Recent Developments in Facies Models for Siliciclastic Sediments.
ERIC Educational Resources Information Center
Miall, Andrew D.
1982-01-01
Discusses theory of facies models (attempts to synthesize/generalize information about depositional environments), strengths/weaknesses of facies modelling, recent advances in facies models for siliciclastic sediments (focusing on fluvial, lacustrine, eolian and glacial environments, clastic shorelines and continental shelves, and clastic…
NASA Astrophysics Data System (ADS)
Abdel-Fattah, Zaki A.
2016-07-01
Late Eocene successions in the Fayum Depression display notable facies transition from open-marine to brackish-marine realms. Stratigraphic and sedimentologic characteristics of the depositional facies are integrated with ichnological data for the recognition of four facies associations (FA1 to FA4). The transition from open-marine sandstones (FA1) to the brackish-marine deposits (FA2) heralds a transgressive - regressive dislocation. The shallowing- and coarsening-upward progradation from the basal prodelta mudstone-dominated facies (FA2a) to deltafront heterolithics (FA2b) and sandstone facies (FA2c) are overlain by finning-upward delta plain deposits which are expressed by the delta plain mudstone (FA2d) and erosive-based distributary channel fills (FA4). Prodelta/deltfront deposits of FA2 are arranged in thinning- and coarsening-upward parasequences which are stacked in a shallowing-upward progressive cycle. Shallow-marine fossiliferous sandstones (FA3) mark the basal part of each parasequence. Stratigraphic and depositional architectures reflect a tide-dominated delta rather than an estuarine and incised valley (IV) model. This can be evinced by the progressive facies architecture, absence of basal regional incision or a subaerial unconformity and the stratigraphic position above a maximum flooding surface (MFS), in addition to the presence of multiple tidally-influenced distributary channels. Stratigraphic and depositional characteristics of the suggested model resemble those of modern tide-dominated deltaic systems. Accordingly, this model contributes to our understanding of the depositional models for analogous brackish-marine environments, particularly tide-dominated deltas in the rock record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-01-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seramur, K.C.; Powell, R.D.; Carpenter, P.J.
1988-02-01
Seismic facies analysis was applied to 3.5-kHz single-channel analog reflection profiles of the sediment fill within Muir Inlet, Glacier Bay, southeast Alaska. Nine sedimentary facies have been interpreted from seven seismic facies identified on the profiles. The interpretations are based on reflection characteristics and structural features of the seismic facies. The following reflection characteristics and structural features are used: reflector spacing, amplitude and continuity of reflections, internal reflection configurations, attitude of reflection terminations at a facies boundary, body geometry of a facies, and the architectural associations of seismic facies within each basin. The depositional systems are reconstructed by determining themore » paleotopography, bedding patterns, sedimentary facies, and modes of deposition within the basin. Muir Inlet is a recently deglaciated fjord for which successive glacier terminus positions and consequent rates of glacial retreat are known. In this environment the depositional processes and sediment characteristics vary with distance from a glacier terminus, such that during a retreat a record of these variations is preserved in the aggrading sediment fill. Sedimentary facies within the basins of lower Muir Inlet are correlated with observed depositional processes near the present glacier terminus in the upper inlet. The areal distribution of sedimentary facies within the basins is interpreted using the seismic facies architecture and inferences from known sediment characteristics proximal to present glacier termini.« less
NASA Astrophysics Data System (ADS)
Abdullatif, O.; Yassin, M.
2012-04-01
1KFUPM This study investigates the lithofacies types distribution of the carbonate and siliciclastic rocks of Dam and Hofuf Formations in eastern Saudi Arabia. The shallow burial of these formations and limited post depositional changes allowed significant preservation of porosity at outcrop scale. The mixed carbonate-siliciclastic succession represents important reservoirs in the Mesozoic and Tertiary stratigraphic succession in the Arabian Plate.This study integrates field work sedimentological and stratigraphical and lithofacies data to model the spatial distribution of facies of this shallow marine and fluvial depositional setting. The Dam Formation is characterized by very high percentage of grain- dominated textures representing high to low energy intertidal deposits a mixed of carbonate and siliciclastic succession. The middle Miocene Dam section is dominated by intra-clasts, ooids and peloids grainstones. The Hofuf Formation represents fluvial channel and overank facies which is characterized by mudclast abd gravel-rich erosive bases overlain by pebbly conglomerates which passes upward into medium to very coarse grained massive, horizontally stratified and trough cross-stratifed sandstone facies. Lithological stratigraphic sections data distributed over the Al-lidam escarpment were correlated on the basis of facies types and sequences. This allow mapping and building a framework for modeling the spatial distribution of the carbonate and siliciclastic facies in the area. The geological model shows variations in the facies distribution patterns which mainly reflect both dynamic and static depositional controls on facies types distribution. The geological model may act as a guide for facies types distribution, and provide better understanding and prediction of reservoir quality and architecture of stratigraphically equivalent carbonate-siliciclastic successions in the subsurface.
Fine-Grained Turbidites: Facies, Attributes and Process Implications
NASA Astrophysics Data System (ADS)
Stow, Dorrik; Omoniyi, Bayonle
2016-04-01
Within turbidite systems, fine-grained sediments are still the poor relation and sport several contrasting facies models linked to process of deposition. These are volumetrically the dominant facies in deepwater and, from a resource perspective, they form important marginal and tight reservoirs, and have great potential for unconventional shale gas, source rocks and seals. They are also significant hosts of metals and rare earth elements. Based on a large number of studies of modern, ancient and subsurface systems, including 1000s of metres of section logging, we define the principal genetic elements of fine-grained deepwater facies, present a new synthesis of facies models and their sedimentary attributes. The principal architectural elements include: non-channelised slope-aprons, channel-fill, channel levee and overbank, turbidite lobes, mass-transport deposits, contourite drifts, basin sheets and drapes. These comprise a variable intercalation of fine-grained facies - thin-bedded and very thin-bedded turbidites, contourites, hemipelagites and pelagites - and associated coarse-grained facies. Characteristic attributes used to discriminate between these different elements are: facies and facies associations; sand-shale ratio, sand and shale geometry and dimensions, sand connectivity; sediment texture and small-scale sedimentary structures; sediment fabric and microfabric; and small-scale vertical sequences of bed thickness. To some extent, we can relate facies and attribute characteristics to different depositional environments. We identify four distinct facies models: (a) silt-laminated mud turbidites, (b) siliciclastic mud turbidites, (c) carbonate mud turbidites, (d) disorganized silty-mud turbidites, and (e) hemiturbidites. Within the grainsize-velocity matrix turbidite plot, these all fall within the region of mean size < 0.063mm, maximum grainsize (one percentile) <0.2mm, and depositional velocity 0.1-0.5 m/s. Silt-laminated turbidites and many mud turbidites reflect uniform, steady flow characteristics and a depositional sorting mechanism for silt-clay separation; whereas disorganized turbidites reflect an unsteady flow type, either as a short-lived surge or as a mud-contaminated mid-flow. Fine-grained carbonate turbidites show certain distinctive characteristics linked to the different dynamic behaviour of fine carbonate material. Hemiturbidites are the result of long-distance transport and an upward buoyancy mechanism during deposition.
A Facies Model for Temperate Continental Glaciers.
ERIC Educational Resources Information Center
Ashley, Gail Mowry
1987-01-01
Discusses the presence and dynamics of continental glaciers in the domination of the physical processes of erosion and deposition in the mid-latitudes during the Pleistocene period. Describes the use of a sedimentary facies model as a guide to recognizing ancient temperate continental glacial deposits. (TW)
Barrier island facies models and recognition criteria
NASA Astrophysics Data System (ADS)
Mulhern, J.; Johnson, C. L.
2017-12-01
Barrier island outcrops record transgressive shoreline motion at geologic timescales, providing integral clues to understanding how coastlines respond to rising sea levels. However, barrier island deposits are difficult to recognize. While significant progress has been made in understanding the modern coastal morphodynamics, this insight is not fully leveraged in existing barrier island facies models. Excellent outcrop exposures of the paralic Upper Cretaceous Straight Cliffs Formation of southern Utah provide an opportunity to revise facies models and recognition criteria for barrier island deposits. Preserved barrier islands are composed of three main architectural elements (shorefaces, tidal inlets, and tidal channels) which occur independently or in combination to create larger-scale barrier island deposits. Barrier island shorefaces record progradation, while barrier island tidal inlets record lateral migration, and barrier island tidal channels record aggradation within the tidal inlet. Four facies associations are used to describe and characterize these barrier island architectural elements. Barrier islands occur in association with backarrier fill and internally contain lower and upper shoreface, high-energy upper shoreface, and tidal channel facies. Barrier islands bound lagoons or estuaries, and are distinguished from other shoreface deposits by their internal facies and geometry, association with backbarrier facies, and position within transgressive successions. Tidal processes, in particular tidal inlet migration and reworking of the upper shoreface, also distinguish barrier island deposits. Existing barrier island models highlight the short term heterogeneous and dynamic nature of barrier island systems, yet overlook processes tied to geologic time scales, such as multi-directional motion, erosion, and reworking, and their expressions in preserved barrier island strata. This study uses characteristic outcrop expressions of barrier island successions to exemplify how modern morphodynamic concepts can be combined with geologic time-scale processes to update understanding of ancient barrier island motion and preservation.
