Sample records for depositional boundary layer

  1. Semiconductor P-I-N detector

    DOEpatents

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  2. ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS

    EPA Science Inventory

    There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...

  3. Computer Program for the Calculation of Multicomponent Convective Diffusion Deposition Rates from Chemically Frozen Boundary Layer Theory

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Chen, B. K.; Rosner, D. E.

    1984-01-01

    The computer program based on multicomponent chemically frozen boundary layer (CFBL) theory for calculating vapor and/or small particle deposition rates is documented. A specific application to perimter-averaged Na2SO4 deposition rate calculations on a cylindrical collector is demonstrated. The manual includes a typical program input and output for users.

  4. Airfoil deposition model

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.

    1982-01-01

    The methodology to predict deposit evolution (deposition rate and subsequent flow of liquid deposits) as a function of fuel and air impurity content and relevant aerodynamic parameters for turbine airfoils is developed in this research. The spectrum of deposition conditions encountered in gas turbine operations includes the mechanisms of vapor deposition, small particle deposition with thermophoresis, and larger particle deposition with inertial effects. The focus is on using a simplified version of the comprehensive multicomponent vapor diffusion formalism to make deposition predictions for: (1) simple geometry collectors; and (2) gas turbine blade shapes, including both developing laminar and turbulent boundary layers. For the gas turbine blade the insights developed in previous programs are being combined with heat and mass transfer coefficient calculations using the STAN 5 boundary layer code to predict vapor deposition rates and corresponding liquid layer thicknesses on turbine blades. A computer program is being written which utilizes the local values of the calculated deposition rate and skin friction to calculate the increment in liquid condensate layer growth along a collector surface.

  5. Thermal conductivity and thermal boundary resistance of atomic layer deposited high-k dielectric aluminum oxide, hafnium oxide, and titanium oxide thin films on silicon

    NASA Astrophysics Data System (ADS)

    Scott, Ethan A.; Gaskins, John T.; King, Sean W.; Hopkins, Patrick E.

    2018-05-01

    The need for increased control of layer thickness and uniformity as device dimensions shrink has spurred increased use of atomic layer deposition (ALD) for thin film growth. The ability to deposit high dielectric constant (high-k) films via ALD has allowed for their widespread use in a swath of optical, optoelectronic, and electronic devices, including integration into CMOS compatible platforms. As the thickness of these dielectric layers is reduced, the interfacial thermal resistance can dictate the overall thermal resistance of the material stack compared to the resistance due to the finite dielectric layer thickness. Time domain thermoreflectance is used to interrogate both the thermal conductivity and the thermal boundary resistance of aluminum oxide, hafnium oxide, and titanium oxide films on silicon. We calculate a representative design map of effective thermal resistances, including those of the dielectric layers and boundary resistances, as a function of dielectric layer thickness, which will be of great importance in predicting the thermal resistances of current and future devices.

  6. A Classification of Subaqueous Density Flows Based on Transformations From Proximal to Distal Regions

    NASA Astrophysics Data System (ADS)

    Hermidas, Navid; Eggenhuisen, Joris; Luthi, Stefan; Silva Jacinto, Ricardo; Toth, Ferenc; Pohl, Florian

    2017-04-01

    Transformations of a subaqueous density flow from proximal to distal regions are investigated. A classification of these transformations based on the state of the free shear and boundary layers and existence of a plug layer during transition from a debris flow to a turbidity current is presented. A connection between the emplaced deposit by the flow and the relevant flow type is drawn through the results obtained from a series of laboratory flume experiments. These were performed using 9%, 15%, and 21% sediment mixture concentrations composed of sand, silt, clay, and tap water, on varying bed slopes of 6°, 8°, and 9.5°, and with discharge rates of 10[m3/h] and 15[m3/h]. Stress-controlled rheometry experiments were performed on the mixtures to obtain apparent viscosity data. A classification was developed based on the imposed flow conditions, where a cohesive flow may fall within one of five distinct flow types: 1) a cohesive plug flow (PF) with a laminar free shear and boundary layers, 2) a top transitional plug flow (TTPF) containing a turbulent free shear layer, a plug layer, and a laminar boundary layer, 3) a complete transitional plug flow (CTPF) consisting of a turbulent free shear and boundary layers and a plug, 4) a transitional turbidity current (TTC) with a turbulent free shear layer and a laminar boundary layer, and, 5) a completely turbulent turbidity current (TC). During the experiments, flow type PF resulted in en masse deposition of a thick uniform ungraded muddy sand mixture, which was emplaced once the yield stress overcame the gravitational forces within the tail region of the flow. Flow type TTPF resulted in deposition of a thin ungraded basal clean sand layer during the run. This layer was covered by a muddy sand deposit from the tail. Flow type TTC did not deposit any sediment during the run. A uniform muddy sand mixture was emplaced by the tail of the flow. Flow type TC resulted in deposition of poorly sorted massive bottom sand layer. This layer was overlain by either a muddy sand mixture or a sand and silt planar lamination. Flow type CTPF was not observed during the experiments. Furthermore, it was observed that flows which are in transition from a TTC to a TTPF result in a thin bottom clean sand layer covered by a banded transitional interval. This was overlain by a muddy sand layer and a very thin clean sand layer, resulting from traction by dilute turbulent wake. In all cases a mud cap was emplaced on top of the deposit after the runs were terminated.

  7. Plasma-based actuators for turbulent boundary layer control in transonic flow

    NASA Astrophysics Data System (ADS)

    Budovsky, A. D.; Polivanov, P. A.; Vishnyakov, O. I.; Sidorenko, A. A.

    2017-10-01

    The study is devoted to development of methods for active control of flow structure typical for the aircraft wings in transonic flow with turbulent boundary layer. The control strategy accepted in the study was based on using of the effects of plasma discharges interaction with miniature geometrical obstacles of various shapes. The conceptions were studied computationally using 3D RANS, URANS approaches. The results of the computations have shown that energy deposition can significantly change the flow pattern over the obstacles increasing their influence on the flow in boundary layer region. Namely, one of the most interesting and promising data were obtained for actuators basing on combination of vertical wedge with asymmetrical plasma discharge. The wedge considered is aligned with the local streamlines and protruding in the flow by 0.4-0.8 of local boundary layer thickness. The actuator produces negligible distortion of the flow at the absence of energy deposition. Energy deposition along the one side of the wedge results in longitudinal vortex formation in the wake of the actuator providing momentum exchange in the boundary layer. The actuator was manufactured and tested in wind tunnel experiments at Mach number 1.5 using the model of flat plate. The experimental data obtained by PIV proved the availability of the actuator.

  8. The influence of titanium adhesion layer oxygen stoichiometry on thermal boundary conductance at gold contacts

    NASA Astrophysics Data System (ADS)

    Olson, David H.; Freedy, Keren M.; McDonnell, Stephen J.; Hopkins, Patrick E.

    2018-04-01

    We experimentally demonstrate the role of oxygen stoichiometry on the thermal boundary conductance across Au/TiOx/substrate interfaces. By evaporating two different sets of Au/TiOx/substrate samples under both high vacuum and ultrahigh vacuum conditions, we vary the oxygen composition in the TiOx layer from 0 ≤ x ≤ 2.85. We measure the thermal boundary conductance across the Au/TiOx/substrate interfaces with time-domain thermoreflectance and characterize the interfacial chemistry with x-ray photoemission spectroscopy. Under high vacuum conditions, we speculate that the environment provides a sufficient flux of oxidizing species to the sample surface such that one essentially co-deposits Ti and these oxidizing species. We show that slower deposition rates correspond to a higher oxygen content in the TiOx layer, which results in a lower thermal boundary conductance across the Au/TiOx/substrate interfacial region. Under the ultrahigh vacuum evaporation conditions, pure metallic Ti is deposited on the substrate surface. In the case of quartz substrates, the metallic Ti reacts with the substrate and getters oxygen, leading to a TiOx layer. Our results suggest that Ti layers with relatively low oxygen compositions are best suited to maximize the thermal boundary conductance.

  9. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1987-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  10. Criteria for significance of simultaneous presence of both condensible vapors and aerosol particles on mass transfer (deposition) rates

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.

    1986-01-01

    The simultaneous presence of aerosol particles and condensible vapors in a saturated boundary layer which may affect deposition rates to subcooled surfaces because of vapor-particle interactions is discussed. Scavenging of condensible vapors by aerosol particles may lead to increased particle size and decreased vapor mass fraction, which alters both vapor and particle deposition rates. Particles, if sufficiently concentrated, may also coagulate. Criteria are provided to assess the significance of such phenomena when particles are already present in the mainstream and are not created inside the boundary layer via homogeneous nucleation. It is determined that there is direct proportionality with: (1) the mass concentration of both condensible vapors and aerosol particles; and (2) the square of the boundary layer thickness to particle diameter ratio (delta d sub p) square. Inverse proportionality was found for mainstream to surface temperature difference if thermophoresis dominates particle transport. It is concluded that the square of the boundary layer thickness to particle diameter ratio is the most critical factor to consider in deciding when to neglect vapor-particle interactions.

  11. Role of boundary layer diffusion in vapor deposition growth of chalcogenide nanosheets: the case of GeS.

    PubMed

    Li, Chun; Huang, Liang; Snigdha, Gayatri Pongur; Yu, Yifei; Cao, Linyou

    2012-10-23

    We report a synthesis of single-crystalline two-dimensional GeS nanosheets using vapor deposition processes and show that the growth behavior of the nanosheet is substantially different from those of other nanomaterials and thin films grown by vapor depositions. The nanosheet growth is subject to strong influences of the diffusion of source materials through the boundary layer of gas flows. This boundary layer diffusion is found to be the rate-determining step of the growth under typical experimental conditions, evidenced by a substantial dependence of the nanosheet's size on diffusion fluxes. We also find that high-quality GeS nanosheets can grow only in the diffusion-limited regime, as the crystalline quality substantially deteriorates when the rate-determining step is changed away from the boundary layer diffusion. We establish a simple model to analyze the diffusion dynamics in experiments. Our analysis uncovers an intuitive correlation of diffusion flux with the partial pressure of source materials, the flow rate of carrier gas, and the total pressure in the synthetic setup. The observed significant role of boundary layer diffusions in the growth is unique for nanosheets. It may be correlated with the high growth rate of GeS nanosheets, ~3-5 μm/min, which is 1 order of magnitude higher than other nanomaterials (such as nanowires) and thin films. This fundamental understanding of the effect of boundary layer diffusions may generally apply to other chalcogenide nanosheets that can grow rapidly. It can provide useful guidance for the development of general paradigms to control the synthesis of nanosheets.

  12. A Method to Predict the Thickness of Poorly-Bonded Material Along Spray and Spray-Layer Boundaries in Cold Spray Deposition

    NASA Astrophysics Data System (ADS)

    Li, Yangfan; Hamada, Yukitaka; Otobe, Katsunori; Ando, Teiichi

    2017-02-01

    Multi-traverse CS provides a unique means for the production of thick coatings and bulk materials from powders. However, the material along spray and spray-layer boundaries is often poorly bonded as it is laid by the leading and trailing peripheries of the spray that carry powder particles with insufficient kinetic energy. For the same reason, the splats in the very first layer deposited on the substrate may not be bonded well either. A mathematical spray model was developed based on an axisymmetric Gaussian mass flow rate distribution and a stepped deposition yield to predict the thickness of such poorly-bonded layers in multi-traverse CS deposition. The predicted thickness of poorly-bonded layers in a multi-traverse Cu coating falls in the range of experimental values. The model also predicts that the material that contains poorly bonded splats could exceed 20% of the total volume of the coating.

  13. Characterisation of Ga-coated and Ga-brazed aluminium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferchaud, E.; Christien, F., E-mail: frederic.christien@univ-nantes.fr; Barnier, V.

    This work is devoted to the brazing of aluminium using liquid gallium. Gallium was deposited on aluminium samples at {approx} 50 Degree-Sign C using a liquid gallium 'polishing' technique. Brazing was undertaken for 30 min at 500 Degree-Sign C in air. EDS (Energy Dispersive X-ray Spectroscopy) and AES (Auger Electron Spectroscopy) characterisation of Ga-coated samples has shown that the Ga surface layer thickness is of ten (or a few tens of) nanometres. Furthermore, aluminium oxide layer (Al{sub 2}O{sub 3}) was shown to be 'descaled' during Ga deposition, which ensures good conditions for further brazing. Cross-section examination of Ga-coated samples showsmore » that liquid gallium penetrates into the aluminium grain boundaries during deposition. The thickness of the grain boundary gallium film was measured using an original EDS technique and is found to be of a few tens of nanometres. The depth of gallium grain boundary penetration is about 300 {mu}m at the deposition temperature. The fracture stress of the brazed joints was measured from tensile tests and was determined to be 33 MPa. Cross-section examination of brazed joints shows that gallium has fully dissolved into the bulk and that the joint is really autogenous. - Highlights: Black-Right-Pointing-Pointer Aluminium can be brazed using liquid gallium deposited by a 'polishing' technique. Black-Right-Pointing-Pointer The aluminium oxide layer is 'descaled' during liquid Ga 'polishing' deposition. Black-Right-Pointing-Pointer EDS can be used for determination of surface and grain boundary Ga film thickness. Black-Right-Pointing-Pointer The surface and grain boundary Ga film thickness is of a few tens of nm. Black-Right-Pointing-Pointer Surface and grain boundary gallium dissolves in the bulk during brazing.« less

  14. Proximal Cretaceous-Tertiary boundary impact deposits in the Caribbean

    NASA Technical Reports Server (NTRS)

    Hildebrand, Alan R.; Boynton, Willam V.

    1990-01-01

    Trace element, isotopic, and mineralogic studies indicate that the proposed impact at the Cretaceous-Tertiary boundary occurred in an ocean basin, although a minor component of continental material is required. The size and abundance of shocked minerals and the restricted geographic occurrence of the ejecta layer and impact-wave deposits suggest an impact between the Americas. Coarse boundary sediments at sites 151 and 153 in the Colombian Basin and 5- to 450-meter-thick boundary sediments in Cuba may be deposits of a giant wave produced by a nearby oceanic impact.

  15. Dichotomy Boundary at Aeolis Mensae, Mars: Fretted Terrain Developed in a Sedimentary Deposit

    NASA Astrophysics Data System (ADS)

    Irwin, R. P., III; Watters, T. R.; Howard, A. D.; Maxwell, T. A.; Craddock, R. A.

    2003-03-01

    Fretted terrain in Aeolis Mensae, Mars, developed in a sedimentary deposit. A thick, massive unit with a capping layer or duricrust overlies a more durable layered sequence. Wind, collapse, and minor fluvial activity contributed to degradation.

  16. Simple model for estimating dry deposition velocity of ozone and its destruction in a polluted nocturnal boundary layer

    NASA Astrophysics Data System (ADS)

    Lin, Ching-Ho; Lai, Chin-Hsing; Wu, Yee-Lin; Chen, Ming-Jen

    2010-11-01

    Determining the destructions of both ozone and odd oxygen, O x, in the nocturnal boundary layer (NBL) is important to evaluate the regional ozone budget and overnight ozone accumulation. This work develops a simple method to determine the dry deposition velocity of ozone and its destruction at a polluted nocturnal boundary layer. The destruction of O x can also be determined simultaneously. The method is based on O 3 and NO 2 profiles and their surface measurements. Linkages between the dry deposition velocities of O 3 and NO 2 and between the dry deposition loss of O x and its chemical loss are constructed and used. Field measurements are made at an agricultural site to demonstrate the application of the model. The model estimated nocturnal O 3 dry deposition velocities from 0.13 to 0.19 cm s -1, very close to those previously obtained for similar land types. Additionally, dry deposition and chemical reactions account for 60 and 40% of the overall nocturnal ozone loss, respectively; ozone dry deposition accounts for 50% of the overall nocturnal loss of O x, dry deposition of NO 2 accounts for another 20%, and chemical reactions account for the remaining 30%. The proposed method enables the use of measurements made in typical ozone field studies to evaluate various nocturnal destructions of O 3 and O x in a polluted environment.

  17. Analysis of the electrolyte convection inside the concentration boundary layer during structured electrodeposition of copper in high magnetic gradient fields.

    PubMed

    König, Jörg; Tschulik, Kristina; Büttner, Lars; Uhlemann, Margitta; Czarske, Jürgen

    2013-03-19

    To experimentally reveal the correlation between electrodeposited structure and electrolyte convection induced inside the concentration boundary layer, a highly inhomogeneous magnetic field, generated by a magnetized Fe-wire, has been applied to an electrochemical system. The influence of Lorentz and magnetic field gradient force to the local transport phenomena of copper ions has been studied using a novel two-component laser Doppler velocity profile sensor. With this sensor, the electrolyte convection within 500 μm of a horizontally aligned cathode is presented. The electrode-normal two-component velocity profiles below the electrodeposited structure show that electrolyte convection is induced and directed toward the rim of the Fe-wire. The measured deposited structure directly correlates to the observed boundary layer flow. As the local concentration of Cu(2+) ions is enhanced due to the induced convection, maximum deposit thicknesses can be found at the rim of the Fe-wire. Furthermore, a complex boundary layer flow structure was determined, indicating that electrolyte convection of second order is induced. Moreover, the Lorentz force-driven convection rapidly vanishes, while the electrolyte convection induced by the magnetic field gradient force is preserved much longer. The progress for research is the first direct experimental proof of the electrolyte convection inside the concentration boundary layer that correlates to the deposited structure and reveals that the magnetic field gradient force is responsible for the observed structuring effect.

  18. Characteristics of contaminant deposition onto a cylindrical body surrounded by porous clothing

    NASA Astrophysics Data System (ADS)

    Cho, Minki; Lee, Jinwon; Jung, Hyunsuk; Lee, Haewan; Pohang Univ of Sci; Tech Team; AgencyDefense Development Team

    2014-11-01

    In order to characterize the deposition pattern of air-borne contaminants on a human body protected by a garment, the air flow through the clothing and in the air gap between the clothing and the skin was numerically solved, and the deposition of the suspended contaminants on the skin was obtained over a wide variety of conditions-wind speed, human motion and clothing conditions. The penetrating air flow was sensitive to the pressure inside the air gap, for which a simple model was successfully formulated. Also the profile of the non-uniform deposition velocity or the Sherwood number could be well modeled based on the developing concentration boundary layer inside the air gap. The boundary layer thickness grew vary rapidly, nearly proportional to the square of the distance from the front stagnation point, which is much different from any other boundary layer studied in many engineering fields before. A rather universal function for the distribution of deposition speed over a cylindrical body was obtained, which remained valid for a very wide range of conditions. The characteristics for non-uniform and/or periodic external wind due to human motion were also analyzed. This study is supported by Agency for Defense Development.

  19. Impact wave deposits provide new constraints on the location of the K/T boundary impact

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    All available evidence is consistent with an impact into oceanic crust terminating the Cretaceous Period. Although much of this evidence is incompatible with an endogenic origin, some investigators still feel that a volcanic origin is possible for the Cretaceous/Tertiary (K/T) boundary clay layers. The commonly cited evidence for a large impact stems from delicate clay layers and their components and the impact site has not yet been found. Impact sites have been suggested all over the globe. The impact is felt to have occurred near North America by: the occurrence of a 2 cm thick ejecta layer only at North American locales, the global variation of shocked quartz grain sizes peaking in North America, the global variation of spinel compositions with most refractory compositions occurring in samples from the Pacific region and possibly uniquely severe plant extinctions in the North American region. The K/T boundary interval was investigated as preserved on the banks of the Brazos River, Texas. The K/T fireball and ejecta layers with associated geochemical anomalies were found interbedded with this sequence which apparently allows a temporal resolution 4 orders of magnitude greater than typical K/T boundary sections. A literature search reveals that such coarse deposits are widely preserved at the K/T boundary. Impact wave deposits have not been found elsewhere on the globe, suggesting the impact occurred between North and South America. The coarse deposits preserved in Deep Sea Drilling Project (DSDP) holes 151-3 suggest the impact occurred nearby. Subsequent tectonism has complicated the picture.

  20. Tectonic plates, D (double prime) thermal structure, and the nature of mantle plumes

    NASA Technical Reports Server (NTRS)

    Lenardic, A.; Kaula, W. M.

    1994-01-01

    It is proposed that subducting tectonic plates can affect the nature of thermal mantle plumes by determining the temperature drop across a plume source layer. The temperature drop affects source layer stability and the morphology of plumes emitted from it. Numerical models are presented to demonstrate how introduction of platelike behavior in a convecting temperature dependent medium, driven by a combination of internal and basal heating, can increase the temperature drop across the lower boundary layer. The temperature drop increases dramatically following introduction of platelike behavior due to formation of a cold temperature inversion above the lower boundary layer. This thermal inversion, induced by deposition of upper boundary layer material to the system base, decays in time, but the temperature drop across the lower boundary layer always remains considerably higher than in models lacking platelike behavior. On the basis of model-inferred boundary layer temperature drops and previous studies of plume dynamics, we argue that generally accepted notions as to the nature of mantle plumes on Earth may hinge on the presence of plates. The implication for Mars and Venus, planets apparently lacking plate tectonics, is that mantle plumes of these planets may differ morphologically from those of Earth. A corollary model-based argument is that as a result of slab-induced thermal inversions above the core mantle boundary the lower most mantle may be subadiabatic, on average (in space and time), if major plate reorganization timescales are less than those acquired to diffuse newly deposited slab material.

  1. Significance of vapor phase chemical reactions on CVD rates predicted by chemically frozen and local thermochemical equilibrium boundary layer theories

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.

    1988-01-01

    This paper investigates the role played by vapor-phase chemical reactions on CVD rates by comparing the results of two extreme theories developed to predict CVD mass transport rates in the absence of interfacial kinetic barrier: one based on chemically frozen boundary layer and the other based on local thermochemical equilibrium. Both theories consider laminar convective-diffusion boundary layers at high Reynolds numbers and include thermal (Soret) diffusion and variable property effects. As an example, Na2SO4 deposition was studied. It was found that gas phase reactions have no important role on Na2SO4 deposition rates and on the predictions of the theories. The implications of the predictions of the two theories to other CVD systems are discussed.

  2. Thermophoretic motion behavior of submicron particles in boundary-layer-separation flow around a droplet.

    PubMed

    Wang, Ao; Song, Qiang; Ji, Bingqiang; Yao, Qiang

    2015-12-01

    As a key mechanism of submicron particle capture in wet deposition and wet scrubbing processes, thermophoresis is influenced by the flow and temperature fields. Three-dimensional direct numerical simulations were conducted to quantify the characteristics of the flow and temperature fields around a droplet at three droplet Reynolds numbers (Re) that correspond to three typical boundary-layer-separation flows (steady axisymmetric, steady plane-symmetric, and unsteady plane-symmetric flows). The thermophoretic motion of submicron particles was simulated in these cases. Numerical results show that the motion of submicron particles around the droplet and the deposition distribution exhibit different characteristics under three typical flow forms. The motion patterns of particles are dependent on their initial positions in the upstream and flow forms. The patterns of particle motion and deposition are diversified as Re increases. The particle motion pattern, initial position of captured particles, and capture efficiency change periodically, especially during periodic vortex shedding. The key effects of flow forms on particle motion are the shape and stability of the wake behind the droplet. The drag force of fluid and the thermophoretic force in the wake contribute jointly to the deposition of submicron particles after the boundary-layer separation around a droplet.

  3. Stratigraphy and sedimentology of the K/T boundary deposit in Haiti

    NASA Technical Reports Server (NTRS)

    Carey, S.; Sigurdsson, H.; Dhondt, S.; Espindola, J. M.

    1993-01-01

    The K/T boundary sequence is exposed in uplifted carbonate sediments of the southwest peninsula of Haiti. It is found at 15 localities within the Beloc formation, a sequence of limestone and marls interpreted as a monoclinal nappe structure thrust to the north. This tectonic deformation has affected the K/T boundary deposit to varying degrees. In some cases the less competent K/T deposit has acted as a slip plane leading to extensive shearing of the boundary layer, as well as duplication of the section. The presence of glassy tektites, shocked quartz, and an Ir anomaly directly link the deposit to a bolide impact. Stratigraphic and sedimentological features of the tripartite sequence indicate that it was formed by deposition from ballistic fallout of coarse tektites, emplacement of particle gravity flows and fine grained fallout of widely dispersed impact ejecta.

  4. Photochemistry of biogenic emissions over the Amazon forest

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  5. The Effects of Grain Boundaries on the Current Transport Properties in YBCO-Coated Conductors

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Xia, Yudong; Xue, Yan; Zhang, Fei; Tao, Bowan; Xiong, Jie

    2015-10-01

    We report a detailed study of the grain orientations and grain boundary (GB) networks in Y2O3 films grown on Ni-5 at.%W substrates. Electron back scatter diffraction (EBSD) exhibited different GB misorientation angle distributions, strongly decided by Y2O3 films with different textures. The subsequent yttria-stabilized zirconia (YSZ) barrier and CeO2 cap layer were deposited on Y2O3 layers by radio frequency sputtering, and YBa2Cu3O7-δ (YBCO) films were deposited by pulsed laser deposition. For explicating the effects of the grain boundaries on the current carry capacity of YBCO films, a percolation model was proposed to calculate the critical current density ( J c) which depended on different GB misorientation angle distributions. The significantly higher J c for the sample with sharper texture is believed to be attributed to improved GB misorientation angle distributions.

  6. Chemically frozen multicomponent boundary layer theory of salt and/or ash deposition rates from combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.; Chen, B.-K.; Fryburg, G. C.; Kohl, F. J.

    1979-01-01

    There is increased interest in, and concern about, deposition and corrosion phenomena in combustion systems containing inorganic condensible vapors and particles (salts, ash). To meet the need for a computationally tractable deposition rate theory general enough to embrace multielement/component situations of current and future gas turbine and magnetogasdynamic interest, a multicomponent chemically 'frozen' boundary layer (CFBL) deposition theory is presented and its applicability to the special case of Na2SO4 deposition from seeded laboratory burner combustion products is demonstrated. The coupled effects of Fick (concentration) diffusion and Soret (thermal) diffusion are included, along with explicit corrections for effects of variable properties and free stream turbulence. The present formulation is sufficiently general to include the transport of particles provided they are small enough to be formally treated as heavy molecules. Quantitative criteria developed to delineate the domain of validity of CFBL-rate theory suggest considerable practical promise for the present framework, which is characterized by relatively modest demands for new input information and computer time.

  7. Friction Freeform Fabrication of Superalloy Inconel 718: Prospects and Problems

    NASA Astrophysics Data System (ADS)

    Dilip, J. J. S.; Janaki Ram, G. D.

    2014-01-01

    Friction Freeform Fabrication is a new solid-state additive manufacturing process. The present investigation reports a detailed study on the prospects of this process for additive part fabrication in superalloy Inconel 718. Using a rotary friction welding machine and employing alloy 718 consumable rods in solution treated condition, cylindrical-shaped multi-layer friction deposits (10 mm diameter) were successfully produced. In the as-deposited condition, the deposits showed very fine grain size with no grain boundary δ phase. The deposits responded well to direct aging and showed satisfactory room-temperature tensile properties. However, their stress rupture performance was unsatisfactory because of their layered microstructure with very fine grain size and no grain boundary δ phase. The problem was overcome by heat treating the deposits first at 1353 K (1080 °C) (for increasing the grain size) and then at 1223 K (950 °C) (for precipitating the δ phase). Overall, the current study shows that Friction Freeform Fabrication is a very useful process for additive part fabrication in alloy 718.

  8. Measurements of tropospheric nitric acid over the Western United States and Northeastern Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Lebel, P. J.; Huebert, B. J.; Schiff, H. I.; Vay, S. A.; Vanbramer, S. E.; Hastie, D. R.

    1990-01-01

    Over 240 measurements of nitric acid (HNO3) were made in the free troposphere as well as in the boundary layer. Marine HNO3 measurement results were strikingly similar to results from GAMETAG and other past atmospheric field experiments. The marine boundary layer HNO3 average, 62 parts-per-trillion by volume (pptv), was 1/3 lower than the marine free tropospheric average, 108 pptv, suggesting that the boundary layer is a sink for tropospheric nitric acid, probably by dry deposition. Nitric acid measurements on a nighttime continental flight gave a free tropospheric average of 218 pptv, substantially greater than the daytime continental free tropospheric 5-flight average of 61 pptv. However, the nighttime results may be influenced by highly convective conditions that existed from thunderstorms in the vicinity during that night flight. The continental boundary layer HNO3 average of 767 pptv is an order of magnitude greater than the free tropospheric average, indicating that the boundary layer is a source of free tropospheric HNO3. The distribution of continental boundary layer HNO3 data, from averages of 123 over rural Nevada and Utah to 1057 pptv in the polluted San Joaquin Valley of California suggest a close tie between boundary layer HNO3 and anthropogenic activity.

  9. Determination of monomethylmercury and dimethylmercury in the Arctic marine boundary layer.

    PubMed

    Baya, Pascale A; Gosselin, Michel; Lehnherr, Igor; St Louis, Vincent L; Hintelmann, Holger

    2015-01-06

    Our understanding of the biogeochemical cycling of monomethylmercury (MMHg) in the Arctic is incomplete because atmospheric sources and sinks of MMHg are still unclear. We sampled air in the Canadian Arctic marine boundary layer to quantify, for the first time, atmospheric concentrations of methylated Hg species (both MMHg and dimethylmercury (DMHg)), and, estimate the importance of atmospheric deposition as a source of MMHg to Arctic land- and sea-scapes. Overall atmospheric MMHg and DMHg concentrations (mean ± SD) were 2.9 ± 3.6 and 3.8 ± 3.1 (n = 37) pg m(-3), respectively. Concentrations of methylated Hg species in the marine boundary layer varied significantly among our sites, with a predominance of MMHg over Hudson Bay (HB), and DMHg over Canadian Arctic Archipelago (CAA) waters. We concluded that DMHg is of marine origin and that primary production rate and sea-ice cover are major drivers of its concentration in the Canadian Arctic marine boundary layer. Summer wet deposition rates of atmospheric MMHg, likely to be the product of DMHg degradation in the atmosphere, were estimated at 188 ± 117.5 ng m(-2) and 37 ± 21.7 ng m(-2) for HB and CAA, respectively, sustaining MMHg concentrations available for biomagnification in the pelagic food web.

  10. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  11. Growth model and structure evolution of Ag layers deposited on Ge films.

    PubMed

    Ciesielski, Arkadiusz; Skowronski, Lukasz; Górecka, Ewa; Kierdaszuk, Jakub; Szoplik, Tomasz

    2018-01-01

    We investigated the crystallinity and optical parameters of silver layers of 10-35 nm thickness as a function 2-10 nm thick Ge wetting films deposited on SiO 2 substrates. X-ray reflectometry (XRR) and X-ray diffraction (XRD) measurements proved that segregation of germanium into the surface of the silver film is a result of the gradient growth of silver crystals. The free energy of Ge atoms is reduced by their migration from boundaries of larger grains at the Ag/SiO 2 interface to boundaries of smaller grains near the Ag surface. Annealing at different temperatures and various durations allowed for a controlled distribution of crystal dimensions, thus influencing the segregation rate. Furthermore, using ellipsometric and optical transmission measurements we determined the time-dependent evolution of the film structure. If stored under ambient conditions for the first week after deposition, the changes in the transmission spectra are smaller than the measurement accuracy. Over the course of the following three weeks, the segregation-induced effects result in considerably modified transmission spectra. Two months after deposition, the slope of the silver layer density profile derived from the XRR spectra was found to be inverted due to the completed segregation process, and the optical transmission spectra increased uniformly due to the roughened surfaces, corrosion of silver and ongoing recrystallization. The Raman spectra of the Ge wetted Ag films were measured immediately after deposition and ten days later and demonstrated that the Ge atoms at the Ag grain boundaries form clusters of a few atoms where the Ge-Ge bonds are still present.

  12. Microstructure evolution of a ZrC coating layer in TRISO particles during high-temperature annealing

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Chun, Young Bum; Ko, Myeong Jin; Lee, Hyeon-Geun; Cho, Moon-Sung; Park, Ji Yeon; Kim, Weon-Ju

    2016-10-01

    The influence of high-temperature annealing on the microstructure of zirconium carbide (ZrC) was investigated in relation to its application as a coating layer of a nuclear fuel in a very high temperature gas cooled reactor. ZrC was deposited as a constituent coating layer of TRISO coated particles by a fluidized bed chemical vapor deposition method using a ZrCl4-CH4-Ar-H2 system. The grain growth of ZrC during high-temperature annealing was strongly influenced by the co-deposition of free carbon. Sub-stoichiometric ZrC coatings have experienced a significant grain growth during high-temperature annealing at 1800 °C and 1900 °C for 1 h. On the other hand, a dual phase of stoichiometric ZrC and free carbon experienced little grain growth. It was revealed that the free carbon of the as-deposited ZrC was primarily distributed within the ZrC grains but was redistributed to the grain boundaries after annealing. Consequently, carbon at the grain boundary retarded the grain growth of ZrC. Electron backscatter diffraction (EBSD) results showed that as-deposited ZrC had (001) a preferred orientation that kept its favored direction after significant grain growth during annealing. The hardness slightly decreased as the grain growth progressed.

  13. The nanostructure and microstructure of SiC surface layers deposited by MWCVD and ECRCVD

    NASA Astrophysics Data System (ADS)

    Dul, K.; Jonas, S.; Handke, B.

    2017-12-01

    Scanning electron microscopy (SEM) and Atomic force microscopy (AFM) have been used to investigate ex-situ the surface topography of SiC layers deposited on Si(100) by Microwave Chemical Vapour Deposition (MWCVD) -S1,S2 layers and Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) - layers S3,S4, using silane, methane, and hydrogen. The effects of sample temperature and gas flow on the nanostructure and microstructure have been investigated. The nanostructure was described by three-dimensional surface roughness analysis based on digital image processing, which gives a tool to quantify different aspects of surface features. A total of 13 different numerical parameters used to describe the surface topography were used. The scanning electron image (SEM) of the microstructure of layers S1, S2, and S4 was similar, however, layer S3 was completely different; appearing like grains. Nonetheless, it can be seen that no grain boundary structure is present in the AFM images.

  14. Electrophoretic deposition of bi-layered LSM/LSM-YSZ cathodes for solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Itagaki, Yoshiteru; Watanabe, Shinji; Yamaji, Tsuyoshi; Asamoto, Makiko; Yahiro, Hidenori; Sadaoka, Yoshihiko

    2012-09-01

    Bi-layered cathodes with the LSM/LSM-YSZ structure for solid oxide fuel cells were successfully formed on the carbon-sputtered surface of a YSZ sheet by electrophoretic deposition (EPD). The thicknesses of the first layer of LSM-YSZ (LY) and the second layer of La0.8Sr0.2MnO3 (LSM) could be controlled by adjusting the deposition time in the EPD process. The cathodic properties of the bi-layered structures were superior to those of the mono-layered structures, and were dependent on the thickness of each layer. Decreasing the thickness of the first layer and increasing that of the second layer tended to reduce both polarization and ohmic resistances. The optimal thickness of the first layer at the operating temperature of 600 °C was 4 μm, suggesting that an effective three-phase boundary was extended from the interface between the electrolyte and cathode film to around 4 μm thickness.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, C.; Potts, I.; Reeks, M. W., E-mail: mike.reeks@ncl.ac.uk

    We present a simple stochastic quadrant model for calculating the transport and deposition of heavy particles in a fully developed turbulent boundary layer based on the statistics of wall-normal fluid velocity fluctuations obtained from a fully developed channel flow. Individual particles are tracked through the boundary layer via their interactions with a succession of random eddies found in each of the quadrants of the fluid Reynolds shear stress domain in a homogeneous Markov chain process. In this way, we are able to account directly for the influence of ejection and sweeping events as others have done but without resorting tomore » the use of adjustable parameters. Deposition rate predictions for a wide range of heavy particles predicted by the model compare well with benchmark experimental measurements. In addition, deposition rates are compared with those obtained from continuous random walk models and Langevin equation based ejection and sweep models which noticeably give significantly lower deposition rates. Various statistics related to the particle near wall behavior are also presented. Finally, we consider the model limitations in using the model to calculate deposition in more complex flows where the near wall turbulence may be significantly different.« less

  16. The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles

    DOE PAGES

    Huang, C. W.; Lin, M. Y.; Khlystov, A.; ...

    2015-03-02

    In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less

  17. The effects of leaf size and microroughness on the branch-scale collection efficiency of ultrafine particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, C. W.; Lin, M. Y.; Khlystov, A.

    In this study, wind tunnel experiments were performed to explore how leaf size and leaf microroughness impact the collection efficiency of ultrafine particles (UFP) at the branch scale. A porous media model previously used to characterize UFP deposition onto conifers (Pinus taeda and Juniperus chinensis) was employed to interpret these wind tunnel measurements for four different broadleaf species (Ilex cornuta, Quercus alba, Magnolia grandiflora, and Lonicera fragrantissima) and three wind speed (0.3–0.9 ms -1) conditions. Among the four broadleaf species considered, Ilex cornuta with its partially folded shape and sharp edges was the most efficient at collecting UFP followed bymore » the other three flat-shaped broadleaf species. The findings here suggest that a connection must exist between UFP collection and leaf dimension and roughness. This connection is shown to be primarily due to the thickness of a quasi-laminar boundary layer pinned to the leaf surface assuming the flow over a leaf resembles that of a flat plate. A scaling analysis that utilizes a three-sublayer depositional model for a flat plate of finite size and roughness embedded within the quasi-laminar boundary layer illustrates these connections. The analysis shows that a longer leaf dimension allows for thicker quasi-laminar boundary layers to develop. A thicker quasi-laminar boundary layer depth in turn increases the overall resistance to UFP deposition due to an increase in the diffusional path length thereby reducing the leaf-scale UFP collection efficiency. Finally, it is suggested that the effects of leaf microroughness are less relevant to the UFP collection efficiency than are the leaf dimensions for the four broadleaf species explored here.« less

  18. Deposition of single and layered amorphous fluorocarbon films by C8F18 PECVD

    NASA Astrophysics Data System (ADS)

    Yamauchi, Tatsuya; Mizuno, Kouichiro; Sugawara, Hirotake

    2008-10-01

    Amorphous fluorocarbon films were deposited by plasma-enhanced chemical vapor deposition (PECVD) using C8F18 in closed system at C8F18 pressures 0.1--0.3 Torr, deposition times 1--30 min and plasma powers 20--200 W@. The layered films were composed by repeated PECVD processes. We compared `two-layered' and `intermittently deposited' films, which were made by the PECVD, respectively, with and without renewal of the gas after the deposition of the first layer. The interlayer boundary was observed in the layered films, and that of the intermittently deposited films showed a tendency to be clearer when the deposition time until the interruption of the PECVD was shorter. The film thickness increased linearly in the beginning of the PECVD and it turned down after 10--15 min, that was similar between the single and intermittently deposited films. It was considered that large precursors made at a low decomposition degree of C8F18 contributed to the film deposition in the early phase and that the downturn was due to the development of the C8F18 decomposition. This explanation on the deposition mechanism agrees qualitatively with our experimental data of pressure change and optical emission spectra during the deposition. This work is supported by Grant-in-Aid from Japan Society for the Promotion of Science.

  19. Introducing Overlapping Grain Boundaries in Chemical Vapor Deposited Hexagonal Boron Nitride Monolayer Films

    PubMed Central

    2017-01-01

    We demonstrate the growth of overlapping grain boundaries in continuous, polycrystalline hexagonal boron nitride (h-BN) monolayer films via scalable catalytic chemical vapor deposition. Unlike the commonly reported atomically stitched grain boundaries, these overlapping grain boundaries do not consist of defect lines within the monolayer films but are composed of self-sealing bilayer regions of limited width. We characterize this overlapping h-BN grain boundary structure in detail by complementary (scanning) transmission electron microscopy techniques and propose a catalytic growth mechanism linked to the subsurface/bulk of the process catalyst and its boron and nitrogen solubilities. Our data suggest that the overlapping grain boundaries are comparatively resilient against deleterious pinhole formation associated with grain boundary defect lines and thus may reduce detrimental breakdown effects when polycrystalline h-BN monolayer films are used as ultrathin dielectrics, barrier layers, or separation membranes. PMID:28410557

  20. Interface and permittivity simultaneous reconstruction in electrical capacitance tomography based on boundary and finite-elements coupling method

    PubMed Central

    Ren, Shangjie; Dong, Feng

    2016-01-01

    Electrical capacitance tomography (ECT) is a non-destructive detection technique for imaging the permittivity distributions inside an observed domain from the capacitances measurements on its boundary. Owing to its advantages of non-contact, non-radiation, high speed and low cost, ECT is promising in the measurements of many industrial or biological processes. However, in the practical industrial or biological systems, a deposit is normally seen in the inner wall of its pipe or vessel. As the actual region of interest (ROI) of ECT is surrounded by the deposit layer, the capacitance measurements become weakly sensitive to the permittivity perturbation occurring at the ROI. When there is a major permittivity difference between the deposit and the ROI, this kind of shielding effect is significant, and the permittivity reconstruction becomes challenging. To deal with the issue, an interface and permittivity simultaneous reconstruction approach is proposed. Both the permittivity at the ROI and the geometry of the deposit layer are recovered using the block coordinate descent method. The boundary and finite-elements coupling method is employed to improve the computational efficiency. The performance of the proposed method is evaluated with the simulation tests. This article is part of the themed issue ‘Supersensing through industrial process tomography’. PMID:27185960

  1. Method of deforming a biaxially textured buffer layer on a textured metallic substrate and articles therefrom

    DOEpatents

    Lee, Dominic F.; Kroeger, Donald M.; Goyal, Amit

    2000-01-01

    The present invention provides methods and biaxially textured articles having a deformed epitaxial layer formed therefrom for use with high temperature superconductors, photovoltaic, ferroelectric, or optical devices. A buffer layer is epitaxially deposited onto biaxially-textured substrates and then mechanically deformed. The deformation process minimizes or eliminates grooves, or other irregularities, formed on the buffer layer while maintaining the biaxial texture of the buffer layer. Advantageously, the biaxial texture of the buffer layer is not altered during subsequent heat treatments of the deformed buffer. The present invention provides mechanical densification procedures which can be incorporated into the processing of superconducting films through the powder deposit or precursor approaches without incurring unfavorable high-angle grain boundaries.

  2. Demonstrating antiphase domain boundary-free GaAs buffer layer on zero off-cut Si (0 0 1) substrate for interfacial misfit dislocation GaSb film by metalorganic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Ha, Minh Thien Huu; Hoang Huynh, Sa; Binh Do, Huy; Nguyen, Tuan Anh; Luc, Quang Ho; Chang, Edward Yi

    2017-08-01

    High quality 40 nm GaSb thin film was grown on the zero off-cut Si (0 0 1)-oriented substrate using metalorganic chemical vapor deposition with the temperature-graded GaAs buffer layer. The growth time of the GaAs nucleation layer, which was deposited at a low temperature of 490 °C, is systematically investigated in this paper. Cross-sections of the high resolution transmission electron microscopy images indicate that the GaAs compound formed 3D-islands first before to quasi-2D islands, and finally formed uniform GaAs layer. The optimum thickness of the 490 °C-GaAs layer was found to be 10 nm to suppress the formation of antiphase domain boundaries (APDs). The thin GaAs nucleation layer had a root-mean-square surface roughness of 0.483 nm. This allows the continued high temperature GaAs buffer layer to be achieved with low threading dislocation density of around 7.1  ×  106 cm-2 and almost invisible APDs. Finally, a fully relaxed GaSb film was grown on the top of the GaAs/Si heterostructure using interfacial misfit dislocation growth mode. These results indicate that the GaSb epitaxial layer can be grown on Si substrate with GaAs buffer layer for future p-channel metal-oxide-semiconductor field effect transistors (MOSFETs) applications.

  3. Effects of discharge parameters on deposition rate of hydrogenated amorphous silicon for solar cells from pure SiH/sub 4/ plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishihara, S.; Kitagawa, M.; Hirao, T.

    1987-07-15

    A systematic deposition of hydrogenated amorphous silicon films from pureSiH/sub 4/ plasma was made in a capacitively coupled RF glow-discharge system by changing anode--cathode spacing d and chamber pressure p simultaneously. The data of the deposition rate in the p-vs-d space had two boundaries. One was pd = const. The other seems to be pd/sup 2/ = const. The RF plasma can stably sustain between the boundaries. The boundaries are discussed with RF power per SiH/sub 4/ molecule and with overlapping Paschen's lines of various fragments, especially H/sub 2/ due to the SiH/sub 4/ dissociation. We found the optimum conditionsmore » in which the deposition rate was more than 10 A/s without large photo-induced degradation. 10% efficient p-i-n solar cells were achieved with the intrinsic layer deposition rate of 3.9 A/s and more than 6% efficiency with 10 A/s.« less

  4. Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire

    NASA Astrophysics Data System (ADS)

    Xu, Xiang; Mi, Gaoyang; Luo, Yuanqing; Jiang, Ping; Shao, Xinyu; Wang, Chunming

    2017-07-01

    Laser metal deposition (LMD) with a filler has been demonstrated to be an effective method for additive manufacturing because of its high material deposition efficiency, improved surface quality, reduced material wastage, and cleaner process environment without metal dust pollution. In this study, single beads and samples with ten layers were successfully deposited on a 316 L stainless steel surface under optimized conditions using a 4000 W continuous wave fibre laser and an arc welding machine. The results showed that satisfactory layered samples with a large deposition height and smooth side surface could be achieved under appropriate parameters. The uniform structures had fine cellular and network austenite grains with good metallurgical bonding between layers, showing an austenite solidification mode. Precipitated ferrite at the grain boundaries showed a subgrain structure with fine uniform grain size. A higher microhardness (205-226 HV) was detected in the middle of the deposition area, while the tensile strength of the 50 layer sample reached 669 MPa. In addition, ductile fracturing was proven by the emergence of obvious dimples at the fracture surface.

  5. Deposition rates of viruses and bacteria above the atmospheric boundary layer.

    PubMed

    Reche, Isabel; D'Orta, Gaetano; Mladenov, Natalie; Winget, Danielle M; Suttle, Curtis A

    2018-04-01

    Aerosolization of soil-dust and organic aggregates in sea spray facilitates the long-range transport of bacteria, and likely viruses across the free atmosphere. Although long-distance transport occurs, there are many uncertainties associated with their deposition rates. Here, we demonstrate that even in pristine environments, above the atmospheric boundary layer, the downward flux of viruses ranged from 0.26 × 10 9 to >7 × 10 9  m -2 per day. These deposition rates were 9-461 times greater than the rates for bacteria, which ranged from 0.3 × 10 7 to >8 × 10 7  m -2 per day. The highest relative deposition rates for viruses were associated with atmospheric transport from marine rather than terrestrial sources. Deposition rates of bacteria were significantly higher during rain events and Saharan dust intrusions, whereas, rainfall did not significantly influence virus deposition. Virus deposition rates were positively correlated with organic aerosols <0.7 μm, whereas, bacteria were primarily associated with organic aerosols >0.7 μm, implying that viruses could have longer residence times in the atmosphere and, consequently, will be dispersed further. These results provide an explanation for enigmatic observations that viruses with very high genetic identity can be found in very distant and different environments.

  6. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  7. Detritus in K/T boundary clays of western North America - Evidence against a single oceanic impact

    NASA Technical Reports Server (NTRS)

    Sharpton, V. L.; Schuraytz, B. C.; Burke, K.; Murali, A. V.; Ryder, G.

    1990-01-01

    Understanding the crustal signature of impact ejecta contained in the Cretaceous/Tertiary (K/T) boundary layer is crucial to constraining the possible site(s) of the postulated K/T impact event. The relatively unaltered clastic constituents of the boundary layer at widely separated outcrops within the western interior of North America are not compatible with a single oceanic impact but require instead an impact site on a continent or continental margin. On the other hand, chemical compositions of highly altered K/T boundary layer components in some marine sections have suggested to others an impact into oceanic crust. We suspect that post-depositional alteration within the marine setting accounts for this apparent oceanic affinity. If, however, this is not the case, multiple simultaneous impacts, striking continent as well as ocean floor, would seem to be required.

  8. RESULTS OF A DATING ATTEMPT -CHEMICAL AND PHYSICAL MEASUREMENTS RELEVANT TO THE CASE OF THE CRETACEOUS TERTIARY EXTINCTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaro, Frank; Michel, Helen V.; Alvarez, Luis W.

    1980-09-01

    In Gubbio, Italy, a l em layer of clay between extensive limestone formations marks the boundary between the Cretaceous and Tertiary Periods. This clay layer was known to have been deposited about 65 million years ago when many life forms became extinct, but the length of time associated with the deposition was not known. In an attempt to measure this time with normally deposited meteoritic material as a clock, extensive measurements of iridium abundances (and those of many other elements) were made on the Gubbio rocks. Neutron activation analysis was the principal tool used in these studies. About 50 elementsmore » are searched for in materials like the earth's crust, about 40 are detected and about 30 are measured with useful precision. We were not able to determine exactly how long the clay deposition took. Instead the laboratory studies on the chemical and physical nature of the Cretaceous-Tertiary boundary led to the theory that an asteroid collision with the earth was responsible for the extinction of many forms of life including the dinosaurs.« less

  9. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, R. E.; Sherman, A. H.

    1981-08-18

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer. 1 fig.

  10. Electroless deposition process for zirconium and zirconium alloys

    DOEpatents

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  11. On The Stability Of Model Flows For Chemical Vapour Deposition

    NASA Astrophysics Data System (ADS)

    Miller, Robert

    2016-11-01

    The flow in a chemical vapour deposition (CVD) reactor is assessed. The reactor is modelled as a flow over an infinite-radius rotating disk, where the mean flow and convective instability of the disk boundary layer are measured. Temperature-dependent viscosity and enforced axial flow are used to model the steep temperature gradients present in CVD reactors and the pumping of the gas towards the disk, respectively. Increasing the temperature-dependence parameter of the fluid viscosity (ɛ) results in an overall narrowing of the fluid boundary layer. Increasing the axial flow strength parameter (Ts) accelerates the fluid both radially and axially, while also narrowing the thermal boundary layer. It is seen that when both effects are imposed, the effects of axial flow generally dominate those of the viscosity temperature dependence. A local stability analysis is performed and the linearized stability equations are solved using a Galerkin projection in terms of Chebyshev polynomials. The neutral stability curves are then plotted for a range of ɛ and Ts values. Preliminary results suggest that increasing Ts has a stabilising effect on both type I and type II stationary instabilities, while small increases in ɛ results in a significant reduction to the critical Reynolds number.

  12. Advanced laser diagnostics for diamond deposition research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, C.H.; Owano, T.G.; Wahl, E.H.

    Chemical Vapor Deposition (CVD) using thermal plasmas is attractive for diamond synthesis applications due to the inherently high reactant densities and throughput, but the associated high gas-phase collision rates in the boundary layer above the substrate produce steep thermal and species gradients which can drive the complex plasma chemistry away from optimal conditions. To understand and control these environments, accurate measurements of temperature and species concentrations within the reacting boundary layer are needed. This is challenging in atmospheric pressure reactors due to the highly luminous environment, steep thermal and species gradients, and small spatial scales. The applicability of degenerate four-wavemore » mixing (DFWM) as a spectroscopic probe of atmospheric pressure reacting plasmas has been investigated. This powerful, nonlinear technique has been applied to the measurement of temperature and radical species concentrations in the boundary layer of a diamond growth substrate immersed in a flowing atmospheric pressure plasma. In-situ measurements of CH and C{sub 2} radicals have been performed to determine spatially resolved profiles of vibrational temperature, rotational temperature, and species concentration. Results of these measurements are compared with the predictions of a detailed numerical simulation.« less

  13. Correction of Excessive Precipitation over Steep Mountains in a General Circulation Model (GCM)

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and regional climate models even at a resolution as high as 19km. The affected regions include the Andes, the Himalayas, Sierra Madre, New Guinea and others. This problem also shows up in some data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime subgrid-scale upslope winds, which in turn is forced by heated boundary layer on the slopes. These upslope winds are associated with large subgrid-scale topographic variance, which is found over steep mountains. Without such subgrid-scale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvable-scale upslope flow in the boundary layer combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to excessive precipitation over the affected regions. We have parameterized the effects of subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in the layers higher up when topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-5 GCM have shown that the EPSM problem is largely solved.

  14. DLVO Approximation Methods for Predicting the Attachment of Silver Nanoparticles to Ceramic Membranes.

    PubMed

    Mikelonis, Anne M; Youn, Sungmin; Lawler, Desmond F

    2016-02-23

    This article examines the influence of three common stabilizing agents (citrate, poly(vinylpyrrolidone) (PVP), and branched poly(ethylenimine) (BPEI)) on the attachment affinity of silver nanoparticles to ceramic water filters. Citrate-stabilized silver nanoparticles were found to have the highest attachment affinity (under conditions in which the surface potential was of opposite sign to the filter). This work demonstrates that the interaction between the electrical double layers plays a critical role in the attachment of nanoparticles to flat surfaces and, in particular, that predictions of double-layer interactions are sensitive to boundary condition assumptions (constant charge vs constant potential). The experimental deposition results can be explained when using different boundary condition assumptions for different stabilizing molecules but not when the same assumption was assumed for all three types of particles. The integration of steric interactions can also explain the experimental deposition results. Particle size was demonstrated to have an effect on the predicted deposition for BPEI-stabilized particles but not for PVP.

  15. Head scarp boundary for the landslides in the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    Polygons represent head scarps and flank scarps associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  16. Sedimentary Fabrics of Stratified Slope Deposits at a Site near Hoover's Camp, Shenandoah National Park, Virginia

    USGS Publications Warehouse

    Smoot, Joseph P.

    2004-01-01

    An outcrop of stratified slope deposits in Shenandoah National Park is described in detail. The Pleistocene age deposits are comprised of a mixture of clay to cobbles defining a series of offlapping wedges. Elongate clasts are oriented parallel to wedge boundaries except at the toe of the wedge, where they are oriented nearly vertical. The wedges represent sedimentation by freeze-thaw of ground ice. Thin layers of pebbly sand separate matrix-rich wedge deposits, which represent sheetfloods during periods of thaw. Thicker sand layers and lenses of clay are placed upslope of coarse-grained wedge fronts. This association represents ponding of water around the solifluction lobe topography during warm periods. Stratified slope deposits at an outcrop at a higher elevation lack the sandy sheetflood and pond deposits, whereas sheetflood fabrics dominate deposits at a lower elevation. These variations are attributed to differences in temperature at the different elevations.

  17. CVD aluminiding process for producing a modified platinum aluminide bond coat for improved high temperature performance

    NASA Technical Reports Server (NTRS)

    Nagaraj, Bangalore A. (Inventor); Williams, Jeffrey L. (Inventor)

    2003-01-01

    A method of depositing by chemical vapor deposition a modified platinum aluminide diffusion coating onto a superalloy substrate comprising the steps of applying a layer of a platinum group metal to the superalloy substrate; passing an externally generated aluminum halide gas through an internal gas generator which is integral with a retort, the internal gas generator generating a modified halide gas; and co-depositing aluminum and modifier onto the superalloy substrate. In one form, the modified halide gas is hafnium chloride and the modifier is hafnium with the modified platinum aluminum bond coat comprising a single phase additive layer of platinum aluminide with at least about 0.5 percent hafnium by weight percent and about 1 to about 15 weight percent of hafnium in the boundary between a diffusion layer and the additive layer. The bond coat produced by this method is also claimed.

  18. Convective forcing of mercury and ozone in the Arctic boundary layer induced by leads in sea ice.

    PubMed

    Moore, Christopher W; Obrist, Daniel; Steffen, Alexandra; Staebler, Ralf M; Douglas, Thomas A; Richter, Andreas; Nghiem, Son V

    2014-02-06

    The ongoing regime shift of Arctic sea ice from perennial to seasonal ice is associated with more dynamic patterns of opening and closing sea-ice leads (large transient channels of open water in the ice), which may affect atmospheric and biogeochemical cycles in the Arctic. Mercury and ozone are rapidly removed from the atmospheric boundary layer during depletion events in the Arctic, caused by destruction of ozone along with oxidation of gaseous elemental mercury (Hg(0)) to oxidized mercury (Hg(II)) in the atmosphere and its subsequent deposition to snow and ice. Ozone depletion events can change the oxidative capacity of the air by affecting atmospheric hydroxyl radical chemistry, whereas atmospheric mercury depletion events can increase the deposition of mercury to the Arctic, some of which can enter ecosystems during snowmelt. Here we present near-surface measurements of atmospheric mercury and ozone from two Arctic field campaigns near Barrow, Alaska. We find that coastal depletion events are directly linked to sea-ice dynamics. A consolidated ice cover facilitates the depletion of Hg(0) and ozone, but these immediately recover to near-background concentrations in the upwind presence of open sea-ice leads. We attribute the rapid recoveries of Hg(0) and ozone to lead-initiated shallow convection in the stable Arctic boundary layer, which mixes Hg(0) and ozone from undepleted air masses aloft. This convective forcing provides additional Hg(0) to the surface layer at a time of active depletion chemistry, where it is subject to renewed oxidation. Future work will need to establish the degree to which large-scale changes in sea-ice dynamics across the Arctic alter ozone chemistry and mercury deposition in fragile Arctic ecosystems.

  19. Landslide deposit boundaries for the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    This layer is an inventory of existing landslides deposits in the Little North Santiam River Basin, Oregon (2009). Each landslide deposit shown on this map has been classified according to a number of specific characteristics identified at the time recorded in the GIS database. The classification scheme was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009). Several significant landslide characteristics recorded in the database are portrayed with symbology on this map. The specific characteristics shown for each landslide are the activity of landsliding, landslide features, deep or shallow failure, type of landslide movement, and confidence of landslide interpretation. These landslide characteristics are determined primarily on the basis of geomorphic features, or landforms, observed for each landslide. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey.Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  20. Experimental and theoretical deposition rates from salt-seeded combustion gases of a Mach 0.3 burner rig

    NASA Technical Reports Server (NTRS)

    Santoro, G. J.; Kohl, F. J.; Stearns, C. A.; Gokoglu, S. A.; Rosner, D. E.

    1984-01-01

    Deposition rates on platinum-rhodium cylindrical collectors rotating in the cross streams of the combustion gases of a salt-seeded Mach 0.3 burner rig were determined. The collectors were internally air cooled so that their surface temperatures could be widely varied while they were exposed to constant combustion gas temperatures. The deposition rates were compared with those predicted by the chemically frozen boundary layer (CFBL) computer program, which is based on multicomponent vapor transport through the boundary layer. Excellent agreement was obtained between theory and experiment for the NaCl-seeded case, but the agreement lessened as the seed was changed to synthetic sea salt, NaNO3, and K2SO4, respectively, and was particularly poor in the case of Na2SO4. However, when inertial impaction was assumed to be the deposition mechanism for the Na2SO4 case, the predicted rates agreed well with the experimental rates. The former were calculated from a mean particle diameter that was derived from the measured intial droplet size distribution of the solution spray. Critical experiments showed that liquid phase deposits were blown off the smooth surface of the platinum-rhodium collectors by the aerodynamic shear forces of the high-velocity combustion gases but that rough or porous surfaces retained their liquid deposits.

  1. Deposition and properties of cobalt- and ruthenium-based ultra-thin films

    NASA Astrophysics Data System (ADS)

    Henderson, Lucas Benjamin

    Future copper interconnect systems will require replacement of the materials that currently comprise both the liner layer(s) and the capping layer. Ruthenium has previously been considered as a material that could function as a single material liner, however its poor ability to prevent copper diffusion makes it incompatible with liner requirements. A recently described chemical vapor deposition route to amorphous ruthenium-phosphorus alloy films could correct this problem by eliminating the grain boundaries found in pure ruthenium films. Bias-temperature stressing of capacitor structures using 5 nm ruthenium-phosphorus film as a barrier to copper diffusion and analysis of the times-to-failure at accelerated temperature and field conditions implies that ruthenium-phosphorus performs acceptably as a diffusion barrier for temperatures above 165°C. The future problems associated with the copper capping layer are primarily due to the poor adhesion between copper and the current Si-based capping layers. Cobalt, which adheres well to copper, has been widely proposed to replace the Si-based materials, but its ability to prevent copper diffusion must be improved if it is to be successfully implemented in the interconnect. Using a dual-source chemistry of dicobaltoctacarbonyl and trimethylphosphine at temperatures from 250-350°C, amorphous cobalt-phosphorus can be deposited by chemical vapor deposition. The films contain elemental cobalt and phosphorus, plus some carbon impurity, which is incorporated in the film as both graphitic and carbidic (bonded to cobalt) carbon. When deposited on copper, the adhesion between the two materials remains strong despite the presence of phosphorus and carbon at the interface, but the selectivity for growth on copper compared to silicon dioxide is poor and must be improved prior to consideration for application in interconnect systems. A single molecule precursor containing both cobalt and phosphorus atoms, tetrakis(trimethylphosphine)cobalt(0), yields cobalt-phosphorus films without any co-reactant. However, the molecule does not contain sufficient amounts of amorphizing agents to fully eliminate grain boundaries, and the resulting film is nanocrystalline.

  2. Parallel inhomogeneity and the Alfven resonance. 1: Open field lines

    NASA Technical Reports Server (NTRS)

    Hansen, P. J.; Harrold, B. G.

    1994-01-01

    In light of a recent demonstration of the general nonexistence of a singularity at the Alfven resonance in cold, ideal, linearized magnetohydrodynamics, we examine the effect of a small density gradient parallel to uniform, open ambient magnetic field lines. To lowest order, energy deposition is quantitatively unaffected but occurs continuously over a thickened layer. This effect is illustrated in a numerical analysis of a plasma sheet boundary layer model with perfectly absorbing boundary conditions. Consequences of the results are discussed, both for the open field line approximation and for the ensuing closed field line analysis.

  3. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2011-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific...identify mechanisms for the capturing of nearbed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field...resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical/acoustic

  4. Bayesian chronological analyses consistent with synchronous age of 12,835–12,735 Cal B.P. for Younger Dryas boundary on four continents

    PubMed Central

    Kennett, James P.; Kennett, Douglas J.; Culleton, Brendan J.; Aura Tortosa, J. Emili; Bischoff, James L.; Bunch, Ted E.; Daniel, I. Randolph; Erlandson, Jon M.; Ferraro, David; Firestone, Richard B.; Goodyear, Albert C.; Israde-Alcántara, Isabel; Johnson, John R.; Jordá Pardo, Jesús F.; Kimbel, David R.; LeCompte, Malcolm A.; Lopinot, Neal H.; Mahaney, William C.; Moore, Andrew M. T.; Moore, Christopher R.; Ray, Jack H.; Stafford, Thomas W.; Tankersley, Kenneth Barnett; Wittke, James H.; Wolbach, Wendy S.; West, Allen

    2015-01-01

    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835–12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer. PMID:26216981

  5. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents

    NASA Astrophysics Data System (ADS)

    Kennett, James P.; Kennett, Douglas J.; Culleton, Brendan J.; Emili Aura Tortosa, J.; Bischoff, James L.; Bunch, Ted E.; Daniel, I. Randolph, Jr.; Erlandson, Jon M.; Ferraro, David; Firestone, Richard B.; Goodyear, Albert C.; Israde-Alcántara, Isabel; Johnson, John R.; Jordá Pardo, Jesús F.; Kimbel, David R.; LeCompte, Malcolm A.; Lopinot, Neal H.; Mahaney, William C.; Moore, Andrew M. T.; Moore, Christopher R.; Ray, Jack H.; Stafford, Thomas W., Jr.; Barnett Tankersley, Kenneth; Wittke, James H.; Wolbach, Wendy S.; West, Allen

    2015-08-01

    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.

  6. Bayesian chronological analyses consistent with synchronous age of 12,835-12,735 Cal B.P. for Younger Dryas boundary on four continents.

    PubMed

    Kennett, James P; Kennett, Douglas J; Culleton, Brendan J; Aura Tortosa, J Emili; Bischoff, James L; Bunch, Ted E; Daniel, I Randolph; Erlandson, Jon M; Ferraro, David; Firestone, Richard B; Goodyear, Albert C; Israde-Alcántara, Isabel; Johnson, John R; Jordá Pardo, Jesús F; Kimbel, David R; LeCompte, Malcolm A; Lopinot, Neal H; Mahaney, William C; Moore, Andrew M T; Moore, Christopher R; Ray, Jack H; Stafford, Thomas W; Tankersley, Kenneth Barnett; Wittke, James H; Wolbach, Wendy S; West, Allen

    2015-08-11

    The Younger Dryas impact hypothesis posits that a cosmic impact across much of the Northern Hemisphere deposited the Younger Dryas boundary (YDB) layer, containing peak abundances in a variable assemblage of proxies, including magnetic and glassy impact-related spherules, high-temperature minerals and melt glass, nanodiamonds, carbon spherules, aciniform carbon, platinum, and osmium. Bayesian chronological modeling was applied to 354 dates from 23 stratigraphic sections in 12 countries on four continents to establish a modeled YDB age range for this event of 12,835-12,735 Cal B.P. at 95% probability. This range overlaps that of a peak in extraterrestrial platinum in the Greenland Ice Sheet and of the earliest age of the Younger Dryas climate episode in six proxy records, suggesting a causal connection between the YDB impact event and the Younger Dryas. Two statistical tests indicate that both modeled and unmodeled ages in the 30 records are consistent with synchronous deposition of the YDB layer within the limits of dating uncertainty (∼ 100 y). The widespread distribution of the YDB layer suggests that it may serve as a datum layer.

