling Waste Lard Oil into Vertical Graphene Sheets by Inductively Coupled Plasma Assisted Chemical Vapor Deposition.

    PubMed

    Wu, Angjian; Li, Xiaodong; Yang, Jian; Du, Changming; Shen, Wangjun; Yan, Jianhua

    2017-10-12

    Vertical graphene (VG) sheets were single-step synthesized via inductively coupled plasma (ICP)-enhanced chemical vapor deposition (PECVD) using waste lard oil as a sustainable and economical carbon source. Interweaved few-layer VG sheets, H₂, and other hydrocarbon gases were obtained after the decomposition of waste lard oil. The influence of parameters such as temperature, gas proportion, ICP power was investigated to tune the nanostructures of obtained VG, which indicated that a proper temperature and H₂ concentration was indispensable for the synthesis of VG sheets. Rich defects of VG were formed with a high I D / I G ratio (1.29), consistent with the dense edges structure observed in electron microscopy. Additionally, the morphologies, crystalline degree, and wettability of nanostructure carbon induced by PECVD and ICP separately were comparatively analyzed. The present work demonstrated the potential of our PECVD recipe to synthesize VG from abundant natural waste oil, which paved the way to upgrade the low-value hydrocarbons into advanced carbon material.

  6. Density change and viscous flow during structural relaxation of plasma-enhanced chemical-vapor-deposited silicon oxide films

    NASA Astrophysics Data System (ADS)

    Cao, Zhiqiang; Zhang, Xin

    2004-10-01

    The structural relaxation of plasma-enhanced chemical-vapor-deposited (PECVD) silane-based silicon oxide films during thermal cycling and annealing has been studied using wafer curvature measurements. These measurements, which determine stress in the amorphous silicon oxide films, are sensitive to both plastic deformation and density changes. A quantitative case study of such changes has been done based upon the experimental results. A microstructure-based mechanism elucidates seams as a source of density change and voids as a source of plastic deformation, accompanied by a viscous flow. This theory was then used to explain a series of experimental results that are related to thermal cycling as well as annealing of PECVD silicon oxide films including stress hysteresis generation and reduction and coefficient of thermal-expansion changes. In particular, the thickness effect was examined; PECVD silicon oxide films with a thickness varying from 1to40μm were studied, as certain demanding applications in microelectromechanical systems require such thick films serving as heat/electrical insulation layers.

  7. Transport mechanisms through PE-CVD coatings: influence of temperature, coating properties and defects on permeation of water vapour

    NASA Astrophysics Data System (ADS)

    Kirchheim, Dennis; Jaritz, Montgomery; Mitschker, Felix; Gebhard, Maximilian; Brochhagen, Markus; Hopmann, Christian; Böke, Marc; Devi, Anjana; Awakowicz, Peter; Dahlmann, Rainer

    2017-03-01

    Gas transport mechanisms through plastics are usually described by the temperature-dependent Arrhenius-model and compositions of several plastic layers are represented by the CLT. When it comes to thin films such as plasma-enhanced chemical vapour deposition (PE-CVD) or plasma-enhanced atomic layer deposition (PE-ALD) coatings on substrates of polymeric material, a universal model is lacking. While existing models describe diffusion through defects, these models presume that permeation does not occur by other means of transport mechanisms. This paper correlates the existing transport models with data from water vapour transmission experiments.

  8. Osteoconductive Potential of Barrier NanoSiO2 PLGA Membranes Functionalized by Plasma Enhanced Chemical Vapour Deposition

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, Jose I.; de la Orden, Emilio; Yubero, Francisco; Gonzalez-Caballero, Juan L.; González-Elipe, Agustin R.; Vilches, José; Salido, Mercedes

    2014-01-01

    The possibility of tailoring membrane surfaces with osteoconductive potential, in particular in biodegradable devices, to create modified biomaterials that stimulate osteoblast response should make them more suitable for clinical use, hopefully enhancing bone regeneration. Bioactive inorganic materials, such as silica, have been suggested to improve the bioactivity of synthetic biopolymers. An in vitro study on HOB human osteoblasts was performed to assess biocompatibility and bioactivity of SiO2 functionalized poly(lactide-co-glycolide) (PLGA) membranes, prior to clinical use. A 15 nm SiO2 layer was deposited by plasma enhanced chemical vapour deposition (PECVD), onto a resorbable PLGA membrane. Samples were characterized by X-ray photoelectron spectroscopy, atomic force microscopy, scanning electron microscopy, and infrared spectroscopy (FT-IR). HOB cells were seeded on sterilized test surfaces where cell morphology, spreading, actin cytoskeletal organization, and focal adhesion expression were assessed. As proved by the FT-IR analysis of samples, the deposition by PECVD of the SiO2 onto the PLGA membrane did not alter the composition and other characteristics of the organic membrane. A temporal and spatial reorganization of cytoskeleton and focal adhesions and morphological changes in response to SiO2 nanolayer were identified in our model. The novedous SiO2 deposition method is compatible with the standard sterilization protocols and reveals as a valuable tool to increase bioactivity of resorbable PLGA membranes. PMID:24883304

  9. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

    NASA Astrophysics Data System (ADS)

    Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou

    2018-05-01

    Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

  10. Lattice Matched Iii-V IV Semiconductor Heterostructures: Metalorganic Chemical Vapor Deposition and Remote Plasma Enhanced Chemical Vapor Deposition.

    NASA Astrophysics Data System (ADS)

    Choi, Sungwoo

    1992-01-01

    This thesis describes the growth and characterization of wide gap III-V compound semiconductors such as aluminum gallium arsenide (Al_{rm x} Ga_{rm 1-x}As), gallium nitride (GaN), and gallium phosphide (GaP), deposited by the metalorganic chemical vapor deposition (MOCVD) and remote plasma enhanced chemical vapor deposition (Remote PECVD). In the first part of the thesis, the optimization of GaAs and Al_{rm x}Ga _{rm 1-x}As hetero -epitaxial layers on Ge substrates is described in the context of the application in the construction of cascade solar cells. The emphasis on this study is on the trade-offs in the choice of the temperature related to increasing interdiffusion/autodoping and increasing perfection of the epilayer with increasing temperature. The structural, chemical, optical, and electrical properties of the heterostructures are characterized by x-ray rocking curve measurement, scanning electron microscopy (SEM), electron beam induced current (EBIC), cross-sectional transmission electron microscopy (X-TEM), Raman spectroscopy, secondary ion mass spectrometry (SIMS), and steady-state and time-resolved photoluminescence (PL). Based on the results of this work the optimum growth temperature is 720^circC. The second part of the thesis describes the growth of GaN and GaP layers on silicon and sapphire substrates and the homoepitaxy of GaP by remote PECVD. I have designed and built an ultra high vacuum (UHV) deposition system which includes: the gas supply system, the pumping system, the deposition chamber, the load-lock chamber, and the waste disposal system. The work on the deposition of GaN on Si and sapphire focuses onto the understanding of the growth kinetics. In addition, Auger electron spectroscopy (AES) for surface analysis, x-ray diffraction methods and microscopic analyses using SEM and TEM for structural characterization, infrared (IR) and ultraviolet (UV) absorption measurements for optical characterization, and electrical characterization results on the GaN films are presented. In the deposition GaP thin films by remote PECVD, trimethylgallium and in-situ generated phosphine precursors are employed as source gases which permits homo- and heteroepitaxial growth as substrate temperature of 590-620^ circC. Also, the growth kinetics of gallium phosphide is discussed. As in the case of GaN, the surface, structural, chemical, optical, and electrical properties are characterized and the results are discussed.

  11. Enhanced performance of a structured cyclo olefin copolymer-based amorphous silicon solar cell

    NASA Astrophysics Data System (ADS)

    Zhan, Xinghua; Chen, Fei; Gao, Mengyu; Tie, Shengnian; Gao, Wei

    2017-07-01

    The submicron array was fabricated onto a cyclo olefin copolymer (COC) film by a hot embossing method. An amorphous silicon p-i-n junction and transparent conductive layers were then deposited onto it through a plasma enhanced chemical vapor deposition (PECVD) and magnetron sputtering. The efficiency of the fabricated COC-based solar cell was measured and the result demonstrated 18.6% increase of the solar cell efficiency when compared to the sample without array structure. The imprinted polymer solar cells with submicron array indeed increase their efficiency.

  12. High Efficiency Narrow Gap and Tandem Junction Devices: Final Technical Report, 1 May 2002--31 October 2004

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madan, A

    2005-03-01

    The work described in this report uses a modified pulsed plasma-enhanced chemical vapor deposition (PECVD) technique that has been successfully developed to fabricate state-of-the-art nc-Si materials and devices. Specifically, we have achieved the following benchmarks: nc SiH device with an efficiency of 8% achieved at a deposition rate of {approx}1 A/s; nc SiH device with an efficiency of 7% achieved at a deposition rate of {approx}5 A/s; large-area technology developed using pulsed PECVD with uniformity of +/-5% over 25 cm x 35 cm; devices have been fabricated in the large-area system (part of Phase 3); an innovative stable four-terminal (4-T)more » tandem-junction device of h> 9% fabricated. (Note that the 4-T device was fabricated with existing technology base and with further development can reach stabilized h of 12%); and with improvement in Voc {approx} 650 mV, from the current value of 480 mV can lead to stable 4-T device with h>16%. Toward this objective, modified pulsed PECVD was developed where layer- by-layer modification of nc-SiH has been achieved. (Note that due to budget cuts at NREL, this project was curtailed by about one year.)« less

  13. Evolution of a Native Oxide Layer at the a-Si:H/c-Si Interface and Its Influence on a Silicon Heterojunction Solar Cell.

    PubMed

    Liu, Wenzhu; Meng, Fanying; Zhang, Xiaoyu; Liu, Zhengxin

    2015-12-09

    The interface microstructure of a silicon heterojunction (SHJ) solar cell was investigated. We found an ultrathin native oxide layer (NOL) with a thickness of several angstroms was formed on the crystalline silicon (c-Si) surface in a very short time (∼30 s) after being etched by HF solution. Although the NOL had a loose structure with defects that are detrimental for surface passivation, it acted as a barrier to restrain the epitaxial growth of hydrogenated amorphous silicon (a-Si:H) during the plasma-enhanced chemical vapor deposition (PECVD). The microstructure change of the NOL during the PECVD deposition of a-Si:H layers with different conditions and under different H2 plasma treatments were systemically investigated in detail. When a brief H2 plasma was applied to treat the a-Si:H layer after the PECVD deposition, interstitial oxygen and small-size SiO2 precipitates were transformed to hydrogenated amorphous silicon suboxide alloy (a-SiO(x):H, x ∼ 1.5). In the meantime, the interface defect density was reduced by about 50%, and the parameters of the SHJ solar cell were improved due to the post H2 plasma treatment.

  14. Studies of Silicon Nanowires with Different Parameters — By PECVD

    NASA Astrophysics Data System (ADS)

    Leela, S.; Abirami, T.; Bhattacharya, Sekhar; Ahmed, Nafis; Monika, S.; Priya, R. Nivedha

    2016-10-01

    One-dimensional nanostructures such as nanowires have a wide range of applications. Silicon is the best competitive material for the carbon nanotubes (CNTs). Carbon and silicon have some similar and peculiar properties. Silicon nanowires (SiNWs) were synthesized using plasma enhanced chemical vapor deposition (PECVD) on p-Si (111) wafer. Gold is used as a catalyst for the growth of the SiNWs. Based on our fundamental understanding of vapor-liquid-solid (VLS) nanowire growth mechanism, different levels of growth controls have been achieved. Gold catalyst deposited and annealed at different temperatures with different thicknesses (450∘C, 500∘C and 550∘C, 600∘C, 650∘C for 4min and 8min and 3nm, 5nm, 30nm Au thickness). SiNW grown by PECVD with different carrier gases varies with flow rate. We observed the different dimensions of Si nanowires by FESEM and optimized the growth parameters to get the vertical aligned and singular Si nanowires. Optical phonon of the Si nanowires and crystallinity nature were identified by Raman spectral studies.

  15. Uncooled Cantilever Microbolometer Focal Plane Arrays with mK Temperature Resolution: Engineering Mechanics for the Next Generation

    DTIC Science & Technology

    2009-11-25

    34Nanoindentation Stress-Strain Curves of Plasma Enhanced Chemical Vapor Deposited Silicon Oxide Thin Films," Thin Solid Films, 516 (8) (2008) 1941-1951. 9. S...1604. 5. Z. Cao* and X. Zhang, "Measurement of Stress-Strain Curves of PECVD Silicon Oxide Thin Films by Means of Nanoindentation," in Processing...Microsystems (Transducers 󈧋), Lyon, France, June 10-14, 2007. 9. Z. Cao* and X. Zhang, “Measurement of Stress-strain Curves of PECVD Silicon Oxide

  16. Improved PECVD Si x N y film as a mask layer for deep wet etching of the silicon

    NASA Astrophysics Data System (ADS)

    Han, Jianqiang; Yin, Yi Jun; Han, Dong; Dong, LiZhen

    2017-09-01

    Although plasma enhanced chemical vapor deposition (PECVD) silicon nitride (Si x N y ) films have been extensively investigated by many researchers, requirements of film properties vary from device to device. For some applications utilizing Si x N y film as the mask Layer for deep wet etching of the silicon, it is very desirable to obtain a high quality film. In this study, Si x N y films were deposited on silicon substrates by PECVD technique from the mixtures of NH3 and 5% SiH4 diluted in Ar. The deposition temperature and RF power were fixed at 400 °C and 20 W, respectively. By adjusting the SiH4/NH3 flow ratio, Si x N y films of different compositions were deposited on silicon wafers. The stoichiometry, residual stress, etch rate in 1:50 HF, BHF solution and 40% KOH solution of deposited Si x N y films were measured. The experimental results show that the optimum SiH4/NH3 flow ratio at which deposited Si x N y films can perfectly protect the polysilicon resistors on the front side of wafers during KOH etching is between 1.63 and 2.24 under the given temperature and RF power. Polysilicon resistors protected by the Si x N y films can withstand 6 h 40% KOH double-side etching at 80 °C. At the range of SiH4/NH3 flow ratios, the Si/N atom ratio of films ranges from 0.645 to 0.702, which slightly deviate the ideal stoichiometric ratio of LPCVD Si3N4 film. In addition, the silicon nitride films with the best protection effect are not the films of minimum etch rate in KOH solution.

  17. CMUTs with high-K atomic layer deposition dielectric material insulation layer.

    PubMed

    Xu, Toby; Tekes, Coskun; Degertekin, F

    2014-12-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (Six)Ny)) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2) such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD Six)Ny) and 100-nm HfO2) insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure.

  18. The application of pulse modulated plasma to the plasma enhanced chemical vapor deposition of dielectric materials

    NASA Astrophysics Data System (ADS)

    Qi, Yu

    This dissertation work applied the pulse modulated plasma to the plasma enhanced chemical vapor deposition (PECVD) of two types of dielectric materials: SiO2-like coatings and Teflon-like coatings. SiO2-like coatings were firstly implemented with continuous plasma. It was proven that three different precursors: hexamethyldisiloxane (HMDSO), 1, 3, 5, 7-tetramethylcyclotetrasiloxane (TMCTS) and octamethylcyclotetrasiloxane (OMCTS) can be used to generate hard, clear and high density SiO2 deposition with coupled high growth rate and low processing temperature via PECVD. Under similar conditions, HMDSO has the lowest growth rate, lowest hardness and highest carbon content; TMCTS has the highest growth rate and hardness, and lowest carbon content; and OMCTS has moderate rates of these deposition qualities, but the best corrosion resistance. Substrate bias seems to have no effect on any deposition quality. High chamber pressure can significantly lower the carbon content in the thin films but does not affect any other qualities; the O2/precursor ratio is the most influential factor among all variables considered in this experiment. The deposition hardness and O:Si ratio always increase with this ratio while the carbon content always decreases. However, different precursors require different optimal ratios to achieve the highest growth rate. Pulse modulation was introduced into PECVD of SiO2-like coatings and OMCTS was selected as the precursor. It was demonstrated that pulse frequency, duty ratio and peak power have significant effects on deposition qualities. The proper combination of the pulse parameters and other traditional plasma parameters can significantly lower the processing temperature while retaining or even improving other deposition qualities, such as growth rate, corrosion resistance and elemental composition. Hardness is the only sacrifice of the lower time-average power caused by pulsing. Therefore, pulse modulation can effectively expand the possible range of combinations of desired deposition qualities. Finally, the pulsed plasma was used to implement PECVD of teflon-like coatings. An important discovery in this application is that in addition to pulse period, on-time and on-time peak power, the power level during the off-time is an important factor. The density of CF2 is a function of all these pulse parameters. The best result obtained is up to 67.2% CF2 and a 1.87:1 of F:C ratio when the off-time power level is ˜100--130 W the frequency is several Hz, the on-time peak power is ˜1000 W and the duty ratio is ˜7--10%.

  19. Plasma enhanced chemical vapor deposition (PECVD) method of forming vanadium oxide films and vanadium oxide thin-films prepared thereby

    DOEpatents

    Zhang, Ji-Guang; Tracy, C. Edwin; Benson, David K.; Turner, John A.; Liu, Ping

    2000-01-01

    A method is disclosed of forming a vanadium oxide film on a substrate utilizing plasma enhanced chemical vapor deposition. The method includes positioning a substrate within a plasma reaction chamber and then forming a precursor gas comprised of a vanadium-containing chloride gas in an inert carrier gas. This precursor gas is then mixed with selected amounts of hydrogen and oxygen and directed into the reaction chamber. The amounts of precursor gas, oxygen and hydrogen are selected to optimize the final properties of the vanadium oxide film An rf plasma is generated within the reaction chamber to chemically react the precursor gas with the hydrogen and the oxygen to cause deposition of a vanadium oxide film on the substrate while the chamber deposition pressure is maintained at about one torr or less. Finally, the byproduct gases are removed from the plasma reaction chamber.

  20. Process for forming planarized films

    DOEpatents

    Pang, Stella W.; Horn, Mark W.

    1991-01-01

    A planarization process and apparatus which employs plasma-enhanced chemical vapor deposition (PECVD) to form plarnarization films of dielectric or conductive carbonaceous material on step-like substrates.

  1. Effects of surface passivation dielectrics on carrier transport in AlGaN/GaN heterostructure field-effect transistors

    NASA Astrophysics Data System (ADS)

    Oh, Sejoon; Jang, Han-Soo; Choi, Chel-Jong; Cho, Jaehee

    2018-04-01

    Dielectric layers prepared by different deposition methods were used for the surface passivation of AlGaN/GaN heterostructure field-effect transistors (HFETs) and the corresponding electrical characteristics were examined. Increases in the sheet charge density and the maximum drain current by approximately 45% and 28%, respectively, were observed after the deposition of a 100 nm-thick SiO2 layer by plasma-enhanced chemical vapor deposition (PECVD) on the top of the AlGaN/GaN HFETs. However, SiO2 deposited by a radio frequency (rf) sputter system had the opposite effect. As the strain applied to AlGaN was influenced by the deposition methods used for the dielectric layers, the carrier transport in the two-dimensional electron gas formed at the interface between AlGaN and GaN was affected accordingly.

  2. Vertically aligned carbon nanofibers and related structures: Controlled synthesis and directed assembly

    NASA Astrophysics Data System (ADS)

    Melechko, A. V.; Merkulov, V. I.; McKnight, T. E.; Guillorn, M. A.; Klein, K. L.; Lowndes, D. H.; Simpson, M. L.

    2005-02-01

    The controlled synthesis of materials by methods that permit their assembly into functional nanoscale structures lies at the crux of the emerging field of nanotechnology. Although only one of several materials families is of interest, carbon-based nanostructured materials continue to attract a disproportionate share of research effort, in part because of their wide-ranging properties. Additionally, developments of the past decade in the controlled synthesis of carbon nanotubes and nanofibers have opened additional possibilities for their use as functional elements in numerous applications. Vertically aligned carbon nanofibers (VACNFs) are a subclass of carbon nanostructured materials that can be produced with a high degree of control using catalytic plasma-enhanced chemical-vapor deposition (C-PECVD). Using C-PECVD the location, diameter, length, shape, chemical composition, and orientation can be controlled during VACNF synthesis. Here we review the CVD and PECVD systems, growth control mechanisms, catalyst preparation, resultant carbon nanostructures, and VACNF properties. This is followed by a review of many of the application areas for carbon nanotubes and nanofibers including electron field-emission sources, electrochemical probes, functionalized sensor elements, scanning probe microscopy tips, nanoelectromechanical systems (NEMS), hydrogen and charge storage, and catalyst support. We end by noting gaps in the understanding of VACNF growth mechanisms and the challenges remaining in the development of methods for an even more comprehensive control of the carbon nanofiber synthesis process.

  3. The Barrier Properties of PET Coated DLC Film Deposited by Microwave Surface-Wave PECVD

    NASA Astrophysics Data System (ADS)

    Yin, Lianhua; Chen, Qiang

    2017-12-01

    In this paper we report the investigation of diamond-like carbon (DLC) deposited by microwave surface-wave plasma enhanced chemical vapor deposition (PECVD) on the polyethylene terephthalate (PET) web for the purpose of the barrier property improvement. In order to characterize the properties of DLC coatings, we used several substrates, silicon wafer, glass, and PET web and KBr tablet. The deposition rate was obtained by surface profiler based on the DLC deposited on glass substrates; Fourier transform infrared spectroscope (FTIR) was carried out on KBr tablets to investigate chemical composition and bonding structure; the morphology of the DLC coating was analyzed by atomic force microscope (AFM) on Si substrates. For the barrier properties of PET webs, we measured the oxygen transmission rate (OTR) and water vapor transmission rate (WVTR) after coated with DLC films. We addressed the film barrier property related to process parameters, such as microwave power and pulse parameter in this work. The results show that the DLC coatings can greatly improve the barrier properties of PET webs.

  4. Tuning Wettability and Adhesion of Structured Surfaces

    NASA Astrophysics Data System (ADS)

    Badge, Ila

    Structured surfaces with feature size ranging from a few micrometers down to nanometers are of great interest in the applications such as design of anti-wetting surfaces, tissue engineering, microfluidics, filtration, microelectronic devices, anti-reflective coatings and reversible adhesives. A specific surface property demands particular roughness geometry along with suitable surface chemistry. Plasma Enhanced Chemical Vapor Deposition (PECVD) is a technique that offers control over surface chemistry without significantly affecting the roughness and thus, provides a flexibility to alter surface chemistry selectively for a given structured surface. In this study, we have used PECVD to fine tune wetting and adhesion properties. The research presented focuses on material design aspects as well as the fundamental understanding of wetting and adhesion phenomena of structured surfaces. In order to study the effect of surface roughness and surface chemistry on the surface wettability independently, we developed a model surface by combination of colloidal lithography and PECVD. A systematically controlled hierarchical roughness using spherical colloidal particles and surface chemistry allowed for quantitative prediction of contact angles corresponding to metastable and stable wetting states. A well-defined roughness and chemical composition of the surface enabled establishing a correlation between theory predictions and experimental measurements. We developed an extremely robust superhydrophobic surface based on Carbon-Nanotubes (CNT) mats. The surface of CNTs forming a nano-porous mesh was modified using PECVD to deposit a layer of hydrophobic coating (PCNT). The PCNT surface thus formed is superhydrophobic with almost zero contact angle hysteresis. We demonstrated that the PCNT surface is not wetted under steam condensation even after prolonged exposure and also continues to retain its superhydrophobicity after multiple frosting-defrosting cycles. The anti-wetting behavior of PCNT surface is consistent with our model predictions, derived based on thermodynamic theory of wetting. The surface of gecko feet is a very unique natural structured surface. The hierarchical surface structure of a Gecko toe pad is responsible for its reversible adhesive properties and superhydrophobicity. van der Waals interactions is known to be the key mechanism behind Gecko adhesion. However, we found that the wettability, thus the surface chemistry plays a significant role in Gecko adhesion mechanism, especially in the case of underwater adhesion. We used PECVD process to deposit a layer of coating with known chemistry on the surface of sheds of gecko toes to study the effect that wettability of the toe surface has on its adhesion. In summary, we demonstrated that PECVD can be effectively used as means of surface chemistry control for tunable structure-property relationship of three types of structured surfaces; each having unique surface features.

  5. The role of plasma chemistry on functional silicon nitride film properties deposited at low-temperature by mixing two frequency powers using PECVD.

    PubMed

    Sahu, B B; Yin, Y Y; Tsutsumi, T; Hori, M; Han, Jeon G

    2016-05-14

    Control of the plasma densities and energies of the principal plasma species is crucial to induce modification of the plasma reactivity, chemistry, and film properties. This work presents a systematic and integrated approach to the low-temperature deposition of hydrogenated amorphous silicon nitride films looking into optimization and control of the plasma processes. Radiofrequency (RF) and ultrahigh frequency (UHF) power are combined to enhance significantly the nitrogen plasma and atomic-radical density to enforce their effect on film properties. This study presents an extensive investigation of the influence of combining radiofrequency (RF) and ultrahigh frequency (UHF) power as a power ratio (PR = RF : UHF), ranging from 4 : 0 to 0 : 4, on the compositional, structural, and optical properties of the synthesized films. The data reveal that DF power with a characteristic bi-Maxwellian electron energy distribution function (EEDF) is effectively useful for enhancing the ionization and dissociation of neutrals, which in turn helps in enabling high rate deposition with better film properties than that of SF operations. Utilizing DF PECVD, a wide-bandgap of ∼3.5 eV with strong photoluminescence features can be achieved only by using a high-density plasma and high nitrogen atom density at room temperature. The present work also proposes the suitability of the DF PECVD approach for industrial applications.

  6. Electron beam induced damage in PECVD Si3N4 and SiO2 films on InP

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.; Kapoor, Vik J.; Young, Paul G.; Williams, Wallace D.; Dickman, John E.

    1990-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectic. The electron beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  7. Influence of residual stress on the adhesion and surface morphology of PECVD-coated polypropylene

    NASA Astrophysics Data System (ADS)

    Jaritz, Montgomery; Hopmann, Christian; Behm, Henrik; Kirchheim, Dennis; Wilski, Stefan; Grochla, Dario; Banko, Lars; Ludwig, Alfred; Böke, Marc; Winter, Jörg; Bahre, Hendrik; Dahlmann, Rainer

    2017-11-01

    The properties of plasma-enhanced chemical vapour deposition (PECVD) coatings on polymer materials depend to some extent on the surface and material properties of the substrate. Here, isotactic polypropylene (PP) substrates are coated with silicon oxide (SiO x ) films. Plasmas for the deposition of SiO x are energetic and oxidative due to the high amount of oxygen in the gas mixture. Residual stress measurements using single Si cantilever stress sensors showed that these coatings contain high compressive stress. To investigate the influence of the plasma and the coatings, residual stress, silicon organic (SiOCH) coatings with different thicknesses between the PP and the SiO x coating are used as a means to protect the substrate from the oxidative SiO x coating process. Pull-off tests are performed to analyse differences in the adhesion of these coating systems. It could be shown that the adhesion of the PECVD coatings on PP depends on the coatings’ residual stress. In a PP/SiOCH/SiO x -multilayer system the residual stress can be significantly reduced by increasing the thickness of the SiOCH coating, resulting in enhanced adhesion.

  8. Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators

    NASA Astrophysics Data System (ADS)

    Wang, Zhengduo; Zhu, Huiqin; Yang, Lizhen; Wang, Xinwei; Liu, Zhongwei; Chen, Qiang

    2016-04-01

    To reduce the thermal shrinkage of the polymeric separators and improve the safety of the Li-ion batteries, plasma treatment and plasma enhanced vapor chemical deposition (PECVD) of SiOx-like are carried out on polypropylene (PP) separators, respectively. Critical parameters for separator properties, such as the thermal shrinkage rate, porosity, wettability, and mechanical strength, are evaluated on the plasma treated PP membranes. O2 plasma treatment is found to remarkably improve the wettability, porosity and electrolyte uptake. PECVD SiOx-like coatings are found to be able to effectively reduce the thermal shrinkage rate of the membranes and increase the ionic conductivity. The electrolyte-philicity of the SiOx-like coating surface can be tuned by the varying O2 content in the gas mixture during the deposition. Though still acceptable, the mechanical strength is reduced after PECVD, which is due to the plasma etching. supported by National Natural Science Foundation of China (Nos. 11175024, 11375031), the Beijing Institute of Graphic and Communication Key Project of China (No. 23190113051), the Shenzhen Science and Technology Innovation Committee of China (No. JCYJ20130329181509637), BJNSFC (No. KZ201510015014), and the State Key Laboratory of Electrical Insulation and Power Equipment of China (No. EIPE15208)

  9. Characterisation and optimisation of PECVD SiNx as an antireflection coating and passivation layer for silicon solar cells

    NASA Astrophysics Data System (ADS)

    Wan, Yimao; McIntosh, Keith R.; Thomson, Andrew F.

    2013-03-01

    In this work, we investigate how the film properties of silicon nitride (SiNx) depend on its deposition conditions when formed by plasma enhanced chemical vapour deposition (PECVD). The examination is conducted with a Roth & Rau AK400 PECVD reactor, where the varied parameters are deposition temperature, pressure, gas flow ratio, total gas flow, microwave plasma power and radio-frequency bias voltage. The films are evaluated by Fourier transform infrared spectroscopy to determine structural properties, by spectrophotometry to determine optical properties, and by capacitance-voltage and photoconductance measurements to determine electronic properties. After reporting on the dependence of SiNx properties on deposition parameters, we determine the optimized deposition conditions that attain low absorption and low recombination. On the basis of SiNx growth models proposed in the literature and of our experimental results, we discuss how each process parameter affects the deposition rate and chemical bond density. We then focus on the effective surface recombination velocity Seff, which is of primary importance to solar cells. We find that for the SiNx prepared in this work, 1) Seff does not correlate universally with the bulk structural and optical properties such as chemical bond densities and refractive index, and 2) Seff depends primarily on the defect density at the SiNx-Si interface rather than the insulator charge. Finally, employing the optimized deposition condition, we achieve a relatively constant and low Seff,UL on low-resistivity (≤1.1 Ωcm) p- and n-type c-Si substrates over a broad range of n = 1.85-4.07. The results of this study demonstrate that the trade-off between optical transmission and surface passivation can be circumvented. Although we focus on photovoltaic applications, this study may be useful for any device for which it is desirable to maximize light transmission and surface passivation.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anand, Venu, E-mail: venuanand@cense.iisc.ernet.in, E-mail: venuanand83@gmail.com; Shivashankar, S. A.; Nair, Aswathi R.

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and builtmore » a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.« less

  11. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD

    NASA Astrophysics Data System (ADS)

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-01

    In order to confirm the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar+ ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar+ ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar+ ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar+ ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar+ ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar+ ion state. As for vertically oriented few-layer graphene (VFG), Ar+ ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar+ ion bombardment, and these special NCMs are promising in many fields.

  12. Confirming the key role of Ar+ ion bombardment in the growth feature of nanostructured carbon materials by PECVD.

    PubMed

    Liu, Yulin; Lin, Jinghuang; Jia, Henan; Chen, Shulin; Qi, Junlei; Qu, Chaoqun; Cao, Jian; Feng, Jicai; Fei, Weidong

    2017-11-24

    In order to confirm the key role of Ar + ion bombardment in the growth feature of nanostructured carbon materials (NCMs), here we report a novel strategy to create different Ar + ion states in situ in plasma enhanced chemical vapor deposition (PECVD) by separating catalyst film from the substrate. Different bombardment environments on either side of the catalyst film were created simultaneously to achieve multi-layered structural NCMs. Results showed that Ar + ion bombardment is crucial and complex for the growth of NCMs. Firstly, Ar + ion bombardment has both positive and negative effects on carbon nanotubes (CNTs). On one hand, Ar + ions can break up the graphic structure of CNTs and suppress thin CNT nucleation and growth. On the other hand, Ar + ion bombardment can remove redundant carbon layers on the surface of large catalyst particles which is essential for thick CNTs. As a result, the diameter of the CNTs depends on the Ar + ion state. As for vertically oriented few-layer graphene (VFG), Ar + ions are essential and can even convert the CNTs into VFG. Therefore, by combining with the catalyst separation method, specific or multi-layered structural NCMs can be obtained by PECVD only by changing the intensity of Ar + ion bombardment, and these special NCMs are promising in many fields.

  13. CMUTs with High-K Atomic Layer Deposition Dielectric Material Insulation Layer

    PubMed Central

    Xu, Toby; Tekes, Coskun; Degertekin, F. Levent

    2014-01-01

    Use of high-κ dielectric, atomic layer deposition (ALD) materials as an insulation layer material for capacitive micromachined ultrasonic transducers (CMUTs) is investigated. The effect of insulation layer material and thickness on CMUT performance is evaluated using a simple parallel plate model. The model shows that both high dielectric constant and the electrical breakdown strength are important for the dielectric material, and significant performance improvement can be achieved, especially as the vacuum gap thickness is reduced. In particular, ALD hafnium oxide (HfO2) is evaluated and used as an improvement over plasma-enhanced chemical vapor deposition (PECVD) silicon nitride (SixNy) for CMUTs fabricated by a low-temperature, complementary metal oxide semiconductor transistor-compatible, sacrificial release method. Relevant properties of ALD HfO2 such as dielectric constant and breakdown strength are characterized to further guide CMUT design. Experiments are performed on parallel fabricated test CMUTs with 50-nm gap and 16.5-MHz center frequency to measure and compare pressure output and receive sensitivity for 200-nm PECVD SixNy and 100-nm HfO2 insulation layers. Results for this particular design show a 6-dB improvement in receiver output with the collapse voltage reduced by one-half; while in transmit mode, half the input voltage is needed to achieve the same maximum output pressure. PMID:25474786

  14. Impacts of Thermal Atomic Layer-Deposited AlN Passivation Layer on GaN-on-Si High Electron Mobility Transistors.

    PubMed

    Zhao, Sheng-Xun; Liu, Xiao-Yong; Zhang, Lin-Qing; Huang, Hong-Fan; Shi, Jin-Shan; Wang, Peng-Fei

    2016-12-01

    Thermal atomic layer deposition (ALD)-grown AlN passivation layer is applied on AlGaN/GaN-on-Si HEMT, and the impacts on drive current and leakage current are investigated. The thermal ALD-grown 30-nm amorphous AlN results in a suppressed off-state leakage; however, its drive current is unchanged. It was also observed by nano-beam diffraction method that thermal ALD-amorphous AlN layer barely enhanced the polarization. On the other hand, the plasma-enhanced chemical vapor deposition (PECVD)-deposited SiN layer enhanced the polarization and resulted in an improved drive current. The capacitance-voltage (C-V) measurement also indicates that thermal ALD passivation results in a better interface quality compared with the SiN passivation.

  15. Ultralow-Threshold Electrically Pumped Quantum-Dot Photonic-Crystal Nanocavity Laser

    DTIC Science & Technology

    2011-05-01

    we demonstrate a quantum-dot photonic-crystal nanocavity laser in gallium arsenide pumped by a lateral p–i–n junction formed by ion implantation...330 nm layer of silicon nitride was then deposited on the sample using plasma-enhanced chemical vapour deposition (PECVD) to serve as a mask for ion

  16. The influence of passivation and photovoltaic properties of α-Si:H coverage on silicon nanowire array solar cells

    PubMed Central

    2013-01-01

    Silicon nanowire (SiNW) arrays for radial p-n junction solar cells offer potential advantages of light trapping effects and quick charge collection. Nevertheless, lower open circuit voltages (Voc) lead to lower energy conversion efficiencies. In such cases, the performance of the solar cells depends critically on the quality of the SiNW interfaces. In this study, SiNW core-shell solar cells have been fabricated by growing crystalline silicon (c-Si) nanowires via the metal-assisted chemical etching method and by depositing hydrogenated amorphous silicon (α-Si:H) via the plasma-enhanced chemical vapor deposition (PECVD) method. The influence of deposition parameters on the coverage and, consequently, the passivation and photovoltaic properties of α-Si:H layers on SiNW solar cells have been analyzed. PMID:24059343

  17. Silicon Nitride Deposition for Flexible Organic Electronic Devices by VHF (162 MHz)-PECVD Using a Multi-Tile Push-Pull Plasma Source.

    PubMed

    Kim, Ki Seok; Kim, Ki Hyun; Ji, You Jin; Park, Jin Woo; Shin, Jae Hee; Ellingboe, Albert Rogers; Yeom, Geun Young

    2017-10-19

    Depositing a barrier film for moisture protection without damage at a low temperature is one of the most important steps for organic-based electronic devices. In this study, the authors investigated depositing thin, high-quality SiN x film on organic-based electronic devices, specifically, very high-frequency (162 MHz) plasma-enhanced chemical vapor deposition (VHF-PECVD) using a multi-tile push-pull plasma source with a gas mixture of NH 3 /SiH 4 at a low temperature of 80 °C. The thin deposited SiN x film exhibited excellent properties in the stoichiometry, chemical bonding, stress, and step coverage. Thin film quality and plasma damage were investigated by the water vapor transmission rate (WVTR) and by electrical characteristics of organic light-emitting diode (OLED) devices deposited with SiN x , respectively. The thin deposited SiN x film exhibited a low WVTR of 4.39 × 10 -4  g (m 2 · day) -1 for a single thin (430 nm thick) film SiN x and the electrical characteristics of OLED devices before and after the thin SiN x film deposition on the devices did not change, which indicated no electrical damage during the deposition of SiN x on the OLED device.

  18. Uniformity control of the deposition rate profile of a-Si:H film by gas velocity and temperature distributions in a capacitively coupled plasma reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2018-03-01

    The effect of neutral transport on the deposition rate profiles of thin films formed by plasma-enhanced chemical vapor deposition (PECVD) is investigated to improve the uniformity of amorphous hydrogenated silicon films. The PECVD reactor with a cylindrical showerhead is numerically simulated with a variation of the gas velocity and temperature in the capacitively coupled plasma with an intermediate-pressure SiH4/He gas mixture. The modulation of the gas velocity distribution results in a noticeable change in the density distributions of neutral molecules such as SiH4, SiH3, H, SiH2, and Si2H6, especially in the vicinity of the electrode edge. With the locally accelerated gas flow, the concomitant increase in Si2H6 density near the electrode edge induces increases in both the electron density and the deposition rate profile near the electrode edge. In addition, it is observed that changing the surface temperature distribution by changing the sidewall temperature can also effectively modulate the plasma density distributions. The simulated deposition rate profile matches the experimental data well, even under non-isothermal wall boundary conditions.

  19. Morphology and Structural Characterization of Carbon Nanowalls Grown via VHF-PECVD

    NASA Astrophysics Data System (ADS)

    Akmal Hasanudin, M.; Wahab, Y.; Ismail, A. K.; Zahid Jamal, Z. A.

    2018-03-01

    A 150 MHz very high frequency plasma enhanced chemical vapor deposition (150 MHz VHF-PECVD) system was utilized to fabricate two-dimensional carbon nanostructure from the mixture of methane and hydrogen. Morphology and structural properties of the grown nanostructure were investigated by FESEM imaging and Raman spectroscopy. Carbon nanowalls (CNW) with dense and wavy-like structure were successfully synthesized. The wavy-like morphology of CNW was found to be more distinct during growth at small electrode spacing and denser with increasing deposition time due to better flux of hydrocarbon radicals to the substrate and higher rate of reaction, respectively. Typical characteristics of CNW were observed from strong D band, narrow bandwidth of G band and single broad peak of 2D band of Raman spectra indicating the presence of disordered nanocrystalline graphite structure with high degree of graphitization.

  20. Performance and Stability Enhancement of In-Sn-Zn-O TFTs Using SiO2 Gate Dielectrics Grown by Low Temperature Atomic Layer Deposition.

    PubMed

    Sheng, Jiazhen; Han, Ju-Hwan; Choi, Wan-Ho; Park, Jozeph; Park, Jin-Seong

    2017-12-13

    Silicon dioxide (SiO 2 ) films were synthesized by plasma-enhanced atomic layer deposition (PEALD) using BTBAS [bis(tertiarybutylamino) silane] as the precursor and O 2 plasma as the reactant, at a temperature range from 50 to 200 °C. While dielectric constant values larger than 3.7 are obtained at all deposition temperatures, the leakage current levels are drastically reduced to below 10 -12 A at temperatures above 150 °C, which are similar to those obtained in thermally oxidized and PECVD grown SiO 2 . Thin film transistors (TFTs) based on In-Sn-Zn-O (ITZO) semiconductors were fabricated using thermal SiO 2 , PECVD SiO 2 , and PEALD SiO 2 grown at 150 °C as the gate dielectrics, and superior device performance and stability are observed in the last case. A linear field effect mobility of 68.5 cm 2 /(V s) and a net threshold voltage shift (ΔV th ) of approximately 1.2 V under positive bias stress (PBS) are obtained using the PEALD SiO 2 as the gate insulator. The relatively high concentration of hydrogen in the PEALD SiO 2 is suggested to induce a high carrier density in the ITZO layer deposited onto it, which results in enhanced charge transport properties. Also, it is most likely that the hydrogen atoms have passivated the electron traps related to interstitial oxygen defects, thus resulting in improved stability under PBS. Although the PECVD SiO 2 contains a hydrogen concentration similar to that of PEALD SiO 2 , its relatively large surface roughness appears to induce scattering effects and the generation of electron traps, which result in inferior device performance and stability.

  1. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon.

    PubMed

    Ben Slama, Sonia; Hajji, Messaoud; Ezzaouia, Hatem

    2012-08-17

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications.

  2. Crystallization of amorphous silicon thin films deposited by PECVD on nickel-metalized porous silicon

    PubMed Central

    2012-01-01

    Porous silicon layers were elaborated by electrochemical etching of heavily doped p-type silicon substrates. Metallization of porous silicon was carried out by immersion of substrates in diluted aqueous solution of nickel. Amorphous silicon thin films were deposited by plasma-enhanced chemical vapor deposition on metalized porous layers. Deposited amorphous thin films were crystallized under vacuum at 750°C. Obtained results from structural, optical, and electrical characterizations show that thermal annealing of amorphous silicon deposited on Ni-metalized porous silicon leads to an enhancement in the crystalline quality and physical properties of the silicon thin films. The improvement in the quality of the film is due to the crystallization of the amorphous film during annealing. This simple and easy method can be used to produce silicon thin films with high quality suitable for thin film solar cell applications. PMID:22901341

  3. Effectiveness of plasma and radical control for the low temperature synthesis and properties of a-SiNx:H films using RF-near microwave PECVD

    NASA Astrophysics Data System (ADS)

    Sahu, Bibhuti Bhusan; Toyoda, Hirotaka; Han, Jeon Geon

    2018-02-01

    By mixing and alternating power conditions of radio frequency and microwave plasma sources, a detailed study of a-SiNx:H films in the SiH4/N2 plasma enhanced chemical vapour deposition processes is undertaken. Data reveal a remarkable coherence between the deposition conditions, material's quality, bond densities, optical property, and stoichiometry of the films. The film composition can simply vary from Si-rich to N-rich by incorporating suitable plasma and atomic radical parameters. Highly transparent and wide bandgap films with N to Si and N to H atomic ratios up to ˜2.3 and 3.1, respectively, are prepared by controlling the plasma parameters and radicals. The presented results pave the way for dual frequency PECVD utilization in a-SiNx:H films for their use in controlled-bandgap nanodevices and light emitting applications.

  4. Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition.

    PubMed

    Decoste, Jared B; Peterson, Gregory W; Smith, Martin W; Stone, Corinne A; Willis, Colin R

    2012-01-25

    Metal organic frameworks (MOFs) are a leading class of porous materials for a wide variety of applications, but many of them have been shown to be unstable toward water. Cu-BTC (1,3,5 benzenetricarboxylic acid, BTC) was treated with a plasma-enhanced chemical vapor deposition (PECVD) of perfluorohexane creating a hydrophobic form of Cu-BTC. It was found that the treated Cu-BTC could withstand high humidity and even submersion in water much better than unperturbed Cu-BTC. Through Monte Carlo simulations it was found that perfluorohexane sites itself in such a way within Cu-BTC as to prevent the formation of water clusters, hence preventing the decomposition of Cu-BTC by water. This PECVD of perfluorohexane could be exploited to widen the scope of practical applications of Cu-BTC and other MOFs. © 2012 American Chemical Society

  5. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Research on the boron contamination at the p/i interface of microcrystalline silicon solar cells deposited in a single PECVD chamber

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Dan; Sun, Fu-He; Wei, Chang-Chun; Sun, Jian; Zhang, De-Kun; Geng, Xin-Hua; Xiong, Shao-Zhen; Zhao, Ying

    2009-10-01

    This paper studies boron contamination at the interface between the p and i layers of μc-Si:H solar cells deposited in a single-chamber PECVD system. The boron depth profile in the i layer was measured by Secondary Ion Mass Spectroscopy. It is found that the mixed-phase μc-Si:H materials with 40% crystalline volume fraction is easy to be affected by the residual boron in the reactor. The experimental results showed that a 500-nm thick μc-Si:H covering layer or a 30-seconds of hydrogen plasma treatment can effectively reduce the boron contamination at the p/i interface. However, from viewpoint of cost reduction, the hydrogen plasma treatment is desirable for solar cell manufacture because the substrate is not moved during the hydrogen plasma treatment.

  6. Effects of Deposition Parameters on Thin Film Properties of Silicon-Based Electronic Materials Deposited by Remote Plasma-Enhanced Chemical-Vapor Deposition

    NASA Astrophysics Data System (ADS)

    Theil, Jeremy Alfred

    The motivation of this thesis is to discuss the major issues of remote plasma enhanced chemical vapor deposition (remote PECVD) that affect the properties Si-based thin films. In order to define the issues required for process optimization, the behavior of remote PECVD process must be understood. The remote PECVD process is defined as having four segments: (1) plasma generation, (2) excited species extraction, (3) excited species/downstream gas mixing, and (4) surface reaction. The double Langmuir probe technique is employed to examine plasma parameters under 13.56 MHz and 2.54 GHz excitation. Optical emission spectroscopy is used to determine changes in the excited states of radiating species in the plasma afterglow. Mass spectrometry is used to determine the excitation and consumption of process gases within the reactor during film growth. Various analytical techniques such as infrared absorption spectroscopy, (ir), high resolution transmission electron microscopy, (HRTEM), and reflected high energy electron diffraction, (RHEED), are used to ascertain film properties. The results of the Langmuir probe show that plasma coupling is frequency dependent and that the capacitive coupling mode is characterized by orders of magnitude higher electron densities in the reactor than inductive coupling. These differences can be manifested in the degree to which a hydrogenated amorphous silicon, a-Si:H, component co-deposition reaction affects film stoichiometry. Mass spectrometry shows that there is an additional excitation source in the downstream glow. In addition the growth of microcrystalline silicon, muc-Si, is correlated with the decrease in the production of disilane and heavier Si-containing species. Chloronium, H_2 Cl^{+}, a super acid ion is identified for the first time in a CVD reactor. It forms from plasma fragmentation of SiH_2 Cl_2, and H_2 . Addition of impurity gases was shown not to affect the electron temperature of the plasma. By products of deposition reactions can affect film properties by post -deposition reactions with the film. In the case of SiO _2 film growth, residual H _2O is shown to create OH groups within the film by reacting with distorted Si-O-Si bonding groups.

  7. Low Temperature Graphene Growth and Its Applications in Electronic and Optical Devices

    NASA Astrophysics Data System (ADS)

    Chugh, Sunny

    Graphene, a two dimensional allotrope of carbon in a honeycomb lattice, has gathered wide attention due to its excellent electrical, thermal, optical and mechanical properties. It has extremely high electron/hole mobility, very high thermal conductivity and fascinating optical properties, and combined with its mechanical strength and elasticity, graphene is believed to find commercial applications in existing as well as novel technologies. One of the biggest reasons behind the rapid development in graphene research during the last decade is the fact that laboratory procedures to obtain high quality graphene are rather cheap and simple. However, any new material market is essentially driven by the progress in its large scale commercial production with minimal costs, with properties that are suited for different applications. And it is in this aspect that graphene is still required to make a huge progress before its commercial benefits can be derived. Laboratory graphene synthesis techniques such as mechanical exfoliation, liquid phase exfoliation and SiC graphene growth pose several challenges in terms of cost, reliability and scalability. To this end, Chemical Vapor Deposition (CVD) growth of graphene has emerged as a widely used synthesis method that overcomes these problems. Unfortunately, conventional thermal CVD requires a high temperature of growth and a catalytic metal substrate, making the undesirable step of graphene transfer a necessity. Besides requiring a catalyst, the high temperature of growth also limits the range of growth substrates. In this work, I have successfully demonstrated low temperature ( 550 °C) growth of graphene directly on dielectric materials using a Plasma-Enhanced CVD (PECVD) process. The PECVD technique described here solves the issues faced by conventional CVD methods and provides a direct route for graphene synthesis on arbitrary materials at relatively low temperatures. Detailed growth studies, as described here, illustrate the difference between the PECVD and the CVD growth mechanisms. This work also provides the first experimental comparison of graphene growth rates on different substrates using PECVD. In the second part of my thesis, I have discussed some of the potential applications of PECVD graphene, including graphene as a diffusion barrier, ultra-dark graphene metamaterials, graphene-protected metal plasmonics and copper-graphene hybrids for RF transmission line applications. The experimental findings discussed here lay a solid platform for integration of graphene in damascene structures, low-loss plasmonic materials, flexible electronics and dark materials, among others.

  8. Progress with polycrystalline silicon thin-film solar cells on glass at UNSW

    NASA Astrophysics Data System (ADS)

    Aberle, Armin G.

    2006-01-01

    Polycrystalline Si (pc-Si) thin-film solar cells on glass have long been considered a very promising approach for lowering the cost of photovoltaic (PV) solar electricity. In recent years there have been dramatic advances with this PV technology, and the first commercial modules (CSG Solar) are expected to hit the marketplace in 2006. The CSG modules are based on solid-phase crystallisation of plasma-enhanced chemical vapor deposition (PECVD) -deposited amorphous Si. Independent research in the author's group at the University of New South Wales (UNSW) during recent years has led to the development of three alternative pc-Si thin-film solar cells on glass—EVA, ALICIA and ALICE. Cell thickness is generally about 2 μm. The first two cells are made by vacuum evaporation, whereas ALICE cells can be made by either vacuum evaporation or PECVD. Evaporation has the advantage of being a fast and inexpensive Si deposition method. A crucial component of ALICIA and ALICE cells is a seed layer made on glass by metal-induced crystallisation of amorphous silicon (a-Si). The absorber layer of these cells is made by either ion-assisted Si epitaxy (ALICIA) or solid-phase epitaxy of a-Si (ALICE). This paper reports on the status of these three new thin-film PV technologies. All three solar cells seem to be capable of voltages of over 500 mV and, owing to their potentially inexpensive and scalable fabrication process, have significant industrial appeal.

  9. Deposition kinetics and characterization of stable ionomers from hexamethyldisiloxane and methacrylic acid by plasma enhanced chemical vapor deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urstöger, Georg; Resel, Roland; Coclite, Anna Maria, E-mail: anna.coclite@tugraz.at

    2016-04-07

    A novel ionomer of hexamethyldisiloxane and methacrylic acid was synthesized by plasma enhanced chemical vapor deposition (PECVD). The PECVD process, being solventless, allows mixing of monomers with very different solubilities, and for polymers formed at high deposition rates and with high structural stability (due to the high number of cross-links and covalent bonding to the substrate) to be obtained. A kinetic study over a large set of parameters was run with the aim of determining the optimal conditions for high stability and proton conductivity of the polymer layer. Copolymers with good stability over 6 months' time in air and watermore » were obtained, as demonstrated by ellipsometry, X-Ray reflectivity, and FT-IR spectroscopy. Stable coatings showed also proton conductivity as high as 1.1 ± 0.1 mS cm{sup −1}. Chemical analysis showed that due to the high molecular weight of the chosen precursors, it was possible to keep the plasma energy-input-per-mass low. This allowed limited precursor fragmentation and the functional groups of both monomers to be retained during the plasma polymerization.« less

  10. Encapsulant Characterization and Doped Passivated Contacts for Use in a Luminescent Solar Concentrator

    NASA Astrophysics Data System (ADS)

    Fogel, Derek

    We report progress towards encapsulant characterization and the fabrication of passivated interdigitated back contact silicon solar cells using spin-on dopants for use in a luminescent solar concentrator. For the luminescent solar concentrator to be successful, the encapsulants used to assemble the final device must not contribute to optical losses and the tandem cell must exhibit excellent passivation and low contact resistivity values. The index of refraction of polydimethylsiloxane (PDMS) is calculated to be 1.405-1.415 for 600-800 nm and 1.475-1.505 is calculated for ethylene vinyl acetate (EVA). The absorption coefficient is calculated to be less than 0.1 cm-1 for PDMS and less than 0.5 cm-1 for EVA at wavelengths less than 1000 nm. Polysilicon / SiOx passivated contact symmetric structures grown using plasma-enhanced chemical vapor deposition (PECVD) and low pressure chemical vapor deposition (LPCVD) and subsequently doped using P, B, and Ga spin-on dopants are fabricated, and their passivation and contact properties are analyzed. The n-type, P-doped passivated contact gives an implied open circuit voltage (iVOC) of 708 mV in PECVD and 727 mV in LPCVD. The p-type, B-doped passivated contact gives an iVOC of 667 mV in PECVD and 689 mV in LPCVD. The p-type, Ga-doped passivated contact, which has not been previously reported, gives an iVOC of 731 mV in PECVD and 714 mV in LPCVD. For the n-type, P-doped contact a low metal to polysilicon contact resistivity of 23.8 mO-cm2 was measured for Al on PECVD and 15.8 mO-cm2 was measured for Al on LPCVD. For the p-type, B-doped contact a low metal to polysilicon contact resistivity of 0.3 mO-cm2 was measured for Al on LPCVD. These results are encouraging for the processing of passivated interdigitated back contact solar cells, and present a route towards high-efficiency Si PV at low cost.

  11. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties.

    PubMed

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-02-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive ( Enterococcus faecalis ) and -negative ( Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation.

  12. Plasma deposition of silver nanoparticles on ultrafiltration membranes: antibacterial and anti-biofouling properties

    PubMed Central

    Cruz, Mercedes Cecilia; Ruano, Gustavo; Wolf, Marcus; Hecker, Dominic; Vidaurre, Elza Castro; Schmittgens, Ralph; Rajal, Verónica Beatriz

    2015-01-01

    A novel and versatile plasma reactor was used to modify Polyethersulphone commercial membranes. The equipment was applied to: i) functionalize the membranes with low-temperature plasmas, ii) deposit a film of poly(methyl methacrylate) (PMMA) by Plasma Enhanced Chemical Vapor Deposition (PECVD) and, iii) deposit silver nanoparticles (SNP) by Gas Flow Sputtering. Each modification process was performed in the same reactor consecutively, without exposure of the membranes to atmospheric air. Scanning electron microscopy and transmission electron microscopy were used to characterize the particles and modified membranes. SNP are evenly distributed on the membrane surface. Particle fixation and transport inside membranes were assessed before- and after-washing assays by X-ray photoelectron spectroscopy depth profiling analysis. PMMA addition improved SNP fixation. Plasma-treated membranes showed higher hydrophilicity. Anti-biofouling activity was successfully achieved against Gram-positive (Enterococcus faecalis) and -negative (Salmonella Typhimurium) bacteria. Therefore, disinfection by ultrafiltration showed substantial resistance to biofouling. The post-synthesis functionalization process developed provides a more efficient fabrication route for anti-biofouling and anti-bacterial membranes used in the water treatment field. To the best of our knowledge, this is the first report of a gas phase condensation process combined with a PECVD procedure in order to deposit SNP on commercial membranes to inhibit biofouling formation. PMID:26166926

  13. A novel passivation process of silicon nanowires by a low-cost PECVD technique for deposition of hydrogenated silicon nitride using SiH4 and N2 as precursor gases

    NASA Astrophysics Data System (ADS)

    Bouaziz, Lamia; Dridi, Donia; Karyaoui, Mokhtar; Angelova, Todora; Sanchez Plaza, Guillermo; Chtourou, Radhouane

    2017-03-01

    In this work, a different SiNx passivation process of silicon nanowires has been opted for the deposition of a hydrogenated silicon nitride (SiNx:H) by a low-cost plasma enhanced chemical vapor deposition (PECVD) using silane ( SiH4 and nitrogen ( N2 as reactive gases. This study is focused on the effect of the gas flow ratio on chemical composition, morphological, optical and optoelectronic properties of silicon nanowires. The existence of Si-N and Si-H bonds was proven by the Fourier transmission infrared (FTIR) spectrum. Morphological structures were shown by scanning electron microscopy (SEM), and the roughness was investigated by atomic force microscopy (AFM). A low reflectivity less than 6% in the wavelength range 250-1200nm has been shown by UV-visible spectroscopy. Furthermore, the thickness and the refractive index of the passivation layer is determined by ellipsometry measurements. As a result, an improvement in minority carrier lifetime has been obtained by reducing surface recombination of silicon nanowires.

  14. High-Throughput Top-Down and Bottom-Up Processes for Forming Single-Nanotube Based Architectures for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; von Allmen, Paul; Kowalczyk, Robert; Baron, Richard

    2009-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers for forming the 3D nanoscale architectures. The tube growth was performed using dc plasma-enhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth. Such scalable, high throughput top-down fabrication techniques, combined with bottom-up tube synthesis, should accelerate the development of PECVD tubes for applications such as interconnects, nano-electromechanical (NEMS), sensors or 3D electronics in general.

  15. Electron-beam induced damage in thin insulating films on compound semiconductors. M.S. Thesis, 1988

    NASA Technical Reports Server (NTRS)

    Pantic, Dragan M.

    1989-01-01

    Phosphorus rich plasma enhanced chemical vapor deposition (PECVD) of silicon nitride and silicon dioxide films on n-type indium phosphide (InP) substrates were exposed to electron-beam irradiation in the 5 to 40 keV range for the purpose of characterizing the damage induced in the dielectric. The electron-beam exposure was on the range of 10(exp -7) to 10(exp -3) C/sq cm. The damage to the devices was characterized by capacitance-voltage (C-V) measurements of the metal insulator semiconductor (MIS) capacitors. These results were compared to results obtained for radiation damage of thermal silicon dioxide on silicon (Si) MOS capacitors with similar exposures. The radiation induced damage in the PECVD silicon nitride films on InP was successfully annealed out in an hydrogen/nitrogen (H2/N2) ambient at 400 C for 15 min. The PECVD silicon dioxide films on InP had the least radiation damage, while the thermal silicon dioxide films on Si had the most radiation damage.

  16. Multilayer moisture barrier

    DOEpatents

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  17. Study of p-type and intrinsic materials for amorphous silicon based solar cells

    NASA Astrophysics Data System (ADS)

    Du, Wenhui

    This dissertation summarizes the research work on the investigation and optimization of high efficiency hydrogenated amorphous silicon (a-Si:H) based thin film n-i-p single-junction and multi-junction solar cells, deposited using radio frequency (RF) and very high frequency (VHF) plasma enhanced chemical vapor deposition (PECVD) techniques. The fabrication and characterization of high quality p-type and intrinsic materials for a-Si:H based solar cells have been systematically and intensively studied. Hydrogen dilution, substrate temperature, gas flow rate, RF- or VHF-power density, and films deposition time have been optimized to obtain "on-the-edge" materials. To understand the material structure of the silicon p-layer providing a high Voc a-Si:H solar cell, hydrogenated amorphous, protocrystalline, and nanocrystalline silicon p-layers have been prepared using RF-PECVD and characterized by Raman spectroscopy and high resolution transmission electronic microscopy (HRTEM). It was found that the optimum Si:H p-layer for n-i-p a-Si:H solar cells is composed of fine-grained nanocrystals with crystallite sizes in the range of 3-5 nm embedded in an amorphous network. Using the optimized p-layer, an a-Si:H single-junction solar cell with a very high Voc value of 1.042 V and a FF value of 0.74 has been obtained. a-Si:H, a-SiGe:H and nc-Si:H i-layers have been prepared using RF- and VHF-PECVD techniques and monitored by different optical and electrical characterizations. Single-junction a-Si:H, a-SiGe and nc-Si:H cells have been developed and optimized. Intermediate bandgap a-SiGe:H solar cells achieved efficiencies over 12.5%. On the basis of optimized component cells, we achieved a-Si:Hla-SiGe:H tandem solar cells with efficiencies of ˜12.9% and a-Si:H/a-SiGe:H/a-SiGe:H triple-junction cells with efficiencies of ˜12.03%. VHF-PECVD technique was used to increase the deposition rates of the narrow bandgap materials. The deposition rate for a-SiGe:H i-layer attained 9 A/sec and the solar cell had a V oc of 0.588 V, Jsc of 20.4 mA/cm2, FF of 0.63, and efficiency of 7.6%. Preliminary research on the preparation of a-Si:Hlnc-Si:H tandem solar cells and a-Si:Hla-SiGe:Hlnc-Si:H triple-junction cells has also been undertaken using VHF nc-Si:H bottom cells with deposition rates of 6 A/sec. All I-V measurements were carried out under AM1.5G (100 MW/cm2) and the cell area was 0.25 cm2.

  18. High rate chemical vapor deposition of carbon films using fluorinated gases

    DOEpatents

    Stafford, Byron L.; Tracy, C. Edwin; Benson, David K.; Nelson, Arthur J.

    1993-01-01

    A high rate, low-temperature deposition of amorphous carbon films is produced by PE-CVD in the presence of a fluorinated or other halide gas. The deposition can be performed at less than 100.degree. C., including ambient room temperature, with a radio frequency plasma assisted chemical vapor deposition process. With less than 6.5 atomic percent fluorine incorporated into the amorphous carbon film, the characteristics of the carbon film, including index of refraction, mass density, optical clarity, and chemical resistance are within fifteen percent (15%) of those characteristics for pure amorphous carbon films, but the deposition rates are high.

  19. Fabrication and characterization of multi-stopband Fabry-Pérot filter array for nanospectrometers in the VIS range using SCIL nanoimprint technology

    NASA Astrophysics Data System (ADS)

    Shen, Yannan; Istock, André; Zaman, Anik; Woidt, Carsten; Hillmer, Hartmut

    2018-05-01

    Miniaturization of optical spectrometers can be achieved by Fabry-Pérot (FP) filter arrays. Each FP filter consists of two parallel highly reflecting mirrors and a resonance cavity in between. Originating from different individual cavity heights, each filter transmits a narrow spectral band (transmission line) with different wavelengths. Considering the fabrication efficiency, plasma enhanced chemical vapor deposition (PECVD) technology is applied to implement the high-optical-quality distributed Bragg reflectors (DBRs), while substrate conformal imprint lithography (one type of nanoimprint technology) is utilized to achieve the multiple cavities in just a single step. The FP filter array fabricated by nanoimprint combined with corresponding detector array builds a so-called "nanospectrometer". However, the silicon nitride and silicon dioxide stacks deposited by PECVD result in a limited stopband width of DBR (i.e., < 100 nm), which then limits the sensing range of filter arrays. However, an extension of the spectral range of filter arrays is desired and the topic of this investigation. In this work, multiple DBRs with different central wavelengths (λ c) are structured, deposited, and combined on a single substrate to enlarge the entire stopband. Cavity arrays are successfully aligned and imprinted over such terrace like surface in a single step. With this method, small chip size of filter arrays can be preserved, and the fabrication procedure of multiple resonance cavities is kept efficient as well. The detecting range of filter arrays is increased from roughly 50 nm with single DBR to 163 nm with three different DBRs.

  20. Growth of single wall carbon nanotubes using PECVD technique: An efficient chemiresistor gas sensor

    NASA Astrophysics Data System (ADS)

    Lone, Mohd Yaseen; Kumar, Avshish; Husain, Samina; Zulfequar, M.; Harsh; Husain, Mushahid

    2017-03-01

    In this work, the uniform and vertically aligned single wall carbon nanotubes (SWCNTs) have been grown on Iron (Fe) deposited Silicon (Si) substrate by plasma enhanced chemical vapor deposition (PECVD) technique at very low temperature of 550 °C. The as-grown samples of SWCNTS were characterized by field emission scanning electron microscope (FESEM), high resolution transmission electron microscope (HRTEM) and Raman spectrometer. SWCNT based chemiresistor gas sensing device was fabricated by making the proper gold contacts on the as-grown SWCNTs. The electrical conductance and sensor response of grown SWCNTs have been investigated. The fabricated SWCNT sensor was exposed to ammonia (NH3) gas at 200 ppm in a self assembled apparatus. The sensor response was measured at room temperature which was discussed in terms of adsorption of NH3 gas molecules on the surface of SWCNTs. The achieved results are used to develope a miniaturized gas sensor device for monitoring and control of environment pollutants.

  1. The Performance Improvement of N2 Plasma Treatment on ZrO2 Gate Dielectric Thin-Film Transistors with Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition IGZO Channel.

    PubMed

    Wu, Chien-Hung; Huang, Bo-Wen; Chang, Kow-Ming; Wang, Shui-Jinn; Lin, Jian-Hong; Hsu, Jui-Mei

    2016-06-01

    The aim of this paper is to illustrate the N2 plasma treatment for high-κ ZrO2 gate dielectric stack (30 nm) with indium-gallium-zinc-oxide (IGZO) thin-film transistors (TFTs). Experimental results reveal that a suitable incorporation of nitrogen atoms could enhance the device performance by eliminating the oxygen vacancies and provide an amorphous surface with better surface roughness. With N2 plasma treated ZrO2 gate, IGZO channel is fabricated by atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique. The best performance of the AP-PECVD IGZO TFTs are obtained with 20 W-90 sec N2 plasma treatment with field-effect mobility (μ(FET)) of 22.5 cm2/V-s, subthreshold swing (SS) of 155 mV/dec, and on/off current ratio (I(on)/I(off)) of 1.49 x 10(7).

  2. Bond topography and nanostructure of hydrogenated fullerene-like carbon films: A comparative study

    NASA Astrophysics Data System (ADS)

    Wang, Yongfu; Gao, Kaixiong; Shi, Jing; Zhang, Junyan

    2016-09-01

    Fullerene-like nanostructural hydrogenated amorphous carbon (FL-C:H) films were prepared by dc- and pulse- plasma enhanced chemical vapor deposition technique (PECVD). Both the films exhibit relatively stresses (0.63 GPa) in spite of their FL features and nanostructural bonding configurations, especially the pentagonal carbon rings. The creation of pentagonal rings is not fully driven by thermodynamics, but is closely related to compressive stress determined by the ion bombardment at the discharged state of the pulse- and dc- discharged plasmas methods. The dc method leads to FL's basal planes which contain less cross-linkages, and causes amorphous strongly hydrogenated structures.