NASA Astrophysics Data System (ADS)
Hewaidy, Abdel Galil; Elshahat, O. R.; Kamal, Samy
2018-03-01
Abu Roach "E" member is of an important hydrocarbon reservoir-producing horizon in the Abu Gharadig Field (north Western Desert, Egypt). This study is used to build facies analysis and depositional environments model for the Upper Unit of the Abu Roash "E" member in Abu Gharadig Field. This target has been achieved throughout the sedimentological, wire line logs, lithostratigraphic and biostratigraphic analyses of more than 528 feet cores. The high-resolution biostratigraphic analysis provides a calibration for the paleo-bathymetry and depositional environmental interpretations. Biozonation and lithostratigraphic markers are used to constrain stratigraphic correlation. Integration between the core description and petorographic microfacies analysis by microscope examination provide an excellent indication for the rock types and depositional environments. Five depositional facies types are detected including carbonate inner ramp, tidal flats, tidal channels, supra-tidal and tide dominated delta facies. This model helps in the understanding of the Upper Unit of Abu Roash "E" member reservoir distribution as well as lateral and vertical facies changes that contribute to the development strategy for the remaining hydrocarbon reserves for this important oil reservoir.
Seramur, K.C.; Powell, R.D.; Carlson, P.R.
1997-01-01
In the marine environment, stability of the glacier terminus and the location of subglacial streams are the dominant controls on the distribution of grounding-line deposits within morainal banks. A morainal bank complex in Muir Inlet, Glacier Bay, SE Alaska, is used to develop a model of terminus stability and location of subglacial streams along the grounding line of temperate marine glaciers. This model can be used to interpret former grounding-line conditions in other glacimarine settings from the facies architecture within morainal bank deposits. The Muir Inlet morainal bank complex was deposited between 1860 A.D. and 1899 A.D., and historical observations provide a record of terminus positions, glacial retreat rates and sedimentary sources. These data are used to reconstruct the depositional environment and to develop a correlation between sedimentary facies and conditions along the grounding line. Four seismic facies identified on the high-resolution seismic-reflection profiles are used to interpret sedimentary facies within the morainal bank complex. Terminus stability is interpreted from the distribution of sedimentary facies within three distinct submarine geomorphic features, a grounding-line fan; stratified ridges, and a field of push ridges. The grounding-line fan was deposited along a stable terminus and is represented on seismic-reflection profiles by two distinct seismic facies, a proximal and a distal fan facies. The proximal fan facies was deposited at the efflux of subglacial streams and indicates the location of former glacifluvial discharges into the sea. Stratified ridges formed as a result of the influence of a quasi-stable terminus on the distribution of sedimentary facies along the grounding line. A field of push ridges formed along the grounding line of an unstable terminus that completely reworked the grounding-line deposits through glacitectonic deformation. Between 1860 A.D. and 1899 A.D. (39 years), 8.96 x 108 m3 of sediment were deposited within the Muir Inlet morainal bank complex at an average annual sediment accumulation rate of 2.3 x 107 m3/a. This rate represents the annual sediment production capacity of the glacier when the Muir Inlet drainage basin is filled with glacial ice.
NASA Astrophysics Data System (ADS)
Li, Zhiyang; Schieber, Juergen
2018-02-01
Lower-Middle Turonian strata of the Tununk Shale Member of the greater Mancos Shale were deposited along the western margin of the Cretaceous Western Interior Seaway during the Greenhorn second-order sea level cycle. In order to examine depositional controls on facies development in this mudstone-rich succession, this study delineates temporal and spatial relationships in a process-sedimentologic-based approach. The 3-dimensional expression of mudstone facies associations and their stratal architecture is assessed through a fully integrative physical and biologic characterization as exposed in outcrops in south-central Utah. Sedimentologic characteristics from the millimeter- to kilometer-scale are documented in order to fully address the complex nature of sediment transport mechanisms observed in this shelf muddy environment. The resulting facies model developed from this characterization consists of a stack of four lithofacies packages including: 1) carbonate-bearing, silty and sandy mudstone (CSSM), 2) silt-bearing, calcareous mudstone (SCM), 3) carbonate-bearing, silty mudstone to muddy siltstone (CMS), and 4) non-calcareous, silty and sandy mudstone (SSM). Spatial and temporal variations in lithofacies type and sedimentary facies characteristics indicate that the depositional environments of the Tununk Shale shifted in response to the 2nd-order Greenhorn transgressive-regressive sea-level cycle. During this eustatic event, the Tununk shows a characteristic vertical shift from distal middle shelf to outer shelf (CSSM to SCM facies), then from outer shelf to inner shelf environment (SCM to CMS, and to SSM facies). Shifting depositional environments, as well as changes in dominant paleocurrent direction throughout this succession, indicate multiple source areas and transport mechanisms (i.e. longshore currents, offshore-directed underflows, storm reworking). This study provides a rare documentation of the Greenhorn cycle as exposed across the entire shelf setting. High-resolution mapping of genetically-related packages facilitate the development of process-based depositional models that can be utilized for lateral correlations into the equivalent foredeep strata of the Cretaceous Interior.
NASA Astrophysics Data System (ADS)
Shettima, B.; Abubakar, M. B.; Kuku, A.; Haruna, A. I.
2018-01-01
Facies analysis of the Cretaceous Bima Formation in the Gongola Sub -basin of the Northern Benue Trough northeastern Nigeria indicated that the Lower Bima Member is composed of alluvial fan and braided river facies associations. The alluvial fan depositional environment dominantly consists of debris flow facies that commonly occur as matrix supported conglomerate. This facies is locally associated with grain supported conglomerate and mudstone facies, representing sieve channel and mud flow deposits respectively, and these deposits may account for the proximal alluvial fan region of the Lower Bima Member. The distal fan facies were represented by gravel-bed braided river system of probably Scot - type model. This grade into sandy braided river systems with well developed floodplains facies, forming probably at the lowermost portion of the alluvial fan depositional gradient, where it inter-fingers with basinal facies. In the Middle Bima Member, the facies architecture is dominantly suggestive of deep perennial sand-bed braided river system with thickly developed amalgamated trough crossbedded sandstone facies fining to mudstone. Couplets of shallow channels are also locally common, attesting to the varying topography of the basin. The Upper Bima Member is characterized by shallow perennial sand-bed braided river system composed of successive succession of planar and trough crossbedded sandstone facies associations, and shallower channels of the flashy ephemeral sheetflood sand - bed river systems defined by interbedded succession of small scale trough crossbedded sandstone facies and parallel laminated sandstone facies. The overall stacking pattern of the facies succession of the Bima Formation in the Gongola Sub - basin is generally thinning and fining upwards cycles, indicating scarp retreat and deposition in a relatively passive margin setting. Dominance of kaolinite in the clay mineral fraction of the Bima Formation points to predominance of humid sub - tropical to tropical climatic conditions. This favors pedogenic activities which are manifested in the several occurrences of paleosols. Pronounced periods of arid climatic conditions are also notable from the subordinate smectite mineralization. Chlorite mineralization at some localities is indicative of elevation of the provenance area, and this is synonymous with deposition of the Bima Formation, because of its syn - depositional tectonics. The absences of lacustrine shales in the syn - rift stratigraphic architecture of the Bima Formation indicates that the lower Cretaceous petroleum system that are common in the West and Central African Rift basins are generally barren in the Gongola Sub - basin of the Northern Benue Trough.
Application of a Depositional Facies Model to an Acid Mine Drainage Site▿ †
Brown, Juliana F.; Jones, Daniel S.; Mills, Daniel B.; Macalady, Jennifer L.; Burgos, William D.
2011-01-01
Lower Red Eyes is an acid mine drainage site in Pennsylvania where low-pH Fe(II) oxidation has created a large, terraced iron mound downstream of an anoxic, acidic, metal-rich spring. Aqueous chemistry, mineral precipitates, microbial communities, and laboratory-based Fe(II) oxidation rates for this site were analyzed in the context of a depositional facies model. Depositional facies were defined as pools, terraces, or microterracettes based on cm-scale sediment morphology, irrespective of the distance downstream from the spring. The sediments were composed entirely of Fe precipitates and cemented organic matter. The Fe precipitates were identified as schwertmannite at all locations, regardless of facies. Microbial composition was studied with fluorescence in situ hybridization (FISH) and transitioned from a microaerophilic, Euglena-dominated community at the spring, to a Betaproteobacteria (primarily Ferrovum spp.)-dominated community at the upstream end of the iron mound, to a Gammaproteobacteria (primarily Acidithiobacillus)-dominated community at the downstream end of the iron mound. Microbial community structure was more strongly correlated with pH and geochemical conditions than depositional facies. Intact pieces of terrace and pool sediments from upstream and downstream locations were used in flowthrough laboratory reactors to measure the rate and extent of low-pH Fe(II) oxidation. No change in Fe(II) concentration was observed with 60Co-irradiated sediments or with no-sediment controls, indicating that abiotic Fe(II) oxidation was negligible. Upstream sediments attained lower effluent Fe(II) concentrations compared to downstream sediments, regardless of depositional facies. PMID:21097582
NASA Astrophysics Data System (ADS)
Sang, Hua; Lin, Changsong; Jiang, Yiming
2017-05-01
The reservoir of Mishrif formation has a large scale distribution of marine facies carbonate sediments in great thickness in central and south east Iraq. Rudist reef and shoal facies limestones of the Mishrif Formation (Late Cenomanian - Middle Turonian) form a great potential reservoir rocks at oilfields and structures of Iraq. Facies modelling was applied to predict the relationship between facies distribution and reservoir characteristics to construct a predictive geologic model which will assist future exploration and development in south east Iraq. Microfacies analysis and electrofacies identification and correlations indicate that the limestone of the Mishrif Formation were mainly deposited in open platform setting. Sequence stratigraphic analyses of the Mishrif Formation indicate 3 third order depositional sequences.