  7. Multilayer graphene as an effective corrosion protection coating for copper

    NASA Astrophysics Data System (ADS)

    Ravishankar, Vasumathy; Ramaprabhu, S.; Jaiswal, Manu

    2018-04-01

    Graphene grown by chemical vapor deposition (CVD) has been studied as a protective layer against corrosion of copper. The layer number dependence on the protective nature of graphene has been investigated using techniques such as Tafel analysis and Electroimpedance Spectroscopy. Multiple layers of graphene were achieved by wet transfer above CVD grown graphene. Though this might cause grain boundaries, the sites where corrosion is initiated, to be staggered, wet transfer inherently carries the disadvantage of tearing of graphene, as confirmed by Raman spectroscopy measurements. However, Electroimpedance Spectroscopy (EIS) reflects that graphene protected copper has a layer dependent resistance to corrosion. Decrease in corrosion current (Icorr) for graphene protected copper is presented. There is only small dependence of corrosion current on the layer number, Tafel plots clearly indicate passivation in the presence of graphene, whether it be single layer or multiple layers. Notwithstanding the crystallite size, defect free layers of graphene with staggered grain boundaries combined with passivation could offer good corrosion protection for metals.

  8. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced by Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Tainger, Karen M.

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties demonstrated for electron beam deposited aluminum and titanium alloys are comparable to wrought products, although the microstructures of the deposits exhibit cast features. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. Tensile mechanical properties and microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains with interior dendritic structures, described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  9. Modeling of erosion and deposition patterns on C-W and W-Ta twin limiters exposed to the TEXTOR edge plasmas

    NASA Astrophysics Data System (ADS)

    Ohya, K.; Tanabe, T.; Rubel, M.; Wada, M.; Ohgo, T.; Hirai, T.; Philipps, V.; Kirschner, A.; Pospieszczyk, A.; Huber, A.; Sergienko, G.; Brezinsek, S.; Noda, N.

    2004-08-01

    The erosion and deposition patterns on tungsten and tantalum test limiters exposed to the TEXTOR deuterium plasma containing a small amount of C impurity are simulated with the modified EDDY code. At the very top of the W and Ta limiters, there occurs neither erosion nor deposition, but the erosion proceeds slowly along the surface. When approaching the edge, the surface is covered by a thick C layer, which shows a very sharp boundary similar to the observation in surface measurements. In the erosion zone, the re-deposited carbon forms a W (Ta)-C mixed layer with small C concentration. Assumptions for chemical erosion yields of ˜0.01 for W and <0.005 for Ta fit the calculated widths of the deposition zone to the experimentally determined values. Possible reasons for the difference between W and Ta are discussed.

  10. Theory of deposition of condensible impurities on surfaces immersed in combustion gases

    NASA Technical Reports Server (NTRS)

    Rosner, D. E.

    1979-01-01

    The components resulting from the deposition of inorganic salts (e.g., Na2S04) and oxides present in the combustion products from gas turbine engines were investigated. Emphasis was placed on the effects of multicomponent vapor transport, thermophoretic transport of vapor and small particles to actively cooled surfaces, variable fluid properties within mass transfer boundary layers, and free stream turbulence.

  11. Removal of NOx and NOy in biomass burning plumes in the boundary layer over northern Australia

    NASA Astrophysics Data System (ADS)

    Takegawa, N.; Kondo, Y.; Koike, M.; Ko, M.; Kita, K.; Blake, D. R.; Nishi, N.; Hu, W.; Liley, J. B.; Kawakami, S.; Shirai, T.; Miyazaki, Y.; Ikeda, H.; Russel-Smith, J.; Ogawa, T.

    2003-05-01

    The Biomass Burning and Lightning Experiment Phase B (BIBLE-B) aircraft measurement campaign was conducted over the western Pacific and Australia in August and September 1999. In situ aircraft measurements of carbon monoxide (CO), nitric oxide (NO), total reactive nitrogen (NOy), ozone (O3), nonmethane hydrocarbons (NMHCs), and other species were made during BIBLE-B. Meteorological analysis shows that the trace gases emitted from biomass burning in northern Australia were mostly confined within the planetary boundary layer (below ˜3 km) by strong subsidence in the free troposphere. Removal processes of NOx (equal to measured NO + calculated NO2) and NOy in biomass burning plumes in the boundary layer are examined on the basis of correlation analysis. The photochemical lifetime of NOx in biomass burning plumes during the daytime is estimated to be 0.1 to 0.3 days using the correlations of NOx with short-lived NMHCs and hydroxyl radical (OH) concentration calculated from a constrained photochemical model. Correlation of NOy with CO shows that ˜60% of the NOy molecules originating from biomass burning were removed in the boundary layer within 2-3 days. This result is consistent with dry deposition of nitric acid (HNO3) in the plumes. It is likely that only a small fraction of NOy emitted from biomass burning was exported from the boundary layer to the free troposphere during the BIBLE-B period.

  12. Origin and diagenesis of K/T impact spherules - from Haiti to Wyoming and beyond

    USGS Publications Warehouse

    Bohor, B.F.; Glass, B.P.

    1995-01-01

    Impact spherules in Cretaceous/Tertiary (K/T) boundary clays and claystones consist of two types; each type is confined to its own separate layer of the boundary couplet in the Western Hemisphere. The form and composition of each of the spherule types result from its own unique mode of origin during the K/T event. Type 1 splash-form spherules occur only in the melt-ejecta (basal) layer of the K/T couplet. This layer was deposited from a ballistic ejecta curtain composed of melt-glass droplets transported mostly within the atmosphere. In contrast, Type 2 spherules are accreted, partially crystalline, spheroidal bodies that formed by condensation of vaporized bolide and target-rock materials in an expanding fireball cloud, from which they settled out of buoyant suspension to form the fireball layer. Dendritic and skeletal Ni-rich spinel crystals are unique to these Type 2 spherules in the fireball layer. -from Authors

  13. Development of a nonlocal convective mixing scheme with varying upward mixing rates for use in air quality and chemical transport models.

    PubMed

    Mihailović, Dragutin T; Alapaty, Kiran; Sakradzija, Mirjana

    2008-06-01

    Asymmetrical convective non-local scheme (CON) with varying upward mixing rates is developed for simulation of vertical turbulent mixing in the convective boundary layer in air quality and chemical transport models. The upward mixing rate form the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. This scheme provides a less rapid mass transport out of surface layer into other layers than other asymmetrical convective mixing schemes. In this paper, we studied the performance of a nonlocal convective mixing scheme with varying upward mixing in the atmospheric boundary layer and its impact on the concentration of pollutants calculated with chemical and air-quality models. This scheme was additionally compared versus a local eddy-diffusivity scheme (KSC). Simulated concentrations of NO(2) and the nitrate wet deposition by the CON scheme are closer to the observations when compared to those obtained from using the KSC scheme. Concentrations calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme (of the order of 15-20%). Nitrate wet deposition calculated with the CON scheme are in general higher and closer to the observations than those obtained by the KSC scheme. To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO(2)) and nitrate wet deposition was compared for the year 2002. The comparison was made for the whole domain used in simulations performed by the chemical European Monitoring and Evaluation Programme Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  14. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    USGS Publications Warehouse

    Brooks, G.A.; Olyphant, G.A.; Harper, D.

    1991-01-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine. ?? 1991 Springer-Verlag New York Inc.

  15. Application of electromagnetic techniques in survey of contaminated groundwater at an abandoned mine complex in southwestern Indiana, U.S.A.

    NASA Astrophysics Data System (ADS)

    Brooks, Glenn A.; Olyphant, Greg A.; Harper, Denver

    1991-07-01

    In part of a large abandoned mining complex, electromagnetic geophysical surveys were used along with data derived from cores and monitoring wells to infer sources of contamination and subsurface hydrologic connections between acidic refuse deposits and adjacent undisturbed geologic materials. Electrical resistivity increases sharply along the boundary of an elevated deposit of pyritic coarse refuse, which is highly contaminated and electrically conductive, indicating poor subsurface hydrologic connections with surrounding deposits of fine refuse and undisturbed glacial material. Groundwater chemistry, as reflected in values of specific conductance, also differs markedly across the deposit's boundary, indicating that a widespread contaminant plume has not developed around the coarse refuse in more than 40 yr since the deposit was created. Most acidic drainage from the coarse refuse is by surface runoff and is concentrated around stream channels. Although most of the contaminated groundwater within the study area is concentrated within the surficial refuse deposits, transects of apparent resistivity and phase angle indicate the existence of an anomalous conductive layer at depth (>4 m) in thick alluvial sediments along the northern boundary of the mining complex. Based on knowledge of local geology, the anomaly is interpreted to represent a subsurface connection between the alluvium and a flooded abandoned underground mine.

  16. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2012-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives...capturing of nearbed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to...generated resuspended particle distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical

  17. Near-Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2014-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific objectives...identify mechanisms for the capturing of near-bed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field...distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical/acoustic signals of importance to

  18. Airborne measurements of turbulent trace gas fluxes and analysis of eddy structure in the convective boundary layer over complex terrain

    NASA Astrophysics Data System (ADS)

    Hasel, M.; Kottmeier, Ch.; Corsmeier, U.; Wieser, A.

    2005-03-01

    Using the new high-frequency measurement equipment of the research aircraft DO 128, which is described in detail, turbulent vertical fluxes of ozone and nitric oxide have been calculated from data sampled during the ESCOMPTE program in the south of France. Based on airborne turbulence measurements, radiosonde data and surface energy balance measurements, the convective boundary layer (CBL) is examined under two different aspects. The analysis covers boundary-layer convection with respect to (i) the control of CBL depth by surface heating and synoptic scale influences, and (ii) the structure of convective plumes and their vertical transport of ozone and nitric oxides. The orographic structure of the terrain causes significant differences between planetary boundary layer (PBL) heights, which are found to exceed those of terrain height variations on average. A comparison of boundary-layer flux profiles as well as mean quantities over flat and complex terrain and also under different pollution situations and weather conditions shows relationships between vertical gradients and corresponding turbulent fluxes. Generally, NO x transports are directed upward independent of the terrain, since primary emission sources are located near the ground. For ozone, negative fluxes are common in the lower CBL in accordance with the deposition of O 3 at the surface. The detailed structure of thermals, which largely carry out vertical transports in the boundary layer, are examined with a conditional sampling technique. Updrafts mostly contain warm, moist and NO x loaded air, while the ozone transport by thermals alternates with the background ozone gradient. Evidence for handover processes of trace gases to the free atmosphere can be found in the case of existing gradients across the boundary-layer top. An analysis of the size of eddies suggests the possibility of some influence of the heterogeneous terrain in mountainous area on the length scales of eddies.

  19. Synchroneity of the K-T oceanic mass extinction and meteorite impact: Blake Nose, western North Atlantic

    USGS Publications Warehouse

    Norris, R.D.; Huber, B.T.; Self-Trail, J.

    1999-01-01

    A 10-cm-thick layer of green spherules occurs precisely at the biostratigraphic boundary between the Cretaceous and Paleogene (K-T boundary) at Ocean Drilling Program Site 1049 (lat 30??08???N, long 76??06???W). The spherulitic layer contains abundant rock fragments (chalk, limestone, dolomite, chert, mica books, and schist) as well as shocked quartz, abundant large Cretaceous planktic foraminifera, and rounded clasts of clay as long as 4 mm interpreted as altered tektite glass probably derived from the Chicxulub impact structure. Most of the Cretaceous foraminifera present above the spherule layer are not survivors since small specimens are conspicuously rare compared to large individuals. Instead, the Cretaceous taxa in Paleocene sediments are thought to be reworked. The first Paleocene planktic foraminifera and calcareous nannofossil species are recorded immediately above the spherule bed, the upper part of which contains an iridium anomaly. Hence, deposition of the impact ejecta exactly coincided with the biostratigraphic K-T boundary and demonstrates that the impact event was synchronous with the evolutionary turnover in the oceans. These results are consistent with a reanalysis of the biostratigraphy of the K-T boundary stratotype, which argues that shallow-marine K-T boundary sections are not biostratigraphically more complete than deep-sea K-T boundary sites.

  20. Near Bottom Turbulence and Sediment Resuspension Induced by Nonlinear Internal Waves

    DTIC Science & Technology

    2013-09-30

    boundary layer (BBL) turbulence and particulate resuspension leading to benthic nepheloid layer ( BNL ) formation. OBJECTIVES The specific...capturing of nearbed particles by the BBL-turbulence and their transport/deposition into BNLs . • Analyze field observations from the New Jersey shelf to...distributions under NLIWs, a reliable proxy of BNLs , can be used to quantify the transmission or backscatter of optical/acoustic signals of importance to

  1. Quantitative characterization of porosity in stainless steel LENS powders and deposits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Susan, D.F.; Puskar, J.D.; Brooks, J.A.

    2006-07-15

    Laser Engineered Net Shaping (LENS) utilizes a laser beam to melt fine powders to produce three-dimensional engineering structures line by line and layer by layer. When building these structures, defects including lack-of-fusion (LOF) at interlayer boundaries and intralayer porosity are sometimes observed. LOF defects can be minimized by adjusting processing parameters, but the sources of intralayer porosity are less apparent. In this paper, the amount and size distributions of 17-4PH and 304L powders and pores within the powder were characterized in parallel with the intralayer porosity in LENS deposits fabricated from the same materials. Intralayer porosity increased with increased powdermore » porosity; but was not well correlated with deposition parameters. The results demonstrate the importance of careful characterization and specification of starting powders on the quality of the final LENS deposits.« less

  2. The Cretaceous-Paleogene boundary unit in the Gulf of Mexico: Large-scale oceanic basin response to the Chicxulub impact

    NASA Astrophysics Data System (ADS)

    Sanford, J. C.; Gulick, S. P.; Snedden, J.

    2013-12-01

    The prevailing theory for the Cretaceous-Paleogene (K-Pg) extinction event cites the Chicxulub asteroid impact on the Yucatán Peninsula as the catalyst for the global climatologic and ecologic crisis. This theory has been corroborated by a multitude of K-Pg boundary deposits observed globally in both boreholes and outcrops. The change in character of these deposits with proximity to the crater, from a millimeter-scale clay layer to a hectometer-scale carbonate sequence, supports a causal link between the boundary unit and the asteroid impact. Due to its passive marine setting and proximity to the Chicxulub crater, the Gulf of Mexico is the premier locale in which to study the near-field geologic effect of a massive bolide impact. Until recently, investigation of the K-Pg boundary deposit within the Gulf has been largely confined to outcrops and boreholes on the periphery of the basin due to the difficulty of observation of the boundary unit in the deep water. However, hydrocarbon exploration in the past decade has yielded significant borehole and seismic data that can be used to better understand the deep-water response to the impact and to gain a comprehensive regional understanding impact-related processes in the Gulf. Based on roughly 100 offshore and 300 onshore Cretaceous well penetrations, the K-Pg boundary is interpreted to range from a strictly erosional surface in shallow-water and coastal regimes to a mass transport deposit up to ~400 meters thick. Depth-converted seismic data throughout the Gulf corroborate such thicknesses and reveal that the deposit is virtually ubiquitous throughout the deep water. For the first time, the K-Pg boundary deposit has been tied from the central Gulf to the Chicxulub crater, further establishing a causative link between the two. Biostratigraphic data in wells confirm the age of the deposit and document the presence of the 'K-Pg boundary cocktail.' Seismic data reveals areas of extensive debris flows and slump deposits on the lower slope of the Florida Platform, providing further evidence of massive sediment redistribution. Log character of the boundary deposit varies significantly, suggesting changes in both depositional style (e.g, mass flow deposit, collapsed platform block, etc.) and sediment source (e.g., Yucatán Platform, Florida Platform, Texas coast, etc.). Reinvestigation of the classic K-Pg boundary deposits in DSDP Leg 77 cores reveals evidence of several sequences of debris flows and/or turbidites with possibly unique sediment sources, furthering our understanding of small-scale sedimentary processes of impact-related deposition. Generally, evidence supports the theory that the Chicxulub impact was a source of extreme allogenic energy that drastically altered the Gulf Mexico at the start of the Cenozoic. Seismogenic ground roll and multiple episodes of tsunami, erosion, platform collapse, and remobilized sediment effectively overwhelmed and resurfaced the basin's existing depositional systems within a matter of weeks to months. Such processes resulted in the nearly ubiquitous and often extremely thick K-Pg boundary unit in the Gulf. These results yield insight into the near-field effects of a massive bolide impact in a passive marine setting and the ability of such an impact to instantaneously restructure an oceanic basin and its depositional systems.

  3. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

    DOEpatents

    Ginley, David S.; Hietala, Vincent M.; Hohenwarter, Gert K. G.; Martens, Jon S.; Plut, Thomas A.; Tigges, Chris P.; Vawter, Gregory A.; Zipperian, Thomas E.

    1994-10-25

    A process for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO.sub.3 crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O.sub.3, followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry.

  4. Fluvial and Lacustrine Processes in Meridiani Planum and the Origin of the Hematite by Aqueous Alteration

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Barber, C. A.; Schelble, R. T.; Hare, T. M.; Feldman, W. C.; Sutherland, V.; Livingston, A.; Lewis, K.

    2003-01-01

    The prime MER landing site in Meridiani Planum is located on layered materials, including hematite, whose origin as lacustrine or aeolian sediments, or volcanic materials is uncertain. Our detailed mapping of the region provides important constraints on the history of the region. Our mapping of the location of fluvial and lacustrine land forms in the region relative to the layered deposits provides new evidence of a long history of erosion and deposition as has long been noted . In addition, our detailed mapping of the southern boundary of the hematite deposit strongly supports an association between longlived fluvial channels and lacustrine basins and the strongest hematite signatures. This evidence supports an origin of the hematite deposits by interaction with water under ambient conditions in contrast to suggestions of hydrothermal processes due to volcanic or impact crater processes. An important part of the story is the evidence for the localization of the layered deposits due to topographic control induce by the presence of a large early basin we have identified that extends to the north-east of the landing site. Distribution of current channel networks, drainages,

  5. Decay of the zincate concentration gradient at an alkaline zinc cathode after charging

    NASA Technical Reports Server (NTRS)

    Kautz, H. E.; May, C. E.

    1979-01-01

    The transport of the zincate ion to the alkaline zinc cathode was studied by observing the decay of the zincate concentration gradient at a horizontal zinc cathode after charging. This decay was found to approximate first order kinetics as expected from a proposed boundary layer model. The concentrations were calculated from polarization voltages. The decay half life was shown to be a linear function of the thickness of porous zinc deposit on the cathode indicating a very rapid transport of zincate through porous zinc metal. The rapid transport is attributed to an electrochemical mechanism. From the linear dependence of the half life on the thickness the boundary layer thickness was found to be about 0.010 cm when the cathode was at the bottom of the cell. No significant dependence of the boundary layer thickness on the viscosity of electrolyte was observed. The data also indicated a relatively sharp transition between the diffusion and convection transport regions. When the cathode was at the top of the cell, the boundary layer thickness was found to be roughly 0.080 cm. The diffusion of zincate ion through asbestos submerged in alkaline electrolyte was shown to be comparable with that predicted from the bulk diffusion coefficient of the zincate ion in alkali.

  6. COMPARISON OF MEASURED AND MODELED SURFACE FLUXES OF HEAT, MOISTURE, AND CHEMICAL DRY DEPOSITION

    EPA Science Inventory

    Realistic air quality modeling requires accurate simulation of both meteorological and chemical processes within the planetary boundary layer (PBL). n vegetated areas, the primary pathway for surface fluxes of moisture as well a many gaseous chemicals is through vegetative transp...

  7. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Santoro, G. J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory an the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  8. Experimental verification of corrosive vapor deposition rate theory in high velocity burner rigs

    NASA Technical Reports Server (NTRS)

    Gokoglu, Suleyman A.; Santoro, Gilbert J.

    1986-01-01

    The ability to predict deposition rates is required to facilitate modelling of high temperature corrosion by fused salt condensates in turbine engines. A corrosive salt vapor deposition theory based on multicomponent chemically frozen boundary layers (CFBL) has been successfully verified by high velocity burner rig experiments. The experiments involved internally air-impingement cooled, both rotating full and stationary segmented cylindrical collectors located in the crossflow of sodium-seeded combustion gases. Excellent agreement is found between the CFBL theory and the experimental measurements for both the absolute amounts of Na2SO4 deposition rates and the behavior of deposition rate with respect to collector temperature, mass flowrate (velocity) and Na concentration.

  9. Experimental Findings from Aircraft Measurements in the Residual Layer

    NASA Astrophysics Data System (ADS)

    Caputi, D.; Conley, S. A.; Faloona, I. C.; Trousdell, J.

    2016-12-01

    The southern San Joaquin Valley of California is home to some of the highest ozone pollution in the United States. Thus, a complete understanding of boundary layer dynamics in this area during high ozone events is crucial for better ozone forecasting and effective attainment planning. This work will discuss the results from five aircraft deployments, spanning two summers, in which a Mooney aircraft operated by Scientific Aviation Inc. was flown between Fresno and Bakersfield throughout the diurnal cycle, measuring ozone, NOx, and methane. Under a simple budgeting model, changes in any species within the boundary layer can occur from advection, chemical production or loss, surface fluxes or deposition, and entrainment between the boundary layer and free troposphere. The advection of ozone appears to be most appreciable at night with stronger winds in the residual layer, and are on the order of 2 to 4 ppb hr-1. The nighttime chemical loss of ozone due to interaction with NO2 can be estimated by simple numerical modeling of observed quantities and reaction rates, and is found to often roughly compensate for the advection, with typical calculated values of -1 to -3 ppb hr-1. The mixing component is more difficult to directly quantify, but attempts are being made to estimate eddy viscosity by solving for this term in the budget equation. Additionally, small-scale features, such as nocturnal elevated mixed layers, localized BRN (bulk Richardson number) minimums, and low level jets are spotted in systematic ways throughout the flight data, and it is speculated that these may have a role in the transfer of ozone from the residual layer to the surface layer. Ultimately, the preliminary data is promising for the eventual goal of linking together the observed boundary layer evolution with ozone production during air pollution episodes.

  10. Crystalline orientation engineering and charge transport in thin film YBa(2)Cu(3)O(7-x) superconducting surface-coated conductors

    NASA Astrophysics Data System (ADS)

    Chudzik, Michael Patrick

    The weak-link behavior of grain boundaries in polycrystalline high-T c superconductors adversely affects the current density in these materials. The development of wire technology based on polycrystalline high-Tc materials requires understanding and controlling the development of low-angle grain boundaries in these conductors. The research goal is to comprehensively examine the methodology in fabrication and characterization to understand the structure-transport correlation in YBa2Cu3O 7-x (YBCO) surface-coated conductors. High current density YBCO coated conductors were fabricated and characterized as candidates for second generation high-Tc wire technology. Critical current densities (Jc) greater than 1 x 106 A/cm2 at 77 K and zero magnetic field were obtained using thin films epitaxially grown by metalorganic chemical vapor deposition (MOCVD) and pulsed laser deposition (PLD) on oriented buffer layers. The biaxially textured oxide buffer layers were deposited by ion-beam-assisted deposition (IBAD). The transport properties of coated conductors were evaluated in high magnetic fields for intrinsic and extrinsic flux vortex pinning effects for improved high-field properties. Transport Jc's of these coated conductors at 7 tesla (77 K) were measured at values greater than 105 A/cm 2 with the magnetic field perpendicular to the YBCO c-axis (B⊥ c) in both MOCVD and PLD derived conductors. The Jc's in B || c orientation fell an order of magnitude lower at 7 tesla to values near 10 4 A/cm2 due to decreased intrinsic flux pinning. The critical current densities as a function of grain boundary misorientation were found to deviate from the general trend determined for single grain boundary junctions, due to the mosaic structure, which allows meandering current flow. Extensive parametric investigations of relevant thin film growth techniques were utilized to establish growth-property relationships that led to optimized fabrication of high-Tc conductors. The work contained in this dissertation successfully addresses the challenge in engineering low-angle grain boundary polycrystalline conductors for high-current high-field applications and develops a structure-property correlation, which is essential for advancing this technology.

  11. Correction of Excessive Precipitation Over Steep and High Mountains in a General Circulation Model

    NASA Technical Reports Server (NTRS)

    Chao, Winston C.

    2012-01-01

    Excessive precipitation over steep and high mountains (EPSM) is a well-known problem in GCMs and meso-scale models. This problem impairs simulation and data assimilation products. Among the possible causes investigated in this study, we found that the most important one, by far, is a missing upward transport of heat out of the boundary layer due to the vertical circulations forced by the daytime upslope winds, which are forced by the heated boundary layer on subgrid-scale slopes. These upslope winds are associated with large subgrid-scale topographic variation, which is found over steep and high mountains. Without such subgridscale heat ventilation, the resolvable-scale upslope flow in the boundary layer generated by surface sensible heat flux along the mountain slopes is excessive. Such an excessive resolvablescale upslope flow combined with the high moisture content in the boundary layer results in excessive moisture transport toward mountaintops, which in turn gives rise to EPSM. Other possible causes of EPSM that we have investigated include 1) a poorly-designed horizontal moisture flux in the terrain-following coordinates, 2) the condition for cumulus convection being too easily satisfied at mountaintops, 3) the presence of conditional instability of the computational kind, and 4) the absence of blocked flow drag. These are all minor or inconsequential. We have parameterized the ventilation effects of the subgrid-scale heated-slope-induced vertical circulation (SHVC) by removing heat from the boundary layer and depositing it in layers higher up when the topographic variance exceeds a critical value. Test results using NASA/Goddard's GEOS-S GCM have shown that this largely solved the EPSM problem.

  12. A multilayer model for inferring dry deposition using standard meteorological measurements

    NASA Astrophysics Data System (ADS)

    Meyers, Tilden P.; Finkelstein, Peter; Clarke, John; Ellestad, Thomas G.; Sims, Pamela F.

    1998-09-01

    In this paper, we describe the latest version of the dry deposition inferential model, which is used to estimate the deposition velocities (Vd) for SO2, O3, HNO3, and particles with diameters less than 2 μm. The dry deposition networks operated by the National Oceanic and Atmospheric Administration (NOAA) and the Environmental Protection Agency (EPA) use this model to estimate dry deposition on a weekly basis. This model uses a multilayer approach, discretizing the vegetated canopy into 20 layers. The use of canopy radiative transfer and simple wind profile models allows for estimates of stomatal (rs) and leaf boundary layer (rb) resistances to be determined at each layer in the plant canopy for both sunlit and shaded leaves. The effect of temperature, water stress, and vapor pressure deficits on the stomatal resistance (rs) have been included. Comparisons of modeled deposition velocities are made with extensive direct measurements performed at three different locations with different crops. The field experiment is discussed in some detail. Overall, modeled O3 deposition velocities are in good agreement with measured values with the average mean bias for all surfaces of the order of 0.01 cm/s or less. For SO2, mean biases range from -0.05 for corn to 0.15 cm/s for soybeans, while for HNO3, they range from 0.09 for corn to 0.47 cm/s for pasture.

  13. Provenance and depositional conditions of Cretaceous-Paleogene boundary sandstones from northeastern Mexico

    NASA Astrophysics Data System (ADS)

    Rehrmann, Stephanie; Augustsson, Carita; Izaguirre Valdez, Rocio Nereyda; Jenchen, Uwe; Schulte, Peter

    2012-12-01

    We compare Late Maastrichtian siliciclastic sandstone in northeastern Mexico with those representing the Cretaceous-Paleogene (K-Pg) boundary to reveal differences in provenance and depositional conditions between background sedimentation and K-Pg sand. Lithology and compositional variations are presented for the deep-water Burgos Basin and the shallow-water La Popa Basin. The Late Maastrichtian sandstones in the Burgos Basin have sharp lower contacts, contain abundant trace fossils and are separated by meter-thick marl layers. They represent sporadic mass flows from coastal areas separated by long phases of hemipelagic sedimentation. The K-Pg sandstone layers are amalgamated, contain thin marl intercalations only in the uppermost part and trace fossils are present in the top sandstone layer only. Also this succession represents mass-flow deposits, but the sand may have been deposited during a very short period. The La Popa Basin sandstones represent deltaic sedimentation interrupted by submarine channel deposition during the K-Pg boundary transition with abundant rip-up clasts and bioclasts at the base. The sandstones of the Burgos Basin are quartz to akosic wacke dominated by quartz (> 90%) and some feldspar (< 10%) in calcite cement and matrix. Lithic fragments are rare and dominated by chert and bioclasts. Ultra-stable heavy minerals (ZTR = 50-80) and plutonic quartz grains (ca. 40% of the total quartz population) are particularly common in the K-Pg sandstones. In the Maastrichtian sandstones, metamorphic heavy minerals, particularly chlorite, clinozoisite, and tourmaline (20-50% of the heavy mineral population), and metamorphic quartz (80% of the quartz population) have higher abundances. The La Popa sandstones are subarkose to arkose and arkosic wacke and have a high abundance of feldspar (15-30%) and lithic fragments (5-20%), mainly of siltstone and carbonate. The sandstones from both basins have chemical compositions typical for recycling (Zr/Sc = 12-27 and 17-140 in the Burgos and La Popa Basin, respectively) and influences from mafic source rocks (Th/Sc = 0.4-1.1; Ti/Nb = 350-510). Therefore we suggest that all studied successions share a common provenance with transport of recycled orogenic metasedimentary components from northwestern Mexico and magmatic arc material from western Mexico. Subsequently, longshore currents mixed the detritus with limestone clasts derived from the tectonically active Sierra Madre Oriental, which probably is the cause for compositional changes in the sandstones. Due to increased sediment input from western Mexico at the K-Pg boundary, provenance changes cannot be related to the Chicxulub impact.

  14. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    NASA Technical Reports Server (NTRS)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  15. Dry deposition profile of small particles within a model spruce canopy.

    PubMed

    Ould-Dada, Zitouni

    2002-03-08

    Data on dry deposition of 0.82 microm MMAD uranium particles to a small scale, 'model' Norway spruce (Picea abies) canopy have been determined by means of wind tunnel experiments. These are presented for both the total canopy and for five horizontal layers within the canopy. The results show a complex pattern of deposition within the canopy. The highest deposition velocity Vg (0.19 cm s(-1)) was recorded for the topmost layer within the canopy (i.e. the layer in direct contact with the boundary layer) whereas the lowest Vg (0.02 cm s(-1)) occurred at the soil surface. Vertical penetration of depositing aerosol through the canopy was influenced by variations in biomass, wind velocity and turbulence within the canopy. A total canopy Vg of 0.5 cm s(-1) was obtained and this is in line with field measurements of Vg reported in literature for both anthropogenic and radionuclide aerosols of similar size ranges. Extrapolation of wind tunnel data to 'real' forest canopies is discussed. The information presented here is of importance in predicting the likely contribution of dry deposition of aerosols to pollutant inputs to forest ecosystems, particularly in the context of radioactive aerosol releases from nuclear installations. The application of the present data may also be appropriate for other pollutant aerosols such as SO4, NO3 and NH4, which are characterised by particle sizes in the range used in this study.

  16. Role of SiC substrate surface on local tarnishing of deposited silver mirror stacks

    NASA Astrophysics Data System (ADS)

    Limam, Emna; Maurice, Vincent; Seyeux, Antoine; Zanna, Sandrine; Klein, Lorena H.; Chauveau, Grégory; Grèzes-Besset, Catherine; Savin De Larclause, Isabelle; Marcus, Philippe

    2018-04-01

    The role of the SiC substrate surface on the resistance to the local initiation of tarnishing of thin-layered silver stacks for demanding space mirror applications was studied by combined surface and interface analysis on model stack samples deposited by cathodic magnetron sputtering and submitted to accelerated aging in gaseous H2S. It is shown that suppressing the surface pores resulting from the bulk SiC material production process by surface pretreatment eliminates the high aspect ratio surface sites that are imperfectly protected by the SiO2 overcoat after the deposition of silver. The formation of channels connecting the silver layer to its environment through the failing protection layer at the surface pores and locally enabling H2S entry and Ag2S growth as columns until emergence at the stack surface is suppressed, which markedly delays tarnishing initiation and thereby preserves the optical performance. The results revealed that residual tarnishing initiation proceeds by a mechanism essentially identical in nature but involving different pathways short circuiting the protection layer and enabling H2S ingress until the silver layer. These permeation pathways are suggested to be of microstructural origin and could correspond to the incompletely coalesced intergranular boundaries of the SiO2 layer.

  17. Stable carbon and oxygen isotope record of central Lake Erie sediments

    USGS Publications Warehouse

    Tevesz, M.J.S.; Spongberg, A.L.; Fuller, J.A.

    1998-01-01

    Stable carbon and oxygen isotope data from mollusc aragonite extracted from sediment cores provide new information on the origin and history of sedimentation in the southwestern area of the central basin of Lake Erie. Sediments infilling the Sandusky subbasin consist of three lithologic units overlying glacial deposits. The lowest of these is a soft gray mud overlain by a shell hash layer containing Sphaerium striatinum fragments. A fluid mud unit caps the shell hash layer and extends upwards to the sediment-water interface. New stable isotope data suggest that the soft gray mud unit is of postglacial, rather than proglacial, origin. These data also suggest that the shell hash layer was derived from erosional winnowing of the underlying soft gray mud layer. This winnowing event may have occurred as a result of the Nipissing flood. The Pelee-Lorain moraine, which forms the eastern boundary of the Sandusky subbasin, is an elevated area of till capped by a sand deposit that originated as a beach. The presence of both the shell hash layer and relict beach deposit strengthens the interpretation that the Nipissing flood was a critical event in the development of the southwestern area of the central basin of Lake Erie. This event, which returned drainage from the upper lakes to the Lake Erie basin, was a dominant influence on regional stratigraphy, bathymetry, and depositional setting.

  18. Topography evolution of rough-surface metallic substrates by solution deposition planarization method

    NASA Astrophysics Data System (ADS)

    Chu, Jingyuan; Zhao, Yue; Liu, Linfei; Wu, Wei; Zhang, Zhiwei; Hong, Zhiyong; Li, Yijie; Jin, Zhijian

    2018-01-01

    As an emerging technique for surface smoothing, solution deposition planarization (SDP) has recently drawn more attention on the fabrication of the second generation high temperature superconducting (2G-HTS) tapes. In our work, a number of amorphous oxide layers were deposited on electro-polished or mirror-rolled metallic substrates by chemical solution route. Topography evolution of surface defects on these two types of metallic substrates was thoroughly investigated by atomic force microscopy (AFM). It was showed that root mean square roughness values (at 50 × 50 μm2 scanning scale) on both rough substrates reduced to ∼5 nm after coating with SDP-layer. The smoothing effect was mainly attributed to decrease of the depth at grain boundary grooving on the electro-polished metallic substrate. On the mirror-rolled metallic substrates, the amplitude and frequency of the height fluctuation perpendicular to the rolling direction were gradually reduced as depositing more numbers of SDP-layer. A high Jc value of 4.17 MA cm-2 (at 77 K, s.f.) was achieved on a full stack of YBCO/CeO2/IBAD-MgO/SDP-layer/C276 sample. This study enhanced understanding of the topography evolution on the surface defects covered by the SDP-layer, and demonstrated a low-cost route for fabricating IBAD-MgO based YBCO templates with a simplified architecture.

  19. Bedrock geologic and structural map through the western Candor Colles region of Mars

    USGS Publications Warehouse

    Okubo, Chris H.

    2014-01-01

    The structure and geology of the layered deposits in the Candor Colles region corresponding to units Avfs, Avme, and Hvl of Witbeck and others (1991) are reevaluated in this 1:18,000-scale map. The objectives herein are to gather high-resolution structural measurements to (1) refine the previous unit boundaries in this area established by Witbeck and others (1991), (2) revise the local stratigraphy where necessary, (3) characterize bed forms to help constrain depositional processes, and (4) determine the styles and extent of deformation to better inform reconstructions of the local post-depositional geologic history.

  20. The aeolian wind tunnel

    NASA Technical Reports Server (NTRS)

    Iversen, J. D.

    1991-01-01

    The aeolian wind tunnel is a special case of a larger subset of the wind tunnel family which is designed to simulate the atmospheric surface layer winds to small scale (a member of this larger subset is usually called an atmospheric boundary layer wind tunnel or environmental wind tunnel). The atmospheric boundary layer wind tunnel is designed to simulate, as closely as possible, the mean velocity and turbulence that occur naturally in the atmospheric boundary layer (defined as the lowest portion of the atmosphere, of the order of 500 m, in which the winds are most greatly affected by surface roughness and topography). The aeolian wind tunnel is used for two purposes: to simulate the physics of the saltation process and to model at small scale the erosional and depositional processes associated with topographic surface features. For purposes of studying aeolian effects on the surface of Mars and Venus as well as on Earth, the aeolian wind tunnel continues to prove to be a useful tool for estimating wind speeds necessary to move small particles on the three planets as well as to determine the effects of topography on the evolution of aeolian features such as wind streaks and dune patterns.

  1. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor-liquid-solid technique

    NASA Astrophysics Data System (ADS)

    LeBoeuf, J. L.; Brodusch, N.; Gauvin, R.; Quitoriano, N. J.

    2014-12-01

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor-liquid-solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30% single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the {1 0 0} surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.

  2. Si-Doping Effects in Cu(In,Ga)Se2 Thin Films and Applications for Simplified Structure High-Efficiency Solar Cells.

    PubMed

    Ishizuka, Shogo; Koida, Takashi; Taguchi, Noboru; Tanaka, Shingo; Fons, Paul; Shibata, Hajime

    2017-09-13

    We found that elemental Si-doped Cu(In,Ga)Se 2 (CIGS) polycrystalline thin films exhibit a distinctive morphology due to the formation of grain boundary layers several tens of nanometers thick. The use of Si-doped CIGS films as the photoabsorber layer in simplified structure buffer-free solar cell devices is found to be effective in enhancing energy conversion efficiency. The grain boundary layers formed in Si-doped CIGS films are expected to play an important role in passivating CIGS grain interfaces and improving carrier transport. The simplified structure solar cells, which nominally consist of only a CIGS photoabsorber layer and a front transparent and a back metal electrode layer, demonstrate practical application level solar cell efficiencies exceeding 15%. To date, the cell efficiencies demonstrated from this type of device have remained relatively low, with values of about 10%. Also, Si-doped CIGS solar cell devices exhibit similar properties to those of CIGS devices fabricated with post deposition alkali halide treatments such as KF or RbF, techniques known to boost CIGS device performance. The results obtained offer a new approach based on a new concept to control grain boundaries in polycrystalline CIGS and other polycrystalline chalcogenide materials for better device performance.

  3. Microscopic structure and electrical transport property of sputter-deposited amorphous indium-gallium-zinc oxide semiconductor films

    NASA Astrophysics Data System (ADS)

    Yabuta, H.; Kaji, N.; Shimada, M.; Aiba, T.; Takada, K.; Omura, H.; Mukaide, T.; Hirosawa, I.; Koganezawa, T.; Kumomi, H.

    2014-06-01

    We report on microscopic structures and electrical and optical properties of sputter-deposited amorphous indium-gallium-zinc oxide (a-IGZO) films. From electron microscopy observations and an x-ray small angle scattering analysis, it has been confirmed that the sputtered a-IGZO films consist of a columnar structure. However, krypton gas adsorption measurement revealed that boundaries of the columnar grains are not open-pores. The conductivity of the sputter-deposited a-IGZO films shows a change as large as seven orders of magnitude depending on post-annealing atmosphere; it is increased by N2-annealing and decreased by O2-annealing reversibly, at a temperature as low as 300°C. This large variation in conductivity is attributed to thermionic emission of carrier electrons through potential barriers at the grain boundaries, because temperature dependences of the carrier density and the Hall mobility exhibit thermal activation behaviours. The optical band-gap energy of the a-IGZO films changes between before and after annealing, but is independent of the annealing atmosphere, in contrast to the noticeable dependence of conductivity described above. For exploring other possibilities of a-IGZO, we formed multilayer films with an artificial periodic lattice structure consisting of amorphous InO, GaO, and ZnO layers, as an imitation of the layer-structured InGaZnO4 homologous phase. The hall mobility of the multilayer films was almost constant for thicknesses of the constituent layer between 1 and 6 Å, suggesting rather small contribution of lateral two-dimensional conduction It increased with increasing the thickness in the range from 6 to 15 Å, perhaps owing to an enhancement of two-dimensional conduction in InO layers.

  4. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Proestos, Y.; Lelieveld, J.

    2014-05-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  5. Global risk from the atmospheric dispersion of radionuclides by nuclear power plant accidents in the coming decades

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Proestos, Y.; Lelieveld, J.

    2013-11-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 yr (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential dosages to humans from the inhalation and the exposure to ground deposited radionuclides. We find that the risk of harmful doses due to inhalation is typically highest during boreal winter due to relatively shallow boundary layer development and reduced mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed our results suggest that the risk will become highest in China, followed by India and the USA.

  6. Global Risk from the Atmospheric Dispersion of Radionuclides by Nuclear Power Plant Accidents in the Coming Decades

    NASA Astrophysics Data System (ADS)

    Christoudias, T.; Proestos, Y.; Lelieveld, J.

    2014-12-01

    We estimate the global risk from the release and atmospheric dispersion of radionuclides from nuclear power plant accidents using the EMAC atmospheric chemistry-general circulation model. We included all nuclear reactors that are currently operational, under construction and planned or proposed. We implemented constant continuous emissions from each location in the model and simulated atmospheric transport and removal via dry and wet deposition processes over 20 years (2010-2030), driven by boundary conditions based on the IPCC A2 future emissions scenario. We present global overall and seasonal risk maps for potential surface layer concentrations and ground deposition of radionuclides, and estimate potential doses to humans from inhalation and ground-deposition exposures to radionuclides. We find that the risk of harmful doses due to inhalation is typically highest in the Northern Hemisphere during boreal winter, due to relatively shallow boundary layer development and limited mixing. Based on the continued operation of the current nuclear power plants, we calculate that the risk of radioactive contamination to the citizens of the USA will remain to be highest worldwide, followed by India and France. By including stations under construction and those that are planned and proposed, our results suggest that the risk will become highest in China, followed by India and the USA.

  7. Bidirectional exchange of biogenic volatiles with vegetation: emission sources, reactions, breakdown and deposition

    PubMed Central

    Niinemets, Ülo; Fares, Silvano; Harley, Peter; Jardine, Kolby J.

    2014-01-01

    Biogenic volatile organic compound (BVOC) emissions are widely modeled as inputs to atmospheric chemistry simulations. However, BVOC may interact with cellular structures and neighboring leaves in a complex manner during volatile diffusion from the sites of release to leaf boundary layer and during turbulent transport to the atmospheric boundary layer. Furthermore, recent observations demonstrate that the BVOC emissions are bidirectional, and uptake and deposition of BVOC and their oxidation products are the rule rather than the exception. This review summarizes current knowledge of within-leaf reactions of synthesized volatiles with reactive oxygen species (ROS), uptake, deposition and storage of volatiles and their oxidation products as driven by adsorption on leaf surface and solubilization and enzymatic detoxification inside leaves. The available evidence indicates that due to reactions with ROS and enzymatic metabolism, the BVOC gross production rates are much larger than previously thought. The degree to which volatiles react within leaves and can be potentially taken up by vegetation depends on compound reactivity, physicochemical characteristics, as well as their participation in leaf metabolism. We argue that future models should be based on the concept of bidirectional BVOC exchange and consider modification of BVOC sink/source strengths by within-leaf metabolism and storage. PMID:24635661

  8. Low Ozone in the Marine Boundary Layer of the Tropical Pacific Ocean

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Gregory, G. L.; Andesrson, B.; Browell, E.; Sachse, G. W.; Davis, D. D.; Crawford, J.; Bradshaw, J. D.; Talbot, R.; Blake, D. R.; hide

    1994-01-01

    Aircraft measurements of ozone, its key precursors, and a variety of chemical tracers were made in the troposphere of the western and central Pacific in October 1991. These data are presented and analyzed to examine the occurrence of low ozone concentrations in the remote marine boundary layer of the tropical and equatorial Pacific Ocean. The data from these flights out of Guam, covering an area extending from the equator to 20 N and from south of the Philippines to Hawaii, show average O3 concentrations as low as 8-9 ppb (ppb=10(exp-9)v/v) at altitudes of 0.3-0.5 km in the boundary layer. Individual measurements as low as 2-5 ppb were recorded. Low O3 concentrations do not always persist in space and time. High O3, generally associated with the transport of upper tropospheric air, was also encountered in the boundary layer. In practically all cases, O3 increased to values as large as 25-30 ppb within 2 km above the boundary layer top. Steady state model computations are used to suggest that these low O3 concentrations are a result of net photochemical O3 destruction in a low NO environment, sea-surface deposition, and extremely low net entrainment rates (1-2 mm per second) from the free troposphere. Day/night measurements of ethane, propane, gaseous and aerosol Cl suggest that daytime (morning) Cl atom concentrations in the vicinity of 10(exp 5) molecules per cubic centimeter may be present in the marine boundary layer. This Cl atom abundance can be rationalized only if sea salt aerosols can release free chlorine (Cl2) to the gas phase in the presence of sun light (and possibly O3). These Cl atom concentrations, however, are still insufficient and Cl (or Br) chemistry is not likely to be an important cause of the observed low O3.

  9. High temperature superconductor step-edge Josephson junctions using Ti-Ca-Ba-Cu-O

    DOEpatents

    Ginley, D.S.; Hietala, V.M.; Hohenwarter, G.K.G.; Martens, J.S.; Plut, T.A.; Tigges, C.P.; Vawter, G.A.; Zipperian, T.E.

    1994-10-25

    A process is disclosed for formulating non-hysteretic and hysteretic Josephson junctions using HTS materials which results in junctions having the ability to operate at high temperatures while maintaining high uniformity and quality. The non-hysteretic Josephson junction is formed by step-etching a LaAlO[sub 3] crystal substrate and then depositing a thin film of TlCaBaCuO on the substrate, covering the step, and forming a grain boundary at the step and a subsequent Josephson junction. Once the non-hysteretic junction is formed the next step to form the hysteretic Josephson junction is to add capacitance to the system. In the current embodiment, this is accomplished by adding a thin dielectric layer, LaA1O[sub 3], followed by a cap layer of a normal metal where the cap layer is formed by first depositing a thin layer of titanium (Ti) followed by a layer of gold (Au). The dielectric layer and the normal metal cap are patterned to the desired geometry. 8 figs.

  10. Phase transformation synthesis of TiO2/CdS heterojunction film with high visible-light photoelectrochemical activity

    NASA Astrophysics Data System (ADS)

    Liu, Canjun; Yang, Yahui; Li, Jie; Chen, Shu

    2018-06-01

    CdS/TiO2 heterojunction film used as a photoanode has attracted much attention in the past few years due to its good visible light photocatalytic activity. However, CdS/TiO2 films prepared by conventional methods (successive ionic layer adsorption and reaction, chemical bath deposition and electrodeposition) show numerous grain boundaries in the CdS layer and an imperfect contact at the heterojunction interface. In this study, we designed a phase transformation method to fabricate CdS/TiO2 nanorod heterojunction films. The characterization results showed that the CdS layer with fewer grain boundaries was conformally coated on the TiO2 nanorod surface and the formation mechanism has been explained in this manuscript. Moreover, the prepared CdS/TiO2 films show a high photocatalytic activity and the photocurrent density is as high as 9.65 mA cm‑2 at 0.80 V versus RHE. It may be attributed to fewer grain boundaries and a compact heterojunction contact, which can effectively improve charge separation and transportation.

  11. Assembling an ignimbrite: Compositionally defined eruptive packages in the 1912 Valley of Ten Thousand Smokes ignimbrite, Alaska

    USGS Publications Warehouse

    Fierstein, J.; Wilson, C.J.N.

    2005-01-01

    The 1912 Valley of Ten Thousand Smokes (VTTS) ignimbrite was constructed from 9 compositionally distinct, sequentially emplaced packages, each with distinct proportions of rhyolite (R), dacite (D), and andesite (A) pumices that permit us to map package boundaries and flow paths from vent to distal extents. Changing pumice proportions and interbedding relationships link ignimbrite formation to coeval fall deposition during the first ???16 h (Episode I) of the eruption. Pumice compositional proportions in the ignimbrite were estimated by counts on ???100 lapilli at multiple levels in vertical sections wherever accessible and more widely over most of the ignimbrite surface in the VTTS. The initial, 100% rhyolite ignimbrite package (equivalent to regional fall Layer A and occupying ???3.5 h) was followed by packages with increasing proportions of andesite, then dacite, emplaced over ???12.5 h and equivalent to regional fall Layers B1-B3. Coeval fall deposits are locally intercalated with the ignimbrite and show parallel changes in R:D (rhyolite:dacite) proportions, but lack significant amounts of andesite. Andesite was thus dominantly a low-fountaining component in the eruption column and is preferentially represented in packages filling the VTTS north of the vent. The most extensive packages (3 and 4) occur in B1 and early B2 times where flow mobility and volume were optimized; earlier all-rhyolite flows (Package 1) were highly energetic but less voluminous, while later packages (5-9) were both less voluminous and emplaced at lower velocities. Package boundaries are expressed as one or more of the following: sharp color changes corresponding to compositional variations; persistent finer-grained basal parts of flow units; compaction swales filled by later packages; erosional channels cut by the flows that fill them; lobate accumulations of one package; and (mostly south of the vent) intercalated fall deposit layers. Clear flow-unit boundaries are best developed between ignimbrite of non-successive packages, indicating time breaks of tens of minutes to hours. Less well-defined stratification may represent rapidly emplaced successive flow units but often changes over short distances and indicates variations in localized depositional conditions. ?? 2005 Geological Society of America.

  12. Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells

    DOE PAGES

    Ke, Weijun; Zhao, Dewei; Xiao, Chuanxiao; ...

    2016-08-17

    Both tin oxide (SnO 2) and fullerenes have been reported as electron selective layers (ESLs) for producing efficient lead halide perovskite solar cells. Here, we report that SnO 2 and fullerenes can work cooperatively to further boost the performance of perovskite solar cells. We find that fullerenes can be redissolved during perovskite deposition, allowing ultra-thin fullerenes to be retained at the interface and some dissolved fullerenes infiltrate into perovskite grain boundaries. The SnO 2 layer blocks holes effectively; whereas, the fullerenes promote electron transfer and passivate both the SnO 2/perovskite interface and perovskite grain boundaries. With careful device optimization, themore » best-performing planar perovskite solar cell using a fullerene passivated SnO 2 ESL has achieved a steady-state efficiency of 17.75% and a power conversion efficiency of 19.12% with an open circuit voltage of 1.12 V, a short-circuit current density of 22.61 mA cm -2, and a fill factor of 75.8% when measured under reverse voltage scanning. In conclusion, we find that the partial dissolving of fullerenes during perovskite deposition is the key for fabricating high-performance perovskite solar cells based on metal oxide/fullerene ESLs.« less

  13. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season, by converting incoming solar radiation to longwave radiation and sensible heat. This results in a faster rate of snow melt, warmer near-surface air temperatures, and a deeper boundary layer. Soot deposition lowers the albedo of the snow allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 1.5 degree C warming of 2-m air temperatures, 17 watts per meter square increase in surface sensible heat flux, and a 108 m increase in boundary layer depth during the melt period. The snow free-date also occurred 11 days earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, due to soot pollution, caused the snow-free date to occur five days earlier. The soot pollution caused a 0.5 degree C warming of 2-m air temperatures and a 2 watts per meter square increase in surface sensible heat flux. In addition, the boundary layer averaged 25 m deeper in the polluted snow simulation.

  14. Volatile organic compounds and isoprene oxidation products at a temperate deciduous forest site

    NASA Astrophysics Data System (ADS)

    Helmig, Detlev; Greenberg, Jim; Guenther, Alex; Zimmerman, Pat; Geron, Chris

    1998-09-01

    Biogenic volatile organic compounds (BVOCs) and their role in atmospheric oxidant formation were investigated at a forest site near Oak Ridge, Tennessee, as part of the Nashville Southern Oxidants Study (SOS) in July 1995. Of 98 VOCs detected, a major fraction were anthropogenic VOCs such as chlorofluorocarbons (CFCs), alkanes, alkenes and aromatic compounds. Isoprene was the dominant BVOC during daytime. Primary products from BVOC oxidation were methylvinylketone, methacrolein and 3-methylfuran. Other compounds studied include the BVOCs α-pinene, camphene, β-pinene, p-cymene, limonene and cis-3-hexenyl acetate and a series of light alkanes, aromatic hydrocarbons and seven of the CFCs. The correlation of meteorological parameters, with the mixing ratios of these different compounds, reveals information on atmospheric oxidation processes and transport. Long-lived VOCs show very steady mixing ratio time series. Regionally and anthropogenically emitted VOCs display distinct diurnal cycles with a strong mixing ratio decrease in the morning from the breakup of the nocturnal boundary layer. Nighttime mixing ratio increases of CFCs and anthropogenic VOCs are suspected to derive from emissions within the Knoxville urban area into the shallow nocturnal boundary layer. In contrast, the time series of BVOCs and their oxidation products are determined by a combination of emission control, atmospheric oxidation and deposition, and boundary layer dynamics. Mixing ratio time series data for monoterpenes and cis-3-hexenyl acetate suggest a temporarily emission rate increase during and after heavy rain events. The isoprene oxidation products demonstrate differences in the oxidation pathways during night and day and in their dry and wet deposition rates.

  15. Impact origin of sediments at the Opportunity landing site on Mars.

    PubMed

    Knauth, L Paul; Burt, Donald M; Wohletz, Kenneth H

    2005-12-22

    Mars Exploration Rover Opportunity discovered sediments with layered structures thought to be unique to aqueous deposition and with minerals attributed to evaporation of an acidic salty sea. Remarkable iron-rich spherules were ascribed to later groundwater alteration, and the inferred abundance of water reinforced optimism that Mars was once habitable. The layered structures, however, are not unique to water deposition, and the scenario encounters difficulties in accounting for highly soluble salts admixed with less soluble salts, the lack of clay minerals from acid-rock reactions, high sphericity and near-uniform sizes of the spherules and the absence of a basin boundary. Here we present a simple alternative explanation involving deposition from a ground-hugging turbulent flow of rock fragments, salts, sulphides, brines and ice produced by meteorite impact. Subsequent weathering by intergranular water films can account for all of the features observed without invoking shallow seas, lakes or near-surface aquifers. Layered sequences observed elsewhere on heavily cratered Mars and attributed to wind, water or volcanism may well have formed similarly. If so, the search for past life on Mars should be reassessed accordingly.

  16. Coercivity enhancement of sintered Nd-Fe-B magnets by chemical bath deposition of TbCl{sub 3}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Shuai, E-mail: gshuai@nimte.ac.cn; Zhang, Xiaofeng; Ding, Guangfei

    2014-05-07

    The chemical bath deposition (CBD) and the grain boundary diffusion method were combined to diffuse the heavy rare earth for obtain the thick magnets with high coercivity and low heavy rare earth. The jet mill powders were soaked into the alcohol solution of 0.2 wt. % TbCl{sub 3}. A thin layer of TbCl{sub 3} was wrapped to the surface of (PrNd){sub 2}Fe{sub 14}B powder particles. The coercivity of magnet is increased from 11.89 kOe to 14.72 kOe without significant reduction of remanence after grain boundary diffusion in the sintering and the annealing processes. The temperature coefficients of the remanence and themore » coercivity are improved by the substitution of PrNd by Tb in the surface of grains. The highly accelerated temperature/humidity stress test (HAST) results indicate that the CBD magnet has poor corrosion resistance, attributing to the present of Cl atoms in the grain boundaries.« less

  17. Deposition and characterization of silicon thin-films by aluminum-induced crystallization

    NASA Astrophysics Data System (ADS)

    Ebil, Ozgenc

    Polycrystalline silicon (poly-Si) as a thin-film solar cell material could have major advantages compared to non-silicon thin-film technologies. In theory, thin-film poly-Si may retain the performance and stability of c-Si while taking advantage of established manufacturing techniques. However, poly-Si films deposited onto foreign substrates at low temperatures typically have an average grain size of 10--50 nm. Such a grain structure presents a potential problem for device performance since it introduces an excessive number of grain boundaries which, if left unpassivated, lead to poor solar cell properties. Therefore, for optimum device performance, the grain size of the poly-Si film should be at least comparable to the thickness of the films. For this project, the objectives were the deposition of poly-Si thin-films with 2--5 mum grain size on glass substrates using in-situ and conventional aluminum-induced crystallization (AIC) and the development of a model for AIC process. In-situ AIC experiments were performed using Hot-Wire Chemical Vapor Deposition (HWCVD) both above and below the eutectic temperature (577°C) of Si-Al binary system. Conventional AIC experiments were performed using a-Si layers deposited on aluminum coated glass substrates by Electron-beam deposition, Plasma Enhanced Chemical Vapor Deposition (PECVD) and HWCVD. Continuous poly-Si films with an average grain size of 10 mum on glass substrates were achieved by both in-situ and conventional aluminum-induced crystallization of Si below eutectic temperature. The grain size was determined by three factors; the grain structure of Al layer, the nature of the interfacial oxide, and crystallization temperature. The interface oxide was found to be crucial for AIC process but not necessary for crystallization itself. The characterization of interfacial oxide layer formed on Al films revealed a bilayer structure containing Al2O3 and Al(OH)3 . The effective activation energy for AIC process was determined to be 0.9 eV and depended on the nature of the interfacial oxide layer. Poly-Si layers prepared by AIC technique can be used as seed layers for epitaxial growth of bulk Si layer or as back contacts in c-Si based solar cells.

  18. Large eddy simulation modeling of particle-laden flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  19. Modeling Electrothermal Plasma with Boundary Layer Effects

    NASA Astrophysics Data System (ADS)

    AlMousa, Nouf Mousa A.

    Electrothermal plasma sources produce high-density (1023-10 28 /m3) and high temperature (1-5 eV) plasmas that are of interest for a variety of applications such as hypervelocity launch devices, fusion reactor pellet injectors, and pulsed thrusters for small satellites. Also, the high heat flux (up to 100 GW/m2) and high pressure (100s MPa) of electrothermal (ET) plasmas allow for the use of such facilities as a source of high heat flux to simulate off-normal events in Tokamak fusion reactors. Off-normal events like disruptions, thermal and current quenches, are the perfect recipes for damage of plasma facing components (PFC). Successful operation of a fusion reactor requires comprehensive understanding of material erosion behavior. The extremely high heat fluxes deposited in PFCs melt and evaporate or directly sublime the exposed surfaces, which results in a thick vapor/melt boundary layer adjacent to the solid wall structure. The accumulating boundary layers provide a self-protecting nature by attenuating the radiant energy transport to the PFCs. The ultimate goal of this study is to develop a reliable tool to adequately simulate the effect of the boundary layers on the formation and flow of the energetic ET plasma and its impact on exposed surfaces erosion under disruption like conditions. This dissertation is a series of published journals/conferences papers. The first paper verified the existence of the vapor shield that evolved at the boundary layer under the typical operational conditions of the NC State University ET plasma facilities PIPE and SIRENS. Upon the verification of the vapor shield, the second paper proposed novel model to simulate the evolution of the boundary layer and its effectiveness in providing a self-protecting nature for the exposed plasma facing surfaces. The developed models simulate the radiant heat flux attenuation through an optically thick boundary layer. The models were validated by comparing the simulation results to experimental data taken from the ET plasma facilities. Upon validation of the boundary layer models, computational experiments were conducted with the purpose of evaluation the PFCs' erosion during plasma disruption in Tokamak fusion reactors. Erosion of a set of selected low-Z and high-Z materials were analyzed and discussed. For metallic plasma facing materials under the impact of hard and long time-scale disruption events, melting and melt-layer splashing become dominate erosion mechanisms during plasma-material interaction. In order to realistically assess the erosion of the metallic fusion reactor components, the fourth paper accounts for the various mechanisms by which material evolved from PFCs due to melting and vaporization, with a developed melting and splattering/splashing model incorporated in the ET plasma code. Also, the shielding effect associated with melt-layer and vapor-layer is investigated. The quantitative results of material erosion with the boundary layer effects including a vapor layer, melt layer and splashing effects is a new model and an important step towards achieving a better understanding of plasma-material interactions under exposure to such high heat flux conditions.

  20. Top of head scarp and internal scarps for landslide deposits in the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    Data points represent head scarps, flank scarps, and minor internal scarps (linear) associated with landslide deposits in the Little North Santiam River Basin, Oregon. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  1. Direct high-precision U-Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales

    NASA Astrophysics Data System (ADS)

    Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M.

    2016-10-01

    The Cretaceous-Paleogene (K-Pg) boundary is the best known and most widely recognized global time horizon in Earth history and coincides with one of the two largest known mass extinctions. We present a series of new high-precision uranium-lead (U-Pb) age determinations by the chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) method from volcanic ash deposits within a tightly constrained magnetobiostratigraphic framework across the K-Pg boundary in the Denver Basin, Colorado, USA. This new timeline provides a precise interpolated absolute age for the K-Pg boundary of 66.021 ± 0.024 / 0.039 / 0.081 Ma, constrains the ages of magnetic polarity Chrons C28 to C30, and offers a direct and independent test of early Paleogene astronomical and 40Ar/39Ar based timescales. Temporal calibration of paleontological and palynological data from the same deposits shows that the interval between the extinction of the dinosaurs and the appearance of earliest Cenozoic mammals in the Denver Basin lasted ∼185 ky (and no more than 570 ky) and the 'fern spike' lasted ∼1 ky (and no more than 71 ky) after the K-Pg boundary layer was deposited, indicating rapid rates of biotic extinction and initial recovery in the Denver Basin during this event.

  2. Preferred orientations of laterally grown silicon films over amorphous substrates using the vapor–liquid–solid technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LeBoeuf, J. L., E-mail: jerome.leboeuf@mail.mcgill.ca; Brodusch, N.; Gauvin, R.

    2014-12-28

    A novel method has been optimized so that adhesion layers are no longer needed to reliably deposit patterned gold structures on amorphous substrates. Using this technique allows for the fabrication of amorphous oxide templates known as micro-crucibles, which confine a vapor–liquid–solid (VLS) catalyst of nominally pure gold to a specific geometry. Within these confined templates of amorphous materials, faceted silicon crystals have been grown laterally. The novel deposition technique, which enables the nominally pure gold catalyst, involves the undercutting of an initial chromium adhesion layer. Using electron backscatter diffraction it was found that silicon nucleated in these micro-crucibles were 30%more » single crystals, 45% potentially twinned crystals and 25% polycrystals for the experimental conditions used. Single, potentially twinned, and polycrystals all had an aversion to growth with the (1 0 0) surface parallel to the amorphous substrate. Closer analysis of grain boundaries of potentially twinned and polycrystalline samples revealed that the overwhelming majority of them were of the 60° Σ3 coherent twin boundary type. The large amount of coherent twin boundaries present in the grown, two-dimensional silicon crystals suggest that lateral VLS growth occurs very close to thermodynamic equilibrium. It is suggested that free energy fluctuations during growth or cooling, and impurities were the causes for this twinning.« less

  3. Theoretical and experimental studies of the deposition of Na2So4 from seeded combustion gases

    NASA Technical Reports Server (NTRS)

    Kohl, F. J.; Santoro, G. J.; Stearns, C. A.; Fryburg, G. C.; Rosner, D. E.

    1977-01-01

    Flames in a Mach 0.3 atmospheric pressure laboratory burner rig were doped with sea salt, NaS04, and NaCl, respectively, in an effort to validate theoretical dew point predictions made by a local thermochemical equilibrium (LTCE) method of predicting condensation temperatures of sodium sulfate in flame environments. Deposits were collected on cylindrical platinum targets placed in the combustion products, and the deposition was studied as a function of collector temperature. Experimental deposition onset temperatures checked within experimental error with LTCE-predicted temperatures. A multicomponent mass transfer equation was developed to predict the rate of deposition of Na2SO4(c) via vapor transport at temperatures below the deposition onset temperature. Agreement between maximum deposition rates predicted by this chemically frozen boundary layer (CFBL) theory and those obtained in the seeded laboratory burner experiments is good.

  4. Hafnium oxide films for application as gate dielectrics

    NASA Astrophysics Data System (ADS)

    Hsu, Shuo-Lin

    The deposition and characterization of HfO2 films for potential application as a high-kappa gate dielectric in MOS devices has been investigated. DC magnetron reactive sputtering was utilized to prepare the HfO2 films. Structural, chemical, and electrical analyses were performed to characterize the various physical, chemical and electrical properties of the sputtered HfO2 films. The sputtered HfO2 films were annealed to simulate the dopant activation process used in semiconductor processing, and to study the thermal stability of the high-kappa, films. The changes in the film properties due to the annealing are also discussed in this work. Glancing angle XRD was used to analyse the atomic scale structure of the films. The as deposited films exhibit an amorphous, regardless of the film thickness. During post-deposition annealing, the thicker films crystallized at lower temperature (< 600°C), and ultra-thin (5.8 nm) film crystallized at higher temperature (600--720°C). The crystalline phase which formed depended on the thickness of the films. The low temperature phase (monoclinic) formed in the 10--20 nm annealed films, and high temperature phase (tetragonal) formed in the ultra-thin annealed HfO2 film. TEM cross-section studies of as deposited samples show that an interfacial layer (< 1nm) exists between HfO2/Si for all film thicknesses. The interfacial layer grows thicker during heat treatment, and grows more rapidly when grain boundaries are present. XPS surface analysis shows the as deposited films are fully oxidized with an excess of oxygen. Interfacial chemistry analysis indicated that the interfacial layer is a silicon-rich silicate layer, which tends to transform to silica-like layer during heat treatment. I-V measurements show the leakage current density of the Al/as deposited-HfO 2/Si MOS diode is of the order of 10-3 A/cm 2, two orders of magnitude lower than that of a ZrO2 film with similar physical thickness. Carrier transport is dominated by Schottky emission at lower electric fields, and by Frenkel-Poole emission in the higher electric field region. After annealing, the leakage current density decreases significantly as the structure remains amorphous structure. It is suggested that this decrease is assorted with the densification and defect healing which accures when the porous as-deposited amorphous structure is annealed. The leakage current density increases of the HfO2 layer crystallizes on annealing, which is attributed to the presence of grain boundaries. C-V measurements of the as deposited film shows typical C-V characteristics, with negligible hystersis, a small flat band voltage shift, but great frequency dispersion. The relative permittivity of HfO2/interfacial layer stack obtained from the capacitance at accumulation is 15, which corresponds to an EOT (equivalent oxide thickness) = 1.66 nm. After annealing, the frequency dispersion is greatly enhanced, and the C-V curve is shifted toward the negative voltage. Reliability tests show that the HfO2 films which remain amorphous after annealing possess superior resistance to constant voltage stress and ambient aging. This study concluded that the sputtered HfO 2 films exhibit an amorphous as deposited. Postdeposition annealing alters the crystallinity, interfacial properties, and electrical characteristics. The HfO2 films which remain amorphous structure after annealing possess the best electrical properties.