  3. Influence of interfaces density and thermal processes on mechanical stress of PECVD silicon nitride

    NASA Astrophysics Data System (ADS)

    Picciotto, A.; Bagolini, A.; Bellutti, P.; Boscardin, M.

    2009-10-01

    The paper focuses on a particular silicon nitride thin film (SiN x) produced by plasma enahanced chemical vapor deposition (PECVD) technique with high deposition rate (26 nm/min) and low values of mechanical stress (<100 MPa). This was perfomed with mixed frequency procedure varying the modulation of high frequency at 13.56 MHz and low frequency at 308 kHz of RF power supply during the deposition, without changing the ratio of reaction gases. Low stress silicon nitride is commonly obtained by tailoring the thickness ratio of high frequency vs. low frequency silicon nitride layers. The attention of this work was directed to the influence of the number of interfaces per thickness unit on the stress characteristics of the deposited material. Two sets of wafer samples were deposited with low stress silicon nitride, with a thickness of 260 nm and 2 μm, respectively. Thermal annealing processes at 380 and 520 °C in a inert enviroment were also performed on the wafers. The Stoney-Hoffman model was used to estimate the stress values by wafer curvature measurement with a mechanical surface profilometer: the stress was calculated for the as-deposited layer, and after each annealing process. The thickness and the refractive index of the SiN x were also measured and charaterized by variable angle spectra elliposometry (VASE) techinique. The experimental measurements were performed at the MT-LAB, IRST (Istituto per la Ricerca Scientifica e Tecnologica) of Bruno Kessler Foundation for Research in Trento.

  4. Effect of power on growth of nanocrystalline silicon films deposited by VHF PECVD technique for solar cell applications

    NASA Astrophysics Data System (ADS)

    Juneja, Sucheta; Verma, Payal; Savelyev, Dmitry A.; Khonina, Svetlana N.; Sudhakar, S.; Kumar, Sushil

    2016-04-01

    An investigation of the effect of power on the deposition of nanocrystalline silicon thin films were carried out using a gaseous mixture of silane and hydrogen in the 60MHz assisted VHF plasma enhanced chemical vapor deposition (PECVD) technique. The power was varied from 10 to 50 watt maintaining all other parameters constant. Corresponding layer properties w.r.t. material microstructure, optical, hydrogen content and electrical transport are studied in detail. The structural properties have been studied by Raman spectroscopy and x-ray diffraction (XRD). The presence of nano-sized crystals and their morphology have been investigated using atomic force microscopy (AFM). The role of bonded hydrogen content in the films have been studied from the results of Fourier transform infrared spectroscopy. It was observed from the results that with increase in power, crystalline volume fraction increases and crystallite size changes from 4 to 9 nm. The optical band gap varies from 1.7 to 2.1eV due to quantum confinement effect and which further can be explained with reduced hydrogen content. These striking features of nc-Si films can be used to fabricate stable thin film solar cells.

  5. Room temperature deposition of silicon nanodot clusters by plasma-enhanced chemical vapor deposition.

    PubMed

    Kim, Jae-Kwan; Kim, Jun Young; Yoon, Jae-Sik; Lee, Ji-Myon

    2013-10-01

    The formation of nanometer-scale (ns)-Si dots and clusters on p-GaN layers has been studied by controlling the early stage of growth during plasma-enhanced chemical vapor deposition (PECVD) at room temperature. We found that ns-Si dots and clusters formed on the p-GaN surface, indicating that growth was the Volmer-Weber mode. The deposition parameters such as radio frequency (RF) power and processing time mainly influenced the size of the ns-Si dots (40 nm-160 nm) and the density of the ns-Si dot clusters.

  6. Low-temperature electron cyclotron resonance plasma-enhanced chemical-vapor deposition silicon dioxide as gate insulator for polycrystalline silicon thin-film transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiolo, L.; Pecora, A.; Fortunato, G.

    2006-03-15

    Silicon dioxide films have been deposited at temperatures below 270 deg. C in an electron cyclotron resonance (ECR) plasma reactor from O{sub 2}, SiH{sub 4}, and He gas mixture. Pinhole density analysis as a function of substrate temperature for different microwave powers was carried out. Films deposited at higher microwave power and at room temperature show defect densities (<7 pinhole/mm{sup 2}), ensuring low-temperature process integration on large area. From Fourier transform infrared analysis and thermal desorption spectrometry we also evaluated very low hydrogen content if compared to conventional rf-plasma-enhanced chemical-vapor-deposited (PECVD) SiO{sub 2} deposited at 350 deg. C. Electrical propertiesmore » have been measured in metal-oxide-semiconductor (MOS) capacitors, depositing SiO{sub 2} at RT as gate dielectric; breakdown electric fields >10 MV/cm and charge trapping at fields >6 MV/cm have been evaluated. From the study of interface quality in MOS capacitors, we found that even for low annealing temperature (200 deg. C), it is possible to considerably reduce the interface state density down to 5x10{sup 11} cm{sup -2} eV{sup -1}. To fully validate the ECR-PECVD silicon dioxide we fabricated polycrystalline silicon thin-film transistors using RT-deposited SiO{sub 2} as gate insulator. Different postdeposition thermal treatments have been studied and good device characteristics were obtained even for annealing temperature as low as 200 deg. C.« less

  7. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    2008-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  8. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, Paul; Carey, Paul G.; Smith, Patrick M.; Ellingboe, Albert R.

    1999-01-01

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques.

  9. Deposition of dopant impurities and pulsed energy drive-in

    DOEpatents

    Wickboldt, P.; Carey, P.G.; Smith, P.M.; Ellingboe, A.R.

    1999-06-29

    A semiconductor doping process which enhances the dopant incorporation achievable using the Gas Immersion Laser Doping (GILD) technique is disclosed. The enhanced doping is achieved by first depositing a thin layer of dopant atoms on a semiconductor surface followed by exposure to one or more pulses from either a laser or an ion-beam which melt a portion of the semiconductor to a desired depth, thus causing the dopant atoms to be incorporated into the molten region. After the molten region recrystallizes the dopant atoms are electrically active. The dopant atoms are deposited by plasma enhanced chemical vapor deposition (PECVD) or other known deposition techniques. 2 figs.

  10. A High-Performance Lithium-Ion Battery Anode Based on the Core-Shell Heterostructure of Silicon-Coated Vertically Aligned Carbon Nanofibers

    DTIC Science & Technology

    2013-01-01

    nanotubes ( MWCNTs ) using chemical vapour deposition (CVD) to form a hybrid Si– MWCNT structure consisting of 54 to 57 wt% of Si.16 The initial specic...retained less than 70% aer 100 cycles.16 The wavy and partially entangled structure may still have prevented uniform Si deposition deep into the MWCNT ...silicon shells, as illustrated in Fig. 1. The VACNFs are a special type of MWCNTs which are grown with DC-biased plasma chemical vapour deposition (PECVD

  11. Ti-doped hydrogenated diamond like carbon coating deposited by hybrid physical vapor deposition and plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Lee, Na Rae; Sle Jun, Yee; Moon, Kyoung Il; Sunyong Lee, Caroline

    2017-03-01

    Diamond-like carbon films containing titanium and hydrogen (Ti-doped DLC:H) were synthesized using a hybrid technique based on physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD). The film was deposited under a mixture of argon (Ar) and acetylene gas (C2H2). The amount of Ti in the Ti-doped DLC:H film was controlled by varying the DC power of the Ti sputtering target ranging from 0 to 240 W. The composition, microstructure, mechanical and chemical properties of Ti-doped DLC:H films with varying Ti concentrations, were investigated using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), nano indentation, a ball-on-disk tribometer, a four-point probe system and dynamic anodic testing. As a result, the optimum composition of Ti in Ti-doped DLC:H film using our hybrid method was found to be a Ti content of 18 at. %, having superior electrical conductivity and high corrosion resistance, suitable for bipolar plates. Its hardness value was measured to be 25.6 GPa with a low friction factor.

  12. PECVD de composes de silicium sur polymeres: Etude de la premiere phase du depot

    NASA Astrophysics Data System (ADS)

    Dennler, Gilles

    Since their first introduction in the early 90's, transparent barriers against oxygen and/or water vapor permeation through polymers, such as SiO 2, are the object of increasing interest in the food and pharmaceutical packaging industries, and more recently for the encapsulation of organic-based displays. It is now well known that these thin layers possess barrier properties only if they are thicker than a certain critical thickness, dc. For example, dc is around 12 nm in the case of SiO2 on KaptonRTM PI; below this value, the measured "Oxygen Transmission Rate" (OTR, in standard cm3/m2/day/bar) is roughly the same as that of the uncoated polymer. Until now, no detailed research has been carried out to explain this observation, but a hypothesis was proposed in the literature, based on island-like growth structure of the coating for d ≤ dc. According to this hypothesis, the surface energy of the polymeric substrates is so low that the Volmer-Weber (island-coalescence) growth mode occurs. We have aimed to verify this explanation, that is, to study the initial phase of silicon-compound (SiO2 and SiN) growth on four different polymeric substrates, namely polyimide (KaptonRTM PI), polycarbonate (LexanRTM PC), polypropylene (PP), and polyethyleneterephthalate (MylarRTM PET). Three different deposition methods were used, namely reactive evaporation of SiO, radio-frequency (RF) Plasma Enhanced Chemical Vapor Deposition (RF PECVD), and Distributed Electron Cyclotron Resonance (DECR) PECVD. In this latter case, the substrates were placed in three different positions: (i) in the active glow zone, (ii) downstream, and (iii) downstream, but shielded from photon emission (e.g. VUV) from the plasma. Angle-Resolved X-Ray Photoelectron Spectroscopy (ARXPS), Rutherford Backscattering Spectroscopy (RBS), and Scanning Electron Microscopy (SEM), the latter performed after Reactive Ion Etching (RIE) by oxygen plasma, revealed that growth indeed occurs in a Volmer-Weber mode in the case of evaporated films. The island coalescence was observed to occur at d = 1.2 nm, at which point the sticking coefficient of precursor species changes drastically. Finally, we have investigated the presence of an "interphase" between deposited coatings and the polymeric substrate. (Abstract shortened by UMI.)

  13. A solid-state nuclear magnetic resonance study of post-plasma reactions in organosilicone microwave plasma-enhanced chemical vapor deposition (PECVD) coatings.

    PubMed

    Hall, Colin J; Ponnusamy, Thirunavukkarasu; Murphy, Peter J; Lindberg, Mats; Antzutkin, Oleg N; Griesser, Hans J

    2014-06-11

    Plasma-polymerized organosilicone coatings can be used to impart abrasion resistance and barrier properties to plastic substrates such as polycarbonate. Coating rates suitable for industrial-scale deposition, up to 100 nm/s, can be achieved through the use of microwave plasma-enhanced chemical vapor deposition (PECVD), with optimal process vapors such as tetramethyldisiloxane (TMDSO) and oxygen. However, it has been found that under certain deposition conditions, such coatings are subject to post-plasma changes; crazing or cracking can occur anytime from days to months after deposition. To understand the cause of the crazing and its dependence on processing plasma parameters, the effects of post-plasma reactions on the chemical bonding structure of coatings deposited with varying TMDSO-to-O2 ratios was studied with (29)Si and (13)C solid-state magic angle spinning nuclear magnetic resonance (MAS NMR) using both single-pulse and cross-polarization techniques. The coatings showed complex chemical compositions significantly altered from the parent monomer. (29)Si MAS NMR spectra revealed four main groups of resonance lines, which correspond to four siloxane moieties (i.e., mono (M), di (D), tri (T), and quaternary (Q)) and how they are bound to oxygen. Quantitative measurements showed that the ratio of TMDSO to oxygen could shift the chemical structure of the coating from 39% to 55% in Q-type bonds and from 28% to 16% for D-type bonds. Post-plasma reactions were found to produce changes in relative intensities of (29)Si resonance lines. The NMR data were complemented by Fourier transform infrared (FTIR) spectroscopy. Together, these techniques have shown that the bonding environment of Si is drastically altered by varying the TMDSO-to-O2 ratio during PECVD, and that post-plasma reactions increase the cross-link density of the silicon-oxygen network. It appears that Si-H and Si-OH chemical groups are the most susceptible to post-plasma reactions. Coatings produced at a low TMDSO-to-oxygen ratio had little to no singly substituted moieties, displayed a highly cross-linked structure, and showed less post-plasma reactions. However, these chemically more stable coatings are less compatible mechanically with plastic substrates, because of their high stiffness.

  14. Photodetector based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Pavlov, A.; Kitsyuk, E.; Ryazanov, R.; Timoshenkov, V.; Adamov, Y.

    2015-09-01

    Photodetector based on carbon nanotubes (CNT) was investigated. Sensors were done on quartz and silicon susbtrate. Samples of photodetectors sensors were produced by planar technology. This technology included deposition of first metal layer (Al), lithography for pads formation, etching, and formation of local catalyst area by inverse lithography. Vertically-aligned multi-wall carbon nanotubes were directly synthesized on substrate by PECVD method. I-V analysis and spectrum sensitivity of photodetector were investigated for 0.4 μm - 1.2 μm wavelength. Resistivity of CNT layers over temperature was detected in the range of -20°C to 100°C.

  15. Ring resonator based narrow-linewidth semiconductor lasers

    NASA Technical Reports Server (NTRS)

    Ksendzov, Alexander (Inventor)

    2005-01-01

    The present invention is a method and apparatus for using ring resonators to produce narrow linewidth hybrid semiconductor lasers. According to one embodiment of the present invention, the narrow linewidths are produced by combining the semiconductor gain chip with a narrow pass band external feedback element. The semi conductor laser is produced using a ring resonator which, combined with a Bragg grating, acts as the external feedback element. According to another embodiment of the present invention, the proposed integrated optics ring resonator is based on plasma enhanced chemical vapor deposition (PECVD) SiO.sub.2 /SiON/SiO.sub.2 waveguide technology.

  16. Super-hydrophobic coatings with nano-size roughness prepared with simple PECVD method

    NASA Astrophysics Data System (ADS)

    Choi, Yoon S.; Lee, Joon S.; Jin, Su B.; Han, Jeon G.

    2013-08-01

    A simple and conventional method to synthesize nearly flat super-hydrophobic coatings was studied. Conventional plasma enhanced chemical vapour deposition (PECVD) was adopted to synthesize hydrophobic coatings on plastic and glass substrates at room temperature. Hexamethyldisilane was used as a precursor, and hydrogen gas was added to modulate the surface roughness and passivate defects, such as dangling bond and electrically uncovered polar sites rendering non-hydrophobicity. The static water contact angle (WCA) was controlled in the range 120°-160° by adjusting process parameters, especially the hydrogen flow rate and power. AFM showed that the film with a WCA of 145° has as small as 2.5 nm roughness in rms value. In the resistance test of salt water and cosmetics, this film showed excellent results owing to super-hydrophobicity and defect passivation which keeps the surface isolated from external agents. In order to exploit these results, Rare gas analysis was used to examine the process plasma and Fourier transform infrared (FTIR) was used to analyse the chemical structures of the super-hydrophobic films. In the FTIR results, the remarkable increase in the modes of Si-Hx and Si-C bonds as well as Si-CH2-Si in the film was observed indicating the defect passivation and closely packed dense film structure.

  17. The method of synthesizing of superhydrophobic surfaces by PECVD

    NASA Astrophysics Data System (ADS)

    Orazbayev, Sagi; Gabdullin, Maratbek; Ramazanov, Tlekkabul; Dosbolayev, Merlan; Zhunisbekov, Askar; Omirbekov, Dulat; Otarbay, Zhuldyz

    2018-03-01

    The aim of this work was to obtain superhydrophobic surfaces in a plasma medium. The experiment was carried out using the PECVD method in two different modes: constant and pulsing. The surface roughness was obtained by applying nanoparticles synthesized in plasma in a mixture of argon and methane. The resulting particles were deposited on the surface of silicon and glass materials. The contact angle increased linearly depending on the number of cycles, until it reached 160° at 150-160th cycles, after that the increase in cycles does not affect the contact angle, since the saturation process is in progress. Also the effect of the working gas composition on the hydrophobicity of the surface was studied. At low concentrations of methane (1%) only particles are synthesized in the working gas, and hydrophobicity is unstable, with an increase in methane concentration (7%) nanofilms are synthesized from nanoclusters, and surface hydrophobicity is relatively stable. In addition, a pulsing plasma mode was used to obtain superhydrophobic surfaces. The hydrophobicity of the sample showed that the strength of the nanofilm was stable in comparison with the sample obtained in the first mode, but the contact angle was lower. The obtained samples were examined using SEM, SPM, optical analysis, and their contact angles were determined.

  18. Metal (Ag/Ti)-Containing Hydrogenated Amorphous Carbon Nanocomposite Films with Enhanced Nanoscratch Resistance: Hybrid PECVD/PVD System and Microstructural Characteristics.

    PubMed

    Constantinou, Marios; Nikolaou, Petros; Koutsokeras, Loukas; Avgeropoulos, Apostolos; Moschovas, Dimitrios; Varotsis, Constantinos; Patsalas, Panos; Kelires, Pantelis; Constantinides, Georgios

    2018-03-30

    This study aimed to develop hydrogenated amorphous carbon thin films with embedded metallic nanoparticles (a-C:H:Me) of controlled size and concentration. Towards this end, a novel hybrid deposition system is presented that uses a combination of Plasma Enhanced Chemical Vapor Deposition (PECVD) and Physical Vapor Deposition (PVD) technologies. The a-C:H matrix was deposited through the acceleration of carbon ions generated through a radio-frequency (RF) plasma source by cracking methane, whereas metallic nanoparticles were generated and deposited using terminated gas condensation (TGC) technology. The resulting material was a hydrogenated amorphous carbon film with controlled physical properties and evenly dispersed metallic nanoparticles (here Ag or Ti). The physical, chemical, morphological and mechanical characteristics of the films were investigated through X-ray reflectivity (XRR), Raman spectroscopy, Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) and nanoscratch testing. The resulting amorphous carbon metal nanocomposite films (a-C:H:Ag and a-C:H:Ti) exhibited enhanced nanoscratch resistance (up to +50%) and low values of friction coefficient (<0.05), properties desirable for protective coatings and/or solid lubricant applications. The ability to form nanocomposite structures with tunable coating performance by potentially controlling the carbon bonding, hydrogen content, and the type/size/percent of metallic nanoparticles opens new avenues for a broad range of applications in which mechanical, physical, biological and/or combinatorial properties are required.

  19. Silicon-based thin-film transistors with a high stability

    NASA Astrophysics Data System (ADS)

    Stannowski, Bernd

    2002-02-01

    Thin-Film Transistors (TFTs) are widely applied as pixel-addressing devices in large-area electronics, such as active-matrix liquid-crystal displays (AMLCDs) or sensor arrays. Hydrogenated amorphous silicon (a-Si:H) and silicon nitride (a-SiNx:H) are generally used as the semiconductor and the insulator layers, respectively. Commonly, Plasma-Enhanced Chemical Vapor Deposition (PECVD) is used to deposit such films on large glass or plastic substrates at rather low substrate temperatures of 200 - 300oC. Even though TFTs are nowadays used in commercial applications, they need further improvement with respect to a number of issues: Firstly, the stability upon prolonged application of a gate voltage results in a shift of the TFT transfer characteristics. This is explained with the metastability of a-Si:H, namely the defect creation in the amorphous channel. This effect hampers the application of TFTs e.g. in the peripheral driver circuitry of AMLCDs and in the addressing matrix of Organic Light-Emitting Diode (OLED) displays. Secondly, the low deposition rate of the silicon limits the throughput in display fabrication. For a further reduction of the production costs higher deposition rates are crucial. This thesis addresses the development and the study of silicon-based TFTs with a high stability. Therefore, a-Si:H and a-SiNx:H films have been deposited with new techniques, alternative to the commonly used PECVD at a discharge frequency of 13.56 MHz. For Very High Frequency (VHF) PECVD we used frequencies in the range of 13.56 - 70 MHz. Furthermore, we deposited layers by Hot-Wire Chemical Vapor Deposition (HWCVD), utilizing heated tantalum or tungsten filaments to decompose the source-gas molecules catalytically. Hot-wire deposited a-SiNx:H layers were developed to be applied as gate insulator. Furthermore, they are promising for passivation purposes, since no surface damaging ion bombardment is present during the deposition. A proof-of-concept for an "All-Hot-Wire TFT" with both the a-Si:H and the a-SiNx:H deposited by HWCVD is presented, yielding a considerable field-effect mobility of 0.3 cm2/Vs. The stability of various a-Si:H TFTs with either plasma a-SiNx:H or thermally grown SiO2 as the gate insulator was investigated by applying constant gate-bias stress of 25 V at temperatures of 20 - 110oC and durations of 10 - 105s. We determined the kinetics of defect-creation in the amorphous silicon by measuring the threshold-voltage shift and merging the data obtained at different stressing temperatures and times to one data set as a function of the "thermalization energy". This scheme was described by Deane et al.. The kinetics follow a stretched hyperbola, which results from dispersive defect creation with an exponential distribution of activation energies. A least-squares fit yields two parameters: kBT0 is the slope of the barrier distribution, with values of (65 ? 3) meV for all TFTs in this stability study. The second parameter, Ea, is interpreted as the "mean activation energy for defect creation". We used it for a comparison of the stability of various TFTs. For VHF-PECVD a-Si:H TFTs, values for Ea were around 0.92 eV and are found to be correlated with the mechanical stress in silicon films: A high value for Ea, thus a high stability, is related to a low compressive stress. For HWCVD a-Si:H the stability clearly increases with increasing deposition temperatures. The highest value being around 1.03 eV is obtained for het-Si:H, deposited at 510?C. From these results we concluded that the stability of a-Si:H is determined by the grade of network relaxation. Higher deposition temperatures result in a more efficient relaxation of the amorphous network. This can be associated with a higher medium-range order. In the case of the plasma-deposited a-Si:H films deposited at one temperature, the relation between Ea and mechanical stress may be a secondary effect, with the mechanical stress being related to the network ordering. In conclusion, HWCVD appears to be an ideal method to deposit highly stable a-Si:H TFTs, since a rather high temperature is combined with an effective hydrogenation, resulting in a-Si:H film with a low and stable defect density.

  20. A novel method for accurate patterning and positioning of biological cells

    NASA Astrophysics Data System (ADS)

    Jing, Gaoshan; Labukas, Joseph P.; Iqbal, Aziz; Perry, Susan Fueshko; Ferguson, Gregory S.; Tatic-Lucic, Svetlana

    2007-05-01

    The ability to anchor cells in predefined patterns on a surface has become very important for the development of cell-based sensors, tissue-engineering applications, and the understanding of basic cell functions. Currently, the most widely used technique to generate micrometer or sub-micrometer-sized patterns for various biological applications is microcontact printing (μCP). However, the fidelity of the final pattern may be compromised by deformation of the PDMS stamps used during printing. A novel technique for accurately patterning and positioning biological cells is presented, which can overcome this obstacle. We have fabricated a chip on a silicon wafer using standard photolithographic and deposition processes consisting of gold patterns on top of PECVD silicon dioxide. A hydrophobic self-assembled monolayer (SAM) derived from 1-hexadecanethiol (HDT) was coated on the gold surface to prevent cell growth, and a hydrophilic SAM derived from (3-trimethoxysilyl propyl)-diethylenetriamine (DETA) was coated on the exposed PECVD silicon dioxide surface to promote cell growth. Immortalized mouse hypothalamic neurons (GT1-7) were cultured in vitro on the chip, and patterned cells were fluorescently stained and visualized by fluorescence microscopy. By our method, hydrophobic and hydrophilic regions can be reliably generated and easily visualized under a microscope prior to cell culturing. Cell growth was precisely controlled and limited to specific areas. The achieved resolution was 2 microns, and it could be improved with high resolution photolithographic methods.

  1. SFG analysis of the molecular structures at the surfaces and buried interfaces of PECVD ultralow-dielectric constant pSiCOH

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoxian; Myers, John N.; Huang, Huai; Shobha, Hosadurga; Chen, Zhan; Grill, Alfred

    2016-02-01

    PECVD deposited porous SiCOH with ultralow dielectric constant has been successfully integrated as the insulator in advanced interconnects to decrease the RC delay. The effects of NH3 plasma treatment and the effectiveness of the dielectric repair on molecular structures at the surface and buried interface of a pSiCOH film deposited on top of a SiCNH film on a Si wafer were fully characterized using sum frequency generation vibrational spectroscopy (SFG), supplemented by X-ray photoelectron spectroscopy. After exposure to NH3 plasma for 18 s, about 40% of the methyl groups were removed from the pSiCOH surface, and the average orientation of surface methyl groups tilted more towards the surface. The repair method used here effectively repaired the molecular structures at the pSiCOH surface but did not totally recover the entire plasma-damaged layer. Additionally, simulated SFG spectra with various average orientations of methyl groups at the SiCNH/pSiCOH buried interface were compared with the experimental SFG spectra collected using three different laser input angles to determine the molecular structural information at the SiCNH/pSiCOH buried interface after NH3 plasma treatment and repair. The molecular structures including the coverage and the average orientation of methyl groups at the buried interface were found to be unchanged by NH3 plasma treatment and repair.

  2. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Mon-Pérez, E.; Salazar, J.; Ramos, E.; Santoyo Salazar, J.; López Suárez, A.; Dutt, A.; Santana, G.; Marel Monroy, B.

    2016-11-01

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH2Cl2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH3/SiH2Cl2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  3. Effect of RF power density on micro- and macro-structural properties of PECVD grown hydrogenated nanocrystalline silicon thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gokdogan, Gozde Kahriman, E-mail: gozdekahriman@gmail.com; Anutgan, Tamila, E-mail: tamilaanutgan@karabuk.edu.tr

    2016-03-25

    This contribution provides the comparison between micro- and macro-structure of hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by plasma enhanced chemical vapor deposition (PECVD) technique under different RF power densities (P{sub RF}: 100−444 mW/cm{sup 2}). Micro-structure is assessed through grazing angle X-ray diffraction (GAXRD), while macro-structure is followed by surface and cross-sectional morphology via field emission scanning electron microscopy (FE-SEM). The nanocrystallite size (∼5 nm) and FE-SEM surface conglomerate size (∼40 nm) decreases with increasing P{sub RF}, crystalline volume fraction reaches maximum at 162 mW/cm{sup 2}, FE-SEM cross-sectional structure is columnar except for the film grown at 162 mW/cm{sup 2}. The dependence of previously determinedmore » ‘oxygen content–refractive index’ correlation on obtained macro-structure is investigated. Also, the effect of P{sub RF} is discussed in the light of plasma parameters during film deposition process and nc-Si:H film growth models.« less

  4. Deposition of hard elastic hydrogenated fullerenelike carbon films

    NASA Astrophysics Data System (ADS)

    Wang, Zhou; Zhang, Junyan

    2011-05-01

    Hydrogenated fullerenelike carbon (H-FLC) films, with high hardness of 41.7 ± 1.4 GPa and elastic recovery of ˜75.1%, have been uniformly deposited at low temperature by pulse direct current plasma enhanced chemical vapor deposition (pulse DC PECVD). The superior mechanical properties of the H-FLC films are attributed to the unique curvature and interconnection of graphitic basal planes. We propose the fullerenelike structures are formed in the far nonequilibrium pulse plasma environment and stabilized in the sequential fast quenching process. It is expected that the facile deposition of H-FLC films will promote the large-scale low-temperature preparation of engineering protective films for industrial applications.

  5. DC Plasma Synthesis of Vertically Aligned Carbon Nanofibers for Biointerfacing

    NASA Astrophysics Data System (ADS)

    Pearce, Ryan Christopher

    Vertically aligned carbon nanofibers (VACNFs) are a class of materials whose nanoscale dimensions and physical properties makes them uniquely suitable as functional elements in many applications for biodetection and biointerfacing on a cellular level. Control of VACNF synthesis by catalytic plasma enhanced chemical vapor deposition (PECVD) presents many challenges in integration into devices and structures designed for biointerfacing, such as transparent or flexible substrates. This dissertation addresses ways to overcome many of these issues in addition to deepening the fundamental understanding of nano-synthesis in catalytic PECVD. First, a survey of the field of VACNF synthesis and biointerfacing is presented, identifying the present challenges and greatest experimental applications. It is followed by experimental observations that elucidate the underlying mechanism to fiber alignment during synthesis, a critical step for deterministic control of fiber growth. Using a grid of electrodes patterned by photolithography on an insulating substrate, it was found that the alignment of the fibers is controlled by the anisotropic etching provided by ions during dc-PECVD synthesis. The VACNFs that have been utilized for many cellular interfacing experiments have unique mechanical and fluorescent properties due to a SiNx coating. The mechanism for SiNx deposition to VACNF sidewalls during synthesis is explored in addition to a detailed study of the optical properties of the coating. To explain the optical properties of this coating it is proposed that the source of photoluminescence for the SiNx coated VACNFs is quantum confinement effects due to the presence of silicon nanoclusters embedded in a Si3N4 matrix. These luminescent fibers have proven useful as registry markers in cell impalefection studies. To realize VACNF arrays used as an inflatable angioplasty balloon with embedded fibers to deliver drugs across the blood-brain barrier, a method for transferring fibers to flexible polydimethylesiloxane (PDMS) is presented. A process has been developed that involves synthesizing fibers on aluminum, followed by spin coating a thin layer of PDMS and then dissolving the underlying aluminum with KOH. Finally, a method of fiber synthesis using just air and acetone as the process gases is presented, enabling the possibility of inatmosphere, large scale VACNF synthesis. It is envisioned that these advancements should assist the viability of large scale VACNF related technologies and will help to bridge the gap between experimental applications and industrial adoption.

  6. Strain-Engineering of Giant Pseudo-Magnetic Fields in Graphene/Boron Nitride (BN) Periodic Nanostructures

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Chih; Wang, Jiaqing; Teague, Marcus; Chen, Chien-Chang; Yeh, Nai-Chang

    2015-03-01

    Ideal graphene is strain-free whereas non-trivial strain can induce pseudo-magnetic fields as predicted theoretically and manifested experimentally. Here we employ nearly strain-free single-domain graphene, grown by plasma-enhanced chemical vapor deposition (PECVD) at low temperatures, to induce controlled strain by placing the PECVD-graphene on substrates containing engineered nanostructures. We fabricate periodic pyramid nanostructures (typically 100 ~ 200 nm laterally and 10 ~ 60 nm in height) on Si substrates by focused ion beam, and determine the topography of these nanostructures using atomic force microscopy and scanning electron microscopy after we transferred monolayer h-BN followed by PECVD-graphene onto these substrates. We find both layers conform well to the nanostructures so that we can control the size, arrangement, separation, and shape of the nanostructures to generate desirable pseudo-magnetic fields. We also employ molecular dynamics simulation to determine the displacement of carbon atoms under a given nanostructure. The pseudo-magnetic field thus obtained is ~150T in the center, relatively homogeneous over 50% of the area, and drops off precipitously near the edge. These findings are extended to arrays of nanostructures and compared with topographic and spectroscopic studies by STM. Supported by NSF.

  7. Structural and optical properties of arsenic sulfide films synthesized by a novel PECVD-based approach

    NASA Astrophysics Data System (ADS)

    Mochalov, Leonid; Kudryashov, Mikhail; Logunov, Aleksandr; Zelentsov, Sergey; Nezhdanov, Aleksey; Mashin, Alexandr; Gogova, Daniela; Chidichimo, Giuseppe; De Filpo, Giovanni

    2017-11-01

    A new plasma-enhanced chemical vapor deposition-based (PECVD) approach for synthesizing of As-S films, with As content in the range 60-40 at.%, is demonstrated. The process has been carried out in a low-temperature Ar-plasma, employing for the first time volatile As and S as precursors. Utilization of inorganic elemental precursors, in contrast to the typically used in CVD metal-organic compounds or volatile hydrides/halides of Va- and VIa-group-elements, gives the possibility to reach the highest quality and purity of the As-S ≿halcogenide films. Quantum-chemical calculations have been performed to gain insight into the PECVD As-S chalcogenide films structure and the mechanism of its formation in the plasma discharge. An additional vibrational band near 650 cm-1 corresponding to cycled 2-dimensional units is observed by Raman spectroscopy. The process developed is cost-efficient one due to the very precise control and the long-term stability of the plasma parameters and it possesses a high potential for large-area applications such as fabrication of miniature integrated optical elements and 2D/3D printing of optical devices.

  8. Aqueous, Room Temperature Deposition of Silicon, Molybdenum and Germanium onto Aluminum Substrates

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Aarti Krishna

    Electrochemical deposition of active materials such as Si, Mo and Ge is notoriously difficult, so they are typically deposited using expensive vacuum methods such as chemical vapor deposition (CVD), plasma-enhanced chemical vapor deposition (PECVD), and magnetron sputtering. However, for most materials, electrochemical deposition has significant advantages of cost, scalability, and manufacturability. There are two main challenges in depositing these materials from aqueous electrolytes at room temperature, namely their highly cathodic standard reduction potential and the formation of native oxides. This has led researchers to use non-aqueous electrolytes such as organic solvents, room temperature ionic liquids (RTILs), and high temperature molten salts. However, these have drawbacks over aqueous electrolytes such as high cost, low conductivity, flammability, and corrosive behavior. During my PhS studies, these two challenges were overcome by using the galvanic method of deposition and by including HF in the electrolyte. Si thin films are employed in a variety of technologies, including microelectronic and photovoltaic devices, Li ion battery anodes, and corrosion-resistant coatings. A galvanic and a combined galvanic/electroless method of Si deposition were developed using aqueous electrolytes at room temperature to obtain nanoporous and compact films, respectively. These films were characterized to understand the surface morphology, thickness, crystallinity, growth rate, composition and nucleation behavior. Approximately 7-10 µm thick compact Si films were achieved with a deposition time of around 28 hours. The galvanic method of deposition was also extended to deposit compact Mo films. Mo thin films have a number of technological applications, including back contacts for CIGS/CZTS photovoltaic devices and corrosion-resistant coatings. Mo thin films were also thoroughly characterized and approximately 4.5 µm thick films were obtained after 3 hours. Similar to Si depostion, a galvanic method of deposition and the galvanic/electroless method of deposition was tested for the deposition of Ge. However no Ge deposit could be consistently obtained, probably due to oxyanion formation in aqueous hexaflurogermante solution.

  9. The effect of copper substrate’s roughness on graphene growth process via PECVD

    NASA Astrophysics Data System (ADS)

    Fan, Tengfei; Yan, Cuixia; Lu, Jianchen; Zhang, Lianchang; Cai, Jinming

    2018-04-01

    Despite many excellent properties, the synthesis of high quality graphene with low-cost way is still a challenge, thus many different factors have been researched. In this work, the effect of surface roughness to the graphene quality was studied. Graphene was synthesized by plasma enhanced chemical vapor deposition (PECVD) method on copper substrates with different roughness from 0.074 μm to 0.339 μm, which were prepared via annealing, corrosion or polishing, respectively. Ar+ plasma cleaning was applied before graphene growth in order to accommodate similar surface chemical reactivity to each other. Scanning electron microscope and Raman spectroscope were employed to investigate the effect of surface roughness, which reveals that the graphene quality decrease first and then increase again according to the ratio of ID/IG in Raman spectroscopy. When the ratio of ID/IG reaches the largest number, the substrate roughness is 0.127 μm, where is the graphene quality changing point. First principle calculation was applied to explain the phenomenon and revealed that it is strongly affected by the graphene grain size and quantity which can induce defects. This strategy is expected to guide the industrial production of graphene.

  10. Role of SiNx Barrier Layer on the Performances of Polyimide Ga2O3-doped ZnO p-i-n Hydrogenated Amorphous Silicon Thin Film Solar Cells

    PubMed Central

    Wang, Fang-Hsing; Kuo, Hsin-Hui; Yang, Cheng-Fu; Liu, Min-Chu

    2014-01-01

    In this study, silicon nitride (SiNx) thin films were deposited on polyimide (PI) substrates as barrier layers by a plasma enhanced chemical vapor deposition (PECVD) system. The gallium-doped zinc oxide (GZO) thin films were deposited on PI and SiNx/PI substrates at room temperature (RT), 100 and 200 °C by radio frequency (RF) magnetron sputtering. The thicknesses of the GZO and SiNx thin films were controlled at around 160 ± 12 nm and 150 ± 10 nm, respectively. The optimal deposition parameters for the SiNx thin films were a working pressure of 800 × 10−3 Torr, a deposition power of 20 W, a deposition temperature of 200 °C, and gas flowing rates of SiH4 = 20 sccm and NH3 = 210 sccm, respectively. For the GZO/PI and GZO-SiNx/PI structures we had found that the GZO thin films deposited at 100 and 200 °C had higher crystallinity, higher electron mobility, larger carrier concentration, smaller resistivity, and higher optical transmittance ratio. For that, the GZO thin films deposited at 100 and 200 °C on PI and SiNx/PI substrates with thickness of ~000 nm were used to fabricate p-i-n hydrogenated amorphous silicon (α-Si) thin film solar cells. 0.5% HCl solution was used to etch the surfaces of the GZO/PI and GZO-SiNx/PI substrates. Finally, PECVD system was used to deposit α-Si thin film onto the etched surfaces of the GZO/PI and GZO-SiNx/PI substrates to fabricate α-Si thin film solar cells, and the solar cells’ properties were also investigated. We had found that substrates to get the optimally solar cells’ efficiency were 200 °C-deposited GZO-SiNx/PI. PMID:28788494

  11. Single and multijunction silicon based thin film solar cells on a flexible substrate with absorber layers made by hot-wire CVD

    NASA Astrophysics Data System (ADS)

    Li, Hongbo

    2007-09-01

    With the worldwide growing concern about reliable energy supply and the environmental problems of fossil and nuclear energy production, the need for clean and sustainable energy sources is evident. Solar energy conversion, such as in photovoltaic systems, can play a major role in the urgently needed energy transition in electricity production. Solar cells based on thin film silicon and its alloys are a promising candidate that is capable of fulfilling the fast increasing demand of a reliable solar cell supply. The conventional method to deposit silicon thin films is based on plasma enhanced chemical vapour deposition (PECVD) techniques, which have the disadvantage of increasing film inhomogeneity at a high deposition rate when scaling up for the industrial production. In this thesis, we study the possibility of making high efficiency single and multijunction thin film silicon solar cells with the so-called hot-wire CVD technique, in which no strong electromagnetic field is involved in the deposition. Therefore, the up-scaling for industrial production is straightforward. We report and discuss our findings on the correlation of substrate surface rms roughness and the main output parameter of a solar cell, the open circuit voltage Voc of c-Si:H n i p cells. By considering all the possible reasons that could influence the Voc of such cells, we conclude that the near linear correlation of Voc and substrate surface rms roughness is the result the two most probable reasons: the unintentional doping through the cracks originated near the valleys of the substrate surface due to the in-diffusion of impurities, and the high density electrical defects formed by the collision of columnar silicon structures. Both of them relate to the morphology of substrate surface. Therefore, to have the best cell performance on a rough substrate surface, a good control on the substrate surface morphology is necessary. Another issue influencing the performance of c-Si:H solar cells is the change in layer crystallinity during the growth of the c-Si:H i-layer. For PECVD deposited cells, it is often found that the layer crystallinity is enhanced with increasing film thickness. We found for Hot-wire deposited cells, however, the opposite development in material structure: the material becomes amorphous near the end of the deposition. This results in a deterioration of cell performance. We therefore introduce a so-called H2 reverse profiling technique, in which H2 is increased during the c-Si:H i-layer deposition. With this technique, a cell with an efficiency of 8.5% has been reached, which is in line with the best reported PECVD cells deposited on the same type of substrate. In the literature, carrier transport in c-Si:H cells has been a topic for debate. In this thesis, we present our finding of photogating effect on the spectral response of c-Si:H solar cells. When measured under coloured bias light, the apparent quantum efficiency value of a c-Si:H cell can be largely enhanced. This phenomenon is a typical result of trapping induced field modification in the bulk of a drift type solar cell. The discovery of this phenomenon has experimentally proved that field-driven transport to a large extend exist in a c-Si:H solar cell.

  12. Vertically aligned carbon nanotube emitter on metal foil for medical X-ray imaging.

    PubMed

    Ryu, Je Hwang; Kim, Wan Sun; Lee, Seung Ho; Eom, Young Ju; Park, Hun Kuk; Park, Kyu Chang

    2013-10-01

    A simple method is proposed for growing vertically aligned carbon nanotubes on metal foil using the triode direct current plasma-enhanced chemical vapor deposition (PECVD). The carbon nanotube (CNT) electron emitter was fabricated using fewer process steps with an acid treated metal substrate. The CNT emitter was used for X-ray generation, and the X-ray image of mouse's joint was obtained with an anode current of 0.5 mA at an anode bias of 60 kV. The simple fabrication of a well-aligned CNT with a protection layer on metal foil, and its X-ray application, were studied.

  13. Barrier SiO2-like coatings for archaeological artefacts preservation

    NASA Astrophysics Data System (ADS)

    Prochazka, M.; Blahova, L.; Krcma, F.

    2016-10-01

    Thin film chemical vapour deposition technique has been used for more than 50 years. Introducing organo-silicones as precursors, e.g. hexamethyldisiloxane (HMDSO) or tetraethyl orthosilicate (TEOS), brought new possibilities to this method. Barrier properties of thin films have become an important issue, especially for army and emergency services as well as for food and drink manufacturers. Our work is focused on protective HMDSO thin films for encapsulating cleaned archaeological artefacts, preventing the corrosion from destroying these historical items.Thin films are deposited via plasma enhanced chemical vapour deposition (PECVD) technique using low pressure capacitively coupled pasma in flow regime. Oxygen transmission rate (OTR) measurement was chosen as the most important one for characterization of barrier properties of deposited thin films. Lowest OTR reached for 50 nm thin film thickness was 120 cm3 m-2 atm-1 day-1. Samples were also analyzed by Fourier Transform Infrared spectrometry (FTIR) to determine their composition. Optical emission spectra and thin film thickness were measured during the deposition process. We optimized the deposition parameters for barrier layers by implementation of pulsed mode of plasma and argon plasma pre-treatment into the process.

  14. Polymeric Packaging for Fully Implantable Wireless Neural Microsensors

    PubMed Central

    Aceros, Juan; Yin, Ming; Borton, David A.; Patterson, William R.; Bull, Christopher; Nurmikko, Arto V.

    2014-01-01

    We present polymeric packaging methods used for subcutaneous, fully implantable, broadband, and wireless neurosensors. A new tool for accelerated testing and characterization of biocompatible polymeric packaging materials and processes is described along with specialized test units to simulate our fully implantable neurosensor components, materials and fabrication processes. A brief description of the implantable systems is presented along with their current encapsulation methods based on polydimethylsiloxane (PDMS). Results from in-vivo testing of multiple implanted neurosensors in swine and non-human primates are presented. Finally, a novel augmenting polymer thin film material to complement the currently employed PDMS is introduced. This thin layer coating material is based on the Plasma Enhanced Chemical Vapor Deposition (PECVD) process of Hexamethyldisiloxane (HMDSO) and Oxygen (O2). PMID:23365999

  15. Solid coatings deposited from liquid methyl methacrylate via Plasma Polymerization

    NASA Astrophysics Data System (ADS)

    Wurlitzer, Lisa; Maus-Friedrichs, Wolfgang; Dahle, Sebastian

    2016-09-01

    The polymerization of methyl methacrylate via plasma discharges is well known today. Usually, plasma-enhanced chemical vapor deposition (PECVD) is used to deposit polymer coatings. Solid coatings are formed out of the liquid phase from methyl methacrylate via dielectric barrier discharge. The formation of the coating proceeds in the gas and the liquid phase. To learn more about the reactions in the two phases, the coatings from MMA monomer will be compared to those from MMA resin. Finally, attenuated total reflection infrared spectroscopy, confocal laser scanning microscopy and X-ray photoelectron spectroscopy are employed to characterize the solid coatings. In conclusion, the plasma enhanced chemical solution deposition is compared to the classical thermal polymerization of MMA.

  16. Plasma deposition of amorphous silicon carbide thin films irradiated with neutrons

    NASA Astrophysics Data System (ADS)

    Huran, J.; Bohacek, P.; Kucera, M.; Kleinova, A.; Sasinkova, V.; IEE SAS, Bratislava, Slovakia Team; Polymer Institute, SAS, Bratislava, Slovakia Team; Institute of Chemistry, SAS, Bratislava, Slovakia Team

    2015-09-01

    Amorphous silicon carbide and N-doped silicon carbide thin films were deposited on P-type Si(100) wafer by plasma enhanced chemical vapor deposition (PECVD) technology using silane, methane, ammonium and argon gases. The concentration of elements in the films was determined by RBS and ERDA method. Chemical compositions were analyzed by FTIR spectroscopy. Photoluminescence properties were studied by photoluminescence spectroscopy (PL). Irradiation of samples with various neutron fluencies was performed at room temperature. The films contain silicon, carbon, hydrogen, nitrogen and small amount of oxygen. From the IR spectra, the films contained Si-C, Si-H, C-H, Si-N, N-H and Si-O bonds. No significance effect on the IR spectra after neutron irradiation was observed. PL spectroscopy results of films showed decreasing PL intensity after neutron irradiation and PL intensity decreased with increased neutron fluencies. The measured current of the prepared structures increased after irradiation with neutrons and rise up with neutron fluencies.

  17. Experimental and theoretical rationalization of the growth mechanism of silicon quantum dots in non-stoichiometric SiN x : role of chlorine in plasma enhanced chemical vapour deposition.

    PubMed

    Mon-Pérez, E; Salazar, J; Ramos, E; Salazar, J Santoyo; Suárez, A López; Dutt, A; Santana, G; Monroy, B Marel

    2016-11-11

    Silicon quantum dots (Si-QDs) embedded in an insulator matrix are important from a technological and application point of view. Thus, being able to synthesize them in situ during the matrix growth process is technologically advantageous. The use of SiH 2 Cl 2 as the silicon precursor in the plasma enhanced chemical vapour deposition (PECVD) process allows us to obtain Si-QDs without post-thermal annealing. Foremost in this work, is a theoretical rationalization of the mechanism responsible for Si-QD generation in a film including an analysis of the energy released by the extraction of HCl and the insertion of silylene species into the terminal surface bonds. From the results obtained using density functional theory (DFT), we propose an explanation of the mechanism responsible for the formation of Si-QDs in non-stoichiometric SiN x starting from chlorinated precursors in a PECVD system. Micrograph images obtained through transmission electron microscopy confirmed the presence of Si-QDs, even in nitrogen-rich (N-rich) samples. The film stoichiometry was controlled by varying the growth parameters, in particular the NH 3 /SiH 2 Cl 2 ratio and hydrogen dilution. Experimental and theoretical results together show that using a PECVD system, along with chlorinated precursors it is possible to obtain Si-QDs at a low substrate temperature without annealing treatment. The optical property studies carried out in the present work highlight the prospects of these thin films for down shifting and as an antireflection coating in silicon solar cells.

  18. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are structurally and chemically compatible with the high-temperature synthesis of the PECVD-grown tubes. The techniques offer a wafer-scale process solution for integrating single PECVD-grown nanotubes into novel architectures that should accelerate their integration in 3D electronics in general. NASA can directly benefit from this technology for its extreme-environment planetary missions. Current Si transistors are inherently more susceptible to high radiation, and do not tolerate extremes in temperature. These novel 3D nanoscale architectures can form the basis for NEMS switches that are inherently less susceptible to radiation or to thermal extremes.

  19. Synthesis and electrochemical properties of Ti-doped DLC films by a hybrid PVD/PECVD process

    NASA Astrophysics Data System (ADS)

    Jo, Yeong Ju; Zhang, Teng Fei; Son, Myoung Jun; Kim, Kwang Ho

    2018-03-01

    Low electrical conductivity and poor adhesion to metallic substrates are the main drawbacks of diamond-like carbon (DLC) films when used in electrode applications. In this study, Ti-doped DLC films with various Ti contents were synthesized on metal Ti substrates by a hybrid PVD/PECVD process, where PECVD was used for deposition of DLC films and PVD was used for Ti doping. The effects of the Ti doping ratio on the microstructure, adhesion strength, and electrical and electrochemical properties of the DLC films were systematically investigated. An increase in the Ti content led to increased surface roughness and a higher sp2/sp3 ratio of the Ti-DLC films. Ti atoms existed as amorphous-phase Ti carbide when the Ti doping ratio was less than 2.8 at.%, while the nanocrystalline TiC phase was formed in DLC films when the Ti doping ratio was exceeded 4.0 at.%. The adhesion strength, electrical resistivity, electrochemical activity and reversibility of the DLC films were greatly improved by Ti doping. The influence of Ti doping ratio on the electrical and electrochemical properties of the DLC films were also investigated and the best performance was obtained at a Ti content of 2.8 at.%.

  20. Surface wet-ability modification of thin PECVD silicon nitride layers by 40 keV argon ion treatments

    NASA Astrophysics Data System (ADS)

    Caridi, F.; Picciotto, A.; Vanzetti, L.; Iacob, E.; Scolaro, C.

    2015-10-01

    Measurements of wet-ability of liquid drops have been performed on a 30 nm silicon nitride (Si3N4) film deposited by a PECVD reactor on a silicon wafer and implanted by 40 keV argon ions at different doses. Surface treatments by using Ar ion beams have been employed to modify the wet-ability. The chemical composition of the first Si3N4 monolayer was investigated by means of X-ray Photoelectron Spectroscopy (XPS). The surface morphology was tested by Atomic Force Microscopy (AFM). Results put in evidence the best implantation conditions for silicon nitride to increase or to reduce the wet-ability of the biological liquid. This permits to improve the biocompatibility and functionality of Si3N4. In particular experimental results show that argon ion bombardment increases the contact angle, enhances the oxygen content and increases the surface roughness.

  1. Patterned carbon nanotubes fabricated by the combination of microcontact printing and diblock copolymer micelles.

    PubMed

    Xu, Peng; Ji, Xin; Qi, Junlei; Yang, Hongmin; Zheng, Weitao; Abetz, Volker; Jiang, Shimei; Shen, Jiacong

    2010-01-01

    A convenient approach to synthesize patterned carbon nanotubes (CNTs) of three morphologies on printed substrates by combination of microcontact printing (microCP) and a plasma-enhanced chemical vapor deposition (PECVD) process is presented. Micelles of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) in toluene were used as nanoreactors to fabricate FeCl3 in the core domains, and the complex solution was used as an ink to print films with polydimethylsiloxane (PDMS) stamps, different morphologies (porous, dots and stripes patterns) of the FeCl3-loaded micellar films were left onto silicon substrates after printed. After removing the polymer by thermal decomposition, the left iron oxide cluster arrays on the substrate were used as catalysts for the growth of CNTs by the process of PECVD, where the CNTs uniformly distributed on the substrates according to the morphologies of patterned catalysts arrays.

  2. Unintentional consequences of dual mode plasma reactors: Implications for upscaling lab-record silicon surface passivation by silicon nitride

    NASA Astrophysics Data System (ADS)

    Tong, Jingnan; To, Alexander; Lennon, Alison; Hoex, Bram

    2017-08-01

    Silicon nitride (SiN x ) synthesised by low-temperature plasma enhanced chemical vapour deposition (PECVD) is the most extensively used antireflection coating for crystalline silicon solar cells because of its tunable refractive index in combination with excellent levels of surface and bulk passivation. This has attracted a significant amount of research on developing SiN x films towards an optimal electrical and optical performance. Typically, recipes are first optimised in lab-scale reactors and subsequently, the best settings are transferred to high-throughput reactors. In this paper, we show that for one particular, but widely used, PECVD reactor configuration this upscaling is severely hampered by an important experimental artefact. Specifically, we report on the unintentional deposition of a dual layer structure in a dual mode AK 400 plasma reactor from Roth & Rau which has a significant impact on its surface passivation performance. It is found that the radio frequency (RF) substrate bias ignites an unintentional depositing plasma before the ignition of the main microwave (MW) plasma. This RF plasma deposits a Si-rich intervening SiN x layer (refractive index = 2.4) while using a recipe for stoichiometric SiN x . This layer was found to be 18 nm thick in our case and had an extraordinary impact on the Si surface passivation, witnessed by a reduction in effective surface recombination velocity from 22.5 to 6.2 cm/s. This experimental result may explain some “out of the ordinary” excellent surface passivation results reported recently for nearly stoichiometric SiN x films and has significant consequences when transferring these results to high-throughput deposition systems.

  3. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: Role of precursors on the film growth and properties

    DOE PAGES

    Guruvenket, Srinivasan; Andrie, Steven; Simon, Mark; ...

    2012-09-14

    Atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using Surfx Atomflow TM 250D APPJ was utilized to synthesize amorphous silicon carbonitride coatings using tetramethyldisilizane (TMDZ) and hexamethyldisilizane (HMDZ) as the single source precursors. The effect of precursor chemistry and the substrate temperature (T s) on the properties of a-SiCN:H films were evaluated, while nitrogen was used as the reactive gas. Surface morphology of the films was evaluated using atomic force microscopy (AFM); chemical properties were determined using Fourier transform infrared spectroscopy (FTIR); thickness and optical properties were determined using spectroscopic ellipsometry and mechanical properties were determined using nano-indentation. In generalmore » films deposited at substrate temperature (T s) <200 °C contained organic moieties, while the films deposited at T s >200 oC depicted strong Si-N and Si-CN absorption. Refractive indices (n) of the thin films showed values between 1.5 -2.0 depending on the deposition parameters. Mechanical properties of the films determined using nano-indentation revealed that these films have hardness between 0.5 GPa to 15 GPa depending on the Ts. AFM evaluation of the films showed high roughness (R a) values of 2-3 nm for the films grown at low T s (< 250 °C), while the films grown at T s ≥ 300 °C exhibited atomically smooth surface with R a of ~ 0.5 nm. Furthermore, based on the gas phase (plasma) chemistry, precursor chemistry and the other experimental observations, a possible growth model that prevails in the AP-PECVD of a-SiCN:H thin films is proposed.« less

  4. Atmospheric-pressure plasma-enhanced chemical vapor deposition of a-SiCN:H films: role of precursors on the film growth and properties.

    PubMed

    Guruvenket, Srinivasan; Andrie, Steven; Simon, Mark; Johnson, Kyle W; Sailer, Robert A

    2012-10-24

    Atmospheric pressure plasma enhanced chemical vapor deposition (AP-PECVD) using Surfx Atomflow(TM) 250D APPJ was utilized to synthesize amorphous silicon carbonitride coatings using tetramethyldisilizane (TMDZ) and hexamethyldisilizane (HMDZ) as the single source precursors. The effect of precursor chemistry and substrate temperature (T(s)) on the properties of a-SiCN:H films were evaluated, while nitrogen was used as the reactive gas. Surface morphology of the films was evaluated using atomic force microscopy (AFM); chemical properties were determined using Fourier transform infrared spectroscopy (FTIR); thickness and optical properties were determined using spectroscopic ellipsometry and mechanical properties were determined using nanoindentation. In general, films deposited at substrate temperature (T(s)) < 200 °C contained organic moieties, while the films deposited at T(s) > 200 °C depicted strong Si-N and Si-CN absorption. Refractive indices (n) of the thin films showed values between 1.5 and 2.0, depending on the deposition parameters. Mechanical properties of the films determined using nanoindentation revealed that these films have hardness between 0.5 GPa and 15 GPa, depending on the T(s) value. AFM evaluation of the films showed high roughness (R(a)) values of 2-3 nm for the films grown at low T(s) (<250 °C) while the films grown at T(s) ≥ 300 °C exhibited atomically smooth surface with R(a) of ~0.5 nm. Based on the gas-phase (plasma) chemistry, precursor chemistry and the other experimental observations, a possible growth model that prevails in the AP-PECVD of a-SiCN:H thin films is proposed.

  5. Very low temperature materials and self-alignment technology for amorphous hydrated silicon thin film transistors fabricated on transparent large area plastic substrates

    NASA Astrophysics Data System (ADS)

    Yang, Chien-Sheng

    The purpose of this research has been to (1) explore materials prepared using plasma enhanced chemical vapor deposition (PECVD) at 110sp°C for amorphous silicon thin film transistors (TFT's) fabricated on low temperature compatible, large area flexible polyethylene terephthalate (PET) substrates, and (2) develop full self-alignment technology using selective area n+ PECVD for source/drain contacts of amorphous silicon TFT's. For item (1), silicon nitride films, as gate dielectrics of TFT's, were deposited using SiHsb4+NHsb3, SiHsb4+NHsb3+Nsb2, SiHsb4+NHsb3+He, or SiHsb4+NHsb3+Hsb2 gases. Good quality silicon nitride films can be deposited using a SiHsb4+NHsb3 gas with high NHsb3/SiHsb4 ratios, or using a SiHsb4+NHsb3+Nsb2 gas with moderate NHsb3/SiHsb4 ratios. A chemical model was proposed to explain the Nsb2 dilution effect. This model includes calculations of (a) the electron energy distribution function in a plasma, (b) rate constants of electron impact dissociation, and (3) the (NHsbx) / (SiHsby) ratio in a plasma. The Nsb2 dilution was shown to have a effect of shifting the electron energy distribution into high energy, thus enhancing the (NHsbx) / (SiHsbyrbrack ratio in a plasma and promoting the deposition of N-rich silicon nitride films, which leads to decreased trap state density and a shift in trap state density to deeper in the gap. Amorphous silicon were formed successfully at 110sp°C on large area glass and plastic(PET) substrates. Linear mobilities are 0.33 and 0.12 cmsp2/Vs for TFT's on glass and plastic substrates, respectively. ON/OFF current ratios exceed 10sp7 for TFT's on glass and 10sp6 for TFT's on PET. For item (2), a novel full self-alignment process was developed for amorphous silicon TFT's. This process includes (1) back-exposure using the bottom gate metal as the mask, and (2) selective area n+ micro-crystalline silicon PECVD for source/drain contacts of amorphous silicon TFT's. TFT's fabricated using the full self-alignment process showed linear mobilities ranging from 0.5 to 1.0 cmsp2/Vs.

  6. The effect of fluoroalkylsilanes on tribological properties and wettability of Si-DLC coatings

    NASA Astrophysics Data System (ADS)

    Bystrzycka, E.; Prowizor, M.; Piwoński, I.; Kisielewska, A.; Batory, D.; Jędrzejczak, A.; Dudek, M.; Kozłowski, W.; Cichomski, M.

    2018-03-01

    Silicon-containing diamond-like carbon (Si-DLC) coatings were prepared on silicon wafers by Radio Frequency Plasma Enhanced Chemical Vapor Deposition (RF-PECVD) method using methane/hexamethyl-disiloxane atmosphere. Herein, we report that Si-DLC coatings can be effectively modified by fluoroalkylsilanes which results in significant enhancement of frictional and wettability properties. Two types of fluoroalkylsilanes differing in the length of fluorocarbon chains were deposited on Si-DLC coatings with the use of Vapor Phase Deposition (VPD) method. The chemical composition of Si-DLC coatings and effectiveness of modification with fluoroalkylsilanes were confirmed by Fourier Transform Infrared Spectroscopy (FTIR) and x-ray Photoelectron Spectroscopy (XPS). Frictional properties in microscale were investigated with the use of ball-on-flat apparatus operating at millinewton (mN) load range. It was found that the presence of silicon enhances the chemisorption of fluoroalkylsilanes on Si-DLC coatings by creating adsorption anchoring centers. In consequence, a decrease of adhesion and an increase of hydrophobicity along with a decrease of coefficient of friction were observed. Experimental results indicate, that tribological properties are correlated with dispersive and acid-base components of the surface free energy as well as with the work of adhesion.

  7. Experimental investigation of defect-assisted and intrinsic water vapor permeation through ultrabarrier films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyungchul; Singh, Ankit Kumar; Wang, Cheng-Yin

    In the development of ultrabarrier films for packaging electronics, the effective water vapor transmission rate is a combination of permeation through pinhole defects and the intrinsic permeation through the actual barrier film. While it is possible to measure the effective permeation rate through barriers, it is important to develop a better understanding of the contribution from defects to the overall effective barrier performance. Here, we demonstrate a method to investigate independently defect-assisted permeation and intrinsic permeation rates by observing the degradation of a calcium layer encapsulated with a hybrid barrier film, that is, prepared using atomic layer deposition (ALD) andmore » plasma enhanced deposition (PECVD). The results are rationalized using an analytical diffusion model to calculate the permeation rate as a function of spatial position within the barrier. It was observed that a barrier film consisting of a PECVD SiN{sub x} layer combined with an ALD Al{sub 2}O{sub 3}/HfO{sub x} nanolaminate resulted in a defect-assisted water vapor transmission rate (WVTR) of 4.84 × 10{sup −5} g/m{sup 2} day and intrinsic WVTR of 1.41 × 10{sup −4} g/m{sup 2} day at 50 °C/85% RH. Due to the low defect density of the tested barrier film, the defect-assisted WVTR was found to be three times lower than the intrinsic WVTR, and an effective (or total) WVTR value was 1.89 × 10{sup −4} g/m{sup 2} day. Thus, improvements of the barrier performance should focus on reducing the number of defects while also improving the intrinsic barrier performance of the hybrid layer.« less

  8. Synthesis of an ultradense forest of vertically aligned triple-walled carbon nanotubes of uniform diameter and length using hollow catalytic nanoparticles.

    PubMed

    Baliyan, Ankur; Nakajima, Yoshikata; Fukuda, Takahiro; Uchida, Takashi; Hanajiri, Tatsuro; Maekawa, Toru

    2014-01-22

    It still remains a crucial challenge to actively control carbon nanotube (CNT) structure such as the alignment, area density, diameter, length, chirality, and number of walls. Here, we synthesize an ultradense forest of CNTs of a uniform internal diameter by the plasma-enhanced chemical vapor deposition (PECVD) method using hollow nanoparticles (HNPs) modified with ligand as a catalyst. The diameters of the HNPs and internal cavities in the HNPs are uniform. A monolayer of densely packed HNPs is self-assembled on a silicon substrate by spin coating. HNPs shrink via the collapse of the internal cavities and phase transition from iron oxide to metallic iron in hydrogen plasma during the PECVD process. Agglomeration of catalytic NPs is avoided on account of the shrinkage of the NPs and ligand attached to the NPs. Diffusion of NPs into the substrate, which would inactivate the growth of CNTs, is also avoided on account of the ligand. As a result, an ultradense forest of triple-walled CNTs of a uniform internal diameter is successfully synthesized. The area density of the grown CNTs is as high as 0.6 × 10(12) cm(-2). Finally, the activity of the catalytic NPs and the NP/carbon interactions during the growth process of CNTs are investigated and discussed. We believe that the present approach may make a great contribution to the development of an innovative synthetic method for CNTs with selective properties.

  9. Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.

    Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.

  10. Low temperature plasma enhanced CVD epitaxial growth of silicon on GaAs: a new paradigm for III-V/Si integration

    NASA Astrophysics Data System (ADS)

    Cariou, Romain; Chen, Wanghua; Maurice, Jean-Luc; Yu, Jingwen; Patriarche, Gilles; Mauguin, Olivia; Largeau, Ludovic; Decobert, Jean; Roca I Cabarrocas, Pere

    2016-05-01

    The integration of III-V semiconductors with silicon is a key issue for photonics, microelectronics and photovoltaics. With the standard approach, namely the epitaxial growth of III-V on silicon, thick and complex buffer layers are required to limit the crystalline defects caused by the interface polarity issues, the thermal expansion, and lattice mismatches. To overcome these problems, we have developed a reverse and innovative approach to combine III-V and silicon: the straightforward epitaxial growth of silicon on GaAs at low temperature by plasma enhanced CVD (PECVD). Indeed we show that both GaAs surface cleaning by SiF4 plasma and subsequent epitaxial growth from SiH4/H2 precursors can be achieved at 175 °C. The GaAs native oxide etching is monitored with in-situ spectroscopic ellipsometry and Raman spectroscopy is used to assess the epitaxial silicon quality. We found that SiH4 dilution in hydrogen during deposition controls the layer structure: the epitaxial growth happens for deposition conditions at the transition between the microcrystalline and amorphous growth regimes. SIMS and STEM-HAADF bring evidences for the interface chemical sharpness. Together, TEM and XRD analysis demonstrate that PECVD enables the growth of high quality relaxed single crystal silicon on GaAs.

  11. Solution-derived SiO2 gate insulator formed by CO2 laser annealing for polycrystalline silicon thin-film transistors

    NASA Astrophysics Data System (ADS)

    Hishitani, Daisuke; Horita, Masahiro; Ishikawa, Yasuaki; Ikenoue, Hiroshi; Uraoka, Yukiharu

    2017-05-01

    The formation of perhydropolysilazane (PHPS)-based SiO2 films by CO2 laser annealing is proposed. Irradiation with a CO2 laser with optimum fluence transformed a prebaked PHPS film into a SiO2 film with uniform composition in the thickness direction. Polycrystalline silicon thin-film transistors (poly-Si TFTs) with a SiO2 film as the gate insulator were fabricated. When the SiO2 film was formed by CO2 laser annealing (CO2LA) at the optimum fluence of 20 mJ/cm2, the film had fewer OH groups which was one-twentieth that of the furnace annealed PHPS film and one-hundredth that of the SiO2 film deposited by plasma-enhanced chemical vapor deposition (PECVD) using tetraethyl orthosilicate (TEOS). The resulting TFTs using PHPS showed a clear transistor operation with a field-effect mobility of 37.9 ± 1.2 cm2 V-1 s-1, a threshold voltage of 9.8 ± 0.2 V, and a subthreshold swing of 0.76 ± 0.02 V/decade. The characteristics of such TFTs were as good as those of a poly-Si TFT with a SiO2 gate insulator prepared by PECVD using TEOS.