Attribute classification for generating GPR facies models
NASA Astrophysics Data System (ADS)
Tronicke, Jens; Allroggen, Niklas
2017-04-01
Ground-penetrating radar (GPR) is an established geophysical tool to explore near-surface sedimentary environments. It has been successfully used, for example, to reconstruct past depositional environments, to investigate sedimentary processes, to aid hydrogeological investigations, and to assist in hydrocarbon reservoir analog studies. Interpreting such 2D/3D GPR data, usually relies on concepts known as GPR facies analysis, in which GPR facies are defined as units composed of characteristic reflection patterns (in terms of reflection amplitude, continuity, geometry, and internal configuration). The resulting facies models are then interpreted in terms of depositional processes, sedimentary environments, litho-, and hydrofacies. Typically, such GPR facies analyses are implemented in a manual workflow being laborious and rather inefficient especially for 3D data sets. In addition, such a subjective strategy bears the potential of inconsistency because the outcome depends on the expertise and experience of the interpreter. In this presentation, we investigate the feasibility of delineating GPR facies in an objective and largely automated manner. Our proposed workflow relies on a three-step procedure. First, we calculate a variety of geometrical and physical attributes from processed 2D and 3D GPR data sets. Then, we analyze and evaluate this attribute data base (e.g., using statistical tools such as principal component analysis) to reduce its dimensionality and to avoid redundant information, respectively. Finally, we integrate the reduced data base using tools such as composite imaging, cluster analysis, and neural networks. Using field examples that have been acquired across different depositional environments, we demonstrate that the resulting 2D/3D facies models ease and improve the interpretation of GPR data. We conclude that our interpretation strategy allows to generate GPR facies models in a consistent and largely automated manner and might be helpful in variety near-surface applications.
Cooper, J.A.G.; Flores, R.M.
1991-01-01
In exposures of Pleistocene rocks on the east coast of South Africa, eight sedimentary facies were distinguished on the basis of petrology, grain size, internal structures and field relationships. These are interpreted as deposits of surf zone, breaker zone, swash zone, backbeach, boulder beach and dune environments. Three phases of deposition and diagenesis are recognized. As a result of the stabilising effect of pre-existing coastal facies, the deposits from successive sea level stands are stacked vertically in a narrow coast-normal strip. Early cementation prevented erosion of the deposits during subsequent transgressions. Deposition of subsequent facies took place on an existing coastal dune (Facies 1). A terrace was cut into this dune at a sea level 4.5 to 5 m above present. At this sea level, clastic shoreline sediments were deposited which make up the main sedimentary sequence exposed (Facies 2-7). The steep swash zone, coarse grain size, and comparison with modern conditions in the study area indicate clastic deposition on a high-energy, wave-dominated, microtidal coastline. Vertical stacking of progressively shallower water facies indicates progradation associated with slightly regressive conditions, prior to stranding of the succession above sea level. During a subsequent transgression to 5.5 or 6 m above present sea level, a second terrace was cut across the existing facies, which by then were partly lithified. A boulder beach (Facies 8) deposited on this terrace is indicative of high wave energy and a rocky coastline, formed by existing cemented coastal facies. Comparison with dated deposits from other parts of the South African coast suggest a Late Pleistocene age for Facies 2-8. Deposition was terminated by subsequent regression and continuing low sea levels during the remainder of the Pleistocene. Cementation of the facies took place almost entirely by carbonate precipitation. The presence of isopachous fibrous cements suggests early cementation of Facies 1, 2, 3 and 4 under marine conditions, initially as aragonite which has since inverted to calcite. Facies 5, 6 and 7 are cemented only by equant calcite spar, evidence of cementation in the meteoric phreatic and vadose zones. Lowering of the water table during regression caused the remaining pore space in Facies 1, 2, 3 and 4 to be filled with equant calcite spar. Decementation in a 130 cm wide zone is attributed to water table shifts associated with the later transgression which deposited Facies 8. The vertical stacking of the two depositional sequences may be attributed to rapid cementation of Facies 2, 3, 4, 5, 6 and 7 under humid, subtropical conditions. This lithified sequence then acted as a focus for deposition of coarse-grained shoreline facies (Facies 8) during the subsequent transgression. ?? 1991.
Fluvial to Lacustrine Facies Transitions in Gale Crater, Mars
NASA Technical Reports Server (NTRS)
Sumner, Dawn Y.; Williams, Rebecca M. E.; Schieber, Juergen; Palucis, Marisa C.; Oehler, Dorothy Z.; Mangold, Nicolas; Kah, Linda C.; Gupta, Sanjeev; Grotzinger, John P.; Grant, John A., III;
2015-01-01
NASA's Curiosity rover has documented predominantly fluvial sedimentary rocks along its path from the landing site to the toe of the Peace Vallis alluvial fan (0.5 km to the east) and then along its 8 km traverse across Aeolis Palus to the base of Aeolis Mons (Mount Sharp). Lacustrine facies have been identified at the toe of the Peace Vallis fan and in the lowermost geological unit exposed on Aeolis Mons. These two depositional systems provide end members for martian fluvial/alluvial-lacustrine facies models. The Peace Vallis system consisted of an 80 square kilometers alluvial fan with decimeter-thick, laterally continuous fluvial sandstones with few sedimentary structures. The thin lacustrine unit associated with the fan is interpreted as deposited in a small lake associated with fan runoff. In contrast, fluvial facies exposed over most of Curiosity's traverse to Aeolis Mons consist of sandstones with common dune-scale cross stratification (including trough cross stratification), interbedded conglomerates, and rare paleochannels. Along the southwest portion of the traverse, sandstone facies include south-dipping meter-scale clinoforms that are interbedded with finer-grained mudstone facies, interpreted as lacustrine. Sedimentary structures in these deposits are consistent with deltaic deposits. Deltaic deposition is also suggested by the scale of fluvial to lacustrine facies transitions, which occur over greater than 100 m laterally and greater than 10 m vertically. The large scale of the transitions and the predicted thickness of lacustrine deposits based on orbital mapping require deposition in a substantial river-lake system over an extended interval of time. Thus, the lowermost, and oldest, sedimentary rocks in Gale Crater suggest the presence of substantial fluvial flow into a long-lived lake. In contrast, the Peace Vallis alluvial fan onlaps these older deposits and overlies a major unconformity. It is one of the youngest deposits in the crater, and requires only short-lived, transient flows.
NASA Astrophysics Data System (ADS)
Gravenor, C. P.; von Brunn, V.; Dreimanis, A.
1984-03-01
This study of waterlain glaciogenic sediments is designed to present both a review and new information on glaciogenic subaquatic deposits of differing age in a number of localities in North and South America and South Africa. The Late Paleozoic glaciogenic deposits of the ParanáBasin in Brazil and the Karoo Basin of South Africa are singled out for special attention as they show a reasonably complete lateral sequence of terrestrial to off-shore glaciogenic sedimentation. Although the environment of subaquatic glaciogenic sedimentation varies from one area to the next, certain common elements are found which can be used to develop a generalized model for both glaciomarine and glaciolacustrine sedimentation. For descriptive purposes, the model is divided into two broad categories: a shelf facies and a basinal facies. The shelf facies is marked by massive diamicton(ite) which may be 200 m or more in thickness and which is frequently overlain by a complex of clastic sediments consisting primarily of gravity and fluid flows. The basinal facies is marked by products of subaquatic slumps and more distal turbidites and glaciomarine sediments. New terminology is introduced. The massive diamicton(ite), which is diagnostic of the shelf facies, probably represents deposition from the base of active ice in a subaquatic environment and is termed undermelt diamicton(ite). The gravity and fluid flows which are usually found overlying undermelt diamicton(ite) and in the basinal facies are subdivided into six categories: glaciogenic subaquatic outwash, glaciogenic suspension flow, glaciogenic chaotic debris flow, glaciogenic subaquatic debris flow, glaciogenic slurry flow and glaciogenic turbidity flow. The relative abundance of undermelt diamicton(ite) and the various types of gravity and fluid flows can be used to define inner shelf, outer shelf, inner basin and outer basin facies of glaciomarine sedimentation.
NASA Astrophysics Data System (ADS)
Hashemi, Seyyedhossein; Javaherian, Abdolrahim; Ataee-pour, Majid; Tahmasebi, Pejman; Khoshdel, Hossein
2014-12-01
In facies modeling, the ideal objective is to integrate different sources of data to generate a model that has the highest consistency to reality with respect to geological shapes and their facies architectures. Multiple-point (geo)statistics (MPS) is a tool that gives the opportunity of reaching this goal via defining a training image (TI). A facies modeling workflow was conducted on a carbonate reservoir located southwest Iran. Through a sequence stratigraphic correlation among the wells, it was revealed that the interval under a modeling process was deposited in a tidal flat environment. Bahamas tidal flat environment which is one of the most well studied modern carbonate tidal flats was considered to be the source of required information for modeling a TI. In parallel, a neural network probability cube was generated based on a set of attributes derived from 3D seismic cube to be applied into the MPS algorithm as a soft conditioning data. Moreover, extracted channel bodies and drilled well log facies came to the modeling as hard data. Combination of these constraints resulted to a facies model which was greatly consistent to the geological scenarios. This study showed how analogy of modern occurrences can be set as the foundation for generating a training image. Channel morphology and facies types currently being deposited, which are crucial for modeling a training image, was inferred from modern occurrences. However, there were some practical considerations concerning the MPS algorithm used for facies simulation. The main limitation was the huge amount of RAM and CPU-time needed to perform simulations.