  5. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.

    Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be accurately determined but significantly larger analysis areas than those used in this study would be required.« less

  6. Precession electron diffraction for SiC grain boundary characterization in unirradiated TRISO fuel

    DOE PAGES

    Lillo, T. M.; van Rooyen, I. J.; Wu, Y. Q.

    2016-06-16

    Precession electron diffraction (PED), a transmission electron microscopy-based technique, has been evaluated for the suitability for evaluating grain boundary character in the SiC layer of tristructural isotropic (TRISO) fuel. Although the ultimate goal is to determine the grain boundary characteristics of fission product containing grain boundaries of neutron irradiated SiC, our work reports the effect of transmission electron microscope (TEM) lamella thickness on quality of data and establishes a baseline comparison on grain boundary characteristics determined previously using a conventional EBSD scanning electron microscope (SEM) based technique. In general, it was determined that the lamella thickness produced using the standardmore » FIB fabrication process, is sufficient to provide reliable PED measurements with thicker lamellae (~120 nm) produce higher quality orientation data. Analysis of grain boundary character from the TEM-based PED data showed a much lower fraction of low angle grain boundaries compared to SEM-based EBSD data from the SiC layer of the same TRISO-coated particle as well as a SiC layer deposited at a slightly lower temperature. The fractions of high angle and CSL-related grain boundaries determined by PED are similar to those found using SEM-based EBSD. Since the grain size of the SiC layer of TRSIO fuel can be as small as 250 nm [12], depending on the fabrication parameters, and grain boundary fission product precipitates can be nano-sized, the TEM-based PED orientation data collection method is preferred to determine an accurate representation of the relative fractions of low angle, high angle and CSL-related grain boundaries. It was concluded that although the resolution of the PED data is better by more than an order of magnitude, data acquisition times may be significantly longer or the number of areas analyzed significantly larger than the SEM-based method to obtain a statistically relevant distribution. Also, grain size could be accurately determined but significantly larger analysis areas than those used in this study would be required.« less

  7. Insights on the first peopling of Europe from magnetostratigraphy of the Pleistocene lithic tool-bearing Kozarnika cave sediments, Bulgaria

    NASA Astrophysics Data System (ADS)

    Monesi, E.; Muttoni, G.; Sirakov, N.; Kent, D. V.; Guadelli, J. L.; Scardia, G.; Zerboni, A.; Ferrara, E.

    2017-12-01

    We present a new sedimentological profile and a magnetostratigraphy of the tool-bearing Kozarnika cave sediments from Bulgaria. Modal analysis of cave infilling sedimentary texture indicates that most of the layers are produced by reworked wind-blown sediment (loess). We found evidence for a relatively thick and well defined normal magnetic polarity in the upper-middle part of the section interpreted as a record of the Brunhes Chron, followed downsection by reverse polarity directions. The Brunhes-Matuyama boundary (0.78 Ma) is placed in the upper part of Layer 13 Lower. The lowermost levels with Lower Paleolithic tools are close to - or possibly straddling the - Brunhes-Matuyama boundary. Our results are in substantial agreement with the age of onset of loess deposition in the Danube valley, which occurred shortly before the Brunhes-Matuyama boundary. Moreover, our data fit well with the hypothesis that hominins first entered Europe across a Danube-Po migration conduit during the late Early Pleistocene.

  8. Incorporation of a high-roughness lower boundary into a mesoscale model for studies of dry deposition over complex terrain

    NASA Astrophysics Data System (ADS)

    Physick, W. L.; Garratt, J. R.

    1995-04-01

    For flow over natural surfaces, there exists a roughness sublayer within the atmospheric surface layer near the boundary. In this sublayer (typically 50 z 0 deep in unstable conditions), the Monin-Obukhov (M-O) flux profile relations for homogeneous surfaces cannot be applied. We have incorporated a modified form of the M-O stability functions (Garratt, 1978, 1980, 1983) in a mesoscale model to take account of this roughness sublayer and examined the diurnal variation of the boundary-layer wind and temperature profiles with and without these modifications. We have also investigated the effect of the modified M-O functions on the aerodynamic and laminar-sublayer resistances associated with the transfer of trace gases to vegetation. Our results show that when an observation height or the lowest level in a model is within the roughness sublayer, neglect of the flux-profile modifications leads to an underestimate of resistances by 7% at the most.

  9. Mineralogy of Cretaceous/Tertiary boundary clays in the Chicxulub structure in northern Yucatan

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Sharpton, Virgil L.; Schuraytz, B. C.

    1991-01-01

    The Cretaceous/Tertiary (K/T) boundary clay layer is thought to be derived from ejecta material from meteorite impact, based on the anomalous concentrations of noble metals in the layer. Because of recent findings of a half-meter thick ejecta deposit at the K/T boundary in Haiti, efforts have focused on locating a large impact feature in the Caribbean and the Gulf of Mexico. One of the leading candidates for the site of a large impact is the Chicxulub structure located on the northern Yucatan Peninsula in Mexico. The Chicxulub structure is a subsurface zone of upper Cretaceous igneous rocks, carbonates, and breccias. The structure has been interpreted to be a 200 km diameter; however, there is some question to the size of the structure or to the fact that it even is an impact feature. Little is known about the mineralogy of this structure; the objective of this study was to determine the clay mineralogy of core samples from within the Chicxulub structure.

  10. Dispersion of aerosol particles in the atmosphere: Fukushima

    NASA Astrophysics Data System (ADS)

    Haszpra, Tímea; Lagzi, István; Tél, Tamás

    2013-04-01

    Investigation of dispersion and deposition of aerosol particles in the atmosphere is an essential issue, because they have an effect on the biosphere and atmosphere. Moreover, aerosol particles have different transport properties and chemical and physical transformations in the atmosphere compared to gas phase air pollutants. The motion of a particle is described by a set of ordinary differential equations. The large-scale dynamics in the horizontal direction can be described by the equations of passive scalar advection, but in the vertical direction a well-defined terminal velocity should be taken into account as a term added to the vertical wind component. In the planetary boundary layer turbulent diffusion has an important role in the particle dispersion, which is taken into account by adding stochastic terms to the deterministic equations above. Wet deposition is also an essential process in the lower levels of the atmosphere, however, its precise parameterization is a challenge. For the simulations the wind field and other necessary data were taken from the ECMWF ERA-Interim database. In the case of the Fukushima Daiichi nuclear disaster (March-April 2011) radioactive aerosol particles were also released in the planetary boundary layer. Simulations (included the continuous and varying emission from the nuclear power plant) will be presented for the period of 14-23 March. Results show that wet deposition also has to be taken into consideration in the lower levels of the atmosphere. Furthermore, dynamical system characteristics are evaluated for the aerosol particle dynamics. The escape rate of particles was estimated both with and without turbulent diffusion, and in both cases when there was no wet deposition and also when wet deposition was taken into consideration.

  11. Geologic map of the MTM -85280 quadrangle, Planum Australe region of Mars

    USGS Publications Warehouse

    Herkenhoff, Ken

    1998-01-01

    The polar deposits on Mars are of great interest because they probably record martian climate variations (Thomas and others, 1992). The area shown on this map includes polar layered deposits with distinct low-albedo features and a sharp boundary between the layered deposits and the moderately cratered unit that forms the floor of Chasma Australe. Detailed mapping of this quadrangle was undertaken to further investigate the geologic relations between the albedo features and the layered deposits and to better constrain the recent geologic history of the south polar region. Dark dunes in the north polar region appear to be derived from erosion of the layered deposits, but the source of dark material in the south polar region is less clear (Thomas and Weitz, 1989). The presence of dark material in the brighter, redder layered deposits is paradoxical (Herkenhoff and Murray, 1990a); resolving this paradox is likely to result in a better understanding of the origin and evolution of the layered deposits and, therefore, the mechanisms by which global climate variations are recorded. Published geologic maps of the south polar region of Mars have been based on images acquired by either Mariner 9 (Condit and Soderblom, 1978; Scott and Carr, 1978) or the Viking Orbiters (Tanaka and Scott, 1987). The extent of the layered deposits mapped previously from Mariner 9 data is different from that mapped using Viking Orbiter images, and the present map agrees with the map by Tanaka and Scott (1987): the floor of Chasma Australe is not mapped as layered deposits. The residual polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units - the dust mantle and the dark material - were mapped by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. This mosaic and an additional Viking color mosaic were used to confirm the identification of the nonvolatile Amazonian units for this map and to test hypotheses for their origin and evolution. The colors and albedos of these units, as measured in places outside this map area, are presented in table 1 and figure 1. Accurately measuring the color and albedo of the units in this map area was not possible due to low signal/noise in the part of the red/violet mosaic (corrected for atmospheric scattering) that includes this area (Herkenhoff and Murray, 1990a). However, color/albedo unit boundaries in this area are visible in color mosaics that have not been corrected for atmospheric scattering effects. Therefore, while the color and albedo of various units on this map cannot be precisely quantified and compared with the values in table 1 and figure 1, color/albedo units can still be recognized. Because the resolution of the color mosaics is not sufficient to map these units in detail at 1:500,000 scale, contacts between them were recognized and mapped using higher resolution black-and-white Viking and Mariner 9 images. Only two possible impact craters in the layered deposits have been found in the area mapped; both are slightly elongate rather than circular. One, 1.6 km in diameter at lat 86.6° S., long 268°, was recognized by Plaut and others (1988); the other, about 3 km in diameter, is at lat 82.8° S., long 277°. Although the crater statistics are poor (only 16 likely impact craters found in the entire south polar layered deposits), these observations generally support the conclusions that the south polar layered deposits are Late Amazonian in age and that some areas have been exposed for at least 120 million years (Plaut and others, 1988; Herkenhoff and Murray, 1992, 1994). However, the recent cratering flux on Mars is poorly constrained, so inferred ages of surface units are uncertain. The Viking Orbiter 2 images used to construct the base were taken during the southern summer of 1977, with resolutions no better than 180 m/pixel. (The "less than 100 m per picture element" in Notes on Base of the controlled photomosaic base [U.S. Geological Survey, 1986] is incorrect.) A digital mosaic of Mariner 9 images was also constructed to aid in mapping. The Mariner 9 images were taken during the southern summer of 1971-72 and have resolutions as high as 90 m/pixel. However, usefulness of the Mariner 9 mosaic is limited by incomplete coverage and atmospheric dust opacity.

  12. Why is there evidence for flowing ice at mid-latitudes on Mars but not at the poles?

    NASA Astrophysics Data System (ADS)

    Smith, I. B.

    2017-12-01

    Ice has been detected on Mars in many places, from the polar caps, to mid-latitudes. In many locations there exists evidence for glacial flow. This raises the possibility of flow for the polar layered deposits (PLD). Since the >2000 m thick ice deposits were first observed, speculation about their flow status have persisted. Several stratigraphic predictions regarding flow have been made (Figure 1), but these predictions are not supported with observational data (Smith and Holt 2015) The disagreement between model and observations has led to a general consensus that the polar ice flows more slowly than other processes acting on the PLD, but the reasoning is not understood. Here I posit that the polar layered deposits do not act as a single, generic ice sheet. Instead, they act as a stack of thin ice sheets, where each layer is separated by a boundary of dust, and all layers flow individually. The layers act as barriers to vertical flow, so the viscosity of the cold ice can only be expressed through lateral expansion. I plan to present a simple experiment demonstrating the multi-layer, stacked flow hypothesis. I will demonstrate that the layers themselves flow but do not deform the entire ice sheet, as previously predicted. This allows for the PLD to retain their steep slopes and prevents many of the predicted flow features to form. The major component of this hypothesis is that the dust layers hinder flow. Thus, constraining the friction coefficient, viscosity, tensile strength and compressibility of the dust layers becomes an important next step for testing the stacked, multi-layer flow scenario. Acknowledgements: Thanks to Eric Larour and David Goldsby for helpful comments.

  13. Characterizing dust aerosols in the atmospheric boundary layer over the deserts in Northwest China: monitoring network and field observation

    NASA Astrophysics Data System (ADS)

    He, Q.; Matimin, A.; Yang, X.

    2016-12-01

    TheTaklimakan, Gurbantunggut and BadainJaran Deserts with the total area of 43.8×104 km2 in Northwest China are the major dust emission sources in Central Asia. Understanding Central Asian dust emissions and the interaction with the atmospheric boundary layer has an important implication for regional and global climate and environment changes. In order to explore these scientific issues, a monitoring network of 63 sites was established over the vast deserts (Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert) in Northwest China for the comprehensive measurements of dust aerosol emission, transport and deposition as well as the atmospheric boundary layer including the meteorological parameters of boundary layer, surface radiation, surface heat fluxes, soil parameters, dust aerosol properties, water vapor profiles, and dust emission. Based on the monitoring network, the field experiments have been conducted to characterize dust aerosols and the atmospheric boundary layer over the deserts. The experiment observation indicated that depth of the convective boundary layer can reach 5000m on summer afternoons. In desert regions, the diurnal mean net radiation was effected significantly by dust weather, and sensible heat was much greater than latent heat accounting about 40-50% in the heat balance of desert. The surface soil and dust size distributions of Northwest China Deserts were obtained through widely collecting samples, results showed that the dominant dust particle size was PM100within 80m height, on average accounting for 60-80% of the samples, with 0.9-2.5% for PM0-2.5, 3.5-7.0% for PM0-10 and 5.0-14.0% for PM0-20. The time dust emission of Taklimakan Desert, Gurbantunggut Desert and Badain Jaran Desert accounted for 0.48%, 7.3%×10-5and 1.9% of the total time within a year, and the threshold friction velocity for dust emission were 0.22-1.06m/s, 0.29-1.5m/s and 0.21-0.59m/s, respectively.

  14. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography.

    PubMed

    Wu, Yizhi; Giddings, A Devin; Verheijen, Marcel A; Macco, Bart; Prosa, Ty J; Larson, David J; Roozeboom, Fred; Kessels, Wilhelmus M M

    2018-02-27

    The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called "ALD supercycles" is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width-half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm -3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors.

  15. Dopant Distribution in Atomic Layer Deposited ZnO:Al Films Visualized by Transmission Electron Microscopy and Atom Probe Tomography

    PubMed Central

    2018-01-01

    The maximum conductivity achievable in Al-doped ZnO thin films prepared by atomic layer deposition (ALD) is limited by the low doping efficiency of Al. To better understand the limiting factors for the doping efficiency, the three-dimensional distribution of Al atoms in the ZnO host material matrix has been examined on the atomic scale using a combination of high-resolution transmission electron microscopy (TEM) and atom probe tomography (APT). Although the Al distribution in ZnO films prepared by so-called “ALD supercycles” is often presented as atomically flat δ-doped layers, in reality a broadening of the Al-dopant layers is observed with a full-width–half-maximum of ∼2 nm. In addition, an enrichment of the Al at grain boundaries is observed. The low doping efficiency for local Al densities > ∼1 nm–3 can be ascribed to the Al solubility limit in ZnO and to the suppression of the ionization of Al dopants from adjacent Al donors. PMID:29515290

  16. Structure and Optical Properties of the Atmospheric Boundary Layer over Dusty Hot Deserts

    NASA Astrophysics Data System (ADS)

    Chalermthai, B.; Al Marzooqi, M.; Basha, G.; Ouarda, T.; Armstrong, P.; Molini, A.

    2014-12-01

    Strong sensible heat fluxes and deep turbulent mixing - together with marked dustiness and a low substrate water content - represent a characteristic signature of the atmospheric boundary layer (ABL) over hot deserts, resulting in "thicker" mixing layers and peculiar optical properties. Beside these main common features however, desert boundary layers present extremely complex local structures that have been scarcely addressed in the literature, and whose understanding is essential in modeling processes such as transport and deposition of dust and pollutants, local wind fields, turbulent fluxes and their impacts on the sustainable development, human health and solar energy harvesting in these regions. In this study, we explore the potential of the joint usage of Lidar Ceilometer backscattering profiles and sun-photometer optical depth retrievals to quantitatively determine the vertical aerosol profile over dusty hot desert regions. Toward this goal, we analyze a continuous record of observations of the atmospheric boundary layer height from a single lens LiDAR ceilometer operated at Masdar Institute Field Station (24.4425N 54.6163E, Abu Dhabi, United Arab Emirates), starting March 2013, and the concurrent measurements of aerosol optical depth derived independently from the Masdar Institute AERONET sun-photometer. The main features of the desert ABL are obtained from the ceilometer range corrected backscattering profiles through bi-dimensional clustering technique we developed as a modification of the recently proposed single-profile clustering method, and therefore "directly" and "indirectly" calibrated to obtain a full diurnal cycle climatology of the aerosol optical depth and aerosol profiles. The challenges and the advantages of applying a similar methodology to the monitoring of aerosols and dust over hyper-arid regions are also discussed, together with the issues related to the sensitivity of commercial ceilometers to changes in the solar background.

  17. Reprint of: A numerical investigation of fine sediment resuspension in the wave boundary layer-Uncertainties in particle inertia and hindered settling

    NASA Astrophysics Data System (ADS)

    Cheng, Zhen; Yu, Xiao; Hsu, Tian-Jian; Balachandar, S.

    2016-05-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to continental margins. Hence, studying fine sediment resuspensions in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycles. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with sediment availabilities. As the sediment availability and hence the sediment-induced stable stratification increases, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to hindered settling and particle inertia effects. Present numerical simulations including the particle inertia suggest that for a typical wave condition in continental shelves, the effect of particle inertia is negligible. Through additional numerical experiments, we also confirm that the particle inertia tends (up to the Stokes number St = 0.2) to attenuate flow turbulence. On the other hand, for flocs with lower gelling concentrations, the hindered settling can play a key role in sustaining a large amount of suspended sediments and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A sufficient condition for the occurrence of gelling ignition is hypothesized for a range of wave intensities as a function of sediment/floc properties and erodibility parameters.

  18. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2008-12-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is done using MOZAIC observations of ozone, carbon monoxide, nitrogen oxides (NOx+PAN) and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June 03:00 UTC and 10:00 UTC and in a vertical profile over Washington DC on 30 June 17:00 UTC, and by lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle. The isentropic levels (above 335 K) correspond to those of the downstream MOZAIC observations. The parameterized convective detrainment flux is intense enough to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air in a time period compatible with the convective diurnal cycle, i.e. about 5 h. The maximum instantaneous detrainment fluxes deposited about 15-20% of the initial boundary layer tracer concentration at 335 K, which according to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over eastern Atlantic, would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  19. Influence of processing factors on the physical metallurgy of LENS deposited 316L stainless steel.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Nancy Y. C.; Yee, Joshua Keng; Zheng, Baolong

    2015-12-01

    Directed energy deposition (DED) is a type of additive manufacturing (AM) process; Laser Engineered Net Shaping (LENS) is a commercial DED process. We are developing LENS technology for printing 316L stainless steel components for structural applications. It is widely known that material properties of AM components are process dependent, attributed to different molten metal incorporation and thermal transport mechanisms. This investigation focuses on process-structure-property relationships for LENS deposits for enabling the process development and optimization to control material property. We observed interactions among powder melting, directional molten metal flow, and the molten metal solidification. The resultant LENS induced microstructure foundmore » to be dictated by the process-related characteristics, i.e., interpass boundaries from multi-layer deposition, molten metal flow lines, and solidification dendrite cells. Each characteristic bears the signature of the unique localized thermal history during deposition. Correlation observed between localized thermal transport, resultant microstructure, and its subsequent impact on the mechanical behavior of the current 316L is discussed. We also discuss how the structures of interpass boundaries are susceptible to localized recrystallization, grain growth and/or defect formation, and therefore, heterogeneous mechanical properties due to the adverse presence of unmelted powder inclusions.« less

  20. The causes for geographical variations in OS187/OS186 at the Cretaceous-Tertiary boundary

    NASA Technical Reports Server (NTRS)

    Turekian, K. K.; Esser, B. K.; Ravizza, G. E.

    1988-01-01

    Researchers at Yale has approached the problem of the osmium isotopic composition of marine deposits formed in contact with both oxidized and reduced bottom waters. The measured (187) Os/(186) Os ratios of modern bulk sediment can be explained using mixing equations involving continental detrital, volcaniclastic, cosmogenic and hydrogeneous components. These studies show that sediments deposited under reducing marine conditions contain a hydrogenous component which is enriched in Re and has a radiogenic (187) Os/(186) Os ratio. The presence of such a hydrogenous component in the marine fish clay at Stevns Klint can account for the elevation of its (187) Os/(186) Os ration above the expected meteoritic value. Mass balance considerations require the Re/Os ratio of the phase precipitated from the terminal Cretaceous sea at Stevns Klint to have been about one tenth the value observed in contemporary deposits in the Black Sea, assuming Re has not been lost (or Os gained) subsequent to precipitation. In continental sections, the elevation of the (187) Os/(186) Os ratio in boundary layers may be due to precipitation from continental waters of crustally-derived radiogenic osmium either contemporaneous with the meteoritic (or mantle) osmium deposition or later during diagenesis.

  1. Kinetic model for thin film stress including the effect of grain growth

    NASA Astrophysics Data System (ADS)

    Chason, Eric; Engwall, A. M.; Rao, Z.; Nishimura, T.

    2018-05-01

    Residual stress during thin film deposition is affected by the evolution of the microstructure. This can occur because subsurface grain growth directly induces stress in the film and because changing the grain size at the surface affects the stress in new layers as they are deposited. We describe a new model for stress evolution that includes both of these effects. It is used to explain stress in films that grow with extensive grain growth (referred to as zone II) so that the grain size changes throughout the thickness of the layer as the film grows. Equations are derived for different cases of high or low atomic mobility where different assumptions are used to describe the diffusion of atoms that are incorporated into the grain boundary. The model is applied to measurements of stress and grain growth in evaporated Ni films. A single set of model parameters is able to explain stress evolution in films grown at multiple temperatures and growth rates. The model explains why the slope of the curvature measurements changes continuously with thickness and attributes it to the effect of grain size on new layers deposited on the film.

  2. Control of a shock wave-boundary layer interaction using localized arc filament plasma actuators

    NASA Astrophysics Data System (ADS)

    Webb, Nathan Joseph

    Supersonic flight is currently possible, but expensive. Inexpensive supersonic travel will require increased efficiency of high-speed air entrainment, an integral part of air-breathing propulsion systems. Although mixed compression inlet geometry can significantly improve entrainment efficiency, numerous Shock Wave-Boundary Layer Interactions (SWBLIs) are generated in this configuration. The boundary layer must therefore develop through multiple regions of adverse pressure gradient, causing it to thicken, and, in severe cases, separate. The associated increase in unsteadiness can have adverse effects on downstream engine hardware. The most severe consequence of these interactions is the increased aerodynamic blockage generated by the thickened boundary layer. If the increase is sufficient, it can choke the flow, causing inlet unstart, and resulting in a loss of thrust and high transient forces on the engine, airframe, and aircraft occupants. The potentially severe consequences associated with SWBLIs require flow control to ensure proper operation. Traditionally, boundary layer bleed has been used to control the interaction. Although this method is effective, it has inherent efficiency penalties. Localized Arc Filament Plasma Actuators (LAFPAs) are designed to generate perturbations for flow control. Natural flow instabilities act to amplify certain perturbations, allowing the LAFPAs to control the flow with minimal power input. LAFPAs also have the flexibility to maintain control over a variety of operating conditions. This work seeks to examine the effectiveness of LAFPAs as a separation control method for an oblique, impinging SWBLI. The low frequency unsteadiness in the reflected shock was thought to be the natural manifestation of a Kelvin-Helmholtz instability in the shear layer above the separation region. The LAFPAs were therefore placed upstream of the interaction to allow their perturbations to convect to the receptivity region (near the shear layer origin/separation line). Streamwise PIV measurements did not show that the boundary layer or separation region were energized by the actuation. The primary effect of the LAFPAs was the displacement of the reflected shock upstream. Jaunet et al. (2012) observed a similar shift in the reflected shock when they heated the wall beneath the boundary layer. A significantly greater power deposition was used in that work, and significantly larger shock displacements were observed. Although the LAFPAs output significantly less power (albeit in an unsteady, highly localized fashion), a parametric sweep strongly pointed to heating as the primary control mechanism. Further investigation and analysis showed that the near-wall heating of the flow by the plasma was the primary control mechanism of the LAFPAs, despite the small power input. The reflected shock was displaced by an increase in the separation region size, which was caused by the degradation of the upstream boundary layer. The LAFPAs degrade the upstream boundary layer through a variety of heating associated mechanisms: 1) Decreasing the density increases the mass flow deficit, 2) The altered skin-friction coefficient acts to retard the flow and make the velocity profile less full, and 3) The heating moves the sonic line further from the wall. Other mechanisms may also play a role.

  3. Use of double-layer ITO films in reflective contacts for blue and near-UV LEDs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavluchenko, A. S.

    2014-12-15

    The structural and optical properties of multilayer ITO/SiO{sub 2}/Ag composites are studied. In these composites, the ITO (indium-tin oxide) layer is produced by two different methods: electron-beam evaporation and a combined method including electron-beam evaporation and subsequent magnetron sputtering. It is shown that the reflectance of the composite based on the ITO film produced by electron-beam evaporation is substantially lower. This can be attributed to the strong absorption of light at both boundaries of the SiO{sub 2} layer, which results from the complex surface profile of ITO films deposited by electron-beam evaporation. Samples with a film deposited by the combinedmore » method have a reflectance of about 90% at normal light incidence, which, combined with their higher electrical conductivity, makes these samples advantageous for use as reflective contacts to the p-type region of AlInGaN light-emitting diodes of the flip-chip design.« less

  4. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    NASA Astrophysics Data System (ADS)

    Enriquez, Erik; Zhang, Yingying; Chen, Aiping; Bi, Zhenxing; Wang, Yongqiang; Fu, Engang; Harrell, Zachary; Lü, Xujie; Dowden, Paul; Wang, Haiyan; Chen, Chonglin; Jia, Quanxi

    2016-08-01

    Epitaxial layered ternary metal-nitride FeMoN2, (Fe0.33Mo0.67)MoN2, CoMoN2, and FeWN2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1-1 mΩ.cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has been used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. The growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN2 materials through A and B-site substitution.

  5. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, Coerte V.

    1998-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aid core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile, akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core; (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core relative to the mantle is calculated to be at most 1.5 deg./yr.

  6. Inner Core Rotation from Geomagnetic Westward Drift and a Stationary Spherical Vortex in Earth's Core

    NASA Technical Reports Server (NTRS)

    Voorhies, C. V.

    1999-01-01

    The idea that geomagnetic westward drift indicates convective leveling of the planetary momentum gradient within Earth's core is pursued in search of a differentially rotating mean state, upon which various oscillations and secular effects might be superimposed. The desired state conforms to roughly spherical boundary conditions, minimizes dissipative interference with convective cooling in the bulk of the core, yet may aide core cooling by depositing heat in the uppermost core and lower mantle. The variational calculus of stationary dissipation applied to a spherical vortex within the core yields an interesting differential rotation profile akin to spherical Couette flow bounded by thin Hartmann layers. Four boundary conditions are required. To concentrate shear induced dissipation near the core-mantle boundary, these are taken to be: (i) no-slip at the core-mantle interface; (ii) geomagnetically estimated bulk westward flow at the base of the core-mantle boundary layer; (iii) no-slip at the inner-outer core interface; and, to describe magnetic locking of the inner core to the deep outer core, (iv) hydrodynamically stress-free at the inner-outer core boundary. By boldly assuming the axial core angular momentum anomaly to be zero, the super-rotation of the inner core is calculated to be at most 1.5 degrees per year.

  7. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.

    PubMed

    An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B

    2012-12-01

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

  8. Optical properties of anodically degraded ZnO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messerschmidt, Daniel, E-mail: daniel.messerschmidt@bosch.com; Gnehr, Wolf-Michael; Eberhardt, Jens

    2014-03-07

    We discuss the optical properties of non-degraded and anodically degraded boron-doped zinc oxide (ZnO:B) deposited by low-pressure chemical vapour deposition on soda-lime glass. The optical model used to simulate the infrared reflectance in the wavelength range between 1.2 and 25 μm is based on the Maxwell-Garnett effective-medium theory. The model is sensitive to the conditions at the grain boundaries of the investigated polycrystalline ZnO:B films. We confirm that the presence of defect-rich grain boundaries, especially after degradation, causes a highly resistive ZnO:B film. Furthermore, indications of a degraded zinc oxide layer next to the ZnO:B/glass interface with different refractive index aremore » found. We present evidence for the creation of oxygen vacancies, based on Raman investigations, which correlate with a shift of the optical absorption edge of the ZnO:B. Investigations with scanning and transmission electron microscopy show microvoids at the grain boundaries after anodic degradation. This indicates that the grain/grain interfaces are the principle location of defects after degradation.« less

  9. A two-dimensional, time-dependent model of suspended sediment transport and bed reworking for continental shelves

    USGS Publications Warehouse

    Harris, C.K.; Wiberg, P.L.

    2001-01-01

    A two-dimensional, time-dependent solution to the transport equation is formulated to account for advection and diffusion of sediment suspended in the bottom boundary layer of continental shelves. This model utilizes a semi-implicit, upwind-differencing scheme to solve the advection-diffusion equation across a two-dimensional transect that is configured so that one dimension is the vertical, and the other is a horizontal dimension usually aligned perpendicular to shelf bathymetry. The model calculates suspended sediment concentration and flux; and requires as input wave properties, current velocities, sediment size distributions, and hydrodynamic sediment properties. From the calculated two-dimensional suspended sediment fluxes, we quantify the redistribution of shelf sediment, bed erosion, and deposition for several sediment sizes during resuspension events. The two-dimensional, time-dependent approach directly accounts for cross-shelf gradients in bed shear stress and sediment properties, as well as transport that occurs before steady-state suspended sediment concentrations have been attained. By including the vertical dimension in the calculations, we avoid depth-averaging suspended sediment concentrations and fluxes, and directly account for differences in transport rates and directions for fine and coarse sediment in the bottom boundary layer. A flux condition is used as the bottom boundary condition for the transport equation in order to capture time-dependence of the suspended sediment field. Model calculations demonstrate the significance of both time-dependent and spatial terms on transport and depositional patterns on continental shelves. ?? 2001 Elsevier Science Ltd. All rights reserved.

  10. Overview of the Spirit Mars Exploration Rover Mission to Gusev Crater: Landing Site to Backstay Rock in the Columbia Hills

    NASA Technical Reports Server (NTRS)

    Arvidson, R. E.; Squyres, S. W,; Anderson, R. C.; Bell, J. F., III; Blaney, D.; Brueckner, J.; Cabrol, N. A.; Calvin, W. M.; Carr, M. H.; Christensen, P. R.; hide

    2005-01-01

    Spirit landed on the floor of Gusev Crater and conducted initial operations on soil covered, rock-strewn cratered plains underlain by olivine-bearing basalts. Plains surface rocks are covered by wind-blown dust and show evidence for surface enrichment of soluble species as vein and void-filling materials and coatings. The surface enrichment is the result of a minor amount of transport and deposition by aqueous processes. Layered granular deposits were discovered in the Columbia Hills, with outcrops that tend to dip conformably with the topography. The granular rocks are interpreted to be volcanic ash and/or impact ejecta deposits that have been modified by aqueous fluids during and/or after emplacement. Soils consist of basaltic deposits that are weakly cohesive, relatively poorly sorted, and covered by a veneer of wind blown dust. The soils have been homogenized by wind transport over at least the several kilometer length scale traversed by the rover. Mobilization of soluble species has occurred within at least two soil deposits examined. The presence of mono-layers of coarse sand on wind-blown bedforms, together with even spacing of granule-sized surface clasts, suggest that some of the soil surfaces encountered by Spirit have not been modified by wind for some time. On the other hand, dust deposits on the surface and rover deck have changed during the course of the mission. Detection of dust devils, monitoring of the dust opacity and lower boundary layer, and coordinated experiments with orbiters provided new insights into atmosphere-surface dynamics.

  11. Slumping and a sandbar deposit at the Cretaceous-Tertiary boundary in the El Tecolote section (northeastern Mexico): An impact-induced sediment gravity flow

    NASA Astrophysics Data System (ADS)

    Soria, Ana R.; Liesa, Carlos L.; Mata, Maria Pilar; Arz, José A.; Alegret, Laia; Arenillas, Ignacio; Meléndez, Alfonso

    2001-03-01

    Slumps affecting uppermost Méndez Formation marls, as well as the spherulitic layer and basal part of the sandy deposits of the Cretaceous-Tertiary (K-T) boundary clastic unit, are described at the new K-T El Tecolote section (northeastern Mexico). These K-T clastic deposits represent sedimentation at middle-bathyal water depths in channel and nonchannel or levee areas of reworked materials coming from environments ranging from outer shelf to shallower slope via a unidirectional, high- to low-density turbidite flow. We emphasize the development and accretion of a lateral bar in a channel area from a surging low-density turbidity current and under a high-flow regime. The slumps discovered on land and the sedimentary processes of the K-T clastic unit reflect destabilization and collapse of the continental margin, support the mechanism of gravity flows in the deep sea, and represent important and extensive evidence for the impact effects in the Gulf of México triggered by the Chicxulub event.

  12. Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunzik-Gougar, M. L.; van Rooyen, I. J.; Hill, C. M.

    Crystallographic information about chemical vapor deposition layers of silicon carbide (SiC) is essential to understanding layer performance, especially when the layers are in non planar geometries, such as spherical. We performed electron Back Scatter Diffraction (EBSD) analysis of spherical SiC layers using a different approach to sample focus ion beam milling technique to avoid the negative impacts of traditional sample polishing and to address the need of very small samples of irradiated materials for analysis. Mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strains and result in unequal removal of SiC and surrounding layers of differentmore » material due to the hardness differences of these materials. The nature of layer interfaces is thought to play a key role in performance of the SiC; therefore, analysis of representative samples at these interfacial areas is crucial. In work reported here, a focused ion beam (FIB) was employed in a novel manner to prepare a more representative sample for EBSD analysis from TRISO layers free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron irradiated microscopic samples such as those analyzed in this work has been simplified with pre tilted mounting stages. Our study showed that although the average grain size of samples may be similar, the grain boundary characteristics may differ significantly. It was also found that low angle grain boundaries, comprises 25% in the FIB-prepared sample vs only 1-2% in the polished sample measured in the same particle. From this study it was determined that results of FIB prepared sample will provide more repeatable results, as the role of sample preparation is eliminated.« less

  13. Sample Preparation Techniques for Grain Boundary Characterization of Annealed TRISO-Coated Particles

    DOE PAGES

    Dunzik-Gougar, M. L.; van Rooyen, I. J.; Hill, C. M.; ...

    2016-08-25

    Crystallographic information about chemical vapor deposition layers of silicon carbide (SiC) is essential to understanding layer performance, especially when the layers are in non planar geometries, such as spherical. We performed electron Back Scatter Diffraction (EBSD) analysis of spherical SiC layers using a different approach to sample focus ion beam milling technique to avoid the negative impacts of traditional sample polishing and to address the need of very small samples of irradiated materials for analysis. Mechanical and chemical grinding and polishing of sample surfaces can introduce lattice strains and result in unequal removal of SiC and surrounding layers of differentmore » material due to the hardness differences of these materials. The nature of layer interfaces is thought to play a key role in performance of the SiC; therefore, analysis of representative samples at these interfacial areas is crucial. In work reported here, a focused ion beam (FIB) was employed in a novel manner to prepare a more representative sample for EBSD analysis from TRISO layers free of effects introduced by mechanical and chemical preparation methods. In addition, the difficulty of handling neutron irradiated microscopic samples such as those analyzed in this work has been simplified with pre tilted mounting stages. Our study showed that although the average grain size of samples may be similar, the grain boundary characteristics may differ significantly. It was also found that low angle grain boundaries, comprises 25% in the FIB-prepared sample vs only 1-2% in the polished sample measured in the same particle. From this study it was determined that results of FIB prepared sample will provide more repeatable results, as the role of sample preparation is eliminated.« less

  14. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    NASA Astrophysics Data System (ADS)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Üllar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We aim to predict the O3 uptake by a boreal forest canopy under varying environmental conditions and analyse the influence of different factors on total O3 uptake by the canopy as well as the vertical distribution of deposition sinks inside the canopy. The newly implemented dry deposition model was validated by an extensive comparison of simulated and observed O3 turbulent fluxes and concentration profiles within and above the boreal forest canopy at SMEAR II (Station to Measure Ecosystem-Atmosphere Relations II) in Hyytiälä, Finland, in August 2010. In this model, the fraction of wet surface on vegetation leaves was parametrised according to the ambient relative humidity (RH). Model results showed that when RH was larger than 70 % the O3 uptake onto wet skin contributed ˜ 51 % to the total deposition during nighttime and ˜ 19 % during daytime. The overall contribution of soil uptake was estimated about 36 %. The contribution of sub-canopy deposition below 4.2 m was modelled to be ˜ 38 % of the total O3 deposition during daytime, which was similar to the contribution reported in previous studies. The chemical contribution to O3 removal was evaluated directly in the model simulations. According to the simulated averaged diurnal cycle the net chemical production of O3 compensated up to ˜ 4 % of dry deposition loss from about 06:00 to 15:00 LT. During nighttime, the net chemical loss of O3 further enhanced removal by dry deposition by a maximum ˜ 9 %. Thus the results indicated an overall relatively small contribution of airborne chemical processes to O3 removal at this site.

  15. Three-dimensional turbulent boundary layers; Proceedings of the Symposium, Berlin, West Germany, March 29-April 1, 1982

    NASA Astrophysics Data System (ADS)

    Fernholz, H. H.; Krause, E.

    Papers are presented on recent research concerning three-dimensional turbulent boundary layers. Topics examined include experimental techniques in three-dimensional turbulent boundary layers, turbulence measurements in ship-model flow, measurements of Reynolds-stress profiles in the stern region of a ship model, the effects of crossflow on the vortex-layer-type three-dimensional flow separation, and wind tunnel investigations of some three-dimensional separated turbulent boundary layers. Also examined are three-dimensional boundary layers in turbomachines, the boundary layers on bodies of revolution spinning in axial flows, the effect on a developed turbulent boundary layer of a sudden local wall motion, three-dimensional turbulent boundary layer along a concave wall, the numerical computation of three-dimensional boundary layers, a numerical study of corner flows, three-dimensional boundary calculations in design aerodynamics, and turbulent boundary-layer calculations in design aerodynamics. For individual items see A83-47012 to A83-47036

  16. Aircraft measurement of ozone turbulent flux in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Affre, Ch.; Carrara, A.; Lefebre, F.; Druilhet, A.; Fontan, J.; Lopez, A.

    In May 1995, the "Chimie-Creil 95" experiment was undertaken in the north of France. The field data are first used to validate the methodology for airborne measurement of ozone flux. A certain number of methodological problems due to the location of the fast ozone sensor inside the airplane are, furthermore discussed. The paper describes the instrumentation of the ARAT (Avion de Recherche Atmosphérique et de Télédétection), an atmospheric research and remote-sensing aircraft used to perform the airborne measurements, the area flown over, the meteorological conditions and boundary layer stability conditions. These aircraft measurements are then used to determine ozone deposition velocity and values are proposed for aerodynamic, bulk transfer coefficients (ozone and momentum). The paper also establishes the relationship between the normalised standard deviation and stability parameters ( z/ L) for ozone, temperature, humidity and vertical velocity. The laws obtained are then presented.

  17. HISTOLOGY OF GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION: A Multilayer Approach.

    PubMed

    Li, Miaoling; Huisingh, Carrie; Messinger, Jeffrey; Dolz-Marco, Rosa; Ferrara, Daniela; Freund, K Bailey; Curcio, Christine A

    2018-05-03

    To systematically characterize histologic features of multiple chorioretinal layers in eyes with geographic atrophy, or complete retinal pigment epithelium (RPE) and outer retinal atrophy, secondary to age-related macular degeneration, including Henle fiber layer and outer nuclear layer; and to compare these changes to those in the underlying RPE-Bruch membrane-choriocapillaris complex and associated extracellular deposits. Geographic atrophy was delimited by the external limiting membrane (ELM) descent towards Bruch membrane. In 13 eyes, histologic phenotypes and/or thicknesses of Henle fiber layer, outer nuclear layer, underlying supporting tissues, and extracellular deposits at four defined locations on the non-atrophic and atrophic sides of the ELM descent were assessed and compared across other tissue layers, with generalized estimating equations and logit models. On the non-atrophic side of the ELM descent, distinct Henle fiber layer and outer nuclear layer became dyslaminated, cone photoreceptor inner segment myoids shortened, photoreceptor nuclei and mitochondria translocated inward, and RPE was dysmorphic. On the atrophic side of the ELM descent, all measures of photoreceptor health declined to zero. Henle fiber layer/outer nuclear layer thickness halved, and only Müller cells remained, in the absence of photoreceptors. Sub-RPE deposits remained, Bruch membrane thinned, and choriocapillaris density decreased. The ELM descent sharply delimits an area of marked gliosis and near-total photoreceptor depletion clinically defined as Geographic atrophy (or outer retinal atrophy), indicating severe and potentially irreversible tissue damage. Degeneration of supporting tissues across this boundary is gradual, consistent with steady age-related change and suggesting that RPE and Müller cells subsequently respond to a threshold of stress. Novel clinical trial endpoints should be sought at age-related macular degeneration stages before intense gliosis and thick deposits impede therapeutic intervention.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  18. A search for evidence of large body Earth impacts associated with biological crisis zones in the fossil record

    NASA Technical Reports Server (NTRS)

    Orth, C. J.; Gilmore, J. S.; Knight, J. D.

    1985-01-01

    The natural history of the Earth, how the present plant and animal species developed, how others completely died out, etc., was studied. The rock strata sampled and studied were at the time of deposition at sea bottom. It was found that, exactly at the stratigraphic level corresponding to the extinction, a thin clay layer was greatly enriched in the the rare element iridium. It was hypothesized that the excess irridium at the boundary came from a large steroid like object that hit the earth, and that the impact of this object threw up a dust cloud dense enough and long lasting enough to bring about the extinction of a wide variety of plants and animals, producing the unique break in in the fossil record, the cretaceous-tertiary boundary. The same iridium and platinum metals enrichement are found in a thin clay layer that corresponds with the boundary as difined by sudden radical changes in plant populations. The irridium enrichement is confirmed at other fresh water origin rites in the Raton Basin.

  19. Lunar and Planetary Science XXXV: Effects of Impacts: Shock and Awe

    NASA Technical Reports Server (NTRS)

    Kyte, F. T.; Koeberl, C.

    2004-01-01

    This document discusses the following topics: Zircon as a Shock Indicator in Impactites of Drill Core Yaxcopoil-1, Chicxulub Impact Structure, Mexico; Experimental Investigation of Shock Effects in a Metapelitic Granulite; Experimental Reproduction of Shock Veins in Single-Crystal Minerals; Post-Shock Crystal-Plastic Processes in Quartz from Crystalline Target Rocks of the Charlevoix Impact Structure; Shock Reequilibration of Fluid Inclusions; How Does Tektite Glass Lose Its Water?; Assessing the Role of Anhydrite in the KT Mass Extinction: Hints from Shock-loading Experiments; A Mineralogical and Geochemical Study of the Nonmarine Permian/Triassic Boundary in the Southern Karoo Basin, South Africa; Extraterrestrial Chromium in the Permian-Triassic Boundary at Graphite Peak, Antarctica; Magnetic Fe,Si,Al-rich Impact Spherules from the P-T Boundary Layer at Graphite Peak, Antarctica; A Newly Recognized Late Archean Impact Spherule Layer in the Reivilo Formation, Griqualand West Basin, South Africa; Initial Cr-Isotopic and Iridium Measurements of Concentrates from Late Eocene Cpx-Spherule Deposits; An Ordinary Chondrite Impactor Composition for the Bosumtwi Impact Structure, Ghana, West Africa: Discussion of Siderophile Element Contents and Os and Cr Isotope Data.

  20. Layer-by-layer cell membrane assembly

    NASA Astrophysics Data System (ADS)

    Matosevic, Sandro; Paegel, Brian M.

    2013-11-01

    Eukaryotic subcellular membrane systems, such as the nuclear envelope or endoplasmic reticulum, present a rich array of architecturally and compositionally complex supramolecular targets that are as yet inaccessible. Here we describe layer-by-layer phospholipid membrane assembly on microfluidic droplets, a route to structures with defined compositional asymmetry and lamellarity. Starting with phospholipid-stabilized water-in-oil droplets trapped in a static droplet array, lipid monolayer deposition proceeds as oil/water-phase boundaries pass over the droplets. Unilamellar vesicles assembled layer-by-layer support functional insertion both of purified and of in situ expressed membrane proteins. Synthesis and chemical probing of asymmetric unilamellar and double-bilayer vesicles demonstrate the programmability of both membrane lamellarity and lipid-leaflet composition during assembly. The immobilized vesicle arrays are a pragmatic experimental platform for biophysical studies of membranes and their associated proteins, particularly complexes that assemble and function in multilamellar contexts in vivo.

  1. Iridium enrichment in volcanic dust from blue ice fields, Antarctica, and possible relevance to the K/T boundary event

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1989-01-01

    The analysis of samples of volcanic ash dust layers from the Lewis Cliff/Beardmore Glacier in Antarctica shows that some of the samples contain Ir concentrations up to 7.5 ppb. It is shown that the Ir is positively correlated with Se, As, Sb, and other volcanogenic elements. The results show that Ir may be present in some volcanic ash deposits, suggesting that the Ir in the K/T boundary clays is not necessarily of cosmic origin, but may have originated from mantle reservoirs tapped during extensive volcanic eruptions possibly triggered by impact events.

  2. Sedimentary earthquake records in the İzmit Gulf, Sea of Marmara, Turkey

    NASA Astrophysics Data System (ADS)

    Çağatay, M. N.; Erel, L.; Bellucci, L. G.; Polonia, A.; Gasperini, L.; Eriş, K. K.; Sancar, Ü.; Biltekin, D.; Uçarkuş, G.; Ülgen, U. B.; Damcı, E.

    2012-12-01

    Sedimentary earthquake records of the last 2400 a, including that of the devastating 17 August 1999 İzmit earthquake (Mw = 7.4), were studied in cores from the 210 m-deep central Karamürsel Basin of the İzmit Gulf in the eastern Sea of Marmara, using laser grain-size, physical properties, stable O and C isotopes and XRF Core Scanner analyses, and dated by radionuclide and radiocarbon methods. The earthquake records are represented by turbidite-homogenite mass-flow units (THU) that commonly contain a basal coarse layer, a middle laminated silt layer and an overlying homogeneous mud layer. The coarse basal part has a sharp and sometimes scoured lower boundary, and includes multiple coarse (sand/silt) layers or laminae showing normal size grading. Multiple coarse layers and occasional bi-directional cross-bedding suggest deposition from a bed-load during water column oscillations, or seiche effect. The grain-size characteristics of the overlaying laminated silt and the homogeneous mud units indicate deposition from weak oscillating currents and homogeneous suspension, respectively. High Mn value just below the base of THUs suggests diagenetic enrichment at oxic/anoxic redox boundary before the mass-flow event. Sharp decrease in Mn with very low values within the THUs suggests transient redox conditions following the mass-flow. Variable geochemical compositions of the basal coarse layers indicate different sediment sources for different THUs. Eight sedimentary earthquake records observed in the last 2400 a in the İzmit Gulf can be confidently correlated with the historical earthquakes of 1999, 1509 AD (Ms = 7.2), 1296 AD (I = VII), 865 AD (I = VIII), 740 AD (I = VIII), 268 AD (I = VIII), 358 AD (I = IX), and 427 BC. This gives an earthquake recurrence time of ca. 300 a, with the interval between consecutive events ranging from 90 to 695 a.

  3. Surface structure of MgO underlayer with Ti diffusion for (002) oriented L10 FePt-based heat assisted magnetic recording media

    NASA Astrophysics Data System (ADS)

    Hinata, Sintaro; Jo, Shin; Saito, Shin

    2018-05-01

    Surface morphology of the MgO layer and magnetic properties of FePt-C layer deposited on the MgO were investigated for the FePt-based heat assisted magnetic recording media. Stacking structure of the underlayer for the FePt-C layer was MgO (0-5 nm)/Cr80Mn20 (0-30 nm)/Cr50Ti50 (0-50 nm)/glass sub.. Surface observation result for the MgO film by using an atomic force microscope revealed the existence of nodules with a height of about 2 nm and a network-like convex structure with a height difference of about sub nm (boundary wall, BW) on the MgO crystal grain boundary. Density of the nodules largely depends on the surface roughness of the CrTi layer, RaCrTi and it is suppressed from 10 to 2/0.5 μm2 by reducing RaCrTi from 420 to 260 pm. Height of the BW depends on thickness of the MgO layer, tMgO and it can be suppressed by reducing tMgO to less than 4 nm. From the cross-sectional energy dispersive x-ray mapping, it is clarified that the BW is formed by atomic diffusion of Ti atoms from CrTi layer due to the substrate heating process, and a compound consists of Mg, Ti and O atoms. This BW can be used as a template to magnetically isolate the FePt column in the FePt-based granular film, such as FePt-SiO2, if the size of the BW is reduced to less than 10 nm. M-H loop of the FePt-C granular film deposited on the underlayer showed that the nodule and BW induce oxidation of the FePt grains, and reduction of intergranular exchange coupling.

  4. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  5. Icy Wonderland

    NASA Image and Video Library

    2015-02-04

    Although the season is late spring, carbon dioxide ice still covers much of the surface at this high latitude site. It is still a chilly -128 degrees Celsius. The weak boundaries of the polygonal structure of the surface have been eroded by spring sublimation of carbon dioxide as energy from the Sun turns ice to gas. The larger troughs in this image accentuate the surface polygonal structure, while the narrow cracks show the erosion caused when carbon dioxide gas escapes from under the seasonal ice layer carrying fine material from the surface. The dark fans in this image are made up of small particles from the surface deposited on top of the seasonal layer of ice. The fans originate at a crack, a weak spot that allows the gas to escape. The material is deposited in a direction determined by the direction of the wind as the gas was escaping. http://photojournal.jpl.nasa.gov/catalog/PIA19292

  6. Nanomechanical properties of platinum thin films synthesized by atomic layer deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamun, M.A.; Gu, D.; Baumgart, H.

    2015-03-01

    The nanomechanical properties of Pt thin films grown on Si (100) using atomic layer deposition (ALD) were investigated using nanoindentation. Recently, atomic layer deposition (ALD) has successfully demonstrated the capability to deposit ultra-thin films of platinum (Pt). Using (methylcyclopentadienyl) trimethylplatinum (MeCpPtMe3) as chemical platinum precursor and oxygen (O2) as the oxidizing agent, the ALD synthesis of Pt can be achieved with high conformity and excellent film uniformity. The ALD process window for Pt films was experimentally established in the temperature range between 270 °C and 320 °C, where the sheet conductance was constant over that temperature range, indicating stable ALDmore » Pt film growth rate. ALD growth of Pt films exhibits very poor nucleation and adhesion characteristics on bare Si surfaces when the native oxide was removed by 2% HF etch. Pt adhesion improves for thermally oxidized Si wafers and for Si wafers covered with native oxide. Three ALD Pt films deposited at 800, 900, and 1000 ALD deposition cycles were tested for the structural and mechanical properties. Additionally, the sample with 900 ALD deposition cycles was further annealed in forming gas (95% N2 and 5% H2) at 450 °C for 30 min in order to passivate dangling bonds in the grain boundaries of the polycrystalline Pt film. Cross-sectional transmission electron microscopy (TEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and scanning electron microscope (SEM) were employed to characterize the films' surface structure and morphology. Nanoindentation technique was used to evaluate the hardness and modulus of the ALD Pt films of various film thicknesses. The results indicate that the films depict comparable hardness and modulus results; however, the 800 and 1000 ALD deposition cycles films without forming gas annealing experienced significant amount of pileup, whereas the 900 ALD deposition cycles sample annealed in forming gas resulted in a smaller pileup.« less

  7. Nucleation and growth of single layer graphene on electrodeposited Cu by cold wall chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Das, Shantanu; Drucker, Jeff

    2017-03-01

    The nucleation density and average size of graphene crystallites grown using cold wall chemical vapor deposition (CVD) on 4 μm thick Cu films electrodeposited on W substrates can be tuned by varying growth parameters. Growth at a fixed substrate temperature of 1000 °C and total pressure of 700 Torr using Ar, H2 and CH4 mixtures enabled the contribution of total flow rate, CH4:H2 ratio and dilution of the CH4/H2 mixture by Ar to be identified. The largest variation in nucleation density was obtained by varying the CH4:H2 ratio. The observed morphological changes are analogous to those that would be expected if the deposition rate were varied at fixed substrate temperature for physical deposition using thermal evaporation. The graphene crystallite boundary morphology progresses from irregular/jagged through convex hexagonal to regular hexagonal as the effective C deposition rate decreases. This observation suggests that edge diffusion of C atoms along the crystallite boundaries, in addition to H2 etching, may contribute to shape evolution of the graphene crystallites. These results demonstrate that graphene grown using cold wall CVD follows a nucleation and growth mechanism similar to hot wall CVD. As a consequence, the vast knowledge base relevant to hot wall CVD may be exploited for graphene synthesis by the industrially preferable cold wall method.

  8. Observational assessment of the role of nocturnal residual-layer chemistry in determining daytime surface particulate nitrate concentrations

    NASA Astrophysics Data System (ADS)

    Prabhakar, Gouri; Parworth, Caroline L.; Zhang, Xiaolu; Kim, Hwajin; Young, Dominique E.; Beyersdorf, Andreas J.; Ziemba, Luke D.; Nowak, John B.; Bertram, Timothy H.; Faloona, Ian C.; Zhang, Qi; Cappa, Christopher D.

    2017-12-01

    This study discusses an analysis of combined airborne and ground observations of particulate nitrate (NO3-(p)) concentrations made during the wintertime DISCOVER-AQ (Deriving Information on Surface Conditions from COlumn and VERtically resolved observations relevant to Air Quality) study at one of the most polluted cities in the United States - Fresno, CA - in the San Joaquin Valley (SJV) and focuses on developing an understanding of the various processes that impact surface nitrate concentrations during pollution events. The results provide an explicit case-study illustration of how nighttime chemistry can influence daytime surface-level NO3-(p) concentrations, complementing previous studies in the SJV. The observations exemplify the critical role that nocturnal chemical production of NO3-(p) aloft in the residual layer (RL) can play in determining daytime surface-level NO3-(p) concentrations. Further, they indicate that nocturnal production of NO3-(p) in the RL, along with daytime photochemical production, can contribute substantially to the buildup and sustaining of severe pollution episodes. The exceptionally shallow nocturnal boundary layer (NBL) heights characteristic of wintertime pollution events in the SJV intensify the importance of nocturnal production aloft in the residual layer to daytime surface concentrations. The observations also demonstrate that dynamics within the RL can influence the early-morning vertical distribution of NO3-(p), despite low wintertime wind speeds. This overnight reshaping of the vertical distribution above the city plays an important role in determining the net impact of nocturnal chemical production on local and regional surface-level NO3-(p) concentrations. Entrainment of clean free-tropospheric (FT) air into the boundary layer in the afternoon is identified as an important process that reduces surface-level NO3-(p) and limits buildup during pollution episodes. The influence of dry deposition of HNO3 gas to the surface on daytime particulate nitrate concentrations is important but limited by an excess of ammonia in the region, which leads to only a small fraction of nitrate existing in the gas phase even during the warmer daytime. However, in the late afternoon, when diminishing solar heating leads to a rapid fall in the mixed boundary layer height (BLH), the impact of surface deposition is temporarily enhanced and can lead to a substantial decline in surface-level particulate nitrate concentrations; this enhanced deposition is quickly arrested by a decrease in surface temperature, which drops the gas-phase fraction to near zero. The overall importance of enhanced late-afternoon gas-phase loss to the multiday buildup of pollution events is limited by the very shallow nocturnal boundary layer. The case study here demonstrates that mixing down of NO3-(p) from the RL can contribute a majority of the surface-level NO3-(p) in the morning (here, ˜ 80 %), and a strong influence can persist into the afternoon even when photochemical production is maximum. The particular day-to-day contribution of aloft nocturnal NO3-(p) production to surface concentrations will depend on prevailing chemical and meteorological conditions. Although specific to the SJV, the observations and conceptual framework further developed here provide general insights into the evolution of pollution episodes in wintertime environments.

  9. Electron beam physical vapor deposition of YSZ electrolyte coatings for SOFCs

    NASA Astrophysics Data System (ADS)

    He, Xiaodong; Meng, Bin; Sun, Yue; Liu, Bochao; Li, Mingwei

    2008-09-01

    YSZ electrolyte coatings were prepared by electron beam physical vapor deposition (EB-PVD) at a high deposition rate of up to 1 μm/min. The YSZ coating consisted of a single cubic phase and no phase transformation occurred after annealing treatment at 1000 °C. A typical columnar structure was observed in this coating by SEM and feather-like characteristics appeared in every columnar grain. In columnar grain boundaries there were many micron-sized gaps and pores. In TEM image, many white lines were found, originating from the alignment of nanopores existing within feather-like columnar grains. The element distribution along the cross-section of the coating was homogeneous except Zr with a slight gradient. The coating exhibited a characteristic anisotropic behavior in electrical conductivity. In the direction perpendicular to coating surface the electrical conductivity was remarkably higher than that in the direction parallel to coating surface. This mainly attributed to the typical columnar structure for EB-PVD coating and the existence of many grain boundaries along the direction parallel to coating surface. For as-deposited coating, the gas permeability coefficient of 9.78 × 10 -5 cm 4 N -1 s -1 was obtained and this value was close to the critical value of YSZ electrolyte layer required for solid oxide fuel cell (SOFC) operation.

  10. Bottom-boundary-layer measurements on the continental shelf off the Ebro River, Spain

    USGS Publications Warehouse

    Cacchione, D.A.; Drake, D.E.; Losada, M.A.; Medina, R.

    1990-01-01

    Measurements of currents, waves and light transmission obtained with an instrumented bottom tripod (GEOPROBE) were used in conjunction with a theoretical bottom-boundary-layer model for waves and currents to investigate sediment transport on the continental shelf south of the Ebro River Delta, Spain. The current data show that over a 48-day period during the fall of 1984, the average transport at 1 m above the seabed was alongshelf and slightly offshore toward the south-southwest at about 2 cm/s. A weak storm passed through the region during this period and caused elevated wave and current speeds near the bed. The bottom-boundary-layer model predicted correspondingly higher combined wave and current bottom shear velocities at this time, but the GEOPROBE optical data indicate that little to no resuspension occurred. This result suggests that the fine-grained bottom sediment, which has a clay component of 80%, behaves cohesively and is more difficult to resuspend than noncohesive materials of similar size. Model computations also indicate that noncohesive very fine sand in shallow water (20 m deep) was resuspended and transported mainly as bedload during this storm. Fine-grained materials in shallow water that are resuspended and transported as suspended load into deeper water probably account for the slight increase in sediment concentration at the GEOPROBE sensors during the waning stages of the storm. The bottom-boundary-layer data suggest that the belt of fine-grained bottom sediment that extends along the shelf toward the southwest is deposited during prolonged periods of low energy and southwestward bottom flow. This pattern is augmented by enhanced resuspension and transport toward the southwest during storms. ?? 1990.

  11. The Frasnian-Famennian boundary (Upper Devonian) within the Hanover-Dunkirk transition, northern Appalachian basin, western New York state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Over, D.J.

    In western New York State interbedded pyritic silty green and dark grey shales and siltstone of the Hanover Member, Java Formation, West Falls Group, are overlain by thick pyritic dark grey-black shale of the Dunkirk Member of the Canadaway formation. The dark shales in the upper Hanover and Dunkirk contain a diverse and well preserved conodont fauna which allows precise placement of the Frasnian-Famennian boundary at several described sections. At Pt. Gratiot, in far western New York State, the contact between the Hanover and Dunkirk is disconformable. The Frasnian-Famennian boundary is marked by a pyritic lag deposit at the basemore » of the Dunkirk which contains Palmatolepis triangularis and Pa. subperlobata. The underlying upper Hanover is characterized by Pa. bogartensis , Pa. cf. Pa. rhenana, Pa. winchelli, and Ancyrognathus (asymmetricus/calvini) Eastward, in the direction of the paleo-source area, the Frasnian-Famennian boundary is within the upper Hanover Member. At Irish Gulf the boundary is recognized within a 10 cm thick laminated pyritic dark grey shale bed 3.0 m below the base of the Dunkirk. Palmatolepis triangularis and Pa. subperlobata occur below a conodont-rich lag layer in the upper 2 cm of the bed. Palmatolepis bogartensis , Pa. cf. Pa. rhenana, Ancyrodella curvata, and Icriodus alternatus occur in the underlying 8 cm. Palmatolepis triangularis and Pa. winchelli occur in an underlying dark shale bed separated from the boundary bed by a hummocky cross-bedded siltstone layer.« less

  12. Discussion of boundary-layer characteristics near the casing of an axial-flow compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mahoney, John J; Budinger, Ray E

    1951-01-01

    Boundary-layer velocity profiles on the casing of an axial-flow compressor behind the guide vanes and rotor were measured and resolved into two components: along the streamline of the flow and perpendicular to it. Boundary-layer thickness and the deflection of the boundary layer at the wall were the generalizing parameters. By use of these results and the momentum-integral equations, the characteristics of boundary on the walls of axial-flow compressor are qualitatively discussed. Important parameters concerning secondary flow in the boundary layer appear to be turning of the flow and the product of boundary-layer thickness and streamline curvature outside the boundary layer. Two types of separation are shown to be possible in three dimensional boundary layer.

  13. Geochemistry of K/T boundaries in India and contributions of Deccan volcanism

    NASA Technical Reports Server (NTRS)

    Bhandari, N.; Gupta, M.; Pandey, J.; Shukla, P. N.

    1988-01-01

    Three possible Cretaceous/Tertiary (K/T) boundary sections in the Indian subcontinent were studied for their geochemical and fossil characteristics. These include two marine sections of Meghalaya and Zanskar and one continental section of Nagpur. The Um Sohryngkew river section of Meghalaya shows a high iridium, osmium, iron, cobalt, nickel and chromium concentration in a 1.5 cm thick limonitic layer about 30 cm below the planktonic Cretaceous-Palaeocene boundary identified by the characteristic fossils. The Bottaccione and Contessa sections at Gubbio were also analyzed for these elements. The geochemical pattern at the boundary at the Um Sohryngkew river and Gubbio sections are similar but the peak concentrations and the enrichment factors are different. The biological boundary is not as sharp as the geochemical boundary and the extinction appears to be a prolonged process. The Zanskar section shows, in general, similar concentration of the siderophile, lithophile and rare earth elements but no evidence of enrichment of siderophiles has so far been observed. The Takli section is a shallow inter-trappean deposit within the Deccan province, sandwiched between flow 1 and flow 2. The geochemical stratigraphy of the inter-trappeans is presented. The various horizons of ash, clay and marl show concentration of Fe and Co, generally lower than the adjacent basalts. Two horizons of slight enrichment of iridium are found within the ash layers, one near the contact of flow 1 and other near the contact of flow 2, where iridium occurs at 170 and 260 pg/g. These levels are lower by a factor of 30 compared to Ir concentration in the K/T boundary in Meghalaya section. If the enhanced level of some elements in a few horizons of the ash layer are considered as volcanic contribution by some fractionation processes than the only elements for which it occurs are REE, Ir and possibly Cr.

  14. Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico

    NASA Technical Reports Server (NTRS)

    Smit, J.; Montanari, A.; Swinburne, N. H.; Alvarez, W.; Hildebrand, A. R.; Margolis, S. V.; Claeys, P.; Lowrie, W.; Asaro, F.

    1992-01-01

    The hypothesis of Cretaceous-Tertiary (K-T) boundary impact on Yucatan, Mexico, predicts that nearby sites should show evidence of proximal impact ejecta and disturbance by giant waves. An outcrop along the Arroyo el Mimbral in northeastern Mexico contains a layered clastic unit up to 3 m thick that interrupts a biostratigraphically complete pelagic-marl sequence deposited at more than 400 m water depth. The marls were found to be unsuitable for determining magnetostratigraphy, but foraminiferal biostratigraphy places the clastic unit precisely at the K-T boundary. We interpret this clastic unit as the deposit of a megawave or tsunami produced by an extraterrestrial impact. The clastic unit comprises three main subunits. (1) The basal "spherule bed" contains glass in the form of tektites and microtektites, glass spherules replaced by chlorite-smectite and calcite, and quartz grains showing probable shock features. This bed is interpreted as a channelized deposit of proximal ejecta. (2) A set of lenticular, massive, graded "laminated beds" contains intraclasts and abundant plant debris, and may be the result of megawave backwash that carried coarse debris from shallow parts of the continental margin into deeper water. (3) At the top, several thin "ripple beds" composed of fine sand are separated by clay drapes; they are interpreted as deposits of oscillating currents, perhaps a seiche. An iridium anomaly (921 +/- 23 pg/g) is observed at the top of the ripple beds. Our observations at the Mimbral locality support the hypothesis of a K-T impact on nearby Yucatan.