  12. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition

    PubMed Central

    Zhan, Hualin; Garrett, David J.; Apollo, Nicholas V.; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-01

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm3, were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail. PMID:26805546

  13. Direct fabrication of 3D graphene on nanoporous anodic alumina by plasma-enhanced chemical vapor deposition.

    PubMed

    Zhan, Hualin; Garrett, David J; Apollo, Nicholas V; Ganesan, Kumaravelu; Lau, Desmond; Prawer, Steven; Cervenka, Jiri

    2016-01-25

    High surface area electrode materials are of interest for a wide range of potential applications such as super-capacitors and electrochemical cells. This paper describes a fabrication method of three-dimensional (3D) graphene conformally coated on nanoporous insulating substrate with uniform nanopore size. 3D graphene films were formed by controlled graphitization of diamond-like amorphous carbon precursor films, deposited by plasma-enhanced chemical vapour deposition (PECVD). Plasma-assisted graphitization was found to produce better quality graphene than a simple thermal graphitization process. The resulting 3D graphene/amorphous carbon/alumina structure has a very high surface area, good electrical conductivity and exhibits excellent chemically stability, providing a good material platform for electrochemical applications. Consequently very large electrochemical capacitance values, as high as 2.1 mF for a sample of 10 mm(3), were achieved. The electrochemical capacitance of the material exhibits a dependence on bias voltage, a phenomenon observed by other groups when studying graphene quantum capacitance. The plasma-assisted graphitization, which dominates the graphitization process, is analyzed and discussed in detail.

  14. PECVD based silicon oxynitride thin films for nano photonic on chip interconnects applications.

    PubMed

    Sharma, Satinder K; Barthwal, Sumit; Singh, Vikram; Kumar, Anuj; Dwivedi, Prabhat K; Prasad, B; Kumar, Dinesh

    2013-01-01

    Thin silicon oxynitride (SiO(x)N(y)) films were deposited by low temperature (~300°C) plasma enhanced chemical vapour deposition (PECVD), using SiH(4), N(2)O, NH(3) precursor of the flow rate 25, 100, 30 sccm and subjected to the post deposition annealing (PDA) treatment at 400°C and 600°C for nano optical/photonics on chip interconnects applications. AFM result reveals the variation of roughness from 60.9 Å to 23.4 Å after PDA treatment with respect to the as-deposited films, favourable surface topography for integrated waveguide applications. A model of decrease in island height with the effect of PDA treatment is proposed in support of AFM results. Raman spectroscopy and FTIR measurements are performed in order to define the change in crystallite and chemical bonding of as-deposited as well as PDA treated samples. These outcomes endorsed to the densification of SiO(x)N(y) thin films, due to decrease in Si-N and Si-O bonds strain, as well the O-H, N-H bonds with in oxynitride network. The increase in refractive index and PL intensity of as deposited SiO(x)N(y) thin films to the PDA treated films at 400°C and 600°C are observed. The significant shift of PL spectra peak positions indicate the change in cluster size as the result of PDA treatment, which influence the optical properties of thin films. It might be due to out diffusion of hydrogen containing species from silicon oxynitride films after PDA treatment. In this way, the structural and optical, feasibility of SiO(x)N(y) films are demonstrated in order to obtain high quality thin films for nano optical/photonics on chip interconnects applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Effects of bias voltage on diamond like carbon coatings deposited using titanium isopropoxide (TIPOT) and acetylene/argon mixtures onto various substrate materials.

    PubMed

    Said, R; Ghumman, C A A; Teodoro, M N D; Ahmed, W; Abuazza, A; Gracio, J

    2010-04-01

    RF-PECVD was used to prepare amorphous of carbon (DLC) onto stainless steel 316 and glass substrates. The substrates were negatively biased at between 100 V to 400 V. Thin films of DLC have been deposited using C2H2 and titanium isopropoxide (TIPOT). Argon was used to generate the plasma in the PECVD system chamber. DEKTAK 8 surface stylus profilometer was used to measure the film thickness and the deposition rate was calculated. Micro Raman spectroscopy was employed to determine the chemical structure and bonding present in the films. Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) instrument. In addition, X-ray photoelectron spectroscopy (XPS) was used to analyze the composition and chemical state of the films. The wettability of the films was examined using the optical contact angle meter (CAM200) system. Two types of liquids with different polarities were used to study changes in the surface energy. The as-grown films were in the thickness range of 200-400 nm. Raman spectroscopy results showed that the I(D)/I(G) ratio decreased when the bias voltage on the stainless steel substrates was increased. This indicates an increase in the graphitic nature of the film deposited. In contrast, on the glass substrates the I(D)/I(G) ratio increased when the bias voltage was increased indicates a greater degree of diamond like character. Chemical composition determined using XPS showed the presence of carbon and oxygen in both samples on glass and stainless steel substrates. Both coatings the contact angle of the films decreased except for 400 V which showed a slight increase. The oxygen is thought to play an important role on the polar component of a-C.

  16. Perspectives on the Growth of High Edge Density Carbon Nanostructures: Transitions from Vertically Oriented Graphene Nanosheets to Graphenated Carbon Nanotubes

    PubMed Central

    2015-01-01

    Insights into the growth of high edge density carbon nanostructures were achieved by a systematic parametric study of plasma-enhanced chemical vapor deposition (PECVD). Such structures are important for electrode performance in a variety of applications such as supercapacitors, neural stimulation, and electrocatalysis. A morphological trend was observed as a function of temperature whereby graphenated carbon nanotubes (g-CNTs) emerged as an intermediate structure between carbon nanotubes (CNTs) at lower temperatures and vertically oriented carbon nanosheets (CNS), composed of few-layered graphene, at higher temperatures. This is the first time that three distinct morphologies and dimensionalities of carbon nanostructures (i.e., 1D CNTs, 2D CNSs, and 3D g-CNTs) have been synthesized in the same reaction chamber by varying only a single parameter (temperature). A design of experiments (DOE) approach was utilized to understand the range of growth permitted in a microwave PECVD reactor, with a focus on identifying graphenated carbon nanotube growth within the process space. Factors studied in the experimental design included temperature, gas ratio, catalyst thickness, pretreatment time, and deposition time. This procedure facilitates predicting and modeling high edge density carbon nanostructure characteristics under a complete range of growth conditions that yields various morphologies of nanoscale carbon. Aside from the morphological trends influenced by temperature, a relationship between deposition temperature and specific capacitance emerged from the DOE study. Transmission electron microscopy was also used to understand the morphology and microstructure of the various high edge density structures. From these results, a new graphene foliate formation mechanism is proposed for synthesis of g-CNTs in a single deposition process. PMID:25089165

  17. Chemical sputtering by H{sub 2}{sup +} and H{sub 3}{sup +} ions during silicon deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landheer, K., E-mail: c.landheer@uu.nl; Poulios, I.; Rath, J. K.

    2016-08-07

    We investigated chemical sputtering of silicon films by H{sub y}{sup +} ions (with y being 2 and 3) in an asymmetric VHF Plasma Enhanced Chemical Vapor Deposition (PECVD) discharge in detail. In experiments with discharges created with pure H{sub 2} inlet flows, we observed that more Si was etched from the powered than from the grounded electrode, and this resulted in a net deposition on the grounded electrode. With experimental input data from a power density series of discharges with pure H{sub 2} inlet flows, we were able to model this process with a chemical sputtering mechanism. The obtained chemicalmore » sputtering yields were (0.3–0.4) ± 0.1 Si atom per bombarding H{sub y}{sup +} ion at the grounded electrode and at the powered electrode the yield ranged from (0.4 to 0.65) ± 0.1. Subsequently, we investigated the role of chemical sputtering during PECVD deposition with a series of silane fractions S{sub F} (S{sub F}(%) = [SiH{sub 4}]/[H{sub 2}]*100) ranging from S{sub F} = 0% to 20%. We experimentally observed that the SiH{sub y}{sup +} flux is not proportional to S{sub F} but decreasing from S{sub F} = 3.4% to 20%. This counterintuitive SiH{sub y}{sup +} flux trend was partly explained by an increasing chemical sputtering rate with decreasing S{sub F} and partly by the reaction between H{sub 3}{sup +} and SiH{sub 4} that forms SiH{sub 3}{sup +}.« less

  18. Thermally-Resilient, Broadband Optical Absorber from UV-to-IR Derived from Carbon Nanostructures and Method of Making the Same

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B. (Inventor); Coles, James B. (Inventor)

    2015-01-01

    A monolithic optical absorber and methods of making same. The monolithic optical absorber uses an array of mutually aligned carbon nanotubes that are grown using a PECVD growth process and a structure that includes a conductive substrate, a refractory template layer and a nucleation layer. Monolithic optical absorbers made according to the described structure and method exhibit high absorptivity, high site densities (greater than 10.sup.9 nanotubes/cm.sup.2), very low reflectivity (below 1%), and high thermal stability in air (up to at least 400.degree. C.). The PECVD process allows the application of such absorbers in a wide variety of end uses.

  19. CO2 Plasma-Treated TiO2 Film as an Effective Electron Transport Layer for High-Performance Planar Perovskite Solar Cells.

    PubMed

    Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank

    2017-10-04

    Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.

  20. Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells

    NASA Astrophysics Data System (ADS)

    Ghosh, Hemanta; Mitra, Suchismita; Siddiqui, M. S.; Saxena, A. K.; Chaudhuri, Partha; Saha, Hiranmay; Banerjee, Chandan

    2018-04-01

    A novel material, structure and method of synthesis for dielectric light trapping have been presented in this paper. First, the light scattering behaviour of silicon nitride nanoparticles have been theoretically studied in order to find the optimized size for dielectric back scattering by FDTD simulations from Lumerical Inc. The optical results have been used in electrical analysis and thereby, estimate the effect of nanoparticles on efficiency of the solar cells depending on substrate thickness. Experimentally, silicon nitride (SiN) nanoparticles have been formed using hydrogen plasma treatment on SiN layer deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). The size and area coverage of the nanoparticles were controlled by varying the working pressure, power density and treatment duration. The nanoparticles were integrated with partial rear contact c-Si solar cells as dielectric back reflector structures for the light trapping in thin silicon solar cells. Experimental results revealed the increases of current density by 2.7% in presence of SiN nanoparticles.

  1. Growing Aligned Carbon Nanotubes for Interconnections in ICs

    NASA Technical Reports Server (NTRS)

    Li, Jun; Ye, Qi; Cassell, Alan; Ng, Hou Tee; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2005-01-01

    A process for growing multiwalled carbon nanotubes anchored at specified locations and aligned along specified directions has been invented. Typically, one would grow a number of the nanotubes oriented perpendicularly to a silicon integrated-circuit (IC) substrate, starting from (and anchored on) patterned catalytic spots on the substrate. Such arrays of perpendicular carbon nanotubes could be used as electrical interconnections between levels of multilevel ICs. The process (see Figure 1) begins with the formation of a layer, a few hundred nanometers thick, of a compatible electrically insulating material (e.g., SiO(x) or Si(y)N(z) on the silicon substrate. A patterned film of a suitable electrical conductor (Al, Mo, Cr, Ti, Ta, Pt, Ir, or doped Si), having a thickness between 1 nm and 2 m, is deposited on the insulating layer to form the IC conductor pattern. Next, a catalytic material (usually, Ni, Fe, or Co) is deposited to a thickness between 1 and 30 nm on the spots from which it is desired to grow carbon nanotubes. The carbon nanotubes are grown by plasma-enhanced chemical vapor deposition (PECVD). Unlike the matted and tangled carbon nanotubes grown by thermal CVD, the carbon nanotubes grown by PECVD are perpendicular and freestanding because an electric field perpendicular to the substrate is used in PECVD. Next, the free space between the carbon nanotubes is filled with SiO2 by means of CVD from tetraethylorthosilicate (TEOS), thereby forming an array of carbon nanotubes embedded in SiO2. Chemical mechanical polishing (CMP) is then performed to remove excess SiO2 and form a flat-top surface in which the outer ends of the carbon nanotubes are exposed. Optionally, depending on the application, metal lines to connect selected ends of carbon nanotubes may be deposited on the top surface. The top part of Figure 2 is a scanning electron micrograph (SEM) of carbon nanotubes grown, as described above, on catalytic spots of about 100 nm diameter patterned by electron-beam lithography. These and other nanotubes were found to have lengths ranging from 2 to 10 m and diameters ranging from 30 to 200 nm, the exact values of length depending on growth times and conditions and the exact values of diameter depending on the diameters and thicknesses of the catalyst spots. The bottom part of Figure 2 is an SEM of an embedded array of carbon nanotubes after CMP.

  2. Transition between 'base' and 'tip' carbon nanofiber growth modes

    NASA Astrophysics Data System (ADS)

    Melechko, Anatoli V.; Merkulov, Vladimir I.; Lowndes, Douglas H.; Guillorn, Michael A.; Simpson, Michael L.

    2002-04-01

    Carbon nanofibers (CNFs) have been synthesized by catalytically controlled dc glow discharge plasma-enhanced chemical vapor deposition (PECVD). Both base-type and tip-type nanofibers have been produced on identical substrates. We have observed a sharp transition between these two growth modes by controlling the kinetics of the growth process without changing the substrate and catalyst materials. This transition is brought about by changing the parameters used in the deposition process such as the flow ratio of the carbonaceous and etchant gasses and others. This study of the initial growth stages as a function of time for both regimes provides a basis for a model of the growth mode transition.

  3. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries.

    PubMed

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M

    2017-05-27

    In this work, we present the electrochemical deposition of manganese dioxide (MnO₂) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO₂ (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li⁺ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  4. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    PubMed Central

    Zargouni, Yafa; Deheryan, Stella; Radisic, Alex; Alouani, Khaled; Vereecken, Philippe M.

    2017-01-01

    In this work, we present the electrochemical deposition of manganese dioxide (MnO2) thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD), is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD) coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications. PMID:28555017

  5. Characteristics of Ge-Sb-Te films prepared by cyclic pulsed plasma-enhanced chemical vapor deposition.

    PubMed

    Suk, Kyung-Suk; Jung, Ha-Na; Woo, Hee-Gweon; Park, Don-Hee; Kim, Do-Heyoung

    2010-05-01

    Ge-Sb-Te (GST) thin films were deposited on TiN, SiO2, and Si substrates by cyclic-pulsed plasma-enhanced chemical vapor deposition (PECVD) using Ge{N(CH3)(C2H5)}, Sb(C3H7)3, Te(C3H7)3 as precursors in a vertical flow reactor. Plasma activated H2 was used as the reducing agent. The growth behavior was strongly dependent on the type of substrate. GST grew as a continuous film on TiN regardless of the substrate temperature. However, GST formed only small crystalline aggregates on Si and SiO2 substrates, not a continuous film, at substrate temperatures > or = 200 degrees C. The effects of the deposition temperature on the surface morphology, roughness, resistivity, crystallinity, and composition of the GST films were examined.

  6. Thermionic Properties of Carbon Based Nanomaterials Produced by Microhollow Cathode PECVD

    NASA Technical Reports Server (NTRS)

    Haase, John R.; Wolinksy, Jason J.; Bailey, Paul S.; George, Jeffrey A.; Go, David B.

    2015-01-01

    Thermionic emission is the process in which materials at sufficiently high temperature spontaneously emit electrons. This process occurs when electrons in a material gain sufficient thermal energy from heating to overcome the material's potential barrier, referred to as the work function. For most bulk materials very high temperatures (greater than 1500 K) are needed to produce appreciable emission. Carbon-based nanomaterials have shown significant promise as emission materials because of their low work functions, nanoscale geometry, and negative electron affinity. One method of producing these materials is through the process known as microhollow cathode PECVD. In a microhollow cathode plasma, high energy electrons oscillate at very high energies through the Pendel effect. These high energy electrons create numerous radical species and the technique has been shown to be an effective method of growing carbon based nanomaterials. In this work, we explore the thermionic emission properties of carbon based nanomaterials produced by microhollow cathode PECVD under a variety of synthesis conditions. Initial studies demonstrate measureable current at low temperatures (approximately 800 K) and work functions (approximately 3.3 eV) for these materials.

  7. Confocal Raman studies in determining crystalline nature of PECVD grown Si nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmed, Nafis; Bhargav, P. Balaji; Ramasamy, P.

    2015-06-24

    Silicon nanowires of diameter ∼200 nm and length of 2-4 µm are grown in the plasma enhanced chemical vapour deposition technique using nanoclustered Au catalyst assisted vapour-liquid-solid process. The crystallinity in the as-grown and annealed samples is studied using confocal Raman spectroscopic studies. Amorphous phase is formed in the as-grown samples. Structural studies using high resolution transmission electron microscopy confirm the polycrystalline nature in the annealed sample.

  8. Decoration of vertical graphene with aerosol nanoparticles for gas sensing

    NASA Astrophysics Data System (ADS)

    Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong

    2015-08-01

    A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.

  9. Amorphous Silicon Based Neutron Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Liwei

    2004-12-12

    Various large-scale neutron sources already build or to be constructed, are important for materials research and life science research. For all these neutron sources, neutron detectors are very important aspect. However, there is a lack of a high-performance and low-cost neutron beam monitor that provides time and temporal resolution. The objective of this SBIR Phase I research, collaboratively performed by Midwest Optoelectronics, LLC (MWOE), the University of Toledo (UT) and Oak Ridge National Laboratory (ORNL), is to demonstrate the feasibility for amorphous silicon based neutron beam monitors that are pixilated, reliable, durable, fully packaged, and fabricated with high yield usingmore » low-cost method. During the Phase I effort, work as been focused in the following areas: 1) Deposition of high quality, low-defect-density, low-stress a-Si films using very high frequency plasma enhanced chemical vapor deposition (VHF PECVD) at high deposition rate and with low device shunting; 2) Fabrication of Si/SiO2/metal/p/i/n/metal/n/i/p/metal/SiO2/ device for the detection of alpha particles which are daughter particles of neutrons through appropriate nuclear reactions; and 3) Testing of various devices fabricated for alpha and neutron detection; As the main results: · High quality, low-defect-density, low-stress a-Si films have been successfully deposited using VHF PECVD on various low-cost substrates; · Various single-junction and double junction detector devices have been fabricated; · The detector devices fabricated have been systematically tested and analyzed. · Some of the fabricated devices are found to successfully detect alpha particles. Further research is required to bring this Phase I work beyond the feasibility demonstration toward the final prototype devices. The success of this project will lead to a high-performance, low-cost, X-Y pixilated neutron beam monitor that could be used in all of the neutron facilities worldwide. In addition, the technologies developed here could be used to develop X-ray and neutron monitors that could be used in the future for security checks at the airports and other critical facilities. The project would lead to devices that could significantly enhance the performance of multi-billion dollar neutron source facilities in the US and bring our nation to the forefront of neutron beam sciences and technologies which have enormous impact to materials, life science and military research and applications.« less

  10. Effect of substrate bias voltage on tensile properties of single crystal silicon microstructure fully coated with plasma CVD diamond-like carbon film

    NASA Astrophysics Data System (ADS)

    Zhang, Wenlei; Hirai, Yoshikazu; Tsuchiya, Toshiyuki; Tabata, Osamu

    2018-06-01

    Tensile strength and strength distribution in a microstructure of single crystal silicon (SCS) were improved significantly by coating the surface with a diamond-like carbon (DLC) film. To explore the influence of coating parameters and the mechanism of film fracture, SCS microstructure surfaces (120 × 4 × 5 μm3) were fully coated by plasma enhanced chemical vapor deposition (PECVD) of a DLC at five different bias voltages. After the depositions, Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), thermal desorption spectrometry (TDS), surface profilometry, atomic force microscope (AFM) measurement, and nanoindentation methods were used to study the chemical and mechanical properties of the deposited DLC films. Tensile test indicated that the average strength of coated samples was 13.2-29.6% higher than that of the SCS sample, and samples fabricated with a -400 V bias voltage were strongest. The fracture toughness of the DLC film was the dominant factor in the observed tensile strength. Deviations in strength were reduced with increasingly negative bias voltage. The effect of residual stress on the tensile properties is discussed in detail.

  11. Deposition of TiOxNy Thin Films with Various Nitrogen Flow Rate:. Growth Behavior and Structural Properties

    NASA Astrophysics Data System (ADS)

    Cho, S.-J.; Jung, C.-K.; Bae, I.-S.; Song, Y.-H.; Boo, J.-H.

    2011-06-01

    We have deposited TiOxNy thin films on Si(100) substrates at 500 °C using RF PECVD system. Titanium iso-propoxide was used as precursor with different nitrogen flow rate to control oxygen and nitrogen contents in the films. Changes of chemical states of constituent elements in the deposited films were examined by XPS analysis. The data showed that with increasing nitrogen flow rate, the total amounts of nitrogen and titanium were increased while that of oxygen was decreased, resulting in a binding energy shift toward high energy side. The characteristics of film growth orientation and structure as well as morphology change behavior were also analyzed by XRD, TED, FT-IR, TEM, and SEM. Deposition at higher nitrogen flow rate results in finer clusters with a nanograin size and more effective photocatalytic TiOxNy thin films with hydrophilic surface.

  12. Recent developments of x-ray lithography in Canada

    NASA Astrophysics Data System (ADS)

    Chaker, Mohamed; Boily, Stephane; Ginovker, A.; Jean, Alain; Kieffer, Jean-Claude; Mercier, P. P.; Pepin, Henri; Leung, Pak; Currie, John F.; Lafontaine, Hugues

    1991-08-01

    An overview of current activities in Canada is reported, including x-ray lithography studies based on laser plasma sources and x-ray mask development. In particular, the application of laser plasma sources for x-ray lithography is discussed, taking into account the industrial requirement and the present state of laser technology. The authors describe the development of silicon carbide membranes for x-ray lithography application. SiC films were prepared using either a 100 kHz plasma-enhanced chemical vapor deposition (PECVD) system or a laser ablation technique. These membranes have a relatively large diameter (> 1 in.) and a high optical transparency (> 50%). Experimental studies on stresses in tungsten films deposited with triode sputtering are reported.

  13. Thermo-optically tunable thin film devices

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.

    2003-10-01

    We report advances in tunable thin film technology and demonstration of multi-cavity tunable filters. Thin film interference coatings are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable components based on the properties of semiconductor thin films with large thermo-optic coefficients. The technology is based on amorphous silicon deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable thin films can be constructed in sophisticated multi-cavity, multi-layer optical designs.

  14. Characteristics of ITO films with oxygen plasma treatment for thin film solar cell applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Yong Seob; Kim, Eungkwon; Hong, Byungyou

    2013-12-15

    Graphical abstract: The effect of O{sub 2} plasma treatment on the surface and the work function of ITO films. - Highlights: • ITO films were prepared on the glass substrate by RF magnetron sputtering method. • Effects of O{sub 2} plasma treatment on the properties of ITO films were investigated. • The work function of ITO film was changed from 4.67 to 5.66 eV by plasma treatment. - Abstract: The influence of oxygen plasma treatment on the electro-optical and structural properties of indium-tin-oxide films deposited by radio frequency magnetron sputtering method were investigated. The films were exposed at different O{submore » 2} plasma powers and for various durations by using the plasma enhanced chemical vapor deposition (PECVD) system. The resistivity of the ITO films was almost constant, regardless of the plasma treatment conditions. Although the optical transmittance of ITO films was little changed by the plasma power, the prolonged treatment slightly increased the transmittance. The work function of ITO film was changed from 4.67 eV to 5.66 eV at the plasma treatment conditions of 300 W and 60 min.« less

  15. Calculation of optical band gaps of a-Si:H thin films by ellipsometry and UV-Vis spectrophotometry

    NASA Astrophysics Data System (ADS)

    Qiu, Yijiao; Li, Wei; Wu, Maoyang; Fu, Junwei; Jiang, Yadong

    2010-10-01

    Hydrogenated amorphous silicon (a-Si:H) thin films doped with Phosphorus (P) and Nitrogen (N) were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). The optical band gaps of the thin films obtained through either changing the gas pressure (P-doped only) or adulterating nitrogen concentration (with fixed P content) were investigated by means of Ellipsometric and Ultraviolet-Visible (UV-Vis) spectroscopy, respectively. Tauc formula was used in calculating the optical band gaps of the thin films in both methods. The results show that Ellipsometry and UV-Vis spectrophotometry can be applied in the research of the optical properties of a-Si:H thin films experimentally. Both methods reflect the variation law of the optical band gaps caused by CVD process parameters, i.e., the optical band gap of the a-Si:H thin films is increased with the rise of the gas pressure or the nitrogen concentration respectively. The difference in optical band gaps of the doped a-Si:H thin films calculated by Ellipsometry or UV-Vis spectrophotometry are not so great that they both can be used to measure the optical band gaps of the thin films in practical applications.

  16. The Highly Robust Electrical Interconnects and Ultrasensitive Biosensors Based on Embedded Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun; Cassell, Alan; Koehne, Jessica; Chen, Hua; Ng, Hou Tee; Ye, Qi; Stevens, Ramsey; Han, Jie; Meyyappan, M.

    2003-01-01

    We report on our recent breakthroughs in two different applications using well-aligned carbon nanotube (CNT) arrays on Si chips, including (1) a novel processing solution for highly robust electrical interconnects in integrated circuit manufacturing, and (2) the development of ultrasensitive electrochemical DNA sensors. Both of them rely on the invention of a bottom-up fabrication scheme which includes six steps, including: (a) lithographic patterning, (b) depositing bottom conducting contacts, (c) depositing metal catalysts, (d) CNT growth by plasma enhanced chemical vapor deposition (PECVD), (e) dielectric gap-filling, and (f) chemical mechanical polishing (CMP). Such processes produce a stable planarized surface with only the open end of CNTs exposed, whch can be further processed or modified for different applications. By depositing patterned top contacts, the CNT can serve as vertical interconnects between the two conducting layers. This method is fundamentally different fiom current damascene processes and avoids problems associated with etching and filling of high aspect ratio holes at nanoscales. In addition, multiwalled CNTs (MWCNTs) are highly robust and can carry a current density of 10(exp 9) A/square centimeters without degradation. It has great potential to help extending the current Si technology. The embedded MWCNT array without the top contact layer can be also used as a nanoelectrode array in electrochemical biosensors. The cell time-constant and sensitivity can be dramatically improved. By functionalizing the tube ends with specific oligonucleotide probes, specific DNA targets can be detected with electrochemical methods down to subattomoles.

  17. Modeling and experimental study on the growth of silicon germanium film by plasma enhanced chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Zhao, Lai

    Hydrogenated microcrystalline silicon germanium µc-SiGe:H deposited by plasma enhanced chemical vapor deposition (PECVD) is of great interest to photovoltaic (PV) applications due to its low process temperature and good uniformity over large area. The nature of high optical absorption and low optical bandgap makes it promising as the bottom cell absorbing layer for tandem junction solar cells. However, the addition of germane (GeH4) gas changes deposited film properties and makes it rather complicated for the established silane (SiH4) based discharge process with hydrogen (H2) dilution. Despite existing experimental studies for SiH 4/GeH4/H2 3-gas mixture discharge and comprehensive numerical simulations for SiH4/H2 or SiH4/Ar plasma, to the author's best knowledge, a numerical model for both SiH 4 and GeH4 in a high pressure regime is yet to be developed. The plasma discharge, the film growth and their effects on film properties and the solar device performance need deep understanding. In this dissertation, the growth of the µc-SiGe:H film by radio frequency (RF) PECVD is studied through modeling simulation as well as experiments. The first numerical model for the glow discharge of SiH4/GeH 4/H2 3-gas mixture in a high pressure regime is developed based on one dimensional fluid model. Transports of electrons, molecules, radicals and ions in the RF excitation are described by diffusion equations that are coupled with the Poisson's equation. The deposition is integrated as the boundary conditions for discharge equations through the sticking coefficient model. Neutral ionizations, radical dissociations and chemical reactions in the gas phase and surface kinetics such as the diffusive motion, chemical reactions and the hydrogen etching are included with interaction rate constants. Solved with an explicit central-difference discretization scheme, the model simulates mathematical features that reflect the plasma physics such as the plasma sheath and gas species distributions. The model predicts effects of process conditions on the deposition rate and the Ge chemical content which agree well with experimental results. Tandem junction solar devices are fabricated with the developed µc-SiGe:H film as the bottom cell absorbing layer. Film properties are characterized by determining the Ge content with the Raman peak shift and estimating the optical bandgap with the spectral response measurement. The deposition process is investigated following the fractional factorial experiment design in the 5% Ge content window and then in the amorphous-to-microcrystalline phase transition regime. Gradient Ge content structure is also applied to improve the interface. The conversion efficiency is obtained at 10.62% for the device with 1.2µm thick µc-SiGe:H bottom cell, which is higher than that of the reference device with 1.95µm µc-Si:H. This dissertation has demonstrated a powerful modeling tool to study the multi-gas discharge and deposition in the PECVD environment. The physics behind experimental trends is understood by analyzing temporal and spatial distributions of individual gas species and their interactions. It presents the comprehensive understanding of the growth of the µc-SiGe:H film which leads to the realization of high efficiency and high throughput solar cell devices.

  18. Single-Step Seeded-Growth of Graphene Nanoribbons (GNRs) via Plasma-Enhanced Chemical Vapor Deposition (PECVD)

    NASA Astrophysics Data System (ADS)

    Hsu, C.-C.; Yang, K.; Tseng, W.-S.; Li, Yiliang; Li, Yilun; Tour, J. M.; Yeh, N.-C.

    One of the main challenges in the fabrication of GNRs is achieving large-scale low-cost production with high quality. Current techniques, including lithography and unzipped carbon nanotubes, are not suitable for mass production. We have recently developed a single-step PECVD growth process of high-quality graphene sheets without any active heating. By adding some substituted aromatic as seeding molecules, we are able to rapidly grow GNRs vertically on various transition-metal substrates. The morphology and electrical properties of the GNRs are dependent on the growth parameters such as the growth time, gas flow and species of the seeding molecules. On the other hand, all GNRs exhibit strong infrared and optical absorption. From studies of the Raman spectra, scanning electron microscopic images, and x-ray/ultraviolet photoelectron spectra of these GNRs as functions of the growth parameters, we propose a model for the growth mechanism. Our findings suggest that our approach opens up a pathway to large-scale, inexpensive production of GNRs for applications to supercapacitors and solar cells. This work was supported by the Grubstake Award and NSF through IQIM at Caltech.

  19. High-Throughput Processes and Structural Characterization of Single-Nanotube Based Devices for 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, A. B.; Megerian, K. G.; Baron, R. L.; Jennings, A. T.; Jang, D.; Greer, J. R.

    2011-01-01

    We have developed manufacturable approaches to form single, vertically aligned carbon nanotubes, where the tubes are centered precisely, and placed within a few hundred nm of 1-1.5 micron deep trenches. These wafer-scale approaches were enabled by chemically amplified resists and inductively coupled Cryo-etchers to form the 3D nanoscale architectures. The tube growth was performed using dc plasmaenhanced chemical vapor deposition (PECVD), and the materials used for the pre-fabricated 3D architectures were chemically and structurally compatible with the high temperature (700 C) PECVD synthesis of our tubes, in an ammonia and acetylene ambient. The TEM analysis of our tubes revealed graphitic basal planes inclined to the central or fiber axis, with cone angles up to 30 deg. for the particular growth conditions used. In addition, bending tests performed using a custom nanoindentor, suggest that the tubes are well adhered to the Si substrate. Tube characteristics were also engineered to some extent, by adjusting growth parameters, such as Ni catalyst thickness, pressure and plasma power during growth.

  20. Surface characteristics and corrosion behaviour of WE43 magnesium alloy coated by SiC film

    NASA Astrophysics Data System (ADS)

    Li, M.; Cheng, Y.; Zheng, Y. F.; Zhang, X.; Xi, T. F.; Wei, S. C.

    2012-01-01

    Amorphous SiC film has been successfully fabricated on the surface of WE43 magnesium alloy by plasma enhanced chemical vapour deposition (PECVD) technique. The microstructure and elemental composition were analyzed by transmission electron microscopy (TEM), glancing angle X-ray diffraction (GAXRD) and X-ray photoelectron spectroscopy (XPS), respectively. The immersion test indicated that SiC film could efficiently slow down the degradation rate of WE43 alloy in simulated body fluid (SBF) at 37 ± 1 °C. The indirect toxicity experiment was conducted using L929 cell line and the results showed that the extraction medium of SiC coated WE43 alloys exhibited no inhibitory effect on L929 cell growth. The in vitro hemocompatibility of the samples was investigated by hemolysis test and blood platelets adhesion test, and it was found that the hemolysis rate of the coated WE43 alloy decreased greatly, and the platelets attached on the SiC film were slightly activated with a round shape. It could be concluded that SiC film prepared by PECVD made WE43 alloy more appropriate to biomedical application.

  1. Flexible amorphous silicon PIN diode x-ray detectors

    NASA Astrophysics Data System (ADS)

    Marrs, Michael; Bawolek, Edward; Smith, Joseph T.; Raupp, Gregory B.; Morton, David

    2013-05-01

    A low temperature amorphous silicon (a-Si) thin film transistor (TFT) and amorphous silicon PIN photodiode technology for flexible passive pixel detector arrays has been developed using active matrix display technology. The flexible detector arrays can be conformed to non-planar surfaces with the potential to detect x-rays or other radiation with an appropriate conversion layer. The thin, lightweight, and robust backplanes may enable the use of highly portable x-ray detectors for use in the battlefield or in remote locations. We have fabricated detector arrays up to 200 millimeters along the diagonal on a Gen II (370 mm x 470 mm rectangular substrate) using plasma enhanced chemical vapor deposition (PECVD) a-Si as the active layer and PECVD silicon nitride (SiN) as the gate dielectric and passivation. The a-Si based TFTs exhibited an effective saturation mobility of 0.7 cm2/V-s, which is adequate for most sensing applications. The PIN diode material was fabricated using a low stress amorphous silicon (a-Si) PECVD process. The PIN diode dark current was 1.7 pA/mm2, the diode ideality factor was 1.36, and the diode fill factor was 0.73. We report on the critical steps in the evolution of the backplane process from qualification of the low temperature (180°C) TFT and PIN diode process on the 150 mm pilot line, the transfer of the process to flexible plastic substrates, and finally a discussion and demonstration of the scale-up to the Gen II (370 x 470 mm) panel scale pilot line.

  2. The effects of phase transformation on the structure and mechanical properties of TiSiCN nanocomposite coatings deposited by PECVD method

    NASA Astrophysics Data System (ADS)

    Abedi, Mohammad; Abdollah-zadeh, Amir; Bestetti, Massimiliano; Vicenzo, Antonello; Serafini, Andrea; Movassagh-Alanagh, Farid

    2018-06-01

    In the present study, the effects of phase transformations on the structure and mechanical properties of TiSiCN coatings were investigated. TiSiCN nanocomposite coatings were deposited on AISI H13 hot-work tool steel by a pulsed direct current plasma-enhanced chemical vapor deposition process at 350 or 500 °C, using TiCl4 and SiCl4 as the precursors of Ti and Si, respectively, in a CH4/N2/H2/Ar plasma as the source of carbon and nitrogen and reducing environment. Some samples deposited at 350 °C were subsequently annealed at 500 °C under Ar atmosphere. Super hard self-lubricant TiSiCN coatings, having nanocomposite structure consisting of TiCN nanocrystals and amorphous carbon particles embedded in an amorphous SiCNx matrix, formed through spinodal decomposition in the specimens deposited or annealed at 500 °C. In addition, it was revealed that either uncomplete or relatively coarse phase segregation of titanium compounds was achieved during deposition at 350 °C and 500 °C, respectively. On the contrary, by deposition at 350 °C followed by annealing at 500 °C, a finer structure was obtained with a sensible improvement of the mechanical properties of coatings. Accordingly, the main finding of this work is that significant enhancement in key properties of TiSiCN coatings, such as hardness, adhesion and friction coefficient, can be obtained by deposition at low temperature and subsequent annealing at higher temperature, thanks to the formation of a fine grained nanocomposite structure.

  3. Low-stress silicon nitride layers for MEMS applications

    NASA Astrophysics Data System (ADS)

    Iliescu, Ciprian; Wei, Jiashen; Chen, Bangtao; Ong, Poh Lam; Tay, Francis E. H.

    2006-12-01

    The paper presents two deposition methods for generation of SiN x layers with "zero" residual stress in PECVD reactors: mixed frequency and high power in high frequency mode (13.56 MHz). Traditionally, mix frequency mode is commonly used to produce low stress SiN x layers, which alternatively applies the HF and LF mode. However, due to the low deposition rate of LF mode, the combined deposition rate of mix frequency is quite small in order to produce homogenous SiN x layers. In the second method, a high power which was up to 600 W has been used, may also produce low residual stress (0-20 MPa), with higher deposition rate (250 to 350 nm/min). The higher power not only leads to higher dissociation rates of gases which results in higher deposition rates, but also brings higher N bonding in the SiN x films and higher compressive stress from higher volume expansion of SiN x films, which compensates the tensile stress and produces low residual stress. In addition, the paper investigates the influence of other important parameters which have great impact to the residual stress and deposition rates, such as reactant gases flow rate and pressure. By using the final optimized recipe, masking layer for anisotropic wet etching in KOH and silicon nitride cantilever have been successfully fabricated based on the low stress SiN x layers. Moreover, nanoporous membrane with 400nm pores has also been fabricated and tested for cell culture. By cultivating the mouse D1 mesenchymal stem cells on top of the nanoporous membrane, the results showed that mouse D1 mesenchymal stem cells were able to grow well. This shows that the nanoporous membrane can be used as the platform for interfacing with living cells to become biocapsules for biomolecular separation.

  4. Investigation of Gate-Stacked In-Ga-Zn-O TFTs with Ga-Zn-O Source/Drain Electrodes by Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition.

    PubMed

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn; Hsu, Jui-Mei

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) was employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO TFTs) with high transparent gallium zinc oxide (GZO) source/drain electrodes. The influence of post-deposition annealing (PDA) temperature on GZO source/drain and device performance was studied. Device with a 300 °C annealing demonstrated excellent electrical characteristics with on/off current ratio of 2.13 × 108, saturation mobility of 10 cm2/V-s, and low subthreshold swing of 0.2 V/dec. The gate stacked LaAlO3/ZrO2 of AP-IGZO TFTs with highly transparent and conductive AP-GZO source/drain electrode show excellent gate control ability at a low operating voltage.

  5. Thermal ink-jet device using single-chip silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wuu, DongSing; Cheng, Chen-Yue; Horng, RayHua; Chan, G. C.; Chiu, Sao-Ling; Wu, Yi-Yung

    1998-06-01

    We present a new method to fabricate silicon microfluidic channels by through-hole etching with subsequent planarization. The method is based on etching out the deep grooves through a perforated silicon carbide membrane, followed by sealing the membrane with plasma-enhanced chemical vapor deposition (PECVD). Low-pressure-chemical-vapor- deposited (LPCVD) polysilicon was used as a sacrificial layer to define the channel structure and only one etching step is required. This permits the realization of planarization after a very deep etching step in silicon and offers the possibility for film deposition, resist spinning and film patterning across deep grooves. The process technology was demonstrated on the fabrication of a monolithic silicon microchannel structure for thermal inkjet printing. The Ta-Al heater arrays are integrated on the top of each microchannel, which connect to a common on-chip front-end ink reservoir. The fabrication of this device requires six masks and no active nozzle-to-chip alignment. Moreover, the present micromachining process is compatible with the addition of on-chip circuitry for multiplexing the heater control signals. Heat transfer efficiency to the ink is enhanced by the high thermal conductivity of the silicon carbide in the channel ceiling, while the bulk silicon maintains high interchannel isolation. The fabricated inkjet devices show the droplet sizes of 20 - 50 micrometer in diameter with various channel dimensions and stable ejection of ink droplets more than 1 million.

  6. Infrared and Raman spectroscopy study of AsS chalcogenide films prepared by plasma-enhanced chemical vapor deposition.

    PubMed

    Mochalov, Leonid; Dorosz, Dominik; Kudryashov, Mikhail; Nezhdanov, Aleksey; Usanov, Dmitry; Gogova, Daniela; Zelentsov, Sergey; Boryakov, Aleksey; Mashin, Alexandr

    2018-03-15

    AsS chalcogenide films, where As content is 60-40at.%, have been prepared via a RF non-equilibrium low-temperature argon plasma discharge, using volatile As and S as the precursors. Optical properties of the films were studied in UV-visible-NIR region in the range from 0.2 to 2.5μm. Infrared and Raman spectroscopy have been employed for the elucidation of the molecular structure of the newly developed material. It was established that PECVD films possess a higher degree of transparency (up to 80%) and a wider transparency window (>20μm) in comparison with the "usual" AsS thin films, prepared by different thermal methods, which is highly advantageous for certain applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Osteoblasts Interaction with PLGA Membranes Functionalized with Titanium Film Nanolayer by PECVD. In vitro Assessment of Surface Influence on Cell Adhesion during Initial Cell to Material Interaction

    PubMed Central

    Terriza, Antonia; Vilches-Pérez, José I.; González-Caballero, Juan L.; de la Orden, Emilio; Yubero, Francisco; Barranco, Angel; Gonzalez-Elipe, Agustín R.; Vilches, José; Salido, Mercedes

    2014-01-01

    New biomaterials for Guided Bone Regeneration (GBR), both resorbable and non-resorbable, are being developed to stimulate bone tissue formation. Thus, the in vitro study of cell behavior towards material surface properties turns a prerequisite to assess both biocompatibility and bioactivity of any material intended to be used for clinical purposes. For this purpose, we have developed in vitro studies on normal human osteoblasts (HOB®) HOB® osteoblasts grown on a resorbable Poly (lactide-co-glycolide) (PLGA) membrane foil functionalized by a very thin film (around 15 nm) of TiO2 (i.e., TiO2/PLGA membranes), designed to be used as barrier membrane. To avoid any alteration of the membranes, the titanium films were deposited at room temperature in one step by plasma enhanced chemical vapour deposition. Characterization of the functionalized membranes proved that the thin titanium layer completely covers the PLGA foils that remains practically unmodified in their interior after the deposition process and stands the standard sterilization protocols. Both morphological changes and cytoskeletal reorganization, together with the focal adhesion development observed in HOB osteoblasts, significantly related to TiO2 treated PLGA in which the Ti deposition method described has revealed to be a valuable tool to increase bioactivity of PLGA membranes, by combining cell nanotopography cues with the incorporation of bioactive factors. PMID:28788538

  8. Optical properties of diamond like carbon nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Alam, Md Shahbaz; Mukherjee, Nillohit; Ahmed, Sk. Faruque

    2018-05-01

    The optical properties of silicon incorporated diamond like carbon (Si-DLC) nanocomposite thin films have been reported. The Si-DLC nanocomposite thin film deposited on glass and silicon substrate by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) process. Fourier transformed infrared spectroscopic analysis revealed the presence of different bonding within the deposited films and deconvolution of FTIR spectra gives the chemical composition i.e., sp3/sp2 ratio in the films. Optical band gap calculated from transmittance spectra increased from 0.98 to 2.21 eV with a variation of silicon concentration from 0 to 15.4 at. %. Due to change in electronic structure by Si incorporation, the Si-DLC film showed a broad photoluminescence (PL) peak centered at 467 nm, i.e., in the visible range and its intensity was found to increase monotonically with at. % of Si.

  9. [Optical emission analyses of N2/TMG ECR plasma for deposition of GaN film].

    PubMed

    Fu, Si-Lie; Wang, Chun-An; Chen, Jun-Fang

    2013-04-01

    The optical emission spectroscopy of hybrid N2/trimethylgallium (TMG) plasma in an ECR-PECVD system was investigated. The results indicate that the TMG gas is strongly dissociated into Ga*, CH and H even under self-heating condition. Ga species and nitrogen molecule in metastable state are dominant in hybrid ECR plasma. The concentration of metastable nitrogen molecule increases with the microwave power. On the other hand, the concentration of excited nitrogen molecules and of nitrogen ion decreases when the microwave power is higher than 400 W.

  10. Effect of diamond-like carbon coating on corrosion rate of machinery steel HQ 805

    NASA Astrophysics Data System (ADS)

    Slat, Winda Sanni; Malau, Viktor; Iswanto, Priyo Tri; Sujitno, Tjipto; Suprapto

    2018-04-01

    HQ 805 is known as a super strength alloys steel and widely applied in military equipment and, aircraft components, drilling device and so on. It is due to its excellent behavior in wear, fatigue, high temperature and high speed operating conditions. The weakness of this material is the vulnerablality to corrosion when employed in sour environments where hydrogen sulfide and chlorides are present. To overcome the problems, an effort should be made to improve or enhance the surface properties for a longer service life. There are varieties of coatings developed and used to improve surface material properties. There are several kinds of coating methods; chemical vapour deposition (CVD), physical vapour deposition (PVD), thermochemical treatment, oxidation, or plasma spraying. This paper presents the research result of the influence of Diamond-Like Carbon (DLC) coating deposited using DC plasma enhanced chemical vapor deposition (DC-PECVD) on corrosion rate (by potentiodynamic polarization method) of HQ 805 machinery steel. As a carbon sources, a mixture of argon (Ar) and methane (CH4) with ratio 76% : 24% was used in this experiment. The conditions of experiment were 400 °C of temperature, 1.2 mbar, 1.4 mbar, 1.6 mbar and 1.8 mbar of pressure of process. Investigated surface properties were hardness (microhardness tester), roughness (roughness test), chemical composition (Spectrometer), microstructure (SEM) and corrosion rate (potentiodynamic polarization). It has been found that the optimum condition with the lowest corrosion rate is at a pressure of 1.4 mbar with a deposition duration of 4 hours at a constant temperature of 400 °C. In this condition, the corrosion rate decreases from 12.326 mpy to 4.487 mpy.

  11. Study of supersonic plasma technology jets

    NASA Astrophysics Data System (ADS)

    Selezneva, Svetlana; Gravelle, Denis; Boulos, Maher; van de Sanden, Richard; Schram, Dc

    2001-10-01

    Recently some new techniques using remote thermal plasma for thin film deposition and plasma chemistry processes were developed. These techniques include PECVD of diamonds, diamond-like and polymer films; a-C:H and a-Si:H films. The latter are of especial interest because of their applications for solar cell production industry. In remote plasma deposition, thermal plasma is formed by means of one of traditional plasma sources. The chamber pressure is reduced with the help of continuous pumping. In that way the flow is accelerated up to the supersonic speed. The plasma expansion is controlled using a specific torch nozzle design. To optimize the deposition process detailed knowledge about the gas dynamic structure of the jet and chemical kinetics mechanisms is required. In the paper, we show how the flow pattern and the character of the deviations from local thermodynamic equilibrium differs in plasmas generated by different plasma sources, such as induction plasma torch, traditional direct current arc and cascaded arc. We study the effects of the chamber pressure, nozzle design and carrier gas on the resulting plasma properties. The analysis is performed by means of numerical modeling using commercially available FLUENT program with incorporated user-defined subroutines for two-temperature model. The results of continuum mechanics approach are compared with that of the kinetic Monte Carlo method and with the experimental data.

  12. High-density plasma deposition manufacturing productivity improvement

    NASA Astrophysics Data System (ADS)

    Olmer, Leonard J.; Hudson, Chris P.

    1999-09-01

    High Density Plasma (HDP) deposition provides a means to deposit high quality dielectrics meeting submicron gap fill requirements. But, compared to traditional PECVD processing, HDP is relatively expensive due to the higher capital cost of the equipment. In order to keep processing costs low, it became necessary to maximize the wafer throughput of HDP processing without degrading the film properties. The approach taken was to optimize the post deposition microwave in-situ clean efficiency. A regression model, based on actual data, indicated that number of wafers processed before a chamber clean was the dominant factor. Furthermore, a design change in the ceramic hardware, surrounding the electrostatic chuck, provided thermal isolation resulting in an enhanced clean rate of the chamber process kit. An infra-red detector located in the chamber exhaust line provided a means to endpoint the clean and in-film particle data confirmed the infra-red results. The combination of increased chamber clean frequency, optimized clean time and improved process.

  13. Influence of Deposition Pressure on the Properties of Round Pyramid Textured a-Si:H Solar Cells for Maglev.

    PubMed

    Lee, Jaehyeong; Choi, Wonseok; Lee, Kyuil; Lee, Daedong; Kang, Hyunil

    2016-05-01

    HIT (Heterojunction with Intrinsic Thin-layer) photovoltaic cells is one of the highest efficiencies in the commercial solar cells. The pyramid texturization for reducing surface reflectance of HIT solar cells silicon wafers is widely used. For the low leakage current and high shunt of solar cells, the intrinsic amorphous silicon (a-Si:H) on substrate must be uniformly thick of pyramid structure. However, it is difficult to control the thickness in the traditional pyramid texturing process. Thus, we textured the intrinsic a-Si:H thin films with the round pyramidal structure by using HNO3, HF, and CH3COOH solution. The characteristics of round pyramid a-Si:H solar cells deposited at pressure of 500, 1000, 1500, and 2000 mTorr by PECVD (Plasma Enhanced Chemical Vapor Deposition) was investigated. The lifetime, open circuit voltage, fill factor and efficiency of a-Si:H solar cells were investigated with respect to various deposition pressure.

  14. Low-temperature oxidizing plasma surface modification and composite polymer thin-film fabrication techniques for tailoring the composition and behavior of polymer surfaces

    NASA Astrophysics Data System (ADS)

    Tompkins, Brendan D.

    This dissertation examines methods for modifying the composition and behavior of polymer material surfaces. This is accomplished using (1) low-temperature low-density oxidizing plasmas to etch and implant new functionality on polymers, and (2) plasma enhanced chemical vapor deposition (PECVD) techniques to fabricate composite polymer materials. Emphases are placed on the structure of modified polymer surfaces, the evolution of polymer surfaces after treatment, and the species responsible for modifying polymers during plasma processing. H2O vapor plasma modification of high-density polyethylene (HDPE), low-density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), polycarbonate (PC), and 75A polyurethane (PU) was examined to further our understanding of polymer surface reorganization leading to hydrophobic recovery. Water contact angles (wCA) measurements showed that PP and PS were the most susceptible to hydrophobic recovery, while PC and HDPE were the most stable. X-ray photoelectron spectroscopy (XPS) revealed a significant quantity of polar functional groups on the surface of all treated polymer samples. Shifts in the C1s binding energies (BE) with sample age were measured on PP and PS, revealing that surface reorganization was responsible for hydrophobic recovery on these materials. Differential scanning calorimetry (DSC) was used to rule out the intrinsic thermal properties as the cause of reorganization and hydrophobic recovery on HDPE, LDPE, and PP. The different contributions that polymer cross-linking and chain scission mechanisms make to polymer aging effects are considered. The H2O plasma treatment technique was extended to the modification of 0.2 microm and 3.0 microm track-etched polycarbonate (PC-TE) and track-etched polyethylene terephthalate (PET-TE) membranes with the goal of permanently increasing the hydrophilicity of the membrane surfaces. Contact angle measurements on freshly treated and aged samples confirmed the wettability of the membrane surfaces was significantly improved by plasma treatment. XPS and SEM analyses revealed increased oxygen incorporation onto the surface of the membranes, without any damage to the surface or pore structure. Contact angle measurements on a membrane treated in a stacked assembly suggest the plasma effectively modified the entire pore cross section. Plasma treatment also increased water flux through the membranes, with results from plasma modified membranes matching those from commercially available hydrophilic membranes (treated with wetting agent). Mechanisms for the observed modification are discussed in terms of OH and O radicals implanting oxygen functionality into the polymers. Oxidizing plasma systems (O2, CO2, H2O vapor, and formic acid vapor) were used to modify track-etched polycarbonate membranes and explore the mechanisms and species responsible for etching polycarbonate during plasma processing. Etch rates were measured using scanning electron microscopy; modified polycarbonate surfaces were further characterized using x-ray photoelectron spectroscopy and water contact angles. Etch rates and surface characterization results were combined with optical emission spectroscopy data used to identify gas-phase species and their relative densities. Although the oxide functionalities implanted by each plasma system were similar, the H2O vapor and formic acid vapor plasmas yielded the lowest contact angles after treatment. The CO2, H2O vapor, and formic acid vapor plasma-modified surfaces were, however, found to be similarly stable one month after treatment. Overall, etch rate correlated directly to the relative gas-phase density of atomic oxygen and, to a lesser extent, hydroxyl radicals. PECVD of acetic acid vapor (CH3COOH) was used to deposit films on PC-TE and silicon wafer substrates. The CH3COOH films were characterized using XPS, wCA, and SEM. This modification technique resulted in continuous deposition and self-limiting deposition of a-CxO yHz films on Si wafers and PC-TE, respectively. The self-limiting deposition on PC-TE revealed that resulting films have minimal impact on 3D PC structures. This technique would allow for more precise fabrication of patterned or nano-textured PC. PECVD is used to synthesize hydrocarbon/fluorocarbon thin films with compositional gradients by continuously changing the ratio of gases in a C 3F8/H2 plasma. The films are characterized using variable angle spectroscopic ellipsometry (VASE), Fourier transform infrared spectroscopy (FTIR), XPS, wCA, and SEM. These methods revealed that shifting spectroscopic signals can be used to characterize organization in the deposited film. Using these methods, along with gas-phase diagnostics, film chemistry and the underlying deposition mechanisms are elucidated, leading to a model that accurately predicts film thickness.

  15. Silicon cells made by self-aligned selective-emitter plasma-etchback process

    DOEpatents

    Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.

    2000-01-01

    Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.

  16. Germanium MOS capacitors grown on Silicon using low temperature RF-PECVD

    NASA Astrophysics Data System (ADS)

    Dushaq, Ghada; Rasras, Mahmoud; Nayfeh, Ammar

    2017-10-01

    In this paper, Ge metal-oxide-semiconductor capacitors (MOSCAPs) are fabricated on Si using a low temperature two-step deposition technique by radio frequency plasma enhanced chemical vapor deposition. The MOSCAP gate stack consists of atomic layer deposition of Al2O3 as the gate oxide and a Ti/Al metal gate electrode. The electrical characteristics of 9 nm Al2O3/i-Ge/Si MOSCAPs exhibit an n-type (p-channel) behavior and normal high frequency C-V responses. In addition to CV measurements, the gate leakage versus the applied voltage is measured and discussed. Moreover, the electrical behavior is discussed in terms of the material and interface quality. The Ge/high-k interface trap density versus the surface potential is extracted using the most commonly used methods in detemining the interface traps based on the capacitance-voltage (C-V) curves. The discussion included the Dit calculation from the conductance method, the high-low frequency (Castagné-Vapaille) method, and the Terman (high-frequency) method. Furthermore, the origins of the discrepancies in the interface trap densities determined from the different methods are discussed. The study of the post annealed Ge layers at different temperatures in H2 and N2 gas ambient revealed an improved electrical and transport properties of the films treated at T  <  600 °C. Also, samples annealed at  <550 °C show the lowest threading dislocation density of ~1  ×  106 cm-2. The low temperature processing of Ge/Si demonstrates a great potential for p-channel transistor applications in a monolithically integrated CMOS platform.

  17. Optimization of PECVD Chamber Cleans Through Fundamental Studies of Electronegative Fluorinated Gas Discharges.

    NASA Astrophysics Data System (ADS)

    Langan, John

    1996-10-01

    The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)

  18. Tailoring properties of lossy-mode resonance optical fiber sensors with atomic layer deposition technique

    NASA Astrophysics Data System (ADS)

    Kosiel, Kamil; Koba, Marcin; Masiewicz, Marcin; Śmietana, Mateusz

    2018-06-01

    The paper shows application of atomic layer deposition (ALD) technique as a tool for tailoring sensorial properties of lossy-mode-resonance (LMR)-based optical fiber sensors. Hafnium dioxide (HfO2), zirconium dioxide (ZrO2), and tantalum oxide (TaxOy), as high-refractive-index dielectrics that are particularly convenient for LMR-sensor fabrication, were deposited by low-temperature (100 °C) ALD ensuring safe conditions for thermally vulnerable fibers. Applicability of HfO2 and ZrO2 overlays, deposited with ALD-related atomic level thickness accuracy for fabrication of LMR-sensors with controlled sensorial properties was presented. Additionally, for the first time according to our best knowledge, the double-layer overlay composed of two different materials - silicon nitride (SixNy) and TaxOy - is presented for the LMR fiber sensors. The thin films of such overlay were deposited by two different techniques - PECVD (the SixNy) and ALD (the TaxOy). Such approach ensures fast overlay fabrication and at the same time facility for resonant wavelength tuning, yielding devices with satisfactory sensorial properties.

  19. Hydrogen plasma treatment of very thin p-type nanocrystalline Si films grown by RF-PECVD in the presence of B(CH3)3

    PubMed Central

    Filonovich, Sergej Alexandrovich; Águas, Hugo; Busani, Tito; Vicente, António; Araújo, Andreia; Gaspar, Diana; Vilarigues, Marcia; Leitão, Joaquim; Fortunato, Elvira; Martins, Rodrigo

    2012-01-01

    We have characterized the structure and electrical properties of p-type nanocrystalline silicon films prepared by radio-frequency plasma-enhanced chemical vapor deposition and explored optimization methods of such layers for potential applications in thin-film solar cells. Particular attention was paid to the characterization of very thin (∼20 nm) films. The cross-sectional morphology of the layers was studied by fitting the ellipsometry spectra using a multilayer model. The results suggest that the crystallization process in a high-pressure growth regime is mostly realized through a subsurface mechanism in the absence of the incubation layer at the substrate-film interface. Hydrogen plasma treatment of a 22-nm-thick film improved its electrical properties (conductivity increased more than ten times) owing to hydrogen insertion and Si structure rearrangements throughout the entire thickness of the film. PMID:27877504

  20. Integration of amorphous tantalum silicon nitride (TaSiN) films as diffusion barriers in a Cu/SiLK(TM) metallization scheme

    NASA Astrophysics Data System (ADS)

    Padiyar, Sumant Devdas

    2003-09-01

    Current and future performance requirements for high- speed integrated circuit (IC) devices have placed great emphasis on the introduction of novel materials, deposition techniques and improved metrology techniques. The introduction of copper interconnects and more currently low-k dielectric materials in IC fabrication are two such examples. This introduction necessitates research on the compatibility of these materials and process techniques with adjacent diffusion barrier materials. One candidate, which has attracted significant attention is tantalum-silicon-nitride (TaSiN) on account of its superior diffusion barrier performance and high recrystallization temperature1. The subject of this dissertation is an investigation of the integration compatibility and performance of TaSiN barrier layers with a low-k dielectric polymer (SiLK ®2). A plasma- enhanced chemical vapor deposition (PECVD) approach is taken for growth of TaSiN films in this work due to potential advantages in conformal film coverage compared to more conventional physical vapor deposition methods. A Design of Experiment (DOE) methodology was introduced for PECVD of TaSiN on SiLK to optimize film properties such as film composition, resistivity, growth rate and film roughness with respect to the predictors viz. substrate temperature, precursor gas flow and plasma power. The first pass study determined the response window for optimized TaSiN film composition, growth rate and low halide contamination and the compatibility of the process with an organic polymer substrate, i.e. SiLK. Second-pass studies were carried out to deposit ultra- thin (10nm) films on: (a)blanket SiLK to investigate the performance of TaSiN films against copper diffusion, and (b)patterned SiLK to evaluate step coverage and conformality. All TaSiN depositions were carried out on SiO2 substrates for baseline comparisons. A second purpose of the diffusion barrier in IC processing is to improve interfacial adhesion between the barrier and the adjacent dielectric material; especially important for an organic polymer like SiLK. Hence, a detailed study was undertaken to evaluate the interfacial adhesion of TaSiN with SiLK and SiO2 and study the dependence of the adhesion with the film composition. The results of diffusion barrier performance studies, conformality studies, and interfacial adhesion studies of TaSiN films are discussed in relation to the elemental compositions of the films. 1J. S. Reid, M. Nicolet, J. Appl. Phys. 79 (2) p. 1109 (1996). 2SiLK is a low-k dielectric candidate registered by Dow Chemical Company, MI.

  1. Using KrF ELA to Improve Gate-Stacked LaAlO₃/ZrO₂ Indium Gallium Zinc Oxide Thin-Film Transistors with Novel Atmospheric Pressure Plasma-Enhanced Chemical Vapor Deposition Technique.

    PubMed

    Wu, Chien-Hung; Chang, Kow-Ming; Chen, Yi-Ming; Huang, Bo-Wen; Zhang, Yu-Xin; Wang, Shui-Jinn

    2018-03-01

    Atmospheric pressure plasma-enhanced chemical vapor deposition (AP-PECVD) technique and KrF excimer laser annealing (ELA) were employed for the fabrication of indium gallium zinc oxide thin-film transistors (IGZO-TFTs). Device with a 150 mJ/cm2 laser annealing densities demonstrated excellent electrical characteristics with improved on/off current ratio of 4.7×107, high channel mobility of 10 cm2/V-s, and low subthreshold swing of 0.15 V/dec. The improvements are attributed to the adjustment of oxygen vacancies in the IGZO channel to an appropriate range of around 28.3% and the reduction of traps at the high-k/IGZO interface.

  2. Versatile technique for assessing thickness of 2D layered materials by XPS

    NASA Astrophysics Data System (ADS)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C.; Fisher, Timothy S.; Voevodin, Andrey A.

    2018-03-01

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  3. Versatile technique for assessing thickness of 2D layered materials by XPS

    DOE PAGES

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.; ...

    2018-02-07

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less

  4. Versatile technique for assessing thickness of 2D layered materials by XPS.

    PubMed

    Zemlyanov, Dmitry Y; Jespersen, Michael; Zakharov, Dmitry N; Hu, Jianjun; Paul, Rajib; Kumar, Anurag; Pacley, Shanee; Glavin, Nicholas; Saenz, David; Smith, Kyle C; Fisher, Timothy S; Voevodin, Andrey A

    2018-03-16

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) and the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Therefore, after XPS analysis, exactly the same sample can undergo further processing or utilization.

  5. Versatile technique for assessing thickness of 2D layered materials by XPS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemlyanov, Dmitry Y.; Jespersen, Michael; Zakharov, Dmitry N.

    X-ray photoelectron spectroscopy (XPS) has been utilized as a versatile method for thickness characterization of various two-dimensional (2D) films. Accurate thickness can be measured simultaneously while acquiring XPS data for chemical characterization of 2D films having thickness up to approximately 10 nm. For validating the developed technique, thicknesses of few-layer graphene (FLG), MoS 2 and amorphous boron nitride (a-BN) layer, produced by microwave plasma chemical vapor deposition (MPCVD), plasma enhanced chemical vapor deposition (PECVD), and pulsed laser deposition (PLD) respectively, were accurately measured. The intensity ratio between photoemission peaks recorded for the films (C 1s, Mo 3d, B 1s) andmore » the substrates (Cu 2p, Al 2p, Si 2p) is the primary input parameter for thickness calculation, in addition to the atomic densities of the substrate and the film, and the corresponding electron attenuation length (EAL). The XPS data was used with a proposed model for thickness calculations, which was verified by cross-sectional transmission electron microscope (TEM) measurement of thickness for all the films. The XPS method determines thickness values averaged over an analysis area which is orders of magnitude larger than the typical area in cross-sectional TEM imaging, hence provides an advanced approach for thickness measurement over large areas of 2D materials. The study confirms that the versatile XPS method allows rapid and reliable assessment of the 2D material thickness and this method can facilitate in tailoring growth conditions for producing very thin 2D materials effectively over a large area. Furthermore, the XPS measurement for a typical 2D material is non-destructive and does not require special sample preparation. Furthermore, after XPS analysis, exactly the same sample can undergo further processing or utilization.« less

  6. Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes.

    PubMed

    Tali, S A Safiabadi; Soleimani-Amiri, S; Sanaee, Z; Mohajerzadeh, S

    2017-02-10

    We report successful deposition of nitrogen-doped amorphous carbon films to realize high-power core-shell supercapacitor electrodes. A catalyst-free method is proposed to deposit large-area stable, highly conformal and highly conductive nitrogen-doped amorphous carbon (a-C:N) films by means of a direct-current plasma enhanced chemical vapor deposition technique (DC-PECVD). This approach exploits C 2 H 2 and N 2 gases as the sources of carbon and nitrogen constituents and can be applied to various micro and nanostructures. Although as-deposited a-C:N films have a porous surface, their porosity can be significantly improved through a modification process consisting of Ni-assisted annealing and etching steps. The electrochemical analyses demonstrated the superior performance of the modified a-C:N as a supercapacitor active material, where specific capacitance densities as high as 42 F/g and 8.5 mF/cm 2 (45 F/cm 3 ) on silicon microrod arrays were achieved. Furthermore, this supercapacitor electrode showed less than 6% degradation of capacitance over 5000 cycles of a galvanostatic charge-discharge test. It also exhibited a relatively high energy density of 2.3 × 10 3  Wh/m 3 (8.3 × 10 6  J/m 3 ) and ultra-high power density of 2.6 × 10 8  W/m 3 which is among the highest reported values.

  7. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane

    PubMed Central

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    ABSTRACT Introduction: Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Methods: Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Results: Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Conclusion: Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film. PMID:28902253

  8. Structural evolution and electronic properties of n-type doped hydrogenated amorphous silicon thin films

    NASA Astrophysics Data System (ADS)

    He, Jian; Li, Wei; Xu, Rui; Qi, Kang-Cheng; Jiang, Ya-Dong

    2011-12-01

    The relationship between structure and electronic properties of n-type doped hydrogenated amorphous silicon (a-Si:H) thin films was investigated. Samples with different features were prepared by plasma enhanced chemical vapor deposition (PECVD) at various substrate temperatures. Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy were used to evaluate the structural evolution, meanwhile, electronic-spin resonance (ESR) and optical measurement were applied to explore the electronic properties of P-doped a-Si:H thin films. Results reveal that the changes in materials structure affect directly the electronic properties and the doping efficiency of dopant.

  9. Effect of Ge atoms on crystal structure and optoelectronic properties of hydrogenated Si-Ge films

    NASA Astrophysics Data System (ADS)

    Li, Tianwei; Zhang, Jianjun; Ma, Ying; Yu, Yunwu; Zhao, Ying

    2017-07-01

    Optoelectronic and structural properties of hydrogenated microcrystalline silicon-germanium (μc-Si1-xGex:H) alloys prepared by radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) were investigated. When the Ge atoms were predominantly incorporated in amorphous matrix, the dark and photo-conductivity decreased due to the reduced crystalline volume fraction of the Si atoms (XSi-Si) and the increased Ge dangling bond density. The photosensitivity decreased monotonously with Ge incorporation under higher hydrogen dilution condition, which was attributed to the increase in both crystallization of Ge and the defect density.