NASA Astrophysics Data System (ADS)
Felton, E. Anne
2002-10-01
Hypotheses advanced concerning the origin of the Pleistocene Hulopoe Gravel on Lanai include mega-tsunami, abandoned beach, 'multiple event,' rocky shoreline, and for parts of the deposit, Native Hawaiian constructions and degraded lava flow fronts. Uplift of Lanai shorelines has been suggested for deposits occurring up to at least 190 m. These conflicting hypotheses highlight problems with the interpretation of coarse gravel deposits containing marine biotic remains. The geological records of the processes implied by these hypotheses should look very different. Discrimination among these or any other hypotheses for the origins of the Hulopoe Gravel will require careful study of vertical and lateral variations in litho- and biofacies, facies architecture, contact relationships and stratal geometries of this deposit. Observations of modern rocky shorelines, particularly on Lanai adjacent to Hulopoe Gravel outcrops, have shown that distinctive coarse gravel facies are present, several of which occur in specific geomorphic settings. Tectonic, isostatic and eustatic changes which cause rapid shoreline translations on steep slopes favour preservation of former rocky shorelines and associated sedimentary deposits both above and below sea level. The sedimentary record of those shorelines is likely to be complex. The modern rocky shoreline sedimentary environment is a hostile one, largely neglected by sedimentologists. A range of high-energy processes characterize these shorelines. Long-period swell, tsunami and storm waves can erode hard bedrock and generate coarse gravel. They also erode older deposits, depositing fresh ones containing mixtures of materials of different ages. Additional gravelly material may be contributed by rivers draining steep hinterlands. To fully evaluate rocky shoreline deposition in the broadest sense, for both the Hulopoe Gravel and other deposits, sedimentary facies models are needed for rocky shorelines occurring in a range of settings. Recognition and description of rocky shoreline deposits are crucial for correctly interpreting the geological history of oceanic and volcanic arc islands, for distinguishing between ancient tsunami and storm deposits, and for interpreting coarse-grained deposits preserved on high energy coasts of continents. Problems include not only the absence of appropriate sedimentary facies models linking rocky shoreline deposits and environments but also, until recently, lack of a systematic descriptive scheme applicable to coarse gravel deposits generally. Two complementary methods serve to integrate the wide range of bed and clast attributes and parameters which characterize complex coarse gravel deposits. The composition and fabric (CAF) method has a materials focus, providing detailed description of attributes of the constituent clasts, petrology, the proportions of gravel, sand and mud, and the ways in which these materials are organized. The sedimentary facies model building (FMB) method emphasizes the organization of a deposit on a bed-by-bed basis to identify facies and infer depositional processes. The systematic use of a comprehensive gravel fabric and petrography log (GFPL), in conjunction with detailed vertical profiles, provides visual representations of a range of deposit characteristics. Criteria useful for distinguishing sedimentary facies in the Hulopoe Gravel are: grain-size modes, amount of matrix, bed geometry, sedimentary structures, bed fabric and clast roundness.
Egenhoff, Sven O.; Fishman, Neil S.
2013-01-01
Black, organic-rich rocks of the upper shale member of the Upper Devonian–Lower Mississippian Bakken Formation, a world-class petroleum source rock in the Williston Basin of the United States and Canada, contain a diverse suite of mudstone lithofacies that were deposited in distinct facies belts. The succession consists of three discrete facies associations (FAs). These comprise: 1) siliceous mudstones; 2) quartz- and carbonate-bearing, laminated mudstones; and 3) macrofossil-debris-bearing massive mudstones. These FAs were deposited in three facies belts that reflect proximal to distal relationships in this mudstone system. The macrofossil-debris-bearing massive mudstones (FA 3) occur in the proximal facies belt and contain erosion surfaces, some with overlying conodont and phosphate–lithoclast lag deposits, mudstones with abundant millimeter-scale siltstone laminae showing irregular lateral thickness changes, and shell debris. In the medial facies belt, quartz- and carbonate-bearing, laminated mudstones dominate, exhibiting sub-millimeter-thick siltstone layers with variable lateral thicknesses and localized mudstone ripples. In the distal siliceous mudstone facies belt, radiolarites, radiolarian-bearing mudstones, and quartz- and carbonate-bearing, laminated mudstones dominate. Overall, total organic carbon (TOC) contents range between about 3 and 10 wt %, with a general proximal to distal decrease in TOC content. Abundant evidence of bioturbation exists in all FAs, and the lithological and TOC variations are paralleled by changes in burrowing style and trace-fossil abundance. While two horizontal traces and two types of fecal strings are recognized in the proximal facies belt, only a single horizontal trace fossil and one type of fecal string characterize mudstones in the distal facies belt. Radiolarites intercalated into the most distal mudstones are devoid of traces and fecal strings. Bedload transport processes, likely caused by storm-induced turbidity currents, were active across all facies belts. Suspended sediment settling from near the ocean surface, however, most likely played a role in the deposition of some of the mudstones, and was probably responsible for deposition of the radiolarites. The distribution pattern of high-TOC sediments in proximal and lower-TOC deposits in some distal facies is interpreted as a function of higher accumulation rates during radiolarian depositional events leading to a decrease in suspension-derived organic carbon in radiolarite laminae. The presence of burrows in all FAs and nearly all facies in the upper Bakken shale member indicates that dysoxic conditions prevailed during its deposition. This study shows that in intracratonic high-TOC mudstone successions such as the upper Bakken shale member bed-load processes most likely dominated sedimentation, and conditions promoted a thriving infaunal benthic community. As such, deposition of the upper Bakken shale member through dynamic processes in an overall dysoxic environment represents an alternative to conventional anoxic depositional models for world-class source rocks.
NASA Astrophysics Data System (ADS)
Gallois, Arnaud; Bosence, Dan; Burgess, Peter
2015-04-01
Non-marine carbonates are relatively poorly understood compared with their more abundant marine counterparts. Sedimentary facies and basin architecture are controlled by a range of environmental parameters such as climate, hydrology and tectonic setting but facies models are few and limited in their predictive value. Following the discovery of extensive Early Cretaceous, non-marine carbonate hydrocarbon reservoirs in the South Atlantic, the interest of understanding such complex deposits has increased during recent years. This study is developing a new depositional model for non-marine carbonates in a semi-arid climate setting in an extensional basin; the Purbeck Formation (Upper Jurassic - Lower Cretaceous) in Dorset (Southern England). Outcrop study coupled with subsurface data analysis and petrographic study (sedimentology and early diagenesis) aims to constrain and improve published models of depositional settings. Facies models for brackish water and hypersaline water conditions of these lacustrine to palustrine carbonates deposited in the syn-rift phase of the Wessex Basin will be presented. Particular attention focusses on the factors that control the accumulation of in-situ microbialite mounds that occur within bedded inter-mound packstones-grainstones in the lower Purbeck. The microbialite mounds are located in three units (locally known as the Skull Cap, the Hard Cap and the Soft Cap) separated by three fossil soils (locally known as the Basal, the Lower and the Great Dirt Beds) respectively within three shallowing upward lacustrine sequences. These complex microbialite mounds (up to 4m high), are composed of tabular small-scale mounds (flat and long, up to 50cm high) divided into four subfacies. Many of these small-scale mounds developed around trees and branches which are preserved as moulds (or silicified wood) which are surrounded by a burrowed mudstone-wackestone collar. Subsequently a thrombolite framework developed on the upper part only within bedded inter-mound packestones-grainstones. Finally a discontinuous basal laminated subfacies can be found overlaying the fossil soils. The overall control on facies and their distribution is the tectonic control as highlighted by the activity of the two main extensional faults during Purbeck times. The tectonic control on development of microbialite mounds is indicated by their relationship with the relay ramp. Their occurrence is controlled by palaeotopography generated on sub-aerial exposure surfaces, palaesols and early conifer trees and developed mainly on the shallowest area of the lake as indicated by their relationship with the inter-mound packstone-grainstone facies and the palaeosols. The new depositional models developed in this study integrate sedimentological facies models with the syn-rift setting of the Wessex Basin to explain the distribution of the microbialite mounds.
NASA Astrophysics Data System (ADS)
Hariss, M.; Purkis, S.; Ellis, J. M.; Swart, P. K.; Reijmer, J.
2013-12-01
Great Bahama Bank (GBB) has been used in many models to illustrate depositional facies variation across flat-topped, isolated carbonate platforms. Such models have served as subsurface analogs at a variety of scales. In this presentation we have integrated Landsat TM imagery, a refined bathymetric digital elevation model, and seafloor sample data compiled into ArcGIS and analyzed with eCognition to develop a depositional facies map that is more robust than previous versions. For the portion of the GBB lying to the west of Andros Island, the facies map was generated by pairing an extensive set of GPS-constrained field observations and samples (n=275) (Reijmer et al., 2009, IAS Spec Pub 41) with computer and manual interpretation of the Landsat imagery. For the remainder of the platform, which lacked such rigorous ground-control, the Landsat imagery was segmented into lithotopes - interpreted to be distinct bodies of uniform sediment - using a combination of edge detection, spectral and textural analysis, and manual editing. A map was then developed by assigning lithotopes to facies classes on the basis of lessons derived from the portion of the platform for which we had rigorous conditioning. The new analysis reveals that GBB is essentially a very grainy platform with muddier accumulations only in the lee of substantial island barriers; in this regard Andros Island, which is the largest island on GBB, exerts a direct control over the muddiest portion of GBB. Mudstones, wackestones, and mud-rich packstones cover 7%, 6%, and 15%, respectively, of the GBB platform top. By contrast, mud-poor packstones, grainstones, and rudstones account for 19%, 44%, and 3%, respectively. Of the 44% of the platform-top classified as grainstone, only 4% is composed of 'high-energy' deposits characterized by the development of sandbar complexes. The diversity and size of facies bodies is broadly the same on the eastern and western limb of the GBB platform, though the narrower eastern limb, the New Providence Platform, hosts a higher prevalence of high energy grainstones. The most abrupt lateral facies changes are observed leeward of islands, areas which also hold the highest diversity in facies type.
NASA Astrophysics Data System (ADS)
Eltom, Hassan A.; Abdullatif, Osman M.; Makkawi, Mohammed H.; Eltoum, Isam-Eldin A.