  15. Diffusion at the boundary between the film and substrate upon the electrocrystallization of zinc on a copper substrate

    NASA Astrophysics Data System (ADS)

    Shtapenko, E. Ph.; Zabludovsky, V. A.; Dudkina, V. V.

    2015-03-01

    In this paper, we present the results of experimental investigations of the diffusion layer formed at the film-substrate interface upon the electrodeposition of zinc films on a copper substrate. The investigations have shown that, in the transient layer, the deposited metal is diffused into the material of the substrate. The depth of the diffusion layer and, consequently, the concentrations of the incorporated zinc atoms depend strongly on the conditions of electrocrystallization, which vary from 1.5 μm when using direct current to 4 μm when using direct current in combination with laser-stimulated deposition (LSD). The X-ray diffraction investigations of the transient layer at the film-substrate interface have shown that, upon electrocrystallization using pulsed current in rigid regimes with the application of the LSD, a CuZn2 phase is formed in the diffusion layer. This indicates that the diffusion of zinc into copper occurs via two mechanisms, i.e., grainboundary and bulk. The obtained values of the coefficient of diffusion of zinc adatoms in polycrystalline copper are equal to 1.75 × 10-15 m2/s when using direct current and 1.74 × 10-13 m2/s when using LSD.

  16. Microstructure and property correlations in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Kalyanaraman, Ramakrishnan

    1998-11-01

    The work in this dissertation is intended at developing high quality device gradefilms of the high temperature (high-Tsbc) superconductor, Yttrium Barium Copper Oxide (YBCO), on MgO(001) substrates. Three approaches have been used to achieve the above goal, (i) The use of a SrTiOsb3 buffer layer, (ii) The use of Ag to enhance the growth of YBCO films and (iii) Investigation of the atomic structure-property correlations of low-angle grain boundaries in these films. Thin film heterostructures of YBCO/MgO and YBCO/SrTiOsb3/MgO were fabricated by pulsed laser deposition (PLD), using a 248 nm KrF excimer laser. Analysis of the structure and measurement of superconducting properties of the films were carried out to optimize the suitable conditions under each approach. The key findings were, (i) Single crystal-like SrTiOsb3 buffer layers can be grown and they give the highest JsbcYBCO films, (ii) An in-depth study of the role of Ag showed that it enhanced film growth of YBCO thereby improving its quality, and (iii) Low-angle boundaries in YBCO/MgO occur with two probable habit planes and the Jsbcs across them differ slightly. A systematic investigation of the crystalline quality of the SrTiOsb3 films deposited by PLD was performed as a function of oxygen partial pressure (pOsb2) and substrate temperature (Tsbc). The highest quality films were grown in the pOsb2 range of 0.1-1 mTorr at 750sp°C. The films had as-deposited x-ray diffraction rocking curve (omega) values of {˜}0.70sp° and Rutherford backscattering channeling yields (chisbmin) of 5% as compared to omega˜1.40sp° and chisbmin˜14% for the film deposited in 100 mTorr of pOsb2. The x-ray phi-scans showed epitaxial cube-on-cube alignment of the SrTiOsb3 films on MgO(001) substrates. Thermal annealing of the SrTiOsb3 films further improved the quality, and the 1 mTorr films gave omega{˜}0.13sp° and chisbmin˜2.0%. Transmission electron microscopy investigations (TEM) of these films showed that the defects in films grown in the pOsb2 range of 0.5-1 mTorr consisted mainly of dislocations and sub-grain boundaries, while those grown in the higher pOsb2 contained numerous low-angle grain boundaries. YBCO films grown on the best SrTiOsb3 buffer layers showed reproducible Jsbcs of {˜}5.5× 10sp6 amps/cmsp2 at 77K and Tsbcs of 88-91K. The YBCO films was observed to grow epitaxially on SrTiOsb3 with (110) sbPYBCO//(110) sbSriTiO3 and (001) sbYBCO//(001) sbSrTiO3{*}chisbmin for the best YBCO film was ˜2.8%. The crystalline quality of the SrTiOsb3 and YBCO films developed are amongst the highest reported so far. Composite targets of Ag+YBCO were used to grow YBCO films using PLD. Using XRD and Tsbc measurements clear evidence for enhanced oxygenation of the YBCO films was shown. Detailed TEM investigation of grain boundaries in YBCO/MgO(001) showed that the low-angle grain boundaries in YBCO are equally likely to have (100) or (110) habit planes. (Abstract shortened by UMI.)

  17. Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enriquez, Erik M.; Zhang, Yingying; Chen, Aiping

    2016-08-26

    Epitaxial layered ternary metal-nitride FeMoN 2, (Fe 0.33 Mo 0.67)MoN 2, CoMoN 2, and FeWN 2 thin films have been grown on c-plane sapphire substrates by polymer-assisted deposition. The ABN 2 layer sits on top of the oxygen sublattices of the substrate with three possible matching configurations due to the significantly reduced lattice mismatch. The doping composition and elements affect not only the out-of-plane lattice parameters but also the temperature-dependent electrical properties. These films have resistivity in the range of 0.1–1 mΩ·cm, showing tunable metallic or semiconducting behaviors by adjusting the composition. A modified parallel connection channel model has beenmore » used to analyze the grain boundary and Coulomb blockade effect on the electrical properties. Furthermore, the growth of the high crystallinity layered epitaxial thin films provides an avenue to study the composition-structure-property relationship in ABN 2 materials through A and B-site substitution.« less

  18. Location of photographs showing landslide features in the Little North Santiam River Basin, Oregon

    USGS Publications Warehouse

    Sobieszczyk, Steven

    2010-01-01

    Data points represent locations of photographs taken of landslides in the Little North Santiam River Basin, Oregon. Photos were taken in spring of 2010 during field verification of landslide locations (deposits previously mapped using LiDAR-derived imagery). The photographs depict various landslide features, such as scarps, pistol-butt trees, or colluvium deposits. This work was completed as part of the Master's thesis "Turbidity Monitoring and LiDAR Imagery Indicate Landslides are Primary Source of Suspended-Sediment Load in the Little North Santiam River Basin, Oregon, Winter 2009-2010" by Steven Sobieszczyk, Portland State University and U.S. Geological Survey. Data layers in this geodatabase include: landslide deposit boundaries (Deposits); field-verfied location imagery (Photos); head scarp or scarp flanks (Scarp_Flanks); and secondary scarp features (Scarps).The geodatabase template was developed by the Oregon Department of Geology and Mineral Industries (Burns and Madin, 2009).

  19. High sedimentation rates in the Early Triassic after latest Permian mass extinction: Carbonate production is main factor in non-Arctic regions

    NASA Astrophysics Data System (ADS)

    Horacek, Micha; Brandner, Rainer

    2016-04-01

    A substantial change in sedimentation rates towards higher values has been documented from the Late Permian to the Lower Triassic. Although it is assumed and also has been shown that the deposition of siliciclastic material increased in the Lower Triassic due to stronger erosion because of loss of land cover and increased chemical and physical weathering with extreme climate warming, the main sediment production occurred by marine carbonate production. Still, carbonate production might have been significantly influenced by weathering and erosion in the hinterland, as the transport of dust by storms into the ocean water probably was a main nutrient source for microbial carbonate producers, because "normal" nutrient supply by ocean circulation, i. e. upwelling was strongly reduced due to the elevated temperatures resulting in water-column stratification . Sediment accumulation was also clearly influenced by the paleo-geographic and latitudinal position, with lower carbonate production and sedimentation rates in moderate latitudes. The existence of a "boundary clay" and microbial carbonate mounds and layers in the immediate aftermath of the latest Permian mass extinction points towards a development from a short-timed acid ocean water - resulting in a carbonate production gap and the deposition of the boundary clay towards the deposition of the microbial mounds and layers due to the microbial production of micro-environments with higher alkalinity allowing the production of carbonate. After the return of the ocean water to normal alkalinity planktic production of carbonate resulted in a very high sedimentation rate, especially taking into account the absence of carbonate producing eukaryotic algae and animals.

  20. Arctic tundra shrub invasion and soot deposition: Consequences for spring snowmelt and near-surface air temperatures

    NASA Astrophysics Data System (ADS)

    Strack, John E.; Pielke, Roger A.; Liston, Glen E.

    2007-12-01

    Invasive shrubs and soot pollution both have the potential to alter the surface energy balance and timing of snow melt in the Arctic. Shrubs reduce the amount of snow lost to sublimation on the tundra during the winter leading to a deeper end-of-winter snowpack. The shrubs also enhance the absorption of energy by the snowpack during the melt season by converting incoming solar radiation to longwave radiation and sensible heat. Soot deposition lowers the albedo of the snow, allowing it to more effectively absorb incoming solar radiation and thus melt faster. This study uses the Colorado State University Regional Atmospheric Modeling System version 4.4 (CSU-RAMS 4.4), equipped with an enhanced snow model, to investigate the effects of shrub encroachment and soot deposition on the atmosphere and snowpack in the Kuparuk Basin of Alaska during the May-June melt period. The results of the simulations suggest that a complete invasion of the tundra by shrubs leads to a 2.2°C warming of 3 m air temperatures and a 108 m increase in boundary layer depth during the melt period. The snow-free date also occurred 11 d earlier despite having a larger initial snowpack. The results also show that a decrease in the snow albedo of 0.1, owing to soot pollution, caused the snow-free date to occur 5 d earlier. The soot pollution caused a 1.0°C warming of 3 m air temperatures and a 25 m average deepening of the boundary layer.

  1. Nucleation and growth mechanism of 2D SnS2 by chemical vapor deposition: initial 3D growth followed by 2D lateral growth

    NASA Astrophysics Data System (ADS)

    Zhang, Haodong; van Pelt, Thomas; Nalin Mehta, Ankit; Bender, Hugo; Radu, Iuliana; Caymax, Matty; Vandervorst, Wilfried; Delabie, Annelies

    2018-07-01

    Tin disulfide (SnS2) is a n-type semiconductor with a hexagonally layered crystal structure and has promising applications in nanoelectronics, optoelectronics and sensors. Such applications require the deposition of SnS2 with controlled crystallinity and thickness control at monolayer level on large area substrate. Here, we investigate the nucleation and growth mechanism of two-dimensional (2D) SnS2 by chemical vapor deposition (CVD) using SnCl4 and H2S as precursors. We find that the growth mechanism of 2D SnS2 is different from the classical layer-by-layer growth mode, by which monolayer-thin 2D transition metal dichalcogenides can be formed. In the initial nucleation stage, isolated 2D SnS2 domains of several monolayers high are formed. Next, 2D SnS2 crystals grow laterally while keeping a nearly constant height until layer closure is achieved, due to the higher reactivity of SnS2 crystal edges than basal planes. We infer that the thickness of the 2D SnS2 crystals is determined by the height of initial SnS2 islands. After layer closure, SnS2 grows on grain boundaries and results in 3D growth mode, accompanied by spiral growth. Our findings suggest an approach to prepare 2D SnS2 with a controlled thickness of several monolayers and add more knowledge on the nucleation and growth mechanism of 2D materials.

  2. Systems and methods for selective hydrogen transport and measurement

    DOEpatents

    Glatzmaier, Gregory C

    2013-10-29

    Systems and methods for selectively removing hydrogen gas from a hydrogen-containing fluid volume are disclosed. An exemplary system includes a proton exchange membrane (PEM) selectively permeable to hydrogen by exclusively conducting hydrogen ions. The system also includes metal deposited as layers onto opposite sides or faces of the PEM to form a membrane-electrode assembly (MEA), each layer functioning as an electrode so that the MEA functions as an electrochemical cell in which the ionic conductors are hydrogen ions, and the MEA functioning as a hydrogen selective membrane (HSM) when located at the boundary between a hydrogen-containing fluid volume and a second fluid.

  3. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  4. Self-organization during growth of ZrN/SiN{sub x} multilayers by epitaxial lateral overgrowth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallqvist, A.; Fager, H.; Hultman, L.

    ZrN/SiN{sub x} nanoscale multilayers were deposited on ZrN seed layers grown on top of MgO(001) substrates by dc magnetron sputtering with a constant ZrN thickness of 40 Å and with an intended SiN{sub x} thickness of 2, 4, 6, 8, and 15 Å at a substrate temperature of 800 °C and 6 Å at 500 °C. The films were investigated by X-ray diffraction, high-resolution scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy. The investigations show that the SiN{sub x} is amorphous and that the ZrN layers are crystalline. Growth of epitaxial cubic SiN{sub x}—known to take place on TiN(001)—onmore » ZrN(001) is excluded to the monolayer resolution of this study. During the course of SiN{sub x} deposition, the material segregates to form surface precipitates in discontinuous layers for SiN{sub x} thicknesses ≤6 Å that coalesce into continuous layers for 8 and 15 Å thickness at 800 °C, and for 6 Å at 500 °C. The SiN{sub x} precipitates are aligned vertically. The ZrN layers in turn grow by epitaxial lateral overgrowth on the discontinuous SiN{sub x} in samples deposited at 800 °C with up to 6 Å thick SiN{sub x} layers. Effectively a self-organized nanostructure can be grown consisting of strings of 1–3 nm large SiN{sub x} precipitates along apparent column boundaries in the epitaxial ZrN.« less

  5. Study of iron deposit using seismic refraction and resistivity in Carajás Mineral Province, Brazil

    NASA Astrophysics Data System (ADS)

    Nogueira, Pedro Vencovsky; Rocha, Marcelo Peres; Borges, Welitom Rodrigues; Silva, Adalene Moreira; Assis, Luciano Mozer de

    2016-10-01

    This work comprises the acquisition, processing and interpretation of 2D seismic shallow refraction (P-wave) and resistivity profiles located in the iron ore deposit of N4WS, Carajás Mineral Province (CMP), northern Brazil. The geophysical methods were used to identify the boundaries of the iron ore deposit. Another objective was to evaluate the potentiality of these geophysical methods in that geological context. In order to validate the results, the geophysical lines were located to match a geological borehole line. For the seismic refraction, we used 120 channels, spaced by 10 m, in a line of 1190 m, with seven shot points. The resistivity method used in the acquisition was the electrical resistivity imaging, with pole-pole array, in order to reach greater depths. The resistivity line had a length of 1430 m, with 10 m spacing between electrodes. The seismic results produced a model with two distinct layers. Based on the velocities values, the first layer was interpreted as altered rocks, and the second layer as more preserved rocks. It was not possible to discriminate different lithologies with the seismic method inside each layer. From the resistivity results, a zone of higher resistivity (> 3937 Ω·m) was interpreted as iron ore, and a region of intermediate resistivity (from 816 to 2330 Ω·m) as altered rocks. These two regions represent the first seismic layer. On the second seismic layer, an area with intermediated resistivity values (from 483 to 2330 Ω·m) was interpreted as mafic rocks, and the area with lower resistivity (< 483 Ω·m) as jaspilite. Our results were compared with geological boreholes and show reasonable correlation, suggesting that the geophysical anomalies correspond to the main variations in composition and physical properties of rocks.

  6. Grain wall boundaries in centimeter-scale continuous monolayer WS2 film grown by chemical vapor deposition.

    PubMed

    Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan

    2018-06-22

    Centimeter-scale continuous monolayer WS 2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 μm in size. Monolayer WS 2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS 2 for specific applications in (opto)electronics.

  7. Electrolytic Deposition and Diffusion of Lithium onto Magnesium-9 Wt Pct Yttrium Bulk Alloy in Low-Temperature Molten Salt of Lithium Chloride and Potassium Chloride

    NASA Astrophysics Data System (ADS)

    Dong, Hanwu; Wu, Yaoming; Wang, Lidong; Wang, Limin

    2009-10-01

    The electrolytic deposition and diffusion of lithium onto bulk magnesium-9 wt pct yttrium alloy cathode in molten salt of 47 wt pct lithium chloride and 53 wt pct potassium chloride at 693 K were investigated. Results show that magnesium-yttrium-lithium ternary alloys are formed on the surface of the cathodes, and a penetration depth of 642 μm is acquired after 2 hours of electrolysis at the cathodic current density of 0.06 A·cm-2. The diffusion of lithium results in a great amount of precipitates in the lithium containing layer. These precipitates are the compound of Mg41Y5, which arrange along the grain boundaries and hinder the diffusion of lithium, and solid solution of yttrium in magnesium. The grain boundaries and the twins of the magnesium-9 wt pct yttrium substrate also have negative effects on the diffusion of lithium.

  8. Grain wall boundaries in centimeter-scale continuous monolayer WS2 film grown by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan

    2018-06-01

    Centimeter-scale continuous monolayer WS2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 μm in size. Monolayer WS2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS2 for specific applications in (opto)electronics.

  9. A numerical investigation of fine sediment resuspension in the wave boundary layer - effect of hindered settling and bedforms

    NASA Astrophysics Data System (ADS)

    Hsu, T. J.; Cheng, Z.; Yu, X.

    2016-02-01

    The wave bottom boundary layer is a major conduit delivering fine terrestrial sediments to the continental margin. Hence, studying the fine sediment resuspension in the wave boundary layer is crucial to the understanding of various components of the earth system, such as carbon cycle. By assuming the settling velocity to be a constant in each simulation, previous turbulence-resolving numerical simulations reveal the existence of three transport modes in the wave boundary layer associated with the sediment availability. As the sediment availability and hence the sediment-induced stable stratification increase, a sequence of transport modes, namely, (I) well-mixed transport, (II) formulation of lutocline resembling a two-layer system, and (III) completely laminarized transport are observed. In general, the settling velocity is a flow variable due to the floc dynamics and hindered settling. This study further investigate the effect of hindered settling. Particularly, for flocs with lower gelling concentrations, the hindered settling effect can play a key role in sustaining large amount of suspended sediment load and results in the laminarized transport (III). For the simulation with a very significant hindered settling effect due to a low gelling concentration, results also indicate the occurrence of gelling ignition, a state in which the erosion rate is always higher than the deposition rate. A condition for the occurrence of gelling ignition is proposed for a range of wave intensities as a function of sediment/floc properties and erodibility parameters. These aforementioned studies are limited to fine sediment transport over a flat bed. However, recent field and laboratory observation show that a small amount of sand fraction can lead to the formation of small bedforms, which can armor the bed while in the meantime enhance near bed turbulence. Preliminary investigation on the effect of bedforms on the resulting transport modes will also be presented.

  10. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: a MOZAIC case study

    NASA Astrophysics Data System (ADS)

    Cammas, J.-P.; Brioude, J.; Chaboureau, J.-P.; Duron, J.; Mari, C.; Mascart, P.; Nédélec, P.; Smit, H.; Pätz, H.-W.; Volz-Thomas, A.; Stohl, A.; Fromm, M.

    2009-08-01

    This paper analyses a stratospheric injection by deep convection of biomass fire emissions over North America (Alaska, Yukon and Northwest Territories) on 24 June 2004 and its long-range transport over the eastern coast of the United States and the eastern Atlantic. The case study is based on airborne MOZAIC observations of ozone, carbon monoxide, nitrogen oxides and water vapour during the crossing of the southernmost tip of an upper level trough over the Eastern Atlantic on 30 June and on a vertical profile over Washington DC on 30 June, and on lidar observations of aerosol backscattering at Madison (University of Wisconsin) on 28 June. Attribution of the observed CO plumes to the boreal fires is achieved by backward simulations with a Lagrangian particle dispersion model (FLEXPART). A simulation with the Meso-NH model for the source region shows that a boundary layer tracer, mimicking the boreal forest fire smoke, is lofted into the lowermost stratosphere (2-5 pvu layer) during the diurnal convective cycle at isentropic levels (above 335 K) corresponding to those of the downstream MOZAIC observations. It is shown that the order of magnitude of the time needed by the parameterized convective detrainment flux to fill the volume of a model mesh (20 km horizontal, 500 m vertical) above the tropopause with pure boundary layer air would be about 7.5 h, i.e. a time period compatible with the convective diurnal cycle. Over the area of interest, the maximum instantaneous detrainment fluxes deposited about 15 to 20% of the initial boundary layer tracer concentration at 335 K. According to the 275-ppbv carbon monoxide maximum mixing ratio observed by MOZAIC over Eastern Atlantic, such detrainment fluxes would be associated with a 1.4-1.8 ppmv carbon monoxide mixing ratio in the boundary layer over the source region.

  11. Spatial Distribution and Sedimentary Facies of the 2007 Solomon Islands Tsunami Deposits

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Nishimura, Y.; Woodward, S.

    2007-12-01

    We conducted a field survey of the extent of damage, crustal deformation, and onshore deposits caused by 2007 Solomon Islands tsunami in Ghizo and adjacent islands in the western Solomon Islands, from 13th to 18th April, 2007. Our survey team was comprised of six Japanese and one American researcher. Three of us, the authors, mainly investigated tsunami deposits in three villages (Titiana, Suva, and Pailongge) in southern Ghizo Island. One member of our team re-investigated the deposits in June 2007. The tsunami generated sheet-like deposits of coral beach sand on the flat plain in Titiana. Beside the sea coast, the tsunami wave eroded ground surfaces and formed small scarps at 30 m from the sea. Just interior of the scarps, tsunami deposits accumulated up to 9 cm in thickness. The thickness decreased with distance from the sea and was also affected by microtopography. No sandy tsunami deposits were observed on the inland area between 170 m and 210 m from the sea. The upper boundary of inundation was recognized at about 210 m from the sea because of accumulation of driftwood and floating debris. In Suva and Pailongge, the outline of sand-sheet distribution is the same as it in Titiana. The tsunami had a maximum thickness of 10 cm and two or three sand layers are separated by thin humic sand layers. These humic layers were likely supplied from hillslopes eroded by the tsunami and transported by return-flows. These successions of deposits suggest that tsunami waves inundated at least two times. This is consistent with the number of large waves told by eyewitnesses. In the Solomon Islands, the plentiful rainfall causes erosion and resedimentation of tsunami deposits. Furthermore, the sedimentary structures will be destroyed by chemical weathering in warm and moist environment, and bioturbation by plants, animals, and human activities. The sedimentary structures had been preserved till the end of June 2007, but had already been penetrated by plant roots and sandpipes of crabs. We believe that the knowledge of weathering process of tsunami deposits is important for interpretation of sedimentary structures of paleo-tsunami deposits.

  12. Detecting Hydrogen Chloride (HCl) in the Polluted Marine Boundary Layer Using Cavity Ring-Down Spectroscopy (CRDS)

    NASA Astrophysics Data System (ADS)

    Furlani, T.; Dawe, K.; VandenBoer, T. C.; Young, C.

    2017-12-01

    Oxidation initiated with chlorine atoms yields more ozone than oxidation initiated with hydroxyl radicals. Reasons for this are not fully understood, but the implications for mechanisms of oxidation chemistry are significant.1,2 Chlorine atoms have not been directly measured to date in the atmosphere and its abundance is usually inferred through steady-state approximations from all known formation and loss processes. A major reservoir for chlorine in the troposphere is by proton abstraction of organic compounds to form HCl.3 HCl can also be formed heterogeneously via acid displacement reactions with ubiquitously-found sodium chloride (NaCl) on solid surfaces with nitric acid (HNO3). The majority of the available chloride in the marine boundary layer comes from the sea salt in and around marine derived sea-spray aerosols. HCl is not a perfect sink and can react with hydroxyl radicals or be photolyzed to form chlorine atoms. The balance between loss and formation processes of chlorine atoms from HCl is highly dependent on many external factors, such as the wet and dry deposition rate of HCl. Measuring HCl in the gas and aerosol phase is important to the understanding of chlorine chemistry in the polluted marine boundary layer. HCl levels in the polluted marine boundary layer are typically between 100pptv-1ppbv,3 requiring the sensitive and selective detection capabilities of cavity ring-down spectroscopy (CRDS).4 We measured HCl using a Picarro CRDS in the polluted marine boundary layer for the first time. Measurements were conducted during April and May of 2017 in St. John's, Newfoundland and Labrador. The performance of the instrument will be discussed, as well as observations of HCl in the context of local conditions. References1Osthoff, H. D. et al. Nat. Geosci 1, 324-328 (2008). 2Young, C. J. et al. Atmos. Chem. Phys. 14, 3427-3440 (2014). 3Crisp, T. a et al. J. Geophys. Res. Atmos. 6897-6915 (2014). 4Hagen, C. L. et al. Atmos. Meas. Tech. 7, 345-357 (2014).

  13. Separation behavior of boundary layers on three-dimensional wings

    NASA Technical Reports Server (NTRS)

    Stock, H. W.

    1981-01-01

    An inverse boundary layer procedure for calculating separated, turbulent boundary layers at infinitely long, crabbing wing was developed. The procedure was developed for calculating three dimensional, incompressible turbulent boundary layers was expanded to adiabatic, compressible flows. Example calculations with transsonic wings were made including viscose effects. In this case an approximated calculation method described for areas of separated, turbulent boundary layers, permitting calculation of this displacement thickness. The laminar boundary layer development was calculated with inclined ellipsoids.

  14. Low to middle tropospheric profiles and biosphere/troposphere fluxes of acidic gases in the summertime Canadian taiga

    NASA Technical Reports Server (NTRS)

    Klemm, O.; Talbot, R. W.; Fitzgerald, D. R.; Klemm, K. I.; Lefer, B. L.

    1994-01-01

    We report features of acidic gases in the troposphere from 9 to 5000 m altitude above ground over the Canadian taiga in the summer of 1990. The measurements were conducted at a 30-m meteorological tower and from the NASA Wallops Electra aircraft as part of the joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B Northern Wetland Studies (NOWES). We sampled air for acidic gases using the mist chamber collector coupled with subsequent analysis using ion chromatography. At the tower we collected samples at two heights during a 13-day period, including diurnal studies. Using eddy flux and profile data, we estimated the biosphere/troposphere fluxes of nitric, formic, and acetic acids and sulfur dioxide. For the organic acids, emissions from the taiga in the afternoon hours and deposition during the predawn morning hours were observed. The flux intensities alone were however not high enough to explain the observed changes in mixing ratios. The measured deposition fluxes of nitric acid were high enough to have a significant influence on its mixing ratio in the boundary layer. On three days we measured vertical profiles of nitric, formic, and acetic acids through the lower to midtroposphere. We found that the chemical composition of the troposphere was extremely heterogenous. Pronounced layers of polluted air were readily apparent from our measurements. Local photochemical production and episodic long-range transport of trace components, originating from biomass burning and possibly industrial emissions, appear to have a strong influence on the composition of the troposphere and biosphere/troposphere fluxes of acidic gases at this site.

  15. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  16. Orbiter Entry Aeroheating Working Group Viscous CFD Boundary Layer Transition Trailblazer Solutions

    NASA Technical Reports Server (NTRS)

    Wood, William A.; Erickson, David W.; Greene, Francis A.

    2007-01-01

    Boundary layer transition correlations for the Shuttle Orbiter have been previously developed utilizing a two-layer boundary layer prediction technique. The particular two-layer technique that was used is limited to Mach numbers less than 20. To allow assessments at Mach numbers greater than 20, it is proposed to use viscous CFD to the predict boundary layer properties. This report addresses if the existing Orbiter entry aeroheating viscous CFD solutions, which were originally intended to be used for heat transfer rate predictions, adequately resolve boundary layer edge properties and if the existing two-layer results could be leveraged to reduce the number of needed CFD solutions. The boundary layer edge parameters from viscous CFD solutions are extracted along the wind side centerline of the Space Shuttle Orbiter at reentry conditions, and are compared with results from the two-layer boundary layer prediction technique. The differences between the viscous CFD and two-layer prediction techniques vary between Mach 6 and 18 flight conditions and Mach 6 wind tunnel conditions, and there is not a straightforward scaling between the viscous CFD and two-layer values. Therefore: it is not possible to leverage the existing two-layer Orbiter flight boundary layer data set as a substitute for a viscous CFD data set; but viscous CFD solutions at the current grid resolution are sufficient to produce a boundary layer data set suitable for applying edge-based boundary layer transition correlations.

  17. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2012-09-01

    Major population centers (MPCs) or mega-cities represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build up and pollution export, either vertically into the upper troposphere or horizontally, but remaining in the lower atmosphere. The insoluble gas phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass and thus the lower is the relative local pollution build up. We further use aerosol deposition fields to estimate regions with high deposition, that is more than 1% or more than 5% of the corresponding tracer emission deposited in this region. In doing so, we find that the high deposition areas are larger for larger aerosols, and these differ less between the MPCs than for smaller aerosols due to faster deposition. Furthermore, cities in regions with high precipitation rates or unfavorable geographic location, e.g. in a basin, suffer most of this high deposition. Most of the high deposition occurs over land, although about 50% of the MPCs are located along coastlines. By folding the aerosol deposition fields with geographical distributions of cropland, pasture, and forest, the impact on different land ecosystems is assessed. In general, forest are exhibited most to deposition from MPCs while pasture land is least affected. Moreover, the impact on humans, measured with a threshold exceedance of pollutant surface mixing ratios, is more dependent on population densities than on the size of the area holding a certain mixing ratio.

  18. Aerosol pollution potential from major population centers

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2013-04-01

    Major population centers (MPCs), or megacities, represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality, they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas-phase tracers with equal emission source strengths at 46 MPC locations are used to study the balance between local pollution build-up and pollution export, either vertically into the upper troposphere or horizontally in the lower troposphere. The insoluble gas-phase tracers with fixed lifetimes are transported with the atmospheric circulation, while the aerosol tracers also undergo gravitational sedimentation as well as dry and wet deposition processes. The strength of low-level tracer export depends on the location of the emission source and prevailing meteorology, in particular on atmospheric stability and the height of the boundary layer and the mixing out of this layer. In contrast, vertical transport of tracer mass depends on the tracer's solubility: the more soluble a tracer is, the less mass reaches altitudes above five kilometers. Hence, the mass of insoluble gas-phase tracer above five kilometers can be up to ten times higher than the hydrophilic aerosol mass from the same source. In the case of aerosol tracers, pollution build-up around the source is determined by meteorological factors which have only indirect effects on tracer lifetime, like surface wind, boundary layer height, and turbulent mixing, as well as those which affect the lifetime of the tracers such as precipitation. The longer a tracer stays in the atmosphere, the lower is the relative importance of the location of the source to the atmospheric mass, and thus the lower is the relative local pollution build-up. We further use aerosol deposition fields to estimate regions with high deposition, that is more than 1% or more than 5% of the corresponding tracer emission deposited in this region. In doing so, we find that the high deposition areas are larger for aerosols with diameters of 10.0 μm, and these differ less between the MPCs than for aerosols with diameters smaller than 2.5 μm due to faster deposition. Furthermore, cities in regions with high precipitation rates or unfavorable geographic locations, e.g., in a basin, suffer most of this high deposition. Most of the high deposition occurs over land, although about 50% of the MPCs are located along coastlines. By folding the aerosol deposition fields with geographical distributions of cropland, pasture, and forest, the impact on different land ecosystems is assessed. In general, forest is exposed most to deposition from MPCs while pastureland is least affected. Moreover, the impact on humans, measured with a threshold exceedance of pollutant surface mixing ratios, is more dependent on population densities than on the size of the area with a certain mixing ratio.

  19. Syn-eruptive, soft-sediment deformation of deposits from dilute pyroclastic density current: triggers from granular shear, dynamic pore pressure, ballistic impacts and shock waves

    NASA Astrophysics Data System (ADS)

    Douillet, G. A.; Taisne, B.; Tsang-Hin-Sun, E.; Muller, S. K.; Kueppers, U.; Dingwell, D. B.

    2015-05-01

    Soft-sediment deformation structures can provide valuable information about the conditions of parent flows, the sediment state and the surrounding environment. Here, examples of soft-sediment deformation in deposits of dilute pyroclastic density currents are documented and possible syn-eruptive triggers suggested. Outcrops from six different volcanoes have been compiled in order to provide a broad perspective on the variety of structures: Soufriere Hills (Montserrat), Tungurahua (Ecuador), Ubehebe craters (USA), Laacher See (Germany), and Tower Hill and Purrumbete lakes (both Australia). The variety of features can be classified in four groups: (1) tubular features such as pipes; (2) isolated, laterally oriented deformation such as overturned or oversteepened laminations and vortex-shaped laminae; (3) folds-and-faults structures involving thick (>30 cm) units; (4) dominantly vertical inter-penetration of two layers such as potatoids, dishes, or diapiric flame-like structures. The occurrence of degassing pipes together with basal intrusions suggest fluidization during flow stages, and can facilitate the development of other soft-sediment deformation structures. Variations from injection dikes to suction-driven, local uplifts at the base of outcrops indicate the role of dynamic pore pressure. Isolated, centimeter-scale, overturned beds with vortex forms have been interpreted to be the signature of shear instabilities occurring at the boundary of two granular media. They may represent the frozen record of granular, pseudo Kelvin-Helmholtz instabilities. Their recognition can be a diagnostic for flows with a granular basal boundary layer. Vertical inter-penetration and those folds-and-faults features related to slumps are driven by their excess weight and occur after deposition but penecontemporaneous to the eruption. The passage of shock waves emanating from the vent may also produce trains of isolated, fine-grained overturned beds that disturb the surface bedding without occurrence of a sedimentation phase in the vicinity of explosion centers. Finally, ballistic impacts can trigger unconventional sags producing local displacement or liquefaction. Based on the deformation depth, these can yield precise insights into depositional unit boundaries. Such impact structures may also be at the origin of some of the steep truncation planes visible at the base of the so-called "chute and pool" structures. Dilute pyroclastic density currents occur contemporaneously with seismogenic volcanic explosions. They can experience extremely high sedimentation rates and may flow at the border between traction, granular and fluid-escape boundary zones. They are often deposited on steep slopes and can incorporate large amounts of water and gas in the sediment. These are just some of the many possible triggers acting in a single environment, and they reveal the potential for insights into the eruptive and flow mechanisms of dilute pyroclastic density currents.

  20. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  1. Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond

    DTIC Science & Technology

    1992-07-10

    Moire-Fringe Images of Twin Boundaries in Chemical Vapor Deposited Diamond IJ PERSONAL AUITHOR(S) - D. Shechtman. A. Fldman, M.D. Vaudin, and J.L...micrographs of chemical vapor deposited diamond can be interprete as Moire fringes that occur when viewing twin boundaries that are inclined to the electron...Dist J Special TECHNICAL REPORT No. 14 eca MOIRE-FRINGE IMAGES OF TWIN BOUNDARIES IN CHEMICAL VAPOR DEPOSITED DIAMOND D. Shechtman, A. Feldman, M.D

  2. Epitaxial Ba2IrO4 thin-films grown on SrTiO3 substrates by pulsed laser deposition

    NASA Astrophysics Data System (ADS)

    Nichols, J.; Korneta, O. B.; Terzic, J.; Cao, G.; Brill, J. W.; Seo, S. S. A.

    2014-03-01

    We have synthesized epitaxial Ba2IrO4 (BIO) thin-films on SrTiO3 (001) substrates by pulsed laser deposition and studied their electronic structure by dc-transport and optical spectroscopic experiments. We have observed that BIO thin-films are insulating but close to the metal-insulator transition boundary with significantly smaller transport and optical gap energies than its sister compound, Sr2IrO4. Moreover, BIO thin-films have both an enhanced electronic bandwidth and electronic-correlation energy. Our results suggest that BIO thin-films have great potential for realizing the interesting physical properties predicted in layered iridates.

  3. Atom probe tomography of a Ti-Si-Al-C-N coating grown on a cemented carbide substrate.

    PubMed

    Thuvander, M; Östberg, G; Ahlgren, M; Falk, L K L

    2015-12-01

    The elemental distribution within a Ti-Si-Al-C-N coating grown by physical vapour deposition on a Cr-doped WC-Co cemented carbide substrate has been investigated by atom probe tomography. Special attention was paid to the coating/substrate interface region. The results indicated a diffusion of substrate binder phase elements into the Ti-N adhesion layer. The composition of this layer, and the Ti-Al-N interlayer present between the adhesion layer and the main Ti-Si-Al-C-N layer, appeared to be sub-stoichiometric. The analysis of the interlayer showed the presence of internal surfaces, possibly grain boundaries, depleted in Al. The composition of the main Ti-Al-Si-C-N layer varied periodically in the growth direction; layers enriched in Ti appeared with a periodicity of around 30 nm. Laser pulsing resulted in a good mass resolution that made it possible to distinguish between N(+) and Si(2+) at 14 Da. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Quantitative evaluation of spatial scale of carrier trapping at grain boundary by GHz-microwave dielectric loss spectroscopy

    NASA Astrophysics Data System (ADS)

    Choi, W.; Tsutsui, Y.; Miyakai, T.; Sakurai, T.; Seki, S.

    2017-11-01

    Charge carrier mobility is an important primary parameter for the electronic conductive materials, and the intrinsic limit of the mobility has been hardly access by conventional direct-current evaluation methods. In the present study, intra-grain hole mobility of pentacene thin films was estimated quantitatively using microwave-based dielectric loss spectroscopy (time-resolved microwave conductivity measurement) in alternating current mode of charge carrier local motion. Metal-insulator-semiconductor devices were prepared with different insulating polymers or substrate temperature upon vacuum deposition of the pentacene layer, which afforded totally four different grain-size conditions of pentacene layers. Under the condition where the local motion was determined by interfacial traps at the pentacene grain boundaries (grain-grain interfaces), the observed hole mobilities were plotted against the grain sizes, giving an excellent correlation fit successfully by a parabolic function representative of the boarder length. Consequently, the intra-grain mobility and trap-release time of holes were estimated as 15 cm2 V-1 s-1 and 9.4 ps.

  5. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Gould, R. K.; Srivastava, R.

    1979-01-01

    Two computer codes were developed for describing flow reactors in which high purity, solar grade silicon is produced via reduction of gaseous silicon halides. The first is the CHEMPART code, an axisymmetric, marching code which treats two phase flows with models describing detailed gas-phase chemical kinetics, particle formation, and particle growth. It can be used to described flow reactors in which reactants, mix, react, and form a particulate phase. Detailed radial gas-phase composition, temperature, velocity, and particle size distribution profiles are computed. Also, deposition of heat, momentum, and mass (either particulate or vapor) on reactor walls is described. The second code is a modified version of the GENMIX boundary layer code which is used to compute rates of heat, momentum, and mass transfer to the reactor walls. This code lacks the detailed chemical kinetics and particle handling features of the CHEMPART code but has the virtue of running much more rapidly than CHEMPART, while treating the phenomena occurring in the boundary layer in more detail.

  6. Preparation of multilayered nanocrystalline thin films with composition-modulated interfaces

    NASA Astrophysics Data System (ADS)

    Biro, D.; Barna, P. B.; Székely, L.; Geszti, O.; Hattori, T.; Devenyi, A.

    2008-06-01

    The properties of multilayer thin film structures depend on the morphology and structure of interfaces. A broad interface, in which the composition is varying, can enhance, e.g., the hardness of multilayer thin films. In the present experiments multilayers of TiAlN and CrN as well as TiAlN, CrN and MoS 2 were studied by using unbalanced magnetron sputter sources. The sputter sources were arranged side by side on an arc. This arrangement permits development of a transition zone between the layers, where the composition changes continuously. The multilayer system was deposited by one-fold oscillating movement of substrates in front of sputter sources. Thicknesses of layers could be changed both by oscillation frequency and by the power applied to sputter sources. Ti/Al: 50/50 at%, pure chromium and MoS 2 targets were used in the sputter sources. The depositions were performed in an Ar-N 2 mixture at 0.22 Pa working pressure. The sputtering power of the TiAl source was feed-back adjusted in fuzzy-logic mode in order to avoid fluctuation of the TiAl target sputter rate due to poisoning of the target surface. Structure characterization of films deposited on <1 0 0> Si wafers covered by thermally grown SiO 2 was performed by cross-sectional transmission electron microscopy. At first a 100 nm thick Cr base layer was deposited on the substrate to improve adhesion, which was followed by a CrN transition layer. The CrN transition layer was followed by a 100 nm thick TiAlN/CrN multilayer system. The TiAlN/CrN/MoS 2 multilayer system was deposited on the surface of this underlayer system. The underlayer systems Cr, CrN and TiAlN/CrN were crystalline with columnar structure according to the morphology of zone T of the structure zone models. The column boundaries contained segregated phases showing up in the under-focused TEM images. The surface of the underlayer system was wavy due to dome-shaped columns. The nanometer-scaled TiAlN/CrN/MoS 2 multilayer system followed this waviness. Crystallinity of the TiAlN and CrN layers in the multilayer system decreases with increasing thickness of the MoS 2 layer.

  7. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  8. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  9. A mathematical model of fluid and gas flow in nanoporous media.

    PubMed

    Monteiro, Paulo J M; Rycroft, Chris H; Barenblatt, Grigory Isaakovich

    2012-12-11

    The mathematical modeling of the flow in nanoporous rocks (e.g., shales) becomes an important new branch of subterranean fluid mechanics. The classic approach that was successfully used in the construction of the technology to develop oil and gas deposits in the United States, Canada, and the Union of Soviet Socialist Republics becomes insufficient for deposits in shales. In the present article a mathematical model of the flow in nanoporous rocks is proposed. The model assumes the rock consists of two components: (i) a matrix, which is more or less an ordinary porous or fissurized-porous medium, and (ii) specific organic inclusions composed of kerogen. These inclusions may have substantial porosity but, due to the nanoscale of pores, tubes, and channels, have extremely low permeability on the order of a nanodarcy (~109-²¹ m² ) or less. These inclusions contain the majority of fluid: oil and gas. Our model is based on the hypothesis that the permeability of the inclusions substantially depends on the pressure gradient. At the beginning of the development of the deposit, boundary layers are formed at the boundaries of the low-permeable inclusions, where the permeability is strongly increased and intensive flow from inclusions to the matrix occurs. The resulting formulae for the production rate of the deposit are presented in explicit form. The formulae demonstrate that the production rate of deposits decays with time following a power law whose exponent lies between -1/2 and -1. Processing of experimental data obtained from various oil and gas deposits in shales demonstrated an instructive agreement with the prediction of the model.

  10. Boundary layer friction of solvate ionic liquids as a function of potential.

    PubMed

    Li, Hua; Rutland, Mark W; Watanabe, Masayoshi; Atkin, Rob

    2017-07-01

    Atomic force microscopy (AFM) has been used to investigate the potential dependent boundary layer friction at solvate ionic liquid (SIL)-highly ordered pyrolytic graphite (HOPG) and SIL-Au(111) interfaces. Friction trace and retrace loops of lithium tetraglyme bis(trifluoromethylsulfonyl)amide (Li(G4) TFSI) at HOPG present clearer stick-slip events at negative potentials than at positive potentials, indicating that a Li + cation layer adsorbed to the HOPG lattice at negative potentials which enhances stick-slip events. The boundary layer friction data for Li(G4) TFSI shows that at HOPG, friction forces at all potentials are low. The TFSI - anion rich boundary layer at positive potentials is more lubricating than the Li + cation rich boundary layer at negative potentials. These results suggest that boundary layers at all potentials are smooth and energy is predominantly dissipated via stick-slip events. In contrast, friction at Au(111) for Li(G4) TFSI is significantly higher at positive potentials than at negative potentials, which is comparable to that at HOPG at the same potential. The similarity of boundary layer friction at negatively charged HOPG and Au(111) surfaces indicates that the boundary layer compositions are similar and rich in Li + cations for both surfaces at negative potentials. However, at Au(111), the TFSI - rich boundary layer is less lubricating than the Li + rich boundary layer, which implies that anion reorientations rather than stick-slip events are the predominant energy dissipation pathways. This is confirmed by the boundary friction of Li(G4) NO 3 at Au(111), which shows similar friction to Li(G4) TFSI at negative potentials due to the same cation rich boundary layer composition, but even higher friction at positive potentials, due to higher energy dissipation in the NO 3 - rich boundary layer.

  11. Relative role of pore water versus ingested sediment in bioavailability of organic contaminants in marine sediments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forbes, T.L.; Hansen, R.; Kure, L.K.

    Experimental data for fluoranthene and feeding selectivity in combination with reaction-diffusion modeling suggest that ingestion of contaminated sediment may often be the dominant uptake pathway for deposit-feeding invertebrates in sediments. A dietary absorption efficiency of 56% and accompanying forage ratio of 2.4 were measured using natural sediment that had been dual-labeled ({sup 14}C:{sup 51}Cr) with fluoranthene and fed to the marine deposit-feeding polychaete Capitella species I. Only 3 to 4% of the total absorption could be accounted for by desorption during gut passage. These data were then used as input into a reaction-diffusion model to calculate the importance of uptakemore » from ingested sediment relative to pore-water exposure. The calculations predict a fluoranthene dietary uptake flux that is 20 to 30 times greater than that due to pore water. Factors that act to modify or control the formation of local chemical gradients, boundary layers, or dietary absorption rates including particle selection or burrow construction will be important in determining the relative importance of potential exposure pathways. From a chemical perspective, the kinetics of the adsorption and desorption process are especially important as they will strongly influence the boundary layer immediately surrounding burrowing animals or irrigated tubes. The most important biological factors likely include irrigation behavior and burrow density and size.« less

  12. Turbulent Combustion Study of Scramjet Problem

    DTIC Science & Technology

    2015-08-01

    boundary layer model for 2D simulations of a supersonic flat plate boundary layer . The inflow O2 has an average density of...flow above the flat plate has a transition from a laminar boundary layer to a turbulent boundary layer at a position downstream from the inlet. The...δ. Chapman [13] estimated the number of cells need to resolve the outer layer is proportional to Re0.4 for flat plat boundary layer and

  13. Participation in the Mars data analysis program: Global and regional studies of wind-indicators on the surface of Mars

    NASA Technical Reports Server (NTRS)

    Veverka, J.; Thomas, P.

    1984-01-01

    Global and regional patterns on Mars were inferred from surface aeolian features, such as wind streaks and dune deposits, which were visible in Viking Orbiter images. Precise measurements of the dimensions of topographic obstacles, i.e., craters, hills, ridges, on Mars as well as their associated wind streaks were used to determine the aerodynamic shape of an obstacle affects near surface airflow. A classification of Martian wind streaks was developed on the basis of albedo contrast and the presence or absence of either topographic obstacles or sediment deposits at the point of origin of the wind streaks. It was concluded that local meteorological conditions, such as the stability of the atmospheric boundary layer, play a major role in determining why some Martian craters produce depositional wind streaks while others produce erosional ones.

  14. Entrainment of bed material by Earth-surface mass flows: review and reformulation of depth-integrated theory

    USGS Publications Warehouse

    Iverson, Richard M.; Chaojun Ouyang,

    2015-01-01

    Earth-surface mass flows such as debris flows, rock avalanches, and dam-break floods can grow greatly in size and destructive potential by entraining bed material they encounter. Increasing use of depth-integrated mass- and momentum-conservation equations to model these erosive flows motivates a review of the underlying theory. Our review indicates that many existing models apply depth-integrated conservation principles incorrectly, leading to spurious inferences about the role of mass and momentum exchanges at flow-bed boundaries. Model discrepancies can be rectified by analyzing conservation of mass and momentum in a two-layer system consisting of a moving upper layer and static lower layer. Our analysis shows that erosion or deposition rates at the interface between layers must in general satisfy three jump conditions. These conditions impose constraints on valid erosion formulas, and they help determine the correct forms of depth-integrated conservation equations. Two of the three jump conditions are closely analogous to Rankine-Hugoniot conditions that describe the behavior of shocks in compressible gasses, and the third jump condition describes shear traction discontinuities that necessarily exist across eroding boundaries. Grain-fluid mixtures commonly behave as compressible materials as they undergo entrainment, because changes in bulk density occur as the mixtures mobilize and merge with an overriding flow. If no bulk density change occurs, then only the shear-traction jump condition applies. Even for this special case, however, accurate formulation of depth-integrated momentum equations requires a clear distinction between boundary shear tractions that exist in the presence or absence of bed erosion.

  15. Vertically resolved measurements of nighttime radical reservoirs in Los Angeles and their contribution to the urban radical budget.

    PubMed

    Young, Cora J; Washenfelder, Rebecca A; Roberts, James M; Mielke, Levi H; Osthoff, Hans D; Tsai, Catalina; Pikelnaya, Olga; Stutz, Jochen; Veres, Patrick R; Cochran, Anthony K; VandenBoer, Trevor C; Flynn, James; Grossberg, Nicole; Haman, Christine L; Lefer, Barry; Stark, Harald; Graus, Martin; de Gouw, Joost; Gilman, Jessica B; Kuster, William C; Brown, Steven S

    2012-10-16

    Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.

  16. Data integration modeling applied to drill hole planning through semi-supervised learning: A case study from the Dalli Cu-Au porphyry deposit in the central Iran

    NASA Astrophysics Data System (ADS)

    Fatehi, Moslem; Asadi, Hooshang H.

    2017-04-01

    In this study, the application of a transductive support vector machine (TSVM), an innovative semi-supervised learning algorithm, has been proposed for mapping the potential drill targets at a detailed exploration stage. The semi-supervised learning method is a hybrid of supervised and unsupervised learning approach that simultaneously uses both training and non-training data to design a classifier. By using the TSVM algorithm, exploration layers at the Dalli porphyry Cu-Au deposit in the central Iran were integrated to locate the boundary of the Cu-Au mineralization for further drilling. By applying this algorithm on the non-training (unlabeled) and limited training (labeled) Dalli exploration data, the study area was classified in two domains of Cu-Au ore and waste. Then, the results were validated by the earlier block models created, using the available borehole and trench data. In addition to TSVM, the support vector machine (SVM) algorithm was also implemented on the study area for comparison. Thirty percent of the labeled exploration data was used to evaluate the performance of these two algorithms. The results revealed 87 percent correct recognition accuracy for the TSVM algorithm and 82 percent for the SVM algorithm. The deepest inclined borehole, recently drilled in the western part of the Dalli deposit, indicated that the boundary of Cu-Au mineralization, as identified by the TSVM algorithm, was only 15 m off from the actual boundary intersected by this borehole. According to the results of the TSVM algorithm, six new boreholes were suggested for further drilling at the Dalli deposit. This study showed that the TSVM algorithm could be a useful tool for enhancing the mineralization zones and consequently, ensuring a more accurate drill hole planning.

  17. Digital data sets that describe aquifer characteristics of the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in Central Oklahoma

    USGS Publications Warehouse

    Adams, G.P.; Rea, Alan; Runkle, D.L.

    1997-01-01

    ARC/INFO export and nonproprietary format files This diskette contains digitized aquifer boundaries and maps of of hydraulic conductivity, recharge, and ground-water level elevation contours for the alluvial and terrace deposits along the alluvial and terrace deposits along the North Canadian River from Canton Lake to Lake Overholser in central Oklahoma. Ground water in approximately 400 square miles of Quaternary-age alluvial and terrace aquifer is an important source of water for irrigation, industrial, municipal, stock, and domestic supplies. The aquifer consists of clay, silt, sand, and gravel. Sand-sized sediments dominate the poorly sorted, fine to coarse, unconsolidated quartz grains in the aquifer. The hydraulically connected alluvial and terrace deposits unconformably overlie Permian-age formations. The aquifer is overlain by a layer of wind-blown sand in parts of the area. Most of the lines in the aquifer boundary, hydraulic conductivity, and recharge data sets were extracted from published digital surficial geology data sets based on a scale of 1:250,000. The ground-water elevation contours and some of the lines for the aquifer boundary, hydraulic conductivity, and recharge data sets were digitized from a ground-water modeling report about the aquifer published at a scale of 1:250,000. The hydraulic conductivity values and recharge rates also are from the ground-water modeling report. Ground-water flow models are numerical representations that simplify and aggregate natural systems. Models are not unique; different combinations of aquifer characteristics may produce similar results. Therefore, values of hydraulic conductivity and recharge used in the model and presented in this data set are not precise, but are within a reasonable range when compared to independently collected data.

  18. Effect Of Impurity On Cu Electromigration

    NASA Astrophysics Data System (ADS)

    Hu, C.-K.; Angyal, M.; Baker, B. C.; Bonilla, G.; Cabral, C.; Canaperi, D. F.; Choi, S.; Clevenger, L.; Edelstein, D.; Gignac, L.; Huang, E.; Kelly, J.; Kim, B. Y.; Kyei-Fordjour, V.; Manikonda, S. L.; Maniscalco, J.; Mittal, S.; Nogami, T.; Parks, C.; Rosenberg, R.; Simon, A.; Xu, Y.; Vo, T. A.; Witt, C.

    2010-11-01

    The impact of the existence of Cu grain boundaries on the degradation of Cu interconnect lifetime at the 45 nm technology node and beyond has suggested that improved electromigra-tion in Cu grain boundaries has become increasingly important. In this paper, solute effects of non-metallic (C, Cl, O and S) and metallic (Al, Co, In, Mg, Sn, and Ti) impurities on Cu elec-tromigration were investigated. The Cu alloy interconnects were fabricated by adjusting Cu electroplating solutions or by depositing a Cu alloy seed, a thin film layer of impurity, an alloy liner, or a metal cap. A large variation of Cu grain structure in the samples was achieved by adjusting the wafer fabrication process steps. The non-metallic impurities were found to be less than 0.1% in the electroplated Cu with no effect on Cu electromigration lifetimes. Most of the metallic impurities reduced Cu interface and grain boundary mass flows and enhanced Cu lifetime, but Al, Co, and Mg impurities did not mitigate Cu grain boundary diffusion.

  19. Geological Evidences for a Large Tsunami Generated by the 7.3 ka Kikai Caldera Eruption, Southern Japan

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Fujino, S.; Satake, K.

    2017-12-01

    The 7.3 ka eruption of Kikai volcano, southern Kyushu, Japan, is one of the largest caldera-forming eruption in the world. Given that a huge caldera was formed in shallow sea area during the eruption, a tsunami must have been generated by a sea-level change associated. Pyroclastic flow and tsunami deposits by the eruption have been studied around the caldera, but they are not enough to evaluate the tsunami size. The goal of this study is to unravel sizes of tsunami and triggering caldera collapse by numerical simulations based on a widely-distributed tsunami deposit associated with the eruption. In this presentation, we will provide an initial data on distribution of the 7.3 ka tsunami deposit contained in sediment cores taken at three coastal lowlands in Wakayama, Tokushima, and Oita prefectures (560 km, 520 km, and 310 km north-east from the caldera, respectively). A volcanic ash from the eruption (Kikai Akahoya tephra: K-Ah) is evident in organic-rich muddy sedimentary sequence in all sediment cores. Up to 6-cm-thick sand layer, characterized by a grading structure and sharp bed boundary with lower mud, is observed immediately beneath the K-Ah tephra in all study sites. These sedimentary characteristics and broad distribution indicate that the sand layer was most likely deposited by a tsunami which can propagate to a wide area, but not by a local storm surge. Furthermore, the stratigraphic relationship implies that the study sites must have been inundated by the tsunami prior to the ash fall. A sand layer is also evident within the K-Ah tephra layer, suggesting that the sand layer was probably formed by a subsequent tsunami wave during the ash fall. These geological evidences for the 7.3 ka tsunami inundation will contribute to a better understanding of the caldera collapse and the resultant tsunami, but also of the tsunami generating system in the eruptive process.

  20. Mass Transport of Condensed Species in Aerodynamic Fallout Glass from a Near-Surface Nuclear Test

    NASA Astrophysics Data System (ADS)

    Weisz, David Gabriel

    In a near-surface nuclear explosion, vaporized device materials are incorporated into molten soil and other carrier materials, forming glassy fallout upon quenching. Mechanisms by which device materials mix with carrier materials have been proposed, however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. A surface deposition layer was observed preserved at interfaces where two aerodynamic fallout glasses agglomerated and fused. Eleven such boundaries were studied using spatially resolved analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nano-scale secondary ion mass spectrometry (NanoSIMS), we identified higher concentrations of uranium from the device in 7 of the interface layers, as well as isotopic enrichment (>75% 235U) in 9 of the interface layers. Major element analysis of the interfaces revealed the deposition layer to be chemically enriched in Fe-, Ca- and Na-bearing species and depleted in Ti- and Al-bearing species. The concentration profiles of the enriched species at the interface are characteristic of diffusion. Three of the uranium concentration profiles were fit with a modified Gaussian function, representative of 1-D diffusion from a planar source, to determine time and temperature parameters of mass transport. By using a historical model of fireball temperature to simulate the cooling rate at the interface, the temperature of deposition was estimated to be 2200 K, with 1? uncertainties in excess of 140 K. The presence of Na-species in the layers at this estimated temperature of deposition is indicative of an oxygen rich fireball. The notable depletion of Al-species, a refractory oxide that is highly abundant in the soil, together with the enrichment of Ca-, Fe-, and 235U-species, suggests an anthropogenic source of the enriched species, together with a continuous chemical fractionation process as these species condensed.

  1. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE PAGES

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul; ...

    2017-12-11

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  2. Characterization of ultralow thermal conductivity in anisotropic pyrolytic carbon coating for thermal management applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuzhou; Hurley, David H.; Luther, Erik Paul

    Pyrolytic carbon (PyC) is an important material used in many applications including thermal management of electronic devices and structural stability of ceramic composites. Accurate measurement of physical properties of structures containing textured PyC layers with few-micrometer thickness poses new challenges. Here a laser-based thermoreflectance technique is used to measure thermal conductivity in a 30-μm-thick textured PyC layer deposited using chemical vapor deposition on the surface of spherical zirconia particles. Raman spectroscopy is used to confirm the graphitic nature and characterize microstructure of the deposited layer. Room temperature radial and circumferential thermal conductivities are found to be 0.28 W m –1more » K –1 and 11.5 W m –1 K –1, corresponding to cross-plane and in-plane conductivities of graphite. While the anisotropic ratio of the in-plane to cross-plane conductivities is smaller than previous results, the magnitude of the smallest conductivity is noticeably smaller than previously reported values for carbon materials and offers opportunities in thermal management applications. Very low in-plane and cross-plane thermal conductivities are attributed to strong grain boundary scattering, high defect concentration, and small inter-laminar porosity. Lastly, experimental results agree with the prediction of thermal transport model informed by the microstructure information revealed by Raman spectroscopy.« less

  3. Defect structure in electrodeposited nanocrystalline Ni layers with different Mo concentrations

    NASA Astrophysics Data System (ADS)

    Kapoor, Garima; Péter, László; Fekete, Éva; Gubicza, Jenő

    2018-05-01

    The effect of molybdenum (Mo) alloying on the lattice defect structure in electrodeposited nanocrystalline nickel (Ni) films was studied. The electrodeposited layers were prepared on copper substrate at room temperature, with a constant current density and pH value. The chemical composition of these layers was determined by EDS. In addition, X-ray diffraction line profile analysis was carried out to study the microstructural parameters such as the crystallite size, the dislocation density and the stacking fault probability. It was found that the higher Mo content yielded more than one order of magnitude larger dislocation density while the crystallite size was only slightly smaller. In addition, the twin boundary formation activity during deposition increased with increasing Mo concentration. The results obtained on electrodeposited layers were compared with previous research carried out on bulk nanocrystalline Ni-Mo materials with similar compositions but processed by severe plastic deformation.

  4. Deposition of ozone to tundra

    NASA Technical Reports Server (NTRS)

    Jacob, D. J.; Fan, S.-M.; Wofsy, S. C.; Spiro, P. A.; Bakwin, P. S.; Ritter, J. A.; Browell, E. V.; Gregory, G. L.; Fitzjarrald, D. R.; Moore, K. E.

    1992-01-01

    Eddy correlation measurements of O3 deposition fluxes to tundra during the Arctic Boundary Layer Expedition (ABLE 3A) are reported. The mean O3 deposition velocity was 0.24 cm/s in the daytime and 0.12 cm/s at night. The day-to-day difference in deposition velocity was driven by both atmospheric stability and surface reactivity. The mean surface resistance to O3 deposition was 2.6 s/cm in the daytime and 3.4 s/cm at night. The relatively low surface resistance at night is attributed to light-insensitive uptake of O3 at dry upland tundra surfaces. The small day-tonight difference in surface resistance is attributed to additional stomatal uptake by wet meadow tundra plants in the daytime. The mean O3 deposition flux to the world north of 60 deg N in July-August is estimated at 8.2 x 10 exp 10 molecules/sq cm/s. Suppression of photochemical loss by small anthropogenic inputs of nitrogen oxides could have a major effect on O3 concentrations in the summertime Arctic troposphere.

  5. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride

    NASA Astrophysics Data System (ADS)

    Rice, Anthony; Allerman, Andrew; Crawford, Mary; Beechem, Thomas; Ohta, Taisuke; Spataru, Catalin; Figiel, Jeffrey; Smith, Michael

    2018-03-01

    The use of metal-organic chemical vapor deposition at high temperature is investigated as a means to produce epitaxial hexagonal boron nitride (hBN) at the wafer scale. Several categories of hBN films were found to exist based upon precursor flows and deposition temperature. Low, intermediate, and high NH3 flow regimes were found to lead to fundamentally different deposition behaviors. The low NH3 flow regimes yielded discolored films of boron sub-nitride. The intermediate NH3 flow regime yielded stoichiometric films that could be deposited as thick films. The high NH3 flow regime yielded self-limited deposition with thicknesses limited to a few mono-layers. A Langmuir-Hinshelwood mechanism is proposed to explain the onset of self-limited behavior for the high NH3 flow regime. Photoluminescence characterization determined that the intermediate and high NH3 flow regimes could be further divided into low and high temperature behaviors with a boundary at 1500 °C. Films deposited with both high NH3 flow and high temperature exhibited room temperature free exciton emission at 210 nm and 215.9 nm.

  6. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging.

    PubMed

    Li, Weiyi; Liu, Xin; Wang, Yi-Ning; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G

    2016-07-05

    The development of novel tools for studying the fouling behavior during membrane processes is critical. This work explored optical coherence tomography (OCT) to quantitatively interpret the formation of a cake layer during a membrane process; the quantitative analysis was based on a novel image processing method that was able to precisely resolve the 3D structure of the cake layer on a micrometer scale. Fouling experiments were carried out with foulants having different physicochemical characteristics (silica nanoparticles and bentonite particles). The cake layers formed at a series of times were digitalized using the OCT-based characterization. The specific deposit (cake volume/membrane surface area) and surface coverage were evaluated as a function of time, which for the first time provided direct experimental evidence for the transition of various fouling mechanisms. Axial stripes were observed in the grayscale plots showing the deposit distribution in the scanned area; this interesting observation was in agreement with the instability analysis that correlated the polarized particle groups with the small disturbances in the boundary layer. This work confirms that the OCT-based characterization is able to provide deep insights into membrane fouling processes and offers a powerful tool for exploring membrane processes with enhanced performance.

  7. Influence of free carbon on the characteristics of ZrC and deposition of near-stoichiometric ZrC in TRISO coated particle fuel

    NASA Astrophysics Data System (ADS)

    Kim, Daejong; Ko, Myeong Jin; Park, Ji Yeon; Cho, Moon Sung; Kim, Weon-Ju

    2014-08-01

    Advanced TRISO coated particles with a ZrC coating layer as a main pressure boundary were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method using a chloride process. Experiments were performed to determine the effect of codeposition of graphitic carbon on the hardness and obtain the stoichiometric ZrC phase. The ZrC coating layer was composed of a mixture of ZrC and graphitic carbon phases at a low ZrCl4/CH4 ratio. A near-stoichiometric ZrC without the free carbon can be obtained by employing an impeller-driven ZrCl4 vaporizer. The codeposition of the graphitic carbon significantly lowered the hardness of ZrC while increasing the fraction of the carbon. The hardness reached its maximum when ZrC was in a slight carbon deficit without free carbon. As the graphitic carbon increased up to 12 vol%, the hardness was reduced by approximately 50% compared to the near-stoichiometric ZrC.

  8. Electrical and thermal conduction in atomic layer deposition nanobridges down to 7 nm thickness.

    PubMed

    Yoneoka, Shingo; Lee, Jaeho; Liger, Matthieu; Yama, Gary; Kodama, Takashi; Gunji, Marika; Provine, J; Howe, Roger T; Goodson, Kenneth E; Kenny, Thomas W

    2012-02-08

    While the literature is rich with data for the electrical behavior of nanotransistors based on semiconductor nanowires and carbon nanotubes, few data are available for ultrascaled metal interconnects that will be demanded by these devices. Atomic layer deposition (ALD), which uses a sequence of self-limiting surface reactions to achieve high-quality nanolayers, provides an unique opportunity to study the limits of electrical and thermal conduction in metal interconnects. This work measures and interprets the electrical and thermal conductivities of free-standing platinum films of thickness 7.3, 9.8, and 12.1 nm in the temperature range from 50 to 320 K. Conductivity data for the 7.3 nm bridge are reduced by 77.8% (electrical) and 66.3% (thermal) compared to bulk values due to electron scattering at material and grain boundaries. The measurement results indicate that the contribution of phonon conduction is significant in the total thermal conductivity of the ALD films. © 2012 American Chemical Society

  9. The study on the electrical resistivity of Cu/V multilayer films subjected to helium (He) ion irradiation

    NASA Astrophysics Data System (ADS)

    Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.

    2018-05-01

    Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.

  10. Surface and grain boundary interdiffusion in nanometer-scale LSMO/BFO bilayer

    NASA Astrophysics Data System (ADS)

    Kumar, Virendra; Gaur, Anurag; Choudhary, R. J.; Gupta, Mukul

    2016-05-01

    Epitaxial 150 nm thick LSMO/BFO bilayer is deposited on STO (100) substrate by pulsed laser deposition, to study magnetoelectric effect. Unexpected low value of room temperature magnetization in bilayer indicates towards the possibility of interdiffusion. Further, sharp fall in the value of TC (53 K) also added our anxiety towards possible interdiffusion in BFO/LSMO system. Low-angle x-ray diffraction technique is used to investigate interdiffusion phenomena, and the temperature-dependent interdiffusivity is obtained by accurately monitoring the decay of the first-order modulation peak as a function of annealing time. It has been found that the diffusivity at different temperatures follows Arrhenius-type behavior. X-ray reflection (XRR) pattern obtained for the bilayer could not be fitted in the Parratt's formalism, which confirms the interdiffusion in it. Depth profiles of 209Bi, 56Fe ions measured by secondary ion mass spectroscope (SIMS) further substantiate the diffusion of these ions from upper BFO layer into lower LSMO layer.