  10. Spectroscopic Ellipsometry Studies of Thin Film a-Si:H Solar Cell Fabrication by Multichamber Deposition in the n-i-p Substrate Configuration

    NASA Astrophysics Data System (ADS)

    Dahal, Lila Raj

    Real time spectroscopic ellipsometry (RTSE), and ex-situ mapping spectroscopic ellipsometry (SE) are powerful characterization techniques capable of performance optimization and scale-up evaluation of thin film solar cells used in various photovoltaics technologies. These non-invasive optical probes employ multichannel spectral detection for high speed and provide high precision parameters that describe (i) thin film structure, such as layer thicknesses, and (ii) thin film optical properties, such as oscillator variables in analytical expressions for the complex dielectric function. These parameters are critical for evaluating the electronic performance of materials in thin film solar cells and also can be used as inputs for simulating their multilayer optical performance. In this Thesis, the component layers of thin film hydrogenated silicon (Si:H) solar cells in the n-i-p or substrate configuration on rigid and flexible substrate materials have been studied by RTSE and ex-situ mapping SE. Depositions were performed by magnetron sputtering for the metal and transparent conducting oxide contacts and by plasma enhanced chemical vapor deposition (PECVD) for the semiconductor doped contacts and intrinsic absorber layers. The motivations are first to optimize the thin film Si:H solar cell in n-i-p substrate configuration for single-junction small-area dot cells and ultimately to scale-up the optimized process to larger areas with minimum loss in device performance. Deposition phase diagrams for both i- and p -layers on 2" x 2" rigid borosilicate glass substrate were developed as functions of the hydrogen-to-silane flow ratio in PECVD. These phase diagrams were correlated with the performance parameters of the corresponding solar cells, fabricated in the Cr/Ag/ZnO/n/i/ p/ITO structure. In both cases, optimization was achieved when the layers were deposited in the protocrystalline phase. Identical solar cell structures were fabricated on 6" x 6" borosilicate glass with 256 cells followed by ex-situ mapping SE on each cell to achieve better statistics for solar cell optimization by correlating local structural parameters with solar cell parameters. Solar cells of similar structure were also fabricated on flexible polymer substrates in the roll-to-roll configuration. In this configuration as well, RTSE was demonstrated as an effective process monitoring and control tool for thin film photovoltaics.

  11. Sticking non-stick: Surface and Structure control of Diamond-like Carbon in Plasma Enhanced Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Jones, B. J.; Nelson, N.

    2016-10-01

    This short review article explores the practical use of diamond-like carbon (DLC) produced by plasma enhanced chemical vapour deposition (PECVD). Using as an example issues relating to the DLC coating of a hand-held surgical device, we draw on previous works using atomic force microscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, scanning electron microscopy, tensiometry and electron paramagnetic resonance. Utilising data from these techniques, we examine the surface structure, substrate-film interface and thin film microstructure, such as sp2/sp3 ratio (graphitic/diamond-like bonding ratio) and sp2 clustering. We explore the variations in parameters describing these characteristics, and relate these to the final device properties such as friction, wear resistance, and diffusion barrier integrity. The material and device characteristics are linked to the initial plasma and substrate conditions.

  12. Construction of protein-resistant pOEGMA films by helicon plasma-enhanced chemical vapor deposition.

    PubMed

    Lee, Bong Soo; Yoon, Ok Ja; Cho, Woo Kyung; Lee, Nae-Eung; Yoon, Kuk Ro; Choi, Insung S

    2009-01-01

    This paper describes the formation of protein-resistant, poly(ethylene glycol) methyl ether methacrylate (pOEGMA) thin films by helicon plasma-enhanced chemical vapor deposition (helicon-PECVD). pOEGMA was successfully grafted onto a silicon substrate, as a model substrate, without any additional surface initiators, by plasma polymerization of OEGMA. The resulting pOEGMA films were characterized by ellipsometry, FT-IR spectroscopy, X-ray photoelectron spectroscopy and contact angle goniometry. To investigate the protein-resistant property of the pOEGMA films, four different proteins, bovine serum albumin, fibrinogen, lysozyme and ribonuclease A, were tested as model proteins for ellipsometric measurements. The ellipsometric thickness change for all the model proteins was less than 3 A, indicating that the formed pOEGMA films are protein-resistant. (c) Koninklijke Brill NV, Leiden, 2009

  13. Amorphous silicon as high index photonic material

    NASA Astrophysics Data System (ADS)

    Lipka, T.; Harke, A.; Horn, O.; Amthor, J.; Müller, J.

    2009-05-01

    Silicon-on-Insulator (SOI) photonics has become an attractive research topic within the area of integrated optics. This paper aims to fabricate SOI-structures for optical communication applications with lower costs compared to standard fabrication processes as well as to provide a higher flexibility with respect to waveguide and substrate material choice. Amorphous silicon is deposited on thermal oxidized silicon wafers with plasma-enhanced chemical vapor deposition (PECVD). The material is optimized in terms of optical light transmission and refractive index. Different a-Si:H waveguides with low propagation losses are presented. The waveguides were processed with CMOS-compatible fabrication technologies and standard DUV-lithography enabling high volume production. To overcome the large mode-field diameter mismatch between incoupling fiber and sub-μm waveguides three dimensional, amorphous silicon tapers were fabricated with a KOH etched shadow mask for patterning. Using ellipsometric and Raman spectroscopic measurements the material properties as refractive index, layer thickness, crystallinity and material composition were analyzed. Rapid thermal annealing (RTA) experiments of amorphous thin films and rib waveguides were performed aiming to tune the refractive index of the deposited a-Si:H waveguide core layer after deposition.

  14. Study on fabrication technology of silicon-based silica array waveguide grating

    NASA Astrophysics Data System (ADS)

    Sun, Yanjun; Dong, Lianhe; Leng, Yanbing

    2009-05-01

    Array waveguide grating (AWG) is an important plane optical element in dense wavelength division multiplex/demultiplex system. There are many virtue, channel quantity larger,lower loss, lower crosstalk, size smaller and high reliability etc. This article describs AWG fabrication technics utilizing IC(Integrated Circles) techniques, based on sixteen channel Silicon-Based Silica Array Waveguide Grating, put emphasis on discussing doping and deposition of waveguide core film,technics theory and interrelated parameter condition of photoetch and ion etching. Experiment result indicates that it depens on electrode structure, energy of radio-frequency electrode gas component, pressure ,flowing speed and substrate temperature by CVD depositing film .During depositing waveguide film by PE-CVD, the silicon is not reacted, When temperature becomes lower,it is reacted and it is easy to realize the control of film thickness and time with a result of film thickness uniformity reaching about 4% after optimizing deposition parameter and condition. We get the result of high etching speed rate, outline zoom, and side frame smooth by photoresist/Cr multiple mask and optimizing etching technics.

  15. Effect of sulfur passivation on the InP surface prior to plasma-enhanced chemical vapor deposition of SiNx

    NASA Astrophysics Data System (ADS)

    Tang, Hengjing; Wu, Xiaoli; Xu, Qinfei; Liu, Hongyang; Zhang, Kefeng; Wang, Yang; He, Xiangrong; Li, Xue; Gong, Hai Mei

    2008-03-01

    The fabrication of Au/SiNx/InP metal-insulator-semiconductor (MIS) diodes has been achieved by depositing a layer of SiNx on the (NH4)2Sx-treated n-InP. The SiNx layer was deposited at 200 °C using plasma-enhanced chemical vapor deposition (PECVD). The effect of passivation on the InP surface before and after annealing was evaluated by current-voltage (I-V) and capacitance-voltage (C-V) measurements, and Auger electron spectroscopy (AES) analysis was used to investigate the depth profiles of several atoms. The results indicate that the SiNx passivation layer exhibits good insulative characteristics. The annealing process causes distinct inter-diffusion in the SiNx/InP interface and contributes to the decrease of the fixed charge density and minimum interface state density, which are 1.96 × 1012 cm-2 and 7.41 × 1011 cm-2 eV-1, respectively. A 256 × 1 InP/InGaAs/InP heterojunction photodiode, fabricated with sulfidation and SiNx passivation layer, has good response uniformity.

  16. Plasma Surface Modification of Polymer Backsheets: Origins of Future Interfacial Barrier/Backsheet Failure (Poster)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pankow, J. W.; Glick, S. H.

    2006-05-01

    Flexible polymer substrates coated with inorganic oxide moisture barriers are a potential replacement for glass backsheets in thin-film PV (photovoltaic) modules. Silicon oxynitride (SiO{sub x}N{sub y}) deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) represents one potential new backsheet candidate. Barrier deposition runs at NREL have included a nitrogen-rich plasma pretreatment prior to barrier deposition with the intention of cleaning the PET surface and enhancing adhesion of the SiO{sub x}N{sub y} barrier film to PET; however, test coupons of PET/barrier/EVA/TPE failed after damp-heat exposure. (EVA is ethylene vinyl acetate and TPE is Tedlar{reg_sign}-PET-EVA). PET substrates exposedmore » to plasma conditions similar to those used in pretreatment were examined by X-ray photoelectron spectroscopy (XPS) to reveal that new low molecular weight PET fragments were created at the PET surface. These fragments are responsible for barrier/PET interfacial failure and barrier transfer to the EVA encapsulant side following damp heat exposure.« less

  17. Development of biosensors for non-invasive measurements of heart failure biomarkers in saliva

    NASA Astrophysics Data System (ADS)

    Alcacer, Albert; Streklas, Angelos; Baraket, Abdoullatif; Zine, Nadia; Errachid, Abdelhamid; Bausells, Joan

    2017-06-01

    Biomedical engineering research today is focused on non-invasive techniques for detection of biomarkers related to specific health issues 1. Three metal layer microelectrode (μE) sensors have been implemented to detect specific biomarkers which can be found in human saliva related with heart failure problems 2 such as interleukin and Tumore Necrosis Factor-α (TNF-α), and used as highly sensitive saliva sensors. We designed specialized μEs combining different technologies for multiple measurements aiming to a lab-on-a-chip future integration. Measurements are based to basic principles of Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). Thus, certain planar technology was used involving three metal layers of gold, platinum and silver deposited over an oxidized silicon substrate following standard cleanroom procedures of lithography for the definition of μEs, sputtering physical vapor deposition (PVD) for gold, evaporation PVD for silver and platinum, and plasma enhanced chemical vapor deposition (PECVD) for passivation layer of silicon nitride.

  18. Improved amorphous/crystalline silicon interface passivation for heterojunction solar cells by low-temperature chemical vapor deposition and post-annealing treatment.

    PubMed

    Wang, Fengyou; Zhang, Xiaodan; Wang, Liguo; Jiang, Yuanjian; Wei, Changchun; Xu, Shengzhi; Zhao, Ying

    2014-10-07

    In this study, hydrogenated amorphous silicon (a-Si:H) thin films are deposited using a radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD) system. The Si-H configuration of the a-Si:H/c-Si interface is regulated by optimizing the deposition temperature and post-annealing duration to improve the minority carrier lifetime (τeff) of a commercial Czochralski (Cz) silicon wafer. The mechanism of this improvement involves saturation of the microstructural defects with hydrogen evolved within the a-Si:H films due to the transformation from SiH2 into SiH during the annealing process. The post-annealing temperature is controlled to ∼180 °C so that silicon heterojunction solar cells (SHJ) could be prepared without an additional annealing step. To achieve better performance of the SHJ solar cells, we also optimize the thickness of the a-Si:H passivation layer. Finally, complete SHJ solar cells are fabricated using different temperatures for the a-Si:H film deposition to study the influence of the deposition temperature on the solar cell parameters. For the optimized a-Si:H deposition conditions, an efficiency of 18.41% is achieved on a textured Cz silicon wafer.

  19. Ultrafast optical measurements of surface waves on a patterned layered nanostructure

    NASA Astrophysics Data System (ADS)

    Daly, Brian; Bjornsson, Matteo; Connolly, Aine; Mahat, Sushant; Rachmilowitz, Bryan; Antonelli, George; Myers, Alan; Yoo, Hui-Jae; Singh, Kanwal; King, Sean

    2015-03-01

    We report ultrafast optical pump-probe measurements of 12 - 54 GHz surface acoustic waves (SAWs) on patterned layered nanostructures. These very high frequency SAWs were generated and detected on the following patterned film stack: 25 nm physically vapor deposited TiN / 180 nm porous PECVD-grown a-SiOC:H dielectric / 12 nm non-porous PECVD-grown a-SiOC:H etch-stop / 100 nm CVD-grown a-SiO2 / Si (100) substrate. The TiN layer was dry plasma etched to form lines of rectangular cross section with pitches of 420 nm, 250 nm, 180 nm, and 168 nm and the lines were oriented parallel to the [110] direction on the wafer surface. The absorption of ultrafast pulses from a Ti:sapphire oscillator operating at 800 nm generated SAWs that were detected by time-delayed probe pulses from the same oscillator via a reflectivity change (ΔR) . In each of the four cases the SAW frequency increased with decreasing pitch, but not in a linear way as had been seen in previous experiments of this sort. By comparing the results with mechanical simulations, we present evidence for the detection of different types of SAWs in each case, including Rayleigh-like waves, Sezawa waves, and leaky or radiative waves. This work was supported by NSF Award DMR1206681.

  20. Development of amorphous SiC for MEMS-based microbridges

    NASA Astrophysics Data System (ADS)

    Summers, James B.; Scardelletti, Maximilian; Parro, Rocco; Zorman, Christian A.

    2007-02-01

    This paper reports our effort to develop amorphous hydrogenated silicon carbide (a-SiC:H) films specifically designed for MEMS-based microbridges using methane and silane as the precursor gases. In our work, the a-SiC:H films were deposited in a simple, commercial PECVD system at a fixed temperature of 300°C. Films with thicknesses from 100 nm to 1000 nm, a typical range for many MEMS applications, were deposited. Deposition parameters such as deposition pressure and methane-to-silane ratio were varied in order to obtain films with suitable residual stresses. Average residual stress in the as-deposited films selected for device fabrication was found by wafer curvature measurements to be -658 +/- 22 MPa, which could be converted to 177 +/- 40 MPa after thermal annealing at 450°C, making them suitable for micromachined bridges, membranes and other anchored structures. Bulk micromachined membranes were constructed to determine the Young's modulus of the annealed films, which was found to be 205 +/- 6 GPa. Chemical inertness was tested in aggressive solutions such as KOH and HF. Prototype microbridge actuators were fabricated using a simple surface micromachining process to assess the potential of the a-SiC:H films as structural layers for MEMS applications.

  1. Understanding the Mechanism of SiC Plasma-Enhanced Chemical Vapor Deposition (PECVD) and Developing Routes toward SiC Atomic Layer Deposition (ALD) with Density Functional Theory.

    PubMed

    Filatova, Ekaterina A; Hausmann, Dennis; Elliott, Simon D

    2018-05-02

    Understanding the mechanism of SiC chemical vapor deposition (CVD) is an important step in investigating the routes toward future atomic layer deposition (ALD) of SiC. The energetics of various silicon and carbon precursors reacting with bare and H-terminated 3C-SiC (011) are analyzed using ab initio density functional theory (DFT). Bare SiC is found to be reactive to silicon and carbon precursors, while H-terminated SiC is found to be not reactive with these precursors at 0 K. Furthermore, the reaction pathways of silane plasma fragments SiH 3 and SiH 2 are calculated along with the energetics for the methane plasma fragments CH 3 and CH 2 . SiH 3 and SiH 2 fragments follow different mechanisms toward Si growth, of which the SiH 3 mechanism is found to be more thermodynamically favorable. Moreover, both of the fragments were found to show selectivity toward the Si-H bond and not C-H bond of the surface. On the basis of this, a selective Si deposition process is suggested for silicon versus carbon-doped silicon oxide surfaces.

  2. Optimal design and fabrication of ring resonator composed of Ge02-doped silica waveguides for IOG

    NASA Astrophysics Data System (ADS)

    Guo, Lijun; Shi, Bangren; Chen, Chen; Lv, Hao; Zhao, Zhenming; Zhao, Meng

    2009-07-01

    The ring resonator is the core sensing element in the resonant integration optical gyroscope (IOG) . Its performances influence the minimum resolution and the error items of gyroscope directly and it is the key of the design and manufacturing. This paper presents optimal design of ring resonator composed of Ge02 -doped silica waveguides fabricated on silicon substrates using wide angle beam propagation method (WA-BPM). The characteristic of the light propagating across the ring resonator is analyzed. According to the design results, we succeed in fabricating the ring resonator by Plasma Enhanced Chemical Vapor Deposition (PECVD) method and Reactive Ion Etching (RIE) technology. In order to characterize the ring resonator, an optical measurement setup is built, fiber laser line-width is 50 kHz, detector responsibility is 0.95A/W and integral time is 10s. By testing, propagation loss and total loss of ring resonator are 0.02dB/cm and 0.1dB/circuit respectively. Observed from the resonance curve, a finesse of 12.5.

  3. Influence of Chemical Composition and Structure in Silicon Dielectric Materials on Passivation of Thin Crystalline Silicon on Glass.

    PubMed

    Calnan, Sonya; Gabriel, Onno; Rothert, Inga; Werth, Matteo; Ring, Sven; Stannowski, Bernd; Schlatmann, Rutger

    2015-09-02

    In this study, various silicon dielectric films, namely, a-SiOx:H, a-SiNx:H, and a-SiOxNy:H, grown by plasma enhanced chemical vapor deposition (PECVD) were evaluated for use as interlayers (ILs) between crystalline silicon and glass. Chemical bonding analysis using Fourier transform infrared spectroscopy showed that high values of oxidant gases (CO2 and/or N2), added to SiH4 during PECVD, reduced the Si-H and N-H bond density in the silicon dielectrics. Various three layer stacks combining the silicon dielectric materials were designed to minimize optical losses between silicon and glass in rear side contacted heterojunction pn test cells. The PECVD grown silicon dielectrics retained their functionality despite being subjected to harsh subsequent processing such as crystallization of the silicon at 1414 °C or above. High values of short circuit current density (Jsc; without additional hydrogen passivation) required a high density of Si-H bonds and for the nitrogen containing films, additionally, a high N-H bond density. Concurrently high values of both Jsc and open circuit voltage Voc were only observed when [Si-H] was equal to or exceeded [N-H]. Generally, Voc correlated with a high density of [Si-H] bonds in the silicon dielectric; otherwise, additional hydrogen passivation using an active plasma process was required. The highest Voc ∼ 560 mV, for a silicon acceptor concentration of about 10(16) cm(-3), was observed for stacks where an a-SiOxNy:H film was adjacent to the silicon. Regardless of the cell absorber thickness, field effect passivation of the buried silicon surface by the silicon dielectric was mandatory for efficient collection of carriers generated from short wavelength light (in the vicinity of the glass-Si interface). However, additional hydrogen passivation was obligatory for an increased diffusion length of the photogenerated carriers and thus Jsc in solar cells with thicker absorbers.

  4. Passivation of InSb surface for manufacturing infrared devices

    NASA Astrophysics Data System (ADS)

    Simchi, H.; Sareminia, Gh.; Shafiekhani, A.; Valizadeh, Gh.

    2008-01-01

    We studied the reduction of active surface states at the InSb/insulator interface by the reduction of hysteresis in C- V plots and by the performance of InSb diodes operated in photovoltaic mode. The InSb wafers were cleaned with CP4A etchant (HNO 3:CH 3COOH:HF:H 2O at 2:1:1:10). Then layers of 0.4 μm SiO 2, 0.4 μm Si 3N 4 and 0.5 μm Si 3N 4/SiO 2 were deposited on the cleaned surfaced by plasma enhanced chemical vapor deposition (PECVD). After measuring the surface morphology by atomic force microscopy (AFM) the atomic percentage of each element in each compound (e.g. Si and O 2 in SiO 2 layer) was studied by energy-dispersive X-ray spectroscopy (EDX). By using photoemission spectroscopy (XPS), we showed that the SiO 2, Si 3N 4 and Si 3N 4/SiO 2 layers include Sb and/or SbO x and the Sb In antisite during deposition occurred and for this reason their etch rates differ from pure SiO 2, Si 3N 4 and Si 3N 4/SiO 2 layers. Then the gold metal was deposited on the samples and capacitance voltage measurement was made on the MIS samples. The results showed hysteresis free curves if the surface has been cleaned correctly. Finally by depositing the 0.4 μm SiO 2, 0.4 μm Si 3N 4 and 0.5 μm Si 3N 4/SiO 2 on diode structure of InSb, the performance of diode in this case was compared with the anodic oxidation method. The results showed the performance of device is better than for the anodic oxidation method.

  5. On the origin of emission and thermal quenching of SRSO:Er3+ films grown by ECR-PECVD

    PubMed Central

    2013-01-01

    Silicon nanocrystals embedded in a silicon-rich silicon oxide matrix doped with Er3+ ions have been fabricated by electron cyclotron resonance plasma-enhanced chemical vapor deposition. Indirect excitation of erbium photoluminescence via silicon nanocrystals has been investigated. Temperature quenching of the photoluminescence originating from the silicon nanocrystals and the erbium ions has been observed. Activation energies of the thermally activated quenching process were estimated for different excitation wavelengths. The temperature quenching mechanism of the emission is discussed. Also, the origin of visible emission and kinetic properties of Er-related emission have been discussed in details. PMID:23433189

  6. AC-coupled GaAs microstrip detectors with a new type of integrated bias resistors

    NASA Astrophysics Data System (ADS)

    Irsigler, R.; Geppert, R.; Göppert, R.; Hornung, M.; Ludwig, J.; Rogalla, M.; Runge, K.; Schmid, Th.; Söldner-Rembold, A.; Webel, M.; Weber, C.

    1998-02-01

    Full-size single-sided GaAs microstrip detectors with integrated coupling capacitors and bias resistors have been fabricated on 3″ substrate wafers. PECVD deposited SiO 2 and {SiO 2}/{Si 3N 4} layers were used to provide coupling capacitances of 32.5 and 61.6 pF/cm, respectively. The resistors are made of sputtered CERMET using simple lift of technique. The sheet resistivity of 78 kΩ/□ and the thermal coefficient of resistance of less than 4 × 10 -3/°C satisfy the demands of small area biasing resistors, working on a wide temperature range.

  7. Characterization of doped hydrogenated nanocrystalline silicon films prepared by plasma enhanced chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Wang, Jin-Liang; Wu, Er-Xing

    2007-03-01

    The B- and P-doped hydrogenated nanocrystalline silicon films (nc-Si:H) are prepared by plasma-enhanced chemical vapour deposition (PECVD). The microstructures of doped nc-Si:H films are carefully and systematically characterized by using high resolution electron microscopy (HREM), Raman scattering, x-ray diffraction (XRD), Auger electron spectroscopy (AES), and resonant nucleus reaction (RNR). The results show that as the doping concentration of PH3 increases, the average grain size (d) tends to decrease and the crystalline volume percentage (Xc) increases simultaneously. For the B-doped samples, as the doping concentration of B2H6 increases, no obvious change in the value of d is observed, but the value of Xc is found to decrease. This is especially apparent in the case of heavy B2H6 doped samples, where the films change from nanocrystalline to amorphous.

  8. Vertical graphene nanosheets synthesized by thermal chemical vapor deposition and the field emission properties

    NASA Astrophysics Data System (ADS)

    Guo, Xin; Qin, Shengchun; Bai, Shuai; Yue, Hongwei; Li, Yali; Chen, Qiang; Li, Junshuai; He, Deyan

    2016-09-01

    In this paper, we explored synthesis of vertical graphene nanosheets (VGNs) by thermal chemical vapor deposition (CVD). Through optimizing the experimental condition, growth of well aligned VGNs with uniform morphologies on nickel-coated stainless steel (SS) was realized for the first time by thermal CVD. In the meantime, influence of growth parameters on the VGN morphology was understood based on the balancing between the concentration and kinetic energy of carbon-containing radicals. Structural characterizations demonstrate that the achieved VGNs are normally composed of several graphene layers and less corrugated compared to the ones synthesized by other approaches, e.g. plasma enhanced (PE) CVD. The field emission measurement indicates that the VGNs exhibit relatively stable field emission and a field enhancement factor of about 1470, which is comparable to the values of VGNs prepared by PECVD can be achieved.

  9. Growth kinetics and characterizations of gallium nitride thin films by remote PECVD

    NASA Technical Reports Server (NTRS)

    Choi, S. W.; Bachmann, K. J.; Lucovsky, G.

    1993-01-01

    Thin films of GaN have been deposited at relatively low growth temperatures by remote plasma-enhanced chemical-vapor deposition (RPECVD), using a plasma excited NH3, and trimethylgallium (TMG), injected downstream from the plasma. The activation energy for GaN growth has been tentatively assigned to the dissociation of NH groups as the primary N-atom precursors in the surface reaction with adsorbed TMG, or TMG fragments. At high He flow rates, an abrupt increase in the growth rate is observed and corresponds to a change in the reaction mechanism attributed to the formation of atomic N. XRD reveals an increased tendency to ordered growth in the (0001) direction with increasing growth temperature, He flow rate, and RF plasma power. IR spectra show the fundamental lattice mode of GaN at 530 cm without evidence for vibrational modes of hydrocarbon groups.

  10. Broadly tunable thin-film intereference coatings: active thin films for telecom applications

    NASA Astrophysics Data System (ADS)

    Domash, Lawrence H.; Ma, Eugene Y.; Lourie, Mark T.; Sharfin, Wayne F.; Wagner, Matthias

    2003-06-01

    Thin film interference coatings (TFIC) are the most widely used optical technology for telecom filtering, but until recently no tunable versions have been known except for mechanically rotated filters. We describe a new approach to broadly tunable TFIC components based on the thermo-optic properties of semiconductor thin films with large thermo-optic coefficients 3.6X10[-4]/K. The technology is based on amorphous silicon thin films deposited by plasma-enhanced chemical vapor deposition (PECVD), a process adapted for telecom applications from its origins in the flat-panel display and solar cell industries. Unlike MEMS devices, tunable TFIC can be designed as sophisticated multi-cavity, multi-layer optical designs. Applications include flat-top passband filters for add-drop multiplexing, tunable dispersion compensators, tunable gain equalizers and variable optical attenuators. Extremely compact tunable devices may be integrated into modules such as optical channel monitors, tunable lasers, gain-equalized amplifiers, and tunable detectors.

  11. Charging/discharge events in coated spacecraft polymers during electron beam irradiation in a scanning electron microscope

    NASA Astrophysics Data System (ADS)

    Czeremuszkin, G.; Latrèche, M.; Wertheimer, M. R.

    2001-12-01

    Spacecraft, such as those operating in geosynchronous orbit (GEO), can be subjected to intense irradiation by charged particles, for example high-energy (e.g. 20 keV) electrons. The surfaces of dielectric materials (for example, polymers used as "thermal blankets") can therefore become potential sites for damaging electrostatic discharge (ESD) pulse events. We simulate these conditions by examining small specimens of three relevant polymers (polyimide, polyester and fluoropolymer), both bare and coated, in a scanning electron microscope (SEM). The coatings examined include commercial indium-tin oxide (ITO), and thin films of SiO 2 and a-Si:H deposited by plasma-enhanced chemical vapor deposition (PECVD). All coatings are found to greatly modify the observed ESD behavior, compared with that of the bare polymer counterparts. These observations are explained in terms of the model for ESD pulses proposed by Frederickson.

  12. Analysis of flow field characteristics in IC equipment chamber based on orthogonal design

    NASA Astrophysics Data System (ADS)

    Liu, W. F.; Yang, Y. Y.; Wang, C. N.

    2017-01-01

    This paper aims to study the influence of the configuration of processing chamber as a part of IC equipment on flow field characteristics. Four parameters, including chamber height, chamber diameter, inlet mass flow rate and outlet area, are arranged using orthogonally design method to study their influence on flow distribution in the processing chamber with the commercial software-Fluent. The velocity, pressure and temperature distribution above the holder were analysed respectively. The velocity difference value of the gas flow above the holder is defined as the evaluation criteria to evaluate the uniformity of the gas flow. The quantitative relationship between key parameters and the uniformity of gas flow was found through analysis of experimental results. According to our study, the chamber height is the most significant factor, and then follows the outlet area, chamber diameter and inlet mass flow rate. This research can provide insights into the study and design of configuration of etcher, plasma enhanced chemical vapor deposition (PECVD) equipment, and other systems with similar configuration and processing condition.

  13. Vertically-oriented graphenes supported Mn3O4 as advanced catalysts in post plasma-catalysis for toluene decomposition

    NASA Astrophysics Data System (ADS)

    Bo, Zheng; Hao, Han; Yang, Shiling; Zhu, Jinhui; Yan, Jianhua; Cen, Kefa

    2018-04-01

    This work reports the catalytic performance of vertically-oriented graphenes (VGs) supported manganese oxide catalysts toward toluene decomposition in post plasma-catalysis (PPC) system. Dense networks of VGs were synthesized on carbon paper (CP) via a microwave plasma-enhanced chemical vapor deposition (PECVD) method. A constant current approach was applied in a conventional three-electrode electrochemical system for the electrodeposition of Mn3O4 catalysts on VGs. The as-obtained catalysts were characterized and investigated for ozone conversion and toluene decomposition in a PPC system. Experimental results show that the Mn3O4 catalyst loading mass on VG-coated CP was significantly higher than that on pristine CP (almost 1.8 times for an electrodeposition current of 10 mA). Moreover, the decoration of VGs led to both enhanced catalytic activity for ozone conversion and increased toluene decomposition, exhibiting a great promise in PPC system for the effective decomposition of volatile organic compounds.

  14. In situ spectroscopic ellipsometry study of low-temperature epitaxial silicon growth

    NASA Astrophysics Data System (ADS)

    Halagačka, L.; Foldyna, M.; Leal, R.; Roca i Cabarrocas, P.

    2018-07-01

    Low-temperature growth of doped epitaxial silicon layers is a promising way to reduce the cost of p-n junction formation in c-Si solar cells. In this work, we study process of highly doped epitaxial silicon layer growth using in situ spectroscopic ellipsometry. The film was deposited by plasma-enhanced chemical vapor deposition (PECVD) on a crystalline silicon substrate at a low substrate temperature of 200 °C. In the deposition process, SiF4 was used as a precursor, B2H6 as doping gas, and a hydrogen/argon mixture as carrier gas. A spectroscopic ellipsometer with a wide spectral range was used for in situ spectroscopic measurements. Since the temperature during process is 200 °C, the optical functions of silicon differ from these at room temperature and have to be adjusted. Thickness of the epitaxial silicon layer was fitted on in situ ellipsometric data. As a result we were able to determine the dynamics of epitaxial layer growth, namely initial layer formation time and epitaxial growth rate. This study opens new perspectives in understanding and monitoring the epitaxial silicon deposition processes as the model fitting can be applied directly during the growth.

  15. Annealing optimization of hydrogenated amorphous silicon suboxide film for solar cell application

    NASA Astrophysics Data System (ADS)

    Guangzhi, Jia; Honggang, Liu; Hudong, Chang

    2011-05-01

    We investigate a passivation scheme using hydrogenated amorphous silicon suboxide (a-SiOx:H) film for industrial solar cell application. The a-SiOx:H films were deposited using plasma-enhanced chemical vapor deposition (PECVD) by decomposing nitrous oxide, helium and silane at a substrate temperature of around 250 °C. An extensive study has been carried out on the effect of thermal annealing on carrier lifetime and surface recombination velocity, which affect the final output of the solar cell. Minority carrier lifetimes for the deposited a-SiOx:H films without and with the thermal annealing on 4 Ω·cm p-type float-zone silicon wafers are 270 μs and 670 μs, respectively, correlating to surface recombination velocities of 70 cm/s and 30 cm/s. Optical analysis has revealed a distinct decrease of blue light absorption in the a-SiOx:H films compared to the commonly used intrinsic amorphous silicon passivation used in solar cells. This paper also reports that the low cost and high quality passivation fabrication sequences employed in this study are suitable for industrial processes.

  16. Low-temperature (120 °C) growth of nanocrystalline silicon films prepared by plasma enhanced chemical vapor deposition from SiCl 4/H 2 gases: Microstructure characterization

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Gao, J. H.; Xiao, J. Q.; Wen, L. S.; Gong, J.; Sun, C.

    2012-01-01

    Hydrogenated nanocrystalline silicon (nc-Si:H) films were prepared using diluted tetrachlorosilane (SiCl4) with various hydrogen flow rates (Hf) by plasma enhanced chemical vapor deposition (PECVD) at a constant substrate temperature (Ts) as low as 120 °C. Raman spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), infrared spectra (IR) and spectroscopic ellipsometry (SE) were employed to investigate the microstructure and hydrogen bonding of the nc-Si:H films. Our results showed that the microstructure and hydrogen content of the films could be effectively tailored by the hydrogen flow rates, and a distinct transition from amorphous to nanocrystalline phase was observed with an increase of Hf. At an optimal preparation condition, a deposition rate was as high as 3.7 nm/min and the crystallinity reached up to 64.1%. In addition, the effect of hydrogen on the low-temperature growth of nc-Si:H film was proposed in relation to the surface reaction of radicals and the hydrogen diffusion in the surface growing region.

  17. Visual gas sensors based on dye thin films and resonant waveguide gratings

    NASA Astrophysics Data System (ADS)

    Davoine, L.; Schnieper, M.; Barranco, A.; Aparicio, F. J.

    2011-05-01

    A colorimetric sensor that provides a direct visual indication of chemical contamination was developed. The detection is based on the color change of the reflected light after exposure to a gas or a liquid. The sensor is a combination of a chemically sensitive dye layer and a subwavelength grating structure. To enhance the perception of color change, a reference area sealed under a non-contaminated atmosphere is used and placed next to the sensor. The color change is clearly visible by human eyes. The device is based on photonic resonant effects; the visible color is a direct reflection of some incoming light, therefore no additional supplies are needed. This makes it usable as a standalone disposable sensor. The dye thin film is deposited by Plasma enhanced chemical vapor deposition (PECVD) on top of the subwavelength structure. The latter is made by combining a replication process of a Sol-Gel material and a thin film deposition. Lowcost fabrication and compatibility with environments where electricity cannot be used make this device very attractive for applications in hospitals, industries, with explosives and in traffic.

  18. Carbon Nanotube Field Emitters Synthesized on Metal Alloy Substrate by PECVD for Customized Compact Field Emission Devices to Be Used in X-Ray Source Applications.

    PubMed

    Park, Sangjun; Gupta, Amar Prasad; Yeo, Seung Jun; Jung, Jaeik; Paik, Sang Hyun; Mativenga, Mallory; Kim, Seung Hoon; Shin, Ji Hoon; Ahn, Jeung Sun; Ryu, Jehwang

    2018-05-29

    In this study, a simple, efficient, and economical process is reported for the direct synthesis of carbon nanotube (CNT) field emitters on metal alloy. Given that CNT field emitters can be customized with ease for compact and cold field emission devices, they are promising replacements for thermionic emitters in widely accessible X-ray source electron guns. High performance CNT emitter samples were prepared in optimized plasma conditions through the plasma-enhanced chemical vapor deposition (PECVD) process and subsequently characterized by using a scanning electron microscope, tunneling electron microscope, and Raman spectroscopy. For the cathode current, field emission (FE) characteristics with respective turn on (1 μA/cm²) and threshold (1 mA/cm²) field of 2.84 and 4.05 V/μm were obtained. For a field of 5.24 V/μm, maximum current density of 7 mA/cm² was achieved and a field enhancement factor β of 2838 was calculated. In addition, the CNT emitters sustained a current density of 6.7 mA/cm² for 420 min under a field of 5.2 V/μm, confirming good operational stability. Finally, an X-ray generated image of an integrated circuit was taken using the compact field emission device developed herein.

  19. High-aspect-ratio, silicon oxide-enclosed pillar structures in microfluidic liquid chromatography.

    PubMed

    Taylor, Lisa C; Lavrik, Nickolay V; Sepaniak, Michael J

    2010-11-15

    The present paper discusses the ability to separate chemical species using high-aspect-ratio, silicon oxide-enclosed pillar arrays. These miniaturized chromatographic systems require smaller sample volumes, experience less flow resistance, and generate superior separation efficiency over traditional packed bed liquid chromatographic columns, improvements controlled by the increased order and decreased pore size of the systems. In our distinctive fabrication sequence, plasma-enhanced chemical vapor deposition (PECVD) of silicon oxide is used to alter the surface and structural properties of the pillars for facile surface modification while improving the pillar mechanical stability and increasing surface area. The separation behavior of model compounds within our pillar systems indicated an unexpected hydrophobic-like separation mechanism. The effects of organic modifier, ionic concentration, and pressure-driven flow rate were studied. A decrease in the organic content of the mobile phase increased peak resolution while detrimentally effecting peak shape. A resolution of 4.7 (RSD = 3.7%) was obtained for nearly perfect Gaussian shaped peaks, exhibiting plate heights as low as 1.1 and 1.8 μm for fluorescein and sulforhodamine B, respectively. Contact angle measurements and DART mass spectrometry analysis indicate that our employed elastomeric soft bonding technique modifies pillar properties, creating a fortuitous stationary phase. This discovery provides evidence supporting the ability to easily functionalize PECVD oxide surfaces by gas-phase reactions.

  20. The role of the interface in germanium quantum dots: when not only size matters for quantum confinement effects.

    PubMed

    Cosentino, S; Mio, A M; Barbagiovanni, E G; Raciti, R; Bahariqushchi, R; Miritello, M; Nicotra, G; Aydinli, A; Spinella, C; Terrasi, A; Mirabella, S

    2015-07-14

    Quantum confinement (QC) typically assumes a sharp interface between a nanostructure and its environment, leading to an abrupt change in the potential for confined electrons and holes. When the interface is not ideally sharp and clean, significant deviations from the QC rule appear and other parameters beyond the nanostructure size play a considerable role. In this work we elucidate the role of the interface on QC in Ge quantum dots (QDs) synthesized by rf-magnetron sputtering or plasma enhanced chemical vapor deposition (PECVD). Through a detailed electron energy loss spectroscopy (EELS) analysis we investigated the structural and chemical properties of QD interfaces. PECVD QDs exhibit a sharper interface compared to sputter ones, which also evidences a larger contribution of mixed Ge-oxide states. Such a difference strongly modifies the QC strength, as experimentally verified by light absorption spectroscopy. A large size-tuning of the optical bandgap and an increase in the oscillator strength occur when the interface is sharp. A spatially dependent effective mass (SPDEM) model is employed to account for the interface difference between Ge QDs, pointing out a larger reduction in the exciton effective mass in the sharper interface case. These results add new insights into the role of interfaces on confined systems, and open the route for reliable exploitation of QC effects.

  1. Highly conducting and preferred <220> oriented boron doped nc–Si films for window layers in nc–Si solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mondal, Praloy; Das, Debajyoti, E-mail: erdd@iacs.res.in

    2016-05-23

    Growth and optimization of the boron dopednanocrystalline silicon (nc-Si) films have been studied by varyingthe gaspressure applied to the hydrogendiluted silane plasma in RF (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) system, using diborane (B{sub 2}H{sub 6}) as the dopant gas. High magnitudeof electrical conductivity (~10{sup 2} S cm{sup −1}) and<220>orientedcrystallographic lattice planes have been obtained with high crystalline volume fraction (~86 %) at an optimum pressure of 2.5 Torr. XRD and Raman studies reveal good crystallinity with preferred orientation, suitable for applications in stacked layer devices, particularly in nc–Si solar cells.

  2. Carbon Nanofibers Synthesized on Selective Substrates for Nonvolatile Memory and 3D Electronics

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Khan, Abdur R.

    2011-01-01

    A plasma-enhanced chemical vapor deposition (PECVD) growth technique has been developed where the choice of starting substrate was found to influence the electrical characteristics of the resulting carbon nanofiber (CNF) tubes. It has been determined that, if the tubes are grown on refractory metallic nitride substrates, then the resulting tubes formed with dc PECVD are also electrically conducting. Individual CNFs were formed by first patterning Ni catalyst islands using ebeam evaporation and liftoff. The CNFs were then synthesized using dc PECVD with C2H2:NH3 = [1:4] at 5 Torr and 700 C, and approximately equal to 200-W plasma power. Tubes were grown directly on degenerately doped silicon <100> substrates with resistivity rho approximately equal to 1-5 meterohm-centimeter, as well as NbTiN. The approximately equal to 200-nanometer thick refractory NbTiN deposited using magnetron sputtering had rho approximately equal to 113 microohm-centimeter and was also chemically compatible with CNF synthesis. The sample was then mounted on a 45 beveled Al holder, and placed inside a SEM (scanning electron microscope). A nanomanipulator probe stage was placed inside the SEM equipped with an electrical feed-through, where tungsten probes were used to make two-terminal electrical measurements with an HP 4156C parameter analyzer. The positive terminal nanoprobe was mechanically manipulated to physically contact an individual CNF grown directly on NbTiN as shown by the SEM image in the inset of figure (a), while the negative terminal was grounded to the substrate. This revealed the tube was electrically conductive, although measureable currents could not be detected until approximately equal to 6 V, after which point current increased sharply until compliance (approximately equal to 50 nA) was reached at approximately equal to 9.5 V. A native oxide on the tungsten probe tips may contribute to a tunnel barrier, which could be the reason for the suppressed transport at low biases. Currents up to approximately 100 nA could be cycled, which are likely to propagate via the tube surface, or sidewalls, rather than the body, which is shown by the I-V in figure (a). Electrical conduction via the sidewalls is a necessity for dc NEMS (nanoelectromechanical system) applications, more so than for the field emission applications of such tubes. During the tests, high conductivity was expected, because both probes were shorted to the substrate, as shown by curve 1 in the I-V characteristic in figure (b). When a tube grown on NbTiN was probed, the response was similar to the approximately equal to 100 nA and is represented by curve 2 in figure (b), which could be cycled and propagated via the tube surface or the sidewalls. However, no measureable currents for the tube grown directly on Si were observed as shown by curve 3 in figure (b), even after testing over a range of samples. This could arise from a dielectric coating on the sidewalls for tubes on Si. As a result of the directional nature of ion bombardment during dc PECVD, Si from the substrate is likely re-sputtered and possibly coats the sidewalls.

  3. Carbon Nanotubes/Nanofibers by Plasma Enhanced Chemical Vapour Deposition

    NASA Technical Reports Server (NTRS)

    Teo, K. B. K.; Hash, D. B.; Bell, M. S.; Chhowalla, M.; Cruden, B. A.; Amaratunga, G. A. J.; Meyyappan, M.; Milne, W. I.

    2005-01-01

    Plasma enhanced chemical vapour deposition (PECVD) has been recently used for the production of vertically aligned carbon nanotubedfibers (CN) directly on substrates. These structures are potentially important technologically as electron field emitters (e.g. microguns, microwave amplifiers, displays), nanoelectrodes for sensors, filter media, superhydrophobic surfaces and thermal interface materials for microelectronics. A parametric study on the growth of CN grown by glow discharge dc-PECVD is presented. In this technique, a substrate containing thin film Ni catalyst is exposed to C2H2 and NH3 gases at 700 C. Without plasma, this process is essentially thermal CVD which produces curly spaghetti-like CN as seen in Fig. 1 (a). With the plasma generated by biasing the substrate at -6OOV, we observed that the CN align vertically during growth as shown in Fig. l(b), and that the magnitude of the applied substrate bias affects the degree of alignment. The thickness of the thin film Ni catalyst was found to determine the average diameter and inversely the length of the CN. The yield and density of the CN were controlled by the use of different diffusion barrier materials under the Ni catalyst. Patterned CN growth [Fig. l(c)], with la variation in CN diameter of 4.1% and 6.3% respectively, is achieved by lithographically defining the Ni thin film prior to growth. The shape of the structures could be varied from very straight nanotube-like to conical tip-like nanofibers by increasing the ratio of C2H2 in the gas flow. Due to the plasma decomposition of C2H2, amorphous carbon (a-C) is an undesirable byproduct which could coat the substrate during CN growth. Using a combination of depth profiled Auger electron spectroscopy to study the substrate and in-situ mass spectroscopy to examine gas phase neutrals and ions, the optimal conditions for a-C free growth of CN is determined.

  4. Interface properties of the amorphous silicon/crystalline silicon heterojunction photovoltaic cell

    NASA Astrophysics Data System (ADS)

    Halliop, Basia

    Amorphous-crystalline silicon (a-Si:H/c-Si) heterojunctions have the potential of being a very high efficiency silicon photovoltaic platform technology with accompanying cost and energy budget reductions. In this research a heterojunction cell structure based on a-Si:H deposited using a DC saddle field plasma enhanced vapour deposition (DCSF PECVD) technique is studied, and the a-Si:H/c-Si and indium tin oxide/a-Si:H interfaces are examined using several characterization methods. Photocarrier radiometry (PCR) is used for the first time to probe the a-Si:H/c-Si junction. PCR is demonstrated as a carrier lifetime measurement technique -- specifically, confirming carrier lifetimes above 1 ms for 1-5 Ocm phosphorous-doped c-Si wafers passivated on both sides with 30 nm of i-a-Si:H. PCR is also used to determine surface recombination velocity and mobility, and to probe recombination at the a-Si:H/c-Si interface, distinguishing interface recombination from recombination within the a-Si:H layer or at the a-Si:H surface. A complementary technique, lateral conductivity is applied over a temperature range of 140 K to 430 K to construct energy band diagrams of a-Si:H/c-Si junctions. Boron doped a-Si:H films on glass are shown to have activation energies of 0.3 to 0.35 eV, tuneable by adjusting the diborane to silane gas ratio during deposition. Heterojunction samples show evidence of a strong hole inversion layer and a valence band offset of approximately 0.4 eV; carrier concentration in the inversion layer is reduced in p-a-Si:H/i-a-Si:H/ c-Si structures as intrinsic layer thickness increases, while carrier lifetime is increased. The indium tin oxide/amorphous silicon interface is also examined. Optimal ITO films were prepared with a sheet resistance of 17.3 O/[special character omitted] and AM1.5 averaged transmittance of 92.1%., for a film thickness of approximately 85 nm, using temperatures below 200°C. Two different heat treatments are found to cause crystallization of ITO and to change the properties of the underlying a-Si:H film. Finally, an open circuit voltage of 699 mV was achieved using DCSF PECVD in the tetrode configuration to fabricate a metal/ITO/p-a-Si:H/ i-a-Si:H/n-c-Si/i-a-Si:H/ n+-a-Si:H/metal photovoltaic cell on a texturized wafer. The 4 cm2 cell had an efficiency of 16.5%, a short circuit current of 36.4 mA/cm2 and a fill factor of 64.7%.

  5. Polyethylene Oxide Films Polymerized by Radio Frequency Plasma-Enhanced Chemical Vapour Phase Deposition and Its Adsorption Behaviour of Platelet-Rich Plasma

    NASA Astrophysics Data System (ADS)

    Hu, Wen-Juan; Xie, Fen-Yan; Chen, Qiang; Weng, Jing

    2008-10-01

    We present polyethylene oxide (PEO) functional films polymerized by rf plasma-enhanced vapour chemical deposition (rf-PECVD) on p-Si (100) surface with precursor ethylene glycol dimethyl ether (EGDME) and diluted Ar in pulsed plasma mode. The influences of discharge parameters on the film properties and compounds are investigated. The film structure is analysed by Fourier transform infrared (FTIR) spectroscopy. The water contact angle measurement and atomic force microscope (AFM) are employed to examine the surface polarity and to detect surface morphology, respectively. It is concluded that the smaller duty cycle in pulsed plasma mode contributes to the rich C-O-C (EO) group on the surfaces. As an application, the adsorption behaviour of platelet-rich plasma on plasma polymerization films performed in-vitro is explored. The shapes of attached cells are studied in detail by an optic invert microscope, which clarifies that high-density C-O-C groups on surfaces are responsible for non-fouling adsorption behaviour of the PEO films.

  6. The influence of the PCF scattering on the electrical properties of the AlGaN/AlN/GaN HEMTs after the Si3N4 surface passivation

    NASA Astrophysics Data System (ADS)

    Fu, Chen; Lin, Zhaojun; Cui, Peng; Lv, Yuanjie; Zhou, Yang; Dai, Gang; Luan, Chongbiao; Liu, Huan; Cheng, Aijie

    2018-04-01

    In this paper, the detailed device characteristics were investigated both before and after the Si3N4 passivation grown by plasma-enhanced chemical vapor deposition (PECVD). Better transport properties have been observed for the passivated devices compared with the same ones before passivation. The strain variation and the influence of the scattering mechanisms were analyzed and studied. The calculated results show that the non-uniform distribution of the additional polarization charges at the AlGaN/AlN/GaN interfaces has been weakened by the deposition of the Si3N4 layer. The numerical rise of the two-dimensional electron gas (2DEG) electron mobility and the decrease of the measured R on- A values were in a good consistency, and the weakening of the polarization Coulomb field (PCF) scattering after the passivation process is considered to be the main cause of these phenomena.

  7. Structural changes of a-CNx thin films induced by thermal annealing

    NASA Astrophysics Data System (ADS)

    Aziz, Siti Aisyah Abd; Awang, Rozidawati

    2018-04-01

    In this work, amorphous carbon nitride (a-CNx) thin films were deposited by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) technique at different RF powers of 60, 70, 80, 90 and 100 W for 30 min. These films were prepared using a mixture of acetylene (C2H2) at 20 sccm and nitrogen (N2) gases at 50 sccm. The films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The chemical bondings of the film were analyzed by Fourier Transform Infra-red Spectroscopy (FTIR) while surface morphology and film roughness were determined by Atomic Force Microscopy (AFM). The FTIR analysis reveals that annealing resulted in the loss of C-H and C-N bonds and formation of graphitic sp2C cluster with the dissociation of N and C in the films. AFM indicates that the film surface becomes less rough which effectually enhances structural modifications and the rearrangement of the microstructure of the films after annealing.

  8. Carbon Nanospikes Grown on Metal Wires as Microelectrode Sensors for Dopamine

    PubMed Central

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; Hensley, Dale; Venton, B. Jill

    2015-01-01

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In this study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. The CNS growth was characterized on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 μM dopamine while carbon nanospike coated wires could. The highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 ± 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller ΔEp for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection. PMID:26389138

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coatedmore » wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.« less

  10. Surface morphology and grain analysis of successively industrially grown amorphous hydrogenated carbon films (a-C:H) on silicon

    NASA Astrophysics Data System (ADS)

    Catena, Alberto; McJunkin, Thomas; Agnello, Simonpietro; Gelardi, Franco M.; Wehner, Stefan; Fischer, Christian B.

    2015-08-01

    Silicon (1 0 0) has been gradually covered by amorphous hydrogenated carbon (a-C:H) films via an industrial process. Two types of these diamond-like carbon (DLC) coatings, one more flexible (f-DLC) and one more robust (r-DLC), have been investigated. Both types have been grown by a radio frequency plasma-enhanced chemical vapor deposition (RF-PECVD) technique with acetylene plasma. Surface morphologies have been studied in detail by atomic force microscopy (AFM) and Raman spectroscopy has been used to investigate the DLC structure. Both types appeared to have very similar morphology and sp2 carbon arrangement. The average height and area for single grains have been analyzed for all depositions. A random distribution of grain heights was found for both types. The individual grain structures between the f- and r-type revealed differences: the shape for the f-DLC grains is steeper than for the r-DLC grains. By correlating the average grain heights to the average grain areas for all depositions a limited region is identified, suggesting a certain regularity during the DLC deposition mechanisms that confines both values. A growth of the sp2 carbon entities for high r-DLC depositions is revealed and connected to a structural rearrangement of carbon atom hybridizations and hydrogen content in the DLC structure.

  11. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure

    NASA Astrophysics Data System (ADS)

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-01

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH4 and H2 as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  12. Super-low friction and super-elastic hydrogenated carbon films originated from a unique fullerene-like nanostructure.

    PubMed

    Wang, Chengbing; Yang, Shengrong; Wang, Qi; Wang, Zhou; Zhang, Junyan

    2008-06-04

    Hydrogenated carbon films were grown by a plasma-enhanced chemical vapor deposition (PECVD) technique using CH(4) and H(2) as feedstock at ambient temperature. The microstructure of the films was characterized by high resolution transmission electron microscopy (HRTEM). The images showed the presence of curved basal planes in fullerene-like arrangements. An apparent amorphous graphene structure with nm-sized packages of basal planes in a turbostratic feature was observed. The fabricated fullerene-like hydrogenated carbon films (FL-C:H) possess superior mechanical properties, i.e. high hardness (19 GPa) and high elasticity (elastic recovery of 85%). More importantly, the films exhibit ultra-low friction (μ = 0.009) under ambient conditions with 20% relative humidity.

  13. Area laser crystallized LTPS TFTs with implanted contacts for active matrix OLED displays

    NASA Astrophysics Data System (ADS)

    Persidis, Efstathios; Baur, Holger; Pieralisi, Fabio; Schalberger, Patrick; Fruehauf, Norbert

    2008-03-01

    We have developed a four mask low temperature poly-Si (LTPS) TFT process for p- and n-channel devices. Our PECVD deposited amorphous silicon is recrystallized to polycrystalline silicon with single area excimer laser crystallization while formation of drain and source is carried out with self aligned ion beam implantation. We have investigated implantation parameters, suitability of various metallizations as well as laser activation and annealing procedures. To prove the potential capability of our devices, which are suitable for conventional and inverted OLEDs alike, we have produced several functional active matrix backplanes implementing different pixel circuits. Our active matrix backplane process has been customized to drive small molecules as well as polymers, regardless if top or bottom emitting.

  14. Synthesis and properties of SiN coatings as stable fluorescent markers on vertically aligned carbon nanofibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pearce, Ryan; Klein, Kate L; Ivanov, Ilia N

    2014-01-01

    The growth of vertically aligned carbon nanofibers (VACNFs) in a catalytic dc ammonia/acetylene plasma process on silicon substrates is often accompanied by sidewall deposition of material that contains mostly Si and N. In fluorescent microscopy experiments, imaging VACNF interfacing to live cell cultures it turned out that this material is broadly fluorescent, which made VACNFs useful as spatial markers, or created nuisance when DNA-labeling got masked. In this paper we provide insight into nature of this silicon/nitrogen in situ coatings. Here we have proposed a potential mechanism for deposition of SiNx coating on the sidewalls of VACNFs during PECVD synthesismore » in addition to exploring the origin of the coatings fluorescence. It seems most likely that the substrate reacts with the process gases through both processes similar to reactive sputtering and CVD to form silane and other silicon bearing compounds before being deposited isotropically as a SiNx coating onto the VACNFs. The case for the presence of Si-NCs is made strong through a combination of the strong fluorescence and elemental analysis of the samples. These broadly luminescent fibers can prove useful as registry markers in fluorescent cellular studies.« less

  15. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    NASA Astrophysics Data System (ADS)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and conformality of a-Si:H deposited by PECVD using SiH4 and H 2 on high aspect ratio trench structures. Experimentally, it was found that the a-Si:H growth rate increased with increasing SiH4 flow rate up to a point after which it saturated at a maximum growth rate. In addition, it was found that higher SiH4 flow rates resulted in improved thickness uniformity along the trenches. A model based on gas transport and surface reaction of SiH3 in trenches was developed and was used to explain the experimental results and predict conditions that would yield improved thickness uniformity. The knowledge gained in the PECVD deposition studies was then used to prepare HIT radial junction Si pillar array solar cell devices. Deep reactive ion etching (DRIE) was used to prepare Si pillar arrays on p-type (111) c-Si wafers. A process was developed to prepare n-type a-Si:H films from SiH 4 and H2, with PH3 as doping gas. Indium tin oxide (ITO) deposited by sputter deposition and Al-doped ZnO deposited by atomic layer deposition (ALD) were evaluated as transparent conductive top contacts to the n-type a-Si:H layer. By adjusting the SiH4/H2 gas flow ratio, intrinsic a-Si:H was grown on the c-Si surface without epitaxial micro-crystalline growth. Continuous and pulsed deposition modes were investigated for deposition of the intrinsic and n-type a-Si:H layers on the c-Si pillars. The measurements of device light performance shown that slightly lower short circuit current density (Jsc, 32 mA/cm2 to 35 mA/cm 2) but higher open circuit voltage (Voc, 0.56 V to .47 V) were obtained on the pulsed devices. As the result, higher efficiency (11.6%) was achieved on the pulsed devices (10.6% on the continuous device). The improved performance of the pulsed deposition devices was explained as arising from a higher SiH3 concentration in the initial plasma which lead to a more uniform layer thickness. Planar and radial junction Si wire array HIT solar cell devices were then fabricated and the device performance was compared. A series of p-type c-Si wafers with varying resistivity/doping density were used for this study in order to evaluate the effect of carrier diffusion length on device performance. The saturation current densities (J0) of the radial junction devices were consistently larger than that of the planar devices as a result of the larger junction area. Despite the increased leakage currents, the radial junction HIT cells exhibited similar Voc compared to the planar cells. In addition, at high doping densities (5˜1018 cm-3), the J sc (16.7mA/cm2) and collection efficiency (6.3%) of the radial junction devices was higher than that of comparable planar cells (J sc 12.7 mA/cm2 and efficiency 5.2%), demonstrating improved collection of photogenerated carriers in this geometry.

  16. Bacterial adhesion on conventional and self-ligating metallic brackets after surface treatment with plasma-polymerized hexamethyldisiloxane.

    PubMed

    Tupinambá, Rogerio Amaral; Claro, Cristiane Aparecida de Assis; Pereira, Cristiane Aparecida; Nobrega, Celestino José Prudente; Claro, Ana Paula Rosifini Alves

    2017-01-01

    Plasma-polymerized film deposition was created to modify metallic orthodontic brackets surface properties in order to inhibit bacterial adhesion. Hexamethyldisiloxane (HMDSO) polymer films were deposited on conventional (n = 10) and self-ligating (n = 10) stainless steel orthodontic brackets using the Plasma-Enhanced Chemical Vapor Deposition (PECVD) radio frequency technique. The samples were divided into two groups according to the kind of bracket and two subgroups after surface treatment. Scanning Electron Microscopy (SEM) analysis was performed to assess the presence of bacterial adhesion over samples surfaces (slot and wings region) and film layer integrity. Surface roughness was assessed by Confocal Interferometry (CI) and surface wettability, by goniometry. For bacterial adhesion analysis, samples were exposed for 72 hours to a Streptococcus mutans solution for biofilm formation. The values obtained for surface roughness were analyzed using the Mann-Whitney test while biofilm adhesion were assessed by Kruskal-Wallis and SNK test. Significant statistical differences (p< 0.05) for surface roughness and bacterial adhesion reduction were observed on conventional brackets after surface treatment and between conventional and self-ligating brackets; no significant statistical differences were observed between self-ligating groups (p> 0.05). Plasma-polymerized film deposition was only effective on reducing surface roughness and bacterial adhesion in conventional brackets. It was also noted that conventional brackets showed lower biofilm adhesion than self-ligating brackets despite the absence of film.

  17. Microstructure factor and mechanical and electronic properties of hydrogenated amorphous and nanocrystalline silicon thin-films for microelectromechanical systems applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mouro, J.; Gualdino, A.; Chu, V.

    2013-11-14

    Thin-film silicon allows the fabrication of MEMS devices at low processing temperatures, compatible with monolithic integration in advanced electronic circuits, on large-area, low-cost, and flexible substrates. The most relevant thin-film properties for applications as MEMS structural layers are the deposition rate, electrical conductivity, and mechanical stress. In this work, n{sup +}-type doped hydrogenated amorphous and nanocrystalline silicon thin-films were deposited by RF-PECVD, and the influence of the hydrogen dilution in the reactive mixture, the RF-power coupled to the plasma, the substrate temperature, and the deposition pressure on the structural, electrical, and mechanical properties of the films was studied. Three differentmore » types of silicon films were identified, corresponding to three internal structures: (i) porous amorphous silicon, deposited at high rates and presenting tensile mechanical stress and low electrical conductivity, (ii) dense amorphous silicon, deposited at intermediate rates and presenting compressive mechanical stress and higher values of electrical conductivity, and (iii) nanocrystalline silicon, deposited at very low rates and presenting the highest compressive mechanical stress and electrical conductivity. These results show the combinations of electromechanical material properties available in silicon thin-films and thus allow the optimized selection of a thin silicon film for a given MEMS application. Four representative silicon thin-films were chosen to be used as structural material of electrostatically actuated MEMS microresonators fabricated by surface micromachining. The effect of the mechanical stress of the structural layer was observed to have a great impact on the device resonance frequency, quality factor, and actuation force.« less

  18. Carbon nanowalls: a new versatile graphene based interface for the laser desorption/ionization-mass spectrometry detection of small compounds in real samples.

    PubMed

    Hosu, I S; Sobaszek, M; Ficek, M; Bogdanowicz, R; Drobecq, H; Boussekey, L; Barras, A; Melnyk, O; Boukherroub, R; Coffinier, Y

    2017-07-13

    Carbon nanowalls, vertically aligned graphene nanosheets, attract attention owing to their tunable band gap, high conductivity, high mechanical robustness, high optical absorbance and other remarkable properties. In this paper, we report for the first time the use of hydrophobic boron-doped carbon nanowalls (CNWs) for laser desorption/ionization of small compounds and their subsequent detection by mass spectrometry (LDI-MS). The proposed method offers sensitive detection of various small molecules in the absence of an organic matrix. The CNWs were grown by microwave plasma enhanced chemical vapor deposition (MW-PECVD), using a boron-carbon gas flow ratio of 1200 in H 2 /CH 4 plasma, on silicon <100> wafer. The hydrophobicity of the surface offers a straightforward MS sample deposition, consisting of drop casting solutions of analytes and drying in air. Limits of detection in the picomolar and femtomolar ranges (25 fmol μL -1 for neurotensin) were achieved for different types of compounds (fatty acids, lipids, metabolites, saccharides and peptides) having clinical or food industry applications. This rapid and sensitive procedure can also be used for quantitative measurements without internal standards with RSDs <19%, as in the case of glucose in aqueous solutions (LOD = 0.32 ± 0.02 pmol), blood serum or soft drinks. Moreover, melamine (63 ± 8.19 ng μL -1 ), a toxic compound, together with creatinine and paracetamol, was detected in urine samples, while lecithin was detected in food supplements.

  19. Carbon nanospikes grown on metal wires as microelectrode sensors for dopamine

    DOE PAGES

    Zestos, Alexander G.; Yang, Cheng; Jacobs, Christopher B.; ...

    2015-09-14

    Carbon nanomaterials are advantageous as electrodes for neurotransmitter detection, but the difficulty of nanomaterials deposition on electrode substrates limits the reproducibility and future applications. In our study, we used plasma enhanced chemical vapor deposition (PECVD) to directly grow a thin layer of carbon nanospikes (CNS) on cylindrical metal substrates. No catalyst is required and the CNS surface coverage is uniform over the cylindrical metal substrate. We characterized the CNS growth on several metallic substrates including tantalum, niobium, palladium, and nickel wires. Using fast-scan cyclic voltammetry (FSCV), bare metal wires could not detect 1 mu M dopamine while carbon nanospike coatedmore » wires could. Moreover, the highest sensitivity and optimized S/N ratio was recorded from carbon nanospike-tantalum (CNS-Ta) microwires grown for 7.5 minutes, which had a LOD of 8 +/- 2 nM for dopamine with FSCV. CNS-Ta microelectrodes were more reversible and had a smaller Delta E-p for dopamine than carbon-fiber microelectrodes, suggesting faster electron transfer kinetics. The kinetics of dopamine redox were adsorption controlled at CNS-Ta microelectrodes and repeated electrochemical measurements displayed stability for up to ten hours in vitro and over a ten day period as well. The oxidation potential was significantly different for ascorbic acid and uric acid compared to dopamine. Finally, growing carbon nanospikes on metal wires is a promising method to produce uniformly-coated, carbon nanostructured cylindrical microelectrodes for sensitive dopamine detection.« less

  20. ALD Al2O3 passivation of Lg = 100 nm metamorphic InAlAs/InGaAs HEMTs with Si-doped Schottky layers on GaAs substrates

    NASA Astrophysics Data System (ADS)

    Sun, Bing; Chang, Hudong; Wang, Shengkai; Niu, Jiebin; Liu, Honggang

    2017-12-01

    In0.52Al0.48As/In0.7Ga0.3As metamorphic high-electron-mobility transistors (mHEMTs) on GaAs substrates have been demonstrated. The devices feature an epitaxial structure with Si-doped InP/In0.52Al0.48As Schottky layers, together with an atomic layer deposition (ALD) Al2O3 passivation process. In comparison to the GaAs mHEMTs with plasma enhanced chemical vapor deposition (PECVD) SiN passivation, the devices with ALD Al2O3 passivation exhibit more than one order of magnitude lower gate leakage current (Jg) and much lower contact resistance (RC) and specific contact resistivity (ρC). 100-nm gate length (Lg) In0.52Al0.48As/In0.7Ga0.3As mHEMTs with Si-doped InP/In0.52Al0.48As Schottky layers and ALD Al2O3 passivation exhibit excellent DC and RF characteristics, such as a maximum oscillation frequency (fmax) of 388.2 GHz.

  1. Enhanced Visible Transmittance of Thermochromic VO₂ Thin Films by SiO₂ Passivation Layer and Their Optical Characterization.

    PubMed

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-07-09

    This paper presents the preparation of high-quality vanadium dioxide (VO₂) thermochromic thin films with enhanced visible transmittance (T vis ) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO₂ thin films with high T vis and excellent optical switching efficiency (E os ) were successfully prepared by employing SiO₂ as a passivation layer. After SiO₂ deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO₂ coating, the phase transition temperature (T c ) of the prepared films was not affected. Compared with pristine VO₂, the total layer thickness after SiO₂ coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO₂ thin films showed a higher T vis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of T vis while maintaining high E os is meaningful for VO₂-based smart window applications.

  2. Nanoindentation data analysis of loading curve performed on DLC thin films: Effect of residual stress on the elasto-plastic properties

    NASA Astrophysics Data System (ADS)

    Ouchabane, M.; Dublanche-Tixier, Ch.; Dergham, D.

    2017-11-01

    The present work is a contribution to the understanding of the mechanical behavior of DLC thin films through nanoindentation tests. DLC films of different thicknesses deposited by the PECVD process on a silicon substrate contain high residual compressive stresses when they are very thin and the stresses become relatively low and more relaxed as the film thickens. These different levels of residual stress influence the values of hardness (H) and Young's modulus (E) obtained when probing the film-substrate system by nanoindentation. It is observed that the DLC layers exhibit different mechanical behaviors even when they are deposited under the same conditions. It is proposed that the compressive stress induces structural modifications resulting in modifying the elasto-plastic properties of each thin film-substrate system. Data analysis of the loading curve can provide information on the elasto-plastic properties of DLC thin films, particularly the stiffness (S) and Er2/H, as a function of residual compressive stresses. The structural changes induced by residual stresses were probed by using Raman spectroscopy and correlated to the mechanical properties.