2017-03-01
The interpretation of depositional environments provides important information to understand facies distribution and geometry. The classical approach to interpret depositional environments principally relies on the analysis of lithofacies, biofacies and stratigraphic data, among others. An alternative method, based on geochemical data (chemical element data), is advantageous because it can simply, reproducibly and efficiently interpret and refine the interpretation of the depositional environment of carbonate strata. Here we geochemically analyze and statistically model carbonate samples (n = 156) from seven sections of the Arab-D reservoir outcrop analog of central Saudi Arabia, to determine whether the elemental signatures (major, trace and rare earth elements [REEs]) can be effectively used to predict depositional environments. We find that lithofacies associations of the studied outcrop (peritidal to open marine depositional environments) possess altered REE signatures, and that this trend increases stratigraphically from bottom-to-top, which corresponds to an upward shallowing of depositional environments. The relationship between REEs and major, minor and trace elements indicates that contamination by detrital materials is the principal source of REEs, whereas redox condition, marine and diagenetic processes have minimal impact on the relative distribution of REEs in the lithofacies. In a statistical model (factor analysis and logistic regression), REEs, major and trace elements cluster together and serve as markers to differentiate between peritidal and open marine facies and to differentiate between intertidal and subtidal lithofacies within the peritidal facies. The results indicate that statistical modelling of the elemental composition of carbonate strata can be used as a quantitative method to predict depositional environments and regional paleogeography. The significance of this study lies in offering new assessments of the relationships between lithofacies and geochemical elements by using advanced statistical analysis, a method that could be used elsewhere to interpret depositional environment and refine facies models.
Classical seismic sequence stratigraphic interpretation of intraslope basin fill: Deepwater Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, E.A.
Detailed interpretation of seismic facies patterns performed within the workstation environment provides an observation based methodology for constructing depositional models of turbidite and other reservoir bearing systems expected in deepwater Nigeria. The increased fidelity of the workstation allows greater detail and accuracy to be imposed onto depositional model construction by vastly improving the discrimination of depositional from structural seismic reflection geometries. In deepwater Nigeria interslope basins, depositional cyclicity is clearly indicated by vertical seismic facies successions in the same way as can be recognized in bed thickness trends from outcrop or well log data. The recognition of the seismic faciesmore » successions appears to break the stratigraphy into at least fourth and fifth order scale sequences. Highly {open_quotes}zoomed{close_quotes} instantaneous phase displays enhance the reflection character so that near outcrop scale (resolution less than 50 mters) interpretations of depositional facies can be made. Common seismic facies and geologic interpretation include: (1) low angle erosional surfaces as channel scour or mass wasting detachment; (2) low relief mounds, often in compensation cycle overlapping stacks reflecting compacted channelbelt fill; (3) unidirectional, low angle clinoform sets suggesting laterial accretion within a channel belt or possible contourite mounds; (4) abrupt, shingled blocks illustrating tilted fault blocks of small scale intraformation slumping; and (5) high reflection amplitude and continuous, parallel reflections of pelagic and hemipelagic condensed sections. There are other subtle seismic facies resolvable given the incraesed fidelity of the workstation interpretation. Mapping and translation of these geometries into more robust stratigraphic predictions should have positive impact on exploration and development success.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedesco, L.P.; Wanless, H.R.
Excavation of deep, open burrow networks and subsequent infilling with sediment from the surface produces an entirely new sedimentary deposit and results in obliteration to severe diagenetic transformation of precursor depositional facies. Repetitive excavation and infilling is responsible for creating the preserved depositional facies of many marine deposits. Excavating burrowers occur from intertidal to abyssal depths, and are important throughout the Phanerozoic. The repetitive coupling of deep, open burrow excavation with subsequent storm sediment infilling of open burrow networks is a gradual process that ultimately results in the loss of the original deposit and the generation of new lithologies, fabricsmore » and facies. The new lithologies are produced in the subsurface and possess fabrics, textures and skeletal assemblages that are not a direct reflection of either precursor facies or the surficial depositional conditions. Sedimentary facies generated by repetitive burrow excavation and infilling commonly are massively bedded and generally are mottled skeletal packstones. Skeletal grains usually are well-preserved and coarser components are concentrated in burrow networks, pockets and patches. The coarse skeletal components of burrow-generated facies are a mixture of coarse bioclasts from the precursor facies and both the coarse and fine skeletal material introduced from the sediment surface. Many so-called bioturbated or massive facies may, in fact, be primary depositional facies generated in the subsurface and represent severe diagenetic transformation of originally deposited sequences. In addition, mudstones and wackestones mottled with packstone patches may record storm sedimentation.« less
Johnson, E.A.; Pierce, F.W.
1990-01-01
The Tongue River Member of the Paleocene Fort Union Formation is an important coal-bearing sedimentary unit in the Powder River Basin of Wyoming and Montana. We studied the depositional environments of a portion of this member at three sites 20 km apart in the southeastern part of the basin. Six lithofacies are recognized that we assign to five depositional facies categorized as either channel or interchannel-wetlands environments. (1) Type A sandstone is cross stratified and occurs as lenticular bodies with concave-upward basal surfaces; these bodies are assigned to the channel facies interpreted to be the product of low-sinuosity streams. (2) Type B sandstone occurs in parallel-bedded units containing mudrock partings and fossil plant debris; these units constitute the levee facies. (3) Type C sandstone typically lacks internal structure and occurs as tabular bodies separating finer grained deposits; these bodies represent the crevasse-splay facies. (4) Gray mudrock is generally nonlaminated and contains ironstone concretions; these deposits constitute the floodplain facies. (5) Carbonaceous shale and coal are assigned to the swamp facies. We recognize two styles of stream deposition in our study area. Laterally continuous complexes of single and multistoried channel bodies occur at our middle study site and we interpret these to be the deposits of sandy braided stream systems. In the two adjacent study sites, single and multistoried channel bodies are isolated in a matrix of finer-grained interchannel sediment suggesting deposition by anastomosed streams. A depositional model for our study area contains northwest-trending braided stream systems. Avulsions of these systems created anastomosed streams that flowed into adjacent interchannel areas. We propose that during late Paleocene a broad alluvial plain existed on the southeastern flank of the Powder River Basin. The braided streams that crossed this surface were tributaries to a northward-flowing, basin-axis trunk stream that existed to the west. ?? 1990.
NASA Astrophysics Data System (ADS)
Turner, C. C.; Hughes, G. W.
1982-08-01
Sedimentary rocks of the Solomon Islands-Bougainville Arc are described in terms of nine widespread facies. Four facies associations are recognised by grouping facies which developed in broadly similar sedimentary environments. A marine pelagic association of Early Cretaceous to Miocene rocks comprises three facies. Facies Al: Early Cretaceous siliceous mudstone, found only on Malaita, is interpreted as deep marine siliceous ooze. Facies A2: Early Cretaceous to Eocene limestone with chert, overlies the siliceous mudstone facies, and is widespread in the central and eastern Solomons. It represents lithified calcareous ooze. Facies A3: Oligocene to Miocene calcisiltite with thin tuffaceous beds, overlies Facies A2 in most areas, and also occurs in the western Solomons. This represents similar, but less lithified calcareous ooze, and the deposits of periodic andesitic volcanism. An open marine detrital association of Oligocene to Recent age occurs throughout the Solomons. This comprises two facies. Facies B1 is variably calcareous siltstone, of hemipelagic origin; and Facies B2 consists of volcanogenic clastic deposits, laid down from submarine mass flows. A third association, of shallow marine carbonates, ranges in age from Late Oligocene to Recent. Facies C1 is biohermal limestone, and Facies C2 is biostromal calcarenite. The fourth association comprises areally restricted Pliocene to Recent paralic detrital deposits. Facies D1 includes nearshore clastic sediments, and Facies D2 comprises alluvial sands and gravels. Pre-Oligocene pelagic sediments were deposited contemporaneously with, and subsequent to, the extrusion of oceanic tholeiite. Island arc volcanism commenced along the length of the Solomons during the Oligocene, and greatly influenced sedimentation. Thick volcaniclastic sequences were deposited from submarine mass flows, and shallow marine carbonates accumulated locally. Fine grained graded tuffaceous beds within the marine pelagic association are interpreted as products of this volcanism, suggesting that the Santa Isabel-Malaita-Ulawa area, where these beds are prevalent, was relatively close to the main Solomons chain at this time. A subduction zone may have dipped towards the northeast beneath this volcanic chain. Pliocene to Pleistocene calcalkaline volcanism and tectonism resulted in the emergence of all large islands and led to deposition of clastic and carbonate facies in paralic, shallow and deep marine environments.
NASA Astrophysics Data System (ADS)
Turner, Brian R.
1986-02-01
The eastern Karoo Basin, South Africa, contains a thick sequence of terrigenous clastic sediments comprising a meanderbelt facies, braided channel facies divided into coarse and fine subfacies, fluviolacustrine facies and aeolian facies. Depositional trends and changes in fluvial style reflect a progressive increase in aridity of the climate under stable tectonic conditions, interrupted by two phases of source area tectonism and the development of fine and coarse clastic wedges of the braided channel subfacies; the latter signifying a short interlude of cool, wet conditions. The fine braided channel subfacies occurs in the upper part of the meanderbelt facies, which was deposited by ephemeral, meandering mixed-load streams of variable discharge and sinuosity, under dry, semi-arid climatic conditions. These deposited complex, internally discordant channel sands and well-developed levee deposits. Following deposition of the coarse braided channel subfacies semi-arid conditions returned and fluvial deposition was dominated by ephemeral, straight to slightly sinuous mixed load streams characterised by simple channel sand bodies. As the aridity of the climate increased, the streams became more localised and carried an increasing proportion of fines. Interbedded with and overlying the fluvial deposits is a mudstone-dominated lacustrine sequence grading up into aeolian sands suggesting a playa lake-type situation. The general absence of evaporites from these sediments is attributed to the fresh nature of the lake waters, as evidenced by the freshwater aquatic organisms and clay-mineral suite, the lack of adequate inflow for solute accumulation and the removal of dust impregnated by salts from the surface of the dry lake bed during the dry season by superheated, upward-spiralling columns of air. Broadly similar environments to the fluvio-lacustrine and aeolian facies sequence are to be found in the Lake Eyre Basin of central Australia and the Okavango "delta" of northern Botswana. The Okavango "delta" model has an important bearing on patterns of fluvial sedimentation in arid regions since it shows many characteristics of temperate, well-vegetated anastomosed fluvial systems despite its location in the Kalahari Desert.