  11. Free-stream disturbance, continuous Eigenfunctions, boundary-layer instability and transition

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.

    1980-01-01

    A rational foundation is presented for the application of the linear shear flows to transition prediction, and an explicit method is given for carrying out the necessary calculations. The expansions used are shown to be complete. Sample calculations show that a typical boundary layer is very sensitive to vorticity disturbances in the inner boundary layer, near the critical layer. Vorticity disturbances three or four boundary layer thicknesses above the boundary are nearly uncoupled from the boundary layer in that the amplitudes of the discrete Tollmien-Schlicting waves are an extremely small fraction of the amplitude of the disturbance.

  12. Sedimentology and geomorphology of the deposits from the August 2006 pyroclastic density currents at Tungurahua volcano, Ecuador.

    PubMed

    Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B

    The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  14. Synthesis and magnetotransport studies of CrO2 films grown on TiO2 nanotube arrays by chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoling; Zhang, Caiping; Wang, Lu; Lin, Tao; Wen, Gehui

    2018-04-01

    The CrO2 films have been prepared on the TiO2 nanotube array template via atmospheric pressure chemical vapor deposition method. And the growth procedure was studied. In the beginning of the deposition process, the CrO2 grows on the cross section of the TiO2 nanotubes wall, forms a nanonet-like layer. And the grain size of CrO2 is very small. With the increase of the deposition time, the grain size of CrO2 also increases, and the nanonet-like layer changes into porous film. With the further increase of the deposition time, all the nanotubes are covered by CrO2 grains and the surface structure becomes polycrystalline film. The average grain size on the surface of the CrO2 films deposited for 1 h, 2 h and 5 h is about 190 nm, 300 nm and 470 nm. The X-ray diffraction pattern reveals that the rutile CrO2 film has been synthesized on the TiO2 nanotube array template. The CrO2 films show large magnetoresistance (MR) at low temperature, which should originate from spin-dependent tunneling through grain boundaries between CrO2 grains. And the tunneling mechanism of the CrO2 films can be well described by the fluctuation-induced tunneling (FIT) model. The CrO2 film deposited for 2 h shows insulator behavior from 5 k to 300 K, but the CrO2 film deposited for 5 h shows insulator-metal transition around 140 K. The reason is briefly discussed.

  15. Analysis of turbulent free-convection boundary layer on flat plate

    NASA Technical Reports Server (NTRS)

    Eckert, E R G; Jackson, Thomas W

    1950-01-01

    A calculation was made for the flow and heat transfer in the turbulent free-convection boundary layer on a vertical flat plate. Formulas for the heat-transfer coefficient, boundary layer thickness, and the maximum velocity in the boundary layer were obtained.

  16. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key theoretical issues have been discussed for over two decades. This is because plasma instruments deployed prior to the ISEE and AMPTE missions did not have the required time resolution and most ISEE investigations to-date have focused on tests of MHD plasma models, especially reconnection. More recently, many phenomenological and theoretical models have been developed to explain the existence and characteristics of the magnetospheric boundary layers with only limited success to date. The cases with no boundary layer treated in this study provide a contrary set of conditions to those observed with a boundary layer. For the measured parameters of such cases, a successful boundary layer model should predict no plasma penetration across the magnetopause. Thus, this research project provides the first direct observational tests of magnetopause models using pristine magnetopause crossings and provides important new results on magnetopause microstructure and associated kinetic processes.

  17. Measurements and Modeling of the Mean and Turbulent Flow Structure in High-Speed Rough-Wall Non-Equilibrium Boundary Layers

    DTIC Science & Technology

    2010-01-25

    study builds on three basic bodies of knowledge: (1) supersonic rough wall boundary layers, (2) distorted supersonic turbulent boundary layers, and...with the boundary layer turbulence . The present study showed that secondary distortions associated with such waves significantly affect the transport...38080 14. ABSTRACT The response of a supersonic high Reynolds number turbulent boundary layer flow subjected to mechanical distortions was

  18. Understanding the Fundamental Roles of Momentum and Vorticity Injections in Flow Control

    DTIC Science & Technology

    2016-09-02

    production by pitched and skewed jets in a turbulent boundary layer . AIAA Journal 30, 640–647. DISTRIBUTION A: Distribution approved for public release...adverse pressure gradient along the suction surface, which ultimately results in a separated boundary layer . Such behavior of the boundary layer can... boundary layer either directly or by utilizing free stream momentum to energize the boundary layer (Gad-el-Hak, 2000a). Directly adding momentum to the

  19. Effect of an isolated semi-arid pine forest on the boundary layer height

    NASA Astrophysics Data System (ADS)

    Brugger, Peter; Banerjee, Tirtha; Kröniger, Konstantin; Preisler, Yakir; Rotenberg, Eyal; Tatarinov, Fedor; Yakir, Dan; Mauder, Matthias

    2017-04-01

    Forests play an important role for earth's climate by influencing the surface energy balance and CO2 concentrations in the atmosphere. Semi-arid forests and their effects on the local and regional climate are studied within the CliFF project (Climate Feedbacks and benefits of semi-arid Forests). This requires understanding of the atmospheric boundary layer over semi-arid forests, because it links the surface and the free atmosphere and determines the exchange of momentum, heat and trace gases. Our study site, Yatir, is a semi-arid isolated pine forest in the Negev desert in Israel. Higher roughness and lower albedo compared to the surrounding shrubland make it interesting to study the influences of the semi-arid Yatir forest on the boundary layer. Previous studies of the forest focused on the energy balance and secondary circulations. This study focuses on the boundary layer structure above the forest, in particular the boundary layer height. The boundary layer height is an essential parameter for many applications (e.g. construction of convective scaling parameters or air pollution modeling). We measured the boundary layer height upwind, over and downwind of the forest. In addition we measured at two sites wind profiles within the boundary layer and turbulent fluxes at the surface. This allows us to quantify the effects of the forest on boundary layer compared to the surrounding shrubland. Results show that the forest increases the boundary layer height in absence of a strong boundary layer top inversion. A model of the boundary layer height based on eddy-covariance data shows some agreement to the measurements, but fails during anticyclonic conditions and the transition to the nocturnal boundary layer. More complex models accounting for large scale influences are investigated. Further influences of the forest and surrounding shrubland on the turbulent transport of energy are discussed in a companion presentation (EGU2017-2219).

  20. A Tidally Averaged Sediment-Transport Model for San Francisco Bay, California

    USGS Publications Warehouse

    Lionberger, Megan A.; Schoellhamer, David H.

    2009-01-01

    A tidally averaged sediment-transport model of San Francisco Bay was incorporated into a tidally averaged salinity box model previously developed and calibrated using salinity, a conservative tracer (Uncles and Peterson, 1995; Knowles, 1996). The Bay is represented in the model by 50 segments composed of two layers: one representing the channel (>5-meter depth) and the other the shallows (0- to 5-meter depth). Calculations are made using a daily time step and simulations can be made on the decadal time scale. The sediment-transport model includes an erosion-deposition algorithm, a bed-sediment algorithm, and sediment boundary conditions. Erosion and deposition of bed sediments are calculated explicitly, and suspended sediment is transported by implicitly solving the advection-dispersion equation. The bed-sediment model simulates the increase in bed strength with depth, owing to consolidation of fine sediments that make up San Francisco Bay mud. The model is calibrated to either net sedimentation calculated from bathymetric-change data or measured suspended-sediment concentration. Specified boundary conditions are the tributary fluxes of suspended sediment and suspended-sediment concentration in the Pacific Ocean. Results of model calibration and validation show that the model simulates the trends in suspended-sediment concentration associated with tidal fluctuations, residual velocity, and wind stress well, although the spring neap tidal suspended-sediment concentration variability was consistently underestimated. Model validation also showed poor simulation of seasonal sediment pulses from the Sacramento-San Joaquin River Delta at Point San Pablo because the pulses enter the Bay over only a few days and the fate of the pulses is determined by intra-tidal deposition and resuspension that are not included in this tidally averaged model. The model was calibrated to net-basin sedimentation to calculate budgets of sediment and sediment-associated contaminants. While simulated net sedimentation in the four basins that comprise San Francisco Bay was correct, the simulations incorrectly eroded shallows while channels deposited because model surface-layer boxes span both shallows and channels, and neglect lateral variability of suspended-sediment concentration. Validation with recent (1983-2005) net sedimentation in South San Francisco Bay was poor, perhaps owing to poorly quantified sediment supply, and to invasive species that altered erosion and deposition processes. This demonstrates that deterministically predicting future sedimentation is difficult in this or any estuary for which boundary conditions are not stationary. The model would best be used as a tool for developing past and present sediment budgets, and for creating scenarios of future sedimentation that are compared to one another rather than considered a deterministic prediction.

  1. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  2. A nonperturbing boundary-layer transition detection

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Karman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  3. A Nonperturbing Boundary-Layer Transition Detector

    NASA Astrophysics Data System (ADS)

    O'Hare, J. E.

    1986-01-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels in the von Kaman Facility at Arnold Engineering Development Center (AEDC). The Boundary-Layer Transition Detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Model boundary-layer data are presented at Mach 8 and compared with data recorded using other methods during boundary-layer transition from laminar to turbulent flow. Spectra from the BLTD reveal the presence of a high-frequency peak during transition, which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  4. Comparison of theoretical and experimental boundary-layer development in a Mach 2.5 mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Hingst, W. R.; Towne, C. E.

    1974-01-01

    An analytical investigation was made of the boundary layer flow in an axisymmetric Mach 2.5 mixed compression inlet, and the results were compared with experimental measurements. The inlet tests were conducted in the Lewis 10- by 10-foot supersonic wind tunnel at a unit Reynolds number of 8.2 million/m. The inlet incorporated porous bleed regions for boundary layer control, and the effect of this bleed was taken into account in the analysis. The experimental boundary layer data were analyzed by using similarity laws from which the skin friction coefficient was obtained. The boundary layer analysis included predictions of laminar and turbulent boundary layer growth, transition, and the effects of the shock boundary layer interactions. In addition, the surface static pressures were compared with those obtained from an inviscid characteristics program. The results of investigation showed that the analytical techniques gave satisfactory predictions of the boundary layer flow except in regions that were badly distorted by the terminal shock.

  5. Investigation of hydrodynamic behaviour of membranes using radiotracer techniques

    NASA Astrophysics Data System (ADS)

    Miskiewicz, A.; Zakrzewska-Trznadel, G.

    2013-05-01

    The aim of the work was to study membrane devices using short-lived radioisotopes like Ba-137m and Ga-68 as tracers. These radioisotopes were obtained from radionuclide generators: Cs-137/Ba-137m and Ge-68/Ga-68. The first radionuclide, namely Ba-137m with a half-life of 2.55 minutes was applied as a liquid phase tracer for studying hydrodynamic conditions inside the membrane apparatus. The membrane module with ceramic membranes was tested by using Ba-137m. The experiments showed that this radionuclide with a short half-life is a perfect tracer for liquid phase, whereas Ga-68 with longer half-life equal to 68 minutes was considered as a solid phase (bentonite) tracer. Ga-68 was used to gain more knowledge about the phenomena occurring in the membrane boundary layer. After kinetic studies of isotope adsorption into the carrier material, the growth rate of the deposit layer as well as deposit's thickness on the flat-sheet membrane were studied. The influence of such process parameters like pressure, linear velocity of liquid and feed concentration on formation of the bentonite layer on the membrane surface was studied.

  6. Boundary layers in centrifugal compressors. [application of boundary layer theory to compressor design

    NASA Technical Reports Server (NTRS)

    Dean, R. C., Jr.

    1974-01-01

    The utility of boundary-layer theory in the design of centrifugal compressors is demonstrated. Boundary-layer development in the diffuser entry region is shown to be important to stage efficiency. The result of an earnest attempt to analyze this boundary layer with the best tools available is displayed. Acceptable prediction accuracy was not achieved. The inaccuracy of boundary-layer analysis in this case would result in stage efficiency prediction as much as four points low. Fluid dynamic reasons for analysis failure are discussed with support from flow data. Empirical correlations used today to circumnavigate the weakness of the theory are illustrated.

  7. Boundary-Layer Bypass Transition Over Large-Scale Bodies

    DTIC Science & Technology

    2016-12-16

    shape of the streamwise velocity profile compared to the flat- plate boundary layer. The research showed that the streamwise wavenumber plays a key role...many works on the suppression of the transitional boundary layer. Most of the results in the literature are for the flat- plate boundary layer but the...behaviour of the velocity and pressure changes with the curvature. This work aims to extend the results of the flat- plate boundary layer to a Rankine

  8. Investigations into the climate of the South Pole

    NASA Astrophysics Data System (ADS)

    Town, Michael S.

    Four investigations into the climate of the South Pole are presented. The general subjects of polar cloud cover, the surface energy balance in a stable boundary layer, subsurface energy transfer in snow, and modification of water stable isotopes in snow after deposition are investigated based on the historical data set from the South Pole. Clouds over the South Pole. A new, accurate cloud fraction time series is developed based on downwelling infrared radiation measurements taken at the South Pole. The results are compared to cloud fraction estimates from visual observations and satellite retrievals of cloud fraction. Visual observers are found to underestimate monthly mean cloud fraction by as much as 20% during the winter, and satellite retrievals of cloud fraction are not accurate for operational or climatic purposes. We find associations of monthly mean cloud fraction with other meteorological variables at the South Pole for use in testing models of polar weather and climate. Surface energy balance. A re-examination of the surface energy balance at the South Pole is motivated by large discrepancies in the literature. We are not able to find closure in the new surface energy balance, likely due to weaknesses in the turbulent heat flux parameterizations in extremely stable boundary layers. These results will be useful for constraining our understanding and parameterization of stable boundary layers. Subsurface energy transfer. A finite-volume model of the snow is used to simulate nine years of near-surface snow temperatures, heating rates, and vapor pressures at the South Pole. We generate statistics characterizing heat and vapor transfer in the snow on submonthly to interannual time scales. The variability of near-surface snow temperatures on submonthly time scales is large, and has potential implications for revising the interpretation of paleoclimate records of water stable isotopes in polar snow. Modification of water stable isotopes after deposition. The evolution of water stable isotopes in near-surface polar snow is simulated using a Rayleigh fractionation model including the processes of pore-space diffusion, forced ventilation, and intra-ice-grain diffusion. We find isotopic enrichment of winter snow during subsequent summers as enriched water vapor is forced into the snow and deposits as frost. This process depends on snow and atmospheric temperatures, surface wind speed, accumulation rate, and surface morphology. We further find that differential enrichment between the present day and the Last Glacial Maximum (LGM) may exaggerate the greenlandic glacial-interglacial temperature difference derived from water stable isotopes. In Antarctica, present-day post-depositional modification is likely equal to that of the LGM due to the compensating factors of lower temperatures and lower accumulation rate during the LGM.

  9. An experimental investigation of a two and a three-dimensional low speed turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Winkelmann, A. E.; Melnik, W. L.

    1976-01-01

    Experimental studies of a two and a three-dimensional low speed turbulent boundary layer were conducted on the side wall of a boundary layer wind tunnel. The 20 ft. long test section, with a rectangular cross section measuring 17.5 in. x 46 in., produced a 3.5 in. thick turbulent boundary layer at a free stream Reynolds number. The three-dimensional turbulent boundary layer was produced by a 30 deg swept wing-like model faired into the side wall of the test section. Preliminary studies in the two-dimensional boundary layer indicated that the flow was nonuniform on the 46 in. wide test wall. The nonuniform boundary layer is characterized by transverse variations in the wall shear stress and is primarily caused by nonuniformities in the inlet damping screens.

  10. Apparatus and processes for the mass production of photovoltaic modules

    DOEpatents

    Barth, Kurt L [Ft. Collins, CO; Enzenroth, Robert A [Fort Collins, CO; Sampath, Walajabad S [Fort Collins, CO

    2007-05-22

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  11. Apparatus and processes for the mass production of photovotaic modules

    DOEpatents

    Barth, Kurt L.; Enzenroth, Robert A.; Sampath, Walajabad S.

    2002-07-23

    An apparatus and processes for large scale inline manufacturing of CdTe photovoltaic modules in which all steps, including rapid substrate heating, deposition of CdS, deposition of CdTe, CdCl.sub.2 treatment, and ohmic contact formation, are performed within a single vacuum boundary at modest vacuum pressures. A p+ ohmic contact region is formed by subliming a metal salt onto the CdTe layer. A back electrode is formed by way of a low cost spray process, and module scribing is performed by means of abrasive blasting or mechanical brushing through a mask. The vacuum process apparatus facilitates selective heating of substrates and films, exposure of substrates and films to vapor with minimal vapor leakage, deposition of thin films onto a substrate, and stripping thin films from a substrate. A substrate transport apparatus permits the movement of substrates into and out of vacuum during the thin film deposition processes, while preventing the collection of coatings on the substrate transport apparatus itself.

  12. Cross-sectional characterization of the dewetting of a Au/Ni bilayer film.

    PubMed

    Cen, Xi; Thron, Andrew M; Zhang, Xinming; van Benthem, Klaus

    2017-07-01

    The solid state dewetting of Au/Ni bilayer films was investigated by cross-sectional transmission electron microscopy techniques, including energy-dispersive X-ray spectroscopy, electron energy-loss spectroscopy and precession electron diffraction. After annealing under high vacuum conditions the early stage of film agglomeration revealed significant changes in film morphology and chemical distribution. Both Au and Ni showed texturing. Despite the initial deposition sequence of the as-deposited Au/Ni/SiO 2 /Si interface structure, the majority of the metal/SiO 2 interface was Au/SiO 2 after annealing at 675°C for 1h. Void nucleation was predominantly observed at Au/Ni/SiO 2 triple junctions, rather than grain boundary grooving at free surface of the metal film. Detailed cross-sectional characterization reveals that the Au/Ni interface in addition to small amounts of metal alloying strongly affects film break-up and agglomeration kinetics. The formation of Au/SiO 2 interface sections is found to be energetically preferred over Ni/SiO 2 due to compressive stress in the as-deposited Ni layer. Void nucleation is observed at the film/substrate interface, while the formation of voids at Ni/Au phase boundaries inside the metal film is caused by the Kirkendall effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Epitaxially influenced boundary layer model for size effect in thin metallic films

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  14. Interaction of Atmospheric Turbulence with Blade Boundary Layer Dynamics on a 5MW Wind Turbine using Blade-Boundary-Layer-Resolved CFD with hybrid URANS-LES.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vijayakumar, Ganesh; Brasseur, James; Lavely, Adam

    We describe the response of the NREL 5 MW wind turbine blade boundary layer to the passage of atmospheric turbulence using blade-boundary-layer-resolved computational fluid dynamics with hybrid URANS-LES modeling.

  15. In Memoriam - Marvin L. Wesely.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaffney, J. S.; Environmental Research

    2003-06-01

    Marvin L. Wesely, senior meteorologist at Argonne National Laboratory, died January 20, 2003, from a rare form of heart cancer. He was an internationally know and highly respected leader in the scientific measurement and modeling of atmospheric boundary layer turbulence and dry deposition of air pollutants. His fundamental contributions in the development of methodologies for fomulating dry deposition processes are used in atmospheric and biospheric models applied on all scales, worldwide. His extensive research aimed at finding solutions to such environmental problems as air pollution and global warming resulted in more than 150 published articles. Dr. Wesley was also anmore » editor for the Journal of Applied Meteorology and chief scientist of the atmospheric chemistry program in Washington, DC.« less

  16. Practical calculation of laminar and turbulent bled-off boundary layers

    NASA Technical Reports Server (NTRS)

    Eppler, R.

    1978-01-01

    Bleed-off of boundary layer material is shown to be an effective means for reducing drag by conserving the laminar boundary layer and preventing separation of the turbulent boundary layer. The case in which the two effects of bleed-off overlap is examined. Empirical methods are extended to the case of bleed-off. Laminar and turbulent boundary layers are treated simultaneously and the approximation differential equations are solved without an uncertain error. The case without bleed-off is also treated.

  17. Tables for correcting airfoil data obtained in the Langley 0.3-meter transonic cryogenic tunnel for sidewall boundary-layer effects

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.; Adcock, J. B.

    1986-01-01

    Tables for correcting airfoil data taken in the Langley 0.3-meter Transonic Cryogenic Tunnel for the presence of sidewall boundary layer are presented. The corrected Mach number and the correction factor are minutely altered by a 20 percent change in the boundary layer virtual origin distance. The sidewall boundary layer displacement thicknesses measured for perforated sidewall inserts and without boundary layer removal agree with the values calculated for solid sidewalls.

  18. Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cipro, R.; Gorbenko, V.; Univ. Grenoble Alpes, F-38000, France CEA-LETI, MINATEC Campus, F-38054 Grenoble

    2014-06-30

    Metal organic chemical vapor deposition of GaAs, InGaAs, and AlGaAs on nominal 300 mm Si(100) at temperatures below 550 °C was studied using the selective aspect ratio trapping method. We clearly show that growing directly GaAs on a flat Si surface in a SiO{sub 2} cavity with an aspect ratio as low as 1.3 is efficient to completely annihilate the anti-phase boundary domains. InGaAs quantum wells were grown on a GaAs buffer and exhibit room temperature micro-photoluminescence. Cathodoluminescence reveals the presence of dark spots which could be associated with the presence of emerging dislocation in a direction parallel to the cavity. Themore » InGaAs layers obtained with no antiphase boundaries are perfect candidates for being integrated as channels in n-type metal oxide semiconductor field effect transistor (MOSFET), while the low temperatures used allow the co-integration of p-type MOSFET.« less

  19. Organic electronic devices with multiple solution-processed layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2016-07-05

    A method for fabricating an organic light emitting device stack involves depositing a first conductive electrode layer over a substrate; depositing a first set of one or more organic layers, wherein at least one of the first set of organic layers is a first emissive layer and one of the first set of organic layers is deposited by a solution-based process that utilizes a first solvent; depositing a first conductive interlayer by a dry deposition process; and depositing a second set of one or more organic layers, wherein at least one of the second set of organic layers is amore » second emissive layer and one of the second set of organic layers is deposited by a solution-based process that utilizes a second solvent, wherein all layers that precede the layer deposited using the second solvent are insoluble in the second solvent.« less

  20. Discussion of Boundary-Layer Characteristics Near the Wall of an Axial-Flow Compressor

    NASA Technical Reports Server (NTRS)

    Mager, Artur; Mohoney, John J; Budinger, Ray E

    1952-01-01

    The boundary-layer velocity profiles in the tip region of an axial-flow compressor downstream of the guide vanes and downstream of the rotor were measured by use of total-pressure and claw-type yaw probes. These velocities were resolved into two components: one along the streamline of the flow outside the boundary layer, and the other perpendicular to it. The affinity among all profiles was thus demonstrated with the boundary-layer thickness and the deflection of the boundary layer at the wall as the generalizing parameters. By use of these results and the momentum-integral equations, boundary-layer characteristics on the walls of an axial-flow compressor were qualitatively evaluated.

  1. Sediment Dispersal Within Poverty Bay, Offshore of the Waipaoa River, New Zealand

    NASA Astrophysics Data System (ADS)

    Harris, C. K.; Bever, A. J.; McNinch, J. E.

    2006-12-01

    Transport processes change drastically as sediment crosses the boundary between land and sea. As such, developing conceptual or predictive models of transport and deposition for the shoreline and inner continental shelf is critical to understanding source-to-sink sedimentary systems. In shallow coastal areas, sediment dispersal results from both dilute suspensions driven by energetic waves and current shear stresses, and by gravitationally driven flows of fluid muds. The Waipaoa River, on the east coast of the North Island of New Zealand, delivers approximately 15 million tons per year of sediment to Poverty Bay, a small embayment with water depth less than about 25 m. Instruments deployed during the winter storm season of 2006 captured periods of high discharge from the Waipaoa River that were typically associated with energetic waves and winds from the southeast. During these times, instruments deployed at 9 and 14 m water depths recorded high turbidity. Currents measured in Poverty Bay were correlated with wind velocities, but also showed prolonged periods of offshore flow within the bottom boundary layer. Sediment texture throughout much of Poverty Bay is muddy, and thick deposits have occurred during the Holocene, as evidenced by sub-bottom seismics. Short-lived radioisotopes such as ^7Be have not been found on Poverty Bay sediments during our field work, though depocenters have been identified using ^7Be on the continental shelf. This may imply that muds exist there as ephemeral and spatially patchy deposits that may bypass Poverty Bay. Bypassing mechanisms may include offshore dispersal by dilute suspended sediment, and downslope transport of fluid muds. Energetic waves may resuspend sediment, which is then transported out of Poverty Bay by ambient ocean currents. Alternatively, fluid muds may form and transport material downslope and offshore to the continental shelf. Because of the high sediment loads of the Waipaoa River, these fluid muds may be formed by hyperpycnal river flows upon entering Poverty Bay. They may also be produced by frontal systems that focus newly delivered sediments, or within fluid muds confined to the thin near-bed wave boundary layer.

  2. Softening due to disordered grain boundaries in nanocrystalline Co.

    PubMed

    Yuasa, Motohiro; Hakamada, Masataka; Nakano, Hiromi; Mabuchi, Mamoru; Chino, Yasumasa

    2013-08-28

    Nanocrystalline Co consisting of fcc and hcp phases was processed by electrodeposition, and its mechanical properties were investigated by hardness tests. In addition, high-resolution transmission electron microscopy observations and molecular dynamics (MD) simulations were performed to investigate the grain boundary structure and dislocation nucleation from the grain boundaries. A large amount of disorders existed at the grain boundaries and stacking faults were formed from the grain boundaries in the as-deposited Co specimen. The as-deposited specimen showed a lower hardness than did the annealed specimen, although the grain size of the former was smaller than that of the latter. The activation volume of the as-deposited specimen (=1.5b(3)) was lower than that of the annealed specimen (=50b(3)), thus indicating that nucleation of dislocations from grain boundaries is more active in the as-deposited specimen than in the annealed specimens. The MD simulations showed that dislocation nucleation was closely related to a change in the defect structures at the boundary. Therefore, it is suggested that a significant amount of defects enhance changes in the defect structures at the boundary, resulting in softening of the as-deposited specimen.

  3. Softening due to disordered grain boundaries in nanocrystalline Co

    NASA Astrophysics Data System (ADS)

    Yuasa, Motohiro; Hakamada, Masataka; Nakano, Hiromi; Mabuchi, Mamoru; Chino, Yasumasa

    2013-08-01

    Nanocrystalline Co consisting of fcc and hcp phases was processed by electrodeposition, and its mechanical properties were investigated by hardness tests. In addition, high-resolution transmission electron microscopy observations and molecular dynamics (MD) simulations were performed to investigate the grain boundary structure and dislocation nucleation from the grain boundaries. A large amount of disorders existed at the grain boundaries and stacking faults were formed from the grain boundaries in the as-deposited Co specimen. The as-deposited specimen showed a lower hardness than did the annealed specimen, although the grain size of the former was smaller than that of the latter. The activation volume of the as-deposited specimen (=1.5b3) was lower than that of the annealed specimen (=50b3), thus indicating that nucleation of dislocations from grain boundaries is more active in the as-deposited specimen than in the annealed specimens. The MD simulations showed that dislocation nucleation was closely related to a change in the defect structures at the boundary. Therefore, it is suggested that a significant amount of defects enhance changes in the defect structures at the boundary, resulting in softening of the as-deposited specimen.

  4. Prediction of turbulent shear layers in turbomachines

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.

    1974-01-01

    The characteristics of turbulent shear layers in turbomachines are compared with the turbulent boundary layers on airfoils. Seven different aspects are examined. The limits of boundary layer theory are investigated. Boundary layer prediction methods are applied to analysis of the flow in turbomachines.

  5. Study of boundary-layer transition using transonic-cone preston tube data

    NASA Technical Reports Server (NTRS)

    Reed, T. D.; Moretti, P. M.

    1980-01-01

    The laminar boundary layer on a 10 degree cone in a transonic wind tunnel was studied. The inviscid flow and boundary layer development were simulated by computer programs. The effects of pitch and yaw angles on the boundary layer were examined. Preston-tube data, taken on the boundary-layer-transition cone in the NASA Ames 11 ft transonic wind tunnel, were used to develope a correlation which relates the measurements to theoretical values of laminar skin friction. The recommended correlation is based on a compressible form of the classical law-of-the-wall. The computer codes successfully simulates the laminar boundary layer for near-zero pitch and yaw angles. However, in cases of significant pitch and/or yaw angles, the flow is three dimensional and the boundary layer computer code used here cannot provide a satisfactory model. The skin-friction correlation is thought to be valid for body geometries other than cones.

  6. Stability of boundary layer flow based on energy gradient theory

    NASA Astrophysics Data System (ADS)

    Dou, Hua-Shu; Xu, Wenqian; Khoo, Boo Cheong

    2018-05-01

    The flow of the laminar boundary layer on a flat plate is studied with the simulation of Navier-Stokes equations. The mechanisms of flow instability at external edge of the boundary layer and near the wall are analyzed using the energy gradient theory. The simulation results show that there is an overshoot on the velocity profile at the external edge of the boundary layer. At this overshoot, the energy gradient function is very large which results in instability according to the energy gradient theory. It is found that the transverse gradient of the total mechanical energy is responsible for the instability at the external edge of the boundary layer, which induces the entrainment of external flow into the boundary layer. Within the boundary layer, there is a maximum of the energy gradient function near the wall, which leads to intensive flow instability near the wall and contributes to the generation of turbulence.

  7. Wind and boundary layers in Rayleigh-Bénard convection. II. Boundary layer character and scaling.

    PubMed

    van Reeuwijk, Maarten; Jonker, Harm J J; Hanjalić, Kemo

    2008-03-01

    The scaling of the kinematic boundary layer thickness lambda(u) and the friction factor C(f) at the top and bottom walls of Rayleigh-Bénard convection is studied by direct numerical simulation (DNS). By a detailed analysis of the friction factor, a new parameterisation for C(f) and lambda(u) is proposed. The simulations were made of an L/H=4 aspect-ratio domain with periodic lateral boundary conditions at Ra=(10(5), 10(6), 10(7), 10(8)) and Pr=1. The continuous spectrum, as well as significant forcing due to Reynolds stresses, clearly indicates a turbulent character of the boundary layer, while viscous effects cannot be neglected, judging from the scaling of classical integral boundary layer parameters with Reynolds number. Using a conceptual wind model, we find that the friction factor C(f) should scale proportionally to the thermal boundary layer thickness as C(f) proportional variant lambda(Theta)/H, while the kinetic boundary layer thickness lambda(u) scales inversely proportionally to the thermal boundary layer thickness and wind Reynolds number lambda(u)/H proportional variant (lambda(Theta)/H)(-1)Re(-1). The predicted trends for C(f) and lambda(u) are in agreement with DNS results.

  8. Unsteady transonic viscous-inviscid interaction using Euler and boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Pirzadeh, Shahyar; Whitfield, Dave

    1989-01-01

    The Euler code is used extensively for computation of transonic unsteady aerodynamics. The boundary layer code solves the 3-D, compressible, unsteady, mean flow kinetic energy integral boundary layer equations in the direct mode. Inviscid-viscous coupling is handled using porosity boundary conditions. Some of the advantages and disadvantages of using the Euler and boundary layer equations for investigating unsteady viscous-inviscid interaction is examined.

  9. Asteroid impact vs. Deccan eruptions: The origin of low magnetic susceptibility beds below the Cretaceous-Paleogene boundary revisited

    NASA Astrophysics Data System (ADS)

    Abrajevitch, Alexandra; Font, Eric; Florindo, Fabio; Roberts, Andrew P.

    2015-11-01

    The respective roles of an asteroid impact and Deccan Traps eruptions in biotic changes at the Cretaceous-Paleogene (K-Pg) boundary are still debated. In many shallow marine sediments from around the world, the K-Pg boundary is marked by a distinct clay layer that is often underlain by a several decimeter-thick low susceptibility zone. A previous study of the Gubbio section, Italy (Lowrie et al., 1990), attributed low magnetization intensity in this interval to post-depositional dissolution of ferrimagnetic minerals. Dissolution was thought to be a consequence of downward infiltration of reducing waters that resulted from rapid accumulation of organic matter produced by mass extinctions after the K-Pg event. We compare the magnetic properties of sediments from the Gubbio section with those of the Bidart section in southern France. The two sections are similar in their carbonate lithology and the presence of a boundary clay and low susceptibility zone. When compared to background Cretaceous sediments, the low susceptibility zone in both sections is marked by an absence of biogenic magnetite, a decrease in total ferrimagnetic mineral content, and a preferential loss of magnetite with respect to hematite - features that are consistent with reductive dissolution. However, unlike the Gubbio section, where the low susceptibility zone starts immediately below the boundary clay, the low susceptibility zone and the clay layer at Bidart are separated by a ∼4-cm carbonate interval that contains abundant biogenic magnetite. Such separation casts doubt on a causal link between the impact and sediment bleaching. More likely, the low susceptibility layer marks a different environmental event that preceded the impact. An episode of increased atmospheric and oceanic acidity associated with Deccan Traps volcanism that occurred well before the K-Pg impact is argued here to account for the distinct magnetic properties of the low susceptibility intervals.

  10. Evaluation of thermal stability in spectrally selective few-layer metallo-dielectric structures for solar thermophotovoltaics

    NASA Astrophysics Data System (ADS)

    Shimizu, Makoto; Kohiyama, Asaka; Yugami, Hiroo

    2018-06-01

    The thermal stability of spectrally selective few-layer metallo-dielectric structures is evaluated to analyze their potential as absorber and emitter materials in solar thermophotovoltaic (STPV) systems. High-efficiency (e.g., STPV) systems require materials with spectrally selective properties, especially at high temperatures (>1273 K). Aiming to develop such materials for high-temperature applications, we propose a few-layer structure composed of a refractory metal (i.e., Mo) nanometric film sandwiched between the layers of a dielectric material (i.e., hafnium oxide, HfO2) deposited on a Mo bulk substrate. In vacuum conditions (<5 × 10-2 Pa), the few-layer structure shows thermal stability at 1423 K for at least 1 h. At 1473 K, the spectral selectivity was degraded. This could have been caused by the oxidation of the Mo thin film by the residual oxygen through the grain boundaries of the upper HfO2 layer. This experiment showed the potential stability of few-layer structures for applications working at temperatures greater than 1273 K as well as the degradation mechanism of the few-layer structure. This characteristic is expected to help improve the thermal stability in few-layer structures further.

  11. Development of iron platinum/oxide high anisotropy magnetic media

    NASA Astrophysics Data System (ADS)

    Yang, En

    Because the size of magnetic grains is approaching the superparamagnetic limit in current perpendicular media, it is necessary to produce thin film media made with magnetic alloys with larger magneto-crystalline anisotropy energies to achieve higher recording densities. Due to its high anisotropy field and good environmental stability, FePt (L10) is the most promising media for achieving such ultra-high recording densities. However, there are several challenges associated with the development of FePt as a perpendicular media. As deposited FePt has disordered fee phase; either high deposition temperature, > 600 oC, or a high temperature post annealing process is required to obtain the ordered L10 structure, which is not desirable for manufacturing purposes. Therefore, techniques that enable ordering at significantly reduced temperatures are critically and urgently needed. Furthermore, in order to use it as a high density recording media, very small (less than 5 nm), uniform and fully-ordered, magnetically isolated FePt (L10) columnar grains with well defined grain boundaries, excellent perpendicular texture and high coercivity are desired. In this study, experiments and research have been mainly focused on the following aspects: (1) controlling of c axis orientation of FePt, (2) obtaining small columnar FePt grains, (3) improving order parameter and magnetic properties at lower ordering temperature. After a systematic experimental investigation, we have found an experimental approach for obtaining highly ordered L1 0 FePt-oxide thin film media at moderate deposition temperatures. In most previous studies, the FePt-Oxide layer is directly deposited on a textured MgO (001) layer. By introducing a double buffer layer in between the FePt-oxide layer and the MgO underlayer, we are able to substantially enhance the L1 0 ordering of the FePt-oxide layer while lowering the deposition temperature to 400oC. The buffer layers also yield a significantly enhanced (001) texture of the formed L10 FePt film. With the order parameter near unity, the coercivity of the resulting granular L10 FePt-oxide film exceeds Hc > 20 kOe with an average grain size about D = 8 nm. With the buffer layer technique, l8kOe coercivity has also been achieved for L10 FePt-oxide film at a grain size of about D = 4.5 nm, but it requires 35% of SiO2 in the magnetic layer. With 9% of Oxide in the film, excellent perpendicular texture, very high order parameter and small grain size of FePt can also be obtained by utilizing RuAl grain size defining layer along with TiN barrier layer. With the Ag buffer layer technique, the microstructure and magnetic properties of FePt films with RuAl grain size defining layer can be further improved.

  12. Inventory of File gfs.t06z.smartguam00.tm00.grib2

    Science.gov Websites

    boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 013 planetary boundary layer WIND analysis Wind Speed [m/s] 014 planetary boundary layer RH analysis Relative Humidity [%] 015 planetary boundary layer DIST analysis Geometric Height [m] 016 surface 4LFTX analysis Best (4 layer) Lifted

  13. Potential Sedimentary Evidence of Two Closely Spaced Tsunamis on the West Coast of Aceh, Indonesia

    NASA Astrophysics Data System (ADS)

    Monecke, Katrin; Meilianda, Ella; Rushdy, Ibnu; Moena, Abudzar; Yolanda, Irvan P.

    2016-04-01

    Recent research in the coastal regions of Aceh, Indonesia, an area that was largely affected by the 2004 Sumatra Andaman earthquake and ensuing Indian Ocean tsunami, suggests the possibility that two closely spaced tsunamis occurred at the turn of the 14th to 15th century (Meltzner et al., 2010; Sieh et al., 2015). Here, we present evidence of two buried sand layers in the coastal marshes of West Aceh, possibly representing these penultimate predecessors of the 2004 tsunami. We discovered the sand layers in an until recently inaccessible area of a previously studied beach ridge plain about 15 km North of Meulaboh, West Aceh. Here, the 2004 tsunami left a continuous, typically a few cm thick sand sheet in the coastal hinterland in low-lying swales that accumulate organic-rich deposits and separate the sandy beach ridges. In keeping with the long-term progradation of the coastline, older deposits have to be sought after further inland. Using a hand auger, the buried sand layers were discovered in 3 cores in a flooded and highly vegetated swale in about 1 km distance to the shoreline. The pair of sand layers occurs in 70-100 cm depth and overlies 40-60 cm of dark-brown peat that rests on the basal sand of the beach ridge plain. The lower sand layer is only 1-6 cm thick, whereas the upper layer is consistently thicker, measuring 11-17 cm, with 8-14 cm of peat in between sand sheets. Both layers consist of massive, grey, medium sand and include plant fragments. They show very sharp upper and lower boundaries clearly distinguishing them from the surrounding peat and indicating an abrupt depositional event. A previously developed age model for sediments of this beach ridge plain suggest that this pair of layers could indeed correlate to a nearby buried sand sheet interpreted as tsunamigenic and deposited soon after 1290-1400AD (Monecke et al., 2008). The superb preservation at this new site allows the clear distinction of two depositional events, which, based on a first estimate of sedimentation rates, are separated by only a few decades. Future microfossil and grain size analysis as well as radiocarbon dating are necessary to assertively interpret the origin, depositional characteristics and age of the two sand layers. Meltzner et al. (2010): Coral evidence for earthquake recurrence and an A.D. 1390 - 1455 earthquake cluster at the south end of the 2004 Aceh-Andaman rupture. J. Geophys. Res. 115, B10402. Sieh et al. (2015): Penultimate predecessors of the 2004 Indian Ocean tsunami in Aceh, Sumatra: Stratigraphic, archeological and historical evidence. J. Geophys. Res. Solid Earth, 120, 308-325. Monecke et al. (2008): A 1,000-year sedimentary record of tsunami recurrence in northern Sumatra. Nature, 455, 1232-1234.

  14. Observations of the Summertime Boundary Layer over the Ross Ice Shelf, Antarctica Using SUMO UAVs

    NASA Astrophysics Data System (ADS)

    Nigro, M. A.; Cassano, J. J.; Jolly, B.; McDonald, A.

    2014-12-01

    During January 2014 Small Unmanned Meteorological Observer (SUMO) unmanned aerial vehicles (UAVs) were used to observe the boundary layer over the Ross Ice Shelf, Antarctica. A total of 41 SUMO flights were completed during a 9-day period with a maximum of 11 flights during a single day. Flights occurred as frequently as every 1.5 hours so that the time evolution of the boundary layer could be documented. On almost all of the flights the boundary layer was well mixed from the surface to a depth of less than 50 m to over 350 m. The depth of the well-mixed layer was observed to both increase and decrease over the course of an individual day suggesting that processes other than entrainment were altering the boundary layer depth. The well-mixed layer was observed to both warm and cool during the field campaign indicating that advective processes as well as surface fluxes were acting to control the temporal evolution of the boundary layer temperature. Only a small number of weakly stably stratified boundary layers were observed. Strong, shallow inversions, of up to 6 K, were observed above the top of the boundary layer. Observations from a 30 m automatic weather station and two temporary automatic weather stations 10 km south and west of the main field campaign location provide additional data for understanding the boundary layer evolution observed by the SUMO UAVs during this 9-day period. This presentation will discuss the observed evolution of the summertime boundary layer as well as comment on lessons learned operating the SUMO UAVs at a remote Antarctic field camp.

  15. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  16. Polar Cap Energy Deposition Events During the 5-6 August 2011 Magnetic Storm

    NASA Astrophysics Data System (ADS)

    Horvath, Ildiko; Lovell, Brian C.

    2018-03-01

    We study the 5-6 August 2011 storm for its energy deposition events occurring deep in the polar cap region, where the consequential localized intensifications of earthward directed Poynting flux led to the development of their related localized neutral density increases. For unraveling the underlying physical processes, we investigate the relations among Poynting flux intensifications, flow channels (FCs), and localized neutral density enhancements plus the nature of the underlying reconnection events. Observational results demonstrate Poynting flux increase deep in the polar cap in a FC-2 type FC during magnetopause reconnections and in a FC-4 type FC during lobe reconnections. During the latter stages of these different types of reconnection events, energy/momentum transfer occurred along old-open field lines and commonly led to the development of localized neutral density increases during their respective upwelling events fueled by field-aligned currents and above/within these polar FCs. The prevailing BY domination and the pulsed nature of this storm created favorable conditions for the development of these FC-2 and FC-4 types in the sunlit northern summer hemisphere and caused the observed Poynting flux intensifications deep in the polar cap. The solar wind source of these reconnections taking place along old-open field lines was situated in the high-latitude boundary layer. Thus, the high-latitude boundary layer dynamo provided a vigorous source of energy/momentum transfer during the latter-stage reconnections unfolding along old-open field lines.

  17. Geochemistry and mineralogy of Early Archean spherule beds, Baberton Mountain Land, South Africa: Evidence for origin by impact doubtful

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Reimold, Wolf Uwe; Boer, Rudolf H.

    1993-09-01

    Spherule layers in the approximately 3.4 Ga Barberton Greenstone Belt, South Africa, have been interpreted as being the result of large asteroid or comet impacts on the early earth. This interpretation was based, among other arguments, on the enrichment of siderophile elements, especially the platinum group elements. We made a detailed mineralogical, petrological and geochemical study of spherule bed samples taken from drill cores and underground esposures at the Princeton, Mt. Morgan and Sheba gold mines, as well as surface localities. The macrostructure of each sample (from within different spherule layer units) shows evidence for multiple (more than five) events over about 30 cm. The mineralogy provides evidence for extensive hydrothermal and metasomatic alterations of the spherule beds. Geochemical analyses of alternating spherule, shale and chert layers show no correlation between the siderophile elements (e.g., Ir, Co, Ni and Au), contrary to that which would be expected if the siderophile elements had an extraterrestrial source. Furthermore, no significant variation in the content of the siderophile elements was detected between spherule layers and shale layers; however, siderophile element contents are high only in layers containing abundant sulphide minerals and having high As, Sb, Se and Cr contents. We suggest that complex mineralizations, similar to those that have formed the Barberton Archean gold deposits or the Bon Accord deposit, were responsible for the siderophile element enrichments in the spherule beds. Nowhere else in the world have such multiple (or even single) spherule beds been observed, and none of the numerous known impact craters (or the Cretaceous-Tertiary boundary) is associated with comparable spherule beds. Known impact debris usually contains less than 1% meteoritic component, if any at all, while Barberton spherules are anomalous in being extremely enriched compared to any known impact deposits.

  18. Is there evidence for Cretaceous-Tertiary boundary-age deep-water deposits in the Caribbean and Gulf of Mexico?

    NASA Astrophysics Data System (ADS)

    Keller, G.; MacLeod, N.; Lyons, J. B.; Officer, C. B.

    1993-09-01

    Over most of the Gulf of Mexico and Caribbean a hiatus is present between the lower upper Maastrichtian and lowermost Tertiary deposits; sedimentation resumed ˜200 ka (upper zone Pla) after the K-T boundary. Current-bedded volcaniclastic sedimentary rocks at Deep Sea Drilling Project (DSDP) Sites 536 and 540, which were previously interpreted as impact-generated megawave deposits of K-T boundary age, are biostratigraphically of pre-K-T boundary age and probably represent turbidite or gravity-How deposits. The top 10 to 20 cm of this deposit at Site 536 contains very rare Micula prinsii, the uppermost Maastrichtian index taxon, as well as low values of Ir (0.6 pbb) and rare Ni-rich spinels. These indicate possible reworking of sediments of K-T boundary age at the hiatus. Absence of continuous sediment accumulation across the K-T boundary in the 16 Gulf of Mexico and Caribbean sections examined prevents their providing evidence of impact-generated megawave deposits in this region. Our study indicates that the most complete trans-K-T stratigraphic records may be found in onshore marine sections of Mexico, Cuba, and Haiti. The stratigraphic records of these areas should be investigated further for evidence of impact deposits.

  19. Skin-Friction Measurements at Subsonic and Transonic Mach Numbers with Embedded-Wire Gages

    DTIC Science & Technology

    1981-01-01

    Model ................................... 17 9. Boundary-Layer Rake Installation on EBOR Model...boundary-layer total pressure rake eliminates this bulky mechanism and the long data acquisition time, but it introduces interferences which affect the...its construction. Further, boundary-layer rakes are restricted to measurements in thick boundary layers. Surface pressure probes such as Stanton tubes

  20. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  1. Three dimensional flow field inside compressor rotor, including blade boundary layers

    NASA Technical Reports Server (NTRS)

    Galmes, J. M.; Pouagere, M.; Lakshminarayana, B.

    1982-01-01

    The Reynolds stress equation, pressure strain correlation, and dissipative terms and diffusion are discussed in relation to turbulence modelling using the Reynolds stress model. Algebraic modeling of Reynolds stresses and calculation of the boundary layer over an axial cylinder are examined with regards to the kinetic energy model for turbulence modelling. The numerical analysis of blade and hub wall boundary layers, and an experimental study of rotor blade boundary layer in an axial flow compressor rotor are discussed. The Patankar-Spalding numerical method for two dimensional boundary layers is included.

  2. Boundary-layer effects in composite laminates. I - Free-edge stress singularities. II - Free-edge stress solutions and basic characteristics

    NASA Technical Reports Server (NTRS)

    Wang, S. S.; Choi, I.

    1982-01-01

    The fundamental nature of the boundary-layer effect in fiber-reinforced composite laminates is formulated in terms of the theory of anisotropic elasticity. The basic structure of the boundary-layer field solution is obtained by using Lekhnitskii's stress potentials (1963). The boundary-layer stress field is found to be singular at composite laminate edges, and the exact order or strength of the boundary layer stress singularity is determined using an eigenfunction expansion method. A complete solution to the boundary-layer problem is then derived, and the convergence and accuracy of the solution are analyzed, comparing results with existing approximate numerical solutions. The solution method is demonstrated for a symmetric graphite-epoxy composite.

  3. Modification in drag of turbulent boundary layers resulting from manipulation of large-scale structures

    NASA Technical Reports Server (NTRS)

    Corke, T. C.; Guezennec, Y.; Nagib, H. M.

    1981-01-01

    The effects of placing a parallel-plate turbulence manipulator in a boundary layer are documented through flow visualization and hot wire measurements. The boundary layer manipulator was designed to manage the large scale structures of turbulence leading to a reduction in surface drag. The differences in the turbulent structure of the boundary layer are summarized to demonstrate differences in various flow properties. The manipulator inhibited the intermittent large scale structure of the turbulent boundary layer for at least 70 boundary layer thicknesses downstream. With the removal of the large scale, the streamwise turbulence intensity levels near the wall were reduced. The downstream distribution of the skin friction was also altered by the introduction of the manipulator.

  4. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  5. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, J. A.; Kassir, S. M.; Larwood, S. M.

    1989-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent boundary layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free-stream, both of which act to improve the transmission of momentum from the free-stream to the boundary layers.

  6. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    NASA Astrophysics Data System (ADS)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases surface temperature, and thus enhances biogenic VOC emissions and surface ozone. Our findings demonstrate the importance of considering meteorological responses to vegetation changes in future air quality assessment, and call for greater coordination among land use, ecosystem and air quality management efforts.

  7. New Materials for Chalcogenide Based Solar Cells

    NASA Astrophysics Data System (ADS)

    Tosun, Banu Selin

    Thin film solar cells based on copper indium gallium diselenide (CIGS) have achieved efficiencies exceeding 20 %. The p-n junction in these solar cells is formed between a p-type CIGS absorber layer and a composite n-type film that consists of a 50-100 nm thin n-type CdS followed by a 50-200 nm thin n-type ZnO. This dissertation focuses on developing materials for replacing CdS and ZnO films to improve the damp-heat stability of the solar cells and for minimizing the use of Cd. Specifically, I demonstrate a new CIGS solar cell with better damp heat stability wherein the ZnO layer is replaced with SnO2. The efficiency of solar cells made with SnO2 decreased less than 5 % after 120 hours at 85 °C and 85 % relative humidity while the efficiency of solar cells made with ZnO declined by more than 70 %. Moreover, I showed that a SnO2 film deposited on top of completed CIGS solar cells significantly increased the device lifetime by forming a barrier against water diffusion. Semicrystalline SnO2 films deposited at room temperature had nanocrystals embedded in an amorphous matrix, which resulted in films without grain boundaries. These films exhibited better damp-heat stability than ZnO and crystalline SnO2 films deposited at higher temperature and this difference is attributed to the lack of grain boundary water diffusion. In addition, I studied CBD of Zn1-xCdxS from aqueous solutions of thiourea, ethylenediaminetetraacetic acid and zinc and cadmium sulfate. I demonstrated that films with varying composition (x) can be deposited through CBD and studied the structure and composition variation along the films' thickness. However, this traditional chemical bath deposition (CBD) approach heats the entire solution and wastes most of the chemicals by homogenous particle formation. To overcome this problem, I designed and developed a continuous-flow CBD approach to utilize the chemicals efficiently and to eliminate homogenous particle formation. Only the substrate is heated to the deposition temperature while the CBD solution is rapidly circulated between the bath and a chilled reservoir. We have demonstrated Zn1-x CdxS films for a variety of (x) values, with and without varying (x) across film thickness.

  8. Holocene sedimentary processes in the Gemlik Gulf: a transtensional basin on the middle Strand of the North Anatolian Fault, Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Özmaral, A.; Çagatay, M. N.; Imren, C.; Gasperini, L.; Henry, P.

    2012-04-01

    Gemlik Gulf is an oval-shaped transtensional basin with a maximum depth of 113 m, located on the middle strand of the North Anatolian Fault (NAF) in the eastern part of the Sea of Marmara (SOM). During the last glacial period until the Holocene marine transgression about 12 ka BP, the sea level was below the Çanakkale (Dardanelles) Strait's bedrock sill depth of -85 m, and the Gemlik Basin became a lake isolated lake from the rest of the Sea of Marmara "Lake" and the global ocean. The high resolution seismic profiles and the multi- beam bathymetric map of the basin show that the basin is characterized by NW-SE trending transtensional oblique faults, delta lobes of the Büyükdere (Kocadere) to the east and an erosional surface below an up to 15 m-thick Holocene mud drape. The Holocene mud drape was studied in up to 9.5 m-long gravity-piston and 0.84 m-long sediment/water interface cores located at -105 to -113 m in the basin's depocentre. The Holocene mud consists mainly of plastic gray green marine clayey mud that includes thick-red brown clay layers and a laminated organic-rich, dark olive green sapropel in the lower part, which was previously dated at 11.6-6.4 14Ckyr (uncalib) BP. Multi-proxy analyses of the Holocene mud drape in the sediment cores were carried out using Multisensor Core Logger, XRF Core Scanner equipped with digital X-Ray radiography, and laser particle size analyzer. Seismic-core correlation was made using seismic data of the chirp profiles at the core locations and the synthetic seismograms generated using the MSCL P-wave velocity and gamma density measurements. The long piston-gravity cores include five 20 to 100 mm-thick "red brown mud layers" in the top 2.5 m of the core. These layers have a sharp basal boundary and gradational upper boundary. The red brown layers consist of 55-75% clay-size material with an average grain size of 3-4 µm, and have relatively a high magnetic susceptibility. They are enriched in K, Fe, Ti and Zr that are the proxy of detrital mineral input, and depleted in Ca, Br, Fe and Mn. Manganese shows a sharp enrichment immediately below the base of the red brown layers. All these features strongly suggest that the red layers represent the distal edges mass flow deposits, possibly sourced from the delta to the east. The distinct Mn enrichments below the base of the red brown layers represent the diagenetic enrichment at the oxic/anoxic boundary near the seafloor, which was later covered by the mass flow deposit. C-14 and radionuclide datings of the mass flow layers and investigation of their possible relation to the past earthquakes are under progress.

  9. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-in. diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a "nominally laminar" boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a "Blasius-like" mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  10. Increased Jet Noise Due to a "Nominally Laminar" State of Nozzle Exit Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.

    2017-01-01

    A set of 2-inch diameter nozzles is used to investigate the effect of varying exit boundary layer state on the radiated noise from high-subsonic jets. It is confirmed that nozzles involving turbulent boundary layers are the quietest while nozzles involving a nominally-laminar boundary layer are loud especially on the high-frequency side of the sound pressure level spectrum. The latter boundary layer state involves a Blasius-like mean velocity profile but higher turbulence intensities compared to those in the turbulent state. The higher turbulence in the initial region of the jet shear layer leads to increased high-frequency noise. The results strongly suggest that an anomaly noted with subsonic jet noise databases in the literature is due to a similar effect of differences in the initial boundary layer state.

  11. Organic electronic devices with multiple solution-processed layers

    DOEpatents

    Forrest, Stephen R.; Lassiter, Brian E.; Zimmerman, Jeramy D.

    2015-08-04

    A method of fabricating a tandem organic photosensitive device involves depositing a first layer of an organic electron donor type material film by solution-processing of the organic electron donor type material dissolved in a first solvent; depositing a first layer of an organic electron acceptor type material over the first layer of the organic electron donor type material film by a dry deposition process; depositing a conductive layer over the interim stack by a dry deposition process; depositing a second layer of the organic electron donor type material over the conductive layer by solution-processing of the organic electron donor type material dissolved in a second solvent, wherein the organic electron acceptor type material and the conductive layer are insoluble in the second solvent; depositing a second layer of an organic electron acceptor type material over the second layer of the organic electron donor type material film by a dry deposition process, resulting in a stack.

  12. Preliminary results of the on-demand vortex-generator experiments

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1995-01-01

    This is a report on the continuation of our experimental investigations (Saddoughi 1994) of 'on-demand' vortex generators. Conventional vortex generators as found on aircraft wings are mainly for suppression of separation during the off-design conditions. In cruise they perform no useful function and exert a significant drag penalty. Therefore, replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would be of interest. Also in our previous report, we described one example of an 'on-demand' device, which was developed by Jacobson & Reynolds (1995) at Stanford University, suitable for manufacture by micro-electro-mechanical technology. This device consists of a surface cavity elongated in the stream direction and covered with a lid cantilevered at the upstream end. The lid, which is a metal sheet with a sheet of piezoelectric ceramic bonded to it, lies flush with the boundary. On application of a voltage the ceramic expands or contracts; however, adequate amplitude can be obtained only by running at the cantilever resonance frequency and applying amplitude modulation: for 2.5 mm x 20 mm cantilevered lids, they obtained maximum tip displacements of the order of 100 pm. Thus fluid is expelled from the cavity through the gap around the lid on the downstroke. They used an asymmetrical gap configuration and found that periodic emerging jets on the narrow side induced periodic longitudinal vorticity into the boundary layer. Their device was used to modify the inner layer of the boundary layer for skin-friction reduction. The same method could be implemented for the replacement of the conventional vortex generators; however, to promote mixing and suppress separation we needed to deposit longitudinal vortices into the outer layer of the boundary layer, which required a larger vortex generator than the device built by Jacobson & Reynolds. Our vortex generator was built with a mechanically-driven cantilevered lid with an adjustable frequency. The device was made about ten times the size of Jacobson & Reynolds', the shape or size of the cavity and lid (28 mm x 250 mm) could be easily changed. The cavity depth, the cantilever-tip displacement, and the maximum lid frequency were 20 mm, 10 mm, and 60 Hz respectively. Our vortex generator was mounted on a turntable so that its yaw angle could be changed. Finally, tests over a range of ratios of vortex generator size to boundary-layer thickness could be carried out simply by changing the streamwise location of the device.

  13. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang; Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  14. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOEpatents

    Shtein, Max [Ann Arbor, MI; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2008-10-14

    A method of fabricating an optoelectronic device comprises: depositing a first layer having protrusions over a first electrode, in which the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer; in which the smallest lateral dimension of the protrusions are between 1 to 5 times the exciton diffusion length of the first organic small molecule material; and depositing a second electrode over the second layer to form the optoelectronic device. A method of fabricating an organic optoelectronic device having a bulk heterojunction is also provided and comprises: depositing a first layer with protrusions over an electrode by organic vapor phase deposition; depositing a second layer on the first layer where the interface of the first and second layers forms a bulk heterojunction; and depositing another electrode over the second layer.

  15. The Cretaceous-Paleogene transition and Chicxulub impact ejecta in the northwestern Gulf of Mexico: Paleoenvironments, sequence stratigraphic setting and target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, Peter

    2003-07-01

    The Cretaceous-Paleogene (K-P) transition is characterized by a period of mass extinctions, the Chicxulub impact event, sea-level changes, and considerable climate changes (e.g., cooling). The Gulf of Mexico region is a key area for addressing these issues, specifically because of the proximity to the large Chicxulub impact structure in southern Mexico, and because of its shallow shelf areas throughout the Maastrichtian to Danian period. This study presents the results of a multidisciplinary investigation of Chicxulub impact ejecta and marine sediments from the K-P transition in the western Gulf of Mexico. Sedimentological, mineralogical, and geochemical aspects of K-P sections and cores from northeastern Mexico, Texas, and Alabama have been by studied with focus on Chicxulub ejecta, long- or short-term facies change, and sequence stratigraphic setting. CHICXULUB EJECTA: The Chicxulub ejecta (or impact spherule) deposits from northeastern Mexico and Texas revealed an unexpected complex and localized ejecta composition. Fe-Mg-rich chlorite- as well as Si-Al-K-rich glass-spherules are the predominant silicic ejecta components in northeastern Mexico, whereas in Texas, spherules of Mg-rich smectite compositions were encountered. Spherules contain Fe-Ti-K-rich schlieren, Fe-Mg-rich globules, and rare µm-sized metallic and sulfidic Ni-Co-(Ir-?) rich inclusions. This composition provides evidence for a distinct range of target rocks of mafic to intermediate composition, presumably situated in the northwestern sector of the Chicxulub impact structure, in addition to the possibility of contamination by meteoritic material. The absence of spinels and the ubiquitous presence of hematite and goethite points to high oxygen fugacity during the impact process. Besides these silicic phases, the most prominent ejecta component is carbonate.! Carbonate is found in ejecta deposits as unshocked clasts, accretionary lapilli-like grains, melt globules (often with quenching textures), and as microspar, suggesting that this area received ejecta mainly from shallow, carbonate-rich lithologies at the impact site on the Yucatán carbonate platform. Albeit the ejecta spherules are mostly altered to clay minerals and iron oxides, the microfacies and internal textures of the ejecta particles show a variety of distinct features, including welding and fusing of components and evidence for liquid immiscibility between silicic-silicic and carbonate-silicic melts. No evidence for binary mixing of ejecta phases was found. Therefore, it is assumed that ejecta in northeastern Mexico derived from less energetic parts of the ejecta curtain. The welding features of ejecta particles suggest an initial ground surge-like ejecta-dispersion mode. The specific morphological features and the compositional range of Chicxulub ejecta, as well as the results of petrological and rock magnetic characteristics reveal similarities to Chicxulub ejecta from K-P sections in the Gulf of Mexico area, the Caribbean, the Atlantic, the Pacific, and Northern America (Western Interior). In addition, Mg-rich smectite, K-feldspar, and iron oxide-rich microspherules are characteristic for the K-P boundary clay layer in sections from the Atlantic and Tethyan realm, suggestive of a relationship between the Chicxulub impact event and the basal K-P boundary clay layer. EJECTA DEPOSITS: The Chicxulub ejecta deposits are commonly associated with an event deposit that shows a complex succession of deposition from high-energetic (channelized) debris flows or turbidity currents derived from multiple source areas, followed by a period of decreasing current energy and intermittent periods of reworking. The uppermost parts of these deposits are often bioturbated, pointing to longer periods of deposition, as also sustained by the complex internal subdivision of the K-P event deposits. In northeastern Mexico, Chicxulub ejecta is also locally embedded within latest Maastrichtian marls, though common soft-sediment deformation opposes a clear age assignation of these deposits. However, individual spherule layers in the slumped and in the channelized spherule deposits are of similar petrological, mineralogical, and geochemical composition with no size-sorting and abrasion of ejecta, hence pointing to an origin from a single impact event (Chicxulub) and providing no evidence for extended periods between reworking of individual spherule layers. In the Brazos core from Texas, a m-thick shale interval, almost devoid of micro- and macrofossils and therefore of unclear stratigraphic age, is sandwiched between Chicxulub impact ejecta and the first appearance of Paleocene microfossils, indicating a period (of enhanced reworking?) between these two events. However, no mm-thick ferruginous layer with Ni-rich spinels, smectite spherules, and shocked quartz that defines the K-P boundary in the Global Stratotype Section and Point (GSSP) at El Kef, Tunisia, and elsewhere has been observed in any of the sections and cores studied. Therefore, an unequivocal positioning of the K-P boundary is difficult for the northwestern Gulf of Mexico region. PALEOCLIMATE RECORD: The long-term record of clay mineral species during the K-P transition of northeastern Mexico, Texas, and Alabama shows remarkably localized compositional patterns, indicating local sediment influx from topographically, petrologically, and probably climatically distinct source regions. Chlorite-illite-dominated clay assemblages in northwestern Mexico indicate mafic source rocks, predominance of physical weathering, and cooler climates, probably associated with the uplift of the Sierra Madre Oriental, whereas a smectite-dominated clay assemblage in Texas indicates semiarid-humid climates. In central Alabama, a distinct trend from tropically humid and warm climates to more seasonal and drier climate that already started in the late Maastrichtian was inferred from a prominent change of a kaolinite- to a smectite-dominated clay mineral assemblage. Hence, no unique climate conditions and distinct climate trends can be inferred for the northwestern Gulf of Mexico area from the data provided by this study. SEQUENCE STRATIGRAPHY: The sequence stratigraphic setting of the Maastrichtian to Danian strata in northeastern Mexico, Texas, and Alabama is also quite complex. The deep-water marls in northeastern Mexico were not amenable to a clear sequence stratigraphic subdivision, though the similar mineralogical (and geochemical) composition of the Maastrichtian to Danian marls provided no evidence for a distinct major facies change during this interval. In Texas, no facies change was observed for the (highstand) shale interval that includes the event bed, though a gradual sea-level lowering took place upon the appearance of the earliest Paleocene microfossils. A sequence boundary is present in the earliest Danian and overlain by transgressive systems tract. In central Alabama, a pronounced sea-level shallowing was recognized during a highstand systems tract in the late Maastrichtian, topped by a sequence boundary and subsequent (strongly) rising sea level throughout the latest Maastrichtian and the early Danian. Rapid and intense water-depth fluctuations are inferred from middle Danian carbonate-rich strata concomitant to a change from a mixed siliciclastic-carbonate depositional system to a more stable carbonate platform in central Alabama during this period. In summary, no universal pattern of facies and related sea-level changes was obtained from the northwestern Gulf of Mexico area, and particularly, no evidence for adverse an- or dysoxic sedimentary conditions were observed for the Maastrichtian to Danian interval governed by this study.