  3. Chemical changes in DMP1-null murine bone & silica based pecvd coatings for titanium implant osseoapplications

    NASA Astrophysics Data System (ADS)

    Maginot, Megen

    In order to improve clinical outcomes in bone-implant systems, a thorough understanding of both local bone chemistry and implant surface chemistry is necessary. This study consists, therefore, of two main parts: one focused on determining the nature of the changes in bone chemistry in a DMP1-null transgenic disease model and the other on the development of amorphous silica-based coatings for potential use as titanium bone implant coatings. For the study of bone mineral in the DMP1 transgenic model, which is known to have low serum phosphate levels, transgenic DMP1-null and wild type mice were fed a high phosphate diet, sacrificed, and had their long bone harvested. This bone was characterized using SEM, FTIR, microCT and XANES and compared to DMP1-null and wild type control groups to assess the therapeutic effect of high Pi levels on the phenotype and the role of DMP1 in mineralization in vivo. Findings suggest that though the high phosphate diet results in restoring serum phosphate levels, it does not completely rescue the bone mineral phenotype at an ultrastructural level and implicates DMP1 in phosphate nucleation. Since plasma enhanced chemical vapor deposition (PECVD) silica like coatings have not previously been fabricated for use in oessoapplications, the second part of this study initially focused on the characterization of novel SiOx chemistries fabricated via a chemical vapor deposition process that were designed specifically to act as bioactive coatings with a loose, hydrogenated structure. These coatings were then investigated for their potential initial stage response to bone tissue through immersion in a simulated body fluid and through the culture of MC3T3 cells on the coating surfaces. Coating surfaces were characterized by SEM, FTIR, contact angle measurements, and XANES. Coating dissolution and ionic release were also investigated by ICP-OES. Findings suggest that some SiOx chemistries may form a bioactive coating while more highly substituted chemistries may form a bioresorbable coating, similar to commercially available bioactive glasses.

  4. Plasma Diagnostics For The Investigation of Silane Based Glow Discharge Deposition Processes

    NASA Astrophysics Data System (ADS)

    Mataras, Dimitrios

    2001-10-01

    In this work is presented the study of microcrystalline silicon PECVD process through highly diluted silane in hydrogen discharges. The investigation is performed by applying different non intrusive plasma diagnostics (electrical, optical, mass spectrometric and laser interferometric measurements). Each of these measurements is related to different plasma sub-processes (gas physics, plasma chemistry and plasma surface interaction) and compose a complete set, proper for the investigation of the effect of external discharge parameters on the deposition processes. In the specific case these plasma diagnostics are applied for prospecting the optimal experimental conditions from the ic-Si:H deposition rate point of view. Namely, the main characteristics of the effect of frequency, discharge geometry, power consumption and total gas pressure on the deposition process are presented successively. Special attention is given to the study of the frequency effect (13.56 MHz 50 MHz) indicating that the correct way to compare results of different driving frequency discharges is by maintaining constant the total power dissipation in the discharge. The important role of frequency in the achievement of high deposition rates and on the optimization of all other parameters is underlined. Finally, the proper combination of experimental conditions that result from the optimal choice of each of the above-mentioned discharge parameters and lead to high microcrystalline silicon deposition rates (7.5 Å/sec) is presented. The increase of silane dissociation rate towards neutral radicals (frequency effect), the contribution of highly sticking to the surface radicals (discharge geometry optimum) and the controlled production of higher radicals through secondary gas phase reactions (total gas pressure), are presented as prerequisites for the achievement of high deposition rates.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Shumin; Tian Hongwei; Pei Yanhui

    A novel hedgehog-like core/shell structure, consisting of a high density of vertically aligned graphene sheets and a thin graphene shell/a copper core (VGs-GS/CC), has been synthesized via a simple one-step synthesis route using radio-frequency plasma-enhanced chemical vapor deposition (RF-PECVD). Scanning and transmission electron microscopy investigations show that the morphology of this core/shell material could be controlled by deposition time. For a short deposition time, only multilayer graphene shell tightly surrounds the copper particle, while as the deposition time is relative long, graphene sheets extend from the surface of GS/CC. The GS can protect CC particles from oxidation. The growth mechanismmore » for the obtained GS/CC and VGs-GS/CC has been revealed. Compared to VGs, VGs-GS/CC material exhibits a better electron field emission property. This investigation opens a possibility for designing a core/shell structure of different carbon-metal hybrid materials for a wide variety of practical applications. - Graphical abstract: With increasing deposition time, graphene sheets extend from the surface of GS/CC, causing the multilayer graphene encapsulated copper to be converted into vertically aligned graphene sheets-graphene shell/copper core structure. Highlights: Black-Right-Pointing-Pointer A novel hedgehog-like core/shell structure has been synthesized. Black-Right-Pointing-Pointer The structure consists of vertical graphene sheets-graphene shell and copper core. Black-Right-Pointing-Pointer The morphology of VGs-GS/CC can be controlled by choosing a proper deposition time. Black-Right-Pointing-Pointer With increasing deposition time, graphene sheets extend from the surface of GS/CC. Black-Right-Pointing-Pointer VGs-GS/CC exhibits a better electron field emission property as compared with VGs.« less

  6. Kinetic Migration of Diethylhexyl Phthalate in Functional PVC Films

    NASA Astrophysics Data System (ADS)

    Fei, Fei; Liu, Zhongwei; Chen, Qiang; Liu, Fuping

    2012-02-01

    Plasticizers that are generally used in plastics to produce flexible food packaging materials have proved to cause reproductive system problems and women's infertility. A long-term consumption may even cause cancer diseases. Hence a nano-scale layer, named as functional barrier layer, was deposited on the plastic surface to prevent plasticizer diethylhexyl phthalate's (DEHP) migration from plastics to foods. The feasibility of functional barrier layer i.e. SiOx coating through plasma enhanced chemical vapor deposition (PECVD) process was then described in this paper. We used Fourier transform infrared spectroscopy (FTIR) to analyze the chemical composition of coatings, scanning electron microscope (SEM) to explore the topography of the coating surfaces, surface profilemeter to measure thickness of coatings, and high-performance liquid chromatography (HPLC) to evaluate the barrier properties of coatings. The results have clearly shown that the coatings can perfectly block the migration of the DEHP from plastics to their containers. It is also concluded that process parameters significantly influence the block efficiency of the coatings. When the deposition conditions of SiOx coatings were optimized, i.e. 50 W of the discharge power, 4:1 of ratio of O2: HMDSO, and ca.100 nm thickness of SiOx, 71.2% of the DEHP was effectively blocked.

  7. Impact of Silicon Nanocrystal Oxidation on the Nonmetallic Growth of Carbon Nanotubes.

    PubMed

    Rocks, Conor; Mitra, Somak; Macias-Montero, Manuel; Maguire, Paul; Svrcek, Vladimir; Levchenko, Igor; Ostrikov, Kostya; Mariotti, Davide

    2016-07-27

    Carbon nanotube (CNT) growth has been demonstrated recently using a number of nonmetallic semiconducting and metal oxide nanoparticles, opening up pathways for direct CNT synthesis from a number of more desirable templates without the need for metallic catalysts. However, CNT growth mechanisms using these nonconventional catalysts has been shown to largely differ and reamins a challenging synthesis route. In this contribution we show CNT growth from partially oxidized silicon nanocrystals (Si NCs) that exhibit quantum confinement effects using a microwave plasma enhanced chemical vapor deposition (PECVD) method. On the basis of solvent and a postsynthesis frgamentation process, we show that oxidation of our Si NCs can be easily controlled. We determine experimentally and explain with theoretical simulations that the Si NCs morphology together with a necessary shell oxide of ∼1 nm is vital to allow for the nonmetallic growth of CNTs. On the basis of chemical analysis post-CNT-growth, we give insight into possible mechanisms for CNT nucleation and growth from our partially oxidized Si NCs. This contribution is of significant importance to the improvement of nonmetallic catalysts for CNT growth and the development of Si NC/CNT interfaces.

  8. Ultra-Low Density Aerogel Mirror Substrates

    DTIC Science & Technology

    1993-04-01

    Silica aerogel materials were fabricated by both the high temperature and low temperature methods at the Lawrence Livermore National Laboratory in...evaporation techniques were used to planarize the silica aerogel with SiO 2 prior to metalization. The PECVD was performed at the Cornell University...incident hv. Defect Physics Silica aerogel is an amorphous SiO, matrix of high porosity (or a low density disordered material). The amorphous r~ature of

  9. Noise characteristics of single-walled carbon nanotube network transistors.

    PubMed

    Kim, Un Jeong; Kim, Kang Hyun; Kim, Kyu Tae; Min, Yo-Sep; Park, Wanjun

    2008-07-16

    The noise characteristics of randomly networked single-walled carbon nanotubes grown directly by plasma enhanced chemical vapor deposition (PECVD) are studied with field effect transistors (FETs). Due to the geometrical complexity of nanotube networks in the channel area and the large number of tube-tube/tube-metal junctions, the inverse frequency, 1/f, dependence of the noise shows a similar level to that of a single single-walled carbon nanotube transistor. Detailed analysis is performed with the parameters of number of mobile carriers and mobility in the different environment. This shows that the change in the number of mobile carriers resulting in the mobility change due to adsorption and desorption of gas molecules (mostly oxygen molecules) to the tube surface is a key factor in the 1/f noise level for carbon nanotube network transistors.

  10. Mechanical properties and tribological behavior of fullerene-like hydrogenated carbon films prepared by changing the flow rates of argon gas

    NASA Astrophysics Data System (ADS)

    Guo, Junmeng; Wang, Yongfu; Liang, Hongyu; Liang, Aimin; Zhang, Junyan

    2016-02-01

    Fullerene-like hydrogenated carbon (FL-C:H) films as carbon materials were prepared by direct current plasma enhanced chemical vapor deposition (dc-PECVD) technique. The content of FL nanostructure was confirmed by high-resolution transmission electron microscopy (HRTEM), visible Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The effect of fullerene-like nanostructure on the friction behavior of the films was studied using a reciprocating ball-on-flat tribometer in humid environment. It is concluded that the curved FL nanostructure provide the film excellent mechanical properties and friction performance. Interestingly, combining with the results of Raman analyses of the wear debris, we find that new FL nanostructure form during the friction process. These new FL nanostructure may originate from the rapid annealing and stress relaxation of unstable carbon clusters.

  11. Growth Assisted by Glancing Angle Deposition: A New Technique to Fabricate Highly Porous Anisotropic Thin Films.

    PubMed

    Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo

    2016-04-06

    We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained.

  12. Long-Term Stability of Photovoltaic Hybrid Perovskites achieved by Graphene Passivation via a Water- and Polymer-Free Graphene Transfer Method

    NASA Astrophysics Data System (ADS)

    Tseng, W.-S.; Jao, M.-H.; Hsu, C.-C.; Wu, C.-I.; Yeh, N.-C.

    Organic-inorganic hybrid perovskites such as CH3NH3PbX3 (X = I, Br) have been intensively studied in recent years because of their rapidly improving photovoltaic power conversion efficiency. However, severe instability of these materials in ambient environment has been a primary challenge for practical applications. To address this issue, we employ high-quality PECVD-grown graphene to passivate the hybrid perovskites. In contrast to existing processes for transferring graphene from the growth substrates to other surfaces that involve either polymer or water, which are incompatible with photovoltaic applications of these water-sensitive hybrid perovskites, we report here a new water- and polymer-free graphene transferring method. Studies of the Raman, x-ray and ultraviolet photoemission spectroscopy (XPS and UPS) demonstrated excellent quality of monolayer PECVD-grown graphene samples after their transfer onto different substrates with the water- and polymer-free processing method. In particular, graphene was successfully transferred onto the surface of CH3NH3PbI3 thin films with sample quality intact. Moreover, XPS and UPS studies indicated that even after 3 months, the fully graphene-covered perovskite films remained spectroscopically invariant, which was in sharp contrast to the drastic changes, after merely one week, in both the XPS and UPS of a control CH3NH3PbI3 sample without graphene protection. Beckman Inst. in Caltech. Dragon Gate Program in Taiwan.

  13. Preparation, Properties, and Structure of Hydrogenated Amorphous Carbon Films.

    NASA Astrophysics Data System (ADS)

    Chen, Hsiung

    1990-01-01

    Hydrogenated amorphous carbon films (a-C:H) have been deposited on glass, fused silica, Si, Mo, Al, and 304 stainless steel at room temperature by plasma enhanced chemical vapor deposition (PECVD). The rf glow discharge and plasma kinetics of the deposition process were investigated. Negative self-bias voltage V_{rm b} and gas pressure P were used as two major deposition parameters. The hydrogen concentration, internal stress, mass density, hardness, and thickness of the deposited films were measured. In the low energy deposition region, 0 > V_{rm b} > -100 V, soft polymerlike films with high hydrogen concentration and low density were found. Hard diamondlike films with high stress were deposited in the bias voltage range, -100 V > V _{rm b} > -1000 V. Dark graphitic films with low hydrogen concentration were grown at V_ {rm b} < -1000 V. The optical absorption of a series of a-C:H films have been measured. Optical energy gaps deduced from optical absorption data using the Tauc relation lie between 0.8 eV and 1.4 eV. Doping of a-C:H films by boron and sulfur is accompanied by an increasing number of gap states, i.e., the absorption coefficient is increased and the optical gap is reduced. The thermal stability was studied by thermal desorption spectroscopy and heat treatment at atmospheric pressure. A structural study of a-C:H films was performed using data taken on our films and from literature sources. The relation between cluster size and the intensity ratio of Raman peaks was studied. A comparison of the films as described by the graphitic cluster two-phase (GCT) model, the random covalent network (RCN) model and the all-sp ^2 defect graphite (DG) model was made. The properties and structure of a-C:H films are sensitively dependent on the preparation conditions. Correlations between the deposition conditions, structure, and properties are determined.

  14. Enhanced Visible Transmittance of Thermochromic VO2 Thin Films by SiO2 Passivation Layer and Their Optical Characterization

    PubMed Central

    Yu, Jung-Hoon; Nam, Sang-Hun; Lee, Ji Won; Boo, Jin-Hyo

    2016-01-01

    This paper presents the preparation of high-quality vanadium dioxide (VO2) thermochromic thin films with enhanced visible transmittance (Tvis) via radio frequency (RF) sputtering and plasma enhanced chemical vapor deposition (PECVD). VO2 thin films with high Tvis and excellent optical switching efficiency (Eos) were successfully prepared by employing SiO2 as a passivation layer. After SiO2 deposition, the roughness of the films was decreased 2-fold and a denser structure was formed. These morphological changes corresponded to the results of optical characterization including the haze, reflectance and absorption spectra. In spite of SiO2 coating, the phase transition temperature (Tc) of the prepared films was not affected. Compared with pristine VO2, the total layer thickness after SiO2 coating was 160 nm, which is an increase of 80 nm. Despite the thickness change, the VO2 thin films showed a higher Tvis value (λ 650 nm, 58%) compared with the pristine samples (λ 650 nm, 43%). This enhancement of Tvis while maintaining high Eos is meaningful for VO2-based smart window applications. PMID:28773679

  15. Gas Permeability and Permselectivity of Poly(L-Lactic Acid)/SiOx Film and Its Application in Equilibrium-Modified Atmosphere Packaging for Chilled Meat.

    PubMed

    Dong, Tungalag; Song, Shuxin; Liang, Min; Wang, Yu; Qi, Xiaojing; Zhang, Yuqin; Yun, Xueyan; Jin, Ye

    2017-01-01

    A layer of SiO x was deposited on the surface of poly(L-lactic acid) (PLLA) film to fabricate a PLLA/SiO x layered film, by plasma-enhanced chemical vapor deposition (PECVD) process. PLLA/SiO x film showed Young's modulus and tensile strength increased by 119.2% and 91.6%, respectively, over those of neat PLLA film. At 5 °C, the oxygen (O 2 ) and carbon dioxide (CO 2 ) permeability of PLLA/SiO x film decreased by 78.7% and 71.7%, respectively, and the CO 2 /O 2 permselectivity increased by 32.5%, compared to that of the neat PLLA film. When the PLLA/SiO x film was applied to the equilibrium-modified atmosphere packaging of chilled meat, the gas composition in packaging reached a dynamic equilibrium with 6% to 11% CO 2 and 8% to 13% O 2 . Combined with tea polyphenol pads, which effectively inhibited the microbial growth, the desirable color of meat was maintained and an extended shelf life of 52 d was achieved for the chilled meat. © 2016 Institute of Food Technologists®.

  16. Sol-gel-Derived nano-sized double layer anti-reflection coatings (SiO2/TiO2) for low-cost solar cell fabrication.

    PubMed

    Lee, Seung Jun; Hur, Man Gyu; Yoon, Dae Ho

    2013-11-01

    We investigate nano-sized double layer anti-reflection coatings (ARCs) using a TiO2 and SiO2 sol-gel solution process for mono-crystalline silicon solar cells. The process can be easily adapted for spraying sol-gel coatings to reduce manufacturing cost. The spray-coated SiO2/TiO2 nano-sized double layer ARCs were deposited on mono-crystalline silicon solar cells, and they showed good optical properties. The spray coating process is a lower-cost fabrication process for large-scale coating than vacuum deposition processes such as PECVD. The measured average optical reflectance (300-1200 nm) was about approximately 8% for SiO2/TiO2 nano-sized double layer ARCs. The electrical parameters of a mono-crystalline silicon solar cell and reflection losses show that the SiO2/TiO2 stacks can improve cell efficiency by 0.2% compared to a non-coated mono-crystalline silicon solar cell. In the results, good correlation between theoretical and experimental data was obtained. We expect that the sol-gel spray-coated mono-crystalline silicon solar cells have high potential for low-cost solar cell fabrication.

  17. A systematic optimization of design parameters in strained silicon waveguides to further enhance the linear electro-optic effect

    NASA Astrophysics Data System (ADS)

    Olivares, Irene; Angelova, Todora I.; Pinilla-Cienfuegos, Elena; Sanchis, Pablo

    2016-05-01

    The electro-optic Pockels effect may be generated in silicon photonics structures by breaking the crystal symmetry by means of a highly stressing cladding layer (typically silicon nitride, SiN) deposited on top of the silicon waveguide. In this work, the influence of the waveguide parameters on the strain distribution and its overlap with the optical mode to enhance the Pockels effect has been analyzed. The optimum waveguide structure have been designed based on the definition and quantification of a figure of merit. The fabrication of highly stressing SiN layers by PECVD has also been optimized to characterize the designed structures. The residual stress has been controlled during the growth process by analyzing the influence of the main deposition parameters. Therefore, two identical samples with low and high stress conditions were fabricated and electro-optically characterized to test the induced Pockels effect and the influence of carrier effects. Electro-optical modulation was only measured in the sample with the high stressing SiN layer that could be attributed to the Pockels effect. Nevertheless, the influence of carriers were also observed thus making necessary additional experiments to decouple both effects.

  18. Low Temperature Deposition of PECVD Polycrystalline Silicon Thin Films using SiF4 / SiH4 mixture

    NASA Astrophysics Data System (ADS)

    Syed, Moniruzzaman; Inokuma, Takao; Kurata, Yoshihiro; Hasegawa, Seiichi

    2016-03-01

    Polycrystalline silicon films with a strong (110) texture were prepared at 400°C by a plasma-enhanced chemical vapor deposition using different SiF4 flow rates ([SiF4] = 0-0.5 sccm) under a fixed SiH4 flow rate ([SiH4] = 1 or 0.15 sccm). The effects of the addition of SiF4 to SiH4 on the structural properties of the films were studied by Raman scattering, X-ray diffraction (XRD), Atomic force microscopy and stress measurements. For [SiH4] = 1 sccm, the crystallinity and the (110) XRD grain size monotonically increased with increasing [SiF4] and their respective maxima reach 90% and 900 Å. However, for [SiH4] = 0.15 sccm, both the crystallinity and the grain size decreased with [SiF4]. Mechanisms causing the change in crystallinity are discussed, and it was suggested that an improvement in the crystallinity, due to the addition of SiF4, is likely to be caused by the effect of a change in the surface morphology of the substrates along with the effect of in situ chemical cleaning.

  19. Substrate bias induced synthesis of flowered-like bunched carbon nanotube directly on bulk nickel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bisht, Atul; Academy of Scientific and Innovative Research; Chockalingam, S.

    2016-02-15

    Highlights: • Flowered-like bunched MWCNTs have been synthesized by MW PECVD technique. • Effect of substrate bias on the properties of MWCNT has been studied. • Minimum E{sub T} = 1.9 V/μm with β = 4770 has been obtained in the film deposited at −350 V. - Abstract: This paper reports the effect of substrate bias on the multiwalled carbon nanotube (MWCNT) deposited on nickel foil by microwave plasma enhanced chemical vapor deposition technique. The MWCNTs have been characterized by the scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy, field emission and current–voltage characteristic of themore » heterojunction diode. The SEM images exhibit unique hierarchical flowered-like bunched and conformally coated MWCNTs. Substrate bias induced ion bombardment helps in the enhancement of hydrocarbon dissociation and is responsible for flowered-like MWCNTs growth. The HRTEM micrographs show the base growth mechanism for MWCNTs. The value of turn on field for emission decreases from 5.5 to 1.9 V/μm and field enhancement factor increases from 927 to 4770, respectively, with the increase of substrate bias. The diode ideality factor of CNT/ n-Si heterojunction is evaluated as 2.4 and the on/off current ratio is found to be 7 at ±2 V, respectively.« less

  20. The role of hydrogenated amorphous silicon oxide buffer layer on improving the performance of hydrogenated amorphous silicon germanium single-junction solar cells

    NASA Astrophysics Data System (ADS)

    Sritharathikhun, Jaran; Inthisang, Sorapong; Krajangsang, Taweewat; Krudtad, Patipan; Jaroensathainchok, Suttinan; Hongsingtong, Aswin; Limmanee, Amornrat; Sriprapha, Kobsak

    2016-12-01

    Hydrogenated amorphous silicon oxide (a-Si1-xOx:H) film was used as a buffer layer at the p-layer (μc-Si1-xOx:H)/i-layer (a-Si1-xGex:H) interface for a narrow band gap hydrogenated amorphous silicon germanium (a-Si1-xGex:H) single-junction solar cell. The a-Si1-xOx:H film was deposited by plasma enhanced chemical vapor deposition (PECVD) at 40 MHz in a same processing chamber as depositing the p-type layer. An optimization of the thickness of the a-Si1-xOx:H buffer layer and the CO2/SiH4 ratio was performed in the fabrication of the a-Si1-xGex:H single junction solar cells. By using the wide band gap a-Si1-xOx:H buffer layer with optimum thickness and CO2/SiH4 ratio, the solar cells showed an improvement in the open-circuit voltage (Voc), fill factor (FF), and short circuit current density (Jsc), compared with the solar cells fabricated using the conventional a-Si:H buffer layer. The experimental results indicated the excellent potential of the wide-gap a-Si1-xOx:H buffer layers for narrow band gap a-Si1-xGex:H single junction solar cells.

  1. A study of selenium nanoparticles as charge storage element for flexible semi-transparent memory devices

    NASA Astrophysics Data System (ADS)

    Alotaibi, Sattam; Nama Manjunatha, Krishna; Paul, Shashi

    2017-12-01

    Flexible Semi-Transparent electronic memory would be useful in coming years for integrated flexible transparent electronic devices. However, attaining such flexibility and semi-transparency leads to the boundaries in material composition. Thus, impeding processing speed and device performance. In this work, we present the use of inorganic stable selenium nanoparticles (Se-NPs) as a storage element and hydrogenated amorphous carbon (a-C:H) as an insulating layer in two terminal non-volatile physically flexible and semi-transparent capacitive memory devices (2T-NMDs). Furthermore, a-C:H films can be deposited at very low temperature (<40° C) on a variety of substrates (including many kinds of plastic substrates) by an industrial technique called Plasma Enhanced Chemical Vapour Deposition (PECVD) which is available in many existing fabrication labs. Self-assembled Se-NPs has several unique features including deposition at room temperature by simple vacuum thermal evaporation process without the need for further optimisation. This facilitates the fabrication of memory on a flexible substrate. Moreover, the memory behaviour of the Se-NPs was found to be more distinct than those of the semiconductor and metal nanostructures due to higher work function compared to the commonly used semiconductor and metal species. The memory behaviour was observed from the hysteresis of current-voltage (I-V) measurements while the two distinguishable electrical conductivity states (;0; and "1") were studied by current-time (I-t) measurements.

  2. Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.

    2015-02-01

    Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  3. Ge nanocrystals embedded in ultrathin Si3N4 multilayers with SiO2 barriers

    NASA Astrophysics Data System (ADS)

    Bahariqushchi, R.; Gundogdu, Sinan; Aydinli, A.

    2017-04-01

    Multilayers of germanium nanocrystals (NCs) embedded in thin films of silicon nitride matrix separated with SiO2 barriers have been fabricated using plasma enhanced chemical vapor deposition (PECVD). SiGeN/SiO2 alternating bilayers have been grown on quartz and Si substrates followed by post annealing in Ar ambient from 600 to 900 °C. High resolution transmission electron microscopy (HRTEM) as well as Raman spectroscopy show good crystallinity of Ge confined to SiGeN layers in samples annealed at 900 °C. Strong compressive stress for SiGeN/SiO2 structures were observed through Raman spectroscopy. Size, as well as NC-NC distance were controlled along the growth direction for multilayer samples by varying the thickness of bilayers. Visible photoluminescence (PL) at 2.3 and 3.1 eV with NC size dependent intensity is observed and possible origin of PL is discussed.

  4. SEMICONDUCTOR TECHNOLOGY Development of spin-on-glass process for triple metal interconnects

    NASA Astrophysics Data System (ADS)

    Li, Peng; Wenbin, Zhao; Guozhang, Wang; Zongguang, Yu

    2010-12-01

    Spin-on-glass (SOG), an interlayer dielectric material applied in liquid form to fill narrow gaps in the sub-dielectric surface and thus conducive to planarization, is an alternative to silicon dioxide (SiO2) deposited using PECVD processes. However, its inability to adhere to metal and problems such as cracking prevent the easy application of SOG technology to provide an interlayer dielectric in multilevel metal interconnect circuits, particularly in university processing labs. This paper will show that a thin layer of CVD SiO2 and a curing temperature below the sintering temperature of the metal interconnect layer will promote adhesion, reduce gaps, and prevent cracking. Electron scanning microscope analysis has been used to demonstrate the success of the improved technique. This optimized process has been used in batches of double-poly, triple-metal CMOS wafer fabrication to date.

  5. Spectroscopic Ellipsometry Studies of Thin Film a-Si:H/nc-Si:H Micromorph Solar Cell Fabrication in the p-i-n Superstrate Configuration

    NASA Astrophysics Data System (ADS)

    Huang, Zhiquan

    Spectroscopic ellipsometry (SE) is a non-invasive optical probe that is capable of accurately and precisely measuring the structure of thin films, such as their thicknesses and void volume fractions, and in addition their optical properties, typically defined by the index of refraction and extinction coefficient spectra. Because multichannel detection systems integrated into SE instrumentation have been available for some time now, the data acquisition time possible for complete SE spectra has been reduced significantly. As a result, real time spectroscopic ellipsometry (RTSE) has become feasible for monitoring thin film nucleation and growth during the deposition of thin films as well as during their removal in processes of thin film etching. Also because of the reduced acquisition time, mapping SE is possible by mounting an SE instrument with a multichannel detector onto a mechanical translation stage. Such an SE system is capable of mapping the thin film structure and its optical properties over the substrate area, and thereby evaluating the spatial uniformity of the component layers. In thin film photovoltaics, such structural and optical property measurements mapped over the substrate area can be applied to guide device optimization by correlating small area device performance with the associated local properties. In this thesis, a detailed ex-situ SE study of hydrogenated amorphous silicon (a-Si:H) thin films and solar cells prepared by plasma enhanced chemical vapor deposition (PECVD) has been presented. An SE analysis procedure with step-by-step error minimization has been applied to obtain accurate measures of the structural and optical properties of the component layers of the solar cells. Growth evolution diagrams were developed as functions of the deposition parameters in PECVD for both p-type and n-type layers to characterize the regimes of accumulated thickness over which a-Si:H, hydrogenated nanocrystalline silicon (nc-Si:H) and mixed phase (a+nc)-Si:H thin films are obtained. The underlying materials for these depositions were newly-deposited intrinsic a-Si:H layers on thermal oxide coated crystalline silicon wafers, designed to simulate specific device configurations. As a result, these growth evolution diagrams can be applied to both p-i-n and n-i-p solar cell optimization. In this thesis, the n-layer growth evolution diagram expressed in terms of hydrogen dilution ratio was applied in correlations with the performance of p-i-n single junction devices in order to optimize these devices. Moreover, ex-situ mapping SE was also employed over the area of multilayer structures in order to achieve better statistics for solar cell optimization by correlating structural parameters locally with small area solar cell performance parameters. In the study of (a-Si:H p-i-n)/(nc-Si:H p-i-n) tandem solar cells, RTSE was successfully applied to monitor the fabrication of the top cell, and efforts to optimize the nanocrystalline p-layer and i-layer of the bottom cell were initiated.

  6. Extraction of the defect density of states in microcrystalline silicon from experimental results and simulation studies

    NASA Astrophysics Data System (ADS)

    Tibermacine, T.; Merazga, A.; Ledra, M.; Ouhabab, N.

    2015-09-01

    The constant photocurrent method in the ac-mode (ac-CPM) is used to determine the defect density of states (DOS) in hydrogenated microcrystalline silicon (μc-Si:H) prepared by very high frequency plasma-enhanced chemical vapor deposition (VHF-PECVD). The absorption coefficient spectrum (ac-α(hv)), is measured under ac-CPM conditions at 60 Hz. The measured ac-α(hv) is converted by the CPM spectroscopy into a DOS distribution covering a portion in the lower energy range of occupied states. We have found that the density of valence band-tail states falls exponentially towards the gap with a typical band-tail width of 63 meV. Independently, computer simulations of the ac-CPM are developed using a DOS model that is consistent with the measured ac-α(hv) in the present work and a previously measured transient photocurrent (TPC) for the same material. The DOS distribution model suggested by the measurements in the lower and in the upper part of the energy-gap, as well as by the numerical modelling in the middle part of the energy-gap, coincide reasonably well with the real DOS distribution in hydrogenated microcrystalline silicon because the computed ac-α(hv) is found to agree satisfactorily with the measured ac-α(hv).

  7. High-efficiency screen-printed belt co-fired solar cells on cast multicrystalline silicon

    NASA Astrophysics Data System (ADS)

    Upadhyaya, Ajay; Sheoran, Manav; Rohatgi, Ajeet

    2005-01-01

    High-efficiency 4cm2 untextured screen-printed solar cells were achieved on cast multicrystalline silicon. These cells were fabricated using a simple manufacturable process involving POCl3 diffusion for emitter, PECVD SiNx:H deposition for a single-layer antireflection coating and rapid co-firing of Ag grid, Al backcontact, and Al-BSF in a belt furnace. An optimized process sequence contributed to effective impurity gettering and defect passivation, resulting in high average bulk lifetimes in the range of 100-250 μs after the cell processing. The contact firing contributed to good ohmic contacts with low series resistance of <1Ωcm2, low backsurface recombination velocity of <500cm/s, and high fill factors of ˜0.78. These parameters resulted in 16.9% and 16.8% efficient untextured screen-printed cells with a single layer AR coating on heat exchanger method (HEM) and Baysix mc-Si. The identical process applied to the untextured float zone wafers gave an efficiency of 17.2%. The same optimized co-firing cycle, when applied to HEM mc-Si wafers with starting lifetimes varying over a wide range of 4-70 μs, resulted in cell efficiencies in the range of 16.5%-17%.

  8. Overlay degradation induced by film stress

    NASA Astrophysics Data System (ADS)

    Huang, Chi-hao; Liu, Yu-Lin; Luo, Shing-Ann; Yang, Mars; Yang, Elvis; Hung, Yung-Tai; Luoh, Tuung; Yang, T. H.; Chen, K. C.

    2017-03-01

    The semiconductor industry has continually sought the approaches to produce memory devices with increased memory cells per memory die. One way to meet the increasing storage capacity demand and reduce bit cost of NAND flash memories is 3D stacked flash cell array. In constructing 3D NAND flash memories, increasing the number of stacked layers to build more memory cell number per unit area necessitates many high-aspect-ratio etching processes accordingly the incorporation of thick and unique etching hard-mask scheme has been indispensable. However, the ever increasingly thick requirement on etching hard-mask has made the hard-mask film stress control extremely important for maintaining good process qualities. The residual film stress alters the wafer shape consequently several process impacts have been readily observed across wafer, such as wafer chucking error on scanner, film peeling, materials coating and baking defects, critical dimension (CD) non-uniformity and overlay degradation. This work investigates the overlay and residual order performance indicator (ROPI) degradation coupling with increasingly thick advanced patterning film (APF) etching hard-mask. Various APF films deposited by plasma enhanced chemical vapor deposition (PECVD) method under different deposition temperatures, chemicals combinations, radio frequency powers and chamber pressures were carried out. And -342MPa to +80MPa film stress with different film thicknesses were generated for the overlay performance study. The results revealed the overlay degradation doesn't directly correlate with convex or concave wafer shapes but the magnitude of residual APF film stress, while increasing the APF thickness will worsen the overlay performance and ROPI strongly. High-stress APF film was also observed to enhance the scanner chucking difference and lead to more serious wafer to wafer overlay variation. To reduce the overlay degradation from ever increasingly thick APF etching hard-mask, optimizing the film stress of APF is the most effective way and high order overlay compensation is also helpful.

  9. Simple realization of efficient barrier performance of a single layer silicon nitride film via plasma chemistry.

    PubMed

    Lee, Jun Suk; Sahu, Bibhuti Bhusan; Han, Jeon Geon

    2016-11-30

    Due to the problem of degradation by moisture or oxygen, there is growing interest in efficient gas diffusion barriers for organic optoelectronic devices. Additionally, for the continuous and long-term operation of a device, dedicated flexible thin film encapsulation is required, which is the foremost challenge. Many efforts are being undertaken in the plasma assisted deposition process control for the optimization of film properties. Control of the plasma density along with the energy of the principal plasma species is critical to inducing alteration of the plasma reactivity, chemistry, and film properties. Here, we have used the radio frequency (RF) plasma enhanced chemical vapor deposition (PECVD) technique to deposit amorphous silicon nitride (SiN x ) barrier films onto a plastic substrate at different pressures. A large part of our efforts is devoted to a detailed study of the process parameters controlling the plasma treatment. Numerous plasma diagnostic techniques combined with various characterization tools are purposefully used to characterize and investigate the plasma environment and the associated film properties. This contribution also reports a study of the correlations between the plasma chemistry and the chemical, mechanical, barrier, and optical properties of the deposited films. The data reveal that the film possesses a very low stress for the condition where the net energy imparted on the substrate is at a minimum. Simultaneously, a relatively high ion flux and high energy of the ions impinging on the film growth surfaces are crucial for controlling the film stress and the resulting barrier properties.

  10. Revetements antireflet-passivation a base de nitrure de silicium PECVD pour cellules solaires triple-jonction III-V/ Ge

    NASA Astrophysics Data System (ADS)

    Homier, Ram

    Dans le contexte environnemental actuel, le photovoltaïque bénéficie de l'augmentation des efforts de recherche dans le domaine des énergies renouvelables. Pour réduire le coût de la production d'électricité par conversion directe de l'énergie lumineuse en électricité, le photovoltaïque concentré est intéressant. Le principe est de concentrer une grande quantité d'énergie lumineuse sur des petites surfaces de cellules solaires multi-jonction à haute efficacité. Lors de la fabrication d'une cellule solaire, il est essentiel d'inclure une méthode pour réduire la réflexion de la lumière à la surface du dispositif. Le design d'un revêtement antireflet (ARC) pour cellules solaires multi-jonction présente des défis à cause de la large bande d'absorption et du besoin d'égaliser le courant produit par chaque sous-cellule. Le nitrure de silicium déposé par PECVD en utilisant des conditions standards est largement utilisé dans l'industrie des cellules solaires à base de silicium. Cependant, ce diélectrique présente de l'absorption dans la plage des courtes longueurs d'onde. Nous proposons l'utilisation du nitrure de silicium déposé par PECVD basse fréquence (LFSiN) optimisé pour avoir un haut indice de réfraction et une faible absorption optique pour l'ARC pour cellules solaires triple-jonction III-V/Ge. Ce matériau peut aussi servir de couche de passivation/encapsulation. Les simulations montrent que l'ARC double couche SiO2/LFSiN peut être très efficace pour réduire les pertes par réflexion dans la plage de longueurs d'onde de la sous-cellule limitante autant pour des cellules solaires triple-jonction limitées par la sous-cellule du haut que pour celles limitées par la sous-cellule du milieu. Nous démontrons aussi que la performance de la structure est robuste par rapport aux fluctuations des paramètres des couches PECVD (épaisseurs, indice de réfraction). Mots-clés : Photovoltaïque concentré (CPV), cellules solaires multi-jonction (MJSC), revêtement antireflet (ARC), passivation des semiconducteurs III-V, nitrure de silicium (Si"Ny), PECVD.

  11. Effects of rf power on chemical composition and surface roughness of glow discharge polymer films

    NASA Astrophysics Data System (ADS)

    Zhang, Ling; He, Xiaoshan; Chen, Guo; Wang, Tao; Tang, Yongjian; He, Zhibing

    2016-03-01

    The glow discharge polymer (GDP) films for laser fusion targets were successfully fabricated by plasma enhanced chemical vapor deposition (PECVD) at different radio frequency (rf) powers. The films were deposited using trans-2-butene (T2B) mixed with hydrogen as gas sources. The composition and state of plasma were diagnosed by quadrupole mass spectrometer (QMS) and Langmuir probe during the deposition process. The composition, surface morphology and roughness were investigated by Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and white-light interferometer (WLI), respectively. Based on these observation and analyses, the growth mechanism of defects in GDP films were studied. The results show that, at low rf power, there is a larger probability for secondary polymerization and formation of multi-carbon C-H species in the plasma. In this case, the surface of GDP film turns to be cauliflower-like. With the increase of rf power, the degree of ionization is high, the relative concentration of smaller-mass hydrocarbon species increases, while the relative concentration of larger-mass hydrocarbon species decreases. At higher rf power, the energy of smaller-mass species are high and the etching effects are strong correspondingly. The GDP film's surface roughness shows a trend of decrease firstly and then increase with the increasing rf power. At rf power of 30 W, the surface root-mean-square roughness (Rq) drops to the lowest value of 12.8 nm, and no ;void; defect was observed.

  12. Tungsten Deposition on Graphite using Plasma Enhanced Chemical Vapour Deposition.

    NASA Astrophysics Data System (ADS)

    Sharma, Uttam; Chauhan, Sachin S.; Sharma, Jayshree; Sanyasi, A. K.; Ghosh, J.; Choudhary, K. K.; Ghosh, S. K.

    2016-10-01

    The tokamak concept is the frontrunner for achieving controlled thermonuclear reaction on earth, an environment friendly way to solve future energy crisis. Although much progress has been made in controlling the heated fusion plasmas (temperature ∼ 150 million degrees) in tokamaks, technological issues related to plasma wall interaction topic still need focused attention. In future, reactor grade tokamak operational scenarios, the reactor wall and target plates are expected to experience a heat load of 10 MW/m2 and even more during the unfortunate events of ELM's and disruptions. Tungsten remains a suitable choice for the wall and target plates. It can withstand high temperatures, its ductile to brittle temperature is fairly low and it has low sputtering yield and low fuel retention capabilities. However, it is difficult to machine tungsten and hence usages of tungsten coated surfaces are mostly desirable. To produce tungsten coated graphite tiles for the above-mentioned purpose, a coating reactor has been designed, developed and made operational at the SVITS, Indore. Tungsten coating on graphite has been attempted and successfully carried out by using radio frequency induced plasma enhanced chemical vapour deposition (rf -PECVD) for the first time in India. Tungsten hexa-fluoride has been used as a pre-cursor gas. Energy Dispersive X-ray spectroscopy (EDS) clearly showed the presence of tungsten coating on the graphite samples. This paper presents the details of successful operation and achievement of tungsten coating in the reactor at SVITS.

  13. Improved opto-electronic properties of silicon heterojunction solar cells with SiO x /Tungsten-doped indium oxide double anti-reflective coatings

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Zhou, Jie; Bian, Jiantao; Zhang, Liping; Liu, Yucheng; Shi, Jianhua; Meng, Fanying; Liu, Jinning; Liu, Zhengxin

    2017-08-01

    Amorphous SiO x was prepared by plasma enhanced chemical vapor deposition (PECVD) to form SiO x /tungsten-doped indium oxide (IWO) double anti-reflective coatings for silicon heterojunction (SHJ) solar cell. The sheet resistance of SiO x /IWO stacks decreases due to plasma treatment during deposition process, which means thinner IWO film would be deposited for better optical response. However, the comparisons of three anti-reflective coating (ARC) structures reveal that SiO x film limits carier transport and the path of IWO-SiO x -Ag structure is non-conductive. The decrease of sheet resistance is defined as pseudo conductivity. IWO film capping with SiO x allows observably reduced reflectance and better response in 300-400 and 600-1200 nm wavelength ranges. Compared with IWO single ARC, the average reflection is reduced by 1.65% with 70 nm SiO x /80 nm IWO double anti-reflective coatings (DARCs) in 500-1200 nm wavelength range, leading to growing external quantum efficiency response, short circuit current density (J sc), and efficiency. After well optimization of SiO x /IWO stacks, an impressive efficiency of 23.08% is obtained with high J sc and without compromising open circuit voltage (V oc) and fill factor. SiO x /IWO DARCs provide better anti-reflective properties over a broad range of wavelength, showing promising application for SHJ solar cells.

  14. Paramagnetic defects and charge trapping behavior of ZrO2 films deposited on germanium by plasma-enhanced CVD

    NASA Astrophysics Data System (ADS)

    Mahata, C.; Bera, M. K.; Bose, P. K.; Maiti, C. K.

    2009-02-01

    Internal photoemission and magnetic resonance studies have been performed to investigate the charge trapping behavior and chemical nature of defects in ultrathin (~14 nm) high-k ZrO2 dielectric films deposited on p-Ge (1 0 0) substrates at low temperature (<200 °C) by plasma-enhanced chemical vapor deposition (PECVD) in a microwave (700 W, 2.45 GHz) plasma at a pressure of ~65 Pa. Both the band and defect-related electron states have been characterized using electron paramagnetic resonance, internal photoemission, capacitance-voltage and current-voltage measurements under UV illumination. Capacitance-voltage and photocurrent-voltage measurements were used to determine the centroid of oxide charge within the high-k gate stack. The observed shifts in photocurrent response of the Al/ZrO2/GeO2/p-Ge metal-insulator-semiconductor (MIS) capacitors indicate the location of the centroids to be within the ZrO2 dielectric near to the gate electrode. Moreover, the measured flat band voltage and photocurrent shifts also indicate a large density of traps in the dielectric. The impact of plasma nitridation on the interfacial quality of the oxides has been investigated. Different N sources, such as NO and NH3, have been used for nitrogen engineering. Oxynitride samples show a lower defect density and trapping over the non-nitrided samples. The charge trapping and detrapping properties of MIS capacitors under stressing in constant current and voltage modes have been investigated in detail.

  15. Encapsulation of the heteroepitaxial growth of wide band gap γ-CuCl on silicon substrates

    NASA Astrophysics Data System (ADS)

    Lucas, F. O.; O'Reilly, L.; Natarajan, G.; McNally, P. J.; Daniels, S.; Taylor, D. M.; William, S.; Cameron, D. C.; Bradley, A. L.; Miltra, A.

    2006-01-01

    γ-CuCl semiconductor material has been identified as a candidate material for the fabrication of blue-UV optoelectronic devices on Si substrates due to its outstanding electronic, lattice and optical properties. However, CuCl thin films oxidise completely into oxyhalides of Cu II within a few days of exposure to air. Conventional encapsulation of thin γ-CuCl by sealed glass at a deposition/curing temperature greater than 250 °C cannot be used because CuCl interacts chemically with Si substrates when heated above that temperature. In this study we have investigated the behaviour of three candidate dielectric materials for use as protective layers for the heteroepitaxial growth of γ-CuCl on Si substrates: SiO 2 deposited by plasma-enhanced chemical vapour deposition (PECVD), organic polysilsesquioxane-based spin on glass material (PSSQ) and cyclo olefin copolymer (COC) thermoplastic-based material. The optical properties (UV/Vis and IR) of the capped luminescent CuCl films were studied as a function of time, up to 28 days and compared with bare uncapped films. The results clearly show the efficiency of the protective layers. Both COC and the PSSQ layer prevented CuCl film from oxidising while SiO 2 delayed the effect of oxidation. The dielectric constant of the three protective layers was evaluated at 1 MHz to be 2.3, 3.6 and 6.9 for C0C, SiO 2 and PSSQ, respectively.

  16. The Preparation and Microstructure of Nanocrystal 3C-SiC/ZrO2 Bilayer Films

    PubMed Central

    Ye, Chao; Ran, Guang; Zhou, Wei; Qu, Yazhou; Yan, Xin; Cheng, Qijin; Li, Ning

    2017-01-01

    The nanocrystal 3C-SiC/ZrO2 bilayer films that could be used as the protective coatings of zirconium alloy fuel cladding were prepared on a single-crystal Si substrate. The corresponding nanocrystal 3C-SiC film and nanocrystal ZrO2 film were also dividedly synthesized. The microstructure of nanocrystal films was analyzed by grazing incidence X-ray diffraction (GIXRD) and cross-sectional transmission electron microscopy (TEM). The 3C-SiC film with less than 30 nm crystal size was synthesized by Plasma Enhanced Chemical Vapor Deposition (PECVD) and annealing. The corresponding formation mechanism of some impurities in SiC film was analyzed and discussed. An amorphous Zr layer about 600 nm in width was first deposited by magnetron sputtering and then oxidized to form a nanocrystal ZrO2 layer during the annealing process. The interface characteristics of 3C-SiC/ZrO2 bilayer films prepared by two different processes were obviously different. SiZr and SiO2 compounds were formed at the interface of 3C-SiC/ZrO2 bilayer films. A corrosion test of 3C-SiC/ZrO2 bilayer films was conducted to qualitatively analyze the surface corrosion resistance and the binding force of the interface. PMID:29168782

  17. Investigation of low leakage current radiation detectors on n-type 4H-SiC epitaxial layers

    NASA Astrophysics Data System (ADS)

    Nguyen, Khai V.; Chaudhuri, Sandeep K.; Mandal, Krishna C.

    2014-09-01

    The surface leakage current of high-resolution 4H-SiC epitaxial layer Schottky barrier detectors has been improved significantly after surface passivations of 4H-SiC epitaxial layers. Thin (nanometer range) layers of silicon dioxide (SiO2) and silicon nitride (Si3N4) were deposited on 4H-SiC epitaxial layers using plasma enhanced chemical vapor deposition (PECVD) on 20 μm thick n-type 4H-SiC epitaxial layers followed by the fabrication of large area (~12 mm2) Schottky barrier radiation detectors. The fabricated detectors have been characterized through current-voltage (I-V), capacitance-voltage (C-V), and alpha pulse height spectroscopy measurements; the results were compared with that of detectors fabricated without surface passivations. Improved energy resolution of ~ 0.4% for 5486 keV alpha particles was observed after passivation, and it was found that the performance of these detectors were limited by the presence of macroscopic and microscopic crystal defects affecting the charge transport properties adversely. Capacitance mode deep level transient studies (DLTS) revealed the presence of a titanium impurity related shallow level defects (Ec-0.19 eV), and two deep level defects identified as Z1/2 and Ci1 located at Ec-0.62 and ~ Ec-1.40 eV respectively.

  18. Pressure sensing in high-refractive-index liquids using long-period gratings nanocoated with silicon nitride.

    PubMed

    Smietana, Mateusz; Bock, Wojtek J; Mikulic, Predrag; Chen, Jiahua

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nD>1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n>2.2 at λ=1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters.

  19. Defect prevention in silica thin films synthesized using AP-PECVD for flexible electronic encapsulation

    NASA Astrophysics Data System (ADS)

    Elam, Fiona M.; Starostin, Sergey A.; Meshkova, Anna S.; van der Velden-Schuermans, Bernadette C. A. M.; van de Sanden, Mauritius C. M.; de Vries, Hindrik W.

    2017-06-01

    Industrially and commercially relevant roll-to-roll atmospheric pressure-plasma enhanced chemical vapour deposition was used to synthesize smooth, 80 nm silica-like bilayer thin films comprising a dense ‘barrier layer’ and comparatively porous ‘buffer layer’ onto a flexible polyethylene 2,6 naphthalate substrate. For both layers, tetraethyl orthosilicate was used as the precursor gas, together with a mixture of nitrogen, oxygen and argon. The bilayer films demonstrated exceptionally low effective water vapour transmission rates in the region of 6.1  ×  10-4 g m-2 d-1 (at 40 °C, 90% relative humidity), thus capable of protecting flexible photovoltaics and thin film transistors from degradation caused by oxygen and water. The presence of the buffer layer within the bilayer architecture was mandatory in order to achieve the excellent encapsulation performance. Atomic force microscopy in addition to solvent permeation measurements, confirmed that the buffer layer prevented the formation of performance-limiting defects in the bilayer thin films, which likely occur as a result of excessive plasma-surface interactions during the deposition process. It emerged that the primary function of the buffer layer was therefore to act as a protective coating for the flexible polymer substrate material.

  20. Stabilite thermique de filtres optiques interferentiels quart d'onde et a gradient d'indice pour l'astronomie

    NASA Astrophysics Data System (ADS)

    de Denus-Baillargeon, Marie-Maude

    2007-05-01

    Light coming from far-away astronomical objects carries a variety of information ranging from chemical composition to distance and kinematics. Amongst these astronomical bodies, galaxies are widely studied objects: they are slowly rotating entities made of gas, stars and dark matter, and their properties are broadly distributed. Rotation velocities of galaxies yield very important information, namely the mass enclosed in the rotation radius, and thus the respective distribution of luminous and dark matter. To determine the rotation velocity, the Doppler effect is a convenient tool. As an emission or absorption line shifts from its reference position, it is possible to calculate the approaching or receding velocity. The maximal rotation velocity difference between the approaching and receding sides is at most a few hundreds of km/s, which translates in a few nm shift from the rest wavelength at most, thus calling for very precise spectral information.Due to their distance, the objects observed with astronomical instrumentation are very faint. Optical instruments for astronomy thus require high throughput optical film systems, particularly those based on notch/bandpass filters with low/high in-band transmission and high/low out-of-band blocking power. This calls for very high film uniformity and high precision of film monitoring and process control. Such filters must also survive extreme environmental conditions ranging from fresh and humid climate to cryogenic temperatures.In the present work, we describe all steps leading from filter design to filter fabrication, process monitoring, and characterization. In particular, we focus on the comparison of the performance of graded-index (rugate) filters and quarter-wave stack narrowband filters deposited by plasma enhanced chemical vapor deposition and dual ion beam sputtering using SiO 2 , TiO 2 and Ta 2 O 5.Optical and mechanical properties of the individual films have been evaluated and are consistent with those found in the litterature reporting on the same tech niques. Namely, we find values of compressive stress of 160 and 410 MPa for layers of Ta 2 O 5 and SiO 2 deposited by DIBS and of 150 and 60 MPa for PECVD- deposited SiO 2 /TiO 2 mixtures rich in SiO 2 and TiO 2 respectively. Young's modulus of 109, 73, 55 and 94 GPa and refraction index of 2,13, 1,49, 1,59 and 2,09 have also been measured for those same materials. Properties of materials mixtures behave qualitatively as the ones reported in references on the subject.Attention is paid to the effect of temperature on the variation of the central wavelength and bandpass width. The results are discussed in terms of film material and filter design. We report variations of ~ =0,04°C for multilayers DIBS-produced filters and -0,0041/°C and 0,19°C for PECVD-deposited quarter- wave stacks and rugate filters respectively. These results match the predictions made by Takashashi's formulae. The bandwidth varies as well with temperature, and the extent of the variation seems related to the number of cavities in the filter. Further work is still needed in order to clearly establish the relation between the number of cavities and the bandpass' narrowing/widening with temperature.

  1. Stabilite thermique de filtres optiques interferentiels quart d'onde et a gradient d'indice pour l'astronomie

    NASA Astrophysics Data System (ADS)

    de Denus-Baillargeon, Marie-Maude

    Light coming from far-away astronomical objects carries a variety of information ranging from chemical composition to distance and kinematics. Amongst these astronomical bodies, galaxies are widely studied objects: they are slowly rotating entities made of gas, stars and dark matter, and their properties are broadly distributed. Rotation velocities of galaxies yield very important information, namely the mass enclosed in the rotation radius, and thus the respective distribution of luminous and dark matter. To determine the rotation velocity, the Doppler effect is a convenient tool. As an emission or absorption line shifts from its reference position, it is possible to calculate the approaching or receding velocity. The maximal rotation velocity difference between the approaching and receding sides is at most a few hundreds of km/s, which translates in a few nm shift from the rest wavelength at most, thus calling for very precise spectral information. Due to their distance, the objects observed with astronomical instrumentation are very faint. Optical instruments for astronomy thus require high throughput optical film systems, particularly those based on notch/bandpass filters with low/high in-band transmission and high/low out-of-band blocking power. This calls for very high film uniformity and high precision of film monitoring and process control. Such filters must also survive extreme environmental conditions ranging from fresh and humid climate to cryogenic temperatures. In the present work, we describe all steps leading from filter design to filter fabrication, process monitoring, and characterization. In particular, we focus on the comparison of the performance of graded-index (rugate) filters and quarter-wave stack narrowband filters deposited by plasma enhanced chemical vapor deposition and dual ion beam sputtering using SiO 2 , TiO 2 and Ta 2 O 5. Optical and mechanical properties of the individual films have been evaluated and are consistent with those found in the litterature reporting on the same techniques. Namely, we find values of compressive stress of 160 and 410 MPa for layers of Ta 2 O 5 and SiO 2 deposited by DIBS and of 150 and 60 MPa for PECVD- deposited SiO 2 /TiO 2 mixtures rich in SiO 2 and TiO 2 respectively. Young's modulus of 109, 73, 55 and 94 GPa and refraction index of 2,13, 1,49, 1,59 and 2,09 have also been measured for those same materials. Properties of materials mixtures behave qualitatively as the ones reported in references on the subject. Attention is paid to the effect of temperature on the variation of the central wavelength and bandpass width. The results are discussed in terms of film material and filter design. We report variations of ~ =0,04Å/°C for multilayers DIBS-produced filters and -0,0041/°C and 0,19Å/°C for PECVD-deposited quarter- wave stacks and rugate filters respectively. These results match the predictions made by Takashashi's formulae. The bandwidth varies as well with temperature, and the extent of the variation seems related to the number of cavities in the filter. Further work is still needed in order to clearly establish the relation between the number of cavities and the bandpass' narrowing/widening with temperature.

  2. Insulators obtained by electron cyclotron resonance plasmas on Si or GaAs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diniz, J.A.; Doi, I.; Swart, J.W

    2003-03-15

    Silicon oxynitride (SiO{sub x}N{sub y}) and nitride (SiN{sub x}) insulators have been deposited or grown (with or without silane in the gas mixture, respectively) by electron cyclotron resonance (ECR) plasmas on Si and/or GaAs substrates at room temperature (20 deg. C) and low pressures (up to 10 mTorr). Chemical bonding characteristics of the SiO{sub x}N{sub y} and SiN{sub x} films were evaluated using Fourier transform infrared spectrometry (FTIR). The profile measurements determined the film thickness, the deposition (or oxidation) rate and the etch rates in buffered HF (BHF). The refractive indexes and the thicknesses were determined by ellipsometry. The effectivemore » interface charge densities were determined by capacitance-voltage (C-V) measurements. With these processes and analyses, different films were obtained and optimized. Suitable gate insulators for metal-insulator-semiconductor (MIS) devices with low interface charge densities were developed: (a) SiN{sub x} films deposited by ECR-chemical vapor deposition (ECR-PECVD) on GaAs substrates; (b) SiO{sub x}N{sub y} insulators obtained by low-energy molecular nitrogen ion ({sup 28}N{sub 2}{sup +}) implantation (energy of 5 keV and dose of 1x10{sup 15}/cm{sup 2}) in Si substrates prior to high-density O{sub 2} ECR plasma oxidation; and (c) SiO{sub x}N{sub y} insulators grown (without silane in the gas mixture) by O{sub 2}/N{sub 2}/Ar ECR plasma 'oxynitridation'. Furthermore, some SiN{sub x} films also present very good masking characteristics for local oxidation of silicon process.« less

  3. Towards lightweight and flexible high performance nanocrystalline silicon solar cells through light trapping and transport layers

    NASA Astrophysics Data System (ADS)

    Gray, Zachary R.

    This thesis investigates ways to enhance the efficiency of thin film solar cells through the application of both novel nano-element array light trapping architectures and nickel oxide hole transport/electron blocking layers. Experimental results independently demonstrate a 22% enhancement in short circuit current density (JSC) resulting from a nano-element array light trapping architecture and a ˜23% enhancement in fill factor (FF) and ˜16% enhancement in open circuit voltage (VOC) resulting from a nickel oxide transport layer. In each case, the overall efficiency of the device employing the light trapping or transport layer was superior to that of the corresponding control device. Since the efficiency of a solar cell scales with the product of JSC, FF, and VOC, it follows that the results of this thesis suggest high performance thin film solar cells can be realized in the event light trapping architectures and transport layers can be simultaneously optimized. The realizations of these performance enhancements stem from extensive process optimization for numerous light trapping and transport layer fabrication approaches. These approaches were guided by numerical modeling techniques which will also be discussed. Key developments in this thesis include (1) the fabrication of nano-element topographies conducive to light trapping using various fabrication approaches, (2) the deposition of defect free nc-Si:H onto structured topographies by switching from SiH4 to SiF 4 PECVD gas chemistry, and (3) the development of the atomic layer deposition (ALD) growth conditions for NiO. Keywords: light trapping, nano-element array, hole transport layer, electron blocking layer, nickel oxide, nanocrystalline silicon, aluminum doped zinc oxide, atomic layer deposition, plasma enhanced chemical vapor deposition, electron beam lithography, ANSYS HFSS.

  4. Characterisation of DLC films deposited using titanium isopropoxide (TIPOT) at different flow rates.

    PubMed

    Said, R; Ali, N; Ghumman, C A A; Teodoro, O M N D; Ahmed, W

    2009-07-01

    In recent years, there has been growing interest in the search for advanced biomaterials for biomedical applications, such as human implants and surgical cutting tools. It is known that both carbon and titanium exhibit good biocompatibility and have been used as implants in the human body. It is highly desirable to deposit biocompatible thin films onto a range of components in order to impart biocompatibility and to minimise wear in implants. Diamond like carbon (DLC) is a good candidate material for achieving biocompatibility and low wear rates. In this study, thin films of diamond-like-carbon DLC were deposited onto stainless steel (316) substrates using C2H2, argon and titanium isopropoxide (TIPOT) precursors. Argon was used to generate the plasma in the plasma enhanced vapour deposition (PECVD) system. A critical coating feature governing the performance of the component during service is film thickness. The as-grown films were in the thickness range 90-100 nm and were found to be dependent on TIPOT flow rate. Atomic force microscopy (AFM) was used to characterise the surface roughness of the samples. As the flow rate of TIPOT increased the average roughness was found to increase in conjunction with the film thickness. Raman spectroscopy was used to investigate the chemical structure of amorphous carbon matrix. Surface tension values were calculated using contact angle measurements. In general, the trend of the surface tension results exhibited an opposite trend to that of the contact angle. The elemental composition of the samples was characterised using a VG ToF SIMS (IX23LS) instrument and X-ray photoelectron spectroscopy (XPS). Surprisingly, SIMS and XPS results showed that the DLC samples did not show evidence of titanium since no peaks representing to titanium appeared on the SIMS/XPS spectra.

  5. Powder free PECVD epitaxial silicon by plasma pulsing or increasing the growth temperature

    NASA Astrophysics Data System (ADS)

    Chen, Wanghua; Maurice, Jean-Luc; Vanel, Jean-Charles; Cabarrocas, Pere Roca i.

    2018-06-01

    Crystalline silicon thin films are promising candidates for low cost and flexible photovoltaics. Among various synthesis techniques, epitaxial growth via low temperature plasma-enhanced chemical vapor deposition is an interesting choice because of two low temperature related benefits: low thermal budget and better doping profile control. However, increasing the growth rate is a tricky issue because the agglomeration of clusters required for epitaxy leads to powder formation in the plasma. In this work, we have measured precisely the time evolution of the self-bias voltage in silane/hydrogen plasmas at millisecond time scale, for different values of the direct-current bias voltage applied to the radio frequency (RF) electrode and growth temperatures. We demonstrate that the decisive factor to increase the epitaxial growth rate, i.e. the inhibition of the agglomeration of plasma-born clusters, can be obtained by decreasing the RF OFF time or increasing the growth temperature. The influence of these two parameters on the growth rate and epitaxial film quality is also presented.

  6. Enhanced water repellency of surfaces coated with multiscale carbon structures

    NASA Astrophysics Data System (ADS)

    Marchalot, Julien; Ramos, Stella. M. M.; Pirat, Christophe; Journet, Catherine

    2018-01-01

    Low cost and well characterized superhydrophobic surfaces are frequently required for industrial applications. Materials are commonly structured at the micro or nano scale. Surfaces decorated with nanotube derivatives synthesized by plasma enhanced chemical vapor deposition (PECVD) are of particular interest, since suitable modifications in the growth parameters can lead to numerous designs. In this article, we present surfaces that are selected for their specific wetting features with patterns ranging from dense forests to jungles with concave (re-entrant) surface such as flake-like multiscale roughness. Once these surfaces are functionalized adequately, their wetting properties are investigated. Their ability to sustain a superhydrophobic state for sessile water drops is examined. Finally, we propose a design to achieve a robust so-called ;Fakir; state, even for micrometer-sized drops, whereas with classic nanotubes forests it is not achievable. Thus, the drop remains on the apex of the protrusions with a high contact angle and a low contact angle hysteresis, while the surface features demonstrate good mechanical resistance against capillary forces.

  7. Correlation of TEM data with confined phonons to determine strain and size of Ge nanocrystals embedded in SixNy matrix

    NASA Astrophysics Data System (ADS)

    Bahariqushchi, Rahim; Gündoğdu, Sinan; Aydinli, Atilla

    2017-11-01

    Models that use phonon confinement fail to provide consistent results for nanocrystal sizes in differing dielectric matrices due to varying stress experienced by nanocrystals in different dielectric environments. In cases where direct measurement of stress is difficult, the possibility of stress saturation as a function of size opens up a window for the use of phonon confinement to determine size. We report on a test of this possibility in Ge: SixNy system. Ge nanocrystals (NCs) embedded in silicon nitride matrix have been fabricated using plasma enhanced chemical vapor deposition (PECVD) followed by post annealing in Ar ambient. Nanocrystal size dependence of Raman spectra was studied taking into account associated stress and an improved phonon confinement approach. Our analysis show same stress for NCs which have sizes below 7.0 nm allowing the use of phonon confinement to determine the nanocrystal size. The results are compared with TEM data and good agreement is observed.

  8. Microstructure, mechanical and tribological characterization of CrN/DLC/Cr-DLC multilayer coating with improved adhesive wear resistance

    NASA Astrophysics Data System (ADS)

    Sui, Xudong; Liu, Jinyu; Zhang, Shuaituo; Yang, Jun; Hao, Junying

    2018-05-01

    Adhesive wear is one of the major reasons for the failure of components during various tribological application, especially for rubbing with viscous materials. This study presents CrN/DLC/Cr-DLC multilayer composite coatings prepared on a plasma enhanced chemical vapor deposition (PECVD) device with the close field unbalanced magnetron sputtering ion plating (CFUBMSIP) technique. SEM, XRD and Raman spectroscopy were used to determine the structure of multilayer coatings. It was found that the multilayer coatings are composed by the alternating CrN and DLC layers. Compared with the single CrN coatings, the friction coefficient of the CrN/DLC/Cr-DLC multilayer coating decreases about more than seven times after sliding a distance of 500 m. This helps to reduce the adhesive wear of multilayer coatings. Compared with the single CrN and DLC coating, the wear rate of the CrN/DLC/Cr-DLC multilayer coating is reduced by an order of magnitude to 7.10 × 10-17 (sliding with AISI 440C) and 2.64 × 10-17 (sliding with TC4) m3/(N m). The improved tribological performance of multilayer coatings mainly attributes to the introduction of lubricant DLC and hard support CrN layers, the enhancement of crack propagation inhibition, and the increment of elastic recovery value We (71.49%) by multilayer design method.

  9. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  10. Integrating carbon nanotube forests into polysilicon MEMS: Growth kinetics, mechanisms, and adhesion

    DOE PAGES

    Ubnoske, Stephen M.; Radauscher, Erich J.; Meshot, Eric R.; ...