NASA Astrophysics Data System (ADS)
Nordfjord, S.; Goff, J. A.; Austin, J. A.; Gulick, S. P.; Sommerfield, C.; Alexander, C.; Schock, S.
2004-12-01
We are investigating the late Quaternary sedimentary record of the New Jersey mid-outer continental shelf using deep-towed chirp sonar (1-4 kHz and 1-15 kHz) profiles, coupled with lithologic and chronostratigraphic control from long sediment cores collected using the DOSECC AHC-800 drilling system. We have seismically mapped extensive, shallowly buried, dendritic drainage systems. Observed seismic facies distributions suggest the complex nature of channel fills, and synthetic seismograms derived from MST logs enable us to correlate the chirp data to changes in lithology and physical properties of the cored samples, including channel fills, confirming that fine-grained material is transparent seismically, while interbedded sand and mud produce laminated reflections. We suggest that these channels probably formed during shelfal exposure coincident with the last glacial lowstand along this margin. Observed seismic facies superposition within valley fills is in part consistent with a tripartite zonation derived from wave-dominated estuary models. We have mapped four main facies within these dendritic incised valleys: (1) The lower facies, SF1, consists of a high-amplitude chaotic configuration. We interpret this facies as lowstand fluvial fill; (2) Overlying facies SF2 is generally a thin layer (<1-2m) of stratified, high amplitude reflectors in valley axes. This facies is characterized by small wedges along channel flanks, with a generally transparent acoustic response, but occasionally also by internal clinoforms. This facies could have been deposited as transgression began, by backfilling of valleys (bayhead delta? aggradational alluvial deposits?); (3) SF3 is generally transparent; subtle horizontal and parallel reflectors onlap channel flanks. We interpret this facies as representing central basin/bay deposits, a low-energy zones during the transgression, perhaps related to turbidity maxima; (4) SF4 is observed only in the seaward end of the valley. This facies is more variable in amplitude and configuration, and includes a laminated acoustic response, small erosional surfaces, and some wavy reflections. We think the complexity of this facies likely reflects deposition of an estuary mouth complex in a dynamic environment, including frequent lateral variations in sedimentary facies from tidal inlets, washovers, tidal-deltas and barriers. A seismic transition upward from chaotic to flat-lying reflections and a more transparent acoustic response indicates less depositional energy, suggesting replacement of fluvial systems by tidal/estuarine environments. This has been confirmed by vibra-coring of one channel. Our paleo-flow reconstructions also yield velocities in the range of 0.5-1.5 m/s, which are reasonable estimates for flows in estuarine environments.
NASA Astrophysics Data System (ADS)
Okazaki, Hiroko; Kwak, Youngjoo; Tamura, Toru
2015-07-01
We conducted a ground-penetrating radar (GPR) survey of gravelly braid bars in the Abe River, central Japan, to clarify the three-dimensional (3D) variations in their depositional facies under various geomorphologic conditions. In September 2011, a ten-year return-period flood in the study area reworked and deposited braid bars. After the flood, we surveyed three bars with different geomorphologies using a GPR system with a 250-MHz antenna and identified seven fundamental radar depositional facies: Inclined reflections (facies Ia and Ib), horizontal to subhorizontal reflections (facies IIa and IIb), discontinuous reflections (facies IIIa and IIIb), and facies assemblage with a large-scale channel-shaped lower boundary (facies IV). Combinations of these facies indicate bar formation processes: channel filling, lateral aggradation, and lateral and downstream accretion. In the Abe River, aerial photographs and airborne laser scanning data were obtained before and after the flood. The observed changes of the surface topography are consistent with the subsurface results seen in the GPR sections. This study demonstrated that the erosional and depositional architecture observed among bars with different channel styles was related to river width and represented depositional processes for high-sediment discharge. The quantitative characterizations of the sedimentary architecture will be useful for interpreting gravelly fluvial deposits in the rock record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyne, C.D.
1986-04-01
A 2900-m thick Campanian-Maestrichtian(.) turbidite sequence in Upper Mono Creek Canyon is interpreted to be a progradational submarine fan complex comprised of outer fan, middle fan, inner fan, and slope facies. The basal 600 m of the section consists of thinly bedded, laterally continuous fine sandstones, siltstones, and mudstones (mainly Mutti and Ricci Lucci facies D), interpreted to be outer fan interlobe and lobe-fringe deposits. These are punctuated by infrequent medium to very thickly bedded, flat-based, fine to coarse sandstones (facies C and B), which commonly coarsen and thicken upward, and are interpreted to be depositional lobes. Overlying these depositsmore » are approximately 1400 m of middle fan deposits composed of frequent lenticular, commonly channelized and amalgamated, thickly bedded, fine to very coarse sandstones (facies C and B) organized in fining- and thinning-upward sequences, interpreted to be braided-channel deposits. These alternate with less common nonchannelized coarsening- and thickening-upward sequences suggestive of lobe-apical cycles. These multistory sand deposits are nested within thick intervals of fine sandstones, siltstones, and mudstones (facies C and D), interpreted to be levee, crevasse-splay, and interchannel deposits. Interfingered with and overlying these deposits are approximately 500 m of fining- and thinning-upward or noncyclic, erosionally based, commonly amalgamated, very thickly bedded, medium to very coarse sandstones, pebbly sandstones, and conglomerates (facies A and B), interpreted to be inner fan deposits. Intercalated within this facies, infrequent, laterally discontinuous, thin to thickly bedded, fine to coarse sandstones, siltstones, and mudstones exist, interpreted to be interchannel, levee, and possibly channel-fill deposits.« less
Facies dimensions within carbonate reservoirs - guidelines from satellite images of modern analogs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, P.M.; Kowalik, W.S.
1995-08-01
Modern analogs illustrate the distribution of carbonate facies within an overall depositional setting and can be an integral part of a subsurface geologic model in indicating the dimensions, trend, and interrelationships of facies that might be related to reservoir and non-reservoir distribution. Satellite images from several modern carbonate areas depict the geologic characteristics that can be expected in ancient shallow-water settings. Isolated carbonate platforms- the Bahamas, Caicos Platform in the British West Indies, Chinchorro Bank offshore of Yucatan, and portions of the Belize area; Ramp-style shelf-to-basin transitions - Abu Dhabi and northern Yucatan; Rimmed shelf margins - South Florida, portionsmore » of Belize, and the Great Barrier Reef of Australia; Broad, deep shelf lagoons - the Great Barrier Reef and Belize; Reef variability - South Florida, the Bahamas, Caicos, Northern Yucatan, and Abu Dhabi; Shallow lagoon/tidal flat settings - South Florida, the Bahamas, Caicos, Northern Yucatan, Shark Bay in Western Australia, Abu Dhabi; Mixed carbonate and siliciclastic depostion - South Florida, Belize, the Great Barrier Reef, Shark Bay and Abu Dhabi. The geologic framework as illustrated by these areas is important at the development scale where lateral variation of porosity and permeability, i.e. reservoir quality, is commonly tied to facies changes and facies dimensions are required as input to reservoir models. The geologic framework is essential at the exploration scale for reservoir facies prediction and stratigraphic play concepts which are related directly to depositional facies patterns.« less
NASA Astrophysics Data System (ADS)
Bertrand-Sarfati, Janine; Moussine-Pouchkine, Alexis
1988-08-01
The Atar Group, part of the Upper Proterozoic sequence covering the West African craton, stable since 2000 Ma, is characterized by an alternation of extensive carbonate beds and mixed siliciclastic and carbonate facies. The carbonate beds comprise essentially columnar stromatolite biostromes and bioherms which reflect sublittoral environments. The mixed facies contain a variety of laterally discontinuous facies which imply more variable environmental conditions. The settings of the mixed facies are not always clear but they do not contain thick sequences of high-energy facies. Few obvious facies sequences are discernable; those that are present are considered to be punctuated aggradational cycles (PACs) and they always start with biostromes of columnar stromatolites with very few sediments. Composite sequences are interpreted as due to shallowing upward or increasing energy environments that may be laterally contiguous, despite the fact that the contacts are not gradational. However, much of the stratigraphic sequence cannot be subdivided into cycles and seems to consist of unrelated individual facies, bound by sharp boundaries. The basin analysis reveals that biostromes of columnar stromatolites start after an instantaneous geological event corresponding to a sea-level rise. Consequently, their appearance can be considered as a time-line. We describe, in the Atar Group and its equivalents, three sedimentation trends, all of which are interpreted to be of shallowing upward character. The Atar Group appears to have been deposited in an epeiric sea (i.e. an extremely flat ramp). There are two contrasting styles of sedimentation: (1) after the submergence of the whole area, columnar stromatolites built extensive biostromes; (2) during the stable phase, sediments are deposited in a mosaic of laterally-discontinuous facies. Tidal influence cannot be recognized in the sequence, neither can a salinity increase toward the land; both common features in published epeiric sea models. A cratonic sedimentation area such as this is characterized by its size and flatness. Only during the stable phase of the cycle does small-scale topographic relief lead to deposition of a mosaic of facies. The sedimentation is storm- and wave-dominated.
NASA Astrophysics Data System (ADS)
Jackson, S.; Szpaklewicz, M.; Tomutsa, L.