  16. Ruthenium films by digital chemical vapor deposition: Selectivity, nanostructure, and work function

    NASA Astrophysics Data System (ADS)

    Dey, Sandwip K.; Goswami, Jaydeb; Gu, Diefeng; de Waard, Henk; Marcus, Steve; Werkhoven, Chris

    2004-03-01

    Ruthenium electrodes were selectively deposited on photoresist-patterned HfO2 surface [deposited on a SiOx/Si wafer by atomic layer deposition (ALD)] by a manufacturable, digital chemical vapor deposition (DCVD) technique. DCVD of Ru was carried out at 280-320 °C using an alternate delivery of Bis (2,2,6,6-tetramethyl-3,5-heptanedionato)(1,5-cyclooctadiene)Ru (dissolved in tetrahydrofuran) and oxygen. The as-deposited Ru films were polycrystalline, dense, and conducting (resistivity ˜20.6 μΩ cm). However, Rutherford backscattering spectroscopy, x-ray photoelectron spectroscopy, and high-resolution electron microscopy results indicate the presence of an amorphous RuOx at the Ru grain boundaries and at the DCVD-Ru/ALD-HfO2 interface. The estimated work function of DCVD-Ru on ALD-HfO2 was ˜5.1 eV. Moreover, the equivalent oxide thickness, hysteresis in capacitance-voltage, and leakage current density at -2 V of the HfO2/SiOx dielectric, after forming gas (95% N2+5% H2) annealing at 450 °C for 30 min, were 1.4 nm, 20 mV, and 7.4×10-7 A cm-2, respectively.

  17. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE PAGES

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad; ...

    2016-08-09

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  18. An Atomistic View of the Incipient Growth of Zinc Oxide Nanolayers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Manh Hung; Tian, Liang; Chaker, Ahmad

    The growth of zinc oxide thin films by atomic layer deposition is believed to proceed through an embryonic step in which three-dimensional nanoislands form and then coalesce to trigger a layer-by-layer growth mode. This transient initial state is characterized by a poorly ordered atomic structure, which may be inaccessible by X-ray diffraction techniques. Here in this work, we apply X-ray absorption spectroscopy in situ to address the local structure of Zn after each atomic layer deposition cycle, using a custom-built reactor mounted at a synchrotron beamline, and we shed light on the atomistic mechanisms taking place during the first stagesmore » of the growth. We find that such mechanisms are surprisingly different for zinc oxide growth on amorphous (silica) and crystalline (sapphire) substrate. Ab initio simulations and quantitative data analysis allow the formulation of a comprehensive growth model, based on the different effects of surface atoms and grain boundaries in the nanoscale islands, and the consequent induced local disorder. From a comparison of these spectroscopy results with those from X-ray diffraction reported recently, we observe that the final structure of the zinc oxide nanolayers depends strongly on the mechanisms taking place during the initial stages of growth. Finally, the approach followed here for the case of zinc oxide will be of general interest for characterizing and optimizing the growth and properties of more complex nanostructures.« less

  19. Electrical Transfer Function and Poling Mechanisms for Nonlinear Optical Polymer Modulators

    NASA Technical Reports Server (NTRS)

    Watson, Michael Dale

    2004-01-01

    Electro-Optic Polymers hold great promise in increased electro-optic coefficients as compared to their inorganic corollaries. Many researchers have focused on quantum chemistry to describe how the dipoles respond to temperature and electric fields. Much work has also been done for single layer films to confirm these results. For optical applications, waveguide structures are utilized to guide the optical waves in 3 layer stacks. Electrode poling is the only practical poling method for these structures. This research takes an electrical engineering approach to develop poling models and electrical and optical transfer functions of the waveguide structure. The key aspect of the poling model is the large boundary charge density deposited during the poling process. The boundary charge density also has a large effect on the electrical transfer function which is used to explain the transient response of the system. These models are experimentally verified. Exploratory experiment design is used to study poling parameters including time, temperature, and voltage. These studies verify the poling conditions for CLDX/APC and CLDZ/APEC guest host electro optic polymer films in waveguide stacks predicted by the theoretical developments.

  20. Hydrogen peroxide in the marine boundary layer over the South Atlantic during the OOMPH cruise in March 2007

    NASA Astrophysics Data System (ADS)

    Fischer, H.; Pozzer, A.; Schmitt, T.; Jöckel, P.; Klippel, T.; Taraborrelli, D.; Lelieveld, J.

    2015-06-01

    In the OOMPH (Ocean Organics Modifying Particles in both Hemispheres) project a ship measurement cruise took place in the late austral summer from 01 to 23 March 2007. The French research vessel Marion Dufresne sailed from Punta Arenas, Chile (70.85° W, 53.12° S), to Réunion island (55.36° E, 21.06° S) across the South Atlantic Ocean. In situ measurements of hydrogen peroxide, methylhydroperoxide and ozone were performed and are compared to simulations with the atmospheric chemistry global circulation model EMAC (ECHAM/MESSy Atmospheric Chemistry). The model generally reproduces the measured trace gas levels, but it underestimates hydrogen peroxide mixing ratios at high wind speeds, indicating too-strong dry deposition to the ocean surface. An interesting feature during the cruise is a strong increase of hydrogen peroxide, methylhydroperoxide and ozone shortly after midnight off the west coast of Africa due to an increase in the boundary layer height, leading to downward transport from the free troposphere, which is qualitatively reproduced by the model.

  1. Simulated impacts of SO 2 emissions from the Miyake volcano on concentration and deposition of sulfur oxides in September and October of 2000

    NASA Astrophysics Data System (ADS)

    An, Junling; Ueda, Hiromasa; Matsuda, Kazuhide; Hasome, Hisashi; Iwata, Motokazu

    A regional air quality Eulerian model was run for 2 months (September and October of 2000) with and without SO 2 emissions from the Miyake volcano to investigate effects of the changes in the volcanic emissions on SO 2 and sulfate concentrations and total sulfur deposition around the surrounding areas. Volcanic emissions were injected into different model layers in different proportions within the planetary boundary layer whereas the other emissions were released in the first model layer above the ground. Meteorological fields four times per day were taken from National Centers for Environmental Prediction (NCEP). Eight Japanese monitoring sites of EANET (Acid Deposition Monitoring Network in East Asia) were used for the model evaluation. Simulations indicate that emissions from the Miyake volcano lead to increases in SO 2 and sulfate concentrations in the surrounding areas downwind in the PBL by up to 300% and 150%, respectively, and those in SO 2 levels in the area found ˜390 km north away from the Miyake site in the free troposphere (FTR) by up to 120%. Total sulfur deposition amounts per month are also increased by up to 300%. Daily SO 2 concentrations in different model layers display strong variability (10-450%) at sites significantly influenced by the volcano. Comparison shows that the RAQM model predicts daily SO 2 variations at relatively clean sites better than those at inland sites closer to volcanoes and the model well captures the timing of SO 2 peaks caused by great changes in SO 2 emissions from the Miyake volcano at most chosen sites and that monthly simulated sulfate concentrations in rainwater agree quite well with observations with the difference within a factor of 2. Improvement in spatial and temporal resolutions of meteorological data and removal of the uncertainty of other volcanic emissions may better simulations.

  2. ANGULAR MOMENTUM TRANSPORT BY ACOUSTIC MODES GENERATED IN THE BOUNDARY LAYER. I. HYDRODYNAMICAL THEORY AND SIMULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belyaev, Mikhail A.; Rafikov, Roman R.; Stone, James M., E-mail: rrr@astro.princeton.edu

    The nature of angular momentum transport in the boundary layers of accretion disks has been one of the central and long-standing issues of accretion disk theory. In this work we demonstrate that acoustic waves excited by supersonic shear in the boundary layer serve as an efficient mechanism of mass, momentum, and energy transport at the interface between the disk and the accreting object. We develop the theory of angular momentum transport by acoustic modes in the boundary layer, and support our findings with three-dimensional hydrodynamical simulations, using an isothermal equation of state. Our first major result is the identification ofmore » three types of global modes in the boundary layer. We derive dispersion relations for each of these modes that accurately capture the pattern speeds observed in simulations to within a few percent. Second, we show that angular momentum transport in the boundary layer is intrinsically nonlocal, and is driven by radiation of angular momentum away from the boundary layer into both the star and the disk. The picture of angular momentum transport in the boundary layer by waves that can travel large distances before dissipating and redistributing angular momentum and energy to the disk and star is incompatible with the conventional notion of local transport by turbulent stresses. Our results have important implications for semianalytical models that describe the spectral emission from boundary layers.« less

  3. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  4. Intercomparison of cloud model simulations of Arctic mixed-phase boundary layer clouds observed during SHEBA/FIRE-ACE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morrison, H.; Zuidema, Paquita; Ackerman, Andrew

    2011-06-16

    An intercomparison of six cloud-resolving and large-eddy simulation models is presented. This case study is based on observations of a persistent mixed-phase boundary layer cloud gathered on 7 May, 1998 from the Surface Heat Budget of Arctic Ocean (SHEBA) and First ISCCP Regional Experiment - Arctic Cloud Experiment (FIRE-ACE). Ice nucleation is constrained in the simulations in a way that holds the ice crystal concentration approximately fixed, with two sets of sensitivity runs in addition to the baseline simulations utilizing different specified ice nucleus (IN) concentrations. All of the baseline and sensitivity simulations group into two distinct quasi-steady states associatedmore » with either persistent mixed-phase clouds or all-ice clouds after the first few hours of integration, implying the existence of multiple equilibria. These two states are associated with distinctly different microphysical, thermodynamic, and radiative characteristics. Most but not all of the models produce a persistent mixed-phase cloud qualitatively similar to observations using the baseline IN/crystal concentration, while small increases in the IN/crystal concentration generally lead to rapid glaciation and conversion to the all-ice state. Budget analysis indicates that larger ice deposition rates associated with increased IN/crystal concentrations have a limited direct impact on dissipation of liquid in these simulations. However, the impact of increased ice deposition is greatly enhanced by several interaction pathways that lead to an increased surface precipitation flux, weaker cloud top radiative cooling and cloud dynamics, and reduced vertical mixing, promoting rapid glaciation of the mixed-phase cloud for deposition rates in the cloud layer greater than about 1-2x10-5 g kg-1 s-1. These results indicate the critical importance of precipitation-radiative-dynamical interactions in simulating cloud phase, which have been neglected in previous fixed-dynamical parcel studies of the cloud phase parameter space. Large sensitivity to the IN/crystal concentration also suggests the need for improved understanding of ice nucleation and its parameterization in models.« less

  5. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  6. Differential analysis for the turbulent boundary layer on a compressor blade element (including boundary-layer separation)

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Todd, C. A.

    1974-01-01

    A two-dimensional differential analysis is developed to approximate the turbulent boundary layer on a compressor blade element with strong adverse pressure gradients, including the separated region with reverse flow. The predicted turbulent boundary layer thicknesses and velocity profiles are in good agreement with experimental data for a cascade blade, even in the separated region.

  7. Similarity theory of the buoyantly interactive planetary boundary layer with entrainment

    NASA Technical Reports Server (NTRS)

    Hoffert, M. I.; Sud, Y. C.

    1976-01-01

    A similarity model is developed for the vertical profiles of turbulent flow variables in an entraining turbulent boundary layer of arbitrary buoyant stability. In the general formulation the vertical profiles, internal rotation of the velocity vector, discontinuities or jumps at a capping inversion and bulk aerodynamic coefficients of the boundary layer are given by solutions to a system of ordinary differential equations in the similarity variable. To close the system, a formulation for buoyantly interactive eddy diffusivity in the boundary layer is introduced which recovers Monin-Obukhov similarity near the surface and incorporates a hypothesis accounting for the observed variation of mixing length throughout the boundary layer. The model is tested in simplified versions which depend only on roughness, surface buoyancy, and Coriolis effects by comparison with planetary-boundary-layer wind- and temperature-profile observations, measurements of flat-plate boundary layers in a thermally stratified wind tunnel and observations of profiles of terms in the turbulent kinetic-energy budget of convective planetary boundary layers. On balance, the simplified model reproduced the trend of these various observations and experiments reasonably well, suggesting that the full similarity formulation be pursued further.

  8. Assessment of a 3-D boundary layer code to predict heat transfer and flow losses in a turbine

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.

    1984-01-01

    Zonal concepts are utilized to delineate regions of application of three-dimensional boundary layer (DBL) theory. The zonal approach requires three distinct analyses. A modified version of the 3-DBL code named TABLET is used to analyze the boundary layer flow. This modified code solves the finite difference form of the compressible 3-DBL equations in a nonorthogonal surface coordinate system which includes coriolis forces produced by coordinate rotation. These equations are solved using an efficient, implicit, fully coupled finite difference procedure. The nonorthogonal surface coordinate system is calculated using a general analysis based on the transfinite mapping of Gordon which is valid for any arbitrary surface. Experimental data is used to determine the boundary layer edge conditions. The boundary layer edge conditions are determined by integrating the boundary layer edge equations, which are the Euler equations at the edge of the boundary layer, using the known experimental wall pressure distribution. Starting solutions along the inflow boundaries are estimated by solving the appropriate limiting form of the 3-DBL equations.

  9. Effects of boundary layer on flame propagation generated by forced ignition behind an incident shock wave

    NASA Astrophysics Data System (ADS)

    Ishihara, S.; Tamura, S.; Ishii, K.; Kataoka, H.

    2016-09-01

    To study the effects of the boundary layer on the deflagration to detonation transition (DDT) process, the mixture behind an incident shock wave was ignited using laser breakdown. Ignition timing was controlled so that the interaction of the resulting flame with a laminar or turbulent boundary layer could be examined. In the case of the interaction with a laminar boundary layer, wrinkling of the flame was observed after the flame reached the corner of the channel. On the other hand, interaction with the turbulent boundary layer distorted the flame front and increased the spreading rate of the flame followed by prompt DDT. The inner structure of the turbulent boundary layer plays an important role in the DDT process. The region that distorted the flame within the turbulent boundary layer was found to be the intermediate region 0.01< y/δ < 0.4, where y is the distance from the wall and δ is the boundary layer thickness. The flame disturbance by the turbulent motions is followed by the flame interaction with the inner layer near the wall, which in turn generates a secondary-ignition kernel that produced a spherical accelerating flame, which ultimately led to the onset of detonation. After the flame reached the intermediate region, the time required for DDT was independent of the ignition position. The effect of the boundary layer on the propagating flame, thus, became relatively small after the accelerating flame was generated.

  10. Turbulent boundary layer in high Rayleigh number convection in air.

    PubMed

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-28

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra=1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  11. Experimental Study of Fillets to Reduce Corner Effects in an Oblique Shock-Wave/Boundary Layer Interaction

    NASA Technical Reports Server (NTRS)

    Hirt, Stefanie M.

    2015-01-01

    A test was conducted in the 15 cm x 15 cm supersonic wind tunnel at NASA Glenn Research Center that focused on corner effects of an oblique shock-wave/boundary-layer interaction. In an attempt to control the interaction in the corner region, eight corner fillet configurations were tested. Three parameters were considered for the fillet configurations: the radius, the fillet length, and the taper length from the square corner to the fillet radius. Fillets effectively reduced the boundary-layer thickness in the corner; however, there was an associated penalty in the form of increased boundary-layer thickness at the tunnel centerline. Larger fillet radii caused greater reductions in boundary-layer thickness along the corner bisector. To a lesser, but measureable, extent, shorter fillet lengths resulted in thinner corner boundary layers. Overall, of the configurations tested, the largest radius resulted in the best combination of control in the corner, evidenced by a reduction in boundary-layer thickness, coupled with minimal impacts at the tunnel centerline.

  12. Relaxation of the accelerating-gas boundary layer to the test-gas boundary layer on a flat plate in an expansion tube

    NASA Technical Reports Server (NTRS)

    Gupta, R. N.; Trimpi, R. L.

    1973-01-01

    An analytic investigation of the relaxation of the accelerating-gas boundary layer to the test-gas boundary layer over a flat plate mounted in an expansion tube has been conducted. In this treatment, nitrogen has been considered as the test gas and helium as the accelerating gas. The problem is analyzed in two conically similar limits: (1) when the time lag between the arrival of the shock and the interface at the leading edge of the plate is very large, and (2) when this time lag is negligible. The transient laminar boundary-layer equations of a perfect binary-gas mixture are taken as the flow governing equations. These coupled equations have been solved numerically by Gauss-Seidel line-relaxation method. The results predict the transient behavior as well as the time required for an all-helium accelerating-gas boundary layer to relax to an all-nitrogen boundary layer.

  13. Generating Inviscid and Viscous Fluid Flow Simulations over a Surface Using a Quasi-simultaneous Technique

    NASA Technical Reports Server (NTRS)

    Sturdza, Peter (Inventor); Martins-Rivas, Herve (Inventor); Suzuki, Yoshifumi (Inventor)

    2014-01-01

    A fluid-flow simulation over a computer-generated surface is generated using a quasi-simultaneous technique. The simulation includes a fluid-flow mesh of inviscid and boundary-layer fluid cells. An initial fluid property for an inviscid fluid cell is determined using an inviscid fluid simulation that does not simulate fluid viscous effects. An initial boundary-layer fluid property a boundary-layer fluid cell is determined using the initial fluid property and a viscous fluid simulation that simulates fluid viscous effects. An updated boundary-layer fluid property is determined for the boundary-layer fluid cell using the initial fluid property, initial boundary-layer fluid property, and an interaction law. The interaction law approximates the inviscid fluid simulation using a matrix of aerodynamic influence coefficients computed using a two-dimensional surface panel technique and a fluid-property vector. An updated fluid property is determined for the inviscid fluid cell using the updated boundary-layer fluid property.

  14. A nonperturbing boundary-layer transition detector

    NASA Astrophysics Data System (ADS)

    Ohare, J. E.

    1985-11-01

    A laser interferometer technique is being applied to the characterization of boundary-layer conditions on models in supersonic and hypersonic wind tunnels. The boundary-layer transition detector (BLTD), based on lateral interferometry, is applicable for determining the turbulence frequency spectrum of boundary layers in compressible flow. The turbulence, in terms of air density fluctuations, is detected by monitoring interferometric fringe phase shifts (in real time) formed by one beam which passes through the boundary layer and a reference beam which is outside the boundary layer. This technique is nonintrusive to the flow field unlike other commonly used methods such as pitot tube probing and hot-wire anemometry. Data which depict boundary-layer transition from laminar to turbulent flow are presented to provide comparisons of the BLTD with other measurement methods. Spectra from the BLTD reveals the presence of a high-frequency peak during transition which is characteristic of spectra obtained with hot wires. The BLTD is described along with operational requirements and limitations.

  15. Mean velocity and turbulence measurements in a 90 deg curved duct with thin inlet boundary layer

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.; Peters, C. E.; Steinhoff, J.; Hornkohl, J. O.; Nourinejad, J.; Ramachandran, K.

    1985-01-01

    The experimental database established by this investigation of the flow in a large rectangular turning duct is of benchmark quality. The experimental Reynolds numbers, Deans numbers and boundary layer characteristics are significantly different from previous benchmark curved-duct experimental parameters. This investigation extends the experimental database to higher Reynolds number and thinner entrance boundary layers. The 5% to 10% thick boundary layers, based on duct half-width, results in a large region of near-potential flow in the duct core surrounded by developing boundary layers with large crossflows. The turbulent entrance boundary layer case at R sub ed = 328,000 provides an incompressible flowfield which approaches real turbine blade cascade characteristics. The results of this investigation provide a challenging benchmark database for computational fluid dynamics code development.

  16. Effect of basement structure and salt tectonics on deformation styles along strike: An example from the Kuqa fold-thrust belt, West China

    NASA Astrophysics Data System (ADS)

    Neng, Yuan; Xie, Huiwen; Yin, Hongwei; Li, Yong; Wang, Wei

    2018-04-01

    The Kuqa fold-thrust belt (KFTB) has a complex thrust-system geometry and comprises basement-involved thrusts, décollement thrusts, triangle zones, strike-slip faults, transpressional faults, and pop-up structures. These structures, combined with the effects of Paleogene salt tectonics and Paleozoic basement uplift form a complex structural zone trending E-W. Interpretation and comprehensive analysis of recent high-quality seismic data, field observations, boreholes, and gravity data covering the KFTB has been performed to understand the characteristics and mechanisms of the deformation styles along strike. Regional sections, fold-thrust system maps of the surface and the sub-salt layer, salt and basement structure distribution maps have been created, and a comprehensive analysis of thrust systems performed. The results indicate that the thrust-fold system in Paleogene salt range can be divided into five segments from east to west: the Kela-3, Keshen, Dabei, Bozi, and Awate segments. In the easternmost and westernmost parts of the Paleogene salt range, strike-slip faulting and basement-involved thrusting are the dominant deformation styles, as basement uplift and the limits of the Cenozoic evaporite deposit are the main controls on deformation. Salt-core detachment fold-thrust systems coincide with areas of salt tectonics, and pop-up, imbricate, and duplex structures are associated with the main thrust faults in the sub-salt layer. Distribution maps of thrust systems, basement structures, and salt tectonics show that Paleozoic basement uplift controlled the Paleozoic foreland basin morphology and the distribution of Cenozoic salt in the KFTB, and thus had a strong influence on the segmented structural deformation and evolution of the fold-thrust belt. Three types of transfer zone are identified, based on the characteristics of the salt layer and basement uplift, and the effects of these zones on the fault systems are evaluated. Basement uplift and the boundary of the salt deposit generated strike-slip faults in the sub-salt layer and supra-salt layers at the basin boundary (Model A). When changes in the basement occurred within the salt basin, strike-slip faults controlled the deformation styles in the sub-salt layer and shear-zone dominated in the supra-salt layer (Model B). A homogeneous basement and discontinues salt layer formed different accommodation zones in the sub- and supra-salt layers (Model C). In the sub-salt layer the thrusts form imbricate structures on the basal décollement, whereas the supra-salt layer shows overlapping, discontinuous faults and folds with kinds of salt tectonics, and has greater structural variation than the sub-salt layer.

  17. Additive Manufacturing of AlSi10Mg Alloy Using Direct Energy Deposition: Microstructure and Hardness Characterization

    NASA Astrophysics Data System (ADS)

    Javidani, M.; Arreguin-Zavala, J.; Danovitch, J.; Tian, Y.; Brochu, M.

    2017-04-01

    This paper aims to study the manufacturing of the AlSi10Mg alloy with direct energy deposition (DED) process. Following fabrication, the macro- and microstructural evolution of the as-processed specimens was initially investigated using optical microscopy and scanning electron microscopy. Columnar dendritic structure was the dominant solidification feature of the deposit; nevertheless, detailed microstructural analysis revealed cellular morphology near the substrate and equiaxed dendrites at the top end of the deposit. Moreover, the microstructural morphology in the melt pool boundary of the deposit differed from the one in the core of the layers. The remaining porosity of the deposit was evaluated by Archimedes' principle and by image analysis of the polished surface. Crystallographic texture in the deposit was also assessed using electron backscatter diffraction and x-ray diffraction analysis. The dendrites were unidirectionally oriented at an angle of 80° to the substrate. EPMA line scans were performed to evaluate the compositional variation and elemental segregation in different locations. Eventually, microhardness (HV) tests were conducted in order to study the hardness gradient in the as-DED-processed specimen along the deposition direction. The presented results, which exhibited a deposit with an almost defect free structure, indicate that the DED process can suitable for the deposition of Al-Si-based alloys with a highly consolidated structure.

  18. Compressible Boundary Layer Investigation for Ramjet/scramjet Inlets and Nozzles

    NASA Astrophysics Data System (ADS)

    Goldfeld, M. A.; Starov, A. V.; Semenova, Yu. V.

    2005-02-01

    The results of experimental investigation of a turbulent boundary layer on compression and expansion surfaces are presented. They include the study of the shock wave and/or expansion fan action upon the boundary layer, boundary layer separation and its relaxation. Complex events of paired interactions and the flow on compression convex-concave surfaces were studied [M. Goldfeld, 1993]. The possibility and conditions of the boundary layer relaminarization behind the expansion fan and its effect on the relaxation length are presented. Different model configurations for wide range conditions were investigated. Comparison of results for different interactions was carried out.

  19. Heat transfer through turbulent boundary layers - The effects of introduction of and recovery from convex curvature

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.

    1979-01-01

    Measurements have been made of the heat transfer through a turbulent boundary layer on a convexly curved isothermal wall and on a flat plate following the curved section. Data were taken for one free-stream velocity and two different ratios of boundary layer thickness to radius of curvature delta/R = 0.051 and delta/R = 0.077. Only small differences were observed in the distribution of heat transfer rates for the two boundary layer thicknesses tested, although differences were noted in the temperature distributions within the boundary layer

  20. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  1. An Experimental Investigation of the Confluent Boundary Layer on a High-Lift System

    NASA Technical Reports Server (NTRS)

    Thomas, F. O.; Nelson, R. C.

    1997-01-01

    This paper describes a fundamental experimental investigation of the confluent boundary layer generated by the interaction of a leading-edge slat wake with the boundary layer on the main element of a multi-element airfoil model. The slat and airfoil model geometry are both fully two-dimensional. The research reported in this paper is performed in an attempt to investigate the flow physics of confluent boundary layers and to build an archival data base on the interaction of the slat wake and the main element wall layer. In addition, an attempt is made to clearly identify the role that slat wake / airfoil boundary layer confluence has on lift production and how this occurs. Although complete LDV flow surveys were performed for a variety of slat gap and overhang settings, in this report the focus is on two cases representing both strong and weak wake boundary layer confluence.

  2. Reconstruction of the inner structure of small scale mining waste dumps by combining GPR and ERTdata.

    NASA Astrophysics Data System (ADS)

    Kniess, Rudolf; Martin, Tina

    2015-04-01

    Two abandoned small waste dumps in the west of the Harz mountains (Germany) were analysed using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Aim of the project (ROBEHA, funded by the German Federal Ministry of Education and Research (033R105)) is the assessment of the recycling potential of the mining residues taking into account environmental risks of reworking the dump site. One task of the geophysical prospection is the investigation of the inner structure of the mining dump. This is important for the estimation of the approximate volume of potentially reusable mining deposits within the waste dump. The two investigated dump sites are different in age and therefore differ in their structure. The older residues (< 1930) consist of ore processing waste from density separation (stamp mill sand). The younger dump site descends from comprises slag dump waste. The layer of fine grained residues at the first dump site is less than 6 m thick and the slag layer is less than 2 m thick. Both sites are partially overlain by forest or grassland vegetation and characterized by topographical irregularities. Due to the inhomogeneity of the sites we applied electrical resistivity tomography (ERT) and ground penetrating radar (GPR) for detailed investigation. Using ERT we could distinguish various layers within the mining dumps. The resistivities of the dumped material differ from the bedrock resistivities at both sites. The GPR measurements show near surface layer boundaries down to 3 - 4 m. In consecutive campaigns 100 MHz and 200 MHz antennas were used. The GPR results (layer boundaries) were included into the ERT inversion algorithm to enable more precise and stable resistivity models. This needs some special preprocessing steps. The 3D-Position of every electrode from ERT measurement and the GPR antenna position on the surface require an accuracy of less than 1cm. At some points, the layer boundaries and radar wave velocities can be calibrated with borehole stratigraphic data from a mineralogical drilling campaign. This is important for a precise time-depth conversion of reflectors from GPR measurement. This reflectors were taken from radargram and have been adopted as resistivity boundary in the start model of the geoelectric inversion algorithm.

  3. Geologic Map of the MTM-85000 Quadrangle, Planum Australe Region of Mars

    USGS Publications Warehouse

    Herkenhoff, Ken E.

    2001-01-01

    Introduction The polar deposits on Mars probably record martian climate history over the last 107 to 109 years (for example, Thomas and others, 1992). The area shown on this map includes layered polar deposits and residual polar ice, as well as some exposures of older terrain. Howard and others (1982) noted that an area (at lat 84.8 S., long 356 W.) near a 23-km diameter impact crater (Plaut and others, 1988) appears to have undergone recent deposition, as evidenced by the partial burial of secondary craters. Herkenhoff and Murray (1990a) mapped this area as a mixture of frost and defrosted ground and suggested that the presence of frost throughout the year stabilizes dust deposited in this area. This quadrangle was mapped using high-resolution Mariner 9 (table 1) and Viking Orbiter images in order to study the relations among erosional, cratering, and depositional processes on the polar layered deposits and to search for further evidence of recent deposition. Published geologic maps of the south polar region of Mars are based on images acquired by Mariner 9 (Condit and Soderblom, 1978; Scott and Carr, 1978) and the Viking Orbiters (Tanaka and Scott, 1987). The extent of the layered deposits mapped previously from Mariner 9 data is different from that mapped using Viking Orbiter images, and the present map agrees with the map by Tanaka and Scott (1987): the layered deposits extend to the northern boundary of the map area. However, the oldest unit in this area is mapped as undivided material (unit HNu) rather than the hilly unit in the plateau sequence (unit Nplh; Tanaka and Scott, 1987). The residual polar ice cap, areas of partial frost cover, the layered deposits, and two nonvolatile surface units-the dust mantle and the dark material-were mapped by Herkenhoff and Murray (1990a) at 1:2,000,000 scale using a color mosaic of Viking Orbiter images. This mosaic was used to confirm the identification of the non-volatile Amazonian units for this map and to test hypotheses for their origin and evolution. The colors and albedos of these units, as measured in places both within and outside of this map area, are presented in table 2 and figure 1. The red/violet ratio image was particularly useful in distinguishing the various low-albedo materials, as brightness variations due to topography are essentially removed in such ratio images and color variations are easily seen. Because the resolution of the color mosaics is not sufficient to map these units in detail at 1:500,000 scale, contacts between them were recognized and mapped using higher resolution black and white Viking and Mariner 9 images. The largest impact crater in the layered deposits, 23 km in diameter at lat 84.5 S., long 359 W., now named 'McMurdo,' was recognized by Plaut and others (1988). The northern rim of this crater is missing, perhaps due to erosion of the layered deposits in which it was formed (fig. 2). Secondary craters from this impact are not observed north of the crater but are abundant to the south. Although the crater statistics are poor (only 16 likely impact craters found in Viking Orbiter images of the south polar layered deposits), these observations generally support the conclusions that the south polar layered deposits are Late Amazonian in age and that some areas have been exposed for about 120 million years (Plaut and others, 1988; Herkenhoff and Murray, 1992, 1994; Herkenhoff, 1998). However, the recent cratering flux on Mars is poorly constrained, so inferred ages of surface units are uncertain. The Viking Orbiter 2 images used to construct the base were taken during the southern summer of 1977, with resolutions no better than 130 m/pixel. A digital mosaic of Mariner 9 images also was constructed to aid in mapping. The Mariner 9 images were taken during the southern summer of 1971 and 1972 and have resolutions as high as 85 m/pixel (table 1). However, the usefulness of the Mariner 9 mosaic image is limited by incomplete coverag

  4. Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Interlayer Insertion Enables Organic Quaternary Memory.

    PubMed

    Cheng, Xue-Feng; Hou, Xiang; Qian, Wen-Hu; He, Jing-Hui; Xu, Qing-Feng; Li, Hua; Li, Na-Jun; Chen, Dong-Yun; Lu, Jian-Mei

    2017-08-23

    Herein, for the first time, quaternary resistive memory based on an organic molecule is achieved via surface engineering. A layer of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT-PSS) was inserted between the indium tin oxide (ITO) electrode and the organic layer (squaraine, SA-Bu) to form an ITO/PEDOT-PSS/SA-Bu/Al architecture. The modified resistive random-access memory (RRAM) devices achieve quaternary memory switching with the highest yield (∼41%) to date. Surface morphology, crystallinity, and mosaicity of the deposited organic grains are greatly improved after insertion of a PEDOT-PSS interlayer, which provides better contacts at the grain boundaries as well as the electrode/active layer interface. The PEDOT-PSS interlayer also reduces the hole injection barrier from the electrode to the active layer. Thus, the threshold voltage of each switching is greatly reduced, allowing for more quaternary switching in a certain voltage window. Our results provide a simple yet powerful strategy as an alternative to molecular design to achieve organic quaternary resistive memory.

  5. Towards Natural Transition in Compressible Boundary Layers

    DTIC Science & Technology

    2016-06-29

    AFRL-AFOSR-CL-TR-2016-0011 Towards natural transition in compressible boundary layers Marcello Faraco de Medeiros FUNDACAO PARA O INCREMENTO DA...to 29-03-2016 Towards natural transition in compressible boundary layers FA9550-11-1-0354 Marcello A. Faraco de Medeiros Germán Andrés Gaviria...unlimited. 109 Final report Towards natural transition in compressible boundary layers Principal Investigator: Marcello Augusto Faraco de Medeiros

  6. Inventory of File nam.t00z.smartconus00.tm00.grib2

    Science.gov Websites

    (Eta model reduction) [Pa] 014 planetary boundary layer WDIR analysis Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND analysis Wind Speed [m/s] 016 planetary boundary layer RH analysis Relative Humidity [%] 017 planetary boundary layer DIST analysis Geometric Height [m

  7. Gradient SiNO anti-reflective layers in solar selective coatings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Zhifeng; Cao, Feng; Sun, Tianyi

    A solar selective coating includes a substrate, a cermet layer having nanoparticles therein deposited on the substrate, and an anti-reflection layer deposited on the cermet layer. The cermet layer and the anti-reflection layer may each be formed of intermediate layers. A method for constructing a solar-selective coating is disclosed and includes preparing a substrate, depositing a cermet layer on the substrate, and depositing an anti-reflection layer on the cermet layer.

  8. Geology of the Zambales ophiolite, Luzon, Philippines

    USGS Publications Warehouse

    Rossman, D.L.; Castanada, G.C.; Bacuta, G.C.

    1989-01-01

    The Zambales ophiolite of western Luzon, Philippines, exposes a typical succession of basalt flows, diabasic dikes, gabbro and tectonized harzburgite. The age established by limiting strata is late Eocene. Lack of evidence of thrust faulting and the general domal disposition of the lithologie units indicate that the ophiolitic rocks are exposed by uplift. Highly complex internal layered structures within the complex are related to processes developed during formation of the ophiolite and the Zambales ophiolite may be one of the least disturbed (by emplacement) ophiolitic masses known. The exposed mass trends north and the upper surface plunges at low angles (a few degrees) to the north and south. The chemistry and composition of the rocks in the northwest part of the Zambales area (Acoje block) is distinct from that in the southeastern segment (Coto block). The Acoje block, according to Evans (1983) and Hawkins and Evans (1983), resembles (on a chemical basis) arc-tholeiite series rocks from intra-island arcs and the rocks in the Coto block are typical back-arc basin rock series. The present writer believes that the ophiolite composes a single genetic unit and that the changes in composition are the result of changes that took place during the initial formation. The gabbro probably formed below a spreading center in an elongate, in cross section, V-shaped, magma chamber. The gabbro is estimated by the writer to be less than 2 km thick and may be less than 1 km in places. Numerous erosional windows through the gabbro in the northern and eastern side of the Zambales area show that the gabbro remaining in those areas is likely to be only a few hundred meters thick. Harzburgite is exposed to a depth of about 800 m in the Bagsit River area and this may be the deepest part of the ophiolite accessible for study on which there is any control on depth. A transitional zone, about 200 m thick lying between the gabbro and harzburgite, is composed of serpentinized dunite. Commonly the dunite contains disseminated sulfide minerals and at the Acoje Mines, platinum-group elements. A compositional layering within the gabbro is in places cumulate in the lower part of the unit but may have formed by nucleation higher up on the relatively steep sides of the magma chamber. A widespread gneissic banding in the gabbro forms large mappable structures which are many times more complex than is the disposition of the major rock units. These structures are believed to be the result of extensive slumping in the magma chamber. The structure produced by the cumulate layering merges with the gneissic banding, commonly without discernible change in attitude. This tectonic layered structure crosses the gabbro-peridotite boundary at any angle without seeming to disturb the original rock distribution. At greater depths below the boundary (ca. 800 m), the harzburgite contains low dipping banding, which probably reflects the result of differential movement within the mantle. Chromite occurs almost exclusively in a zone that generally lies no more than 200-300 m below the gabbro-peridotite boundary. Refractory-grade chromite is found in this zone below the olivine gabbro in the Goto block and as low-grade metallurgical grade chromite below norite in the Acoje block. At Acoje Mines the chromite is present in layers in dunite, which the writer interprets as being distributed in a zone along the gently dipping (ca. 25??) gabbro-peridotite boundary. The steeply dipping (ca. 60-80 ?? ) individual layers lie en echelon along the boundary at an angle (ca. 50 ?? ) to the contact. At Coto the chromite forms large discontinuous masses in the lowest dunite and in the uppermost harzburgite. Except for the chromite present as layers at Acoje, the regional tectonic layering crosses the chromite deposits without structural deviation. The chromite deposits and associated peridotite may be cumulate in origin, but have been modified to such an extent that cumulate textures are gener

  9. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis.

    PubMed

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  10. Asymmetric simple exclusion process with position-dependent hopping rates: Phase diagram from boundary-layer analysis

    NASA Astrophysics Data System (ADS)

    Mukherji, Sutapa

    2018-03-01

    In this paper, we study a one-dimensional totally asymmetric simple exclusion process with position-dependent hopping rates. Under open boundary conditions, this system exhibits boundary-induced phase transitions in the steady state. Similarly to totally asymmetric simple exclusion processes with uniform hopping, the phase diagram consists of low-density, high-density, and maximal-current phases. In various phases, the shape of the average particle density profile across the lattice including its boundary-layer parts changes significantly. Using the tools of boundary-layer analysis, we obtain explicit solutions for the density profile in different phases. A detailed analysis of these solutions under different boundary conditions helps us obtain the equations for various phase boundaries. Next, we show how the shape of the entire density profile including the location of the boundary layers can be predicted from the fixed points of the differential equation describing the boundary layers. We discuss this in detail through several examples of density profiles in various phases. The maximal-current phase appears to be an especially interesting phase where the boundary layer flows to a bifurcation point on the fixed-point diagram.

  11. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  12. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  13. Direct growth of nano-crystalline graphite films using pulsed laser deposition with in-situ monitoring based on reflection high-energy electron diffraction technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Jeong Hun; Lee, Sung Su; Lee, Hyeon Jun

    2016-03-21

    We report an experimental method to overcome the long processing time required for fabricating graphite films by a transfer process from a catalytic layer to a substrate, as well as our study of the growth process of graphite films using a pulsed laser deposition combined with in-situ monitoring based on reflection high-energy electron diffraction technique. We monitored the structural evolution of nano-crystalline graphite films directly grown on AlN-coated Si substrates without any catalytic layer. We found that the carbon films grown for less than 600 s cannot manifest the graphite structure due to a high defect density arising from grain boundaries;more » however, the carbon film can gradually become a nano-crystalline graphite film with a thickness of approximately up to 5 nm. The Raman spectra and electrical properties of carbon films indicate that the nano-crystalline graphite films can be fabricated, even at the growth temperature as low as 850 °C within 600 s.« less

  14. Improved interface growth and enhanced flux pinning in YBCO films deposited on an advanced IBAD-MgO based template

    NASA Astrophysics Data System (ADS)

    Khan, M. Z.; Zhao, Y.; Wu, X.; Malmivirta, M.; Huhtinen, H.; Paturi, P.

    2018-02-01

    The growth mechanism is studied from the flux pinning point of view in small-scale YBa2Cu3O6+x (YBCO) thin films deposited on a polycrystalline hastelloy with advanced IBAD-MgO based buffer layer architecture. When compared the situation with YBCO films grown on single crystal substrates, the most critical issues that affect the suitable defect formation and thus the optimal vortex pinning landscape, have been studied as a function of the growth temperature and the film thickness evolution. We can conclude that the best critical current property in a wide applied magnetic field range is observed in films grown at relatively low temperature and having intermediate thickness. These phenomena are linked to the combination of the improved interface growth, to the film thickness related crystalline relaxation and to the formation of linear array of edge dislocations that forms the low-angle grain boundaries through the entire film thickness and thus improve the vortex pinning properties. Hence, the optimized buffer layer structure proved to be particularly suitable for new coated conductor solutions.

  15. Impact and extinction signatures in complete Cretaceous-Tertiary (K-T) boundary sections

    NASA Technical Reports Server (NTRS)

    Smit, J.; Groot, H.; Dejonge, R.; Smit, P.

    1988-01-01

    The Zumaya, Caravaca and Agost sections in Spain, the El Kef section in Tunisia and the Negev (Nahal Avdat) sections in Israel are among the most continuous, expanded and complete K-T boundary sections. The distribution patterns of the planktic faunas were quantitatively analyzed in closely spaced samples across the K-T boundary in these sections, in conjuction with the geochemistry, stable isotopes, mineralogy and magnetostratigraphy. Three hundred foraminiferal specimens were randomly selected and determined. Reliable estimates for the foraminiferal productivity changes across the K-T boundary and for the 1 to 2 Ma interval preceding the K-T boundary were made from the numbers of individuals/gram of sediment corrected for the sedimentation rates (calculated from magnetic reversals and lithology). No gradual or stepwise extinction is seen below the K-T boundary nor any productivity decrease. Stable isotope analyses show a warming just after deposition of the ejecta layer, not cooling as predicted by nuclear winter scenarios, although the duration of such cooling may be too short to be observed even in these complete sections. Low REE values and cpx spherules with quench textures idential to quench-textures in diagenetically altered spherules, strongly indicate an oceanic site of (one of) the impactor(s).

  16. Atmospheric tides on Venus. IV - Topographic winds and sediment transport

    NASA Astrophysics Data System (ADS)

    Dobrovolskis, A. R.

    1993-06-01

    A novel theory is presented for the Venus boundary layer which encompasses the effects of topography and uses the mixing-length hypothesis to preclude the unknown eddy viscosity. The maps of mass-flux and erosion/deposition rate presented are based on Pioneer Venus orbiter relief measurements. The typically 19 cm/sec friction speeds associated with the present theory are several times greater than those estimated on the basis of Venera 9 and 10 anemometry, and mean aeolian transport is generally away from the equator, contrary to Magellan orbiter windstreak directions.

  17. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less

  18. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    NASA Astrophysics Data System (ADS)

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; Knight, Kim B.; Isselhardt, Brett H.; Matzel, Jennifer E.; Weber, Peter K.; Prussin, Stan G.; Hutcheon, Ian D.

    2017-03-01

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamic fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device (235U/238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO2 is found to be relatively invariable across the samples and interfaces (∼3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. These fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.

  19. Deposition of vaporized species onto glassy fallout from a near-surface nuclear test

    DOE PAGES

    Weisz, David G.; Jacobsen, Benjamin; Marks, Naomi E.; ...

    2016-10-29

    In a near-surface nuclear explosion where the resultant fireball can interact with the surface, vaporized materials from the nuclear device can be incorporated into molten soil and other carrier materials from that surface. This mixed material becomes a source of glassy fallout upon quenching and is locally deposited. Fallout formation models have been proposed; however, the specific mechanisms and physical conditions by which soil and other carrier materials interact in the fireball, as well as the subsequent incorporation of device materials with carrier materials, are not well constrained. We observe a surface deposition layer preserved at interfaces where two aerodynamicmore » fallout glasses agglomerated and fused, and characterized 11 such boundaries using spatial analyses to better understand the vaporization and condensation behavior of species in the fireball. Using nanoscale secondary ion mass spectrometry (NanoSIMS), we identify higher enrichments of uranium from the device ( 235U/ 238U ratio >7.5) in 8 of the interface layers. Major element analysis of the interfaces reveals the deposition layer to be enriched in Fe, Ca, Mg, Mn, and Na-bearing species and depleted in Ti and Al-bearing species. Most notably, the Fe and Ca-bearing species are enriched approximately 50% at the interface layer relative to the average concentrations measured within the fallout glasses, while Ti and Al-bearing species are depleted by approximately 20%. SiO 2 is found to be relatively invariable across the samples and interfaces (~3% standard deviation). The notable depletion of Al, a refractory oxide abundant in the soil, together with the enrichment of 235U and Fe, suggests an anthropogenic source of the enriched species or an unexpected vaporization/condensation behavior. The presence of both refractory (e.g., Ca and U) and volatile (e.g., Na) species approximately co-located in most of the observed layers (within 1.5 μm) suggests a continuous condensation process may also be occurring. Lastly, these fallout formation processes deviate from historical models of fallout formation, and have not been previously recognized in the literature.« less

  20. Laminar-turbulent transition tripped by step on transonic compressor profile

    NASA Astrophysics Data System (ADS)

    Flaszynski, Pawel; Doerffer, Piotr; Szwaba, Ryszard; Piotrowicz, Michal; Kaczynski, Piotr

    2018-02-01

    The shock wave boundary layer interaction on the suction side of transonic compressor blade is one of the main objectives of TFAST project (Transition Location Effect on Shock Wave Boundary Layer Interaction). The experimental and numerical results for the flow structure investigations are shown for the flow conditions as the existing ones on the suction side of the compressor profile. The two cases are investigated: without and with boundary layer tripping device. In the first case, boundary layer is laminar up to the shock wave, while in the second case the boundary layer is tripped by the step. Numerical results carried out by means of Fine/Turbo Numeca with Explicit Algebraic Reynolds Stress Model including transition modeling are compared with schlieren, Temperature Sensitive Paint and wake measurements. Boundary layer transition location is detected by Temperature Sensitive Paint.

  1. Sound-turbulence interaction in transonic boundary layers

    NASA Astrophysics Data System (ADS)

    Lelostec, Ludovic; Scalo, Carlo; Lele, Sanjiva

    2014-11-01

    Acoustic wave scattering in a transonic boundary layer is investigated through a novel approach. Instead of simulating directly the interaction of an incoming oblique acoustic wave with a turbulent boundary layer, suitable Dirichlet conditions are imposed at the wall to reproduce only the reflected wave resulting from the interaction of the incident wave with the boundary layer. The method is first validated using the laminar boundary layer profiles in a parallel flow approximation. For this scattering problem an exact inviscid solution can be found in the frequency domain which requires numerical solution of an ODE. The Dirichlet conditions are imposed in a high-fidelity unstructured compressible flow solver for Large Eddy Simulation (LES), CharLESx. The acoustic field of the reflected wave is then solved and the interaction between the boundary layer and sound scattering can be studied.

  2. Pitot-probe displacement in a supersonic turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Allen, J. M.

    1972-01-01

    Eight circular pitot probes ranging in size from 2 to 70 percent of the boundary-layer thickness were tested to provide experimental probe displacement results in a two-dimensional turbulent boundary layer at a nominal free-stream Mach number of 2 and unit Reynolds number of 8 million per meter. The displacement obtained in the study was larger than that reported by previous investigators in either an incompressible turbulent boundary layer or a supersonic laminar boundary layer. The large probes indicated distorted Mach number profiles, probably due to separation. When the probes were small enough to cause no appreciable distortion, the displacement was constant over most of the boundary layer. The displacement in the near-wall region decreased to negative displacement in some cases. This near-wall region was found to extend to about one probe diameter from the test surface.

  3. Flat Plate Boundary Layer Stimulation Using Trip Wires and Hama Strips

    NASA Astrophysics Data System (ADS)

    Peguero, Charles; Henoch, Charles; Hrubes, James; Fredette, Albert; Roberts, Raymond; Huyer, Stephen

    2017-11-01

    Water tunnel experiments on a flat plate at zero angle of attack were performed to investigate the effect of single roughness elements, i.e., trip wires and Hama strips, on the transition to turbulence. Boundary layer trips are traditionally used in scale model testing to force a boundary layer to transition from laminar to turbulent flow at a single location to aid in scaling of flow characteristics. Several investigations of trip wire effects exist in the literature, but there is a dearth of information regarding the influence of Hama strips on the flat plate boundary layer. The intent of this investigation is to better understand the effects of boundary layer trips, particularly Hama strips, and to investigate the pressure-induced drag of both styles of boundary layer trips. Untripped and tripped boundary layers along a flat plate at a range of flow speeds were characterized with multiple diagnostic measurements in the NUWC/Newport 12-inch water tunnel. A wide range of Hama strip and wire trip thicknesses were used. Measurements included dye flow visualization, direct skin friction and parasitic drag force, boundary layer profiles using LDV, wall shear stress fluctuations using hot film anemometry, and streamwise pressure gradients. Test results will be compared to the CFD and boundary layer model results as well as the existing body of work. Conclusions, resulting in guidance for application of Hama strips in model scale experiments and non-dimensional predictions of pressure drag will be presented.

  4. Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berg, Larry K.; Newsom, Rob K.; Turner, David D.

    One year of Coherent Doppler Lidar (CDL) data collected at the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) site in Oklahoma is analyzed to provide profiles of vertical velocity variance, skewness, and kurtosis for cases of cloud-free convective boundary layers. The variance was scaled by the Deardorff convective velocity scale, which was successful when the boundary layer depth was stationary but failed in situations when the layer was changing rapidly. In this study the data are sorted according to time of day, season, wind direction, surface shear stress, degree of instability, and wind shear across the boundary-layer top. Themore » normalized variance was found to have its peak value near a normalized height of 0.25. The magnitude of the variance changes with season, shear stress, and degree of instability, but was not impacted by wind shear across the boundary-layer top. The skewness was largest in the top half of the boundary layer (with the exception of wintertime conditions). The skewness was found to be a function of the season, shear stress, wind shear across the boundary-layer top, with larger amounts of shear leading to smaller values. Like skewness, the vertical profile of kurtosis followed a consistent pattern, with peak values near the boundary-layer top (also with the exception of wintertime data). The altitude of the peak values of kurtosis was found to be lower when there was a large amount of wind shear at the boundary-layer top.« less

  5. Towards a Viscous Wall Model for Immersed Boundary Methods

    NASA Technical Reports Server (NTRS)

    Brehm, Christoph; Barad, Michael F.; Kiris, Cetin C.

    2016-01-01

    Immersed boundary methods are frequently employed for simulating flows at low Reynolds numbers or for applications where viscous boundary layer effects can be neglected. The primary shortcoming of Cartesian mesh immersed boundary methods is the inability of efficiently resolving thin turbulent boundary layers in high-Reynolds number flow application. The inefficiency of resolving the thin boundary is associated with the use of constant aspect ratio Cartesian grid cells. Conventional CFD approaches can efficiently resolve the large wall normal gradients by utilizing large aspect ratio cells near the wall. This paper presents different approaches for immersed boundary methods to account for the viscous boundary layer interaction with the flow-field away from the walls. Different wall modeling approaches proposed in previous research studies are addressed and compared to a new integral boundary layer based approach. In contrast to common wall-modeling approaches that usually only utilize local flow information, the integral boundary layer based approach keeps the streamwise history of the boundary layer. This allows the method to remain effective at much larger y+ values than local wall modeling approaches. After a theoretical discussion of the different approaches, the method is applied to increasingly more challenging flow fields including fully attached, separated, and shock-induced separated (laminar and turbulent) flows.

  6. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  7. Comparison of the quality of single-crystal diamonds grown on two types of seed substrates by MPCVD

    NASA Astrophysics Data System (ADS)

    Zhao, Yun; Guo, Yanzhao; Lin, Liangzhen; Zheng, Yuting; Hei, Lifu; Liu, Jinlong; Wei, Junjun; Chen, Liangxian; Li, Chengming

    2018-06-01

    Microwave plasma chemical vapor deposition (MPCVD) was used to grow single-crystal diamonds on two types of single-crystal diamond seed substrates prepared by high-pressure, high-temperature (HPHT) and chemical vapor deposition (CVD) methods. The quality of diamonds grown on the different seed substrates was compared. Fluorescence characteristics showed that the sectors of the HPHT seed substrates were obviously partitioned. Raman and absorption spectra showed that the CVD seed substrate produced higher-quality crystals with fewer nitrogen impurities. X-ray topography showed that the HPHT seed substrate had obvious growth sector boundaries, inclusions, dislocations, and stacking faults. The polarization characteristics of HPHT seed substrate were obvious, and the stress distribution was not uniform. When etching HPHT and CVD seed substrates using the same parameters, the etching morphology and extent of different growth sectors of the two substrates differed. Although extended defects were inevitably formed at the interface and propagated in the CVD layer, the dislocation density of a 1 mm-thick CVD layer grown on a CVD seed substrate was only half that of a 1 mm-thick CVD layer grown on an HPHT seed substrate. Therefore, the use of CVD seed substrate enabled the growth of a relatively higher-quality CVD single-crystal diamond.

  8. The geological and petrological studies of the subduction boundaries and suggestion for the geological future work in Japan - How to avoid ultra-mega-earthquakes -

    NASA Astrophysics Data System (ADS)

    Ishii, T.

    2015-12-01

    The Pacific plate is surrounded by circum-Pacific active margin, along which volcanic and seismic activities are very high. Ultra-Mega-Earthquakes (=UMEs, M>9.0) are occasionally observed along the margin, where sedimentary rocks of subducting slaves contact with the accreted sedimentary rocks of subducted slaves. But, those UME have never been occured along western Pacific islandarc-trench system including Izu-Ogasawara (=Bonin)-Mariana-Yap-Palau-Philippine-Tonga-Kermadec Trenches. I assume that the geological and petrological characteristics of the subduction boundaries are very important to understand those different seismic activities. Along the above mentioned trench inner wall, especially in the southern Mariana, mantle peridotites are widely distributed. Subducting slave contacts directly with the olivine dominant mantle peridotites of subducted slave, serpentinite layer can be deposited easily under hydrous oceanic sub-bottom environment and very slippery subduction boundaries are left along the subduction zone.On the other hand, those geological evidences give us some ideas on how to avoid UMEs in the Japanese Islands along Japan Trench and Nankai Trough in future. We will be able to change artificially from normal subduction boundaries with asperity zone into slippery subduction boundaries with serpentine layer, by means of serpentine mud injection toward the subduction boundaries interior by combining the following improved drilling technologies A and B. (A) Deep Sea Drilling Vessel CHIKYU has a drilling ability to reach subduction boundary with asperity zone in the Nankai Trough. (B) Advanced drilling technology in the shale gas industry is tremendous, that is, after one vertical deep drilling, horizontal drilling towards several direction are performed, then shale gas is collected by hydraulic fracturing method. I hope that, after several generations, our posterity will be able to avoid UMEs by continuous serpentine mud injection.

  9. Inventory of File gfs.t06z.smartguam15.tm00.grib2

    Science.gov Websites

    hour fcst Visibility [m] 014 planetary boundary layer WDIR 15 hour fcst Wind Direction (from which blowing) [degtrue] 015 planetary boundary layer WIND 15 hour fcst Wind Speed [m/s] 016 planetary boundary layer RH 15 hour fcst Relative Humidity [%] 017 planetary boundary layer DIST 15 hour fcst Geometric

  10. Physical modeling of the atmospheric boundary layer in the UNH Flow Physics Facility

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Gilooly, Stephanie; Wosnik, Martin; Klewicki, Joe; Turner, John

    2016-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W =6.0m, H =2.7m, L =72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL) using upstream roughness arrays. The American Society for Civil Engineers defines standards for simulating ABLs for different terrain types, from open sea to dense city areas (ASCE 49-12). The standards require the boundary layer to match a power law shape, roughness height, and power spectral density criteria. Each boundary layer type has a corresponding power law exponent and roughness height. The exponent and roughness height both increase with increasing roughness. A suburban boundary layer was chosen for simulation and a roughness element fetch was created. Several fetch lengths were experimented with and the resulting boundary layers were measured and compared to standards in ASCE 49-12: Wind Tunnel Testing for Buildings and Other Structures. Pitot tube and hot wire anemometers were used to measure average and fluctuating flow characteristics. Velocity profiles, turbulence intensity and velocity spectra were found to compare favorably.

  11. Effect of Pulsed Plasma Jets on the Recovering Boundary Layer Downstream of a Reflected Shock Interaction

    NASA Astrophysics Data System (ADS)

    Greene, Benton; Clemens, Noel; Magari, Patrick; Micka, Daniel; Ueckermann, Mattheus

    2015-11-01

    Shock-induced turbulent boundary layer separation can have many detrimental effects in supersonic inlets including flow distortion and instability, structural fatigue, poor pressure recovery, and unstart. The current study investigates the effect of pulsed plasma jets on the recovering boundary layer downstream of a reflected shock wave-boundary layer interaction. The effects of pitch and skew angle of the jet as well as the heating parameter and discharge time scale are tested using several pulsing frequencies. In addition, the effect of the plasma jets on the undisturbed boundary layer at 6 mm and 11 mm downstream of the jets is measured. A pitot-static pressure probe is used to measure the velocity profile of the boundary layer 35 mm downstream of the plasma jets, and the degree of boundary layer distortion is compared between the different models and run conditions. Additionally, the effect of each actuator configuration on the shape of the mean separated region is investigated using surface oil flow visualization. Previous studies with lower energy showed a weak effect on the downstream boundary layer. The current investigation will attempt to increase this effect using a higher-energy discharge. Funded by AFRL through and SBIR in collaboration with Creare, LLC.

  12. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.

  13. Generalization of Boundary-Layer Momentum-Integral Equations to Three-Dimensional Flows Including Those of Rotating System

    NASA Technical Reports Server (NTRS)

    Mager, Arthur

    1952-01-01

    The Navier-Stokes equations of motion and the equation of continuity are transformed so as to apply to an orthogonal curvilinear coordinate system rotating with a uniform angular velocity about an arbitrary axis in space. A usual simplification of these equations as consistent with the accepted boundary-layer theory and an integration of these equations through the boundary layer result in boundary-layer momentum-integral equations for three-dimensional flows that are applicable to either rotating or nonrotating fluid boundaries. These equations are simplified and an approximate solution in closed integral form is obtained for a generalized boundary-layer momentum-loss thickness and flow deflection at the wall in the turbulent case. A numerical evaluation of this solution carried out for data obtained in a curving nonrotating duct shows a fair quantitative agreement with the measures values. The form in which the equations are presented is readily adaptable to cases of steady, three-dimensional, incompressible boundary-layer flow like that over curved ducts or yawed wings; and it also may be used to describe the boundary-layer flow over various rotating surfaces, thus applying to turbomachinery, propellers, and helicopter blades.

  14. Modeling marine boundary-layer clouds with a two-layer model: A one-dimensional simulation

    NASA Technical Reports Server (NTRS)

    Wang, Shouping

    1993-01-01

    A two-layer model of the marine boundary layer is described. The model is used to simulate both stratocumulus and shallow cumulus clouds in downstream simulations. Over cold sea surfaces, the model predicts a relatively uniform structure in the boundary layer with 90%-100% cloud fraction. Over warm sea surfaces, the model predicts a relatively strong decoupled and conditionally unstable structure with a cloud fraction between 30% and 60%. A strong large-scale divergence considerably limits the height of the boundary layer and decreases relative humidity in the upper part of the cloud layer; thus, a low cloud fraction results. The efffects of drizzle on the boundary-layer structure and cloud fraction are also studied with downstream simulations. It is found that drizzle dries and stabilizes the cloud layer and tends to decouple the cloud from the subcloud layer. Consequently, solid stratocumulus clouds may break up and the cloud fraction may decrease because of drizzle.

  15. Calculation of sidewall boundary-layer parameters from rake measurements for the Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1987-01-01

    Correction of airfoil data for sidewall boundary-layer effects requires a knowledge of the boundary-layer displacement thickness and the shape factor with the tunnel empty. To facilitate calculation of these quantities under various test conditions for the Langley 0.3 m Transonic Cryogenic Tunnel, a computer program was written. This program reads the various tunnel parameters and the boundary-layer rake total head pressure measurements directly from the Engineering Unit tapes to calculate the required sidewall boundary-layer parameters. Details of the method along with the results for a sample case are presented.

  16. Studies on the influence on flexural wall deformations on the development of the flow boundary layer

    NASA Technical Reports Server (NTRS)

    Schilz, W.

    1978-01-01

    Flexural wave-like deformations can be used to excite boundary layer waves which in turn lead to the onset of turbulence in the boundary layer. The investigations were performed with flow velocities between 5 m/s and 40 m/s. With four different flexural wave transmissions a frequency range from 0.2 kc/s to 1.5 kc/s and a phase velocity range from 3.5 m/s to 12 m/s was covered. The excitation of boundary layer waves becomes most effective if the phase velocity of the flexural wave coincides with the phase velocity region of unstable boundary layer waves.

  17. Viscous flow drag reduction; Symposium, Dallas, Tex., November 7, 8, 1979, Technical Papers

    NASA Technical Reports Server (NTRS)

    Hough, G. R.

    1980-01-01

    The symposium focused on laminar boundary layers, boundary layer stability analysis of a natural laminar flow glove on the F-111 TACT aircraft, drag reduction of an oscillating flat plate with an interface film, electromagnetic precipitation and ducting of particles in turbulent boundary layers, large eddy breakup scheme for turbulent viscous drag reduction, blowing and suction, polymer additives, and compliant surfaces. Topics included influence of environment in laminar boundary layer control, generation rate of turbulent patches in the laminar boundary layer of a submersible, drag reduction of small amplitude rigid surface waves, and hydrodynamic drag and surface deformations generated by liquid flows over flexible surfaces.

  18. Effect of aspect ratio on sidewall boundary-layer influence in two-dimensional airfoil testing

    NASA Technical Reports Server (NTRS)

    Murthy, A. V.

    1986-01-01

    The effect of sidewall boundary layers in airfoil testing in two-dimensional wind tunnels is investigated. The non-linear crossflow velocity variation induced because of the changes in the sidewall boundary-layer thickness is represented by the flow between a wavy wall and a straight wall. Using this flow model, a correction for the sidewall boundary-layer effects is derived in terms of the undisturbed sidewall boundary-layer properties, the test Mach number and the airfoil aspect ratio. Application of the proposed correction to available experimental data showed good correlation for the shock location and pressure distribution on airfoils.

  19. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2005-10-18

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  20. Method of depositing an electrically conductive oxide buffer layer on a textured substrate and articles formed therefrom

    DOEpatents

    Paranthaman, M. Parans; Aytug, Tolga; Christen, David K.

    2003-09-09

    An article with an improved buffer layer architecture includes a substrate having a textured metal surface, and an electrically conductive lanthanum metal oxide epitaxial buffer layer on the surface of the substrate. The article can also include an epitaxial superconducting layer deposited on the epitaxial buffer layer. An epitaxial capping layer can be placed between the epitaxial buffer layer and the superconducting layer. A method for preparing an epitaxial article includes providing a substrate with a metal surface and depositing on the metal surface a lanthanum metal oxide epitaxial buffer layer. The method can further include depositing a superconducting layer on the epitaxial buffer layer, and depositing an epitaxial capping layer between the epitaxial buffer layer and the superconducting layer.

  1. Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices

    NASA Astrophysics Data System (ADS)

    Lee, Yoju; Verstraete, Frank; Gendiar, Andrej

    2016-08-01

    The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.

  2. Mitigation of substrate defects in reflective reticles using sequential coating and annealing

    DOEpatents

    Mirkanimi, Paul B.

    2002-01-01

    A buffer-layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The buffer-layer is formed by either a multilayer deposited on the substrate or by a plurality of sequentially deposited and annealed coatings deposited on the substrate. The plurality of sequentially deposited and annealed coating may comprise multilayer and single layer coatings. The multilayer deposited and annealed buffer layer coatings may be of the same or different material than the reflecting coating thereafter deposited on the buffer-layer.

  3. Numerical investigation of an internal layer in turbulent flow over a curved hill

    NASA Technical Reports Server (NTRS)

    Kim, S-W.

    1989-01-01

    The development of an internal layer in a turbulent boundary layer flow over a curved hill is investigated numerically. The turbulence field of the boundary layer flow over the curved hill is compared with that of a turbulent flow over a symmetric airfoil (which has the same geometry as the curved hill except that the leading and trailing edge plates were removed) to study the influence of the strongly curved surface on the turbulence field. The turbulent flow equations are solved by a control-volume based finite difference method. The turbulence is described by a multiple-time-scale turbulence model supplemented with a near-wall turbulence model. Computational results for the mean flow field (pressure distributions on the walls, wall shearing stresses and mean velocity profiles), the turbulence structure (Reynolds stress and turbulent kinetic energy profiles), and the integral parameters (displacement and momentum thicknesses) compared favorably with the measured data. Computational results show that the internal layer is a strong turbulence field which is developed beneath the external boundary layer and is located very close to the wall. Development of the internal layer was more obviously observed in the Reynolds stress profiles and in the turbulent kinetic energy profiles than in the mean velocity profiles. In this regard, the internal layers is significantly different from wall-bounded simple shear layers in which the mean velocity profile characterizes the boundary layer most distinguishably. Development of such an internal layer, characterized by an intense turbulence field, is attributed to the enormous mean flow strain rate caused by the streamline curvature and the strong pressure gradient. In the turbulent flow over the curved hill, the internal layer begin to form near the forward corner of the hill, merges with the external boundary layer, and develops into a new fully turbulent boundary layer as the fluid flows in the downstream direction. For the flow over the symmetric airfoil, the boundary layer began to form from almost the same location as that of the curved hill, grew in its strength, and formed a fully turbulent boundary layer from mid-part of the airfoil and in the downstream region. Computational results also show that the detailed turbulence structure in the region very close to the wall of the curved hill is almost the same as that of the airfoil in most of the curved regions except near the leading edge. Thus the internal layer of the curved hill and the boundary layer of the airfoil were also almost the same. Development of the wall shearing stress and separation of the boundary layer at the rear end of the curved hill mostly depends on the internal layer and is only slightly influenced by the external boundary layer flow.

  4. Absence of morphotropic phase boundary effects in BiFeO3-PbTiO3 thin films grown via a chemical multilayer deposition method

    NASA Astrophysics Data System (ADS)

    Gupta, Shashaank; Bhattacharjee, Shuvrajyoti; Pandey, Dhananjai; Bansal, Vipul; Bhargava, Suresh K.; Peng, Ju Lin; Garg, Ashish

    2011-07-01

    We report an unusual behavior observed in (BiFeO3)1- x -(PbTiO3) x (BF- xPT) thin films prepared using a multilayer chemical solution deposition method. Films of different compositions were grown by depositing several bilayers of BF and PT precursors of varying BF and PT layer thicknesses followed by heat treatment in air. X-ray diffraction showed that samples of all compositions show mixing of two compounds resulting in a single-phase mixture, also confirmed by transmission electron microscopy. In contrast to bulk compositions, samples show a monoclinic (MA-type) structure suggesting disappearance of the morphotropic phase boundary (MPB) at x=0.30 as observed in the bulk. This is accompanied by the lack of any enhancement of the remanent polarization at the MPB, as shown by the ferroelectric measurements. Magnetic measurements showed an increase in the magnetization of the samples with increasing BF content. Significant magnetization in the samples indicates melting of spin spirals in the BF- xPT films, arising from a random distribution of iron atoms. Absence of Fe2+ ions was corroborated by X-ray photoelectron spectroscopy measurements. The results illustrate that thin film processing methodology significantly changes the structural evolution, in contrast to predictions from the equilibrium phase diagram, besides modifying the functional characteristics of the BP- xPT system dramatically.