    2016-11-19

    The growth of carbon nanotubes (CNTs) on polycrystalline silicon substrates was studied to improve the design of CNT field emission sources for microelectromechanical systems (MEMS) applications and vacuum microelectronic devices (VMDs). Microwave plasma-enhanced chemical vapor deposition (PECVD) was used for CNT growth, resulting in CNTs that incorporate the catalyst particle at their base. The kinetics of CNT growth on polysilicon were compared to growth on Si (100) using the model of Deal and Grove, finding activation energies of 1.61 and 1.54 eV for the nucleation phase of growth and 1.90 and 3.69 eV for the diffusion-limited phase on Si (100)more » and polysilicon, respectively. Diffusivity values for growth on polysilicon were notably lower than the corresponding values on Si (100) and the growth process became diffusion-limited earlier. Evidence favors a surface diffusion growth mechanism involving diffusion of carbon precursor species along the length of the CNT forest to the catalyst at the base. Explanations for the differences in activation energies and diffusivities were elucidated by SEM analysis of the catalyst nanoparticle arrays and through wide-angle X-ray scattering (WAXS) of CNT forests. As a result, methods are presented to improve adhesion of CNT films during operation as field emitters, resulting in a 2.5× improvement.« less

  11. Deposition and characterization of silicon thin-films by aluminum-induced crystallization

    NASA Astrophysics Data System (ADS)

    Ebil, Ozgenc

    Polycrystalline silicon (poly-Si) as a thin-film solar cell material could have major advantages compared to non-silicon thin-film technologies. In theory, thin-film poly-Si may retain the performance and stability of c-Si while taking advantage of established manufacturing techniques. However, poly-Si films deposited onto foreign substrates at low temperatures typically have an average grain size of 10--50 nm. Such a grain structure presents a potential problem for device performance since it introduces an excessive number of grain boundaries which, if left unpassivated, lead to poor solar cell properties. Therefore, for optimum device performance, the grain size of the poly-Si film should be at least comparable to the thickness of the films. For this project, the objectives were the deposition of poly-Si thin-films with 2--5 mum grain size on glass substrates using in-situ and conventional aluminum-induced crystallization (AIC) and the development of a model for AIC process. In-situ AIC experiments were performed using Hot-Wire Chemical Vapor Deposition (HWCVD) both above and below the eutectic temperature (577°C) of Si-Al binary system. Conventional AIC experiments were performed using a-Si layers deposited on aluminum coated glass substrates by Electron-beam deposition, Plasma Enhanced Chemical Vapor Deposition (PECVD) and HWCVD. Continuous poly-Si films with an average grain size of 10 mum on glass substrates were achieved by both in-situ and conventional aluminum-induced crystallization of Si below eutectic temperature. The grain size was determined by three factors; the grain structure of Al layer, the nature of the interfacial oxide, and crystallization temperature. The interface oxide was found to be crucial for AIC process but not necessary for crystallization itself. The characterization of interfacial oxide layer formed on Al films revealed a bilayer structure containing Al2O3 and Al(OH)3 . The effective activation energy for AIC process was determined to be 0.9 eV and depended on the nature of the interfacial oxide layer. Poly-Si layers prepared by AIC technique can be used as seed layers for epitaxial growth of bulk Si layer or as back contacts in c-Si based solar cells.

  12. Fabrication of nanoporous membranes for tuning microbial interactions and biochemical reactions

    DOE PAGES

    Shankles, Peter G.; Timm, Andrea C.; Doktycz, Mitchel J.; ...

    2015-10-21

    Here we describe how new strategies for combining conventional photo- and soft- lithographic techniques with high-resolution patterning and etching strategies are needed in order to produce multi-scale fluidic platforms that address the full range of functional scales seen in complex biological and chemical systems. The smallest resolution required for an application often dictates the fabrication method used. Micromachining and micro-powder blasting yield higher throughput, but lack the resolution needed to fully address biological and chemical systems at the cellular and molecular scales. In contrast, techniques such as electron beam lithography or nanoimprinting allow nanoscale resolution, but are traditionally considered costlymore » and slow. Other techniques such as photolithography or soft lithography have characteristics between these extremes. Combining these techniques to fabricate multi-scale or hybrid fluidics allows fundamental biological and chemical questions can be answered. In this study, a combination of photolithography and electron beam lithography are used to produce two multi-scale fluidic devices that incorporate porous membranes into complex fluidic networks to control the flow of energy, information, and materials in chemical form. In the first device, materials and energy were used to support chemical reactions. A nanoporous membrane fabricated with e-beam lithography separates two parallel, serpentine channels. Photolithography was used to write microfluidic channels around the membrane. The pores were written at 150nm and reduced in size with silicon dioxide deposition from plasma enhanced chemical vapor deposition (PECVD) and atomic layer deposition (ALD). Using this method, the molecular weight cutoff (MWCO) of the membrane can be adapted to the system of interest. In the second approach, photolithography was used to fabricate 200nm thin pores. The pores confined microbes and allowed energy replenishment from a media perfusion channel. The same device can be used for study of intercellular communication via the secretion and uptake of signal molecules. Pore size was tested with 750nm fluorescent polystyrene beads and fluorescein dye. The 200nm PDMS pores were shown to be robust enough to hold 750nm beads while under pressure, but allow fluorescein to diffuse across the barrier. Further testing showed that extended culture of bacteria within the chambers was possible. Finally, these two examples show how lithographically defined porous membranes can be adapted to two unique situations and used to tune the flow of chemical energy, materials, and information within a microfluidic network.« less

  13. A ToF-SIMS and XPS study of protein adsorption and cell attachment across PEG-like plasma polymer films with lateral compositional gradients

    NASA Astrophysics Data System (ADS)

    Menzies, Donna J.; Jasieniak, Marek; Griesser, Hans J.; Forsythe, John S.; Johnson, Graham; McFarland, Gail A.; Muir, Benjamin W.

    2012-12-01

    In this work we report a detailed X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) study of poly(ethylene glycol) PEG-like chemical gradients deposited via plasma enhanced chemical vapour deposition (PECVD) at two different load powers using diethylene glycol dimethyl ether (DG) as a monomer. Principal component analysis (PCA) was applied to the ToF-SIMS data both before and after protein adsorption on the plasma polymer thin films. Results of the PCA loadings indicated a higher content of hydrocarbon fragments across the higher load power gradient, which adsorbed higher amounts of proteins. Gradients deposited at a lower load power retained a higher degree of monomer like functionality as did the central region directly underneath the knife edge electrode. Analysis of the adsorption of serum proteins (human serum albumin and fetal bovine serum) was monitored across the gradient films and increased with decreasing ether (PEG-like) film chemistries. The effect of protein incubation time on the levels adsorbed fetal bovine serum on the plasma polymer films was critical, with significantly more protein adsorbing after 24 hour incubation times on both gradient films. The attachment of HeLa cells on the gradients appeared to be dictated not only by the surface chemistry, but also by the adsorption of serum proteins. XPS analysis revealed that at surface ether concentrations of less than 70% in the gradient films, significant increases in protein and cell attachment were observed.

  14. Pressure Sensing in High-Refractive-Index Liquids Using Long-Period Gratings Nanocoated with Silicon Nitride

    PubMed Central

    Smietana, Mateusz; Bock, Wojtek J.; Mikulic, Predrag; Chen, Jiahua

    2010-01-01

    The paper presents a novel pressure sensor based on a silicon nitride (SiNx) nanocoated long-period grating (LPG). The high-temperature, radio-frequency plasma-enhanced chemical-vapor-deposited (RF PECVD) SiNx nanocoating was applied to tune the sensitivity of the LPG to the external refractive index. The technique allows for deposition of good quality, hard and wear-resistant nanofilms as required for optical sensors. Thanks to the SiNx nanocoating it is possible to overcome a limitation of working in the external-refractive-index range, which for a bare fiber cannot be close to that of the cladding. The nanocoated LPG-based sensing structure we developed is functional in high-refractive-index liquids (nd > 1.46) such as oil or gasoline, with pressure sensitivity as high as when water is used as a working liquid. The nanocoating developed for this experiment not only has the highest refractive index ever achieved in LPGs (n > 2.2 at λ = 1,550 nm), but is also the thinnest (<100 nm) able to tune the external-refractive-index sensitivity of the gratings. To the best of our knowledge, this is the first time a nanocoating has been applied on LPGs that is able to simultaneously tune the refractive-index sensitivity and to enable measurements of other parameters. PMID:22163527

  15. Effect of Rapid Thermal Annealing on the Electrical Characteristics of ZnO Thin-Film Transistors

    NASA Astrophysics Data System (ADS)

    Remashan, Kariyadan; Hwang, Dae-Kue; Park, Seong-Ju; Jang, Jae-Hyung

    2008-04-01

    Thin-film transistors (TFTs) with a bottom-gate configuration were fabricated with an RF magnetron sputtered undoped zinc oxide (ZnO) channel layer and plasma-enhanced chemical vapor deposition (PECVD) grown silicon nitride as a gate dielectric. Postfabrication rapid thermal annealing (RTA) and subsequent nitrous oxide (N2O) plasma treatment were employed to improve the performance of ZnO TFTs in terms of on-current and on/off current ratio. The RTA treatment increases the on-current of the TFT significantly, but it also increases its off-current. The off-current of 2×10-8 A and on/off current ratio of 3×103 obtained after the RTA treatment were improved to 10-10 A and 105, respectively, by the subsequent N2O plasma treatment. The better device performance can be attributed to the reduction of oxygen vacancies at the top region of the channel due to oxygen incorporation from the N2O plasma. X-ray photoelectron spectroscopy (XPS) analysis of the TFT samples showed that the RTA-treated ZnO surface has more oxygen vacancies than as-deposited samples, which results in the increased drain current. The XPS study also showed that the subsequent N2O plasma treatment reduces oxygen vacancies only at the surface of ZnO so that the better off-current and on/off current ratio can be obtained.

  16. Flexible camphor diamond-like carbon coating on polyurethane to prevent Candida albicans biofilm growth.

    PubMed

    Santos, Thaisa B; Vieira, Angela A; Paula, Luciana O; Santos, Everton D; Radi, Polyana A; Khouri, Sônia; Maciel, Homero S; Pessoa, Rodrigo S; Vieira, Lucia

    2017-04-01

    Camphor was incorporated in diamond-like carbon (DLC) films to prevent the Candida albicans yeasts fouling on polyurethane substrates, which is a material commonly used for catheter manufacturing. The camphor:DLC and DLC film for this investigation was produced by plasma enhanced chemical vapor deposition (PECVD), using an apparatus based on the flash evaporation of organic liquid (hexane) containing diluted camphor for camphor:DLC and hexane/methane, mixture for DLC films. The film was deposited at a low temperature of less than 25°C. We obtained very adherent camphor:DLC and DLC films that accompanied the substrate flexibility without delamination. The adherence of camphor:DLC and DLC films on polyurethane segments were evaluated by scratching test and bending polyurethane segments at 180°. The polyurethane samples, with and without camphor:DLC and DLC films were characterized by Raman spectroscopy, scanning electron microscopy, atomic force microscopy, and optical profilometry. Candida albicans biofilm formation on polyurethane, with and without camphor:DLC and DLC, was assessed. The camphor:DLC and DLC films reduced the biofilm growth by 99.0% and 91.0% of Candida albicans, respectively, compared to bare polyurethane. These results open the doors to studies of functionalized DLC coatings with biofilm inhibition properties used in the production of catheters or other biomedical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Deposition of chemically reactive and repellent sites on biosensor chips for reduced non-specific binding.

    PubMed

    Gandhiraman, R P; Gubala, V; Le, N C H; Nam, Le Cao Hoai; Volcke, C; Doyle, C; James, B; Daniels, S; Williams, D E

    2010-08-01

    The performances of new polymeric materials with excellent optical properties and good machinability have led the biomedical diagnostics industry to develop cheap disposable biosensor platforms appropriate for point of care applications. Zeonor, a type of cycloolefin polymer (COP), is one such polymer that presents an excellent platform for biosensor chips. These polymer substrates have to be modified to have suitable physico-chemical properties for immobilizing proteins. In this work, we have demonstrated the amine functionalization of COP substrates, by plasma enhanced chemical vapour deposition (PECVD), through codeposition of ethylene diamine and 3-aminopropyltriethoxysilane precursors, for building chemistries on the plastic chip. The elemental composition, adhesion, ageing and reactivity of the plasma polymerized film were examined. The Si-O functionality present in amino silane contributed for a good interfacial adhesion of the coating to COP substrates and also acted as a network building layer for plasma polymerization. Wet chemical modification was then carried out on the amine functionalized chips to create chemically reactive isothiocyanate sites and protein repellent fluorinated sites on the same chip. The density of the reactive and repellent sites was altered by choosing appropriate mixtures of homofunctional phenyldiisothiocyanate (PDITC), pentafluoroisothiocyanate (5FITC) and phenylisothiocyanate (PITC) compounds. By tailoring the density of reactive binding sites and protein repellent sites, the non-specific binding of ssDNA has been decreased to a significant extent. Copyright 2010 Elsevier B.V. All rights reserved.

  18. AlN/GaN heterostructures grown by metal organic vapor phase epitaxy with in situ Si 3N 4 passivation

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Degroote, S.; Leys, M.; Medjdoub, F.; Derluyn, J.; Sijmus, B.; Germain, M.; Borghs, G.

    2011-01-01

    AlN/GaN heterostructures are very attractive because their theoretical two-dimensional electron gas (2DEG) density may exceed 5×10 13/cm 2[1]. However, there are very few reports on AlN/GaN heterostructures grown by MOVPE. In this work, we show that good quality AlN layers can be grown on GaN at a relatively low growth temperature when TMIn is added to the carrier gas flow as a surfactant. Analysis by RBS revealed that at a growth temperature of 900 °C or higher no Indium is actually incorporated. Various thicknesses of AlN are grown, from 2 to 8 nm. Finally, 2-3 nm in situ Si 3N 4 is deposited in order to protect the AlN surface and thus prevent stress relaxation. AFM revealed that the root-mean-square (RMS) roughness in a 1×1 μm 2 area is 0.25 nm. When the AlN thickness reaches 8 nm, the sheet resistance can be as low as 186±3 Ω/□. Van der Pauw-Hall measurements show that the electron density is about 2.5×10 13/cm 2 with electron mobility exceeding 1140 cm 2/V s when extra 50 nm PECVD SiN is deposited.

  19. Real-space measurement of potential distribution in PECVD ONO electrets by Kelvin probe force microscopy.

    PubMed

    Emmerich, F; Thielemann, C

    2016-05-20

    Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.

  20. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures.

    PubMed

    Aguiló-Aguayo, Noemí; Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-12-11

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts.

  1. On the Discontinuity of Polycrystalline Silicon Thin Films Realized by Aluminum-Induced Crystallization of PECVD-Deposited Amorphous Si

    NASA Astrophysics Data System (ADS)

    Pan, Qingtao; Wang, Tao; Yan, Hui; Zhang, Ming; Mai, Yaohua

    2017-04-01

    Crystallization of glass/Aluminum (50, 100, 200 nm) /hydrogenated amorphous silicon (a-Si:H) (50, 100, 200 nm) samples by Aluminum-induced crystallization (AIC) is investigated in this article. After annealing and wet etching, we found that the continuity of the polycrystalline silicon (poly-Si) thin films was strongly dependent on the double layer thicknesses. Increasing the a-Si:H/Al layer thickness ratio would improve the film microcosmic continuity. However, too thick Si layer might cause convex or peeling off during annealing. Scanning electron microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDX) are introduced to analyze the process of the peeling off. When the thickness ratio of a-Si:H/Al layer is around 1 to 1.5 and a-Si:H layer is less than 200 nm, the poly-Si film has a good continuity. Hall measurements are introduced to determine the electrical properties. Raman spectroscopy and X-ray diffraction (XRD) results show that the poly-Si film is completely crystallized and has a preferential (111) orientation.

  2. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2018-06-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  3. A Bottom-Up Engineered Broadband Optical Nanoabsorber for Radiometry and Energy Harnessing Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Coles, James B.; Megerian, Krikor G.; Eastwood, Michael; Green, Robert O.; Bandaru, Prabhakar R.

    2013-01-01

    Optical absorbers based on vertically aligned multi-walled carbon nanotubes (MWCNTs), synthesized using electric-field assisted growth, are described here that show an ultra-low reflectance, 100X lower compared to Au-black from wavelength lamba approximately 350 nm - 2.5 micron. A bi-metallic Co/Ti layer was shown to catalyze a high site density of MWCNTs on metallic substrates and the optical properties of the absorbers were engineered by controlling the bottom-up synthesis conditions using dc plasma-enhanced chemical vapor deposition (PECVD). Reflectance measurements on the MWCNT absorbers after heating them in air to 400deg showed negligible changes in reflectance which was still low, approximately 0.022 % at lamba approximately 2 micron. In contrast, the percolated structure of the reference Au-black samples collapsed completely after heating, causing the optical response to degrade at temperatures as low as 200deg. The high optical absorption efficiency of the MWCNT absorbers, synthesized on metallic substrates, over a broad spectral range, coupled with their thermal ruggedness, suggests they have promise in solar energy harnessing applications, as well as thermal detectors for radiometry.

  4. Hydrogenated Nano-/Micro-Crystalline Silicon Thin-Films for Thermoelectrics

    NASA Astrophysics Data System (ADS)

    Acosta, E.; Wight, N. M.; Smirnov, V.; Buckman, J.; Bennett, N. S.

    2017-11-01

    Thermoelectric technology has not yet been able to reach full-scale market penetration partly because most commercial materials employed are scarce/costly, environmentally unfriendly and in addition provide low conversion efficiency. The necessity to tackle some of these hurdles leads us to investigate the suitability of n-type hydrogenated microcrystalline silicon (μc-Si: H) in the fabrication of thermoelectric devices, produced by plasma enhanced chemical vapour deposition (PECVD), which is a mature process of proven scalability. This study reports an approach to optimise the thermoelectric power factor (PF) by varying the dopant concentration by means of post-annealing without impacting film morphology, at least for temperatures below 550°C. Results show an improvement in PF of more than 80%, which is driven by a noticeable increase of carrier mobility and Seebeck coefficient in spite of a reduction in carrier concentration. A PF of 2.08 × 10-4 W/mK2 at room temperature is reported for n-type films of 1 μm thickness, which is in line with the best values reported in recent literature for similar structures.

  5. Significance of a Noble Metal Nanolayer on the UV and Visible Light Photocatalytic Activity of Anatase TiO2 Thin Films Grown from a Scalable PECVD/PVD Approach.

    PubMed

    Baba, Kamal; Bulou, Simon; Quesada-Gonzalez, Miguel; Bonot, Sébastien; Collard, Delphine; Boscher, Nicolas D; Choquet, Patrick

    2017-11-29

    UV and visible light photocatalytic composite Pt and Au-TiO 2 coatings have been deposited on silicon and glass substrates at low temperature using a hybrid ECWR-PECVD/MS-PVD process. Methylene blue, stearic acid, and sulfamethoxazole were used as dye, organic, and antibiotic model pollutants, respectively, to demonstrate the efficiency of these nanocomposite coatings for water decontamination or self-cleaning surfaces applications. Raman investigations revealed the formation of anatase polymorph of TiO 2 in all synthesized coatings with a shifting of the main vibrational mode peak to higher wavenumber in the case of Au-TiO 2 coating, indicating an increase number of crystalline defects within this coating. Because of the difference of the chemical potentials of each of the investigated noble metals, the sputtered metal layers exhibit different morphology. Pt sputtered atoms, with high surface adhesion, promote formation of a smooth 2D layer. On the other hand, Au sputtered atoms with higher cohesive forces promote the formation of 5-10 nm nanoparticles. As a result, the surface plasmon resonance phenomenon was observed in the Au-TiO 2 coatings. UV photoactivity of the nanocomposite coatings was enhanced 1.5-3 times and 1.3 times for methylene blue and stearic acid, respectively, thanks to the enhancement of electron trapping in the noble metal layer. This electron trapping phenomenon is higher in the Pt-TiO 2 coating because of its larger work function. On the other hand, the enhancement of the visible photoactivity was more pronounced (3 and 7 times for methylene blue and stearic acid, respectively) in the case of Au-TiO 2 thanks to the surface plasmon resonance. Finally, these nanocomposite TiO 2 coatings exhibited also a good ability for the degradation of antibiotics usually found in wastewater such as sulfamethoxazole. However, a complementary test have showed an increase of the toxicity of the liquid medium after photocatalysis, which could be due the presence of sulfamethoxazole's transformation byproducts.

  6. Effect of RF power and annealing on chemical bonding and morphology of a-CN{sub x} thin films as humidity sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aziz, N. F. H; Hussain, N. S. Mohamed; Awang, R.

    2013-11-27

    Amorphous carbon nitride (a-CN{sub x}) thin films were deposited using radio frequency plasma enhanced chemical vapor deposition (rf-PECVD) technique. A set of a-CN{sub x} thin films were prepared using pure methane (CH{sub 4}) gas diluted with nitrogen (N{sub 2}) gas. The rf power was varied at 50, 60, 70, 80, 90 and 100 W. These films were then annealed at 400 °C in a quartz tube furnace in argon (Ar) gas. The effects of rf power and thermal annealing on the chemical bonding and morphology of these samples were studied. Surface profilometer was used to measure film thickness. Fourier transformmore » infra-red spectroscopy (FTIR) and Field emission scanning electron microscopy (FESEM) measurements were used to determine their chemical bonding and morphology respectively. The deposition rate of the films increased constantly with increasing rf power up to 80W, before decreasing with further increase in rf power. Fourier transform infra-red spectroscopy (FTIR) studies showed a systematic change in the spectra and revealed three main peaks included C-N, C=N, C=C and C≡N triple bond. C=N and C≡N bonds decreased with increased C-N bonds after thermal annealing process. The FESEM images showed that the structure is porous for as-deposited and covered by granule-like grain structure after thermal annealing process was done. The resistance of the a-CN{sub x} thin film changed from 23.765 kΩ to 5.845 kΩ in the relative humidity range of 5 to 92 % and the film shows a good response and repeatability as a humidity sensing materials. This work showed that rf power and thermal annealing has significant effects on the chemical bonding and surface morphology of the a-CN{sub x} films and but yield films which are potential candidate as humidity sensor device.« less

  7. Effect of PECVD SiNx/SiOyNx-Si interface property on surface passivation of silicon wafer

    NASA Astrophysics Data System (ADS)

    Jia, Xiao-Jie; Zhou, Chun-Lan; Zhu, Jun-Jie; Zhou, Su; Wang, Wen-Jing

    2016-12-01

    It is studied in this paper that the electrical characteristics of the interface between SiOyNx/SiNx stack and silicon wafer affect silicon surface passivation. The effects of precursor flow ratio and deposition temperature of the SiOyNx layer on interface parameters, such as interface state density Dit and fixed charge Qf, and the surface passivation quality of silicon are observed. Capacitance-voltage measurements reveal that inserting a thin SiOyNx layer between the SiNx and the silicon wafer can suppress Qf in the film and Dit at the interface. The positive Qf and Dit and a high surface recombination velocity in stacks are observed to increase with the introduced oxygen and minimal hydrogen in the SiOyNx film increasing. Prepared by deposition at a low temperature and a low ratio of N2O/SiH4 flow rate, the SiOyNx/SiNx stacks result in a low effective surface recombination velocity (Seff) of 6 cm/s on a p-type 1 Ω·cm-5 Ω·cm FZ silicon wafer. The positive relationship between Seff and Dit suggests that the saturation of the interface defect is the main passivation mechanism although the field-effect passivation provided by the fixed charges also make a contribution to it. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA050302) and the National Natural Science Foundation of China (Grant No. 61306076).

  8. Large-area SnO{sub 2}: F thin films by offline APCVD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yan; Wu, Yucheng, E-mail: ycwu@hfut.edu.cn; Qin, Yongqiang

    2011-08-15

    Highlights: {yields} Large-area (1245 mm x 635 mm) FTO thin films were successfully deposited by offline APCVD process. {yields} The as-prepared FTO thin films with sheet resistance 8-11 {Omega}/{open_square} and direct transmittance more than 83% exhibited better than that of the online ones. {yields} The maximum quantum efficiency of the solar cells based on offline FTO substrate was 0.750 at wavelength 540 nm. {yields} The power of the solar modules using the offline FTO as glass substrates was 51.639 W, higher than that of the modules based on the online ones. -- Abstract: In this paper, we reported the successfulmore » preparation of fluorine-doped tin oxide (FTO) thin films on large-area glass substrates (1245 mm x 635 mm x 3 mm) by self-designed offline atmospheric pressure chemical vapor deposition (APCVD) process. The FTO thin films were achieved through a combinatorial chemistry approach using tin tetrachloride, water and oxygen as precursors and Freon (F-152, C2H4F2) as dopant. The deposited films were characterized for crystallinity, morphology (roughness) and sheet resistance to aid optimization of materials suitable for solar cells. We got the FTO thin films with sheet resistance 8-11 {Omega}/{open_square} and direct transmittance more than 83%. X-ray diffraction (XRD) characterization suggested that the as-prepared FTO films were composed of multicrystal, with the average crystal size 200-300 nm and good crystallinity. Further more, the field emission scanning electron microscope (FESEM) images showed that the films were produced with good surface morphology (haze). Selected samples were used for manufacturing tandem amorphous silicon (a-Si:H) thin film solar cells and modules by plasma enhanced chemical vapor deposition (PECVD). Compared with commercially available FTO thin films coated by online chemical vapor deposition, our FTO coatings show excellent performance resulting in a high quantum efficiency yield for a-Si:H solar cells and ideal open voltage and short circuit current for a-Si:H solar modules.« less

  9. New Three-Dimensional Porous Electrode Concept: Vertically-Aligned Carbon Nanotubes Directly Grown on Embroidered Copper Structures

    PubMed Central

    Amade, Roger; Hussain, Shahzad; Bertran, Enric; Bechtold, Thomas

    2017-01-01

    New three-dimensional (3D) porous electrode concepts are required to overcome limitations in Li-ion batteries in terms of morphology (e.g., shapes, dimensions), mechanical stability (e.g., flexibility, high electroactive mass loadings), and electrochemical performance (e.g., low volumetric energy densities and rate capabilities). Here a new electrode concept is introduced based on the direct growth of vertically-aligned carbon nanotubes (VA-CNTs) on embroidered Cu current collectors. The direct growth of VA-CNTs was achieved by plasma-enhanced chemical vapor deposition (PECVD), and there was no application of any post-treatment or cleaning procedure. The electrochemical behavior of the as-grown VA-CNTs was analyzed by charge/discharge cycles at different specific currents and with electrochemical impedance spectroscopy (EIS) measurements. The results were compared with values found in the literature. The as-grown VA-CNTs exhibit higher specific capacities than graphite and pristine VA-CNTs found in the literature. This together with the possibilities that the Cu embroidered structures offer in terms of specific surface area, total surface area, and designs provide a breakthrough in new 3D electrode concepts. PMID:29232892

  10. Predictive modelling of the dielectric response of plasmonic substrates: application to the interpretation of ellipsometric spectra

    NASA Astrophysics Data System (ADS)

    Pugliara, A.; Bayle, M.; Bonafos, C.; Carles, R.; Respaud, M.; Makasheva, K.

    2018-03-01

    A predictive modelling of plasmonic substrates appropriate to read ellipsometric spectra is presented in this work. We focus on plasmonic substrates containing a single layer of silver nanoparticles (AgNPs) embedded in silica matrices. The model uses the Abeles matrix formalism and is based on the quasistatic approximation of the classical Maxwell-Garnett mixing rule, however accounting for the electronic confinement effect through the damping parameter. It is applied on samples elaborated by: (i) RF-diode sputtering followed by Plasma Enhanced Chemical Vapor Deposition (PECVD) and (ii) Low Energy Ion Beam Synthesis (LE-IBS), and represents situations with increasing degree of complexity that can be accounted for by the model. It allows extraction of the main characteristics of the AgNPs population: average size, volume fraction and distance of the AgNPs layer from the matrix free surface. Model validation is achieved through comparison with results obtained from transmission electron microscopy approving for its applicability. The advantages and limitations of the proposed model are discussed after eccentricity-based statistical analysis along with further developments related to the quality of comparison between the model-generated spectra and the experimentally-recorded ellipsometric spectra.

  11. Optical biosensor technologies for molecular diagnostics at the point-of-care

    NASA Astrophysics Data System (ADS)

    Schotter, Joerg; Schrittwieser, Stefan; Muellner, Paul; Melnik, Eva; Hainberger, Rainer; Koppitsch, Guenther; Schrank, Franz; Soulantika, Katerina; Lentijo-Mozo, Sergio; Pelaz, Beatriz; Parak, Wolfgang; Ludwig, Frank; Dieckhoff, Jan

    2015-05-01

    Label-free optical schemes for molecular biosensing hold a strong promise for point-of-care applications in medical research and diagnostics. Apart from diagnostic requirements in terms of sensitivity, specificity, and multiplexing capability, also other aspects such as ease of use and manufacturability have to be considered in order to pave the way to a practical implementation. We present integrated optical waveguide as well as magnetic nanoparticle based molecular biosensor concepts that address these aspects. The integrated optical waveguide devices are based on low-loss photonic wires made of silicon nitride deposited by a CMOS compatible plasma-enhanced chemical vapor deposition (PECVD) process that allows for backend integration of waveguides on optoelectronic CMOS chips. The molecular detection principle relies on evanescent wave sensing in the 0.85 μm wavelength regime by means of Mach-Zehnder interferometers, which enables on-chip integration of silicon photodiodes and, thus, the realization of system-on-chip solutions. Our nanoparticle-based approach is based on optical observation of the dynamic response of functionalized magneticcore/ noble-metal-shell nanorods (`nanoprobes') to an externally applied time-varying magnetic field. As target molecules specifically bind to the surface of the nanoprobes, the observed dynamics of the nanoprobes changes, and the concentration of target molecules in the sample solution can be quantified. This approach is suitable for dynamic real-time measurements and only requires minimal sample preparation, thus presenting a highly promising point-of-care diagnostic system. In this paper, we present a prototype of a diagnostic device suitable for highly automated sample analysis by our nanoparticle-based approach.

  12. Detailed study of SiOxNy:H/Si interface properties for high quality surface passivation of crystalline silicon

    NASA Astrophysics Data System (ADS)

    Dong, Peng; Lei, Dong; Yu, Xuegong; Huang, Chunlai; Li, Mo; Dai, Gang; Zhang, Jian; Yang, Deren

    2018-01-01

    In this work, we present a detailed study on the interface and passivation properties of the hydrogenated silicon oxynitride (SiOxNy:H) on the crystalline silicon (c-Si) and their correlations with the film composition. The SiOxNy:H films were synthesized by plasma enhanced chemical vapor deposition (PECVD) at various N2O flow rates, which results in different film composition, in particular the different H-related bonds, such as Sisbnd H and Nsbnd H bonds. Fourier transform infrared spectroscopy measurements show that the concentration of Nsbnd H bonds increases with the N2O flows from 0 to 30 sccm, while drops below the detection limit at N2O flows above 30 sccm. This changing trend of Nsbnd H bonds correlates well with the evolution of carrier lifetime of silicon substrate passivated by SiOxNy:H film, indicating the crucial role of Nsbnd H bonds in surface passivation. It is inferred that during the film deposition and forming gas anneal (FGA) a considerable amount of hydrogen atoms are liberated from the weak type of Nsbnd H bonds rather than Sisbnd H bonds, and then passivate the dangling bonds at the interface, thus resulting in the significant reduction of interface state density and the improved passivation quality. In detail, the interface state density is reduced from ∼5 × 1012 to ∼2 × 1012 cm-2 eV-1 after the FGA, as derived from the high frequency capacitance-voltage (Csbnd V) measurements.

  13. Optical and electrical characterization of high resistivity semiconductors for constant-bias microbolometer devices

    NASA Astrophysics Data System (ADS)

    Saint John, David B.

    The commercial market for uncooled infrared imaging devices has expanded in the last several decades, following the declassification of pulse-biased microbolometer-based focal plane arrays (FPAs) using vanadium oxide as the sensing material. In addition to uncooled imaging platforms based on vanadium oxide, several constant-bias microbolometer FPAs have been developed using doped hydrogenated amorphous silicon (a-Si:H) as the active sensing material. While a-Si:H and the broader Si1-xGex:H system have been studied within the context of photovoltaic (PV) devices, only recently have these materials been studied with the purpose of qualifying and optimizing them for potential use in microbolometer applications, which demand thinner films deposited onto substrates different than those used in PV. The behavior of Ge:H is of particular interest for microbolometers due to its intrinsically low resistivity without the introduction of dopants, which alter the growth behavior and frustrate any attempt to address the merits of protocrystalline a-Ge:H. This work reports the optical, microstructural, and electrical characterization and qualification of a variety of Si:H, Si1-xGex:H, and Ge:H films deposited using a plasma enhanced chemical vapor deposition (PECVD) process, including a-Ge:H films which exhibit high TCR (4-6 -%/K) and low 1/f noise at resistivities of interest for microbolometers (4000 -- 6000 O cm). Thin film deposition has been performed simultaneously with real-time optical characterization of the growth evolution dynamics, providing measurement of optical properties and surface roughness evolutions relevant to controlling the growth process for deliberate variations in film microstructure. Infrared spectroscopic ellipsometry has been used to characterize the Si-H and Ge-H absorption modes allowing assessment of the hydrogen content and local bonding behavior in thinner films than measured traditionally. This method allows IR absorption analysis of hydrogen bonding and other IR modes to be extended to arbitrary substrates, including absorbing and/or device-like substrate configurations not amenable to traditional methods of assessing hydrogen related absorption using infrared transmission measurements. In addition to novel optical assessments of hydrogen in Si1-xGe x:H films, the role of carrier type in a-Si:H has been studied, with n-type material providing a consistently higher TCR and 1/f noise character than p-type material for films of similar resistivity. As the introduction of dopant gas complicates microstructural growth, assessment of undoped material was performed, finding that only Ge-rich films possess suitable resitivities for electrical measurement. The inclusion of nanocrystalline material into otherwise amorphous films has been explored in both Si:H and Ge:H, finding that decreases in resistivity and TCR were not accompanied by a decrease in the 1/f noise character. This suggests that mixed (a+nc) Si1-xGex:H material may be less suitable for microbolometer applications than optimized amorphous material.

  14. Fabrication of Buried Nanochannels From Nanowire Patterns

    NASA Technical Reports Server (NTRS)

    Choi, Daniel; Yang, Eui-Hyeok

    2007-01-01

    A method of fabricating channels having widths of tens of nanometers in silicon substrates and burying the channels under overlying layers of dielectric materials has been demonstrated. With further refinement, the method might be useful for fabricating nanochannels for manipulation and analysis of large biomolecules at single-molecule resolution. Unlike in prior methods, burying the channels does not involve bonding of flat wafers to the silicon substrates to cover exposed channels in the substrates. Instead, the formation and burying of the channels are accomplished in a more sophisticated process that is less vulnerable to defects in the substrates and less likely to result in clogging of, or leakage from, the channels. In this method, the first step is to establish the channel pattern by forming an array of sacrificial metal nanowires on an SiO2-on-Si substrate. In particular, the wire pattern is made by use of focused-ion-beam (FIB) lithography and a subsequent metallization/lift-off process. The pattern of metal nanowires is then transferred onto the SiO2 layer by reactive-ion etching, which yields sacrificial SiO2 nanowires covered by metal. After removal of the metal covering the SiO2 nanowires, what remains are SiO2 nanowires on an Si substrate. Plasma-enhanced chemical vapor deposition (PECVD) is used to form a layer of a dielectric material over the Si substrate and over the SiO2 wires on the surface of the substrate. FIB milling is then performed to form trenches at both ends of each SiO2 wire. The trenches serve as openings for the entry of chemicals that etch SiO2 much faster than they etch Si. Provided that the nanowires are not so long that the diffusion of the etching chemicals is blocked, the sacrificial SiO2 nanowires become etched out from between the dielectric material and the Si substrate, leaving buried channels. At the time of reporting the information for this article, channels 3 m long, 20 nm deep, and 80 nm wide (see figure) had been fabricated by this method.

  15. Effect of vertically oriented few-layer graphene on the wettability and interfacial reactions of the AgCuTi-SiO2f/SiO2 system.

    PubMed

    Sun, Z; Zhang, L X; Qi, J L; Zhang, Z H; Hao, T D; Feng, J C

    2017-03-22

    With the aim of expanding their applications, particularly when joining metals, a simple but effective method is reported whereby the surface chemical reactivity of SiO 2f /SiO 2 (SiO 2f /SiO 2 stands for silica fibre reinforced silica based composite materials and f is short for fibre) composites with vertically oriented few-layer graphene (VFG, 3-10 atomic layers of graphene vertically oriented to the substrate) can be tailored. VFG was uniformly grown on the surface of a SiO 2f /SiO 2 composite by using plasma enhanced chemical vapour deposition (PECVD). The wetting experiments were conducted by placing small pieces of AgCuTi alloy foil on SiO 2f /SiO 2 composites with and without VFG decoration. It was demonstrated that the contact angle dropped from 120° (without VFG decoration) to 50° (with VFG decoration) when the holding time was 10 min. The interfacial reaction layer in SiO 2f /SiO 2 composites with VFG decoration became continuous without any unfilled gaps compared with the composites without VFG decoration. High-resolution transmission electron microscopy (HRTEM) was employed to investigate the interaction between VFG and Ti from the AgCuTi alloy. The results showed that VFG possessed high chemical reactivity and could easily react with Ti even at room temperature. Finally, a mechanism of how VFG promoted the wetting of the SiO 2f /SiO 2 composite by the AgCuTi alloy is proposed and thoroughly discussed.

  16. Thermal stress during RTP processes and its possible effect on the light induced degradation in Cz-Si wafers

    NASA Astrophysics Data System (ADS)

    Kouhlane, Yacine; Bouhafs, Djoudi; Khelifati, Nabil; Guenda, Abdelkader; Demagh, Nacer-Eddine; Demagh, Assia; Pfeiffer, Pierre; Mezghiche, Salah; Hetatache, Warda; Derkaoui, Fahima; Nasraoui, Chahinez; Nwadiaru, Ogechi Vivian

    2018-04-01

    In this study, the carrier lifetime variation of p-type boron-doped Czochralski silicon (Cz-Si) wafers was investigated after a direct rapid thermal processing (RTP). Two wafers were passivated by silicon nitride (SiNx:H) layers, deposited by a PECVD system on both surfaces. Then the wafers were subjected to an RTP cycle at a peak temperature of 620 °C. The first wafer was protected (PW) from the direct radiative heating of the RTP furnace by placing the wafer between two as-cut Cz-Si shield wafers during the heat processing. The second wafer was not protected (NPW) and followed the same RTP cycle procedure. The carrier lifetime τ eff was measured using the QSSPC technique before and after illumination for 5 h duration at 0.5 suns. The immediate results of the measured lifetime (τ RTP ) after the RTP process have shown a regeneration in the lifetime of the two wafers with the PW wafer exhibiting an important enhancement in τ RTP as compared to the NPW wafer. The QSSPC measurements have indicated a good stable lifetime (τ d ) and a weak degradation effect was observed in the case of the PW wafer as compared to their initial lifetime value. Interferometry technique analyses have shown an enhancement in the surface roughness for the NPW wafer as compared to the protected one. Additionally, to improve the correlation between the RTP heat radiation stress and the carrier lifetime behavior, a simulation of the thermal stress and temperature profile using the finite element method on the wafers surface at RTP peak temperature of 620 °C was performed. The results confirm the reduction of the thermal stress with less heat losses for the PW wafer. Finally, the proposed method can lead to improving the lifetime of wafers by an RTP process at minimum energy costs.

  17. Synthesis and Characterization of High c-axis ZnO Thin Film by Plasma Enhanced Chemical Vapor Deposition System and its UV Photodetector Application

    PubMed Central

    Chao, Chung-Hua; Wei, Da-Hua

    2015-01-01

    In this study, zinc oxide (ZnO) thin films with high c-axis (0002) preferential orientation have been successfully and effectively synthesized onto silicon (Si) substrates via different synthesized temperatures by using plasma enhanced chemical vapor deposition (PECVD) system. The effects of different synthesized temperatures on the crystal structure, surface morphologies and optical properties have been investigated. The X-ray diffraction (XRD) patterns indicated that the intensity of (0002) diffraction peak became stronger with increasing synthesized temperature until 400 oC. The diffraction intensity of (0002) peak gradually became weaker accompanying with appearance of (10-10) diffraction peak as the synthesized temperature up to excess of 400 oC. The RT photoluminescence (PL) spectra exhibited a strong near-band-edge (NBE) emission observed at around 375 nm and a negligible deep-level (DL) emission located at around 575 nm under high c-axis ZnO thin films. Field emission scanning electron microscopy (FE-SEM) images revealed the homogeneous surface and with small grain size distribution. The ZnO thin films have also been synthesized onto glass substrates under the same parameters for measuring the transmittance. For the purpose of ultraviolet (UV) photodetector application, the interdigitated platinum (Pt) thin film (thickness ~100 nm) fabricated via conventional optical lithography process and radio frequency (RF) magnetron sputtering. In order to reach Ohmic contact, the device was annealed in argon circumstances at 450 oC by rapid thermal annealing (RTA) system for 10 min. After the systematic measurements, the current-voltage (I-V) curve of photo and dark current and time-dependent photocurrent response results exhibited a good responsivity and reliability, indicating that the high c-axis ZnO thin film is a suitable sensing layer for UV photodetector application. PMID:26484561

  18. Effect of glow DBD modulation on gas and thin film chemical composition: case of Ar/SiH4/NH3 mixture

    NASA Astrophysics Data System (ADS)

    Vallade, Julien; Bazinette, Remy; Gaudy, Laura; Massines, Françoise

    2014-06-01

    In recent years, atmospheric pressure plasma-enhanced chemical vapour deposition has been identified as a convenient way to deposit good quality thin films. With this type of process, where the gas mixture is injected on one side of the electrodes, the chemical composition of the gas evolves with the gas residence time in the plasma. The consequence is a possible gradient in the chemical composition over the thickness of in-line coatings. The present work shows that the modulation of the plasma with a square signal significantly reduces this gradient while the drawback of low growth rate is avoided by increasing the discharge power. This study deals with plane/plane glow dielectric barrier discharges (DBDs) in an Ar/NH3/SiH4 gas mixture to make thin films. The 50 kHz discharge power of the glow DBD was varied by increasing voltage and modulating excitation. The impact on (i) the plasma development was observed through emission spectroscopy and (ii) the thin film coating through Fourier transform infrared measurements. It is shown that the modulation significantly decreases the time and the energy needed to achieve stable chemistry, enhances secondary chemistry and limits disturbance induced by impurities because of a slower decrease of SiH4 concentration and thus a higher ratio of SiH4/impurities, all very important points for in-line AP-PECVD development. When the growth rate is limited by diffusion, coating growth continues when the discharge is off, so long as there is a precursor gradient between the surface and the gas bulk. A higher discharge power steepens this gradient, which enhances diffusion from the bulk and thus growth rate.

  19. A hard-soft microfluidic-based biosensor flow cell for SPR imaging application.

    PubMed

    Liu, Changchun; Cui, Dafu; Li, Hui

    2010-09-15

    An ideal microfluidic-based biosensor flow cell should have not only a "soft" interface for high strength sealing with biosensing chips, but also "hard" macro-to-micro interface for tubing connection. Since these properties are exclusive of each other, no one material can provide the advantages of both. In this paper, we explore the application of a SiO(2) thin film, deposited by plasma-enhanced chemical vapor deposition (PECVD) technology, as an intermediate layer for irreversibly adhering polydimethylsiloxane (PDMS) to plastic substrate, and develop a hard-soft, compact, robust microfluidic-based biosensor flow cell for the multi-array immunoassay application of surface plasmon resonance (SPR) imaging. This hard-soft biosensor flow cell consists of one rigid, computer numerically controlled (CNC)-machined poly(methyl methacrylate) (PMMA) base coated with a 200 nm thick SiO(2) thin film, and one soft PDMS microfluidic layer. This novel microfluidic-based biosensor flow cell does not only keep the original advantage of conventional PDMS-based biosensor flow cell such as the intrinsically soft interface, easy-to-fabrication, and low cost, but also has a rigid, robust, easy-to-use interface to tubing connection and can be operated up to 185 kPa in aqueous environments without failure. Its application was successfully demonstrated with two types of experiments by coupling with SPR imaging biosensor: the real-time monitoring of the immunoglobulin G (IgG) interaction, as well as the detection of sulfamethoxazole (SMOZ) and sulfamethazine (SMZ) with the sensitivity of 3.5 and 0.6 ng/mL, respectively. This novel hard-soft microfluidic device is also useful for a variety of other biosensor flow cells. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Modeling Changes in Measured Conductance of Thin Boron Carbide Semiconducting Films Under Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, George G.; Wang, Yongqiang; Ianno, N. J.

    Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B 10C 2+x:H y) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (f) that incorporates changes of the electrical properties for both the a-B 10C 2+x:H y film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (f). These samples were then irradiated with 200 keV He + ions, and the conductance model was matched tomore » the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Ω to 2705 Ω. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Ω (0.2 dpa equivalent), 77440 Ω (0.3 dpa equivalent), and 190000 Ω (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B 10C 2+x:H y and irradiated silicon. In addition, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range.« less

  1. Modeling Changes in Measured Conductance of Thin Boron Carbide Semiconducting Films Under Irradiation

    DOE PAGES

    Peterson, George G.; Wang, Yongqiang; Ianno, N. J.; ...

    2016-11-09

    Semiconducting, p-type, amorphous partially dehydrogenated boron carbide films (a-B 10C 2+x:H y) were deposited utilizing plasma enhanced chemical vapor deposition (PECVD) onto n-type silicon thus creating a heterojunction diode. A model was developed for the conductance of the device as a function of perturbation frequency (f) that incorporates changes of the electrical properties for both the a-B 10C 2+x:H y film and the silicon substrate when irradiated. The virgin model has 3 independent variables (R1, C1, R3), and 1 dependent variable (f). These samples were then irradiated with 200 keV He + ions, and the conductance model was matched tomore » the measured data. It was found that initial irradiation (0.1 displacements per atom (dpa) equivalent) resulted in a decrease in the parallel junction resistance parameter from 6032 Ω to 2705 Ω. Further irradiation drastically increased the parallel junction resistance parameter to 39000 Ω (0.2 dpa equivalent), 77440 Ω (0.3 dpa equivalent), and 190000 Ω (0.5 dpa equivalent). It is believed that the initial irradiation causes type inversion of the silicon substrate changing the original junction from a p-n to a p-p+ with a much lower barrier height leading to a lower junction resistance component between the a-B 10C 2+x:H y and irradiated silicon. In addition, it was found that after irradiation, a second parallel resistor and capacitor component is required for the model, introducing 2 additional independent variables (R2, C2). This is interpreted as the junction between the irradiated and virgin silicon near ion end of range.« less

  2. Tribological performance of an H-DLC coating prepared by PECVD

    NASA Astrophysics Data System (ADS)

    Solis, J.; Zhao, H.; Wang, C.; Verduzco, J. A.; Bueno, A. S.; Neville, A.

    2016-10-01

    Carbon-based coatings are of wide interest due to their application in machine elements subjected to continuous contact where fluid lubricant films are not permitted. This paper describes the tribological performance under dry conditions of duplex layered H-DLC coating sequentially deposited by microwave excited plasma enhanced chemical vapour deposition on AISI 52100 steel. The architecture of the coating comprised Cr, WC, and DLC (a-C:H) with a total thickness of 2.8 μm and compressive residual stress very close to 1 GPa. Surface hardness was approximately 22 GPa and its reduced elastic modulus around 180 GPa. Scratch tests indicated a well adhered coating achieving a critical load of 80 N. The effect of normal load on the friction and wear behaviours were investigated with steel pins sliding against the actual coating under dry conditions at room temperature (20 ± 2 °C) and 35-50% RH. The results show that coefficient of friction of the coating decreased from 0.21 to 0.13 values with the increase in the applied loads (10-50 N). Specific wear rates of the surface coating also decrease with the increase in the same range of applied loads. Maximum and minimum values were 14 × 10-8 and 5.5 × 10-8 mm-3/N m, respectively. Through Raman spectroscopy and electron microscopy it was confirmed the carbon-carbon contact, due to the tribolayer formation on the wear scars of the coating and pin. In order to further corroborate the experimental observations regarding the graphitisation behaviour, the existing mathematical relationships to determine the graphitisation temperature of the coating/steel contact as well as the flash temperature were used.

  3. Electrical Characterization of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide

    NASA Astrophysics Data System (ADS)

    Peterson, George Glenn

    Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon substrates through the use of plasma enhanced chemical vapor deposition (PECVD). Many forms of structural and electrical measurements and analysis have been performed on the p-n heterojunction devices as a function of both He+ ion and neutron irradiation including: transmission electron microscopy (TEM), selected area electron diffraction (SAED), current versus voltage I(V), capacitance versus voltage C(V), conductance versus frequency G(f), and charge carrier lifetime (tau). In stark contrast to nearly all other electronic devices, the electrical performance of these p-n heterojunction diodes improved with irradiation. This is most likely the result of bond defect passivation and resolution of degraded icosahedral based carborane structures (icosahedral molecules missing a B, C, or H atom(s)).

  4. Robustness up to 400°C of the passivation of c-Si by p-type a-Si:H thanks to ion implantation

    NASA Astrophysics Data System (ADS)

    Defresne, A.; Plantevin, O.; Roca i Cabarrocas, Pere

    2016-12-01

    Heterojunction solar cells based on crystalline silicon (c-Si) passivated by hydrogenated amorphous silicon (a-Si:H) thin films are one of the most promising architectures for high energy conversion efficiency. Indeed, a-Si:H thin films can passivate both p-type and n-type wafers and can be deposited at low temperature (<200°C) using PECVD. However, such passivation layers, in particular p-type a-Si:H, show a dramatic degradation in passivation quality above 200°C. Yet, annealing at 300 - 400°C the TCO layer and metallic contacts is highly desirable to reduce the contact resistance as well as the TCO optical absorption. In this work, we show that as expected, ion implantation (5 - 30 keV) introduces defects at the c-Si/a-Si:H interface which strongly degrade the effective lifetime, down to a few micro-seconds. However, the passivation quality can be restored and lifetime values can be improved up to 2 ms over the initial value with annealing. We show here that effective lifetimes above 1 ms can be maintained up to 380°C, opening up the possibility for higher process temperatures in silicon heterojunction device fabrication.

  5. Metastability of a-SiOx:H thin films for c-Si surface passivation

    NASA Astrophysics Data System (ADS)

    Serenelli, L.; Martini, L.; Imbimbo, L.; Asquini, R.; Menchini, F.; Izzi, M.; Tucci, M.

    2017-01-01

    The adoption of a-SiOx:H films obtained by PECVD in heterojunction solar cells is a key to further increase their efficiency, because of its transparency in the UV with respect to the commonly used a-Si:H. At the same time this layer must guarantee high surface passivation of the c-Si to be suitable in high efficiency solar cell manufacturing. On the other hand the application of amorphous materials like a-Si:H and SiNx on the cell frontside expose them to the mostly energetic part of the sun spectrum, leading to a metastability of their passivation properties. Moreover as for amorphous silicon, thermal annealing procedures are considered as valuable steps to enhance and stabilize thin film properties, when performed at opportune temperature. In this work we explored the reliability of a-SiOx:H thin film layers surface passivation on c-Si substrates under UV exposition, in combination with thermal annealing steps. Both p- and n-type doped c-Si substrates were considered. To understand the effect of UV light soaking we monitored the minority carriers lifetime and Sisbnd H and Sisbnd O bonding, by FTIR spectra, after different exposure times to light coming from a deuterium lamp, filtered to UV-A region, and focused on the sample to obtain a power density of 50 μW/cm2. We found a certain lifetime decrease after UV light soaking in both p- and n-type c-Si passivated wafers according to a a-SiOx:H/c-Si/a-SiOx:H structure. The role of a thermal annealing, which usually enhances the as-deposited SiOx passivation properties, was furthermore considered. In particular we monitored the UV light soaking effect on c-Si wafers after a-SiOx:H coating by PECVD and after a thermal annealing treatment at 300 °C for 30 min, having selected these conditions on the basis of the study of the effect due to different temperatures and durations. We correlated the lifetime evolution and the metastability effect of thermal annealing to the a-SiOx:H/c-Si interface considering the evolution of hydrogen in the film revealed by FTIR spectra, and we developed a model for the effect of both treatments on the Sisbnd H bonding and the metastability shown in the lifetime of a-SiOx:H/c-Si/a-SiOx:H structure. We found that, after UV exposure, thermal annealing steps can be used as a tool for the c-Si passivation recovery and enhancement.

  6. Residual Stress and Fracture of PECVD Thick Oxide Films for Power MEMS Structures and Devices

    DTIC Science & Technology

    2007-06-01

    Residual stress leads to large overall wafer bow, which makes further processing difficult. For example some microfabrication machines , such as chemical...curvature will be measured across the wafer surface in 12 scans, rotating 24 the wafer by 300 between each scan. In situ wafer curvature will be...SiOx. 4.1. Introduction As introduced earlier (Sec.1), in Power MEMS (micro energy- harvesting devices such as micro heat engines and related components

  7. SiC Protective Coating for Photovoltaic Retinal Prostheses

    PubMed Central

    Lei, Xin; Kane, Sheryl; Cogan, Stuart; Lorach, Henri; Galambos, Ludwig; Huie, Philip; Mathieson, Keith; Kamins, Theodore; Harris, James; Palanker, Daniel

    2016-01-01

    Objective To evaluate PECVD SiC as a protective coating for retinal prostheses and other implantable devices, and to study their failure mechanisms in vivo. Approach Retinal prostheses were implanted in rats subretinally for up to 1 year. Degradation of implants was characterized by optical and scanning electron microscopy. Dissolution rates of SiC, SiNx and thermal SiO2 were measured in accelerated soaking tests in saline at 87°C. Defects in SiC films were revealed and analyzed by selectively removing the materials underneath those defects. Main results At 87°C SiNx dissolved at 18.3±0.3nm/day, while SiO2 grown at high temperature (1000°C) dissolved at 1.04±0.08A/day. SiC films demonstrated the best stability, with no quantifiable change after 112 days. Defects in thin SiC films appeared primarily over complicated topography and rough surfaces. Significance SiC coatings demonstrating no erosion in accelerated aging test for 112 days at 87°C, equivalent to about 10 years in vivo, can offer effective protection of the implants. Photovoltaic retinal prostheses with PECVD SiC coatings exhibited effective protection from erosion during the 4-month follow-up in vivo. The optimal thickness of SiC layers is about 560nm, as defined by anti-reflective properties and by sufficient coverage to eliminate defects. PMID:27323882

  8. Materials growth and characterization of thermoelectric and resistive switching devices

    NASA Astrophysics Data System (ADS)

    Norris, Kate J.

    In the 74 years since diode rectifier based radar technology helped the allied forces win WWII, semiconductors have transformed the world we live in. From our smart phones to semiconductor-based energy conversion, semiconductors touch every aspect of our lives. With this thesis I hope to expand human knowledge of semiconductor thermoelectric devices and resistive switching devices through experimentation with materials growth and subsequent materials characterization. Metal organic chemical vapor deposition (MOCVD) was the primary method of materials growth utilized in these studies. Additionally, plasma enhanced chemical vapor deposition (PECVD), atomic layer deposition (ALD),ion beam sputter deposition, reactive sputter deposition and electron-beam (e-beam) evaporation were also used in this research for device fabrication. Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), and Electron energy loss spectroscopy (EELS) were the primary characterization methods utilized for this research. Additional device and materials characterization techniques employed include: current-voltage measurements, thermoelectric measurements, x-ray diffraction (XRD), reflection absorption infra-red spectroscopy (RAIRS), atomic force microscopy (AFM), photoluminescence (PL), and raman spectroscopy. As society has become more aware of its impact on the planet and its limited resources, there has been a push toward developing technologies to sustainably produce the energy we need. Thermoelectric devices convert heat directly into electricity. Thermoelectric devices have the potential to save huge amounts of energy that we currently waste as heat, if we can make them cost-effective. Semiconducting thin films and nanowires appear to be promising avenues of research to attain this goal. Specifically, in this work we will explore the use of ErSb thin films as well as Si and InP nanowire networks for thermoelectric applications. First we will discuss the growth of erbium monoantimonide (ErSb) thin films with thermal conductivities close to or slightly smaller than the alloy limit of the two ternary alloy hosts. Second we consider an ex-situ monitoring technique based on glancing-angle infrared-absorption used to determine small amounts of erbium antimonide (ErSb) deposited on an indium antimonide (InSb) layer, a concept for thermoelectric devices to scatter phonons. Thirdly we begin our discussion of nanowires with the selective area growth (SAG) of single crystalline indium phosphide (InP) nanopillars on an array of template segments composed of a stack of gold and amorphous silicon. Our approach enables flexible and scalable nanofabrication using industrially proven tools and a wide range of semiconductors on various non-semiconductor substrates. Then we examine the use of graphene to promote the growth of nanowire networks on flexible copper foil leading to the testing of nanowire network devices for thermoelectric applications and the concept of multi-stage devices. We present the ability to tailor current-voltage characteristics to fit a desired application of thermoelectric devices by using nanowire networks as building blocks that can be stacked vertically or laterally. Furthermore, in the study of our flexible nanowire network multi-stage devices, we discovered the presence of nonlinear current-voltage characteristics and discuss how this feature could be utilized to increase efficiency for thermoelectric devices. This work indicates that with sufficient volume and optimized doping, flexible nanowire networks could be a low cost semiconductor solution to our wasted heat challenge. Resistive switching devices are two terminal electrical resistance switches that retain a state of internal resistance based on the history of applied voltage and current. The occurrence of reversible resistance switching has been widely studied in a variety of material systems for applications including nonvolatile memory, logic circuits, and neuromorphic computing. To this end we next we studied devices in each resistance state of a TaOx switch, which has previously shown high endurance and desirable switching behavior, to better understand the system in nanoscale devices. Finally, we will discuss a self-aligned NbO2 nano-cap demonstrated atop a TaO2.2 switching layer. The goal of this device is to create a nanoscale RRAM and selector device in a single stack. These results indicate that ternary resistive switching devices may be a beneficial method of combining behaviors of different material systems and that with proper engineering a self-aligned selector is possible.

  9. Fabrication Localized Surface Plasmon Resonance sensor chip of gold nanoparticles and detection lipase-osmolytes interaction

    NASA Astrophysics Data System (ADS)

    Ghodselahi, T.; Hoornam, S.; Vesaghi, M. A.; Ranjbar, B.; Azizi, A.; Mobasheri, H.

    2014-09-01

    Co-deposition of RF-sputtering and RF-PECVD from acetylene gas and Au target were used to prepare sensor chip of gold nanoparticles (Au NPs). Deposition conditions were optimized to reach a Localized Surface Plasmon Resonance (LSPR) sensor chip of Au NPs with particle size less than 10 nm. The RF power was set at 180 W and the initial gas pressure was set at 0.035 mbar. Transmission Electron Microscopy (TEM) images and Atomic Force Microscopy (AFM) data were used to investigate particles size and surface morphology of LSPR sensor chip. The Au and C content of the LSPR sensor chip of Au NPs was obtained from X-ray photoelectron spectroscopy (XPS). The hydrogenated amorphous carbon (a-C:H) thin film was used as intermediate material to immobilize Au NPs on the SiO2 substrate. The interaction between two types of osmolytes, i.e. sorbitol and trehalose, with Pseudomonas cepacia lipase (PCL) were detected by the prepared LSPR biosensor chip. The detection mechanism is based on LSPR spectroscopy in which the wavelength of absorption peak is sensitive to the refractive index of the environment of the Au NPs. This mechanism eliminates the use of a probe or immobilization of PCL on the Au NPs of LSPR sensor chip. The interaction between PCL and osmolytes can change refractive index of the mixture or solution. We found that unlike to trehalose, sorbitol interacts with the PCL. This interaction increases refractive index of the PCL and sorbitol mixture. Refractive index of PCL in the presence of different concentration of sorbitol was obtained by Mie theory modeling of LSPR peaks. This modeling stated that the present LSPR sensor chip has sensitivity as high as wavelength shift of 175 nm per refractive index. Moreover, the detection of such weakly interaction between bio-molecules cannot be achieved by other analysis.

  10. InAs/Ga(In)Sb type-II superlattices short/middle dual color infrared detectors

    NASA Astrophysics Data System (ADS)

    Shi, Yanli; Hu, Rui; Deng, Gongrong; He, Wenjing; Feng, Jiangmin; Fang, Mingguo; Li, Xue; Deng, Jun

    2015-06-01

    Short wavelength and middle wavelength dual color infrared detector were designed and prepared with InAs/Ga(In)Sb type-II superlattices materials. The Crosslight software was used to calculate the relation between wavelength and material parameter such as thickness of InAs, GaSb, then energy strucutre of 100 periods 8ML/8ML InAs/GaSb and the absorption wavelength was calculated. After fixing InAs/GaSb thickness parameter, devices with nBn and pin structure were designed and prepared to compare performance of these two structures. Comparison results showed both structure devices were available for high temperature operation which black detectivity under 200K were 7.9×108cmHz1/2/W for nBn and 1.9×109cmHz1/2/W for pin respectively. Considering the simultaneous readout requirement for further FPAs application the NIP/PIN InAs/GaSb dual-color structure was grown by MBE method. Both two mesas and one mesa devices structure were designed and prepared to appreciate the short/middle dual color devices. Cl2-based ICP etching combined with phosphoric acid based chemicals were utilized to form mesas, silicon dioxide was deposited via PECVD as passivation layer. Ti/Au was used as metallization. Once the devices were finished, the electro-optical performance was measured. Measurement results showed that optical spectrum response with peak wavelength of 2.7μm and 4.3μm under 77K temperature was gained, the test results agree well with calculated results. Peak detectivity was measured as 2.08×1011cmHz1/2/W and 6.2×1010cmHz1/2/W for short and middle wavelength infrared detector respectively. Study results disclosed that InAs/Ga(In)Sb type-II SLs is available for both short and middle wavelength infrared detecting with good performance by simply altering the thickness of InAs layer and GaSb layer.

  11. Chemical and microstructural characterizations of plasma polymer films by time-of-flight secondary ion mass spectrometry and principal component analysis

    NASA Astrophysics Data System (ADS)

    Cossement, Damien; Renaux, Fabian; Thiry, Damien; Ligot, Sylvie; Francq, Rémy; Snyders, Rony

    2015-11-01

    It is accepted that the macroscopic properties of functional plasma polymer films (PPF) are defined by their functional density and their crosslinking degree (χ) which are quantities that most of the time behave in opposite trends. If the PPF chemistry is relatively easy to evaluate, it is much more challenging for χ. This paper reviews the recent work developed in our group on the application of principal component analysis (PCA) to time-of-flight secondary ion mass spectrometric (ToF-SIMS) positive spectra data in order to extract the relative cross-linking degree (χ) of PPF. NH2-, COOR- and SH-containing PPF synthesized in our group by plasma enhanced chemical vapor deposition (PECVD) varying the applied radiofrequency power (PRF), have been used as model surfaces. For the three plasma polymer families, the scores of the first computed principal component (PC1) highlighted significant differences in the chemical composition supported by X-Ray photoelectron spectroscopy (XPS) data. The most important fragments contributing to PC1 (loadings > 90%) were used to compute an average C/H ratio index for samples synthesized at low and high PRF. This ratio being an evaluation of χ, these data, accordingly to the literature, indicates an increase of χ with PRF excepted for the SH-PPF. These results have been cross-checked by the evaluation of functional properties of the plasma polymers namely a linear correlation with the stability of NH2-PPF in ethanol and a correlation with the mechanical properties of the COOR-PPF. For the SH-PPF family, the peculiar evolution of χ is supported by the understanding of the growth mechanism of the PPF from plasma diagnostic. The whole set of data clearly demonstrates the potential of the PCA method for extracting information on the microstructure of plasma polymers from ToF-SIMS measurements.

  12. Improved Optical Transmittance and Crystal Characteristics of ZnS:TbOF Thin Film on Bi4Ti3O12/Indium Tin Oxide/Glass Substrate by Using a SiO2 Buffer Layer

    NASA Astrophysics Data System (ADS)

    Chia, Wei‑Kuo; Yokoyama, Meiso; Yang, Cheng‑Fu; Chiang, Wang‑Ta; Chen, Ying‑Chung

    2006-07-01

    Bi4Ti3O12 thin films are deposited on indium tin oxide (ITO)/glass substrates using RF magnetron sputtering technology and are annealed at 675 °C in a rapid thermal annealing furnace in an oxygen atmosphere. The resulting films have high optical transmittances and good crystalline characteristics. ZnS:TbOF films are then deposited on the Bi4Ti3O12 films, causing the originally highly transparent specimens to blacken and to resemble a glass surface coated with carbon powder. The optical transmittance of the specimen is less than 15% under the visible wavelength range, and neither a crystalline phase nor a distinct ZnS grain structure is evident in X-ray diffractometer (XRD) and scanning electronic microscope (SEM). Secondary ion mass spectrometer (SIMS) analysis reveals the occurrence of interdiffusion between the ZnS and Bi4Ti3O12 layers. This suggests that one or more unknown chemical reactions take place among the elements Bi, S, and O at the interface during the deposition of ZnS:TbOF film on a Bi4Ti3O12/ITO/glass substrate. These reactions cause the visible transmittance of the specimens to deteriorate dramatically. To prevent interdiffusion, a silicon dioxide (SiO2) buffer layer 100 nm thick was grown on the Bi4Ti3O12/ITO/glass substrate using plasma-enhanced chemical vapor deposition (PECVD), then the ZnS:TbOF film was grown on the SiO2 buffer layer. The transmittance of the resulting specimen is enhanced approximately 8-fold in the visible region. XRD patterns reveal the ZnS(111)-oriented phase is dominant. Furthermore, dense, crack-free ZnS:TbOF grains are observed by SEM. The results imply that the SiO2 buffer layer sandwiched between the ZnS:TbOF and Bi4Ti3O2 layers effectively separates the two layers. Therefore, interdiffusion and chemical reactions are prevented at the interface of the two layers, and the crystalline characteristics of the ZnS:TbOF layer and the optical transmittance of the specimen are improved as a result. Finally, the dielectric constant of the stacked structure is lower than that of the single layer structure without SiO2, but the dielectric breakdown strength is enhanced.

  13. Materials-Process Interactions in Ternary Alloy Semiconductors.

    DTIC Science & Technology

    1984-08-01

    high, the surface potential can be * modulated . PECVD SiO. appears to be a viable candidate as a gate dielectric for * Irf ,fO-4A)s MISFETs...it is desirable to integrate the detectors with circuits capable of performing signal processing functions. These circuits can either be fabricated in...to be a major problem in In0. 5 3Ga 0.* 47 s. 25 S. . . . . 13821 -1 R I (a) CROSS SECTION KEYBOARD 210M ANNEALING CHAMBER GATE TRIGG TRIAC

  14. Heteroepitaxial Diamond Growth

    DTIC Science & Technology

    1993-01-12

    Si(1 11) = CH2F + H-Si(l 11) 12 20 3 These results and similar results for gas phase reactions involving CHxF4_x species with SilH3 suggest a modified...absent in the signal from diamond.7,8 Glassy carbon also exhibits spectral characteristics similar to those of graphite. 7 The diamond substrate laser...PECVD on Si(100) using an acetic acid/water/methanol mixture at 0.5 Torr and 350 C, similar to results described elsewhere 3. For comparison, a

  15. Spatially confined synthesis of SiOx nano-rod with size-controlled Si quantum dots in nano-porous anodic aluminum oxide membrane.