1987-09-01
The primary objective of this research is to develop a methodology for constructing accurate quantitative models of reservoir heterogeneities. The resulting models are expected to improve predictions of flow patterns, spatial distribution of residual oil after secondary and tertiary recovery operations, and ultimate oil recovery. The purpose of this study is to provide preliminary evaluation of the usefulness of outcrop information in characterizing analogous reservoirs and to develop research techniques necessary for model development. The Shannon Sandstone, a shelf sand ridge deposit in the Powder River Basin, Wyoming, was studied. Sedimentologic and petrophysical features of an outcrop exposure of the High-Energy Ridge-Margin facies (HERM) within the Shannon were compared with those from a Shannon sandstone reservoir in Teapot Dome field. Comparisons of outcrop and subsurface permeability and porosity histograms, cumulative distribution functions, correlation lengths and natural logarithm of permeability versus porosity plots indicate a strong similarity between Shannon outcrop and Teapot Dome HERM facies petrophysical properties. Permeability classes found in outcrop samples can be related to crossbedded zones and shaley, rippled, and bioturbated zones. Similar permeability classes related to similar sedimentologic features were found in Teapot Dome field. The similarities of outcrop and Teapot Dome petrophysical properties, which are from the same geologic facies but from different depositional episodes, suggest that rocks deposited under similar depositional processes within a given deposystem have similar reservoir properties. The results of the study indicate that the use of quantitative outcrop information in characterizing reservoirs may provide a significant improvement in reservoir characterization.
Cai, J.; Powell, R.D.; Cowan, E.A.; Carlson, P.R.
1997-01-01
High-resolution seismic-reflection profiles of sediment fill within Tart Inlet of Glacier Bay, Alaska, show seismic facies changes with increasing distance from the glacial termini. Five types of seismic facies are recognized from analysis of Huntec and minisparker records, and seven lithofacies are determined from detailed sedimentologic study of gravity-, vibro- and box-cores, and bottom grab samples. Lithofacies and seismic facies associations, and fjord-floor morphology allow us to divide the fjord into three sedimentary environments: ice-proximal, iceberg-zone and ice-distal. The ice-proximal environment, characterized by a morainal-bank depositional system, can be subdivided into bank-back, bank-core and bank-front subenvironments, each of which is characterized by a different depositional subsystem. A bank-back subsystem shows chaotic seismic facies with a mounded surface, which we infer consists mainly of unsorted diamicton and poorly sorted coarse-grained sediments. A bank-core depositional subsystem is a mixture of diamicton, rubble, gravel, sand and mud. Seismic-reflection records of this subsystem are characterized by chaotic seismic facies with abundant hyperbolic diffractions and a hummocky surface. A bank-front depositional subsystem consists of mainly stratified and massive sand, and is characterized by internal hummocky facies on seismic-reflection records with significant surface relief and sediment gravity flow channels. The depositional system formed in the iceberg-zone environment consists of rhythmically laminated mud interbedded with thin beds of weakly stratified diamicton and stratified or massive sand and silt. On seismic-reflection profiles, this depositional system is characterized by discontinuously stratified facies with multiple channels on the surface in the proximal zone and a single channel on the largely flat sediment surface in the distal zone. The depositional system formed in the ice-distal environment consists of interbedded homogeneous or laminated mud and massive or stratified sand and coarse silt. This depositional system shows continuously stratified seismic facies with smooth and flat surfaces on minisparker records, and continuously stratified seismic facies which are interlayered with thin weakly stratified facies on Huntec records.
Nuées ardentes of 22 November 1994 at Merapi volcano, Java, Indonesia
Abdurachman, E.K.; Bourdier, J.-L.; Voight, B.
2000-01-01
Nuées ardentes associated with dome collapse on 22 November 1994, at Merapi volcano traveled to the south–southwest as far as 6.5 km, and collectively accumulated roughly 2.5–3 million cubic meters of deposits. The damaged area comprises 9.5 km2 and is covered by two nuée ardente facies, a conventional “Merapi-type”, valley-fill block-and-ash flow facies and a pyroclastic surge facies. The proximal deposits reflect the accumulation of dozens of nuées ardentes, with many subsidiary flow units. The distal deposits are more simply organized, as only a few individual events reached to distances >3.5 km. The stratigraphic relationships north of Turgo hill indicate that the surge deposits are a facies of particularly mobile nuées ardentes that also deposited channeled block-and-ash flow facies. They further suggest that the surge facies beyond the channel margins correlate laterally with a finer-grained sublayer locally developed at the base of the block-and-ash flow facies. Eyewitness reports suggest that the emplacement of the block-and-ash flow facies in the distal part of the Boyong river may have followed, by a short time interval, the destruction and deposition of the surge facies at Turgo village. The stratigraphy is in accord with the eyewitness reports. The surge facies was emplaced by a dilute surge current, detached from the same dome-collapse nuée ardente that, as a separate flow unit, subsequently emplaced the distal block-and-ash deposit in the Boyong valley. The detachment occurred at higher elevations, likely at or above the slope break at about 2000 m elevation. This flow separation enabled the surge current to shortcut over the landscape and to emplace its deposit even as the block-and-ash flow continued its tortuous southward movement in the Boyong channel. Dome-collapse nuée ardente activity formed the bulk of the eruption, which was accompanied by virtually no significant vertical summit explosive activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesson, M.; Bernard, G.; Georges, A.
1995-08-01
The {open_quotes}Golfe du Lion{close_quotes} Pleistocene shelf deposits are used as modern analogues of ancient deltaic and shallow water siliciclastic deposits. At least 6 cyclic superimposed sedimentary packages constituting a seaward thickening wedge are documented, including major progradational clinoforms units bounded by regional unconformities, with their updip terminations. Seismic correlations and geometry models, together with age dating and facies analysis of the uppermost units have been used at regional scale. They allowed to differentiate allocyclic from autocyclic events, to improve our knowledge of the nature of tectonic control on architecture, and to rely the different seismic units, inside the packages, tomore » the environmental changes from interglacial highstand to glacial lowstand in 4 to 5th order cycles. An alternative model of {open_quotes}forced regression{close_quotes} during sea level lowstand was documented and validated. The different illustrated sedimentary units, related to specific parts of the relative sea level curve along a short duration/high amplitude cycle, are: (i) the {open_quotes}forced regression{close_quotes} deposits (ii) the late lowstand massive sands onto the outer shelf (iii) the early transgressive backstepping (?) beach sands, (iii) the late transgressive backslapping parasequences. The sand content inferred from the seismic facies, comforted with the uppermost units facies from data cores, is in agreement with this model.« less
NASA Astrophysics Data System (ADS)
Fallatah, Mohammed I.; Kerans, Charles
2018-01-01
A sequence stratigraphic framework of the Late Jurassic (Oxfordian) Hanifa Formation at its exposure in Central Arabia is presented for the first time. This study offers the first high-resolution stratigraphic framework of the Hanifa along the Tuwaiq Escarpment by measuring 15 sections ( 770 m total thickness) over an oblique-to-dip distance of 260 km and collecting 295 samples for petrographic analysis. On the basis of these data, the Hanifa Formation can be subdivided into eight facies; 1) tabular cross-bedded quartz-peloidal-skeletal grainstone, 2) cross-bedded skeletal-peloidal grainstone, 3) bioturbated foraminiferal wackestone/mud-dominated packstone, 4) oncolitic rudstone, 5) stromatoporoid-coral biostrome/bioherm, 6) peloidal/composite-grain grain-dominated packstone/grainstone, 7) bioturbated spiculitic wackestone/mud-dominated packstone, and 8) thinly-bedded argillaceous mudstone/wackestone. The vertical and lateral distributions of these facies along the exposure define their sequence setting using the principals of sequence stratigraphy. By recognizing erosional surfaces, facies offset, and changes in facies proportions, five third-order sequences, with an average duration of 1.1 Myr, are interpreted for the Hanifa Formation. The correlation of the sequences across the study area shows that only four sequences are preserved in the north where shallow-water deposits are well-developed. Facies trends within these sequences are further illustrated in depositional models representing the highstand systems tracts (HST) and the transgressive systems tracts (TST) of the Hanifa Formation. These proposed models represent depositional settings of a carbonate ramp with normal open-marine conditions. The HST depositional model is characterized by a high-energy shoreline and depicts the presence of an offshore, structurally controlled skeletal-peloidal shoal body described here for the first time at the Hanifa exposure in the Hozwa area. This work provides a predictive framework and outcrop analog for applications in hydrocarbon exploration and development. Furthermore, a basinal setting predicted to the south of the study area is a potential site for unconventional plays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, E.W.
Study of late Pleistocene-age sediments near the mouth of the Mad River revealed a sequence of nearshore marine and shallow bay deposits. This sequence, bounded by unconformities, is informally named the Mouth of Mad unit. The Mouth of mad unit can be divided into four distinct depositional facies at the study site. The lowest facies are the Nearshore Sand and Estuarine Mud, which lie unconformably on a paleosol. The sand facies grades upward into a high-energy, interbedded Nearshore Sand and Gravel facies containing storm and rip-channel deposits. Above the sand and gravel is a Strand-Plain Sand facies. This sand ismore » overlain by a laterally variable sequence of shell-rich Bay facies. The bay deposits can be further divided into five subfacies: (1) a Bioturbated Sand; (2) a Lower Tidal Flat Mud; (3) a Mixed Sand and Mud; (4) an oyster-rich Bay Mud; and (5) an Upper Tidal Flat Mud. The bay sequence is overlain unconformably by younger late Pleistocene-age marine terrace deposits. The depositional environments represented by these facies progress from a shoreline estuary to nearshore deposits, above storm wave base, and slowly back to shoreline and finally shallow bay conditions. The Mouth of Mad unit represents a transgressive-regressive sequence, involving the development of a protective spit. The uppermost mud within the Mouth of Mad unit has been dated, using thermoluminescence age estimation, at 176 [+-] 33 ka, placing it in the late Pleistocene. The Mouth of Mad unit appears to be younger than the fossiliferous deposits at Elk Head, Crannell Junction, Trinidad Head, Moonstone Beach, and the Falor Formation near Maple Creek, and possibly time equivalent with gravel deposits exposed at the western end of School Road in McKinleyville.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Betz, C.E.; Martin, W.D.
Rock sections of the Drakes, Elkhorn, and Whitewater Formations were studied along an east-west-trending line in order to distinguish facies changes in a slope direction across the paleodepositional basin. The Richmond limestones, shales, and dolostones formed from fine-grained, terrigenous and carbonate sediments deposited on a shallow marine ramp within the humid, tropical, low latitudes of the Southern Hemisphere. Depositional environments on the ramp are represented by five main facies type. The five Richmond facies form a subtidal to supratidal shallowing-upward sequence. This progressive shallowing during the Late Ordovician resulted from the westward regional progradation of Queenston deltaic facies.