  5. The influence of free-stream turbulence on turbulent boundary layers with mild adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Hoffmann, Jon A.

    1988-01-01

    The influence of near isotropic free-stream turbulence on the shape factors and skin friction coefficients of turbulent bounday layers is presented for the cases of zero and mild adverse pressure gradients. With free-stream turbulence, improved fluid mixing occurs in boundary layers with adverse pressure gradients relative to the zero pressure gradient condition, with the same free-stream turbulence intensity and length scale. Stronger boundary layers with lower shape factors occur as a result of a lower ratio of the integral scale of turbulence to the boundary layer thickness, and to vortex stretching of the turbulent eddies in the free stream, both of which act to improve the transmission of momentum from the free stream to the boundary layers.

  6. Observing the Vertical Extent of the Urban Boundary Layer Over Jersey City, NJ: A Diurnal and Seasonal Analysis

    NASA Astrophysics Data System (ADS)

    Dempsey, M. J.; Booth, J.; Arend, M.; Melecio-Vazquez, D.; Gonzalez, J.

    2015-12-01

    The atmospheric boundary remains one of the more difficult components of the climate system to classify. One of the most important characteristics is the boundary layer height, especially in urban settings. The current study examines the boundary layer height using the the New York City Meteorological Network or NYCMetNet. NYCMetNet is a network of weather stations, which report meteorological conditions in and around New York City, as part of the Optical Remote Sensing Laboratory of The City College of New York (ORSL). Of interest to this study is the data obtained from wind profiler station LSC01. The 915 MHz wind profiler is located 30m above the ground on the roof of the Liberty Science Center in Jersey City, NJ. It is a Vaisala Wind Profiler LAP 3000 with a wavelength of ~34cm, which means that the instrument responds primarily to Bragg backscattering. Can a seasonal urban boundary layer climatology be extrapolated from the data obtained from the wind profiler? What is the timing of boundary layer evolution and collapse over Jersey City? How effective is the profiler under cloudy skies and even in light rain or snow? This study examines the entire time period covered by the wind profile (2007 to present) and selects a series of clear days and a series of cloudy days. The top of the urban boundary layer is subjectively located from each half hour time stamp of signal to noise values. The urban boundary layer heights are recorded for clear and then cloudy days. Then the days are sorted seasonally (DJF, MAM, JJA, SON). A seasonal mean is calculated for every half hour time step. Finally a time series of seasonal urban boundary layer heights is constructed, and the timing of the urban boundary layer height maximum and time evolution and collapse of the boundary layer are generalized. A comparison is made against urban boundary layer heights obtained from Modern-Era Retrospective Analysis For Research And Applications (MERRA).

  7. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    PubMed

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  8. Hydrodynamic structure of the boundary layers in a rotating cylindrical cavity with radial inflow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herrmann-Priesnitz, Benjamín, E-mail: bherrman@ing.uchile.cl; Torres, Diego A.; Advanced Mining Technology Center, Universidad de Chile, Av. Tupper 2007, Santiago

    A flow model is formulated to investigate the hydrodynamic structure of the boundary layers of incompressible fluid in a rotating cylindrical cavity with steady radial inflow. The model considers mass and momentum transfer coupled between boundary layers and an inviscid core region. Dimensionless equations of motion are solved using integral methods and a space-marching technique. As the fluid moves radially inward, entraining boundary layers develop which can either meet or become non-entraining. Pressure and wall shear stress distributions, as well as velocity profiles predicted by the model, are compared to numerical simulations using the software OpenFOAM. Hydrodynamic structure of themore » boundary layers is governed by a Reynolds number, Re, a Rossby number, Ro, and the dimensionless radial velocity component at the periphery of the cavity, U{sub o}. Results show that boundary layers merge for Re < < 10 and Ro > > 0.1, and boundary layers become predominantly non-entraining for low Ro, low Re, and high U{sub o}. Results may contribute to improve the design of technology, such as heat exchange devices, and turbomachinery.« less

  9. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  10. A Marine Boundary Layer Water Vapor Climatology Derived from Microwave and Near-Infrared Imagery

    NASA Astrophysics Data System (ADS)

    Millan Valle, L. F.; Lebsock, M. D.; Teixeira, J.

    2017-12-01

    The synergy of the collocated Advanced Microwave Scanning Radiometer (AMSR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) provides daily global estimates of partial marine planetary boundary layer water vapor. AMSR microwave radiometry provides the total column water vapor, while MODIS near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. Comparisons against radiosondes, and GPS-Radio occultation data demonstrate the robustness of these boundary layer water vapor estimates. We exploit the 14 years of AMSR-MODIS synergy to investigate the spatial, seasonal, and inter-annual variations of the boundary layer water vapor. Last, it is shown that the measured AMSR-MODIS partial boundary layer water vapor can be generally prescribed using sea surface temperature, cloud top pressure and the lifting condensation level. The multi-sensor nature of the analysis demonstrates that there exists more information on boundary layer water vapor structure in the satellite observing system than is commonly assumed when considering the capabilities of single instruments. 2017 California Institute of Technology. U.S. Government sponsorship acknowledged.

  11. Synthesis of millimeter-scale transition metal dichalcogenides single crystals

    DOE PAGES

    Gong, Yongji; Ye, Gonglan; Lei, Sidong; ...

    2016-02-10

    The emergence of semiconducting transition metal dichalcogenide (TMD) atomic layers has opened up unprecedented opportunities in atomically thin electronics. Yet the scalable growth of TMD layers with large grain sizes and uniformity has remained very challenging. Here is reported a simple, scalable chemical vapor deposition approach for the growth of MoSe2 layers is reported, in which the nucleation density can be reduced from 105 to 25 nuclei cm -2, leading to millimeter-scale MoSe 2 single crystals as well as continuous macrocrystalline films with millimeter size grains. The selective growth of monolayers and multilayered MoSe2 films with well-defined stacking orientation canmore » also be controlled via tuning the growth temperature. In addition, periodic defects, such as nanoscale triangular holes, can be engineered into these layers by controlling the growth conditions. The low density of grain boundaries in the films results in high average mobilities, around ≈42 cm 2 V -1 s -1, for back-gated MoSe 2 transistors. This generic synthesis approach is also demonstrated for other TMD layers such as millimeter-scale WSe 2 single crystals.« less

  12. In Situ Ramp Anneal X-ray Diffraction Study of Atomic Layer Deposited Ultrathin TaN and Ta 1-x Al x N y Films for Cu Diffusion Barrier Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Consiglio, S.; Dey, S.; Yu, K.

    2016-01-01

    Ultrathin TaN and Ta 1-xAl xN y films with x = 0.21 to 0.88 were deposited by atomic layer deposition (ALD) and evaluated for Cu diffusion barrier effectiveness compared to physical vapor deposition (PVD) grown TaN. Cu diffusion barrier effectiveness was investigated using in-situ ramp anneal synchrotron X-ray diffraction (XRD) on Cu/1.8 nm barrier/Si stacks. A Kissinger-like analysis was used to assess the kinetics of Cu 3Si formation and determine the effective activation energy (E a) for Cu silicidation. Compared to the stack with a PVD TaN barrier, the stacks with the ALD films exhibited a higher crystallization temperature (Tmore » c) for Cu silicidation. The Ea values of Cu 3Si formation for stacks with the ALD films were close to the reported value for grain boundary diffusion of Cu whereas the Ea of Cu 3Si formation for the stack with PVD TaN is closer to the reported value for lattice diffusion. For 3 nm films, grazing incidence in-plane XRD showed evidence of nanocrystallites in an amorphous matrix with broad peaks corresponding to high density cubic phase for the ALD grown films and lower density hexagonal phase for the PVD grown film further elucidating the difference in initial failure mechanisms due to differences in barrier crystallinity and associated phase.« less

  13. Boundary layers in cataclysmic variables: The HEAO-1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1983-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated.

  14. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  15. Investigation of blown boundary layers with an improved wall jet system. Ph.D. Thesis. Final Technical Report, 1 Jul. 1978 - Dec. 1979; [to prevent turbulent boundary layer separation

    NASA Technical Reports Server (NTRS)

    Saripalli, K. R.; Simpson, R. L.

    1979-01-01

    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed.

  16. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  17. Inventory of File gfs.t06z.smartguam24.tm00.grib2

    Science.gov Websites

    boundary layer WDIR 24 hour fcst Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND 24 hour fcst Wind Speed [m/s] 017 planetary boundary layer RH 24 hour fcst Relative Humidity [%] 018 planetary boundary layer DIST 24 hour fcst Geometric Height [m] 019 surface 4LFTX 24 hour fcst

  18. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  19. On optical imaging through aircraft turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Sutton, G. W.

    1980-01-01

    Optical resolution quality as affected by aircraft turbulent boundary layers is analyzed. Wind-tunnel data was analyzed to obtained the variation of boundary layer turbulence scale length and mass density rms fluctuations with Mach number. The data gave good agreement with a mass density fluctuation turbulence spectrum that is either isotropic of orthogonally anisotropic. The data did not match an isotropic turbulence velocity spectrum which causes an anisotropic non-orthogonal mass density fluctuation spectrum. The results indicate that the average mass density rms fluctuation is about 10% of the maximum mass density across the boundary layer and that the transverse turbulence scale size is about 10% of the boundary layer thickness. The results indicate that the effect of the turbulent boundary layer is large angle scattering which decreases contrast but not resolution. Using extinction as a criteria the range of acceptable aircraft operating conditions are given.

  20. Application of the E - Turbulence Closure Model to the Neutral and Stable Atmospheric Boundary Layer.

    NASA Astrophysics Data System (ADS)

    Duynkerke, P. G.

    1988-03-01

    In the E - turbulence model an eddy-exchange coefficient is evaluated from the turbulent kinetic energy E and viscous dissipation . In this study we will apply the E - model to the stable and neutral atmospheric boundary layer. A discussion is given on the equation for , which terms should be included and how we have evaluated the constants. Constant cooling rate results for the stable atmospheric boundary layer are compared with a second-order closure study. For the neutral atmospheric boundary layer a comparison is made with observations, large-eddy simulations and a second-order closure study. It is shown that a small stability effect can change the neutral atmospheric boundary layer quite drastically, and therefore, it will be difficult to observe a neutral boundary layer in the atmosphere.

  1. a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu

    A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.

  2. A review of turbulent-boundary-layer heat transfer research at Stanford, 1958-1983

    NASA Technical Reports Server (NTRS)

    Moffat, R. J.; Kays, W. M.

    1984-01-01

    For the past 25 years, there has existed in the Thermosciences Laboratory of the Mechanical Engineering Department of Stanford University a research program, primarily experimental, concerned with heat transfer through turbulent boundary layers. In the early phases of the program, the topics considered were the simple zero-pressure-gradient turbulent boundary layer with constant and with varying surface temperature, and the accelerated boundary layer. Later equilibrium boundary layers were considered along with factors affecting the boundary layer, taking into account transpired flows, flows with axial pressure gradients, transpiration, acceleration, deceleration, roughness, full-coverage film cooling, surface curvature, free convection, and mixed convection. A description is provided of the apparatus and techniques used, giving attention to the smooth plate rig, the rough plate rig, the full-coverage film cooling rig, the curvature rig, the concave wall rig, the mixed convection tunnel, and aspects of data reduction and uncertainty analysis.

  3. Interaction of solar wind with the magnetopause-boundary layer and generation of magnetic impulse events

    NASA Technical Reports Server (NTRS)

    Lee, L. C.; Wei, C. Q.

    1993-01-01

    The transport of mass, momentum, energy and waves from the solar wind to the Earth's magnetosphere takes place in the magnetopause-boundary layer region. Various plasma processes that may occur in this region have been proposed and studied. In this paper, we present a brief review of the plasma processes in the dayside magnetopause-boundary layer. These processes include (1) flux transfer events at the dayside magnetopause, (2) formation of plasma vortices in the low-latitude boundary layer by the Kelvin-Helmholtz instability and coupling to the polar ionosphere, (3) the response of the magnetopause to the solar wind dynamic pressure pulses, and (4) the impulsive penetration of solar wind plasma filaments through the dayside magnetopause into the magnetospheric boundary layer. Through the coupling of the magnetopause-boundary layer to the polar ionosphere, those above processes may lead to occurrence of magnetic impulse events observed in the high-latitude stations.

  4. Atomic-Layer-Deposited Transparent Electrodes for Silicon Heterojunction Solar Cells

    DOE PAGES

    Demaurex, Benedicte; Seif, Johannes P.; Smit, Sjoerd; ...

    2014-11-01

    We examine damage-free transparent-electrode deposition to fabricate high-efficiency amorphous silicon/crystalline silicon heterojunction solar cells. Such solar cells usually feature sputtered transparent electrodes, the deposition of which may damage the layers underneath. Using atomic layer deposition, we insert thin protective films between the amorphous silicon layers and sputtered contacts and investigate their effect on device operation. We find that a 20-nm-thick protective layer suffices to preserve, unchanged, the amorphous silicon layers beneath. Insertion of such protective atomic-layer-deposited layers yields slightly higher internal voltages at low carrier injection levels. However, we identify the presence of a silicon oxide layer, formed during processing,more » between the amorphous silicon and the atomic-layer-deposited transparent electrode that acts as a barrier, impeding hole and electron collection.« less

  5. F-16XL ship #1 - CAWAP boundary layer rakes and hot film on left wing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This photo shows the boundary layer hot film and the boundary layer rakes on the left wing of NASA's single-seat F-16XL (ship #1) used for the Cranked-Arrow Wing Aerodynamic Project (CAWAP) at Dryden Flight Research Center, Edwards, California. The modified airplane features a delta 'cranked-arrow' wing with strips of tubing along the leading edge to the trailing edge to sense static on the wing and obtain pressure distribution data. The right wing receives data on pressure distribution and the left wing has three types of instrumentation - preston tubes to measure local skin friction, boundary layer rakes to measure boundary layer profiles (the layer where the air interacts with the surfaces of a moving aircraft), and hot films to determine boundary layer transition locations. The program also gathered aero data on two wing planforms for NASA's High Speed Research Program. The first flight of CAWAP occurred on November 21, 1995, and the test program ended in April 1996.

  6. Unusually large earthquakes inferred from tsunami deposits along the Kuril trench

    USGS Publications Warehouse

    Nanayama, F.; Satake, K.; Furukawa, R.; Shimokawa, K.; Atwater, B.F.; Shigeno, K.; Yamaki, S.

    2003-01-01

    The Pacific plate converges with northeastern Eurasia at a rate of 8-9 m per century along the Kamchatka, Kuril and Japan trenches. Along the southern Kuril trench, which faces the Japanese island of Hokkaido, this fast subduction has recurrently generated earthquakes with magnitudes of up to ???8 over the past two centuries. These historical events, on rupture segments 100-200 km long, have been considered characteristic of Hokkaido's plate-boundary earthquakes. But here we use deposits of prehistoric tsunamis to infer the infrequent occurrence of larger earthquakes generated from longer ruptures. Many of these tsunami deposits form sheets of sand that extend kilometres inland from the deposits of historical tsunamis. Stratigraphic series of extensive sand sheets, intercalated with dated volcanic-ash layers, show that such unusually large tsunamis occurred about every 500 years on average over the past 2,000-7,000 years, most recently ???350 years ago. Numerical simulations of these tsunamis are best explained by earthquakes that individually rupture multiple segments along the southern Kuril trench. We infer that such multi-segment earthquakes persistently recur among a larger number of single-segment events.

  7. The terminal Permian in European Russia: Vyaznikovian Horizon, Nedubrovo Member, and Permian-Triassic boundary

    NASA Astrophysics Data System (ADS)

    Lozovsky, V. R.; Balabanov, Yu. P.; Karasev, E. V.; Novikov, I. V.; Ponomarenko, A. G.; Yaroshenko, O. P.

    2016-07-01

    The comprehensive analysis of the data obtained on terrestrial vertebrata, ostracods, entomologic fauna, megaflora, and microflora in deposits of the Vyaznikovian Horizon and Nedubrovo Member, as well as the paleomagnetic data measured in enclosing rocks, confirms heterogeneity of these deposits. Accordingly, it is necessary to distinguish these two stratons in the terminal Permian of the East European Platform. The combined sequence of Triassic-Permian boundary deposits in the Moscow Syneclise, which is considered to be the most complete sequence in the East European Platform, is as follows (from bottom upward): Vyatkian deposits; Vyaznikovian Horizon, including Sokovka and Zhukovo members; Nedubrovo Member (Upper Permian); Astashikha and Ryabi members of the Vokhmian Horizon (Lower Triassic). None of the sequences of Permian-Triassic boundary deposits known in the area of study characterizes this sequence in full volume. In the north, the Triassic deposits are underlain by the Nedubrovo Member; in the south (the Klyazma River basin), the sections are underlain by the Vyaznikovian Horizon. The Permian-Triassic boundary adopted in the General Stratigraphic Scale of Russia for continental deposits of the East European platform (the lower boundary of the Astashikha Member) is more ancient than the one adopted in the International Stratigraphic Chart. The same geological situation is observed in the German Basin and other localities where Triassic continental deposits are developed. The ways of solving this problem are discussed in this article.

  8. Boundary-Layer Characteristics Over a Coastal Megacity

    NASA Astrophysics Data System (ADS)

    Melecio-Vazquez, D.; Ramamurthy, P.; Arend, M.; Moshary, F.; Gonzalez, J.

    2017-12-01

    Boundary-layer characteristics over New York City are analyzed for various local and synoptic conditions over several seasons. An array of vertical profilers, including a Doppler LiDAR, a micro-pulse LiDAR and a microwave radiometer are used to observe the structure and evolution of the boundary-layer. Additionally, an urbanized Weather Research and Forecasting (uWRF) model coupled to a high resolution landcover/land-use database is used to study the spatial variability in boundary layer characteristics. The summer daytime averaged potential temperature profile from the microwave radiometer shows the presence of a thermal internal boundary layer wherein a superadiabatic layer lies underneath a stable layer instead of a mixed-layer. Both the winter daytime and nighttime seasonal averages show that the atmosphere remains unstable near the surface and does not reach stable conditions during the nighttime. The mixing ratio seasonal averages show peaks in humidity near 200-m and 1100-m, above instrument level, which could result from sea breeze and anthropogenic sources. Ceilometer measurements show a high degree of variability in boundary layer height depending on wind direction. Comparison with uWRF results show that the model tends to overestimate convective efficiency for selected summer and winter cases and therefore shows a much deeper thermal boundary layer than the observed profiles. The model estimates a less humid atmosphere than seen in observations.

  9. Simulating Lahars Using A Rotating Drum

    NASA Astrophysics Data System (ADS)

    Neather, Adam; Lube, Gert; Jones, Jim; Cronin, Shane

    2014-05-01

    A large (0.5 m in diameter, 0.15 m wide) rotating drum is used to investigate the erosion and deposition mechanics of lahars. To systematically simulate the conditions occurring in natural mass flows our experimental setup differs from the common rotating drum employed in industrial/engineering studies. Natural materials with their typical friction properties are used, as opposed to the frequently employed spherical glass beads; the drum is completely water-proof, so solid/air and solid/liquid mixtures can be investigated; the drum velocity and acceleration can be precisely controlled using a software interface to a micro-controller, allowing for the study of steady, unsteady and intermediate flow regimes. The drum has a toughened glass door, allowing high-resolution, high-speed video recording of the material inside. Vector maps of the velocities involved in the flows are obtained using particle image velocimetry (PIV). The changes in velocity direction and/or magnitude are used to locate the primary internal boundaries between layers of opposite flow direction, as well as secondary interfaces between shear layers. A range of variables can be measured: thickness and number of layers; the curvature of the free surface; frequency of avalanching; position of the centre of mass of the material; and the velocity profiles of the flowing material. Experiments to date have focussed on dry materials, and have had a fill factor of approximately 0.3. Combining these measured variables allows us to derive additional data of interest, such as mass and momentum flux. It is these fluxes that we propose will allow insight into the erosion/deposition mechanics of a lahar. A number of conclusions can be drawn to date. A primary interface separates flowing and passive region (this interface has been identified in previous studies). As well as the primary interface, the flowing layer separates into individual shear layers, with individual erosion/deposition and flow histories. This complex flow geometry and process of erosion and deposition seen in our high speed videos is more complicated than previously reported in the literature. We identify two layers only in the slowest flows (< 0.5 rad s-1), while faster ones (< 4 rad s-1) include between three and five. As the rotational velocity of the drum increases, the curvature of the free surface increases. In the central part of the drum, the primary interfaces occasionally merges into an elliptical zone rather than a linear shear boundary. Inside this zone is a complete circulation of material. These zones' size and number appears to be a function of the rotational velocity of the drum. These "Neather cells" (as we tentatively name these phenomena) can reach as large as 20 mm in thickness. The centre of mass' deflection from vertical is linearly dependent on rotational velocity, whilst the typical flow regimes as identified by Mellmann [2001] show no influence. The frequency of avalanches increases with velocity up to a critical velocity (approximately 1.1 rad s-1), after which the avalanche frequency remains constant. 1 References J Mellmann. The transverse motion of solids in rotating cylinders-forms of motion and transition behavior. Powder Technology, 118(3):251-270, 2001.

  10. Atmospheric chemistry of hydrogen fluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Meng -Dawn

    In this study, the atmospheric chemistry, emissions, and surface boundary layer transport of hydrogen fluoride (HF) is summarized. Although HF is known to be chemically reactive and highly soluble, both factors affect transport and removal in the atmosphere, we suggest that the chemistry can be ignored when the HF concentration is at a sufficiently low level (e.g., 10 ppmv). At a low concentration, the capability for HF to react in the atmosphere is diminished and therefore the species can be mathematically treated as inert during the transport. At a sufficiently high concentration of HF (e.g., kg/s release rate and thousandsmore » of ppm), however, HF can go through a series of rigorous chemical reactions including polymerization, depolymerization, and reaction with water to form molecular complex. As such, the HF species cannot be considered as inert because the reactions could intimately influence the plume s thermodynamic properties affecting the changes in plume temperature and density. The atmospheric residence time of HF was found to be less than four (4) days, and deposition (i.e., atmosphere to surface transport) is the dominant mechanism that controls the removal of HF and its oligomers from the atmosphere. The literature data on HF dry deposition velocity was relatively high compared to many commonly found atmospheric species such as ozone, sulfur dioxide, nitrogen oxides, etc. The global average of wet deposition velocity of HF was found to be zero based on one literature source. Uptake of HF by rain drops is limited by the acidity of the rain drops, and atmospheric particulate matter contributes negligibly to HF uptake. Finally, given that the reactivity of HF at a high release rate and elevated mole concentration cannot be ignored, it is important to incorporate the reaction chemistry in the near-field dispersion close to the proximity of the release source, and to incorporate the deposition mechanism in the far-field dispersion away from the release source. In other words, a hybrid computational scheme may be needed to address transport and atmospheric chemistry of HF in a range of applications. The model uncertainty will be limited by the precision of boundary layer parameterization and ability to accurately model the atmospheric turbulence.« less

  11. Atmospheric chemistry of hydrogen fluoride

    DOE PAGES

    Cheng, Meng -Dawn

    2017-04-11

    In this study, the atmospheric chemistry, emissions, and surface boundary layer transport of hydrogen fluoride (HF) is summarized. Although HF is known to be chemically reactive and highly soluble, both factors affect transport and removal in the atmosphere, we suggest that the chemistry can be ignored when the HF concentration is at a sufficiently low level (e.g., 10 ppmv). At a low concentration, the capability for HF to react in the atmosphere is diminished and therefore the species can be mathematically treated as inert during the transport. At a sufficiently high concentration of HF (e.g., kg/s release rate and thousandsmore » of ppm), however, HF can go through a series of rigorous chemical reactions including polymerization, depolymerization, and reaction with water to form molecular complex. As such, the HF species cannot be considered as inert because the reactions could intimately influence the plume s thermodynamic properties affecting the changes in plume temperature and density. The atmospheric residence time of HF was found to be less than four (4) days, and deposition (i.e., atmosphere to surface transport) is the dominant mechanism that controls the removal of HF and its oligomers from the atmosphere. The literature data on HF dry deposition velocity was relatively high compared to many commonly found atmospheric species such as ozone, sulfur dioxide, nitrogen oxides, etc. The global average of wet deposition velocity of HF was found to be zero based on one literature source. Uptake of HF by rain drops is limited by the acidity of the rain drops, and atmospheric particulate matter contributes negligibly to HF uptake. Finally, given that the reactivity of HF at a high release rate and elevated mole concentration cannot be ignored, it is important to incorporate the reaction chemistry in the near-field dispersion close to the proximity of the release source, and to incorporate the deposition mechanism in the far-field dispersion away from the release source. In other words, a hybrid computational scheme may be needed to address transport and atmospheric chemistry of HF in a range of applications. The model uncertainty will be limited by the precision of boundary layer parameterization and ability to accurately model the atmospheric turbulence.« less

  12. Seasonality of mercury in the Atlantic marine boundary layer

    NASA Astrophysics Data System (ADS)

    Soerensen, Anne L.; Sunderland, Elsie; Skov, Henrik; Holmes, Christopher; Jacob, Daniel J.

    2010-05-01

    Around one third of the mercury emissions today are from primary anthropogenic sources, with the remaining two-thirds from secondary reemissions of earlier deposition and natural sources (AMAP/UNEP 2008). Mercury exchange at the air-sea interface is important for the global distribution of atmospheric mercury as parts of deposited mercury will reenter the atmosphere through evasion. The exchange at the air-sea interface also affects the amount of inorganic mercury in the ocean and thereby the conversion to the neuro-toxic methylmercury. Here we combine new cruise measurements in the atmospheric marine boundary layer (MBL) of the Atlantic Ocean (Northern Hemisphere) from the fall of 2006 and the spring of 2007 with existing data from cruises in the Atlantic Ocean since 1978. We observe from these data a seasonal cycle in Hg(0) concentrations in the Atlantic marine boundary later (MBL) that exhibits minimum concentrations during summer and high concentrations during fall to spring. These observations suggest a local, seasonally dependent Hg(0) source in the MBL that causes variability in concentrations above the open ocean. To further investigate controls on Hg(0) concentrations in the MBL, we developed an improved representation of oceanic air-sea exchange processes within the GEOS-Chem global 3-D biogeochemical mercury model. Specifically, we used new data on mercury redox reactions in the surface ocean as a function of biological and photochemical processes, and implemented new algorithms for mercury dynamics associated with suspended particles. Our coupled atmospheric-oceanic modeling results support the premise that oceanic evasion is a main driver controlling Hg(0) concentrations in the MBL. We also use the model to investigate what drivers the evasion across the air-sea interface on shorter timescales. This is done by tracking evasion rates and other model components on an hourly basis for chosen locations in the Atlantic Ocean.

  13. Characterization of unsaturated zone hydrogeologic units using matrix properties and depositional history in a complex volcanic environment

    USGS Publications Warehouse

    Flint, Lorraine E.; Buesch, David C.; Flint, Alan L.

    2006-01-01

    Characterization of the physical and unsaturated hydrologic properties of subsurface materials is necessary to calculate flow and transport for land use practices and to evaluate subsurface processes such as perched water or lateral diversion of water, which are influenced by features such as faults, fractures, and abrupt changes in lithology. Input for numerical flow models typically includes parameters that describe hydrologic properties and the initial and boundary conditions for all materials in the unsaturated zone, such as bulk density, porosity, and particle density, saturated hydraulic conductivity, moisture-retention characteristics, and field water content. We describe an approach for systematically evaluating the site features that contribute to water flow, using physical and hydraulic data collected at the laboratory scale, to provide a representative set of physical and hydraulic parameters for numerically calculating flow of water through the materials at a site. An example case study from analyses done for the heterogeneous, layered, volcanic rocks at Yucca Mountain is presented, but the general approach for parameterization could be applied at any site where depositional processes follow deterministic patterns. Hydrogeologic units at this site were defined using (i) a database developed from 5320 rock samples collected from the coring of 23 shallow (<100 m) and 10 deep (500–1000 m) boreholes, (ii) lithostratigraphic boundaries and corresponding relations to porosity, (iii) transition zones with pronounced changes in properties over short vertical distances, (iv) characterization of the influence of mineral alteration on hydrologic properties such as permeability and moisture-retention characteristics, and (v) a statistical analysis to evaluate where boundaries should be adjusted to minimize the variance within layers. Model parameters developed in this study, and the relation of flow properties to porosity, can be used to produce detailed and accurate representations of the core-scale hydrologic processes ongoing at Yucca Mountain.

  14. Cu diffusion in single-crystal and polycrystalline TiN barrier layers: A high-resolution experimental study supported by first-principles calculations

    NASA Astrophysics Data System (ADS)

    Mühlbacher, Marlene; Bochkarev, Anton S.; Mendez-Martin, Francisca; Sartory, Bernhard; Chitu, Livia; Popov, Maxim N.; Puschnig, Peter; Spitaler, Jürgen; Ding, Hong; Schalk, Nina; Lu, Jun; Hultman, Lars; Mitterer, Christian

    2015-08-01

    Dense single-crystal and polycrystalline TiN/Cu stacks were prepared by unbalanced DC magnetron sputter deposition at a substrate temperature of 700 °C and a pulsed bias potential of -100 V. The microstructural variation was achieved by using two different substrate materials, MgO(001) and thermally oxidized Si(001), respectively. Subsequently, the stacks were subjected to isothermal annealing treatments at 900 °C for 1 h in high vacuum to induce the diffusion of Cu into the TiN. The performance of the TiN diffusion barrier layers was evaluated by cross-sectional transmission electron microscopy in combination with energy-dispersive X-ray spectrometry mapping and atom probe tomography. No Cu penetration was evident in the single-crystal stack up to annealing temperatures of 900 °C, due to the low density of line and planar defects in single-crystal TiN. However, at higher annealing temperatures when diffusion becomes more prominent, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N sublattice for the experimental N/Ti ratio. In comparison, localized diffusion of Cu along grain boundaries in the columnar polycrystalline TiN barriers was detected after the annealing treatment. The maximum observed diffusion length was approximately 30 nm, yielding a grain boundary diffusion coefficient of the order of 10-16 cm2 s-1 at 900 °C. This is 10 to 100 times less than for comparable underdense polycrystalline TiN coatings deposited without external substrate heating or bias potential. The combined numerical and experimental approach presented in this paper enables the contrasting juxtaposition of diffusion phenomena and mechanisms in two TiN coatings, which differ from each other only in the presence of grain boundaries.

  15. Vorticity interaction effects on blunt bodies. [hypersonic viscous shock layers

    NASA Technical Reports Server (NTRS)

    Anderson, E. C.; Wilcox, D. C.

    1977-01-01

    Numerical solutions of the viscous shock layer equations governing laminar and turbulent flows of a perfect gas and radiating and nonradiating mixtures of perfect gases in chemical equilibrium are presented for hypersonic flow over spherically blunted cones and hyperboloids. Turbulent properties are described in terms of the classical mixing length. Results are compared with boundary layer and inviscid flowfield solutions; agreement with inviscid flowfield data is satisfactory. Agreement with boundary layer solutions is good except in regions of strong vorticity interaction; in these flow regions, the viscous shock layer solutions appear to be more satisfactory than the boundary layer solutions. Boundary conditions suitable for hypersonic viscous shock layers are devised for an advanced turbulence theory.

  16. Atmospheric nitrogen deposition in south-east Scotland: Quantification of the organic nitrogen fraction in wet, dry and bulk deposition

    NASA Astrophysics Data System (ADS)

    González Benítez, Juan M.; Cape, J. Neil; Heal, Mathew R.; van Dijk, Netty; Díez, Alberto Vidal

    Water soluble organic nitrogen (WSON) compounds are ubiquitous in precipitation and in the planetary boundary layer, and therefore are a potential source of bioavailable reactive nitrogen. This paper examines weekly rain data over a period of 22 months from June 2005 to March 2007 collected in 2 types of rain collector (bulk deposition and "dry + wet" deposition) located in a semi-rural area 15 km southwest of Edinburgh, UK (N55°51'44″, W3°12'19″). Bulk deposition collectors are denoted in this paper as "standard rain gauges", and they are the design used in the UK national network for monitoring precipitation composition. "Dry + wet" deposition collectors are flushing rain gauges and they are equipped with a rain detector (conductivity array), a spray nozzle, a 2-way valve and two independent bottles to collect funnel washings (dry deposition) and true wet deposition. On average, for the 27 weekly samples with 3 valid replicates for the 2 types of collectors, dissolved organic nitrogen (DON) represented 23% of the total dissolved nitrogen (TDN) in bulk deposition. Dry deposition of particles and gas on the funnel surface, rather than rain, contributed over half of all N-containing species (inorganic and organic). Some discrepancies were found between bulk rain gauges and flushing rain gauges, for deposition of both TDN and DON, suggesting biological conversion and loss of inorganic N in the flushing samplers.

  17. Chemical transport models: the combined non-local diffusion and mixing schemes, and calculation of in-canopy resistance for dry deposition fluxes.

    PubMed

    Mihailovic, Dragutin T; Alapaty, Kiran; Podrascanin, Zorica

    2009-03-01

    Improving the parameterization of processes in the atmospheric boundary layer (ABL) and surface layer, in air quality and chemical transport models. To do so, an asymmetrical, convective, non-local scheme, with varying upward mixing rates is combined with the non-local, turbulent, kinetic energy scheme for vertical diffusion (COM). For designing it, a function depending on the dimensionless height to the power four in the ABL is suggested, which is empirically derived. Also, we suggested a new method for calculating the in-canopy resistance for dry deposition over a vegetated surface. The upward mixing rate forming the surface layer is parameterized using the sensible heat flux and the friction and convective velocities. Upward mixing rates varying with height are scaled with an amount of turbulent kinetic energy in layer, while the downward mixing rates are derived from mass conservation. The vertical eddy diffusivity is parameterized using the mean turbulent velocity scale that is obtained by the vertical integration within the ABL. In-canopy resistance is calculated by integration of inverse turbulent transfer coefficient inside the canopy from the effective ground roughness length to the canopy source height and, further, from its the canopy height. This combination of schemes provides a less rapid mass transport out of surface layer into other layers, during convective and non-convective periods, than other local and non-local schemes parameterizing mixing processes in the ABL. The suggested method for calculating the in-canopy resistance for calculating the dry deposition over a vegetated surface differs remarkably from the commonly used one, particularly over forest vegetation. In this paper, we studied the performance of a non-local, turbulent, kinetic energy scheme for vertical diffusion combined with a non-local, convective mixing scheme with varying upward mixing in the atmospheric boundary layer (COM) and its impact on the concentration of pollutants calculated with chemical and air-quality models. In addition, this scheme was also compared with a commonly used, local, eddy-diffusivity scheme. Simulated concentrations of NO2 by the COM scheme and new parameterization of the in-canopy resistance are closer to the observations when compared to those obtained from using the local eddy-diffusivity scheme. Concentrations calculated with the COM scheme and new parameterization of in-canopy resistance, are in general higher and closer to the observations than those obtained by the local, eddy-diffusivity scheme (on the order of 15-22%). To examine the performance of the scheme, simulated and measured concentrations of a pollutant (NO2) were compared for the years 1999 and 2002. The comparison was made for the entire domain used in simulations performed by the chemical European Monitoring and Evaluation Program Unified model (version UNI-ACID, rv2.0) where schemes were incorporated.

  18. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  19. Internal and external 2-d boundary layer flows

    NASA Technical Reports Server (NTRS)

    Crawford, M. E.; Kays, W. M.

    1978-01-01

    Computer program computes general two dimensional turbulent boundary-layer flow using finite-difference techniques. Structure allows for user modification to accommodate unique problems. Program should prove useful in many applications where accurate boundary-layer flow calculations are required.

  20. Control of electromagnetic edge effects in electrically-small rectangular plasma reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trampel, Christopher P.; Stieler, Daniel S.; PowerFilm, Inc., 2337 230th Street, Ames, Iowa 50014

    Electromagnetic fields supported by rectangular reactors for plasma enhanced chemical vapor deposition are studied theoretically. Expressions for the fields in an electrically-small rectangular reactor with plasma in the chamber are derived. Modal field decompositions are employed under the homogeneous plasma slab approximation. The amplitude of each mode is determined analytically. It is shown that the field can be represented by the standing wave, evanescent waves tied to the edges, and an evanescent wave tied to the corners of the reactor. The impact of boundary conditions at the plasma edge on nonuniformity is quantified. Uniformity may be improved by placing amore » lossy magnetic layer on the reactor sidewalls. It is demonstrated that nonuniformity is a decreasing function of layer thickness.« less

  1. Zeroth order Fabry-Perot resonance enabled ultra-thin perfect light absorber using percolation aluminum and silicon nanofilms

    DOE PAGES

    Mirshafieyan, Seyed Sadreddin; Luk, Ting S.; Guo, Junpeng

    2016-03-04

    Here, we demonstrated perfect light absorption in optical nanocavities made of ultra-thin percolation aluminum and silicon films deposited on an aluminum surface. The total layer thickness of the aluminum and silicon films is one order of magnitude less than perfect absorption wavelength in the visible spectral range. The ratio of silicon cavity layer thickness to perfect absorption wavelength decreases as wavelength decreases due to the increased phase delays at silicon-aluminum boundaries at shorter wavelengths. It is explained that perfect light absorption is due to critical coupling of incident wave to the fundamental Fabry-Perot resonance mode of the structure where themore » round trip phase delay is zero. Simulations were performed and the results agree well with the measurement results.« less

  2. Method for depositing layers of high quality semiconductor material

    DOEpatents

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  3. The turbulent plasmasphere boundary layer and the outer radiation belt boundary

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny; Sotnikov, Vladimir

    2017-12-01

    We report on observations of enhanced plasma turbulence and hot particle distributions in the plasmasphere boundary layer formed by reconnection-injected hot plasma jets entering the plasmasphere. The data confirm that the electron pressure peak is formed just outward of the plasmapause in the premidnight sector. Free energy for plasma wave excitation comes from diamagnetic ion currents near the inner edge of the boundary layer due to the ion pressure gradient, electron diamagnetic currents in the entry layer near the electron plasma sheet boundary, and anisotropic (sometimes ring-like) ion distributions revealed inside, and further inward of, the inner boundary. We also show that nonlinear parametric coupling between lower oblique resonance and fast magnetosonic waves significantly contributes to the VLF whistler wave spectrum in the plasmasphere boundary layer. These emissions represent a distinctive subset of substorm/storm-related VLF activity in the region devoid of substorm injected tens keV electrons and could be responsible for the alteration of the outer radiation belt boundary during (sub)storms.

  4. Comparison of Theoretical and Experimental Heat-Transfer Characteristics of Bodies of Revolution at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Scherrer, Richard

    1951-01-01

    An investigation of the three important factors that determine convective heat-transfer characteristics at supersonic speeds, location boundary-layer transition, recovery factor, and heat-transfer parameter has been performed at Mach numbers from 1.49 to 1.18. The bodies of revolution that were tested had, in most cases, laminar boundary layers, and the test results have been compared with available theory. Boundary-layer transition was found to be affected by heat transfer. Adding heat to a laminar boundary layer caused transition to move forward on the test body, while removing heat caused transition to move rearward. These experimental results and the implications of boundary-layer-stability theory are in qualitative agreement.

  5. Study of the Effect of Free-Stream Turbulence upon Disturbances in the Pre-Transitional Laminar Boundary Layer. Part I. Laminar Boundary Layer Distortion by Surface Roughness; Effect upon Stability. Part II.

    DTIC Science & Technology

    1982-04-01

    Boundary Layer Near a Plate." NACA Rept. 562, 1936. 5) A. A. Hall and G. S. Hislop , "Experiments on the Transition of the Laminar Boundary Layer on a...Cylinder." Proc. 5th Inter. Congr. Appl. Math, 1938. 7) G. S. Hislop , "The Transition of a Laminar Boundary Layer in a Wind Tunnel." Ph.D. Thesis...Small Vertical Cylinder Attached to a Flat Plate", h Fa- Elul"s, Vol. 23, Part 1, pp. 221-223, Jan. 1980 . 9. A. Von Doenhoff and E. A. Horton, "A Low

  6. Electron distributions in the plasma sheet boundary layer - Time-of-flight effects

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.; Bame, S. J.

    1990-01-01

    The electron edge of the plasma sheet boundary layer lies lobeward of the ion edge. Measurements obtained near the electron edge of the boundary layer reveal low-speed cutoffs for earthward and tailward-flowing electrons. These cutoffs progress to lower speeds with deeper penetration into the boundary layer, and are consistently lower for the earthward-directed electrons than for the tailward-direction electrons. The cutoffs and their variation with distance from the edge of the boundary layer can be consistently interpreted in terms of a time-of-flight effect on recently reconnected magnetic field lines. The observed cutoff speeds are used to estimate the downtail location of the reconnection site.

  7. Goertler instability in compressible boundary layers along curved surfaces with suction and cooling

    NASA Technical Reports Server (NTRS)

    El-Hady, N.; Verma, A. K.

    1982-01-01

    The Goertler instability of the laminar compressible boundary layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating streamwise vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear coordinate. The basic approximation of the disturbance equations, that includes the effect of the growth of the boundary layer, is considered and solved numerically. The effect of compressibility on critical stability limits, growth rates, and amplitude ratios of the vortices is evaluated for a range of Mach numbers for 0 to 5. The effect of wall cooling and suction of the boundary layer on the development of Goertler vortices is investigated for different Mach numbers.

  8. A review of quasi-coherent structures in a numerically simulated turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, S. K.; Kline, S. J.; Spalart, P. R.

    1989-01-01

    Preliminary results of a comprehensive study of the structural aspects of a numerically simulated number turbulent boundary layer are presented. A direct Navier-Stokes simulation of a flat-plate, zero pressure gradient boundary layer at Re0 = 670 was used. Most of the known nonrandom, coherent features of turbulent boundary layers are confirmed in the simulation, and several new aspects of their spatial character are reported. The spatial relationships between many of the various structures are described, forming the basis for a more complete kinematical picture of boundary layer physics than has been previously known. In particular, the importance of vortex structures of various forms to the generation of Reynolds shear stress is investigated.

  9. Computer graphic visualization of orbiter lower surface boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Throckmorton, D. A.; Hartung, L. C.

    1984-01-01

    Computer graphic techniques are applied to the processing of Shuttle Orbiter flight data in order to create a visual presentation of the extent and movement of the boundary-layer transition front over the orbiter lower surface during entry. Flight-measured surface temperature-time histories define the onset and completion of the boundary-layer transition process at any measurement location. The locus of points which define the spatial position of the boundary-layer transition front on the orbiter planform is plotted at each discrete time for which flight data are available. Displaying these images sequentially in real-time results in an animated simulation of the in-flight boundary-layer transition process.

  10. Sublayer of Prandtl Boundary Layers

    NASA Astrophysics Data System (ADS)

    Grenier, Emmanuel; Nguyen, Toan T.

    2018-03-01

    The aim of this paper is to investigate the stability of Prandtl boundary layers in the vanishing viscosity limit {ν \\to 0} . In Grenier (Commun Pure Appl Math 53(9):1067-1091, 2000), one of the authors proved that there exists no asymptotic expansion involving one of Prandtl's boundary layer, with thickness of order {√{ν}} , which describes the inviscid limit of Navier-Stokes equations. The instability gives rise to a viscous boundary sublayer whose thickness is of order {ν^{3/4}} . In this paper, we point out how the stability of the classical Prandtl's layer is linked to the stability of this sublayer. In particular, we prove that the two layers cannot both be nonlinearly stable in L^∞. That is, either the Prandtl's layer or the boundary sublayer is nonlinearly unstable in the sup norm.

  11. Methods and results of boundary layer measurements on a glider

    NASA Technical Reports Server (NTRS)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  12. A study of juncture flow in the NASA Langley 0.3-meter transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Chokani, Ndaona

    1992-01-01

    A numerical investigation of the interaction between a wind tunnel sidewall boundary layer and a thin low-aspect-ratio wing has been performed for transonic speeds and flight Reynolds numbers. A three-dimensional Navier-Stokes code was applied to calculate the flow field. The first portion of the investigation examined the capability of the code to calculate the flow around the wing, with no sidewall boundary layer present. The second part of the research examined the effect of modeling the sidewall boundary layer. The results indicated that the sidewall boundary layer had a strong influence on the flow field around the wing. The viscous sidewall computations accurately predicted the leading edge suction peaks, and the strong adverse pressure gradients immediately downstream of the leading edge. This was in contrast to the consistent underpredictions of the free-air computations. The low momentum of the sidewall boundary layer resulted in higher pressures in the juncture region, which decreased the favorable spanwise pressure gradient. This significantly decreased the spanwise migration of the wing boundary layer. The computations indicated that the sidewall boundary layer remained attached for all cases examined. Weak vortices were predicted in both the upper and lower surface juncture regions. These vortices are believed to have been generated by lateral skewing of the streamlines in the approaching boundary layer.

  13. Approach to Modeling Boundary Layer Ingestion Using a Fully Coupled Propulsion-RANS Model

    NASA Technical Reports Server (NTRS)

    Gray, Justin S.; Mader, Charles A.; Kenway, Gaetan K. W.; Martins, Joaquim R. R. A.

    2017-01-01

    Airframe-propulsion integration concepts that use boundary layer ingestion have the potential to reduce aircraft fuel burn. One concept that has been recently explored is NASA's Starc-ABL aircraft configuration, which offers the potential for 12% mission fuel burn reduction by using a turbo-electric propulsion system with an aft-mounted electrically driven boundary layer ingestion propulsor. This large potential for improved performance motivates a more detailed study of the boundary layer ingestion propulsor design, but to date, analyses of boundary layer ingestion have used uncoupled methods. These methods account for only aerodynamic effects on the propulsion system or propulsion system effects on the aerodynamics, but not both simultaneously. This work presents a new approach for building fully coupled propulsive-aerodynamic models of boundary layer ingestion propulsion systems. A 1D thermodynamic cycle analysis is coupled to a RANS simulation to model the Starc-ABL aft propulsor at a cruise condition and the effects variation in propulsor design on performance are examined. The results indicates that both propulsion and aerodynamic effects contribute equally toward the overall performance and that the fully coupled model yields substantially different results compared to uncoupled. The most significant finding is that boundary layer ingestion, while offering substantial fuel burn savings, introduces throttle dependent aerodynamics effects that need to be accounted for. This work represents a first step toward the multidisciplinary design optimization of boundary layer ingestion propulsion systems.

  14. Effect of Protuberance Shape and Orientation on Space Shuttle Orbiter Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    King, RUdolph A.; Berry, Scott A.; Kegerise, Michael A.

    2008-01-01

    This document describes an experimental study conducted to examine the effects of protuberances on hypersonic boundary-layer transition. The experiment was conducted in the Langley 20-Inch Mach 6 Tunnel on a series of 0.9%-scale Shuttle Orbiter models. The data were acquired to complement the existing ground-based boundary-layer transition database that was used to develop Version 1.0 of the boundary-layer transition RTF (return-to-flight) tool. The existing ground-based data were all acquired on 0.75%-scale Orbiter models using diamond-shaped ( pizza-box ) trips. The larger model scale facilitated in manufacturing higher fidelity protuberances. The end use of this experimental database will be to develop a technical basis (in the form of a boundary-layer transition correlation) to assess representative protrusion shapes, e.g., gap fillers and protrusions resulting from possible tile repair concepts. The primary objective of this study is to investigate the effects of protuberance-trip location and geometry on Shuttle Orbiter boundary-layer transition. Secondary goals are to assess the effects of gap-filler orientation and other protrusion shapes on boundary-layer transition. Global heat-transfer images using phosphor thermography of the Orbiter windward surface and the corresponding streamwise and spanwise heating distributions were used to infer the state of the boundary layer, i.e., laminar, transitional, or turbulent.

  15. Differentiating submarine channel-related thin-bedded turbidite facies: Outcrop examples from the Rosario Formation, Mexico

    NASA Astrophysics Data System (ADS)

    Hansen, Larissa; Callow, Richard; Kane, Ian; Kneller, Ben

    2017-08-01

    Thin-bedded turbidites deposited by sediment gravity flows that spill from submarine channels often contain significant volumes of sand in laterally continuous beds. These can make up over 50% of the channel-belt fill volume, and can thus form commercially important hydrocarbon reservoirs. Thin-bedded turbidites can be deposited in environments that include levees and depositional terraces, which are distinguished on the basis of their external morphology and internal architecture. Levees have a distinctive wedge shaped morphology, thinning away from the channel, and confine both channels (internal levees) and channel-belts (external levees). Terraces are flat-lying features that are elevated above the active channel within a broad channel-belt. Despite the ubiquity of terraces and levees in modern submarine channel systems, the recognition of these environments in outcrop and in the subsurface is challenging. In this outcrop study of the Upper Cretaceous Rosario Formation (Baja California, Mexico), lateral transects based on multiple logged sections of thin-bedded turbidites reveal systematic differences in sandstone layer thicknesses, sandstone proportion, palaeocurrents, sedimentary structures and ichnology between channel-belt and external levee thin-bedded turbidites. Depositional terrace deposits have a larger standard deviation in sandstone layer thicknesses than external levees because they are topographically lower, and experience a wider range of turbidity current sizes overspilling from different parts of the channel-belt. The thickness of sandstone layers within external levees decreases away from the channel-belt while those in depositional terraces are less laterally variable. Depositional terrace environments of the channel-belt are characterized by high bioturbation intensities, and contain distinctive trace fossil assemblages, often dominated by ichnofabrics of the echinoid trace fossil Scolicia. These assemblages contrast with the lower bioturbation intensities that are recorded from external levee environments where Scolicia is typically absent. Multiple blocks of external levee material are observed in the depositional terrace area where the proximal part of the external levee has collapsed into the channel-belt; their presence characterizes the channel-belt boundary zone. The development of recognition criteria for different types of channel-related thin-bedded turbidites is critical for the interpretation of sedimentary environments both at outcrop and in the subsurface, which can reduce uncertainty during hydrocarbon field appraisal and development.

  16. Influence of pre-tectonic carbonate facies architecture on deformation patterns of syntectonic turbidites, an example from the central Mexican fold-thrust belt

    NASA Astrophysics Data System (ADS)

    Vásquez Serrano, Alberto; Tolson, Gustavo; Fitz Diaz, Elisa; Chávez Cabello, Gabriel

    2018-04-01

    The Mexican fold-thrust belt in central México excellently exposes relatively well preserved syntectonic deposits that overlay rocks with lateral lithostratigraphic changes across the belt. We consider the deformational effects of these changes by investigating the geometry, kinematics and strain distribution within syntectonic turbidites, which are deposited on top of Albian-Cenomanian shallow and deep water carbonate layers. Field observations and detailed structural analysis at different stratigraphic and structural levels of the Late Cretaceous syntectonic formation are compared with the deformation as a function of lithological and structural variations in the underlying carbonate units, to better understand the effect of these lithostratigraphic variations on deformation, kinematics, strain distribution and propagation of deformation. From our kinematic analyses, we conclude that the syntectonic strata are pervasively affected by folding in all areas and that deformation partitioning localized shear zones at the boundaries of this unit, particularly along the contact with massive carbonates. At the boundaries with massive platformal carbonates, the turbidites are strongly deformed by isoclinal folding with a pervasive sub-horizontal axial plane cleavage and 70-60% shortening. In contrast, contacts with thinly-bedded carbonate layers (basinal facies), do not show strain localization, and have horizontal shortening of 50-40% that is accommodated by buckle folds with a less pervasive, steeply dipping cleavage. The mechanical properties variations in the underlying pre-tectonic units as a function of changes in lithostratigraphy fundamentally control the deformation in the overlying syntectonic strata, which is an effect that could be expected to occur in any deformed sedimentary sequence with such variations.

  17. Aligned crystalline semiconducting film on a glass substrate and method of making

    DOEpatents

    Findikoglu, Alp T.

    2010-08-24

    A semiconducting structure having a glass substrate. In one embodiment, the glass substrate has a softening temperature of at least about 750.degree. C. The structure includes a nucleation layer formed on a surface of the substrate, a template layer deposited on the nucleation layer by one of ion assisted beam deposition and reactive ion beam deposition, at least on biaxially oriented buffer layer epitaxially deposited on the template layer, and a biaxially oriented semiconducting layer epitaxially deposited on the buffer layer. A method of making the semiconducting structure is also described.

  18. Boundary-layer exchange by bubble: A novel method for generating transient nanofluidic layers

    NASA Astrophysics Data System (ADS)

    Jennissen, Herbert P.

    2005-10-01

    Unstirred layers (i.e., Nernst boundary layers) occur on every dynamic solid-liquid interface, constituting a diffusion barrier, since the velocity of a moving liquid approaches zero at the surface (no slip). If a macromolecule-surface reaction rate is higher than the diffusion rate, the Nernst layer is solute depleted and the reaction rate becomes mass-transport limited. The thickness of a Nernst boundary layer (δN) generally lies between 5 and 50μm. In an evanescent wave rheometer, measuring fibrinogen adsorption to fused silica, we made the fundamental observation that an air bubble preceding the sample through the flow cell abolishes the mass-transport limitation of the Nernst diffusion layer. Instead exponential kinetics are found. Experimental and simulation studies strongly indicate that these results are due to the elimination of the Nernst diffusion layer and its replacement by a dynamic nanofluidic layer (δν) maximally 200-300nm thick. It is suggested that the air bubble leads to a transient boundary-layer separation into a novel nanoboundary layer on the surface and the bulk fluid velocity profile separated by a vortex sheet with an estimated lifetime of 30-60s. A bubble-induced boundary-layer exchange from the Nernst to the nanoboundary layer and back is obtained, giving sufficient time for the measurement of unbiased exponential surface kinetics. Noteworthy is that the nanolayer can exist at all and displays properties such as (i) a long persistence and resistance to dissipation by the bulk liquid (boundary-layer-exchange-hysteresis) and (ii) a lack of solute depletion in spite of boundary-layer separation. The boundary-layer-exchange by bubble (BLEB) method therefore appears ideal for enhancing the rates of all types of diffusion-limited macromolecular reactions on surfaces with contact angles between 0° and 90° and only appears limited by slippage due to nanobubbles or an air gap beneath the nanofluidic layer on very hydrophobic surfaces. The possibility of producing nanoboundary layers without any nanostructuring or nanomachining should also be useful for fundamental physical studies in nanofluidics.

  19. Depth Profiling Analysis of Aluminum Oxidation During Film Deposition in a Conventional High Vacuum System

    NASA Technical Reports Server (NTRS)

    Kim, Jongmin; Weimer, Jeffrey J.; Zukic, Muamer; Torr, Douglas G.

    1994-01-01

    The oxidation of aluminum thin films deposited in a conventional high vacuum chamber has been investigated using x-ray photoelectron spectroscopy (XPS) and depth profiling. The state of the Al layer was preserved by coating it with a protective MgF2 layer in the deposition chamber. Oxygen concentrations in the film layers were determined as a function of sputter time (depth into the film). The results show that an oxidized layer is formed at the start of Al deposition and that a less extensively oxidized Al layer is deposited if the deposition rate is fast. The top surface of the Al layer oxidizes very quickly. This top oxidized layer may be thicker than has been previously reported by optical methods. Maximum oxygen concentrations measured by XPS at each Al interface are related to pressure to rate ratios determined during the Al layer deposition.

  20. Iron deposition in skin of patients with haemochromatosis

    NASA Astrophysics Data System (ADS)

    Pinheiro, T.; Silva, J. N.; Alves, L. C.; Filipe, P.

    2003-09-01

    Haemochromatosis is the most common inherited liver disease in Caucasians and the most common autosomal recessive genetic disorder. It is characterized by inappropriately high iron absorption resulting in progressive iron overload in parenchymal organs such as liver, heart, pancreas, pituitary, joints, and skin. Upon early detection, haemochromatosis can be a manageable chronic disease but, if undetected, is potentially fatal. Skin biopsies were obtained from patients and from healthy donors. Images of the elemental distributions in skin were obtained using nuclear microscopy techniques (nuclear microprobe, NMP). Elemental profiles along skin, and intra-, and extra-cellular iron concentrations, were determined. Results for patients with haemochromatosis were cross-examined with morphologic features and with data obtained for healthy skin. Skin iron content is much increased in patients with haemochromatosis when compared with healthy subjects. Extensive iron deposits are observed at dermis, at the dermo-epidermal interface, at upper epidermis layers and at stratum corneum. Iron deposition was observed preferentially at cell boundaries or at the interstitial matrix.

  1. Strain and structure heterogeneity in MoS 2 atomic layers grown by chemical vapour deposition

    DOE PAGES

    Liu, Zheng; Amani, Matin; Najmaei, Sina; ...

    2014-11-18

    Monolayer molybdenum disulfide (MoS 2) has attracted tremendous attention due to its promising applications in high-performance field-effect transistors, phototransistors, spintronic devices, and nonlinear optics. The enhanced photoluminescence effect in monolayer MoS 2 was discovered and, as a strong tool, was employed for strain and defect analysis in MoS 2. Recently, large-size monolayer MoS 2 has been produced by chemical vapor deposition but has not yet been fully explored. Here we systematically characterize chemical vapor deposition grown MoS 2 by PL spectroscopy and mapping, and demonstrate non-uniform strain in single-crystalline monolayer MoS 2 and strain-induced band gap engineering. We also evaluatemore » the effective strain transferred from polymer substrates to MoS 2 by three-dimensional finite element analysis. In addition, our work demonstrates that PL mapping can be used as a non-contact approach for quick identification of grain boundaries in MoS 2.« less

  2. In situ biodeposition measurements on a Modiolus modiolus (horse mussel) reef provide insights into ecosystem services

    NASA Astrophysics Data System (ADS)

    Kent, Flora E. A.; Last, Kim S.; Harries, Daniel B.; Sanderson, William G.

    2017-01-01

    Horse mussel (Modiolus modiolus) shellfish reefs are a threatened and declining habitat in the North East Atlantic and support high levels of biodiversity. Shellfish can influence the surrounding water column and modify the quality of material that reaches the seabed by filtering water, actively depositing particles and changing the benthic boundary layer due to surface roughness. In the present study M. modiolus biodeposition was measured in a field location for the first time. The results show that M. modiolus enhance sedimentation and contribute to the downward flux of material to the seabed. Approximately 30% of the total sediment deposition was attributed to active filter feeding and overall, the presence of horse mussels enhanced deposition two fold. The results are discussed in terms of the potential for horse mussel reefs to provide ecosystem services to society, through functions such as benthopelagic coupling and sediment stabilisation. Highlighting the societal benefits supplied by marine habitats can help prioritise conservation efforts and feed into the sustainable management of coastal water bodies.

  3. Highly oriented diamond films on Si: growth, characterization, and devices

    NASA Astrophysics Data System (ADS)

    Stoner, Brian R.; Malta, D. M.; Tessmer, A. J.; Holmes, J.; Dreifus, David L.; Glass, R. C.; Sowers, A.; Nemanich, Robert J.

    1994-04-01

    Highly oriented, (100) textured diamond films have been grown on single-crystal Si substrates via microwave plasma enhanced chemical vapor deposition. A multistep deposition process including bias-enhanced nucleation and textured growth was used to obtain smooth films consisting of epitaxial grains with only low-angle grain boundaries. Boron-doped layers were selectively deposited onto the surface of these oriented films and temperature-dependent Hall effect measurements indicated a 3 to 5 times improvement in hole mobility over polycrystalline films grown under similar conditions. Room temperature hole mobilities between 135 and 278 cm2/V-s were measured for the highly oriented samples as compared to 2 to 50 cm2/V-s for typical polycrystalline films. Grain size effects and a comparison between the transport properties of polycrystalline, highly oriented and homoepitaxial films will be discussed. Metal-oxide- semiconductor field-effect transistors were then fabricated on the highly oriented films and exhibited saturation and pinch-off of the channel current.

  4. Structure of the low-latitude boundary layer. [in magnetopause

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. OE.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1981-01-01

    High temporal resolution observations of the frontside magnetopause and plasma boundary layer made with the fast plasma analyzer aboard the ISEE 1 and 2 spacecraft are reported. The data are found to be compatible with a boundary layer that is always attached to the magnetopause but where the layer thickness has a large-scale spatial modulation pattern which travels tailward past the spacecraft. Periods are included when the thickness is essentially zero and others when it is of the order of 1 earth radius. The duration of these periods is highly variable but is typically in the range of 2-5 min corresponding to a distance along the magnetopuase of approximately 3-8 earth radii. The observed boundary layer features include a steep density gradient at the magnetopause with an approximately constant boundary layer plasma density amounting to about 25% of the magnetosheath density, and a second abrupt density decrease at the inner edge of the layer.

  5. Computation of the shock-wave boundary layer interaction with flow separation

    NASA Technical Reports Server (NTRS)

    Ardonceau, P.; Alziary, T.; Aymer, D.

    1980-01-01

    The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.

  6. Variable temperature semiconductor film deposition

    DOEpatents

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  7. Variable temperature semiconductor film deposition

    DOEpatents

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  8. Earth Observations taken by the Expedition 18 Crew

    NASA Image and Video Library

    2008-12-06

    ISS018-E-011127 (6 Dec. 2008) --- Raven Ridge, Colorado is featured in this image photographed by an Expedition 18 crewmember on the International Space Station. An important way to unravel Earth?s history is to find and study old rocks that have been turned up and exposed on the surface through Earth?s tectonic activity. This image of Raven Ridge, Colorado provides a beautiful example of such a place that allows geologists to walk across rocks formed about 65 million years ago, now known as the ?K-T (or Cretaceous-Tertiary) Boundary?, according to scientists. The ridge is a dramatic topographic feature in northwestern Colorado formed by layered sedimentary rocks that span this boundary in geologic time. These sedimentary layers, originally deposited in a near-shore or marine environment as flat-lying beds, were later tilted on end to an almost vertical position by tectonic forces. The tilted beds are visible in this view as hard, resistant ridges of tan, buff, and white rocks, with a less resistant gray layer in the center of Raven Ridge (extending from left to right). The K-T Boundary is most famously known as the geological threshold where dinosaurs ? and a large number of other animal and plant species, both terrestrial and marine ? disappeared from the fossil record in a mass extinction event 66 ? 65 million years ago, according to scientists. Various hypotheses have been advanced to explain the mass extinction event - perhaps the best known being a large meteor impact that sparked widespread climate change or widespread volcanism that likewise produced significant climate change unfavorable for the existing plants and animals. The approximate location of the K-T Boundary is depicted in this image as a dotted white line ? rock layers to the south of the line belong to the Tertiary Period (lower half of image), while rocks to the north of the line are part of the Cretaceous and older Periods (upper half of image). A prominent topographic break in the ridgeline, Mormon Gap, provides road access across the Ridge. To the northwest of the Gap, several landslides formed in relatively soft Tertiary claystone, shale, and sandstone extend southwards from the crest of the Ridge.

  9. The behavior of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient. Ph.D. Thesis - Washington Univ., Seattle, Aug. 1972

    NASA Technical Reports Server (NTRS)

    Rose, W. C.

    1973-01-01

    The results of an experimental investigation of the mean- and fluctuating-flow properties of a compressible turbulent boundary layer in a shock-wave-induced adverse pressure gradient are presented. The turbulent boundary layer developed on the wall of an axially symmetric nozzle and test section whose nominal free-stream Mach number and boundary-layer thickness Reynolds number were 4 and 100,000, respectively. The adverse pressure gradient was induced by an externally generated conical shock wave. Mean and time-averaged fluctuating-flow data, including the complete experimental Reynolds stress tensor and experimental turbulent mass- and heat-transfer rates are presented for the boundary layer and external flow, upstream, within and downstream of the pressure gradient. The mean-flow data include distributions of total temperature throughout the region of interest. The turbulent mixing properties of the flow were determined experimentally with a hot-wire anemometer. The calibration of the wires and the interpretation of the data are discussed. From the results of the investigation, it is concluded that the shock-wave - boundary-layer interaction significantly alters the turbulent mixing characteristics of the boundary layer.

  10. Response of a hypersonic boundary layer to freestream pulse acoustic disturbance.

    PubMed

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter.

  11. Response of a Hypersonic Boundary Layer to Freestream Pulse Acoustic Disturbance

    PubMed Central

    Wang, Zhenqing; Tang, Xiaojun; Lv, Hongqing

    2014-01-01

    The response of hypersonic boundary layer over a blunt wedge to freestream pulse acoustic disturbance was investigated. The stability characteristics of boundary layer for freestream pulse wave and continuous wave were analyzed comparatively. Results show that freestream pulse disturbance changes the thermal conductivity characteristics of boundary layer. For pulse wave, the number of main disturbance clusters decreases and the frequency band narrows along streamwise. There are competition and disturbance energy transfer among different modes in boundary layer. The dominant mode of boundary layer has an inhibitory action on other modes. Under continuous wave, the disturbance modes are mainly distributed near fundamental and harmonic frequencies, while under pulse wave, the disturbance modes are widely distributed in different modes. For both pulse and continuous waves, most of disturbance modes slide into a lower-growth or decay state in downstream, which is tending towards stability. The amplitude of disturbance modes in boundary layer under continuous wave is considerably larger than pulse wave. The growth rate for the former is also considerably larger than the later the disturbance modes with higher growth are mainly distributed near fundamental and harmonic frequencies for the former, while the disturbance modes are widely distributed in different frequencies for the latter. PMID:24737993

  12. Wind tunnel study of a vertical axis wind turbine in a turbulent boundary layer flow

    NASA Astrophysics Data System (ADS)

    Rolin, Vincent; Porté-Agel, Fernando

    2015-04-01

    Vertical axis wind turbines (VAWTs) are in a relatively infant state of development when compared to their cousins the horizontal axis wind turbines. Very few studies have been carried out to characterize the wake flow behind VAWTs, and virtually none to observe the influence of the atmospheric boundary layer. Here we present results from an experiment carried out at the EPFL-WIRE boundary-layer wind tunnel and designed to study the interaction between a turbulent boundary layer flow and a VAWT. Specifically we use stereoscopic particle image velocimetry to observe and quantify the influence of the boundary layer flow on the wake generated by a VAWT, as well as the effect the VAWT has on the boundary layer flow profile downstream. We find that the wake behind the VAWT is strongly asymmetric, due to the varying aerodynamic forces on the blades as they change their position around the rotor. We also find that the wake adds strong turbulence levels to the flow, particularly on the periphery of the wake where vortices and strong velocity gradients are present. The boundary layer is also shown to cause greater momentum to be entrained downwards rather than upwards into the wake.