    PubMed

    Pai, Yi-Hao; Lin, Gong-Ru

    2011-01-17

    By depositing Si-rich SiOx nano-rod in nano-porous anodic aluminum oxide (AAO) membrane using PECVD, the spatially confined synthesis of Si quantum-dots (Si-QDs) with ultra-bright photoluminescence spectra are demonstrated after low-temperature annealing. Spatially confined SiOx nano-rod in nano-porous AAO membrane greatly increases the density of nucleated positions for Si-QD precursors, which essentially impedes the route of thermally diffused Si atoms and confines the degree of atomic self-aggregation. The diffusion controlled growth mechanism is employed to determine the activation energy of 6.284 kJ mole(-1) and diffusion length of 2.84 nm for SiO1.5 nano-rod in nano-porous AAO membrane. HRTEM results verify that the reduced geometric dimension of the SiOx host matrix effectively constrain the buried Si-QD size at even lower annealing temperature. The spatially confined synthesis of Si-QD essentially contributes the intense PL with its spectral linewidth shrinking from 210 to 140 nm and its peak intensity enhancing by two orders of magnitude, corresponding to the reduction on both the average Si-QD size and its standard deviation from 2.6 to 2.0 nm and from 25% to 12.5%, respectively. The red-shifted PL wavelength of the Si-QD reveals an inverse exponential trend with increasing temperature of annealing, which is in good agree with the Si-QD size simulation via the atomic diffusion theory.

  16. Two different ways for waveguides and optoelectronics components on top of C-MOS

    NASA Astrophysics Data System (ADS)

    Fedeli, J. M.; Jeannot, S.; Kostrzewa, M.; Di Cioccio, L.; Jousseaume, V.; Orobtchouk, R.; Maury, P.; Zussy, M.

    2006-02-01

    While fabrication of photonic components at the wafer level is a long standing goal of integrated optics, new applications such as optical interconnects are introducing new challenges for waveguides and optoelectronic component fabrication. Indeed, global interconnects are expected to face severe limitations in the near future. To face this problem, optical links on top of a CMOS circuits could be an alternative. The critical points to perform an optical link on a chip are firstly the realization of compact passive optical distribution and secondly the report of optoelectronic components for the sources and detectors. This paper presents two different approaches for the integration of both waveguides and optoelectronic components. In a first "total bonding" approach, waveguides have been elaborated using classical "Silicon On Insulators" technology and then reported using molecular bonding on top off Si wafers. The S0I substrate was then chemically etched, after what InP dies were moleculary bonded on top of the waveguides. With this approach, optical components with low loses and a good equilibrium are demonsrated. Using molecular bonding, InP dies were reported with no degradation of the optoelectronic properties of the films. In a second approach, using PECVD silicon nitride or amorphous silicon coupled to PECVD silicon oxide, basic optical components are demonstrated. This low temperature technology is compatible with a microelectronic Back End process, allowing an integration of the waveguides directly on top of CMOS circuits. InP dies can then be bonded on top of the waveguides.

  17. High performance SONOS flash memory with in-situ silicon nanocrystals embedded in silicon nitride charge trapping layer

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Gab; Yang, Seung-Dong; Yun, Ho-Jin; Jung, Jun-Kyo; Park, Jung-Hyun; Lim, Chan; Cho, Gyu-seok; Park, Seong-gye; Huh, Chul; Lee, Hi-Deok; Lee, Ga-Won

    2018-02-01

    In this paper, SONOS-type flash memory device with highly improved charge-trapping efficiency is suggested by using silicon nanocrystals (Si-NCs) embedded in silicon nitride (SiNX) charge trapping layer. The Si-NCs were in-situ grown by PECVD without additional post annealing process. The fabricated device shows high program/erase speed and retention property which is suitable for multi-level cell (MLC) application. Excellent performance and reliability for MLC are demonstrated with large memory window of ∼8.5 V and superior retention characteristics of 7% charge loss for 10 years. High resolution transmission electron microscopy image confirms the Si-NC formation and the size is around 1-2 nm which can be verified again in X-ray photoelectron spectroscopy (XPS) where pure Si bonds increase. Besides, XPS analysis implies that more nitrogen atoms make stable bonds at the regular lattice point. Photoluminescence spectra results also illustrate that Si-NCs formation in SiNx is an effective method to form deep trap states.

  18. Complementary metal-oxide semiconductor compatible source of single photons at near-visible wavelengths

    NASA Astrophysics Data System (ADS)

    Cernansky, Robert; Martini, Francesco; Politi, Alberto

    2018-02-01

    We demonstrate on chip generation of correlated pairs of photons in the near-visible spectrum using a CMOS compatible PECVD Silicon Nitride photonic device. Photons are generated via spontaneous four wave mixing enhanced by a ring resonator with high quality Q-factor of 320,000 resulting in a generation rate of 950,000 $\\frac{pairs}{mW}$. The high brightness of this source offers the opportunity to expand photonic quantum technologies over a broad wavelength range and provides a path to develop fully integrated quantum chips working at room temperature.

  19. Integrated approach to improving local CD uniformity in EUV patterning

    NASA Astrophysics Data System (ADS)

    Liang, Andrew; Hermans, Jan; Tran, Timothy; Viatkina, Katja; Liang, Chen-Wei; Ward, Brandon; Chuang, Steven; Yu, Jengyi; Harm, Greg; Vandereyken, Jelle; Rio, David; Kubis, Michael; Tan, Samantha; Dusa, Mircea; Singhal, Akhil; van Schravendijk, Bart; Dixit, Girish; Shamma, Nader

    2017-03-01

    Extreme ultraviolet (EUV) lithography is crucial to enabling technology scaling in pitch and critical dimension (CD). Currently, one of the key challenges of introducing EUV lithography to high volume manufacturing (HVM) is throughput, which requires high source power and high sensitivity chemically amplified photoresists. Important limiters of high sensitivity chemically amplified resists (CAR) are the effects of photon shot noise and resist blur on the number of photons received and of photoacids generated per feature, especially at the pitches required for 7 nm and 5 nm advanced technology nodes. These stochastic effects are reflected in via structures as hole-to-hole CD variation or local CD uniformity (LCDU). Here, we demonstrate a synergy of film stack deposition, EUV lithography, and plasma etch techniques to improve LCDU, which allows the use of high sensitivity resists required for the introduction of EUV HVM. Thus, to improve LCDU to a level required by 5 nm node and beyond, film stack deposition, EUV lithography, and plasma etch processes were combined and co-optimized to enhance LCDU reduction from synergies. Test wafers were created by depositing a pattern transfer stack on a substrate representative of a 5 nm node target layer. The pattern transfer stack consisted of an atomically smooth adhesion layer and two hardmasks and was deposited using the Lam VECTOR PECVD product family. These layers were designed to mitigate hole roughness, absorb out-of-band radiation, and provide additional outlets for etch to improve LCDU and control hole CD. These wafers were then exposed through an ASML NXE3350B EUV scanner using a variety of advanced positive tone EUV CAR. They were finally etched to the target substrate using Lam Flex dielectric etch and Kiyo conductor etch systems. Metrology methodologies to assess dimensional metrics as well as chip performance and defectivity were investigated to enable repeatable patterning process development. Illumination conditions in EUV lithography were optimized to improve normalized image log slope (NILS), which is expected to reduce shot noise related effects. It can be seen that the EUV imaging contrast improvement can further reduce post-develop LCDU from 4.1 nm to 3.9 nm and from 2.8 nm to 2.6 nm. In parallel, etch processes were developed to further reduce LCDU, to control CD, and to transfer these improvements into the final target substrate. We also demonstrate that increasing post-develop CD through dose adjustment can enhance the LCDU reduction from etch. Similar trends were also observed in different pitches down to 40 nm. The solutions demonstrated here are critical to the introduction of EUV lithography in high volume manufacturing. It can be seen that through a synergistic deposition, lithography, and etch optimization, LCDU at a 40 nm pitch can be improved to 1.6 nm (3-sigma) in a target oxide layer and to 1.4 nm (3-sigma) at the photoresist layer.

  20. Study of PECVD films containing flourine and carbon and diamond like carbon films for ultra low dielectric constant interlayer dielectric applications

    NASA Astrophysics Data System (ADS)

    Sundaram, Nandini Ganapathy

    Lowering the capacitance of Back-end-of-line (BEOL) structures by decreasing the dielectric permittivity of the interlayer dielectric material in integrated circuits (ICs) lowers device delay times, power consumption and parasitic capacitance. a:C-F films that are thermally stable at 400°C were deposited using tetrafluorocarbon and disilane (5% by volume in Helium) as precursors. The bulk dielectric constant (k) of the film was optimized from 2.0 / 2.2 to 1.8 / 1.91 as-deposited and after heat treatment. Films, with highly promising k-values but discarded for failing to meet shrinkage rate requirements were salvaged by utilizing a novel extended heat treatment scheme. Film properties including chemical bond structure, F/C ratio, refractive index, surface planarity, contact angle, dielectric constant, flatband voltage shift, breakdown field potential and optical energy gap were evaluated by varying process pressure, power, substrate temperature and flow rate ratio (FRR) of processing gases. Both XPS and FTIR results confirmed that the stoichiometry of the ultra-low k (ULK) film is close to that of CF2 with no oxygen. C-V characteristics indicated the presence of negative charges that are either interface trapped charges or bulk charges. Average breakdown field strength was in the range of 2-8 MV/cm while optical energy gap varied between 2.2 eV and 3.4 eV. Irradiation or plasma damage significantly impacts the ability to integrate the film in VSLI circuits. The film was evaluated after exposure to oxygen plasma and HMDS vapors and no change in the FTIR spectra or refractive index was observed. Film is resistant to attack by developers CD 26 and KOH. While the film dissolves in UVN-30 negative resist, it is impermeable to PGDMA. A 12% increase in dielectric constant and a decrease in contact angle from 65° to 47° was observed post e-beam exposure. The modified Gaseous Electronics Conference (mGEC) reference cell was used to deposit DLC films using CH4 and Argon as precursors. Pre and post-anneal structural properties of the deposited thin film were studied using laser excitation of 633 nm in a Jobin Yvon Labram high-resolution micro-Raman spectrometer. The film was further characterized using AFM, FTIR, XRD, goniometry and electrical testing. Average film roughness as measured by AFM was less than 1 nm, the k-value was 2.5, and the contact angle with water was 42°. Lastly, layered dielectric films comprising of Diamond like Carbon (DLC) and Amorphous Fluorocarbon (a:C-F) were generated using three different stack configurations and subsequently evaluated. Seven unique process conditions generated promising stacks with k-values between 1.69 and 1.95. Of these, only one film exhibited very low shrinkage rates acceptable for semiconductor device processing. Annealed a:C-F films with DLC top coat are similar in bonding structure to as deposited FC films proving that DLC deposition significantly modified the bonding structure of the underlying annealed a:C-F film. Stacks comprised of a:C-F films with higher oxygen content, deposited using high FRRs exhibited both macro and microbuckling to a larger degree and extent. Film integrity was preserved by annealing the Fluorocarbon component or by providing a DLC base coat.

  1. Caging Nb2 O5 Nanowires in PECVD-Derived Graphene Capsules toward Bendable Sodium-Ion Hybrid Supercapacitors.

    PubMed

    Wang, Xiangguo; Li, Qiucheng; Zhang, Li; Hu, Zhongli; Yu, Lianghao; Jiang, Tao; Lu, Chen; Yan, Chenglin; Sun, Jingyu; Liu, Zhongfan

    2018-06-01

    Sodium-ion hybrid supercapacitors (Na-HSCs) by virtue of synergizing the merits of batteries and supercapacitors have attracted considerable attention for high-energy and high-power energy-storage applications. Orthorhombic Nb 2 O 5 (T-Nb 2 O 5 ) has recently been recognized as a promising anode material for Na-HSCs due to its typical pseudocapacitive feature, but it suffers from intrinsically low electrical conductivity. Reasonably high electrochemical performance of T-Nb 2 O 5 -based electrodes could merely be gained to date when sufficient carbon content was introduced. In addition, flexible Na-HSC devices have scarcely been demonstrated by far. Herein, an in situ encapsulation strategy is devised to directly grow ultrathin graphene shells over T-Nb 2 O 5 nanowires (denoted as Gr-Nb 2 O 5 composites) by plasma-enhanced chemical vapor deposition, targeting a highly conductive anode material for Na-HSCs. The few-layered graphene capsules with ample topological defects would enable facile electron and Na + ion transport, guaranteeing rapid pseudocapacitive processes at the Nb 2 O 5 /electrolyte interface. The Na-HSC full-cell comprising a Gr-Nb 2 O 5 anode and an activated carbon cathode delivers high energy/power densities (112.9 Wh kg -1 /80.1 W kg -1 and 62.2 Wh kg -1 /5330 W kg -1 ), outperforming those of recently reported Na-HSC counterparts. Proof-of-concept Na-HSC devices with favorable mechanical robustness manifest stable electrochemical performances under different bending conditions and after various bending-release cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Staebler-Wronski Effect Studied with Positrons

    NASA Astrophysics Data System (ADS)

    Gessmann, Thomas; Weber, Marc H.; Lynn, Kelvin G.; Crandall, Richard S.; Yang, Jeffrey; Guha, Subhendu

    2001-03-01

    Positrons implanted into condensed matter may localize in open volume defects. The energies of gamma-rays emitted after annihilation of positrons with electrons are Doppler-shifted corresponding to the electron momenta at the annihilation site. We used depth-dependent positron annihilation spectroscopy [1] to investigate layers of hydrogenated amorphous-silicon (a-Si:H) deposited by plasma-enhanced chemical-vapor deposition (PECVD). The positron data are interpreted in terms of a dimensionless S-parameter referred to crystalline silicon. The magnitude of S is a measure for the size and concentration of open volume defects acting as trapping sites for positrons. In samples subjected to different hydrogen dilutions during film growth the S-parameter indicates a transition from the amorphous to the microcrystalline structure for large hydrogen-to-disilane ratios. In layers (thickness 250 nm) grown on stainless steel substrates [2] we find that hydrogen dilution results in reduced S-values (1.0127+-0.0007) compared to non-hydrogen diluted samples (1.0316+-0.0007) at room temperature. The S parameters in both hydrogen diluted and non-hydrogen diluted are the lowest ever measured attesting to the dense nature of the material. Previous studies [2] showed superior solar cell characteristics of these layers when grown with hydrogen-to-disilane ratios near the onset of microcrystallinity. Following one-sun light exposure for 400 hr a further decrease in S is observed in both normal and hydrogen diluted samples suggesting a change in the defect associated with light soaking. Two hours annealing at 160 C in air restores the original S-parameter. This behavior was observed for the first time by positron annihilation spectroscopy and may be interpreted as evidence of large scale metastable changes associated with the Staebler-Wronski effect [3]. [1] P.J. Schultz and K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988). [2] S. Guha, J. Yang, D. L. Williamson, Y. Lubianker, J. D. Cohen, A. H. Mahan Appl. Phys. Lett. 74, 1860 (1999). [3] D.L. Staebler and C.R. Wronski, Appl. Phys. Lett. 31, 292 (1977).

  3. Carbon Nanotube Switches for Communication and Memory Applications

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Epp, Larry; Wong, Eric W.; Kowalczyk, Robert

    2008-01-01

    Lateral CNT Switches: a) dc CNT switches were demonstrated to operate at low voltages, low powers and high speeds. b) RF simulations of switch in series configuration with metallized tube yielded good RF performance 1) Isolation simulated to be approx. 20 dB at 100 GHz. 2) Insertion loss simulated to be < 0.5 dB at 100 GHz. Vertical CNT Switches: a) Thermal CVD was used to mechanically constrain tubes in nanopockets; tubes not self-supporting. b) Demonstrated growth of vertically aligned arrays and single-few MWNTs using dc PECVD with Ni catalyst using optical lithography.

  4. Passivation of Ge/high-κ interface using RF Plasma nitridation

    NASA Astrophysics Data System (ADS)

    Dushaq, Ghada; Nayfeh, Ammar; Rasras, Mahmoud

    2018-01-01

    In this paper, plasma nitridation of a germanium surface using NH3 and N2 gases is performed with a standard RF-PECVD method at a substrate temperature of 250 °C. The structural and optical properties of the Ge surface have been investigated using Atomic Force Microscopy (AFM), Fourier Transform Infrared Spectroscopy (FT-IR), and Variable Angle Spectroscopic Ellipsometery (VASE). Study of the Ge (100) surface revealed that it is nitrated after plasma treatment while the GeO2 regrowth on the surface has been suppressed. Also, stability of the treated surface under air exposure is observed, where all the measurements were performed at room ambient. The electrical characteristics of fabricated Al/Ti/HfO2/GeON/p-Ge capacitors using the proposed surface treatment technique have been investigated. The C-V curves indicated a negligible hysteresis compared to ˜500 mV observed in untreated samples. Additionally, the C-V characteristic is used to extract the high-κ/Ge interface trap density using the most commonly used methods in determining the interface traps. The discussion includes the Dit calculation from the high-low frequency (Castagné-Vapaille) method and Terman (high-frequency) method. The high-low frequency method indicated a low interface trap density of ˜2.5 × 1011 eV-1.cm-2 compared to the Terman method. The J-V measurements revealed more than two orders of magnitude reduction of the gate leakage. This improved Ge interface quality is a promising low-temperature technique for fabricating high-performance Ge MOSFETs.

  5. Nanomaterials for Electronics and Optoelectronics

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica E.; Meyyappan, M.

    2011-01-01

    Nanomaterials such as carbon nanotubes(CNTs), graphene, and inorganic nanowires(INWs) have shown interesting electronic, mechanical, optical, thermal, and other properties and therefore have been pursued for a variety of applications by the nanotechnology community ranging from electronics to nanocomposites. While the first two are carbon-based materials, the INWs in the literature include silicon, germanium, III-V, II-VI, a variety of oxides, nitrides, antimonides and others. In this talk, first an overview of growth of these three classes of materials by CVD and PECVD will be presented along with results from characterization. Then applications in development of chemical sensors, biosensors, energy storage devices and novel memory architectures will be discussed.

  6. Conformal coating of highly structured surfaces

    DOEpatents

    Ginley, David S.; Perkins, John; Berry, Joseph; Gennett, Thomas

    2012-12-11

    Method of applying a conformal coating to a highly structured substrate and devices made by the disclosed methods are disclosed. An example method includes the deposition of a substantially contiguous layer of a material upon a highly structured surface within a deposition process chamber. The highly structured surface may be associated with a substrate or another layer deposited on a substrate. The method includes depositing a material having an amorphous structure on the highly structured surface at a deposition pressure of equal to or less than about 3 mTorr. The method may also include removing a portion of the amorphous material deposited on selected surfaces and depositing additional amorphous material on the highly structured surface.

  7. Development of an Aerosol Surface Inoculation Method for Bacillus Spores ▿

    PubMed Central

    Lee, Sang Don; Ryan, Shawn P.; Snyder, Emily Gibb

    2011-01-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 107 CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies. PMID:21193670

  8. Development of an aerosol surface inoculation method for bacillus spores.

    PubMed

    Lee, Sang Don; Ryan, Shawn P; Snyder, Emily Gibb

    2011-03-01

    A method was developed to deposit Bacillus subtilis spores via aerosolization onto various surface materials for biological agent decontamination and detection studies. This new method uses an apparatus coupled with a metered dose inhaler to reproducibly deposit spores onto various surfaces. A metered dose inhaler was loaded with Bacillus subtilis spores, a surrogate for Bacillus anthracis. Five different material surfaces (aluminum, galvanized steel, wood, carpet, and painted wallboard paper) were tested using this spore deposition method. This aerosolization method deposited spores at a concentration of more than 10(7) CFU per coupon (18-mm diameter) with less than a 50% coefficient of variation, showing that the aerosolization method developed in this study can deposit reproducible numbers of spores onto various surface coupons. Scanning electron microscopy was used to probe the spore deposition patterns on test coupons. The deposition patterns observed following aerosol impaction were compared to those of liquid inoculation. A physical difference in the spore deposition patterns was observed to result from the two different methods. The spore deposition method developed in this study will help prepare spore coupons via aerosolization fast and reproducibly for bench top decontamination and detection studies.

  9. Hydrogenated amorphous silicon coatings may modulate gingival cell response

    NASA Astrophysics Data System (ADS)

    Mussano, F.; Genova, T.; Laurenti, M.; Munaron, L.; Pirri, C. F.; Rivolo, P.; Carossa, S.; Mandracci, P.

    2018-04-01

    Silicon-based materials present a high potential for dental implant applications, since silicon has been proven necessary for the correct bone formation in animals and humans. Notably, the addition of silicon is effective to enhance the bioactivity of hydroxyapatite and other biomaterials. The present work aims to expand the knowledge of the role exerted by hydrogen in the biological interaction of silicon-based materials, comparing two hydrogenated amorphous silicon coatings, with different hydrogen content, as means to enhance soft tissue cell adhesion. To accomplish this task, the films were produced by plasma enhanced chemical vapor deposition (PECVD) on titanium substrates and their surface composition and hydrogen content were analyzed by means of X-ray photoelectron spectroscopy (XPS) and Fourier-transform infrared spectrophotometry (FTIR) respectively. The surface energy and roughness were measured through optical contact angle analysis (OCA) and high-resolution mechanical profilometry respectively. Coated surfaces showed a slightly lower roughness, compared to bare titanium samples, regardless of the hydrogen content. The early cell responses of human keratinocytes and fibroblasts were tested on the above mentioned surface modifications, in terms of cell adhesion, viability and morphometrical assessment. Films with lower hydrogen content were endowed with a surface energy comparable to the titanium surfaces. Films with higher hydrogen incorporation displayed a lower surface oxidation and a considerably lower surface energy, compared to the less hydrogenated samples. As regards mean cell area and focal adhesion density, both a-Si coatings influenced fibroblasts, but had no significant effects on keratinocytes. On the contrary, hydrogen-rich films increased manifolds the adhesion and viability of keratinocytes, but not of fibroblasts, suggesting a selective biological effect on these cells.

  10. Optical control of multi-stage thin film solar cell production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jian; Levi, Dean H.; Contreras, Miguel A.

    2016-05-17

    Embodiments include methods of depositing and controlling the deposition of a film in multiple stages. The disclosed deposition and deposition control methods include the optical monitoring of a deposition matrix to determine a time when at least one transition point occurs. In certain embodiments, the transition point or transition points are a stoichiometry point. Methods may also include controlling the length of time in which material is deposited during a deposition stage or controlling the amount of the first, second or subsequent materials deposited during any deposition stage in response to a determination of the time when a selected transitionmore » point occurs.« less

  11. A suitable deposition method of CdS for high performance CdS-sensitized ZnO electrodes: Sequential chemical bath deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Haining; Li, Weiping; Liu, Huicong

    2010-07-15

    A suitable deposition method of CdS is necessary for the high performance CdS-sensitized ZnO electrodes. In this paper, chemical bath deposition (CBD) and sequential chemical bath deposition (S-CBD) methods were used to deposit CdS on ZnO mesoporous films for ZnO/CdS electrodes. The analysis results of XRD patterns and UV-vis spectroscopy indicated that CBD deposition method leaded to the dissolving of ZnO mesoporous films in deposition solution and thickness reduction of ZnO/CdS electrodes. Absorption in visible region by the ZnO/CdS electrodes with CdS deposition by S-CBD was enhanced as deposition cycles increased due to the stability of ZnO mesoporous films inmore » the S-CBD deposition solutions. The results of photocurrent-voltage (I-V) measurement showed that the performance of ZnO/CdS electrodes with CdS deposition by CBD first increased and then decreased as deposition time increased, and the greatest short-circuit current (J{sub sc}) was obtained at the deposition time of 4 min. The performance of ZnO/CdS electrodes with CdS deposition by S-CBD increased as deposition cycles increased, and both open-circuit voltage (V{sub oc}) and J{sub sc} were greater than those electrodes with CdS deposition by CBD when the deposition cycles of S-CBD were 10 or greater. These results indicated that S-CBD is a more suitable method for high performance ZnO/CdS electrodes. (author)« less

  12. Method and apparatus for rapidly growing films on substrates using pulsed supersonic jets

    DOEpatents

    Eres, Diula; Lowndes, Douglas H.

    1992-01-01

    A method and apparatus for the rapid and economical deposition of uniform and high quality films upon a substrate for subsequent use in producing electronic devices, for example. The resultant films are either epitaxial (crystalline) or amorphous depending upon the incidence rate and the temperature and structure of the substrate. The deposition is carried out in a chamber maintained at about 10.sup.-6 Torr. A gaseous source of the material for forming the deposit is injected into the deposition chamber in the form of a pulsed supersonic jet so as to obtain a high incidence rate. The supersonic jet is produced by a pulsed valve between a relatively high presure reservoir, containing the source gaseous molecules, and the deposition chamber; the valve has a small nozzle orifice (e.g., 0.1-1.0 mm diameter). The type of deposit (crystalline amorphous) is then dependent upon the temperature and structure of the substrate. Very high deposition rates are achieved, and the deposit is very smooth and of uniform thickness. Typically the deposition rate is about 100 times that of much more expensive conventional molecular beam methods for deposition, and comparable to certain expensive plasma-assisted CVD methods of the art. The high growth rate of this method results in a reduced contamination of the deposit from other elements in the environment. The method is illustrated by the deposition of epitaxial and amorphour germanium films upon GaAs substrates.

  13. Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    von Kuegelgen, T.

    In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we believe this furnace will enable us to do so,' says A. Rangappan, founder and CEO of Applied Optical Systems. Rangappan also says it will take only a few minutes for the optical furnace to process a thin-film solar cell, which reduces manufacturing costs. Overall, he estimates the company's solar cell will cost around 80 cents per watt. For manufacturing these thin-film silicon cells, Applied Optical Systems and NREL have developed a partnership through a cooperative research and development agreement (CRADA) to construct an optical furnace system prototype. DOE is providing $500,000 from its Technology Commercialization Development Fund to help offset the prototype's development costs because of the technology's significant market potential. The program has provided the NREL technology transfer office with a total of $4 million to expand such collaborative efforts between NREL researchers and companies. Applied Optical will construct a small version of the optical furnace based on the prototype design in NREL's process development and integration laboratory through a separate CRADA. This small furnace will only develop one solar cell wafer at a time. Then, the company will construct a large, commercial-scale optical furnace at its own facilities, which will turn out around 1,000 solar cell wafers per hour. 'We hope to start using the optical furnace for manufacturing within four to five years,' Rangappan says. Meanwhile, another partnership using the optical furnace has evolved between NREL and SiXtron Advanced Materials, another startup. Together they'll use the optical furnace to optimize the metallization process for novel antireflective solar cell coatings. The process is not only expected to yield higher efficiencies for silicon-based solar cells, but also lowers processing costs and eliminates safety concerns for manufacturers. Most solar cell manufacturers currently use a plasma-enhanced chemical vapor deposition (PECVD) system with compressed and extremely pyrophoric silane gas (SiH4) for applying passivation antireflective coatings (ARC). If silane is exposed to air, the SiH4 will explode - a serious safety issue for high-volume manufacturers. SiXtron's process uses a solid, silicon-based polymer that's converted into noncompressed, nonexplosive gas, which then flows to a standard PECVD system. 'The solid source is so safe to handle that it can be shipped by FedEx,' says Zbigniew Barwicz, president and CEO of SiXtron. Barwicz says manufacturers can use the same PECVD processing equipment for the SiXtron process that they already use for SiH4, a plug-and-play solution. For this novel passivation ARC process, NREL is helping to optimize the metallization parameters. NREL has developed a new technology called optical processing. One of the applications of this process is fire-through contact formation of silicon solar cells.« less

  14. In-line charge-trapping characterization of dielectrics for sub-0.5-um CMOS technologies

    NASA Astrophysics Data System (ADS)

    Roy, Pradip K.; Chacon, Carlos M.; Ma, Yi; Horner, Gregory

    1997-09-01

    The advent of ultra-large and giga-scale-integration (ULSI/GSI) has placed considerable emphasis on the development of new gate oxides and interlevel dielectrics capable of meeting strict performance and reliability requirements. The costs and demands associated with ULSI fabrication have in turn fueled the need for cost-effective, rapid and accurate in-line characterization techniques for evaluating dielectric quality. The use of non-contact surface photovoltage characterization techniques provides cost-effective rapid feedback on dielectric quality, reducing costs through the reutilization of control wafers and the elimination of processing time. This technology has been applied to characterize most of the relevant C-V parameters, including flatband voltage (Vfb), density of interface traps (Dit), mobile charge density (Qm), oxide thickness (Tox), oxide resistivity (pox) and total charge (Qtot) for gate and interlevel (ILO) oxides. A novel method of measuring tunneling voltage by this technique on various gate oxides is discussed. For ILO, PECVD and high density plasma dielectrics, surface voltage maps are also presented. Measurements of near-surface silicon quality are described, including minority carrier generation lifetime, and examples of their application in diagnosing manufacturing problems.

  15. Ethanol catalytic optical driven deposition for 1D and 2D materials with ultra-low power threshold of 0 dBm

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Chen, Bohua; Xiao, Xu; Guo, Chaoshi; Zhang, Xiaoyan; Wang, Jun; Jiang, Meng; Wu, Kan; Chen, Jianping

    2018-01-01

    We have demonstrated a generalized optical driven deposition method, ethanol catalytic deposition (ECD) method, which is widely applicable to the deposition of a broad range of one-dimensional (1D) and two-dimensional (2D) materials with common deposition parameters. Using ECD method, deposition of 1D material carbon nanotubes and 2D materials MoS2, MoSe2, WS2 and WSe2 on tapered fiber has been demonstrated with the threshold power as low as 0 dBm. To our knowledge, this is the lowest threshold power ever reported in optical driven deposition, noting that the conventional optical driven deposition has a threshold typically near 15 dBm. It means ECD method can significantly reduce the power requirement and simplify the setup of the optical driven deposition as well as its wide applicability to different materials, which benefits the research on optical nonlinearity and ultrafast photonics of 1D and 2D materials.

  16. Multicomponent aerosol particle deposition in a realistic cast of the human upper respiratory tract.

    PubMed

    Nordlund, Markus; Belka, Miloslav; Kuczaj, Arkadiusz K; Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Jicha, Miroslav; Sauser, Youri; Le Bouhellec, Soazig; Cosandey, Stephane; Majeed, Shoaib; Vuillaume, Grégory; Peitsch, Manuel C; Hoeng, Julia

    2017-02-01

    Inhalation of aerosols generated by electronic cigarettes leads to deposition of multiple chemical compounds in the human airways. In this work, an experimental method to determine regional deposition of multicomponent aerosols in an in vitro segmented, realistic human lung geometry was developed and applied to two aerosols, i.e. a monodisperse glycerol aerosol and a multicomponent aerosol. The method comprised the following steps: (1) lung cast model preparation, (2) aerosol generation and exposure, (3) extraction of deposited mass, (4) chemical quantification and (5) data processing. The method showed good agreement with literature data for the deposition efficiency when using a monodisperse glycerol aerosol, with a mass median aerodynamic diameter (MMAD) of 2.3 μm and a constant flow rate of 15 L/min. The highest deposition surface density rate was observed in the bifurcation segments, indicating inertial impaction deposition. The experimental method was also applied to the deposition of a nebulized multicomponent aerosol with a MMAD of 0.50 μm and a constant flow rate of 15 L/min. The deposited amounts of glycerol, propylene glycol and nicotine were quantified. The three analyzed compounds showed similar deposition patterns and fractions as for the monodisperse glycerol aerosol, indicating that the compounds most likely deposited as parts of the same droplets. The developed method can be used to determine regional deposition for multicomponent aerosols, provided that the compounds are of low volatility. The generated data can be used to validate aerosol deposition simulations and to gain insight in deposition of electronic cigarette aerosols in human airways.

  17. Laser Synthesis of Supported Catalysts for Carbon Nanotubes

    NASA Technical Reports Server (NTRS)

    VanderWal, Randall L.; Ticich, Thomas M.; Sherry, Leif J.; Hall, Lee J.; Schubert, Kathy (Technical Monitor)

    2003-01-01

    Four methods of laser assisted catalyst generation for carbon nanotube (CNT) synthesis have been tested. These include pulsed laser transfer (PLT), photolytic deposition (PLD), photothermal deposition (PTD) and laser ablation deposition (LABD). Results from each method are compared based on CNT yield, morphology and structure. Under the conditions tested, the PLT was the easiest method to implement, required the least time and also yielded the best pattemation. The photolytic and photothermal methods required organometallics, extended processing time and partial vacuums. The latter two requirements also held for the ablation deposition approach. In addition to control of the substrate position, controlled deposition duration was necessary to achieve an active catalyst layer. Although all methods were tested on both metal and quartz substrates, only the quartz substrates proved to be inactive towards the deposited catalyst particles.

  18. Studies of mist deposition for the formation of quantum dot CdSe films

    NASA Astrophysics Data System (ADS)

    Price, S. C.; Shanmugasundaram, K.; Ramani, S.; Zhu, T.; Zhang, F.; Xu, J.; Mohney, S. E.; Zhang, Q.; Kshirsagar, A.; Ruzyllo, J.

    2009-10-01

    Films of CdSe(ZnS) colloidal nanocrystalline quantum dots (NQDs) were deposited on bare silicon, glass and polymer coated silicon using mist deposition. This effort is a part of an exploratory investigation in which this deposition technique is studied for the first time as a method to form semiconductor NQD films. The process parameters, including deposition time, solution concentration and electric field, were varied to change the thickness of the deposited film. Blanket films and films deposited through a shadow mask were created to investigate the method's ability to pattern films during the deposition process. The differences between these deposition modes in terms of film morphology were observed. Overall, the results show that mist deposition of quantum dots is a viable method for creating thin, patterned quantum dot films using colloidal solution as the precursor. It is concluded that this technique shows very good promise for quantum dot (light emitting diode, LED) fabrication.

  19. Thin film materials and devices for resistive temperature sensing applications

    NASA Astrophysics Data System (ADS)

    Basantani, Hitesh A.

    Thin films of vanadium oxide (VOx) and hydrogenated amorphous silicon (a-Si:H) are the two dominant material systems used in resistive infrared radiation detectors (microbolometers) for sensing long wave infrared (LWIR) wavelengths in the 8--14 microm range. Typical thin films of VO x (x < 2) currently used in the bolometer industry have a magnitude of temperature coefficient of resistance (TCR) between 2%/K -- 3%/K. In contrast, thin films of hydrogenated germanium (SiGe:H) have |TCR| between 3%/K to 4%/K. Devices made from either of these materials have resulted in similar device performance with NETD ≈ 25 mK. The performance of the microbolometers is limited by the electronic noise, especially 1/f noise. Therefore, regardless of the choice of bolometer sensing material and read out circuitry, manufacturers are constantly striving to reduce 1/f noise while simultaneously increasing TCR to give better signal to noise ratios in their bolometers and ultimately, better image quality with more thermal information to the end user. In this work, thin films of VOx and hydrogenated germanium (Ge:H), having TCR values > 4 %/K are investigated as potential candidates for higher sensitivity next generation of microbolometers. Thin films of VO x were deposited by Biased Target Ion Beam Deposition (BTIBD) (˜85 nm thick). Electrical characterization of lateral resistor structures showed resistivity ranging from 104 O--cm to 2.1 x 104 O--cm, TCR varying from --4%/K to --5%/K, normalized Hooge parameter (alphaH/n) of 5 x 10 -21 to 5 x 10-18 cm3. Thin films of Ge:H were deposited by plasma enhanced chemical vapor deposition (PECVD) by incorporating an increasing amount of crystal fraction in the growing thin films. Thin films of Ge:H having a mixed phase, amorphous + nanocrystalline, having a |TCR| > 6 %/K were deposited with resistivity < 2,300 O--cm and a normalized Hooge's parameter 'alphaH/n' < 2 x 10-20 cm3. Higher TCR materials are desired, however, such materials have higher resistivity and therefore unacceptable large electrical resistance in a lateral resistor configuration. This work looks at an alternate bolometer device design which incorporates higher TCR materials in a vertically integrated configuration. Thin films of high TCR hydrogenated germanium (Ge:H, |TCR| > 6%/K) and vanadium oxide (VOx, TCR > 5%/K) were integrated in lateral and through film configuration. The electrical performance of the vertically integrated devices is compared with lateral resistance structures. It was confirmed experimentally that the device impedance was significantly lowered while maintaining the signal to noise ratio of the lateral resistor configuration. The vertically integrated devices allow higher device currents without any increase in self heating. These structures may help reduce integration time and may result in higher frame rate. Finally, one dimensional arrays were fabricated using both lateral and vertically integrated configurations and their performance was evaluated. It was found that the performance of the lateral devices was limited by noise floor of the measurement setup used. However, due to the lower impedance of the vertically integrated resistors, a higher signal and therefore higher signal to noise ratio could be obtained. These vertically integrated devices exhibited low RMS noise values of 12 mK.

  20. Argon thermochronology of mineral deposits; a review of analytical methods, formulations, and selected applications

    USGS Publications Warehouse

    Snee, Lawrence W.

    2002-01-01

    40Ar/39Ar geochronology is an experimentally robust and versatile method for constraining time and temperature in geologic processes. The argon method is the most broadly applied in mineral-deposit studies. Standard analytical methods and formulations exist, making the fundamentals of the method well defined. A variety of graphical representations exist for evaluating argon data. A broad range of minerals found in mineral deposits, alteration zones, and host rocks commonly is analyzed to provide age, temporal duration, and thermal conditions for mineralization events and processes. All are discussed in this report. The usefulness of and evolution of the applicability of the method are demonstrated in studies of the Panasqueira, Portugal, tin-tungsten deposit; the Cornubian batholith and associated mineral deposits, southwest England; the Red Mountain intrusive system and associated Urad-Henderson molybdenum deposits; and the Eastern Goldfields Province, Western Australia.

  1. Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

    PubMed Central

    Liu, Mingyang; Qin, Chaoran; Zhang, Zheng; Ma, Shuai; Cai, Xiuru; Li, Xueqian

    2018-01-01

    The electrodeposition of graphene has drawn considerable attention due to its appealing applications for sensors, supercapacitors and lithium-ion batteries. However, there are still some limitations in the current electrodeposition methods for graphene. Here, we present a novel electrodeposition method for the direct deposition of reduced graphene oxide (rGO) with chitosan. In this method, a 2-hydroxypropyltrimethylammonium chloride-based chitosan-modified rGO material was prepared. This material disperses homogenously in the chitosan solution, forming a deposition solution with good dispersion stability. Subsequently, the modified rGO material was deposited on an electrode through codeposition with chitosan, based on the coordination deposition method. After electrodeposition, the homogeneous, deposited rGO/chitosan films can be generated on copper or silver electrodes or substrates. The electrodeposition method allows for the convenient and controlled creation of rGO/chitosan nanocomposite coatings and films of different shapes and thickness. It also introduces a new method of creating films, as they can be peeled completely from the electrodes. Moreover, this method allows for a rGO/chitosan film to be deposited directly onto an electrode, which can then be used for electrochemical detection. PMID:29765797

  2. Method and apparatus for conducting variable thickness vapor deposition

    DOEpatents

    Nesslage, G.V.

    1984-08-03

    A method of vapor depositing metal on a substrate in variable thickness comprises conducting the deposition continuously without interruption to avoid formation of grain boundaries. To achieve reduced deposition in specific regions a thin wire or ribbon blocking body is placed between source and substrate to partially block vapors from depositing in the region immediately below.

  3. Electroless atomic layer deposition

    DOEpatents

    Robinson, David Bruce; Cappillino, Patrick J.; Sheridan, Leah B.; Stickney, John L.; Benson, David M.

    2017-10-31

    A method of electroless atomic layer deposition is described. The method electrolessly generates a layer of sacrificial material on a surface of a first material. The method adds doses of a solution of a second material to the substrate. The method performs a galvanic exchange reaction to oxidize away the layer of the sacrificial material and deposit a layer of the second material on the surface of the first material. The method can be repeated for a plurality of iterations in order to deposit a desired thickness of the second material on the surface of the first material.

  4. Alloy vapor deposition using ion plating and flash evaporation

    NASA Technical Reports Server (NTRS)

    Spalvins, T.

    1971-01-01

    Method extends scope of ion plating technique to include deposition of alloy films without changing composition of plating alloy. Coatings flow with specimen material without chipping or peeling. Technique is most effective vacuum deposition method for depositing alloys for strong and lasting adherence.

  5. Method for deposition of a conductor in integrated circuits

    DOEpatents

    Creighton, J. Randall; Dominguez, Frank; Johnson, A. Wayne; Omstead, Thomas R.

    1997-01-01

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten.

  6. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  7. Liquid precursor for deposition of copper selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; Franciscus Antonius Maria Van Hest, Marinus; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-08

    Liquid precursors containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and methods of depositing a precursor on a substrate are also disclosed.

  8. FAST TRACK COMMUNICATION Understanding adhesion at as-deposited interfaces from ab initio thermodynamics of deposition growth: thin-film alumina on titanium carbide

    NASA Astrophysics Data System (ADS)

    Rohrer, Jochen; Hyldgaard, Per

    2010-12-01

    We investigate the chemical composition and adhesion of chemical vapour deposited thin-film alumina on TiC using and extending a recently proposed nonequilibrium method of ab initio thermodynamics of deposition growth (AIT-DG) (Rohrer and Hyldgaard 2010 Phys. Rev. B 82 045415). A previous study of this system (Rohrer et al 2010 J. Phys.: Condens. Matter 22 015004) found that use of equilibrium thermodynamics leads to predictions of a non-binding TiC/alumina interface, despite its industrial use as a wear-resistant coating. This discrepancy between equilibrium theory and experiment is resolved by the AIT-DG method which predicts interfaces with strong adhesion. The AIT-DG method combines density functional theory calculations, rate-equation modelling of the pressure evolution of the deposition environment and thermochemical data. The AIT-DG method was previously used to predict prevalent terminations of growing or as-deposited surfaces of binary materials. Here we extend the method to predict surface and interface compositions of growing or as-deposited thin films on a substrate and find that inclusion of the nonequilibrium deposition environment has important implications for the nature of buried interfaces.

  9. Thin-film preparation by back-surface irradiation pulsed laser deposition using metal powder targets

    NASA Astrophysics Data System (ADS)

    Kawasaki, Hiroharu; Ohshima, Tamiko; Yagyu, Yoshihito; Ihara, Takeshi; Yamauchi, Makiko; Suda, Yoshiaki

    2017-01-01

    Several kinds of functional thin films were deposited using a new thin-film preparation method named the back-surface irradiation pulsed laser deposition (BIPLD) method. In this BIPLD method, powder targets were used as the film source placed on a transparent target holder, and then a visible-wavelength pulsed laser was irradiated from the holder side to the substrate. Using this new method, titanium oxide and boron nitride thin films were deposited on the silicon substrate. Surface scanning electron microscopy (SEM) images suggest that all of the thin films were deposited on the substrate with some large droplets irrespective of the kind of target used. The deposition rate of the films prepared by using this method was calculated from film thickness and deposition time to be much lower than that of the films prepared by conventional PLD. X-ray diffraction (XRD) measurement results suggest that rutile and anatase TiO2 crystal peaks were formed for the films prepared using the TiO2 rutile powder target. Crystal peaks of hexagonal boron nitride were observed for the films prepared using the boron nitride powder target. The crystallinity of the prepared films was changed by annealing after deposition.

  10. Microfabrication of low-loss lumped-element Josephson circuits for non-reciprocal and parametric devices

    NASA Astrophysics Data System (ADS)

    Cicak, Katarina; Lecocq, Florent; Ranzani, Leonardo; Peterson, Gabriel A.; Kotler, Shlomi; Teufel, John D.; Simmonds, Raymond W.; Aumentado, Jose

    Recent developments in coupled mode theory have opened the doors to new nonreciprocal amplification techniques that can be directly leveraged to produce high quantum efficiency in current measurements in microwave quantum information. However, taking advantage of these techniques requires flexible multi-mode circuit designs comprised of low-loss materials that can be implemented using common fabrication techniques. In this talk we discuss the design and fabrication of a new class of multi-pole lumped-element superconducting parametric amplifiers based on Nb/Al-AlOx/Nb Josephson junctions on silicon or sapphire. To reduce intrinsic loss in these circuits we utilize PECVD amorphous silicon as a low-loss dielectric (tanδ 5 ×10-4), resulting in nearly quantum-limited directional amplification.

  11. Liquid precursor for deposition of indium selenide and method of preparing the same

    DOEpatents

    Curtis, Calvin J.; Miedaner, Alexander; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S.; Hersh, Peter A.; Eldada, Louay; Stanbery, Billy J.

    2015-09-22

    Liquid precursors containing indium and selenium suitable for deposition on a substrate to form thin films suitable for semiconductor applications are disclosed. Methods of preparing such liquid precursors and method of depositing a liquid precursor on a substrate are also disclosed.

  12. Annealing dependence of residual stress and optical properties of TiO2 thin film deposited by different deposition methods.

    PubMed

    Chen, Hsi-Chao; Lee, Kuan-Shiang; Lee, Cheng-Chung

    2008-05-01

    Titanium oxide (TiO(2)) thin films were prepared by different deposition methods. The methods were E-gun evaporation with ion-assisted deposition (IAD), radio-frequency (RF) ion-beam sputtering, and direct current (DC) magnetron sputtering. Residual stress was released after annealing the films deposited by RF ion-beam or DC magnetron sputtering but not evaporation, and the extinction coefficient varied significantly. The surface roughness of the evaporated films exceeded that of both sputtered films. At the annealing temperature of 300 degrees C, anatase crystallization occurred in evaporated film but not in the RF ion-beam or DC magnetron-sputtered films. TiO(2) films deposited by sputtering were generally more stable during annealing than those deposited by evaporation.

  13. Method for deposition of a conductor in integrated circuits

    DOEpatents

    Creighton, J.R.; Dominguez, F.; Johnson, A.W.; Omstead, T.R.

    1997-09-02

    A method is described for fabricating integrated semiconductor circuits and, more particularly, for the selective deposition of a conductor onto a substrate employing a chemical vapor deposition process. By way of example, tungsten can be selectively deposited onto a silicon substrate. At the onset of loss of selectivity of deposition of tungsten onto the silicon substrate, the deposition process is interrupted and unwanted tungsten which has deposited on a mask layer with the silicon substrate can be removed employing a halogen etchant. Thereafter, a plurality of deposition/etch back cycles can be carried out to achieve a predetermined thickness of tungsten. 2 figs.

  14. Properties of zinc tin oxide thin film by aerosol assisted chemical vapor deposition (AACVD)

    NASA Astrophysics Data System (ADS)

    Riza, Muhammad Arif; Rahman, Abu Bakar Abd; Sepeai, Suhaila; Ludin, Norasikin Ahmad; Teridi, Mohd Asri Mat; Ibrahim, Mohd Adib

    2018-05-01

    This study focuses on the properties of ZTO which have been deposited by a low-cost method namely aerosol assisted chemical vapor deposition (AACVD). The precursors used in this method were zinc acetate dihidrate and tin chloride dihydrate for ZTO thin film deposition. Both precursors were mixed and stirred until fully dissolved before deposition. The ZTO was deposited on borosilicate glass substrate for the investigation of optical properties. The films deposited have passed the scotch tape adherence test. XRD revealed that the crystal ZTO is slightly in the form of perovskite structure but several deteriorations were also seen in the spectrum. The UV-Vis analysis showed high transmittance of ˜85% and the band gap was calculated to be 3.85 eV. The average thickness of the film is around 284 nm. The results showed that the ZTO thin films have been successfully deposited by the utilization of AACVD method.

  15. The Development of an Environmentally Compliant, Multi-Functional Aerospace Coating Using Molecular- and Nano-Engineering Methods

    DTIC Science & Technology

    2006-10-02

    Al -TM-RE) alloy which could by spray applied using various deposition routes or deposited as a powder that is...corrosion properties of various spray deposited alloys from their properties as defective coatings on 2024-T3. "* HVOF spray deposited and cold spray ...layer. "* A method has been developed to distinguish the intrinsic corrosion properties of various spray deposited

  16. Method and apparatus for fabricating a thin-film solar cell utilizing a hot wire chemical vapor deposition technique

    DOEpatents

    Wang, Qi; Iwaniczko, Eugene

    2006-10-17

    A thin-film solar cell is provided. The thin-film solar cell comprises an a-SiGe:H (1.6 eV) n-i-p solar cell having a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer by hot wire chemical vapor deposition. A method for fabricating a thin film solar cell is also provided. The method comprises depositing a n-i-p layer at a deposition rate of at least ten (10) .ANG./second for the a-SiGe:H intrinsic layer.

  17. Method for in situ carbon deposition measurement for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Kuhn, J.; Kesler, O.

    2014-01-01

    Previous methods to measure carbon deposition in solid oxide fuel cell (SOFC) anodes do not permit simultaneous electrochemical measurements. Electrochemical measurements supplemented with carbon deposition quantities create the opportunity to further understand how carbon affects SOFC performance and electrochemical impedance spectra (EIS). In this work, a method for measuring carbon in situ, named here as the quantification of gasified carbon (QGC), was developed. TGA experiments showed that carbon with a 100 h residence time in the SOFC was >99.8% gasified. Comparison of carbon mass measurements between the TGA and QGC show good agreement. In situ measurements of carbon deposition in SOFCs at varying molar steam/carbon ratios were performed to further validate the QGC method, and suppression of carbon deposition with increasing steam concentration was observed, in agreement with previous studies. The technique can be used to investigate in situ carbon deposition and gasification behavior simultaneously with electrochemical measurements for a variety of fuels and operating conditions, such as determining conditions under which incipient carbon deposition is reversible.

  18. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method.

    PubMed

    McNamara, Bruce K; O'Hara, Matthew J; Casella, Andrew M; Carter, Jennifer C; Addleman, R Shane; MacFarlan, Paul J

    2016-07-01

    We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other U compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within a fixed reactor geometry to a highly predictable degree. We demonstrate the preparation of U deposits that range between approximately 0.01 and 500ngcm(-2). The data suggest the method can be extended to creating depositions at the sub-picogramcm(-2) level. The isotopic composition of the deposits can be customized by selection of the U source materials and we demonstrate a layering technique whereby two U solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit that bears an isotopic signature that is a composite of the two U sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics. Further, the method allows access to very low atomic or molecular coverages of surfaces. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Methods for producing films using supercritical fluid

    DOEpatents

    Yonker, Clement R.; Fulton, John L.

    2004-06-15

    A method for forming a continuous film on a substrate surface that involves depositing particles onto a substrate surface and contacting the particle-deposited substrate surface with a supercritical fluid under conditions sufficient for forming a continuous film from the deposited particles. The particles may have a mean particle size of less 1 micron. The method may be performed by providing a pressure vessel that can contain a compressible fluid. A particle-deposited substrate is provided in the pressure vessel and the compressible fluid is maintained at a supercritical or sub-critical state sufficient for forming a film from the deposited particles. The T.sub.g of particles may be reduced by subjecting the particles to the methods detailed in the present disclosure.

  20. Assessment of nasal spray deposition pattern in a silicone human nose model using a color-based method.

    PubMed

    Kundoor, Vipra; Dalby, Richard N

    2010-01-01

    To develop a simple and inexpensive method to visualize and quantify droplet deposition patterns. Deposition pattern was determined by uniformly coating the nose model with Sar-Gel (a paste that changes from white to purple on contact with water) and subsequently discharging sprays into the nose model. The color change was captured using a digital camera and analyzed using Adobe Photoshop. Several tests were conducted to validate the method. Deposition patterns of different nasal sprays (Ayr, Afrin, and Zicam) and different nasal drug delivery devices (Afrin nasal spray and PARI Sinustar nasal nebulizer) were compared. We also used the method to evaluate the effect of inhaled flow rate on nasal spray deposition. There was a significant difference in the deposition area for Ayr, Afrin, and Zicam. The deposition areas of Afrin nasal spray and PARI Sinustar nasal nebulizer (2 min and 5 min) were significantly different. Inhaled flow rate did not have a significant effect on the deposition pattern. Lower viscosity formulations (Ayr, Afrin) provided greater coverage than the higher viscosity formulation (Zicam). The nebulizer covered a greater surface area than the spray pump we evaluated. Aerosol deposition in the nose model was not affected by air flow conditions.

  1. A simplified method for assessing particle deposition rate in aircraft cabins

    NASA Astrophysics Data System (ADS)

    You, Ruoyu; Zhao, Bin

    2013-03-01

    Particle deposition in aircraft cabins is important for the exposure of passengers to particulate matter, as well as the airborne infectious diseases. In this study, a simplified method is proposed for initial and quick assessment of particle deposition rate in aircraft cabins. The method included: collecting the inclined angle, area, characteristic length, and freestream air velocity for each surface in a cabin; estimating the friction velocity based on the characteristic length and freestream air velocity; modeling the particle deposition velocity using the empirical equation we developed previously; and then calculating the particle deposition rate. The particle deposition rates for the fully-occupied, half-occupied, 1/4-occupied and empty first-class cabin of the MD-82 commercial airliner were estimated. The results show that the occupancy did not significantly influence the particle deposition rate of the cabin. Furthermore, the simplified human model can be used in the assessment with acceptable accuracy. Finally, the comparison results show that the particle deposition rate of aircraft cabins and indoor environments are quite similar.

  2. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOEpatents

    Shtein, Max [Ann Arbor, MI; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2008-10-14

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  3. Uniform deposition of uranium hexafluoride (UF6): Standardized mass deposits and controlled isotopic ratios using a thermal fluorination method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, Bruce K.; O’Hara, Matthew J.; Casella, Andrew M.

    2016-07-01

    Abstract: We report a convenient method for the generation of volatile uranium hexafluoride (UF6) from solid uranium oxides and other uranium compounds, followed by uniform deposition of low levels of UF6 onto sampling coupons. Under laminar flow conditions, UF6 is shown to interact with surfaces within the chamber to a highly predictable degree. We demonstrate the preparation of uranium deposits that range between ~0.01 and 470±34 ng∙cm-2. The data suggest the method can be extended to creating depositions at the sub-picogram∙cm-2 level. Additionally, the isotopic composition of the deposits can be customized by selection of the uranium source materials. Wemore » demonstrate a layering technique whereby two uranium solids, each with a different isotopic composition, are employed to form successive layers of UF6 on a surface. The result is an ultra-thin deposit of UF6 that bears an isotopic signature that is a composite of the two uranium sources. The reported deposition method has direct application to the development of unique analytical standards for nuclear safeguards and forensics.« less

  4. Methods of degrading napalm B

    DOEpatents

    Tyndall, Richard L.; Vass, Arpad

    1995-01-01

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates include is deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  5. Methods of degrading napalm B

    DOEpatents

    Tyndall, R.L.; Vass, A.

    1995-09-12

    Methods of degrading napalm and/or trinitrotoluene involve contacting the waste with specific intra-amoebic isolates of ATCC 40908 and/or dispersants derived therefrom. Useful isolates are deposited as ATCC 77529, NAP-1 deposited as ATCC 77526 and 13 deposited as ATCC 77527.

  6. Method of depositing a high-emissivity layer

    DOEpatents

    Wickersham, Charles E.; Foster, Ellis L.

    1983-01-01

    A method of depositing a high-emissivity layer on a substrate comprising RF sputter deposition of a carbide-containing target in an atmosphere of a hydrocarbon gas and a noble gas. As the carbide is deposited on the substrate the hydrocarbon gas decomposes to hydrogen and carbon. The carbon deposits on the target and substrate causing a carbide/carbon composition gradient to form on the substrate. At a sufficiently high partial pressure of hydrocarbon gas, a film of high-emissivity pure carbon will eventually form over the substrate.

  7. Hot-filament chemical vapor deposition chamber and process with multiple gas inlets

    DOEpatents

    Deng, Xunming; Povolny, Henry S.

    2004-06-29

    A thin film deposition method uses a vacuum confinement cup that employs a dense hot filament and multiple gas inlets. At least one reactant gas is introduced into the confinement cup both near and spaced apart from the heated filament. An electrode inside the confinement cup is used to generate plasma for film deposition. The method is used to deposit advanced thin films (such as silicon based thin films) at a high quality and at a high deposition rate.

  8. Short review on chemical bath deposition of thin film and characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mugle, Dhananjay, E-mail: dhananjayforu@gmail.com; Jadhav, Ghanshyam, E-mail: ghjadhav@rediffmail.com

    2016-05-06

    This reviews the theory of early growth of the thin film using chemical deposition methods. In particular, it critically reviews the chemical bath deposition (CBD) method for preparation of thin films. The different techniques used for characterizations of the chemically films such as X-ray diffractometer (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Electrical conductivity and Energy Dispersive Spectroscopy (EDS) are discussed. Survey shows the physical and chemical properties solely depend upon the time of deposition, temperature of deposition.

  9. Low-Energy, Hydrogen-Free Method of Diamond Synthesis

    NASA Technical Reports Server (NTRS)

    Varshney, Deepak (Inventor); Morell, Gerardo (Inventor); Weiner, Brad R. (Inventor); Makarov, Vladimir (Inventor)

    2013-01-01

    Diamond thin films were deposited on copper substrate by the Vapor Solid (VS) deposition method using a mixture of fullerene C(sub 60) and graphite as the source material. The deposition took place only when the substrate was kept in a narrow temperature range of approximately 550-650 C. Temperatures below and above this range results in the deposition of fullerenes and other carbon compounds, respectively.

  10. Optimization of Thick, Large Area YBCO Film Growth Through Response Surface Methods

    NASA Astrophysics Data System (ADS)

    Porzio, J.; Mahoney, C. H.; Sullivan, M. C.

    2014-03-01

    We present our work on the optimization of thick, large area YB2C3O7-δ (YBCO) film growth through response surface methods. Thick, large area films have commercial uses and have recently been used in dramatic demonstrations of levitation and suspension. Our films are grown via pulsed laser deposition and we have optimized growth parameters via response surface methods. Response surface methods is a statistical tool to optimize selected quantities with respect to a set of variables. We optimized our YBCO films' critical temperatures, thicknesses, and structures with respect to three PLD growth parameters: deposition temperature, laser energy, and deposition pressure. We will present an overview of YBCO growth via pulsed laser deposition, the statistical theory behind response surface methods, and the application of response surface methods to pulsed laser deposition growth of YBCO. Results from the experiment will be presented in a discussion of the optimized film quality. Supported by NFS grant DMR-1305637

  11. Comparative Study of Solution Phase and Vapor Phase Deposition of Aminosilanes on Silicon Dioxide Surfaces

    PubMed Central

    Yadav, Amrita R.; Sriram, Rashmi; Carter, Jared A.; Miller, Benjamin L.

    2014-01-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. PMID:24411379

  12. Palladium nanoparticle deposition via precipitation: a new method to functionalize macroporous silicon

    PubMed Central

    Scheen, Gilles; Bassu, Margherita; Douchamps, Antoine; Zhang, Chao; Debliquy, Marc; Francis, Laurent A

    2014-01-01

    We present an original two-step method for the deposition via precipitation of Pd nanoparticles into macroporous silicon. The method consists in immersing a macroporous silicon sample in a PdCl2/DMSO solution and then in annealing the sample at a high temperature. The impact of composition and concentration of the solution and annealing time on the nanoparticle characteristics is investigated. This method is compared to electroless plating, which is a standard method for the deposition of Pd nanoparticles. Scanning electron microscopy and computerized image processing are used to evaluate size, shape, surface density and deposition homogeneity of the Pd nanoparticles on the pore walls. Energy-dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS) analyses are used to evaluate the composition of the deposited nanoparticles. In contrast to electroless plating, the proposed method leads to homogeneously distributed Pd nanoparticles along the macropores depth with a surface density that increases proportionally with the PdCl2 concentration. Moreover EDX and XPS analysis showed that the nanoparticles are composed of Pd in its metallic state, while nanoparticles deposited by electroless plating are composed of both metallic Pd and PdOx. PMID:27877732

  13. Ion/proton-conducting apparatus and method

    DOEpatents

    Yates, Matthew; Xue, Wei

    2014-12-23

    A c-axis-oriented HAP thin film synthesized by seeded growth on a palladium hydrogen membrane substrate. An exemplary synthetic process includes electrochemical seeding on the substrate, and secondary and tertiary hydrothermal treatments under conditions that favor growth along c-axes and a-axes in sequence. By adjusting corresponding synthetic conditions, an HAP this film can be grown to a controllable thickness with a dense coverage on the underlying substrate. The thin films have relatively high proton conductivity under hydrogen atmosphere and high temperature conditions. The c-axis oriented films may be integrated into fuel cells for application in the intermediate temperature range of 200-600.degree. C. The electrochemical-hydrothermal deposition technique may be applied to create other oriented crystal materials having optimized properties, useful for separations and catalysis as well as electronic and electrochemical applications, electrochemical membrane reactors, and in chemical sensors. Additional high-density and gas-tight HAP film compositions may be deposited using a two-step deposition method that includes an electrochemical deposition method followed by a hydrothermal deposition method. The two-step method uses a single hydrothermal deposition solution composition. The method may be used to deposit HAP films including but not limited to at least doped HAP films, and more particularly including carbonated HAP films. In addition, the high-density and gas-tight HAP films may be used in proton exchange membrane fuel cells.

  14. Immobilization of sericin molecules via amorphous carbon plasma modified-polystyrene dish for serum-free culture

    NASA Astrophysics Data System (ADS)

    Tunma, Somruthai; Song, Doo-Hoon; Kim, Si-Eun; Kim, Kyoung-Nam; Han, Jeon-Geon; Boonyawan, Dheerawan

    2013-10-01

    In this study, we focused on sericin hydrolysates, originating from silkworm used in serum-free human bone marrow-derived mesenchymal stem cells (hBM-MSCs) culture. We reported the effect of a covalent linkage between a bioactive protein molecule and polystyrene dish surface via a carbon intermediate layer which can slow down the release rate of protein compounds into the phosphate buffer saline (PBS) solution. Films of amorphous carbon (a-C) and functionalized-carbon were deposited on PS culture dish surfaces by using a DC magnetron sputtering system and RF PECVD system. We found that a-C based-films can increase the hydrophilicity and biocompatibility of polystyrene (PS) dishes, especially a-C films and a-C:N2 films showed good attachment of hBM-MSCs at 24 h. However, in the case of silica surface (a-C:SiOx films), the cells showed a ragged and unattached boundary resulting from the presence of surface silanol groups. For the UV-vis absorbance, all carbon modified-PS dishes showed a lower release rate of sericin molecules into PBS solution than PS control. This revealed that the functionalized carbon could be enhanced by specific binding properties with given molecules. The carbon-coated PS dishes grafting with sericin protein were used in a serum-free condition. We also found that hBM-MSCs have higher percentage of proliferated cells at day 7 for the modified dishes with carbon films and coated with sericin than the PS control coated with sericin. The physical film properties were measured by atomic force microscopy (AFM), scanning electron microscope (SEM) and contact angle measurement. The presence of sbnd NH2 groups of sericin compounds on the PS dish was revealed by Fourier transform infrared spectroscopy (FTIR). The stability of covalent bonds of sericin molecules after washing out ungrafted sericin was confirmed by X-ray photoelectron spectroscopy (XPS).

  15. Non-plasmonic nanostructures for subwavelength nonlinear optics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Shcherbakov, Maxim R.

    2016-09-01

    Thin films of hydrogenated amorphous silicon were grown on cover glasses by PECVD in an Oxford PlasmaLab System 100. The thickness of the films and their linear optical properties were characterized by J.A. Woollam Co. Spectroscopic Ellipsometer M-2000D. The follow-up procedure was to spin coat the negative tone ma-N 2403 electron-beam resist over the film, and expose the resist using an electron-beam lithography system (Raith 150). The exposed film was developed and brought to the reactive ion etching facility. We performed conventional apertureless z-scan and I-scan measurements. A train of femtosecond laser pulses form a Coherent Micra 5 laser with an output mean power of 250 mW passed through a precompressor for a negative chirp. A thin-film nanoparticle polarizer (ThorLabs LPVIS050) and a Glan laser-grade polarizer were used to adjust the fluence values in the range of 0.1-10 mJ/cm2. For the pump-probe measurements, a train of femtosecond laser pulses form the laser passed through a pre-compressor for a negative chirp. The pulses were split into two; the resulting mean power values of pump and probe beams at the sample site were approximately 40 mW and 1.5 mW, respectively. The pulses were measured to have 45 fs intensity autocorrelation FHWM duration, and a spectral FWHM width of 19 nm, resulting in a time-bandwidth product of 0.4. Focusing through a silica lens pair achieved waists of roughly 30 μm in diameter, resulting in modest pump fluence values of approximately 30 μJ/cm2, a pump pulse energy of 0.25 nJ, and per-disk deposited energy of 13 fJ. The third-harmonic generation experiment description can be found as the supplementary information of the following publication: http://pubs.acs.org/doi/abs/10.1021/nl503029j

  16. Low-temperature crack-free Si3N4 nonlinear photonic circuits for CMOS-compatible optoelectronic co-integration

    NASA Astrophysics Data System (ADS)

    Casale, Marco; Kerdiles, Sebastien; Brianceau, Pierre; Hugues, Vincent; El Dirani, Houssein; Sciancalepore, Corrado

    2017-02-01

    In this communication, authors report for the first time on the fabrication and testing of Si3N4 non-linear photonic circuits for CMOS-compatible monolithic co-integration with silicon-based optoelectronics. In particular, a novel process has been developed to fabricate low-loss crack-free Si3N4 750-nm-thick films for Kerr-based nonlinear functions featuring full thermal budget compatibility with existing Silicon photonics and front-end Si optoelectronics. Briefly, differently from previous and state-of-the-art works, our nonlinear nitride-based platform has been realized without resorting to commonly-used high-temperature annealing ( 1200°C) of the film and its silica upper-cladding used to break N-H bonds otherwise causing absorption in the C-band and destroying its nonlinear functionality. Furthermore, no complex and fabrication-intolerant Damascene process - as recently reported earlier this year - aimed at controlling cracks generated in thick tensile-strained Si3N4 films has been used as well. Instead, a tailored Si3N4 multiple-step film deposition in 200-mm LPCVD-based reactor and subsequent low-temperature (400°C) PECVD oxide encapsulation have been used to fabricate the nonlinear micro-resonant circuits aiming at generating optical frequency combs via optical parametric oscillators (OPOs), thus allowing the monolithic co-integration of such nonlinear functions on existing CMOS-compatible optoelectronics, for both active and passive components such as, for instance, silicon modulators and wavelength (de-)multiplexers. Experimental evidence based on wafer-level statistics show nitride-based 112-μm-radius ring resonators using such low-temperature crack-free nitride film exhibiting quality factors exceeding Q >3 x 105, thus paving the way to low-threshold power-efficient Kerr-based comb sources and dissipative temporal solitons in the C-band featuring full thermal processing compatibility with Si photonic integrated circuits (Si-PICs).