  13. Wind turbine wakes in forest and neutral plane wall boundary layer large-eddy simulations

    NASA Astrophysics Data System (ADS)

    Schröttle, Josef; Piotrowski, Zbigniew; Gerz, Thomas; Englberger, Antonia; Dörnbrack, Andreas

    2016-09-01

    Wind turbine wake flow characteristics are studied in a strongly sheared and turbulent forest boundary layer and a neutral plane wall boundary layer flow. The reference simulations without wind turbine yield similar results as earlier large-eddy simulations by Shaw and Schumann (1992) and Porte-Agel et al. (2000). To use the fields from the homogeneous turbulent boundary layers on the fly as inflow fields for the wind turbine wake simulations, a new and efficient methodology was developed for the multiscale geophysical flow solver EULAG. With this method fully developed turbulent flow fields can be achieved upstream of the wind turbine which are independent of the wake flow. The large-eddy simulations reproduce known boundary-layer statistics as mean wind profile, momentum flux profile, and eddy dissipation rate of the plane wall and the forest boundary layer. The wake velocity deficit is more asymmetric above the forest and recovers faster downstream compared to the velocity deficit in the plane wall boundary layer. This is due to the inflection point in the mean streamwise velocity profile with corresponding turbulent coherent structures of high turbulence intensity in the strong shear flow above the forest.

  14. Inventory of File nam.t00z.smartpr00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  15. Inventory of File nam.t00z.smartak00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  16. Inventory of File nam.t00z.smarthi00.tm00.grib2

    Science.gov Websites

    layer WDIR analysis Wind Direction (from which blowing) [degtrue] 016 planetary boundary layer WIND analysis Wind Speed [m/s] 017 planetary boundary layer RH analysis Relative Humidity [%] 018 planetary boundary layer DIST analysis Geometric Height [m] 019 surface 4LFTX analysis Best (4 layer) Lifted Index [K

  17. Clouds in the Northern Tempe Terra

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 2 May 2002) The Science This THEMIS visible image shows a region in northern Tempe Terra near 48o N, 75o W (285o E). Patchy water-ice clouds cover portions of the low-lying canyon at the top (north) of this image. Further south the atmosphere is clear and the knobby or 'scabby' plains that are typical of many mid-latitude regions on Mars can be seen. These plains appear to mantle and modify a pre-existing surface, burying the older cratered terrain. This mantling layer has itself been modified to produce a pitted, knobby surface. The large mesa seen in this image has unusual deposits of material that occur preferentially on the cold, north-facing slopes. These deposits are seen frequently at mid-northern and southern latitudes, and have a distinct, rounded boundary that typically occurs at approximately the same distance below the ridge crest. It has been suggested that these deposits once draped the entire surface and have since been removed from all but the north-facing slopes. The presence of water ice in these layers is a likely possibility to account for their preservation only on the colder surfaces. The south-facing slopes lack this mantling material, and show clear evidence for layering in the rock units that form the mesa. The Story This deep and murky-looking depression is in an area called 'Tempe Terra,' a lilting, alliterative name that seems almost a little too merry for this kind of terrain. If the top of the image looks a little smudgy, that's because patchy water-ice clouds hang over the low lying canyon. Further south, where the air is clear, you can see some 'scabby' plains (particularly in the high-res image, where the knobby patches of raised surface areas sort of do look like crusted-over dirt wounds). These plains cover a more ancient, cratered surface, but have been eroded away enough to form these scabby-seeming features. The large mesa in this image has some odd deposits of material on its cold, north-facing slopes. Could these deposits have been all over the surface of Mars long ago, but then were subsequently eroded away in most places on the planet? Did water ice on the colder surfaces preserve the last vestiges of these deposits so that scientists have the advantage of studying them today? While those answers won't be clear for a while, the south-facing slopes don't have this piled on material. That makes it easier to see the rock layers in the mesa. Layers are important to study, because they tell what has happened to the planet geologically over its history. The bottom layers are usually the oldest (unless some geologic force has pushed them up), so looking at each layer can give an idea of what happened first and last . . . and maybe even how long each period of time lasted.

  18. Solid-state dewetting of Au-Ni bi-layer films mediated through individual layer thickness and stacking sequence

    NASA Astrophysics Data System (ADS)

    Herz, Andreas; Theska, Felix; Rossberg, Diana; Kups, Thomas; Wang, Dong; Schaaf, Peter

    2018-06-01

    In the present work, the solid-state dewetting of Au-Ni bi-layer thin films deposited on SiO2/Si is systematically studied with respect to individual layer thickness and stacking sequence. For this purpose, a rapid heat treatment at medium temperatures is applied in order to examine void formation at the early stages of the dewetting. Compositional variations are realized by changing the thickness ratio of the bi-layer films, while the total thickness is maintained at 20 nm throughout the study. In the event of Au/Ni films annealed at 500 °C, crystal voids exposing the substrate are missing regardless of chemical composition. In reverse order, the number of voids per unit area in two-phase Au-Ni thin films is found to be governed by the amount of Au-rich material. At higher temperatures up to 650 °C, a decreased probability of nucleation comes at the expense of a major portion of cavities, resulting in the formation of bubbles in 15 nm Ni/5 nm Au bi-layers. Film buckling predominantly occurred at phase boundaries crossing the bubbles.

  19. High power RF window deposition apparatus, method, and device

    DOEpatents

    Ives, Lawrence R.; Lucovsky, Gerald; Zeller, Daniel

    2017-07-04

    A process for forming a coating for an RF window which has improved secondary electron emission and reduced multipactor for high power RF waveguides is formed from a substrate with low loss tangent and desirable mechanical characteristics. The substrate has an RPAO deposition layer applied which oxygenates the surface of the substrate to remove carbon impurities, thereafter has an RPAN deposition layer applied to nitrogen activate the surface of the substrate, after which a TiN deposition layer is applied using Titanium tert-butoxide. The TiN deposition layer is capped with a final RPAN deposition layer of nitridation to reduce the bound oxygen in the TiN deposition layer. The resulting RF window has greatly improved titanium layer adhesion, reduced multipactor, and is able to withstand greater RF power levels than provided by the prior art.

  20. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as geostrophic wind speed and surface roughness. Wind farm simulations show the expected increase in boundary layer height and growth rate with respect to the case without wind farms. Raising the initial strength of the capping inversion in these simulations dampens the turbulent growth of the boundary layer above the farm, decreasing the farms energy extraction. The authors acknowledge support from the European Research Council (FP7-Ideas, grant no. 306471). Simulations were performed on the computing infrastructure of the VSC Flemish Supercomputer Center, funded by the Hercules Foundation and the Flemish Government.

  1. Numerical investigation of the boundary layer separation in chemical oxygen iodine laser

    NASA Astrophysics Data System (ADS)

    Huai, Ying; Jia, Shuqin; Wu, Kenan; Jin, Yuqi; Sang, Fengting

    2017-11-01

    Large eddy simulation is carried out to model the flow process in a supersonic chemical oxygen iodine laser. Unlike the common approaches relying on the tensor representation theory only, the model in the present work is an explicit anisotropy-resolving algebraic Subgrid-scale scalar flux formulation. With an accuracy in capturing the unsteady flow behaviours in the laser. Boundary layer separation initiated by the adverse pressure gradient is identified using Large Eddy Simulation. To quantify the influences of flow boundary layer on the laser performance, the fluid computations coupled with a physical optics loaded cavity model is developed. It has been found that boundary layer separation has a profound effect on the laser outputs due to the introduced shock waves. The F factor of the output beam decreases to 10% of the original one when the boundary transit into turbulence for the setup depicted in the paper. Because the pressure is always greater on the downstream of the boundary layer, there will always be a tendency of boundary separation in the laser. The results inspire designs of the laser to apply positive/passive control methods avoiding the boundary layer perturbation.

  2. Understanding Micro-Ramp Control for Shock Boundary Layer Interactions

    DTIC Science & Technology

    2008-02-07

    micro-ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier... Supersonic boundary layer flow with micro-ramp and no shock wave 3.2 SBLI with no micro-ramp 3.3 SBLI with micro-ramp 3.4 Micro-ramp size and location IV . C...ramps on a supersonic boundary layer at M=3.0 was investigated using monotone integrated Large Eddy Simulations (MILES) and Reynolds Averaged Navier

  3. The Effects of Rotation on Boundary Layers in Turbomachine Rotors

    NASA Technical Reports Server (NTRS)

    Johnston, J. P.

    1974-01-01

    The boundary layers in turbomachine rotors are subject to Coriolis forces which can (1) contribute directly to the development of secondary flows and (2) indirectly influence the behavior of boundary layers by augmentation and/or suppression of turbulence production in the boundary layers on blades. Both these rotation-induced phenomena are particularly important in the development of understanding of flow and loss mechanisms in centrifugal and mixed flow machines. The primary objective of this paper is to review the information available on these effects.

  4. Boundary layers in cataclysmic variables - The HEAO 1 X-ray constraints

    NASA Technical Reports Server (NTRS)

    Jensen, K. A.

    1984-01-01

    The predictions of the boundary layer model for the X-ray emission from novae are summarized. A discrepancy between observations and theory in the X-ray observations is found. Constraints on the nature of the boundary layers in novae, based on the lack of detections of novae in the HEAO-1 soft X-ray survey are provided. Temperature and column densities for optically thick boundary layers in novae are estimated. Previously announced in STAR as N84-13046

  5. Some Features of Artificially Thickened Fully Developed Turbulent Boundary Layers with Zero Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S; Diehl, Z W

    1952-01-01

    Report gives an account of an investigation conducted to determine the feasibility of artificially thickening a turbulent boundary layer on a flat plate. A description is given of several methods used to thicken artificially the boundary layer. It is shown that it is possible to do substantial thickening and obtain a fully developed turbulent boundary layer, which is free from any distortions introduced by the thickening process, and, as such, is a suitable medium for fundamental research.

  6. Measurements in a synthetic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Arakeri, J. H.; Coles, D. E.

    Some measurements in a synthetic turbulent boundary layer (SBL) are reported. The main diagnostic tool is an X-wire probe. The velocity of the large eddies is determined to be 0.842 times the freestream velocity. The mean properties of the SBL are reasonably close to those of a natural turbulent boundary layer. The large eddy in the SBL appears to be a pair of counterrotating eddies in the stream direction, inclined at a shallow angle and occupying much of the boundary-layer thickness.

  7. Boundary layer transition observations on a body of revolution with surface heating and cooling in water

    NASA Astrophysics Data System (ADS)

    Arakeri, V. H.

    1980-04-01

    Boundary layer flow visualization in water with surface heat transfer was carried out on a body of revolution which had the predicted possibility of laminar separation under isothermal conditions. Flow visualization was by in-line holographic technique. Boundary layer stabilization, including elimination of laminar separation, was observed to take place on surface heating. Conversely, boundary layer destabilization was observed on surface cooling. These findings are consistent with the theoretical predictions of Wazzan et al. (1970).

  8. Re-Innovating Recycling for Turbulent Boundary Layer Simulations

    NASA Astrophysics Data System (ADS)

    Ruan, Joseph; Blanquart, Guillaume

    2017-11-01

    Historically, turbulent boundary layers along a flat plate have been expensive to simulate numerically, in part due to the difficulty of initializing the inflow with ``realistic'' turbulence, but also due to boundary layer growth. The former has been resolved in several ways, primarily dedicating a region of at least 10 boundary layer thicknesses in width to rescale and recycle flow or by extending the region far enough downstream to allow a laminar flow to develop into turbulence. Both of these methods are relatively costly. We propose a new method to remove the need for an inflow region, thus reducing computational costs significantly. Leveraging the scale similarity of the mean flow profiles, we introduce a coordinate transformation so that the boundary layer problem can be solved as a parallel flow problem with additional source terms. The solutions in the new coordinate system are statistically homogeneous in the downstream direction and so the problem can be solved with periodic boundary conditions. The present study shows the stability of this method, its implementation and its validation for a few laminar and turbulent boundary layer cases.

  9. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    PubMed Central

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D. B.; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-01-01

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se2 (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase. PMID:28383488

  10. Observations of Strong Surface Radar Ducts over the Persian Gulf.

    NASA Astrophysics Data System (ADS)

    Brooks, Ian M.; Goroch, Andreas K.; Rogers, David P.

    1999-09-01

    Ducting of microwave radiation is a common phenomenon over the oceans. The height and strength of the duct are controlling factors for radar propagation and must be determined accurately to assess propagation ranges. A surface evaporation duct commonly forms due to the large gradient in specific humidity just above the sea surface; a deeper surface-based or elevated duct frequently is associated with the sudden change in temperature and humidity across the boundary layer inversion.In April 1996 the U.K. Meteorological Office C-130 Hercules research aircraft took part in the U.S. Navy Ship Antisubmarine Warfare Readiness/Effectiveness Measuring exercise (SHAREM-115) in the Persian Gulf by providing meteorological support and making measurements for the study of electromagnetic and electro-optical propagation. The boundary layer structure over the Gulf is influenced strongly by the surrounding desert landmass. Warm dry air flows from the desert over the cooler waters of the Gulf. Heat loss to the surface results in the formation of a stable internal boundary layer. The layer evolves continuously along wind, eventually forming a new marine atmospheric boundary layer. The stable stratification suppresses vertical mixing, trapping moisture within the layer and leading to an increase in refractive index and the formation of a strong boundary layer duct. A surface evaporation duct coexists with the boundary layer duct.In this paper the authors present aircraft- and ship-based observations of both the surface evaporation and boundary layer ducts. A series of sawtooth aircraft profiles map the boundary layer structure and provide spatially distributed estimates of the duct depth. The boundary layer duct is found to have considerable spatial variability in both depth and strength, and to evolve along wind over distances significant to naval operations (100 km). The depth of the evaporation duct is derived from a bulk parameterization based on Monin-Obukhov similarity theory using near-surface data taken by the C-130 during low-level (30 m) flight legs and by ship-based instrumentation. Good agreement is found between the two datasets. The estimated evaporation ducts are found to be generally uniform in depth; however, localized regions of greatly increased depth are observed on one day, and a marked change in boundary layer structure resulting in merging of the surface evaporation duct with the deeper boundary layer duct was observed on another. Both of these cases occurred within exceptionally shallow boundary layers (100 m), where the mean evaporation duct depths were estimated to be between 12 and 17 m. On the remaining three days the boundary layer depth was between 200 and 300 m, and evaporation duct depths were estimated to be between 20 and 35 m, varying by just a few meters over ranges of up to 200 km.The one-way radar propagation factor is modeled for a case with a pronounced change in duct depth. The case is modeled first with a series of measured profiles to define as accurately as possible the refractivity structure of the boundary layer, then with a single profile collocated with the radar antenna and assuming homogeneity. The results reveal large errors in the propagation factor when derived from a single profile.

  11. Effects of resolved boundary layer turbulence on near-ground rotation in simulated quasi-linear convective systems (QLCSs)

    NASA Astrophysics Data System (ADS)

    Nowotarski, C. J.

    2017-12-01

    Though most strong to violent tornadoes are associated with supercell thunderstorms, quasi-linear convective systems (QLCSs) pose a risk of tornadoes, often at times and locations where supercell tornadoes are less common. Because QLCS low-level mesocyclones and tornado signatures tend to be less coherent, forecasting such tornadoes remains particularly difficult. The majority of simulations of such storms rely on horizontally homogeneous base states lacking resolved boundary layer turbulence and surface fluxes. Previous work has suggested that heterogeneities associated with boundary layer turbulence in the form of horizontal convective rolls can influence the evolution and characteristics of low-level mesocyclones in supercell thunderstorms. This study extends methods for generating boundary layer convection to idealized simulations of QLCSs. QLCS simulations with resolved boundary layer turbulence will be compared against a control simulation with a laminar boundary layer. Effects of turbulence, the resultant heterogeneity in the near-storm environment, and surface friction on bulk storm characteristics and the intensity, morphology, and evolution of low-level rotation will be presented. Although maximum surface vertical vorticity values are similar, when boundary layer turbulence is included, a greater number of miso- and meso-scale vortices develop along the QLCS gust front. The source of this vorticity is analyzed using Eulerian decomposition of vorticity tendency terms and trajectory analysis to delineate the relative importance of surface friction and baroclinicity in generating QLCS vortices. The role of anvil shading in suppressing boundary layer turbulence in the near-storm environment and subsequent effects on QLCS vortices will also be presented. Finally, implications of the results regarding inclusion of more realistic boundary layers in future idealized simulations of deep convection will be discussed.

  12. Impact of the Diurnal Cycle of the Atmospheric Boundary Layer on Wind-Turbine Wakes: A Numerical Modelling Study

    NASA Astrophysics Data System (ADS)

    Englberger, Antonia; Dörnbrack, Andreas

    2018-03-01

    The wake characteristics of a wind turbine for different regimes occurring throughout the diurnal cycle are investigated systematically by means of large-eddy simulation. Idealized diurnal cycle simulations of the atmospheric boundary layer are performed with the geophysical flow solver EULAG over both homogeneous and heterogeneous terrain. Under homogeneous conditions, the diurnal cycle significantly affects the low-level wind shear and atmospheric turbulence. A strong vertical wind shear and veering with height occur in the nocturnal stable boundary layer and in the morning boundary layer, whereas atmospheric turbulence is much larger in the convective boundary layer and in the evening boundary layer. The increased shear under heterogeneous conditions changes these wind characteristics, counteracting the formation of the night-time Ekman spiral. The convective, stable, evening, and morning regimes of the atmospheric boundary layer over a homogeneous surface as well as the convective and stable regimes over a heterogeneous surface are used to study the flow in a wind-turbine wake. Synchronized turbulent inflow data from the idealized atmospheric boundary-layer simulations with periodic horizontal boundary conditions are applied to the wind-turbine simulations with open streamwise boundary conditions. The resulting wake is strongly influenced by the stability of the atmosphere. In both cases, the flow in the wake recovers more rapidly under convective conditions during the day than under stable conditions at night. The simulated wakes produced for the night-time situation completely differ between heterogeneous and homogeneous surface conditions. The wake characteristics of the transitional periods are influenced by the flow regime prior to the transition. Furthermore, there are different wake deflections over the height of the rotor, which reflect the incoming wind direction.

  13. Double-Layer Gadolinium Zirconate/Yttria-Stabilized Zirconia Thermal Barrier Coatings Deposited by the Solution Precursor Plasma Spray Process

    NASA Astrophysics Data System (ADS)

    Jiang, Chen; Jordan, Eric H.; Harris, Alan B.; Gell, Maurice; Roth, Jeffrey

    2015-08-01

    Advanced thermal barrier coatings (TBCs) with lower thermal conductivity, increased resistance to calcium-magnesium-aluminosilicate (CMAS), and improved high-temperature capability, compared to traditional yttria-stabilized zirconia (YSZ) TBCs, are essential to higher efficiency in next generation gas turbine engines. Double-layer rare-earth zirconate/YSZ TBCs are a promising solution. From a processing perspective, solution precursor plasma spray (SPPS) process with its unique and beneficial microstructural features can be an effective approach to obtaining the double-layer microstructure. Previously durable low-thermal-conductivity YSZ TBCs with optimized layered porosity, called the inter-pass boundaries (IPBs) were produced using the SPPS process. In this study, an SPPS gadolinium zirconate (GZO) protective surface layer was successfully added. These SPPS double-layer TBCs not only retained good cyclic durability and low thermal conductivity, but also demonstrated favorable phase stability and increased surface temperature capabilities. The CMAS resistance was evaluated with both accumulative and single applications of simulated CMAS in isothermal furnaces. The double-layer YSZ/GZO exhibited dramatic improvement in the single application, but not in the continuous one. In addition, to explore their potential application in integrated gasification combined cycle environments, double-layer TBCs were tested under high-temperature humidity and encouraging performance was recorded.

  14. Bristled shark skin: a microgeometry for boundary layer control?

    PubMed

    Lang, A W; Motta, P; Hidalgo, P; Westcott, M

    2008-12-01

    There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.

  15. Solar cells

    DOEpatents

    Peumans, Peter; Uchida, Soichi; Forrest, Stephen R.

    2013-06-18

    Organic photosensitive optoelectronic devices are disclosed. The devises are thin-film crystalline organic optoelectronic devices capable of generating a voltage when exposed to light, and prepared by a method including the steps of: depositing a first organic layer over a first electrode; depositing a second organic layer over the first organic layer; depositing a confining layer over the second organic layer to form a stack; annealing the stack; and finally depositing a second electrode over the second organic layer.

  16. Experimental study of the separating confluent boundary-layer. Volume 2: Experimental data

    NASA Technical Reports Server (NTRS)

    Braden, J. A.; Whipkey, R. R.; Jones, G. S.; Lilley, D. E.

    1983-01-01

    An experimental low speed study of the separating confluent boundary layer on a NASA GAW-1 high lift airfoil is described. The airfoil was tested in a variety of high lift configurations comprised of leading edge slat and trailing edge flap combinations. The primary test instrumentation was a two dimensional laser velocimeter (LV) system operating in a backscatter mode. Surface pressures and corresponding LV derived boundary layer profiles are given in terms of velocity components, turbulence intensities and Reynolds shear stresses as characterizing confluent boundary layer behavior up to and beyond stall. LV derived profiles and associated boundary layer parameters and those obtained from more conventional instrumentation such as pitot static transverse, Preston tube measurements and hot-wire surveys are compared.

  17. Boundary-layer transition and displacement thickness effects on zero-lift drag of a series of power-law bodies at Mach 6

    NASA Technical Reports Server (NTRS)

    Ashby, G. C., Jr.; Harris, J. E.

    1974-01-01

    Wave and skin-friction drag have been numerically calculated for a series of power-law bodies at a Mach number of 6 and Reynolds numbers, based on body length, from 1.5 million to 9.5 million. Pressure distributions were computed on the nose by the inverse method and on the body by the method of characteristics. These pressure distributions and the measured locations of boundary-layer transition were used in a nonsimilar-boundary-layer program to determine viscous effects. A coupled iterative approach between the boundary-layer and pressure-distribution programs was used to account for boundary-layer displacement-thickness effects. The calculated-drag coefficients compared well with previously obtained experimental data.

  18. Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls

    NASA Astrophysics Data System (ADS)

    Dettenrieder, Fabian; Bodony, Daniel

    2017-11-01

    Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.

  19. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different textures to determine the expected rm J_{c}s. The good agreement between the experimental data and numerical results confirmed that the rm J_{c} improvement directly resulted from the reduction of the number of high-angle grain boundaries in the in-plane aligned polycrystalline YBCO thin films, and provided a guideline on the further improvement of the rm J_ {c}s of polycrystalline YBCO thin films.

  20. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a novel self-similar solution is obtained from the first order set of equations. A second order solution is also obtained, stressing the role of small curvature on the boundary layer flow. The proposed model and solution for the boundary layer problem overlaying a moving wavy surface can also be used as a base flow for stability problems that can develop in a boundary layer, including phases of transitional states.

  1. Experimental investigations of on-demand vortex generators

    NASA Astrophysics Data System (ADS)

    Saddoughi, Seyed G.

    1994-12-01

    Conventional vortex generators as found on many civil aircrafts are mainly for off-design conditions - e.g. suppression of separation or loss of aileron power when the Mach number accidentally rises above the design (cruise) value. In normal conditions they perform no useful function and exert a significant drag penalty. Recently there have been advances in new designs for passive vortex generators and boundary layer control. While traditionally the generators heights were of the order of the boundary layer thickness (delta), recent advances have been made where generators of the order of delta/4 have been shown to be effective. The advancement of MIcro-Electro-Mechanical (MEM) devices has prompted several efforts in exploring the possibility of using such devices in turbulence control. These new devices offer the possibility of boundary layer manipulation through the production of vortices, momentum jets, or other features in the flow. However, the energy output of each device is low in general, but they can be used in large numbers. Therefore, the possibility of moving from passive vortex generators to active (on-demand) devices becomes of interest. Replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would produce substantial economies. Our proposed application is not strictly 'active' control: the vortex generators would simply be switched on, all together, when needed (e.g. when the aircraft Mach number exceeded a certain limit). To this extent our scheme is simpler; however, to promote mixing and suppress separation we desire to deposit longitudinal vortices into the outer layer of the boundary layer as in conventional vortex generators. This requires a larger device although an alternative might be an array of smaller devices, for example, a longitudinal row with phase differences in the modulation signals so that the periodic vortices join up. The vortex pair with common flow up has the advantage that it will naturally drift away from the surface, but the disadvantage is that the net vorticity is zero so that the pair is eventually obliterated by turbulent mixing, rather than simply being diffused as in the case of a single vortex. It should be possible to devise alternative shapes of cavity wall so that the jet emerges obliquely and produces net longitudinal vorticity.

  2. Experimental investigations of on-demand vortex generators

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.

    1994-01-01

    Conventional vortex generators as found on many civil aircrafts are mainly for off-design conditions - e.g. suppression of separation or loss of aileron power when the Mach number accidentally rises above the design (cruise) value. In normal conditions they perform no useful function and exert a significant drag penalty. Recently there have been advances in new designs for passive vortex generators and boundary layer control. While traditionally the generators heights were of the order of the boundary layer thickness (delta), recent advances have been made where generators of the order of delta/4 have been shown to be effective. The advancement of MIcro-Electro-Mechanical (MEM) devices has prompted several efforts in exploring the possibility of using such devices in turbulence control. These new devices offer the possibility of boundary layer manipulation through the production of vortices, momentum jets, or other features in the flow. However, the energy output of each device is low in general, but they can be used in large numbers. Therefore, the possibility of moving from passive vortex generators to active (on-demand) devices becomes of interest. Replacement of fixed rectangular or delta-wing generators by devices that could be activated when needed would produce substantial economies. Our proposed application is not strictly 'active' control: the vortex generators would simply be switched on, all together, when needed (e.g. when the aircraft Mach number exceeded a certain limit). To this extent our scheme is simpler; however, to promote mixing and suppress separation we desire to deposit longitudinal vortices into the outer layer of the boundary layer as in conventional vortex generators. This requires a larger device although an alternative might be an array of smaller devices, for example, a longitudinal row with phase differences in the modulation signals so that the periodic vortices join up. The vortex pair with common flow up has the advantage that it will naturally drift away from the surface, but the disadvantage is that the net vorticity is zero so that the pair is eventually obliterated by turbulent mixing, rather than simply being diffused as in the case of a single vortex. It should be possible to devise alternative shapes of cavity wall so that the jet emerges obliquely and produces net longitudinal vorticity.

  3. Conductive layer for biaxially oriented semiconductor film growth

    DOEpatents

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  4. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.

    2018-05-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  5. Mathematical Model of Transfer and Deposition of Finely Dispersed Particles in a Turbulent Flow of Emulsions and Suspensions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.

    2018-03-01

    The problem of modeling turbulent transfer of finely dispersed particles in liquids has been considered. An approach is used where the transport of particles is represented in the form of a variety of the diffusion process with the coefficient of turbulent transfer to the wall. Differential equations of transfer are written for different cases, and a solution of the cell model is obtained for calculating the efficiency of separation in a channel. Based on the theory of turbulent transfer of particles and of the boundary layer model, an expression has been obtained for calculating the rate of turbulent deposition of finely dispersed particles. The application of this expression in determining the efficiency of physical coagulation of emulsions in different channels and on the surface of chaotic packings is shown.

  6. A perspective on coherent structures and conceptual models for turbulent boundary layer physics

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1990-01-01

    Direct numerical simulations of turbulent boundary layers have been analyzed to develop a unified conceptual model for the kinematics of coherent motions in low Reynolds number canonical turbulent boundary layers. All classes of coherent motions are considered in the model, including low-speed streaks, ejections and sweeps, vortical structures, near-wall and outer-region shear layers, sublayer pockets, and large-scale outer-region eddies. The model reflects the conclusions from the study of the simulated boundary layer that vortical structures are directly associated with the production of turbulent shear stresses, entrainment, dissipation of turbulence kinetic energy, and the fluctuating pressure field. These results, when viewed from the perspective of the large body of published work on the subject of coherent motions, confirm that vortical structures may be considered the central dynamic element in the maintenance of turbulence in the canonical boundary layer. Vortical structures serve as a framework on which to construct a unified picture of boundary layer structure, providing a means to relate the many known structural elements in a consistent way.

  7. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  8. Dual ion beam assisted deposition of biaxially textured template layers

    DOEpatents

    Groves, James R.; Arendt, Paul N.; Hammond, Robert H.

    2005-05-31

    The present invention is directed towards a process and apparatus for epitaxial deposition of a material, e.g., a layer of MgO, onto a substrate such as a flexible metal substrate, using dual ion beams for the ion beam assisted deposition whereby thick layers can be deposited without degradation of the desired properties by the material. The ability to deposit thicker layers without loss of properties provides a significantly broader deposition window for the process.

  9. Turbulent boundary layer heat transfer experiments: Convex curvature effects, including introduction and recovery

    NASA Technical Reports Server (NTRS)

    Simon, T. W.; Moffat, R. J.; Johnston, J. P.; Kays, W. M.

    1980-01-01

    Heat transfer rates were measured through turbulent and transitional boundary layers on an isothermal, convexly curved wall and downstream flat plate. The effect of convex curvature on the fully turbulent boundary layer was a reduction of the local Stanton numbers 20-50% below those predicted for a flat wall under the same circumstances. The recovery of the heat transfer rates on the downstream flat wall was extremely slow. After 60 cm of recovery length, the Stanton number was still typically 15-20% below the flat wall predicted value. Various effects important in the modeling of curved flows were studied separately. These are: (1) the effect of initial boundary layer thickness; (2) the effect of freestream velocity; (3) the effect of freestream acceleration; (4) the effect of unheated starting length; and (5) the effect of the maturity of the boundary layer. Regardless of the initial state, curvature eventually forced the boundary layer into an asymptotic curved condition. The slope, minus one, is believed to be significant.

  10. Influence of bulk turbulence and entrance boundary layer thickness on the curved duct flow field

    NASA Technical Reports Server (NTRS)

    Crawford, R. A.

    1988-01-01

    The influence of bulk turbulence and boundary layer thickness on the secondary flow development in a square, 90 degree turning duct was investigated. A three-dimensional laser velocimetry system was utilized to measure the mean and fluctuating components of velocity at six cross-planes in the duct. The results from this investigation, with entrance boundary layer thickness of 20 percent, were compared with the thin boundary layer results documented in NASA CR-174811. The axial velocity profiles, cross-flow velocities, and turbulence intensities were compared and evaluated with regard to the influence of bulk turbulence intensity and boundary layer thickness, and the influence was significant. The results of this investigation expand the 90 degree curved duct experimental data base to higher turbulence levels and thicker entrance boundary layers. The experimental results provide a challenging benchmark data base for computational fluid dynamics code development and validation. The variation of inlet bulk turbulence intensity provides additional information to aid in turbulence model evaluation.

  11. Exact Calculation of Laminar Boundary Layer in Longitudinal Flow over a Flat Plate with Homogeneous Suction

    NASA Technical Reports Server (NTRS)

    Iglisch, Rudolf

    1949-01-01

    Lately it has been proposed to reduce the friction drag of a body in a flow for the technically important large Reynolds numbers by the following expedient: the boundary layer, normally turbulent, is artificially kept laminar up to high Reynolds numbers by suction. The reduction in friction drag thus obtained is of the order of magnitude of 60 to 80 percent of the turbulent friction drag, since the latter, for large Reynolds numbers, is several times the laminar friction drag. In considering the idea mentioned one has first to consider whether suction is a possible means of keeping the boundary layer laminar. This question can be answered by a theoretical investigation of the stability of the laminar boundary layer with suction. A knowledge, as accurate as possible, of the velocity distribution in the laminar boundary layer with suction forms the starting point for the stability investigation. E. Schlichting recently gave a survey of the present state of calculation of the laminar boundary layer with suction.

  12. Dynamic behavior of an unsteady trubulent boundary layer

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.

    1981-01-01

    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.

  13. The Western North American Cretaceous-Tertiary (K-T) boundary interval and its content of shock-metamorphosed minerals: Implications concerning the K-T boundary impact-extinction theory

    NASA Technical Reports Server (NTRS)

    Izett, G. A.

    1988-01-01

    At 20 sites in the Raton Basin of Colorado and New Mexico, and at several other sites in Wyoming, Montana, and Canada, a pair of claystone units, an Ir abundance anomaly, and a concentration of shock-metamorphosed minerals mark the palynological K-T boundary. The K-T boundary claystone, which is composed of kaolinite and small amounts of illite/smectite mixed-layer clay, is similar in most respects to kaolinite tonstein layers in coal beds. At some, but not all, K-T boundary localities, the boundary claystone contains solid kaolinite and hollow and solid goyazite spherules, 0.05 to 1.2 mm in diameter. The upper unit, the K-T boundary impact layer, consists chiefly of kaolinite and various amounts of illite/smectite mixed-layer clay. The impact layer and boundary claystone are similar chemically, except that the former has slightly more Fe, K, Ba, Cr, Cu, Li, V, and Zn than the latter. The facts that the boundary claystone and impact layer contain anomalous amounts of Ir, comprise a stratigraphic couplet at Western North American sites, and form thin, discrete layers, similar to air-fall units (volcanic or impact), suggest that the claystone units are of impact origin. Significantly, the impact layer contains as much as 2 percent clastic mineral grains, about 30 percent of which contain multiple sets of shock lamellae. Only one such concentration of shocked minerals has been found near the K-T boundary. The type of K-T boundary shock-metamorphosed materials (quartzite and metaquartzite) in the impact layer and the lack of shock lamellae in quartz and feldspar of pumice lapilli and granitic xenoliths in air-fall pumice units of silicic tuffs, such as the Bishop Tuff, eliminate the possibility that the shock-metamorphosed minerals in the K-T impact layer are of volcanic origin. The global size distribution and abundance of shock-metamorphosed mineral grains suggest that the K-T impact occurred in North America.

  14. Aerosol properties and meteorological conditions in the city of Buenos Aires, Argentina, during the resuspension of volcanic ash from the Puyehue-Cordón Caulle eruption

    NASA Astrophysics Data System (ADS)

    Graciela Ulke, Ana; Torres Brizuela, Marcela M.; Raga, Graciela B.; Baumgardner, Darrel

    2016-09-01

    The eruption in June 2011 of the Puyehue-Cordón Caulle Volcanic Complex in Chile impacted air traffic around the Southern Hemisphere for several months after the initial ash emissions. The ash deposited in vast areas of the Patagonian Steppe was subjected to the strong wind conditions prevalent during the austral winter and spring experiencing resuspension over various regions of Argentina. In this study we analyze the meteorological conditions that led to the episode of volcanic ash resuspension which impacted the city of Buenos Aires and resulted in the closure of the two main airports in Buenos Aires area (Ezeiza and Aeroparque) on 16 October 2011. A relevant result is that resuspended material (volcanic ash plus dust) imprints a distinguishable feature within the atmospheric thermodynamic vertical profiles. The thermodynamic soundings show the signature of "pulses of drying" in layers associated with the presence of hygroscopic ash in the atmosphere that has already been reported in similar episodes after volcanic eruptions in other parts of the world. This particular footprint can be used to detect the probable existence of volcanic ash layers. This study also illustrates the utility of ceilometers to detect not only cloud base at airports but also volcanic ash plumes at the boundary layer and up to 7 km altitude. Aerosol properties measured in the city during the resuspension episode indicate the presence of enhanced concentrations of aerosol particles in the boundary layer along with spectral signatures in the measurements at the Buenos Aires AERONET site typical of ash plus dust advected towards the city. The mandatory aviation reports from the National Weather Service about airborne and deposited volcanic ash at the airport near the measurement site (Aeroparque) correlate in time with the enhanced concentrations. The presence of the resuspended material was detected by the CALIOP lidar overpassing the region. Since the dynamics of ash resuspension and recirculation are similar to the dynamics of dust storms, we use the HYSPLIT model with the dust storm module to simulate the episode that affected Buenos Aires. The results of the modeling agree qualitatively with satellite lidar measurements.

  15. Analysis and Modeling of Boundary Layer Separation Method (BLSM).

    PubMed

    Pethő, Dóra; Horváth, Géza; Liszi, János; Tóth, Imre; Paor, Dávid

    2010-09-01

    Nowadays rules of environmental protection strictly regulate pollution material emission into environment. To keep the environmental protection laws recycling is one of the useful methods of waste material treatment. We have developed a new method for the treatment of industrial waste water and named it boundary layer separation method (BLSM). We apply the phenomena that ions can be enriched in the boundary layer of the electrically charged electrode surface compared to the bulk liquid phase. The main point of the method is that the boundary layer at correctly chosen movement velocity can be taken out of the waste water without being damaged, and the ion-enriched boundary layer can be recycled. Electrosorption is a surface phenomenon. It can be used with high efficiency in case of large electrochemically active surface of electrodes. During our research work two high surface area nickel electrodes have been prepared. The value of electrochemically active surface area of electrodes has been estimated. The existence of diffusion part of the double layer has been experimentally approved. The electrical double layer capacity has been determined. Ion transport by boundary layer separation has been introduced. Finally we have tried to estimate the relative significance of physical adsorption and electrosorption.

  16. Dynamic Turbulence Modelling in Large-eddy Simulations of the Cloud-topped Atmospheric Boundary Layer

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M. P.; Mansour, N. N.; Ackerman, A. S.; Stevens, D. E.

    2003-01-01

    The use of large eddy simulation, or LES, to study the atmospheric boundary layer dates back to the early 1970s when Deardor (1972) used a three-dimensional simulation to determine velocity and temperature scales in the convective boundary layer. In 1974 he applied LES to the problem of mixing layer entrainment (Deardor 1974) and in 1980 to the cloud-topped boundary layer (Deardor 1980b). Since that time the LES approach has been applied to atmospheric boundary layer problems by numerous authors. While LES has been shown to be relatively robust for simple cases such as a clear, convective boundary layer (Mason 1989), simulation of the cloud-topped boundary layer has proved more of a challenge. The combination of small length scales and anisotropic turbulence coupled with cloud microphysics and radiation effects places a heavy burden on the turbulence model, especially in the cloud-top region. Consequently, over the past few decades considerable effort has been devoted to developing turbulence models that are better able to parameterize these processes. Much of this work has involved taking parameterizations developed for neutral boundary layers and deriving corrections to account for buoyancy effects associated with the background stratification and local buoyancy sources due to radiative and latent heat transfer within the cloud (see Lilly 1962; Deardor 1980a; Mason 1989; MacVean & Mason 1990, for example). In this paper we hope to contribute to this effort by presenting a number of turbulence models in which the model coefficients are calculated dynamically during the simulation rather than being prescribed a priori.

  17. Increased operational temperature of Cr2O3-based spintronic devices

    NASA Astrophysics Data System (ADS)

    Street, Michael; Echtenkamp, Will; Komesu, Takashi; Cao, Shi; Wang, Jian; Dowben, Peter; Binek, Christian

    Spintronic devices have been considered a promising path to revolutionizing the current data storage and memory technologies. This work is an effort to utilize voltage-controlled boundary magnetization of the magnetoelectric chromia (Cr2O3) to be implemented into a spintronic device. The electric switchable boundary magnetization of chromia can be used to voltage-control the magnetic states of an adjacent ferromagnetic layer. For this technique to be utilized in a spintronic device, the antiferromagnetic ordering temperature of chromia must be enhanced above the bulk value of TN = 307K. Previously, based on first principle calculations, boron doped chromia thin films were fabricated via pulsed laser deposition showing boundary magnetization at elevated temperatures. Measurements of the boundary magnetization were also corroborated by spin polarized inverse photoemission spectroscopy. Exchange bias of B-doped chromia was also investigated using magneto-optical Kerr effect, showing an increased blocking temperature from 307K. Further boundary magnetization measurements and spin polarized inverse photoemission measurements indicate the surface magnetization to an in-plane orientation from the standard perpendicular orientation. This project was supported by the SRC through CNFD, an SRC-NRI Center under Task ID (2398.001) and by C-SPIN, part of STARnet, sponsored by MARCO and DARPA (No. SRC 2381.001).

  18. Mechanical Computing in Microelectromechanical Systems (MEMS)

    DTIC Science & Technology

    2003-03-01

    New York: John Wiley and Sons, Inc., 1968. 25. Helvajian , H . and S. Janson, Microengineering Aerospace Systems, ch. Micro- engineering Space Systems...sacrificial layer. (g)Strip remaining resist. ( h ) Deposit a structural layer(conformal deposition is shown). (i) Deposit resist. (j) Expose resist...layer is then deposited, and assuming a conformal process, the structural layer will follow the topography of the sacrificial layer (Figure 2.9( h

  19. Integrated stratigraphy of the Ammer section, Northern Alpine Foreland Basin, Germany: examining the age and origin of the earliest deposits in the Paratethys

    NASA Astrophysics Data System (ADS)

    van der boon, Annique; Beniest, Anouk; Ciurej, Agnieszka; Gaździcka, Elzbieta; Grothe, Arjen; Sachsenhofer, Reinhard; Langereis, Cor; Krijgsman, Wout

    2017-04-01

    The Northern Alpine Foreland Basin (NAFB) was an arm of the epicontinental Paratethys Sea during the Oligocene. The Oligocene and Miocene deposits in the Paratethys are linked to a long-term phase of episodically oxygen-poor conditions. This led to the deposition of organic-rich shales over millions of years, which nowadays make up the most important part of the source rocks of the Paratethys. At the Eocene-Oligocene transition (EOT), global sea-level dropped by an estimated 70 meters. Both this eustatic sea-level drop and large scale tectonic movements are inferred as mechanisms for restriction of connections to the global ocean and consecutive basin isolation in the Paratethys. Discriminating sea-level effects from tectonic processes requires accurate dating of Oligocene deposits. Here, we use an integrated stratigraphic approach, combining different biostratigraphic techniques with magnetostratigraphy and organic geochemistry, to determine the age of the Tonmergel formation along the Ammer River in southern Germany. The Tonmergel formation is usually interpreted as the equivalent of the Paratethys Lower Oligocene organic-rich shales. The age of deposits (typically mapped as Oligocene) in this region is currently under debate, as some studies suggest they might be late Eocene in age. The absence of marker species for biostratigraphic zones, the scarcity of ash layers and the lack of formally defined boundaries of nannoplankton zones around the Eocene-Oligocene interval (e.g. the NP19-20/NP21 boundary) further obstruct accurate dating. Here we present the results of our magnetostratigraphy, biostratigraphy and organic geochemistry and interpret whether any lithological changes can be linked to climate forcing or tectonic processes. Based on the combined results of our study we provide several options for the age of these earliest Paratethys deposits, and discuss our preferred option.

  20. The path for long range conduction in high J(sub c) TlBa2Ca2Cu3O(8+x) spray-pyrolyzed deposits

    NASA Astrophysics Data System (ADS)

    Kroeger, D. M.; Goyal, A.; Specht, E. D.; Wang, Z. L.; Tkaczyk, J. E.; Sutliff, J. A.; Deluca, J. A.

    Grain boundary misorientations and local texture in polycrystalline TlBa2Ca2Cu3O(8+x) deposits prepared by thallination of spray-pyrolyzed precursor deposits on yttria-stabilized zirconia have been determined from transmission electron microscopy, electron backscatter diffraction patterns, and x ray diffraction. The deposits were polycrystalline, had small grains, and excellent c-axis alignment. The deposits contained colonies of grains with similar but not identical a-axis orientations. Most grain boundaries within a colony have small misorientation angles and should not be weak links. It is proposed that long range current flow occurs through a percolative network of small angle grain boundaries at colony intersections.

  1. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  2. The role of fluids in rock layering development: a pressure solution self-organized process revealed by laboratory experiments

    NASA Astrophysics Data System (ADS)

    Gratier, Jean-Pierre; Noiriel, Catherine; Renard, Francois

    2015-04-01

    Natural deformation of rocks is often associated with stress-driven differentiation processes leading to irreversible transformations of their microstructures. The development mechanisms of such processes during diagenesis, tectonic, metamorphism or fault differentiation are poorly known as they are difficult to reproduce experimentally due to the very slow kinetics of stress-driven chemical processes. Here, we show that experimental compaction with development of differentiated layering, similar to what happens in natural deformation, can be obtained by indenter techniques in laboratory conditions. Samples of plaster mixed with clay and of diatomite loosely interbedded with volcanic dust were loaded in presence of their saturated aqueous solutions during several months at 40°C and 150°C, respectively. High-resolution X-ray microtomography and scanning electron microscopy observations show that the layering development is a pressure solution self-organized process. Stress-driven dissolution of the soluble minerals (either gypsum or silica) is initiated in the areas initially richer in insoluble minerals (clays or volcanic dust) because the kinetics of diffusive mass transfer along the soluble/insoluble mineral interfaces is much faster than along the healed boundaries of the soluble minerals. The passive concentration of insoluble minerals amplifies the localization of dissolution along some layers oriented perpendicular to the maximum compressive stress. Conversely, in the areas with initial low content in insoluble minerals and clustered soluble minerals, dissolution is slower. Consequently, these areas are less deformed, they host the re-deposition of the soluble species and they act as rigid objects that concentrate the dissolution near their boundaries thus amplifying the differentiation. A crucial parameter required for self-organized process of pressure solution is the presence of a fluid that is a good solvent of at least some of the rock-forming minerals. Another general requirement for the development of such differentiated layering is the heterogeneous mixing of variously soluble and insoluble species. From a general point of view, the development of diagenetic or tectonic layering has crucial consequences in geological processes. The main one is to modify the composition and microstructure of rocks by dissolution of the most soluble species, passive concentration of the insoluble species and re-deposition of the dissolved species at a distance that depends on the transport efficiency (diffusion or advection). Consequently, layering development modifies both the rheological and the transfer properties of rocks. It is the most common strain localization process in the upper crust when a reactive fluid phase is present, complementary to other strain localization processes in the lithosphere. A specific effect is the development of anisotropic properties that may favor local sliding on weak surfaces. This is particularly important in fault zones where pressure solution processes are at work. Modeling of differentiated layering during natural deformation must be rooted in the stress-driven dissolution and transport properties of the various minerals forming the rocks, and on the evolution of their rheological properties. The strength evolution can be taken into account through a weakening factor in the zone of dissolution and a strengthening factor in the zone of deposition. The kinetics evolution is controlled by the critical parameters of pressure solution.

  3. Method of fabricating an optoelectronic device having a bulk heterojunction

    DOEpatents

    Shtein, Max [Princeton, NJ; Yang, Fan [Princeton, NJ; Forrest, Stephen R [Princeton, NJ

    2008-09-02

    A method of fabricating an organic optoelectronic device having a bulk heterojunction comprises the steps of: depositing a first layer over a first electrode by organic vapor phase deposition, wherein the first layer comprises a first organic small molecule material; depositing a second layer on the first layer such that the second layer is in physical contact with the first layer, wherein the interface of the second layer on the first layer forms a bulk heterojunction; and depositing a second electrode over the second layer to form the optoelectronic device. In another embodiment, a first layer having protrusions is deposited over the first electrode, wherein the first layer comprises a first organic small molecule material. For example, when the first layer is an electron donor layer, the first electrode is an anode, the second layer is an electron acceptor layer, and the second electrode is a cathode. As a further example, when the first layer is an electron acceptor layer, the first electrode is a cathode, the second layer is an electron donor layer, and the second electrode is an anode.

  4. The Interactions of a Flame and Its Self-Induced Boundary Layer

    NASA Technical Reports Server (NTRS)

    Ott, James D.; Oran, Elaine S.; Anderson, John D.

    1999-01-01

    The interaction of a laminar flame with its self-generated boundary layer in a rectangular channel was numerically simulated using the two-dimensional, reacting, Navier-Stokes equations. A two species chemistry model was implemented which simulates the stoichiometric reaction of acetylene and air. Calculations were performed to investigate the effects of altering the boundary condition of the wall temperature, the Lewis number, the dynamic viscosity, and the ignition method. The purpose of this study was to examine the fundamental physics of the formation of the boundary layer and the interaction of the flame as it propagates into the boundary layer that its own motion has created.

  5. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In the observations, several strong temperature inversion layers are also found in the surface layer and the middle part of the boundary layer, which lead to the suppression of the vertical mixing of the air pollutants. The jet stream occurring in the boundary layer also contributes to the prevention of the vertical dissipation of the air pollutants. It is also observed that the temporal and spatial evolution of the air pollutants and the hygroscopic growth of the aerosols in the boundary layer are heavily dependent on the humidity of the air.

  6. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  7. Positron annihilation studies of the AlOx/SiO2/Si interface in solar cell structures

    NASA Astrophysics Data System (ADS)

    Edwardson, C. J.; Coleman, P. G.; Li, T.-T. A.; Cuevas, A.; Ruffell, S.

    2012-03-01

    Film and film/substrate interface characteristics of 30 and 60 nm-thick AlOx films grown on Si substrates by thermal atomic layer deposition (ALD), and 30 nm-thick AlOx films by sputtering, have been probed using variable-energy positron annihilation spectroscopy (VEPAS) and Doppler-broadened spectra ratio curves. All samples were found to have an interface which traps positrons, with annealing increasing this trapping response, regardless of growth method. Thermal ALD creates an AlOx/SiOx/Si interface with positron trapping and annihilation occurring in the Si side of the SiOx/Si boundary. An induced positive charge in the Si next to the interface reduces diffusion into the oxides and increases annihilation in the Si. In this region there is a divacancy-type response (20 ± 2%) before annealing which is increased to 47 ± 2% after annealing. Sputtering seems to not produce samples with this same electrostatic shielding; instead, positron trapping occurs directly in the SiOx interface in the as-deposited sample, and the positron response to it increases after annealing as an SiO2 layer is formed. Annealing the film has the effect of lowering the film oxygen response in all film types. Compared to other structural characterization techniques, VEPAS shows larger sensitivity to differences in film preparation method and between as-deposited and annealed samples.

  8. Resurfacing history of the northern plains of Mars based on geologic mapping of Mars Global Surveyor data

    USGS Publications Warehouse

    Tanaka, K.L.; Skinner, J.A.; Hare, T.M.; Joyal, T.; Wenker, A.

    2003-01-01

    Geologic mapping of the northern plains of Mars, based on Mars Orbiter Laser Altimeter topography and Viking and Mars Orbiter Camera images, reveals new insights into geologic processes and events in this region during the Hesperian and Amazonian Periods. We propose four successive stages of lowland resurfacing likely related to the activity of near-surface volatiles commencing at the highland-lowland boundary (HLB) and progressing to lower topographic levels as follows (highest elevations indicated): Stage 1, upper boundary plains, Early Hesperian, <-2.0 to -2.9 km; Stage 2, lower boundary plains and outflow channel dissection, Late Hesperian, <-2.7 to -4.0 km; Stage 3, Vastitas Borealis Formation (VBF) surface, Late Hesperian to Early Amazonian, <-3.1 to -4.1 km; and Stage 4, local chaos zones, Early Amazonian, <-3.8 to -5.0 km. At Acidalia Mensa, Stage 2 and 3 levels may be lower (<-4.4 and -4.8 km, respectively). Contractional ridges form the dominant structure in the plains and developed from near the end of the Early Hesperian to the Early Amazonian. Geomorphic evidence for a northern-plains-filling ocean during Stage 2 is absent because one did not form or its evidence was destroyed by Stage 3 resurfacing. Remnants of possible Amazonian dust mantles occur on top of the VBF. The north polar layered deposits appear to be made up of an up to kilometer-thick lower sequence of sandy layers Early to Middle Amazonian in age overlain by Late Amazonian ice-rich dust layers; both units appear to have outliers, suggesting that they once were more extensive.

  9. Summertime observations of elevated levels of ultrafine particles in the high Arctic marine boundary layer

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Willis, Megan D.; Bozem, Heiko; Thomas, Jennie L.; Law, Kathy; Hoor, Peter; Aliabadi, Amir A.; Köllner, Franziska; Schneider, Johannes; Herber, Andreas; Abbatt, Jonathan P. D.; Leaitch, W. Richard

    2017-05-01

    Motivated by increasing levels of open ocean in the Arctic summer and the lack of prior altitude-resolved studies, extensive aerosol measurements were made during 11 flights of the NETCARE July 2014 airborne campaign from Resolute Bay, Nunavut. Flights included vertical profiles (60 to 3000 m above ground level) over open ocean, fast ice, and boundary layer clouds and fogs. A general conclusion, from observations of particle numbers between 5 and 20 nm in diameter (N5 - 20), is that ultrafine particle formation occurs readily in the Canadian high Arctic marine boundary layer, especially just above ocean and clouds, reaching values of a few thousand particles cm-3. By contrast, ultrafine particle concentrations are much lower in the free troposphere. Elevated levels of larger particles (for example, from 20 to 40 nm in size, N20 - 40) are sometimes associated with high N5 - 20, especially over low clouds, suggestive of aerosol growth. The number densities of particles greater than 40 nm in diameter (N > 40) are relatively depleted at the lowest altitudes, indicative of depositional processes that will lower the condensation sink and promote new particle formation. The number of cloud condensation nuclei (CCN; measured at 0.6 % supersaturation) are positively correlated with the numbers of small particles (down to roughly 30 nm), indicating that some fraction of these newly formed particles are capable of being involved in cloud activation. Given that the summertime marine Arctic is a biologically active region, it is important to better establish the links between emissions from the ocean and the formation and growth of ultrafine particles within this rapidly changing environment.

  10. The effect of entrainment through atmospheric boundary layer growth on observed and modeled surface ozone in the Colorado Front Range

    NASA Astrophysics Data System (ADS)

    Kaser, L.; Patton, E. G.; Pfister, G. G.; Weinheimer, A. J.; Montzka, D. D.; Flocke, F.; Thompson, A. M.; Stauffer, R. M.; Halliday, H. S.

    2017-06-01

    Ozone concentrations at the Earth's surface are controlled by meteorological and chemical processes and are a function of advection, entrainment, deposition, and net chemical production/loss. The relative contributions of these processes vary in time and space. Understanding the relative importance of these processes controlling surface ozone concentrations is an essential component for designing effective regulatory strategies. Here we focus on the diurnal cycle of entrainment through atmospheric boundary layer (ABL) growth in the Colorado Front Range. Aircraft soundings and surface observations collected in July/August 2014 during the DISCOVER-AQ/FRAPPÉ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality/Front Range Air Pollution and Photochemistry Éxperiment) campaigns and equivalent data simulated by a regional chemical transport model are analyzed. Entrainment through ABL growth is most important in the early morning, fumigating the surface at a rate of 5 ppbv/h. The fumigation effect weakens near noon and changes sign to become a small dilution effect in the afternoon on the order of -1 ppbv/h. The chemical transport model WRF-Chem (Weather Research and Forecasting Model with chemistry) underestimates ozone at all altitudes during this study on the order of 10-15 ppbv. The entrainment through ABL growth is overestimated by the model in the order of 0.6-0.8 ppbv/h. This results from differences in boundary layer growth in the morning and ozone concentration jump across the ABL top in the afternoon. This implicates stronger modeled fumigation in the morning and weaker modeled dilution after 11:00 LT.

  11. Erosional furrows formed during the lateral blast at Mount St. Helens, May 18, 1980

    USGS Publications Warehouse

    Kieffer, S.W.; Sturtevant, B.

    1988-01-01

    Nearly horizontal, quasi-periodic erosional features of 7-m average transverse wavelength and of order 100-m length occur in scattered locations from 3.5 to 9 km from the crater at Mount St. Helens under deposits of the lateral blast of May 18, 1980. We attribute the erosional features to scouring by longitudinal vortices resulting from flow instabilities induced by complex topography, namely, by streamline curvature in regions of reattachment downstream of sheltered regions, and by the cross-flow component of flow subparallel to ridge crests. The diameter of the vortices and their transverse spacing, inferred from the distance between furrows, are taken to be of the order of the boundary layer thickness. The inferred boundary layer thickness (???14 m at 9 km from the source of the blast) is consistent with the running length from the mountain to the furrow locations. The orientation of furrows induced by the cross-flow instability can be used to measure the upwash angle and estimate the flow Mach number: at the central ridge of Spirit Lake the Mach number is inferred to have been about 2.5, and the flow velocity approximately 235 m/s. -from Authors

  12. Biaxially oriented CdTe films on glass substrate through nanostructured Ge/CaF2 buffer layers

    NASA Astrophysics Data System (ADS)

    Lord, R. J.; Su, P.-Y.; Bhat, I.; Zhang, S. B.; Lu, T.-M.; Wang, G.-C.

    2015-09-01

    Heteroepitaxial CdTe films were grown by metal organic chemical vapor deposition on glass substrates through nanostructured Ge/CaF2 buffer layers which were biaxially oriented. It allows us to explore the structural properties of multilayer biaxial semiconductor films which possess small angle grain boundaries and to test the principle of a solar cell made of such low-cost, low-growth-temperature semiconductor films. Through the x-ray diffraction and x-ray pole figure analysis, the heteroepitaxial relationships of the mutilayered films are determined as [111] in the out-of-plane direction and <1\\bar{1}0>CdTe//<1\\bar{1}0>Ge//{< \\bar{1}10> }{{{CaF}}2} in the in-plane direction. The I-V curves measured from an ITO/CdS/CdTe/Ge/CaF2/glass solar cell test structure shows a power conversion efficiency of ˜η = 1.26%, illustrating the initial success of such an approach. The observed non-ideal efficiency is believed to be due to a low shunt resistance and high series resistance as well as some residual large-angle grain boundary effects, leaving room for significant further improvement.

  13. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOEpatents

    Russo, R.E.; Reade, R.P.; Garrison, S.M.; Berdahl, P.

    1995-07-11

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film. 8 figs.

  14. Process for ion-assisted laser deposition of biaxially textured layer on substrate

    DOEpatents

    Russo, Richard E.; Reade, Ronald P.; Garrison, Stephen M.; Berdahl, Paul

    1995-01-01

    A process for depositing a biaxially aligned intermediate layer over a non-single crystal substrate is disclosed which permits the subsequent deposition thereon of a biaxially oriented superconducting film. The process comprises depositing on a substrate by laser ablation a material capable of being biaxially oriented and also capable of inhibiting the migration of substrate materials through the intermediate layer into such a superconducting film, while simultaneously bombarding the substrate with an ion beam. In a preferred embodiment, the deposition is carried out in the same chamber used to subsequently deposit a superconducting film over the intermediate layer. In a further aspect of the invention, the deposition of the superconducting layer over the biaxially oriented intermediate layer is also carried out by laser ablation with optional additional bombardment of the coated substrate with an ion beam during the deposition of the superconducting film.

  15. Deuterium retention and release behaviours of tungsten and deuterium co-deposited layers

    NASA Astrophysics Data System (ADS)

    Qiao, L.; Zhang, H. W.; Xu, J.; Chai, L. Q.; Hu, M.; Wang, P.

    2018-04-01

    Tungsten (W) layer deposited in argon and deuterium atmosphere by magnetron sputtering was used as a model system to study the deuterium (D) retention and release behavior in co-deposited W layer. After deposition several selected samples were exposed in deuterium plasma at 370 K with a flux of 4.0 × 1021 D/(m2 s) up to a fluence of 1.1 × 1025 D/m2. Structures of co-deposited W layers are investigated by field-emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD), and the corresponding D retention and release behaviors are studied as functions of deposition and exposure parameters using thermal desorption spectroscopy (TDS). Two main D release peaks were detected from TDS spectra located near 600 and 800 K in these W and D co-deposited layers, and total deuterium retention increased linearly as a function of W layer's thickness. After deuterium plasma exposure, the total D retention amount in W layer increases significantly and D release peak shifts to lower temperature. Clearly, despite the high density of defects expected in co-deposited W layers, the initial deuterium retention before exposure to the deuterium plasma is low even for the samples with a W&D layer. But due to the high densities of defects, during the deuterium plasma exposure the deuterium retention increases faster for co-deposited layer than for the bulk W sample.

  16. Growth of single crystal silicon carbide by halide chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Fanton, Mark A.

    The goal of this thesis is to understand relationships between the major process variables and the growth rate, doping, and defect density of SiC grown by halide chemical vapor deposition (HCVD). Specifically this work addresses the maximum C/Si ratios that can be utilized for single crystal SiC growth by providing a thermodynamic model for determining the boundary between single crystal growth and SiC+C mixed phase growth in the Si-C-Cl-H system. SiC epitaxial layers ranging from 50--200microm thick were grown at temperatures near 2000°C on 6H and 4H-SiC substrates at rates up to 250microm/hr. Experimental trends in the growth rate as a function of precursor flow rates and temperature closely match those expected from thermodynamic equilibrium in a closed system. The equilibrium model can be used to predict the trends in growth rate with the changes in precursor flow rates as well as the boundary between deposition of pure SiC and deposition of a mixture of SiC and C. Calculation of the boundary position in terms of the SiCl 4 and CH4 concentrations provides an upper limit on the C/Si ratio that can be achieved for any given set of crystal growth conditions. The model can be adjusted for changes in temperature, pressure, and chlorine concentration as well. The boundary between phase pure and mixed phase growth was experimentally shown to be very abrupt, thereby providing a well defined window for Si-rich and C-rich growth conditions. Growth of SiC epitaxial layers by HCVD under both Si-rich and C-rich conditions generally yielded the same trends in dopant incorporation as those observed in conventional silane-based CVD processes. Nitrogen incorporation was highest on the C-face of 4H-SiC substrates but could be reduced to concentrations as low as 1x1015 atoms/cm3 at C/Si ratios greater than 1. Residual B concentrations were slightly higher for epitaxial layers grown on the Si-face of substrates. However, changes in the C/Si ratio had no effect on B incorporation at concentrations on the order of 1x10 15 atoms/cm3. No significant trends in structural quality or defect density were evident as the C/Si ratio was varied from 0.72 to 1.81. Structural quality and defect density were more closely related to substrate off-cut and polarity. The highest quality crystals were grown on the C-face of 4° off-axis substrates as measured by HRXRD rocking curves. Growth on on-axis substrates was most successful on the C-face, although the x-ray rocking curves were nearly twice as wide as those on off-axis substrates. Etch pit densities obtained by KOH etching layers grown on Si-face substrates were closely related to the defect density of the substrate not the C/Si ratio. Thick p-type layers with B or Al dopant concentrations on the order of 1019 atoms/cm3 were readily achieved with the HCVD process. Trimethylaluminum and BCl3 were successfully employed as dopant sources. Aluminum incorporation was sensitive to both the substrate surface polarity and the C/Si ratio employed for growth. Dopant concentrations were maximized under C-rich growth conditions on the Si-face of SiC substrates. Boron incorporation was insensitive to both the surface polarity of the substrate and the C/Si used for layer growth even though B appears to favor incorporation on Si lattice sites. Boron acceptors in HCVD grown SiC are not passivated by H to any significant extent based on a comparison of net acceptor concentrations and B doping concentrations. In addition, the lattice parameters epitaxial layers doped with B at concentrations on the order of 1019 atoms/cm3 showed no change as a function of B concentration. This was in contrast to the lattice parameter decrease as expected from a comparison between the size of the Si and B atoms. The HCVD process has demonstrated an order of magnitude higher growth rates than conventional SiC CVD and while providing control over the C/Si ratio. This allows the user to directly influence dopant incorporation and growth morphology. However, this control should also permit several other material properties to be tailored. (Abstract shortened by UMI.)

  17. Underpotential deposition-mediated layer-by-layer growth of thin films

    DOEpatents

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  18. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visiblymore » higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.« less

  19. Assessment and Computerized Modeling of the Environmental Deposition of Military Smokes. Characterization of the Atmospheric Boundary Layer in Complex Terrain and Results from the Amadeus Smoke Dispersion Experiments

    DTIC Science & Technology

    1991-12-01

    profiles may De seriously distorted in the presence 3 of large roughness elements or hills. Regardless of surface characteristics, similarity theory may...scaling parameters described in Section 2.2.1 These profiles may be written in the following form 24 du u. ( - 4m() (2.15) de e. 4 (2.16) where $m and 4h...temperature sensor on Station A103 "exhibited a very slow response time as compared with the other sur- face-station sensors . These stations ran continuously

  20. Sea-floor methane blow-out and global firestorm at the K-T boundary

    USGS Publications Warehouse

    Max, M.D.; Dillon, William P.; Nishimura, C.; Hurdle, B.G.

    1999-01-01

    A previously unsuspected source of fuel for the global firestorm recorded by soot in the Cretaceous-Tertiary impact layer may have resided in methane gas associated with gas hydrate in the end-Cretaceous seafloor. End-Cretaceous impact-generated shock and megawaves would have had the potential to initiate worldwide oceanic methane gas blow-outs from these deposits. The methane would likely have ignited and incompletely combusted. This large burst of methane would have been followed by longer-term methane release as a part of a positive thermal feedback in the disturbed ocean-atmosphere system.

Top