  17. Apparatus and method for intra-layer modulation of the material deposition and assist beam and the multilayer structure produced therefrom

    NASA Technical Reports Server (NTRS)

    Wadley, Hadyn N. G. (Inventor); Zhou, Xiaowang (Inventor); Quan, Junjie (Inventor)

    2002-01-01

    A method of producing a multilayer structure that has reduced interfacial roughness and interlayer mixing by using a physical-vapor deposition apparatus. In general the method includes forming a bottom layer having a first material wherein a first plurality of monolayers of the first material is deposited on an underlayer using a low incident adatom energy. Next, a second plurality of monolayers of the first material is deposited on top of the first plurality of monolayers of the first material using a high incident adatom energy. Thereafter, the method further includes forming a second layer having a second material wherein a first plurality of monolayers of the second material is deposited on the second plurality of monolayers of the first material using a low incident adatom energy. Next, a second plurality of monolayers of the second material is deposited on the first plurality of monolayers of the second material using a high incident adatom energy.

  18. Feasibility study for wax deposition imaging in oil pipelines by PGNAA technique.

    PubMed

    Cheng, Can; Jia, Wenbao; Hei, Daqian; Wei, Zhiyong; Wang, Hongtao

    2017-10-01

    Wax deposition in pipelines is a crucial problem in the oil industry. A method based on the prompt gamma-ray neutron activation analysis technique was applied to reconstruct the image of wax deposition in oil pipelines. The 2.223MeV hydrogen capture gamma rays were used to reconstruct the wax deposition image. To validate the method, both MCNP simulation and experiments were performed for wax deposited with a maximum thickness of 20cm. The performance of the method was simulated using the MCNP code. The experiment was conducted with a 252 Cf neutron source and a LaBr 3 : Ce detector. A good correspondence between the simulations and the experiments was observed. The results obtained indicate that the present approach is efficient for wax deposition imaging in oil pipelines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Deposition method for producing silicon carbide high-temperature semiconductors

    DOEpatents

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  20. Self-Lubricating Coatings for Elevated Temperature Applications Using A High-Velocity-Particle-Consolidation (HVPC) Process

    DTIC Science & Technology

    2008-12-01

    Deposition of copper by cold gas dynamic spraying : An investigation of dependence of microstructure and properties of the deposits on the...the deposition of metals, alloys , polymers, and composite powder -materials onto various substrates without significant heating of the spray powders or... Spray method is a relatively new coating method for deposition of metal, alloy , polymer, and/or composite powder material onto

  1. METHODS OF CALCULATINAG LUNG DELIVERY AND DEPOSITION OF AEROSOL PARTICLES

    EPA Science Inventory


    Lung deposition of aerosol is measured by a variety of methods. Total lung deposition can be measured by monitoring inhaled and exhaled aerosols in situ by laser photometry or by collecting the aerosols on filters. The measurements can be performed accurately for stable monod...

  2. Year-round atmospheric wet and dry deposition of nitrogen and phosphorus on water and land surfaces in Nanjing, China.

    PubMed

    Sun, Liying; Li, Bo; Ma, Yuchun; Wang, Jinyang; Xiong, Zhengqin

    2013-06-01

    The dry deposition of ammonium, nitrate, and total phosphorus (TP) to both water (DW) and land (DD) surfaces, along with wet deposition, were simultaneously monitored from March 2009 to February 2011 in Nanjing, China. Results showed that wet deposition of total phosphorus was 1.1 kg phosphorus ha (-1)yr(-1), and inorganic nitrogen was 28.7 kg nitrogen ha (-1)yr(-1), with 43% being ammonium nitrogen. Dry deposition of ammonium, nitrate, and total phosphorus, measured by the DW/DD method, was 7.5/2.2 kg nitrogen ha (-1)yr(-1), 6.3/ 4.9 kg nitrogen ha (-1)yr(-1), and 1.9/0.4 kg phosphorus ha (-1)yr(-1), respectively. Significant differences between the DW and DD methods indicated that both methods should be employed simultaneously when analyzing deposition to aquatic and terrestrial ecosystems in watershed areas. The dry deposition of ammonium, nitrate, and total phosphorus contributed 38%, 28%, and 63%, respectively, to the total deposition in the simulated aquatic ecosystem; this has significance for the field of water eutrophication control.

  3. Doping control by ALD surface functionalization

    DOEpatents

    Elam, Jeffrey W.; Yanguas-Gil, Angel

    2015-02-10

    Systems and methods for producing a material of desired thickness. Deposition techniques such as atomic layer deposition are alter to control the thickness of deposited material. A funtionalization species inhibits the deposition reaction.

  4. Method for measuring and controlling beam current in ion beam processing

    DOEpatents

    Kearney, Patrick A.; Burkhart, Scott C.

    2003-04-29

    A method for producing film thickness control of ion beam sputter deposition films. Great improvements in film thickness control is accomplished by keeping the total current supplied to both the beam and suppressor grids of a radio frequency (RF) in beam source constant, rather than just the current supplied to the beam grid. By controlling both currents, using this method, deposition rates are more stable, and this allows the deposition of layers with extremely well controlled thicknesses to about 0.1%. The method is carried out by calculating deposition rates based on the total of the suppressor and beam currents and maintaining the total current constant by adjusting RF power which gives more consistent values.

  5. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, Gary L.; Martin, Frank S.

    1994-12-13

    A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.

  6. A simplified economic filter for open-pit mining and heap-leach recovery of copper in the United States

    USGS Publications Warehouse

    Long, Keith R.; Singer, Donald A.

    2001-01-01

    Determining the economic viability of mineral deposits of various sizes and grades is a critical task in all phases of mineral supply, from land-use management to mine development. This study evaluates two simple tools for estimating the economic viability of porphyry copper deposits mined by open-pit, heap-leach methods when only limited information on these deposits is available. These two methods are useful for evaluating deposits that either (1) are undiscovered deposits predicted by a mineral resource assessment, or (2) have been discovered but for which little data has been collected or released. The first tool uses ordinary least-squared regression analysis of cost and operating data from selected deposits to estimate a predictive relationship between mining rate, itself estimated from deposit size, and capital and operating costs. The second method uses cost models developed by the U.S. Bureau of Mines (Camm, 1991) updated using appropriate cost indices. We find that the cost model method works best for estimating capital costs and the empirical model works best for estimating operating costs for mines to be developed in the United States.

  7. Photobiomolecular deposition of metallic particles and films

    DOEpatents

    Hu, Zhong-Cheng

    2005-02-08

    The method of the invention is based on the unique electron-carrying function of a photocatalytic unit such as the photosynthesis system I (PSI) reaction center of the protein-chlorophyll complex isolated from chloroplasts. The method employs a photo-biomolecular metal deposition technique for precisely controlled nucleation and growth of metallic clusters/particles, e.g., platinum, palladium, and their alloys, etc., as well as for thin-film formation above the surface of a solid substrate. The photochemically mediated technique offers numerous advantages over traditional deposition methods including quantitative atom deposition control, high energy efficiency, and mild operating condition requirements.

  8. Optical method for continuous monitoring of dust deposition in mine's entry / Optyczna metoda ciągłego pomiaru intensywności osiadania pyłu węglowego w wyrobisku górniczym

    NASA Astrophysics Data System (ADS)

    2012-12-01

    The paper presents factors determining dust explosion hazards occurring in underground hard coal mines. The authors described the mechanism of transport and deposition of dust in mines entries and previous research on this topic. The paper presents a method of determination of depositing dust distribution during mining and presents the way to use it to assess coal dust explosion risk. The presented method of calculating the intensity of coal dust deposition is based on continuous monitoring of coal dust concentrations with use of optical sensors. Mathematical model of the distribution of the average coal dust concentration was created. Presented method allows to calculate the intensity of coal dust deposition in a continuous manner. Additionally, the authors presented the PŁ-2 stationary optical dust sampler, used in the study, connected to the monitoring system in the mine. The article features the results of studies conducted in the return air courses of the active longwalls, and the results of calculations of dust deposition intensity carried out with the use of the presented method.

  9. Comparative study of solution-phase and vapor-phase deposition of aminosilanes on silicon dioxide surfaces.

    PubMed

    Yadav, Amrita R; Sriram, Rashmi; Carter, Jared A; Miller, Benjamin L

    2014-02-01

    The uniformity of aminosilane layers typically used for the modification of hydroxyl bearing surfaces such as silicon dioxide is critical for a wide variety of applications, including biosensors. However, in spite of many studies that have been undertaken on surface silanization, there remains a paucity of easy-to-implement deposition methods reproducibly yielding smooth aminosilane monolayers. In this study, solution- and vapor-phase deposition methods for three aminoalkoxysilanes differing in the number of reactive groups (3-aminopropyl triethoxysilane (APTES), 3-aminopropyl methyl diethoxysilane (APMDES) and 3-aminopropyl dimethyl ethoxysilane (APDMES)) were assessed with the aim of identifying methods that yield highly uniform and reproducible silane layers that are resistant to minor procedural variations. Silane film quality was characterized based on measured thickness, hydrophilicity and surface roughness. Additionally, hydrolytic stability of the films was assessed via these thickness and contact angle values following desorption in water. We found that two simple solution-phase methods, an aqueous deposition of APTES and a toluene based deposition of APDMES, yielded high quality silane layers that exhibit comparable characteristics to those deposited via vapor-phase methods. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A Deposit Contract Method to Deliver Abstinence Reinforcement for Cigarette Smoking

    ERIC Educational Resources Information Center

    Dallery, Jesse; Meredith, Steven; Glenn, Irene M.

    2008-01-01

    Eight smokers were randomly assigned to a deposit contract ($50.00) or to a no-deposit group. Using a reversal design, participants could recoup their deposit (deposit group) or earn vouchers (no-deposit group) for smoking reductions and abstinence (breath carbon monoxide [CO] less than or equal to 4 parts per million) during treatment phases.…

  11. Compilation of gallium resource data for bauxite deposits

    USGS Publications Warehouse

    Schulte, Ruth F.; Foley, Nora K.

    2014-01-01

    Gallium (Ga) concentrations for bauxite deposits worldwide have been compiled from the literature to provide a basis for research regarding the occurrence and distribution of Ga worldwide, as well as between types of bauxite deposits. In addition, this report is an attempt to bring together reported Ga concentration data into one database to supplement ongoing U.S. Geological Survey studies of critical mineral resources. The compilation of Ga data consists of location, deposit size, bauxite type and host rock, development status, major oxide data, trace element (Ga) data and analytical method(s) used to derive the data, and tonnage values for deposits within bauxite provinces and districts worldwide. The range in Ga concentrations for bauxite deposits worldwide is

  12. Designed porosity materials in nuclear reactor components

    DOEpatents

    Yacout, A. M.; Pellin, Michael J.; Stan, Marius

    2016-09-06

    A nuclear fuel pellet with a porous substrate, such as a carbon or tungsten aerogel, on which at least one layer of a fuel containing material is deposited via atomic layer deposition, and wherein the layer deposition is controlled to prevent agglomeration of defects. Further, a method of fabricating a nuclear fuel pellet, wherein the method features the steps of selecting a porous substrate, depositing at least one layer of a fuel containing material, and terminating the deposition when the desired porosity is achieved. Also provided is a nuclear reactor fuel cladding made of a porous substrate, such as silicon carbide aerogel or silicon carbide cloth, upon which layers of silicon carbide are deposited.

  13. Method of monitoring photoactive organic molecules in-situ during gas-phase deposition of the photoactive organic molecules

    DOEpatents

    Forrest, Stephen R.; Vartanian, Garen; Rolin, Cedric

    2015-06-23

    A method for in-situ monitoring of gas-phase photoactive organic molecules in real time while depositing a film of the photoactive organic molecules on a substrate in a processing chamber for depositing the film includes irradiating the gas-phase photoactive organic molecules in the processing chamber with a radiation from a radiation source in-situ while depositing the film of the one or more organic materials and measuring the intensity of the resulting photoluminescence emission from the organic material. One or more processing parameters associated with the deposition process can be determined from the photoluminescence intensity data in real time providing useful feedback on the deposition process.

  14. An innovative spraying setup to obtain uniform salt(s) mixture deposition to investigate hot corrosion

    NASA Astrophysics Data System (ADS)

    Mannava, Venkateswararao; Swaminathan, A. Vignesh; Kamaraj, M.; Kottada, Ravi Sankar

    2016-02-01

    A hot corrosion study via molten salt deposition and its interaction with creep/fatigue play a critical role in predicting the life of gas turbine engine components. To do systematic hot corrosion studies, deposition of molten salts on specimens should be uniform with good adherence. Thus, the present study describes an in-house developed spraying setup that produces uniform and reliable molten salt deposition in a repeatable fashion. The efficacy of the present method was illustrated by depositing 90 wt. % Na2SO4 + 5 wt. % NaCl + 5 wt. % NaV O3 salt mixture on hot corrosion coupons and on creep specimens, and also by comparing with other deposition methods.

  15. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves.

    PubMed

    Hofmann, Frieder; Otto, Mathias; Kuhn, Ulrike; Ober, Steffi; Schlechtriemen, Ulrich; Vögel, Rudolph

    2011-02-21

    Maize is wind pollinated and produces huge amounts of pollen. In consequence, the Cry toxins expressed in the pollen of Bt maize will be dispersed by wind in the surrounding vegetation leading to exposure of non-target organisms (NTO). NTO like lepidopteran larvae may be affected by the uptake of Bt-pollen deposited on their host plants. Although some information is available to estimate pollen deposition on host plants, recorded data are based on indirect measurements such as shaking or washing off pollen, or removing pollen with adhesive tapes. These methods often lack precision and they do not include the necessary information such as the spatial and temporal variation of pollen deposition on the leaves. Here, we present a new method for recording in situ the amount and the distribution of Bt-maize pollen deposited on host plant leaves. The method is based on the use of a mobile digital microscope (Dino-Lite Pro, including DinoCapture software), which can be used in combination with a notebook in the field. The method was evaluated during experiments in 2008 to 2010. Maize pollen could be correctly identified and pollen deposition as well as the spatial heterogeneity of maize pollen deposition was recorded on maize and different lepidopteran host plants (Centaurea scabiosa, Chenopodium album, Rumex spp., Succina pratensis and Urtica dioica) growing adjacent to maize fields.

  16. A New Method for in Situ Measurement of Bt-Maize Pollen Deposition on Host-Plant Leaves

    PubMed Central

    Hofmann, Frieder; Otto, Mathias; Kuhn, Ulrike; Ober, Steffi; Schlechtriemen, Ulrich; Vögel, Rudolph

    2011-01-01

    Maize is wind pollinated and produces huge amounts of pollen. In consequence, the Cry toxins expressed in the pollen of Bt maize will be dispersed by wind in the surrounding vegetation leading to exposure of non-target organisms (NTO). NTO like lepidopteran larvae may be affected by the uptake of Bt-pollen deposited on their host plants. Although some information is available to estimate pollen deposition on host plants, recorded data are based on indirect measurements such as shaking or washing off pollen, or removing pollen with adhesive tapes. These methods often lack precision and they do not include the necessary information such as the spatial and temporal variation of pollen deposition on the leaves. Here, we present a new method for recording in situ the amount and the distribution of Bt-maize pollen deposited on host plant leaves. The method is based on the use of a mobile digital microscope (Dino-Lite Pro, including DinoCapture software), which can be used in combination with a notebook in the field. The method was evaluated during experiments in 2008 to 2010. Maize pollen could be correctly identified and pollen deposition as well as the spatial heterogeneity of maize pollen deposition was recorded on maize and different lepidopteran host plants (Centaurea scabiosa, Chenopodium album, Rumex spp., Succina pratensis and Urtica dioica) growing adjacent to maize fields. PMID:26467496

  17. Reconstruction and analysis of cesium-137 fallout deposition patterns in the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Whitcomb, Robert Cleckley, Jr.

    Estimates of 137Cs deposition due to fallout originating from nuclear weapons testing in the Marshall Islands have been made for several locations in the Marshall Islands. These retrospective estimates were based primarily on historical exposure rate and gummed film measurements. The methods used to reconstruct these deposition estimates are specific for six of the Pacific tests. These methods are also similar to those used in the National Cancer Institute study for reconstructing 131I deposition from the Nevada Test Site. Reconstructed cumulative deposition estimates are validated against contemporary measurements of 137Cs concentration in soil. This validation work also includes an accounting for estimated global fallout contributions. These validations show that the overall geometric bias in predicted-to-observed (P/O) ratios is 1.0 (indicating excellent agreement). The 5th and 95th percentile range of this distribution is 0.35--2.95. The P/O ratios for estimates using historical gummed film measurements tend to slightly over-predict more than estimates using exposure rate measurements. The methods produce reasonable estimates of deposition confirming that radioactive fallout occurred at atolls further south of the four northern atolls recognized by the Department of Energy as being affected by fallout. The deposition estimate methods, supported by the very good agreement between estimates and measurements, suggest that these methods can be used for other weapons testing fallout radionuclides with confidence.

  18. Ammonia release method for depositing metal oxides

    DOEpatents

    Silver, G.L.; Martin, F.S.

    1994-12-13

    A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.

  19. Methods and apparatus for delivering high power laser energy to a surface

    DOEpatents

    Faircloth, Brian O; Zediker, Mark S; Rinzler, Charles C; Koblick, Yeshaya; Moxley, Joel F

    2013-04-23

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  20. High power laser energy distribution patterns, apparatus and methods for creating wells

    DOEpatents

    Faircloth, Brian O.; Zediker, Mark S.; Rinzler, Charles C.; Koblick, Yeshaya; Moxley, Joel F.

    2016-03-15

    There is provided a system, apparatus and methods for providing a laser beam to borehole surface in a predetermined and energy deposition profile. The predetermined energy deposition profiles may be uniform or tailored to specific downhole applications. Optic assemblies for obtaining these predetermined energy deposition profiles are further provided.

  1. An empirical inferential method of estimating nitrogen deposition to Mediterranean-type ecosystems: the San Bernardino Mountains case study.

    PubMed

    Bytnerowicz, A; Johnson, R F; Zhang, L; Jenerette, G D; Fenn, M E; Schilling, S L; Gonzalez-Fernandez, I

    2015-08-01

    The empirical inferential method (EIM) allows for spatially and temporally-dense estimates of atmospheric nitrogen (N) deposition to Mediterranean ecosystems. This method, set within a GIS platform, is based on ambient concentrations of NH3, NO, NO2 and HNO3; surface conductance of NH4(+) and NO3(-); stomatal conductance of NH3, NO, NO2 and HNO3; and satellite-derived LAI. Estimated deposition is based on data collected during 2002-2006 in the San Bernardino Mountains (SBM) of southern California. Approximately 2/3 of dry N deposition was to plant surfaces and 1/3 as stomatal uptake. Summer-season N deposition ranged from <3 kg ha(-1) in the eastern SBM to ∼ 60 kg ha(-1) in the western SBM near the Los Angeles Basin and compared well with the throughfall and big-leaf micrometeorological inferential methods. Extrapolating summertime N deposition estimates to annual values showed large areas of the SBM exceeding critical loads for nutrient N in chaparral and mixed conifer forests. Published by Elsevier Ltd.

  2. Aligned crystalline semiconducting film on a glass substrate and method of making

    DOEpatents

    Findikoglu, Alp T.

    2010-08-24

    A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.

  3. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  4. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  5. Methods for making deposited films with improved microstructures

    DOEpatents

    Patten, James W.; Moss, Ronald W.; McClanahan, Edwin D.

    1982-01-01

    Methods for improving microstructures of line-of-sight deposited films are described. Columnar growth defects ordinarily produced by geometrical shadowing during deposition of such films are eliminated without resorting to post-deposition thermal or mechanical treatments. The native, as-deposited coating qualities, including homogeneity, fine grain size, and high coating-to-substrate adherence, can thus be retained. The preferred method includes the steps of emitting material from a source toward a substrate to deposit a coating non-uniformly on the substrate surface, removing a portion of the coating uniformly over the surface, again depositing material onto the surface, but from a different direction, and repeating the foregoing steps. The quality of line-of-sight deposited films such as those produced by sputtering, progressively deteriorates as the angle of incidence between the flux and the surface becomes increasingly acute. Depositing non-uniformly, so that the coating becomes progressively thinner as quality deteriorates, followed by uniformly removing some of the coating, such as by resputtering, eliminates the poor quality portions, leaving only high quality portions of the coating. Subsequently sputtering from a different direction applies a high quality coating to other regions of the surface. Such steps can be performed either simultaneously or sequentially to apply coatings of a uniformly high quality, closed microstructure to three-dimensional or larger planar surfaces.

  6. A study of carbon deposition on fuel cell power plants — morphology of deposited carbon and catalytic metal in carbon deposition reactions on stainless steel

    NASA Astrophysics Data System (ADS)

    Sone, Yuko; Kishida, Haruo; Kobayashi, Makoto; Watanabe, Takao

    Carbon deposited on SUS304 stainless steel (18Cr 8Ni) has been observed by two different methods. One method was Field Emission Transmission Electron Microscopy (FE-TEM), with developed preparation for in situ observation of a cross-section of the deposited carbon from the base (SUS) to the top. The other method was X-ray Photoelectron Spectroscopy (XPS), obtaining composition-depth profiles by argon ion sputtering. Carbon was deposited on SUS304, 550°C, 1 atm, H 2/CO/CO 2=75/15/10, after drained the steam-reformed natural gas composition. One result from FE-TEM identified the major form of deposited carbon was tubular in shape with a variety of diameters, ranging from approximately 7 to 100 nm. Some tubes contained metallic particles which were about 20 nm in size at their tips. Therefore, it can be established that the carbon deposition mechanism is similar to that reported for metals such as Fe, Ni, and that the deposited carbon can grow after the SUS surface is covered with deposits under the above conditions. Observations from EDX attached to FE-TEM also determined that most of the particles consisted of Fe and from XPS, that the content of Fe on the surface of the reaction plate was lower than on the unreacted sample. This indicates that carbon deposition on stainless steel was influenced by Fe rather than Ni and Cr.

  7. Variable temperature semiconductor film deposition

    DOEpatents

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  8. Variable temperature semiconductor film deposition

    DOEpatents

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  9. Silicon carbide and other films and method of deposition

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy L. (Inventor)

    2007-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  10. A throughfall collection method using mixed bed ion exchange resin columns

    Treesearch

    Mark E. Fenn; Mark A. Poth; Michael J. Arbaugh

    2002-01-01

    Measurement of ionic deposition in throughfall is a widely used method for measuring deposition inputs to the forest floor. Many studies have been published, providing a large database of throughfall deposition inputs to forests. However, throughfall collection and analysis is labor intensive and expensive because of the large number of replicate collectors needed and...

  11. 12 CFR 360.8 - Method for determining deposit and other liability account balances at a failed insured...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... liability account balances at a failed insured depository institution. 360.8 Section 360.8 Banks and Banking... RECEIVERSHIP RULES § 360.8 Method for determining deposit and other liability account balances at a failed... FDIC will use to determine deposit and other liability account balances for insurance coverage and...

  12. 12 CFR 360.8 - Method for determining deposit and other liability account balances at a failed insured...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... liability account balances at a failed insured depository institution. 360.8 Section 360.8 Banks and Banking... RECEIVERSHIP RULES § 360.8 Method for determining deposit and other liability account balances at a failed... FDIC will use to determine deposit and other liability account balances for insurance coverage and...

  13. Silicon carbide and other films and method of deposition

    NASA Technical Reports Server (NTRS)

    Mehregany, Mehran (Inventor); Zorman, Christian A. (Inventor); Fu, Xiao-An (Inventor); Dunning, Jeremy (Inventor)

    2011-01-01

    A method of depositing a ceramic film, particularly a silicon carbide film, on a substrate is disclosed in which the residual stress, residual stress gradient, and resistivity are controlled. Also disclosed are substrates having a deposited film with these controlled properties and devices, particularly MEMS and NEMS devices, having substrates with films having these properties.

  14. Influence of deposition conditions on electrical and mechanical properties of Sm2O3-doped CeO2 thin films prepared by EB-PVD (+IBAD) methods. Part 1: Effective relative permittivity

    NASA Astrophysics Data System (ADS)

    Hartmanová, Mária; Nádaždy, Vojtech; Kundracik, František; Mansilla, Catina

    2013-03-01

    Study is devoted to the effective relative permittivity ɛr of CeO2 + x. Sm2O3 thin films prepared by electron-beam physical vapour deposition and ionic beam-assisted deposition methods; ɛr was investigated by three independent ways from the bulk parallel capacitance Cp, impedance capacitance Cimp, and accumulation capacitance Cacc in dependence on the deposition conditions (deposition temperature, dopant amount x and Ar+ ion bombardment during the film deposition) used. Investigations were performed using impedance spectroscopy, capacitance-voltage and current-voltage characteristics as well as deep level transient spectroscopy. Results obtained are described and discussed.

  15. Elimination of initial stress-induced curvature in a micromachined bi-material composite-layered cantilever

    NASA Astrophysics Data System (ADS)

    Liu, Ruiwen; Jiao, Binbin; Kong, Yanmei; Li, Zhigang; Shang, Haiping; Lu, Dike; Gao, Chaoqun; Chen, Dapeng

    2013-09-01

    Micro-devices with a bi-material-cantilever (BMC) commonly suffer initial curvature due to the mismatch of residual stress. Traditional corrective methods to reduce the residual stress mismatch generally involve the development of different material deposition recipes. In this paper, a new method for reducing residual stress mismatch in a BMC is proposed based on various previously developed deposition recipes. An initial material film is deposited using two or more developed deposition recipes. This first film is designed to introduce a stepped stress gradient, which is then balanced by overlapping a second material film on the first and using appropriate deposition recipes to form a nearly stress-balanced structure. A theoretical model is proposed based on both the moment balance principle and total equal strain at the interface of two adjacent layers. Experimental results and analytical models suggest that the proposed method is effective in producing multi-layer micro cantilevers that display balanced residual stresses. The method provides a generic solution to the problem of mismatched initial stresses which universally exists in micro-electro-mechanical systems (MEMS) devices based on a BMC. Moreover, the method can be incorporated into a MEMS design automation package for efficient design of various multiple material layer devices from MEMS material library and developed deposition recipes.

  16. The effects of two thick film deposition methods on tin dioxide gas sensor performance.

    PubMed

    Bakrania, Smitesh D; Wooldridge, Margaret S

    2009-01-01

    This work demonstrates the variability in performance between SnO(2) thick film gas sensors prepared using two types of film deposition methods. SnO(2) powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 - 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis.

  17. The Effects of Two Thick Film Deposition Methods on Tin Dioxide Gas Sensor Performance

    PubMed Central

    Bakrania, Smitesh D.; Wooldridge, Margaret S.

    2009-01-01

    This work demonstrates the variability in performance between SnO2 thick film gas sensors prepared using two types of film deposition methods. SnO2 powders were deposited on sensor platforms with and without the use of binders. Three commonly utilized binder recipes were investigated, and a new binder-less deposition procedure was developed and characterized. The binder recipes yielded sensors with poor film uniformity and poor structural integrity, compared to the binder-less deposition method. Sensor performance at a fixed operating temperature of 330 °C for the different film deposition methods was evaluated by exposure to 500 ppm of the target gas carbon monoxide. A consequence of the poor film structure, large variability and poor signal properties were observed with the sensors fabricated using binders. Specifically, the sensors created using the binder recipes yielded sensor responses that varied widely (e.g., S = 5 – 20), often with hysteresis in the sensor signal. Repeatable and high quality performance was observed for the sensors prepared using the binder-less dispersion-drop method with good sensor response upon exposure to 500 ppm CO (S = 4.0) at an operating temperature of 330 °C, low standard deviation to the sensor response (±0.35) and no signal hysteresis. PMID:22399977

  18. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, Judith Alison

    1999-01-01

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet ("DUV") and Extreme Ultra-Violet ("EUV") wavelengths. The method results in a product with minimum feature sizes of less than 0.10-.mu.m for the shortest wavelength (13.4-nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R.sup.2 factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates.

  19. Method and system for near-field spectroscopy using targeted deposition of nanoparticles

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S. (Inventor)

    2012-01-01

    There is provided in one embodiment of the invention a method for analyzing a sample material using surface enhanced spectroscopy. The method comprises the steps of imaging the sample material with an atomic force microscope (AFM) to select an area of interest for analysis, depositing nanoparticles onto the area of interest with an AFM tip, illuminating the deposited nanoparticles with a spectrometer excitation beam, and disengaging the AFM tip and acquiring a localized surface enhanced spectrum. The method may further comprise the step of using the AFM tip to modulate the spectrometer excitation beam above the deposited nanoparticles to obtain improved sensitivity data and higher spatial resolution data from the sample material. The invention further comprises in one embodiment a system for analyzing a sample material using surface enhanced spectroscopy.

  20. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z{sub 1}) and nanograins by SILAR (Z{sub 2}). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. Themore » X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10{sup 2} Ω cm) is lower than that of SILAR deposited films (10{sup 5} Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method.« less

  1. Simple Approaches for Measuring Dry Atmospheric Nitrogen Deposition to Watersheds

    EPA Science Inventory

    Assessing the effects of atmospheric nitrogen (N) deposition on surface water quality requires accurate accounts of total N deposition (wet, dry, and cloud vapor); however, dry deposition is difficult to measure and is often spatially variable. Affordable passive sampling methods...

  2. Fluorine compounds for doping conductive oxide thin films

    DOEpatents

    Gessert, Tim; Li, Xiaonan; Barnes, Teresa M; Torres, Jr., Robert; Wyse, Carrie L

    2013-04-23

    Methods of forming a conductive fluorine-doped metal oxide layer on a substrate by chemical vapor deposition are described. The methods may include heating the substrate in a processing chamber, and introducing a metal-containing precursor and a fluorine-containing precursor to the processing chamber. The methods may also include adding an oxygen-containing precursor to the processing chamber. The precursors are reacted to deposit the fluorine-doped metal oxide layer on the substrate. Methods may also include forming the conductive fluorine-doped metal oxide layer by plasma-assisted chemical vapor deposition. These methods may include providing the substrate in a processing chamber, and introducing a metal-containing precursor, and a fluorine-containing precursor to the processing chamber. A plasma may be formed that includes species from the metal-containing precursor and the fluorine-containing precursor. The species may react to deposit the fluorine-doped metal oxide layer on the substrate.

  3. Method of depositing epitaxial layers on a substrate

    DOEpatents

    Goyal, Amit

    2003-12-30

    An epitaxial article and method for forming the same includes a substrate having a textured surface, and an electrochemically deposited substantially single orientation epitaxial layer disposed on and in contact with the textured surface. The epitaxial article can include an electromagnetically active layer and an epitaxial buffer layer. The electromagnetically active layer and epitaxial buffer layer can also be deposited electrochemically.

  4. Electroplating method for producing ultralow-mass fissionable deposits

    DOEpatents

    Ruddy, Francis H.

    1989-01-01

    A method for producing ultralow-mass fissionable deposits for nuclear reactor dosimetry is described, including the steps of holding a radioactive parent until the radioactive parent reaches secular equilibrium with a daughter isotope, chemically separating the daughter from the parent, electroplating the daughter on a suitable substrate, and holding the electroplated daughter until the daughter decays to the fissionable deposit.

  5. Methods for measuring atmospheric nitrogen deposition inputs in arid and montane ecosystems of western North America

    Treesearch

    M.E. Fenn; J.O. Sickman; A. Bytnerowicz; D.W. Clow; N.P. Molotch; J.E. Pleim; G.S. Tonnesen; K.C. Weathers; P.E. Padgett; D.H. Campbell.

    2009-01-01

    Measuring atmospheric deposition in arid and snow-dominated regions presents unique challenges. Throughfall, the flux of nutrients transported in solution to the forest floor, is generally the most practical method of estimating below-canopy deposition, particularly when monitoring multiple forest sites or over multiple years. However, more studies are needed to relate...

  6. Pulse electro-deposition of copper on molybdenum for Cu(In,Ga)Se2 and Cu2ZnSnSe4 solar cell applications

    NASA Astrophysics Data System (ADS)

    Bi, Jinlian; Yao, Liyong; Ao, Jianping; Gao, Shoushuai; Sun, Guozhong; He, Qing; Zhou, Zhiqiang; Sun, Yun; Zhang, Yi

    2016-09-01

    The issues of rough surface morphology and the incorporated additives of the electro-deposited Cu layers, which exists in electrodeposition-based processes, is one of the major obstacles to improve the efficiency of Cu(In,Ga)Se2 (CIGSe) and Cu2ZnSnSe4 (CZTSe) solar cells. In this study, the pulse current electro-deposition method is employed to deposit smooth Cu film on Mo substrate in CuSO4 solution without any additives. Grain size of the deposited Cu film is decreased by high cathode polarization successfully. And the concentration polarization, which results from high pulse current density, is controlled successfully by adjusting the pulse frequency. Flat Cu film with smooth surface and compact structure is deposited as pulse current density @ 62.5 mA cm-2, pulse frequency @100,000 Hz, and duty cycle @ 25%. CIGSe and CZTSe absorber films with flat surface and uniform elemental distribution are prepared by selenizing the stacking metal layers electro-deposited by pulse current method. Finally, the CIGSe and CZTSe solar cells with conversion efficiency of 10.39% and 7.83% respectively are fabricated based on the smooth Cu films, which are better than the solar cells fabricated by the rough Cu film deposited by direct current electro-deposition method.

  7. Secondary treatment of films of colloidal quantum dots for optoelectronics and devices produced thereby

    DOEpatents

    Semonin, Octavi Escala; Luther, Joseph M; Beard, Matthew C; Chen, Hsiang-Yu

    2014-04-01

    A method of forming an optoelectronic device. The method includes providing a deposition surface and contacting the deposition surface with a ligand exchange chemical and contacting the deposition surface with a quantum dot (QD) colloid. This initial process is repeated over one or more cycles to form an initial QD film on the deposition surface. The method further includes subsequently contacting the QD film with a secondary treatment chemical and optionally contacting the surface with additional QDs to form an enhanced QD layer exhibiting multiple exciton generation (MEG) upon absorption of high energy photons by the QD active layer. Devices having an enhanced QD active layer as described above are also disclosed.

  8. Assessment of atmospheric trace metal deposition in urban environments using direct and indirect measurement methodology and contributions from wet and dry depositions

    NASA Astrophysics Data System (ADS)

    Omrani, Mehrazin; Ruban, Véronique; Ruban, Gwenaël; Lamprea, Katerine

    2017-11-01

    Bulk Atmospheric Deposition (BAD), Wet Atmospheric Deposition (WAD) and Dry Atmospheric Deposition (DAD) were all measured within an urban residential area in Nantes (France) over a 9-month period (27 February - 10 December 2014). The objectives of this study were to compare 2 methods for measuring dry and wet atmospheric depositions in the urban environment (DAD and WAD: direct method; BAD and WAD: indirect one), and to characterize as well the variations and relative contributions of these depositions. Trace metals (As, Cd, Cr, Cu, Ni, Pt and V) were used to carry out these comparison and quantification. BAD was collected with two open polyethylene containers (72 × 54 × 21 cm), while WAD was collected by means of an automated rainwater collector and DAD was determined from both air measurements (recorded by an air sampler) and 7Be deposition velocities. The comparison based on a detailed evaluation of uncertainties showed a significant difference between the direct and indirect methods. Dry and wet depositions varied widely from one month to the next. Zn and Cu were the most abundant elements in both dry and wet depositions. The mean contribution of DAD to the bulk atmospheric deposition during this 9-month study was significant for Zn, Cu and V (about 25%) as well as for Pb (approx. 60%). For this relatively unpolluted urban residential catchment, the contribution of atmospheric deposition to global load at the catchment outlet was low, between 10% and 20% for Zn, Cu, V and Pb, 25% for Cr and about 30% for Ni. For other urban sites exhibiting high atmospheric pollution however, the atmospheric contribution to the global pollution load could be much greater. An accurate and representative estimation of DAD thus proves critical.

  9. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, C.L.; Clark, D.E.; Smartt, H.B.

    1990-11-13

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites are disclosed. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment with the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite. 1 fig.

  10. Method for gas-metal arc deposition

    DOEpatents

    Buhrmaster, Carol L.; Clark, Denis E.; Smartt, Herschel B.

    1990-01-01

    Method and apparatus for gas-metal arc deposition of metal, metal alloys, and metal matrix composites. The apparatus contains an arc chamber for confining a D.C. electrical arc discharge, the arc chamber containing an outlet orifice in fluid communication with a deposition chamber having a deposition opening in alignment wiht the orifice for depositing metal droplets on a coatable substrate. Metal wire is passed continuously into the arc chamber in alignment with the orifice. Electric arcing between the metal wire anode and the orifice cathode produces droplets of molten metal from the wire which pass through the orifice and into the deposition chamber for coating a substrate exposed at the deposition opening. When producing metal matrix composites, a suspension of particulates in an inert gas enters the deposition chamber via a plurality of feed openings below and around the orifice so that reinforcing particulates join the metal droplets to produce a uniform mixture which then coats the exposed substrate with a uniform metal matrix composite.

  11. Sputter-deposited fuel cell membranes and electrodes

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram R. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Chun, William (Inventor); Ruiz, Ron P. (Inventor); Valdez, Thomas I. (Inventor)

    2001-01-01

    A method for preparing a membrane for use in a fuel cell membrane electrode assembly includes the steps of providing an electrolyte membrane, and sputter-depositing a catalyst onto the electrolyte membrane. The sputter-deposited catalyst may be applied to multiple sides of the electrolyte membrane. A method for forming an electrode for use in a fuel cell membrane electrode assembly includes the steps of obtaining a catalyst, obtaining a backing, and sputter-depositing the catalyst onto the backing. The membranes and electrodes are useful for assembling fuel cells that include an anode electrode, a cathode electrode, a fuel supply, and an electrolyte membrane, wherein the electrolyte membrane includes a sputter-deposited catalyst, and the sputter-deposited catalyst is effective for sustaining a voltage across a membrane electrode assembly in the fuel cell.

  12. Co-deposition methods for the fabrication of organic optoelectronic devices

    DOEpatents

    Thompson, Mark E.; Liu, Zhiwei; Wu, Chao

    2016-09-06

    A method for fabricating an OLED by preparing phosphorescent metal complexes in situ is provided. In particular, the method simultaneously synthesizes and deposits copper (I) complexes in an organic light emitting device. Devices comprising such complexes may provide improved photoluminescent and electroluminescent properties.

  13. Room temperature impact deposition of ceramic by laser shock wave

    NASA Astrophysics Data System (ADS)

    Jinno, Kengo; Tsumori, Fujio

    2018-06-01

    In this paper, a direct fine patterning of ceramics at room temperature combining 2 kinds of laser microfabrication methods is proposed. The first method is called laser-induced forward transfer and the other is called laser shock imprinting. In the proposed method, a powder material is deposited by a laser shock wave; therefore, the process is applicable to a low-melting-point material, such as a polymer substrate. In the process, a carbon layer plays an important role in the ablation by laser irradiation to generate a shock wave. This shock wave gives high shock energy to the ceramic particles, and the particles would be deposited and solidified by high-speed collision with the substrate. In this study, we performed deposition experiments by changing the thickness of the carbon layer, laser energy, thickness of the alumina layer, and gap substrates. We compared the ceramic deposits after each experiment.

  14. Method for fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam; Ma, Beihai; Miller, Dean

    2006-03-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y2O3 and then a layer of CeO2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  15. Method for fabrication of high temperature superconductors

    DOEpatents

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  16. Characterization of Pb-Doped GaN Thin Films Grown by Thermionic Vacuum Arc

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Pat, Suat; Korkmaz, Şadan

    2018-03-01

    Undoped and lead (Pb)-doped gallium nitride (GaN) thin films have been deposited by a thermionic vacuum arc (TVA) method. Glass and polyethylene terephthalate were selected as optically transparent substrates. The structural, optical, morphological, and electrical properties of the deposited thin films were investigated. These physical properties were interpreted by comparison with related analysis methods. The crystalline structure of the deposited GaN thin films was hexagonal wurtzite. The optical bandgap energy of the GaN and Pb-doped GaN thin films was found to be 3.45 eV and 3.47 eV, respectively. The surface properties of the deposited thin films were imaged using atomic force microscopy and field-emission scanning electron microscopy, revealing a nanostructured, homogeneous, and granular surface structure. These results confirm that the TVA method is an alternative layer deposition system for Pb-doped GaN thin films.

  17. Method of Manufacturing a Light Emitting, Photovoltaic or Other Electronic Apparatus and System

    NASA Technical Reports Server (NTRS)

    Blanchard, Richard A. (Inventor); Lewandowski, Mark Allan (Inventor); Frazier, Donald Odell (Inventor); Ray, William Johnstone (Inventor); Fuller, Kirk A. (Inventor); Lowenthal, Mark David (Inventor); Shotton, Neil O. (Inventor)

    2014-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  18. Method of manufacturing a light emitting, photovoltaic or other electronic apparatus and system

    NASA Technical Reports Server (NTRS)

    Fuller, Kirk A. (Inventor); Frazier, Donald Odell (Inventor); Blanchard, Richard A. (Inventor); Lowenthal, Mark D. (Inventor); Lewandowski, Mark Allan (Inventor); Ray, William Johnstone (Inventor); Shotton, Neil O. (Inventor)

    2012-01-01

    The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.

  19. Investigations of the fabrication and the surface-enhanced Raman scattering detection applications for tapered fiber probes prepared with the laser-induced chemical deposition method.

    PubMed

    Fan, Qunfang; Cao, Jie; Liu, Ye; Yao, Bo; Mao, Qinghe

    2013-09-01

    The process of depositing nanoparticles onto tapered fiber probes with the laser-induced chemical deposition method (LICDM) and the surface-enhanced Raman scattering (SERS) detection performance of the prepared probes are experimentally investigated in this paper. Our results show that the nanoparticle-deposited tapered fiber probes prepared with the LICDM method depend strongly on the value of the cone angle. For small-angle tapered probes the nanoparticle-deposited areas are only focused at the taper tips, because the taper surfaces are mainly covered by a relatively low-intensity evanescent field. By lengthening the reaction time or increasing the induced power or solution concentration, it is still possible to deposit nanoparticles on small-angle tapers with the light-scattering effect. With 4-aminothiophenol as the testing molecule, it was found that for given preparation conditions, the cone angles for the tapered probes with the highest SERS spectral intensities for different excitation laser powers are almost the same. However, such an optimal cone angle is determined by the combined effects of both the localized surface plasmon resonance strength and the transmission loss generated by the nanoparticles deposited.

  20. Intrinsically water-repellent copper oxide surfaces; An electro-crystallization approach

    NASA Astrophysics Data System (ADS)

    Akbari, Raziyeh; Ramos Chagas, Gabriela; Godeau, Guilhem; Mohammadizadeh, Mohammadreza; Guittard, Frédéric; Darmanin, Thierry

    2018-06-01

    Use of metal oxide thin layers is increased due to their good durability under environmental conditions. In this work, the repeatable nanostructured crystalite Cu2O thin films, developed by electrodeposition method without any physical and chemical modifications, demonstrate good hydrophobicity. Copper (I) oxide (Cu2O) layers were fabricated on gold/Si(1 0 0) substrates by different electrodeposition methods i.e. galvanostatic deposition, cyclic voltammetry, and pulse potentiostatic deposition and using copper sulfate (in various concentrations) as a precursor. The greatest crystalline face on prepared Cu2O samples is (1 1 1) which is the most hydrophobic facet of Cu2O cubic structure. Indeed, different crystallite structures such as nanotriangles and truncated octahedrons were formed on the surface for various electrodeposition methods. The increase of the contact angle (θw) measured by the rest time, reaching to about 135°, was seen at different rates and electrodeposition methods. In addition, two-step deposition surfaces were also prepared by applying two of the mentioned methods, alternatively. In general, the morphology of the two-step deposition surfaces showed some changes compared to that of one-step samples, allowing the formation of different crystallite shapes. Moreover, the wettability behavior showd the larger θw of the two-step deposition layers compared to the related one-step deposition layers. Therefore, the highest observed θw was related to the one of two-step deposition layers due to the creation of small octahedral structures on the surface, having narrow and deep valleys. However, there was an exception which was due to the resulted big structures and broad valleys on the surface. So, it is possible to engineer different crystallites shapes using the proposed two-step deposition method. It is expected that hydrophobic crystallite thin films can be used in environmental and electronic applications to save energy and materials properties.

  1. Analyse des donnees gravimetriques en forage d'un gisement de sulfures massifs volcanogenes dans un contexte geologique complexe

    NASA Astrophysics Data System (ADS)

    Nackers, Gabrielle-Claudine

    A forward modeling and an inversion code have been developed to study the use of the borehole gravity method for exploration of volcanogenic massif sulphides (VMS) deposits in the Abitibi region of Quebec. Two problems are associated with the gravity method: acquiring data can be a long and costly method in the context where there is a limited quantity of boreholes and the separation of the response caused by the immediate or local geology and the response of deeper and farther formations called the regional. The principal objective of this master's project is to analyse those two major problems by modelling and inverting synthetic data. The specific objectives are the optimisation of the data acquisition settings and the regional-residual anomaly separation. The forward modeling method is based on the prismatic method described by Li and Chouteau (1998). A stochastic approach developed by Shamsipour et al. (2010) is chosen for the inversion and was adapted for borehole data. A density model of a typical VMS ore deposit was designed based on a number of well-known mines in the region of Rouyn-Noranda, Val-d'Or and Matagami. The data acquisition settings include the number of boreholes, their location and data collection sampling in the boreholes. Since the borehole gravity method is a costly geophysics method, it is best to know well the influence of the data acquisition settings to be able to optimise them. A minimum of three boreholes within appropriate distance from the target is required to locate any structure. When four boreholes situated at the detectability range of the deposit are used, it can be located with precision. In the scenario where the borehole gravity method is used to calculate the excess mass of a deposit and to define its structure, at least four boreholes should be used with one intercepting the deposit and fixed densities or gradient constraints must be applied. A 10m sampling interval is recommended. If the position of the deposit is known, a good compromise is to use a larger interval far from the deposit and use a 10m interval when the borehole is closer to the deposit. The regional-residual anomaly separation is a very important aspect of the data interpretation. Up to now no technic is effective in performing an optimal separation. Three different methods are used in this project; these methods are the vertical gradient, a non-linear filter and a wavelet filter. Once the data has been treated, the inverted density model is compared to the initial model. Though the different methods do not calculate the same residual, the results are fairly similar. All the methods can position the deposit well, but the shape differs from the initial model. Also, the excess mass calculated are similar to each other, but they are a bit underestimated compared to the real excess mass. Non-linear and wavelet filtering were proven to be the best methods to calculate results closest to the actual model. The vertical gradient grossly underestimates the density contrasts when no borehole intercepts the deposit. Furthermore, when the method is applied to evaluate the deposit, the shape is not recovered and the excess mass is underestimated even when constraints are used. Real borehole gravity data was acquired over and in the vicinity of the Virginia Gold's Coulon deposit (Quebec, Canada). A model was built using borehole electromagnetic data and geological data. This model is used to compare the inverted results. The three regional-residual anomaly separation methods were applied to the Bouguer anomaly of the Coulon data as well as the graphical method. Like for the synthetic data the residual calculated differed from method to method but the results resembled one another. The shapes of the structure calculated by the graphical, non-linear filtering and wavelet filtering methods were essentially the same. It was also observed that the excess masses calculated by graphical method and non-linear method were similar. Finally, the excess masses calculated by vertical gradient and wavelet filter were a bit lower.

  2. Electrochemical Deposition of Si-Ca/P on Nanotube Formed Beta Ti Alloy by Cyclic Voltammetry Method.

    PubMed

    Jeong, Yong-Hoon; Choe, Han-Cheol

    2015-08-01

    The purpose of this study was to investigate electrochemical deposition of Si-Ca/P on nanotube formed Ti-35Nb-10Zr alloy by cyclic voltammetry method. Electrochemical deposition of Si substituted Ca/P was performed by pulsing the applied potential on nanotube formed surface. The surface characteristics were observed by field-emission scanning electron microscopy, X-ray diffractometer, and potentiodynamic polarization test. The phase structure and surface morphologies of Si-Ca/P deposition were affected by deposition cycles. From the anodic polarization test, nanotube formed surface at 20 V showed the high corrosion resistance with lower value of Icorr, I300, and Ipass.

  3. Some aspects over the quality of thin films deposited on special steels used in hydraulic blades

    NASA Astrophysics Data System (ADS)

    Tugui, C. A.; Vizureanu, P.; Iftimie, N.; Steigmann, R.

    2016-08-01

    The experimental research involved in this paper consists in the obtaining of superior physical, chemical and mechanical properties of stainless steels used in the construction of hydraulic turbine blades. These properties are obtained by deposition of hard thin films in order to improve the wear resistance, increasing the hardness but maintaining the tenacious core of the material. The chosen methods for deposition are electrospark deposition because it has relatively low costs, are easy to obtain, the layers have a good adherence to support and the thickness can be variable in function of the established conditions and the pulsed laser deposition because high quality films can be obtained at nanometric precision. The samples will be prepared for the analysis of the structure using optical method as well as for the obtaining of the optimal roughness for the deposition. The physical, chemical and mechanical properties will be determined after deposition using SEM and EDX, in order to emphasize the structure film-substrate and repartition of the deposition elements on the surface and in transversal section. The non-destructive testing has emphasized the good adherence between deposited layer and the metallic support, due to double deposition, spallation regions doesn't appear.

  4. Reactive polymer fused deposition manufacturing

    DOEpatents

    Kunc, Vlastimil; Rios, Orlando; Love, Lonnie J.; Duty, Chad E.; Johs, Alexander

    2017-05-16

    Methods and compositions for additive manufacturing that include reactive or thermosetting polymers, such as urethanes and epoxies. The polymers are melted, partially cross-linked prior to the depositing, deposited to form a component object, solidified, and fully cross-linked. These polymers form networks of chemical bonds that span the deposited layers. Application of a directional electromagnetic field can be applied to aromatic polymers after deposition to align the polymers for improved bonding between the deposited layers.

  5. Vapor deposition routes to conformal polymer thin films

    PubMed Central

    Moni, Priya; Al-Obeidi, Ahmed

    2017-01-01

    Vapor phase syntheses, including parylene chemical vapor deposition (CVD) and initiated CVD, enable the deposition of conformal polymer thin films to benefit a diverse array of applications. This short review for nanotechnologists, including those new to vapor deposition methods, covers the basic theory in designing a conformal polymer film vapor deposition, sample preparation and imaging techniques to assess film conformality, and several applications that have benefited from vapor deposited, conformal polymer thin films. PMID:28487816

  6. Exploring the Implications of N Measurement and Model Choice on Using Data for Policy and Land Management Decisions

    NASA Astrophysics Data System (ADS)

    Bell, M. D.; Walker, J. T.

    2017-12-01

    Atmospheric deposition of nitrogen compounds are determined using a variety of measurement and modeling methods. These values are then used to calculate fluxes to the ecosystem which can then be linked to ecological responses. But, for this data to be used outside of the system in which it is developed, it is necessary to understand how the deposition estimates relate to one another. Therefore, we first identified sources of "bulk" deposition data and compared methods, reliability of data, and consistency of results to one another. Then we looked at the variation within photochemical models that are used by Federal Agencies to evaluate national trends. Finally, we identified some best practices for researchers to consider if their assessment is intended for use at broader scales. Empirical measurements used in this assessment include passive collection of atmospheric molecules, throughfall deposition of precipitation, snowpack measurements, and using biomonitors such as lichen. The three most common photochemical models used to model deposition within the United States are CMAQ, CAMx, and TDep (which uses empirical data to refine modeled values). These models all use meteorological and emission data to estimate deposition at local, regional, or national scales. We identified the range of uncertainty that exists within the types of deposition measurements and how these vary over space and time. Uncertainty is assessed by comparing deposition estimates from differing collection methods and comparing modeled estimates to empirical deposition data. Each collection method has benefits and downfalls that need to be taken into account if the results are to be expanded outside of the research area. Comparing field measured values to modeled values highlight the importance of each in the greater goals of understanding current conditions and trends within deposition patterns in the US. While models work well on a larger scale, they cannot replicate the local heterogeneity that exists at a site. Often, each researcher has a favorite method of analysis, but if the data cannot be related to other efforts then it becomes harder to apply it to broader policy considerations.

  7. Light-driven 3D droplet manipulation on flexible optoelectrowetting devices fabricated by a simple spin-coating method.

    PubMed

    Jiang, Dongyue; Park, Sung-Yong

    2016-05-21

    Technical advances in electrowetting-on-dielectric (EWOD) over the past few years have extended our attraction to three-dimensional (3D) devices capable of providing more flexibility and functionality with larger volumetric capacity than conventional 2D planar ones. However, typical 3D EWOD devices require complex and expensive fabrication processes for patterning and wiring of pixelated electrodes that also restrict the minimum droplet size to be manipulated. Here, we present a flexible single-sided continuous optoelectrowetting (SCOEW) device which is not only fabricated by a spin-coating method without the need for patterning and wiring processes, but also enables light-driven 3D droplet manipulations. To provide photoconductive properties, previous optoelectrowetting (OEW) devices have used amorphous silicon (a-Si) typically fabricated through high-temperature processes over 300 °C such as CVD or PECVD. However, most of the commercially-available flexible substrates such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN) experience serious thermal deformation under such high-temperature processes. Because of this compatibility issue of conventional OEW devices with flexible substrates, light-driven 3D droplet manipulations have not yet been demonstrated on flexible substrates. Our study overcomes this compatibility issue by using a polymer-based photoconductive material, titanium oxide phthalocyanine (TiOPc) and thus SCOEW devices can be simply fabricated on flexible substrates through a low-cost, spin-coating method. In this paper, analytical studies were conducted to understand the effects of light patterns on static contact angles and EWOD forces. For experimental validations of our study, flexible SCOEW devices were successfully fabricated through the TiOPc-based spin-coating method and light-driven droplet manipulations (e.g. transportation, merging, and splitting) have been demonstrated on various 3D terrains such as inclined, vertical, upside-down, and curved surfaces. Our flexible SCOEW technology offers the benefits of device simplicity, flexibility, and functionality over conventional EWOD and OEW devices by enabling optical droplet manipulations on a 3D featureless surface.

  8. Method and system for constructing a rechargeable battery and battery structures formed with the method

    DOEpatents

    Hobson, David O.; Snyder, Jr., William B.

    1995-01-01

    A method and system for manufacturing a thin-film battery and a battery structure formed with the method utilizes a plurality of deposition stations at which thin battery component films are built up in sequence upon a web-like substrate as the substrate is automatically moved through the stations. At an initial station, cathode and anode current collector film sections are deposited upon the substrate, and at another station, a thin cathode film is deposited upon the substrate so to overlie part of the cathode current collector section. At another station, a thin electrolyte film is deposited upon so as to overlie the cathode film and part of the anode current collector film, at yet another station, a thin lithium film is deposited upon so as to overlie the electrolyte film and an additional part of the anode current collector film. Such a method accommodates the winding of a layup of battery components into a spiral configuration to provide a thin-film, high capacity battery and also accommodates the build up of thin film battery components onto a substrate surface having any of a number of shapes.

  9. Extending atomistic simulation timescale in solid/liquid systems: crystal growth from solution by a parallel-replica dynamics and continuum hybrid method.

    PubMed

    Lu, Chun-Yaung; Voter, Arthur F; Perez, Danny

    2014-01-28

    Deposition of solid material from solution is ubiquitous in nature. However, due to the inherent complexity of such systems, this process is comparatively much less understood than deposition from a gas or vacuum. Further, the accurate atomistic modeling of such systems is computationally expensive, therefore leaving many intriguing long-timescale phenomena out of reach. We present an atomistic/continuum hybrid method for extending the simulation timescales of dynamics at solid/liquid interfaces. We demonstrate the method by simulating the deposition of Ag on Ag (001) from solution with a significant speedup over standard MD. The results reveal specific features of diffusive deposition dynamics, such as a dramatic increase in the roughness of the film.

  10. Method for fabrication of electrodes

    DOEpatents

    Jankowski, Alan F.; Morse, Jeffrey D.; Barksdale, Randy

    2004-06-22

    Described herein is a method to fabricate porous thin-film electrodes for fuel cells and fuel cell stacks. Furthermore, the method can be used for all fuel cell electrolyte materials which utilize a continuous electrolyte layer. An electrode layer is deposited on a porous host structure by flowing gas (for example, Argon) from the bottomside of the host structure while simultaneously depositing a conductive material onto the topside of the host structure. By controlling the gas flow rate through the pores, along with the process conditions and deposition rate of the thin-film electrode material, a film of a pre-determined thickness can be formed. Once the porous electrode is formed, a continuous electrolyte thin-film is deposited, followed by a second porous electrode to complete the fuel cell structure.

  11. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  12. A throughfall collection method using mixed bed ion exchange resin columns.

    PubMed

    Fenn, Mark E; Poth, Mark A; Arbaugh, Michael J

    2002-01-15

    Measurement of ionic deposition in throughfall is a widely used method for measuring deposition inputs to the forest floor. Many studies have been published, providing a large database of throughfall deposition inputs to forests. However, throughfall collection and analysis is labor intensive and expensive because of the large number of replicate collectors needed and because sample collection and chemical analyses are required on a stochastic precipitation event-based schedule. Therefore we developed and tested a throughfall collector system using a mixed bed ion exchange resin column. We anticipate that this method will typically require only one to three samplings per year. With this method, bulk deposition and bulk throughfall are collected by a funnel or snow tube and ions are retained as the solution percolates through the resin column. Ions retained by the resin are then extracted in the same column with 2 N KCl and analyzed for nitrate and ammonium. Deposition values in throughfall from conventional throughfall solution collectors and colocated ion exchange samplers were not significantly different during consecutive 3- and 4-month exposure periods at a high (Camp Paivika; >35 kg N ha(-1) year(-1)) and a low deposition (Barton Flats; 5-9 kg N ha(-1) year(-1)) site in the San Bernardino Mountains in southern California. N deposition in throughfall under mature pine trees at Camp Paivika after 7 months of exposure was extremely high (87 and 92 kg ha-1 based on the two collector types) compared to Barton Flats (11 and 13 kg ha(-1)). A large proportion of the N deposited in throughfall at Camp Paivika occurred as fog drip, demonstrating the importance of fog deposition as an input source of N at this site. By comparison, bulk deposition rates in open areas were 5.1 and 5.4 kg ha(-1) at Camp Paivika based on the two collector types, and 1.9 and 3.0 kg ha(-1) at Barton Flats.

  13. Dynamic mask for producing uniform or graded-thickness thin films

    DOEpatents

    Folta, James A [Livermore, CA

    2006-06-13

    A method for producing single layer or multilayer films with high thickness uniformity or thickness gradients. The method utilizes a moving mask which blocks some of the flux from a sputter target or evaporation source before it deposits on a substrate. The velocity and position of the mask is computer controlled to precisely tailor the film thickness distribution. The method is applicable to any type of vapor deposition system, but is particularly useful for ion beam sputter deposition and evaporation deposition; and enables a high degree of uniformity for ion beam deposition, even for near-normal incidence of deposition species, which may be critical for producing low-defect multilayer coatings, such as required for masks for extreme ultraviolet lithography (EUVL). The mask can have a variety of shapes, from a simple solid paddle shape to a larger mask with a shaped hole through which the flux passes. The motion of the mask can be linear or rotational, and the mask can be moved to make single or multiple passes in front of the substrate per layer, and can pass completely or partially across the substrate.

  14. Reconstruction and analysis of 137Cs fallout deposition patterns in the Marshall Islands.

    PubMed

    Whitcomb, Robert C

    2002-03-01

    Estimates of 137Cs deposition caused by fallout originating from nuclear weapons testing in the Marshall Islands have been estimated for several locations in the Marshall Islands. These retrospective estimates are based primarily on historical exposure rate and gummed film measurements. The methods used to reconstruct these deposition estimates are similar to those used in the National Cancer Institute study for reconstructing 131I deposition from the Nevada Test Site. Reconstructed cumulative deposition estimates are validated against contemporary measurements of 137Cs concentration in soil with account taken for estimated global fallout contributions. These validations show that the overall geometric bias in predicted-to-observed (P:O) ratios is 1.0 (indicating excellent agreement). The 5th to 95th percentile range of this distribution is 0.35-2.95. The P:O ratios for estimates using historical gummed film measurements tend to slightly overpredict more than estimates using exposure rate measurements. The deposition estimate methods, supported by the agreement between estimates and measurements, suggest that these methods can be used with confidence for other weapons testing fallout radionuclides.

  15. ZnO/CdS bi-layer nanostructures photoelectrode for dye-sensitized solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalal, Paresh V., E-mail: paresh10dalal@gmail.com; Deshpande, Milind P., E-mail: vishwadeshpande@yahoo.co.in; Solanki, Bharat G., E-mail: bhrt.solanki17@gmail.com

    2016-05-06

    Simple chemical deposition method for the synthesis of ZnO/CdS bilayer photoelectrode on fluorine doped tin oxide (FTO) coated glass substrate in aqueous medium at low temperature (< 373K) is described. The different preparative parameters such as deposition time, bath temperature, concentration of precursor solution and, pH of the bath etc. were optimized. Nanograined ZnO was deposited on FTO coated glass substrates by dip-coating method, whereas CdS nanorods were successfully synthesized on pre-deposited ZnO film by Chemical Bath Deposition (CBD) method. The Photovoltaic properties of FTO/ZnO/CdS bilayer photo electrodes were also studied. A maximum short circuit current density of 9.1 mA cm-2more » and conversion efficiency 1.05% are observed for ZnO/CdS-10min. Layer, which supports fast electron injection kinetics due to hetero structured nanorod, while minimum values of 0.53mA cm-2 and 0.01% respectively are observed for only ZnO deposited layer.« less

  16. Integration of Electrical Resistivity and Seismic Refraction using Combine Inversion for Detecting Material Deposits of Impact Crater at Bukit Bunuh, Lenggong, Perak

    NASA Astrophysics Data System (ADS)

    Yusoh, R.; Saad, R.; Saidin, M.; Muhammad, S. B.; Anda, S. T.

    2018-04-01

    Both electrical resistivity and seismic refraction profiling has become a common method in pre-investigations for visualizing subsurface structure. The encouragement to use these methods is that combined of both methods can decrease the obscure inherent to the distinctive use of these methods. Both method have their individual software packages for data inversion, but potential to combine certain geophysical methods are restricted; however, the research algorithms that have this functionality was exists and are evaluated personally. The interpretation of subsurface were improve by combining inversion data from both method by influence each other models using closure coupling; thus, by implementing both methods to support each other which could improve the subsurface interpretation. These methods were applied on a field dataset from a pre-investigation for archeology in finding the material deposits of impact crater. There were no major changes in the inverted model by combining data inversion for this archetype which probably due to complex geology. The combine data analysis shows the deposit material start from ground surface to 20 meter depth which the class separation clearly separate the deposit material.

  17. Comparative study on deposition of fluorine-doped tin dioxide thin films by conventional and ultrasonic spray pyrolysis methods for dye-sensitized solar modules

    NASA Astrophysics Data System (ADS)

    Icli, Kerem Cagatay; Kocaoglu, Bahadir Can; Ozenbas, Macit

    2018-01-01

    Fluorine-doped tin dioxide (FTO) thin films were produced via conventional spray pyrolysis and ultrasonic spray pyrolysis (USP) methods using alcohol-based solutions. The prepared films were compared in terms of crystal structure, morphology, surface roughness, visible light transmittance, and electronic properties. Upon investigation of the grain structures and morphologies, the films prepared using ultrasonic spray method provided relatively larger grains and due to this condition, carrier mobilities of these films exhibited slightly higher values. Dye-sensitized solar cells and 10×10 cm modules were prepared using commercially available and USP-deposited FTO/glass substrates, and solar performances were compared. It is observed that there exists no remarkable efficiency difference for both cells and modules, where module efficiency of the USP-deposited FTO glass substrates is 3.06% compared to commercial substrate giving 2.85% under identical conditions. We demonstrated that USP deposition is a low cost and versatile method of depositing commercial quality FTO thin films on large substrates employed in large area dye-sensitized solar modules or other thin film technologies.

  18. Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors

    DOEpatents

    Ruffner, J.A.

    1999-06-15

    A method for coating (flat or non-flat) optical substrates with high-reflectivity multi-layer coatings for use at Deep Ultra-Violet (DUV) and Extreme Ultra-Violet (EUV) wavelengths. The method results in a product with minimum feature sizes of less than 0.10 [micro]m for the shortest wavelength (13.4 nm). The present invention employs a computer-based modeling and deposition method to enable lateral and vertical thickness control by scanning the position of the substrate with respect to the sputter target during deposition. The thickness profile of the sputter targets is modeled before deposition and then an appropriate scanning algorithm is implemented to produce any desired, radially-symmetric thickness profile. The present invention offers the ability to predict and achieve a wide range of thickness profiles on flat or figured substrates, i.e., account for 1/R[sup 2] factor in a model, and the ability to predict and accommodate changes in deposition rate as a result of plasma geometry, i.e., over figured substrates. 15 figs.

  19. Chemical enhancement of surface deposition

    DOEpatents

    Patch, Keith D.; Morgan, Dean T.

    1997-07-29

    A method and apparatus for increasing the deposition of ions onto a surface, such as the adsorption of uranium ions on the detecting surface of a radionuclide detector. The method includes the step of exposing the surface to a complexing agent, such as a phosphate ion solution, which has an affinity for the dissolved species to be deposited on the surface. This provides, for example, enhanced sensitivity of the radionuclide detector.

  20. Method of deposition by molecular beam epitaxy

    DOEpatents

    Chalmers, Scott A.; Killeen, Kevin P.; Lear, Kevin L.

    1995-01-01

    A method is described for reproducibly controlling layer thickness and varying layer composition in an MBE deposition process. In particular, the present invention includes epitaxially depositing a plurality of layers of material on a substrate with a plurality of growth cycles whereby the average of the instantaneous growth rates for each growth cycle and from one growth cycle to the next remains substantially constant as a function of time.

Top