NASA Astrophysics Data System (ADS)
Murtaza, Muhammad; Rahman, Abdul Hadi Abdul; Sum, Chow Weng; Konjing, Zainey
2018-02-01
Thirty-five stratigraphic section exposed along the Mukah-Selangau road in the Mukah-Balingian area have been studied. Sedimentological and palynological data have been integrated to gain a better insight into the depositional architecture of the area. Broadly, the Mukah-Balingian area is dominated by fluvial, floodplain and estuarine related coal-bearing deposits. The Balingian, Begrih and Liang formations have been described and interpreted in terms of seven facies association. These are: FA1 - Fluvial-dominated channel facies association; FA2 - Tide-influenced channel facies association; FA3 - Tide-dominated channel facies association; FA4 - Floodplain facies association; FA5 - Estuarine central basin-mud flats facies association; FA6 - Tidal flat facies association and FA7 - Coastal swamps and marshes facies association. The Balingian Formation is characterised by the transgressive phase in the base, followed by a regressive phase in the upper part. On the basis of the occurrence of Florscheutzia trilobata with Florscheutzia levipoli, the Early to Middle Miocene age has been assigned to the Balingian Formation. The distinct facies pattern and foraminifera species found from the samples taken from the Begrih outcrop imply deposition in the intertidal flats having pronounced fluvio-tidal interactions along the paleo-margin. Foraminiferal data combined with the pronounced occurrence of Stenochlaena laurifolia suggest at least the Late Miocene age for the Begrih Formation. The internal stratigraphic architecture of the Liang Formation is a function of a combination of sea level, stable tectonic and autogenic control. Based on stratigraphic position, the Middle Pliocene to Pleistocene age for the Liang Formation is probable. The Balingian, Begrih and Liang formations display deposits of multiple regressive-transgressive cycles while the sediments were derived from the uplifted Penian high and Rajang group.
NASA Astrophysics Data System (ADS)
Marchionda, Elisabetta; Deschamps, Rémy; Nader, Fadi H.; Ceriani, Andrea; Di Giulio, Andrea; Lawrence, David; Morad, Daniel J.
2017-04-01
The stratigraphic record of a carbonate system is the result of the interplay of several local and global factors that control the physical and the biological responses within a basin. Conceptual models cannot be detailed enough to take into account all the processes that control the deposition of sediments. The evaluation of the key controlling parameters on the sedimentation can be investigated with the use of stratigraphic forward models, that permit dynamic and quantitative simulations of the sedimentary basin infill. This work focuses on an onshore Abu Dhabi field (UAE) and it aims to provide a complete picture of the stratigraphic evolution of Upper Jurassic Arab Formation (Fm.). In this study, we started with the definition of the field-scale conceptual depositional model of the Formation, resulting from facies and well log analysis based on five wells. The Arab Fm. could be defined as a shallow marine carbonate ramp, that ranges from outer ramp deposits to supratidal/evaporitic facies association (from bottom to top). With the reconstruction of the sequence stratigraphic pattern and several paleofacies maps, it was possible to suggest multiple directions of progradations at local scale. Then, a 3D forward modelling tool has been used to i) identify and quantify the controlling parameters on geometries and facies distribution of the Arab Fm.; ii) predict the stratigraphic architecture of the Arab Fm.; and iii) integrate and validate the conceptual model. Numerous constraints were set during the different simulations and sensitivity analyses were performed testing the carbonate production, eustatic oscillations and transport parameters. To verify the geological consistency the 3D forward modelling has been calibrated with the available control points (five wells) in terms of thickness and facies distribution.
NASA Astrophysics Data System (ADS)
Gupta, Sanjeev; Edgar, Lauren; Williams, Rebecca; Rubin, David; Yingst, Aileen; Lewis, Kevin; Kocurek, Gary; Anderson, Ryan; Dromart, Gilles; Edgett, Ken; Hardgrove, Craig; Kah, Linda; Mangold, Nicolas; Milliken, Ralph; Minitti, Michelle; Palucis, Marisa; Rice, Melissa; Stack, Katie; Sumner, Dawn; Williford, Ken
2014-05-01
Since leaving Yellowknife Bay (summer 2013), Mars Science Laboratory Curiosity has investigated a number of key outcrops as it traverses along the Rapid Transit Route toward the entry point to begin its investigations of the extensive rock outcrops at the base of Mount Sharp. Rover observations are characterizing the variability of lithologies and sedimentary facies along the traverse and establishing stratigraphic relationships with the aim of reconstructing depositional processes and palaeoenvironments. Here, we report on sedimentological and stratigraphic observations based on images from the Mastcam and MAHLI instruments at Shaler and the Darwin waypoint. The informally named Shaler outcrop, which forms part of the Glenelg member of the Yellowknife Bay formation [1] is remarkable for the preservation of a rich suite of sedimentary structures and architecture, and was investigated on sols 120-121 and 309-324. The outcrop forms a pebbly sandstone body that is ~0.7 m thick and extends for up to 20 m. Shaler is largely characterized by pebbly sandstone facies showing well-developed decimeter-scale trough cross-stratification. Bedding geometries indicate sub-critical angles of climb, resulting in preservation of only the lee slope deposits. The grain size, and the presence and scale of cross-stratification imply sediment transport and deposition by unidirectional currents in a fluvial sedimentary environment. Curiosity investigated the informally named Darwin waypoint between sols 390 and 401, making detailed Mastcam and MAHLI observations at two separate locations. The Darwin outcrop comprises light-toned sandstone beds separated by darker pebbly sandstones. MAHLI observations permit differentiation of distinct sedimentary facies. The Altar Mountain facies is a poorly sorted pebbly sandstone that is rich in fine pebbles. Pebbles are sub-angular to sub-rounded in shape and show no preferred orientation or fabric. Pebbles and sand grains show clast-to-clast contacts. The clast-supported nature of the facies, the presence of coarse sand grains to fine pebbles, and the occurrence of some rounding of clasts indicates that these are sedimentary clasts that have been transported by aqueous flows. However, the absence of a well-sorted fabric, size grading of clast, and major rounding of grains suggests that these pebbly sandstones were rapidly deposited rather than built up from sustained fluvial reworking, implying that the deposits may be the result of more ephemeral river flows rather than sustained flow discharges. The Bardin Bluffs facies overlies the Altar Mountain facies and shows a more sand-dominated fabric with a smaller proportion of floating fine pebbles. This facies is also clast-supported but contains fewer pebbles and shows an overall fining-up trend. This facies is also interpreted to represent fluvial deposition albeit with a different grain size distribution than the Altar Mountains facies. We will compare and contrast the varying sedimentary fabrics and facies to develop models for the variety of aqueous fluvial transport processes that have led to the deposition of sedimentary rocks en route to Mount Sharp. The origin of these sedimentary rocks with relation to fluvial fan processes in Gale Crater will be discussed. References: [1] Grotzinger, J.P. et al Science 2013, doi: 10.1126/science.1242777.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermance, W.E.; Olaifa, J.O.; Shanmugam, G.
An integration of 3-D seismic and sedimentological information provides a basis for recognizing and mapping individual flow units within the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Core examination show the following depositional facies: A-Sandy slump/mass flow, B-Muddy slump/mass flow, C. Bottom current reworking. D-Non-channelized turbidity currents, E. Channelized (coalesced) turbidity currents. F-Channelized (isolated) turbidity currents, G-Pelagic/hemipelagic, H-Levee, I-Reworked slope, J-Wave dominated, and K-Tide dominated facies. With the exception of facies J and K, all these facies are of deep-water affinity. The IQI was deposited on an upper slope environment in close proximity to the shelf edge.more » Through time, as the shelf edge migrated scaward, deposition began with a channel dominated deep-water system (IQI 1 and 2) and progressed through a slump/debris flow dominated deep-water system (IQI 3, the principle reservoir) to a tide and wave dominated shallow-water system (IQI 4). Compositional and textural similarities between the deep-water facies result in similar log motifs. Furthermore, these depositional facies are not readily apparent as distinct seismic facies. Deep-water facies A, D, E, and F are reservoir facies, whereas facies B, C, G, H, and I are non-reservoir facies. However, Facies G is useful as a seismically mappable event throughout the study area. Mapping of these non-reservoir events provides the framework for understanding gross reservoir architecture. This study has resulted in seven defined reservoir units within the IQI, which serves as the architectural framework for ongoing reservoir characterization.« less
NASA Astrophysics Data System (ADS)
Mangano, M. G.; Buatois, L. A.
The paleoecologic and paleoenvironmental significance of trace fossils related to discontinuity surfaces in the Lower Cretaceous marine deposits of the Aconcagua area are analysed here. Carbonate-evaporite shoaling-upward cycles, developed by high organic production in a shallow hypersaline restricted environment, make up the section. Two types of cycles are defined, being mainly distinguished by their subtidal unit. Cycle I begins with a highly dolomitized lower subtidal unit (Facies A), followed upward by an intensely bioturbated upper subtidal unit (Facies B). The nodular packstone facies (B 1) is capped by a discontinuity surface (firmground or hardground) and occasionally overlain by an oystreid bed (Facies C). Cycle II is characterized by a pelletoidal subtidal unit (Facies B 2) with an abnormal salinity impoverished fauna. Both cycles end with intertidal to supratidal evaporite deposits (Facies D and E, respectively). Attention is particularly focused on cycle I due to its ichologic content. The mode of preservation and the distribution of trace fossils in nodular packstone facies are controlled by original substrate consolidation. Thalassinoides paradoxicus (pre-omission suite) represents colonization in a soft bottom, while Thalassinoides suevicus (omission suite pre-lithification) is apparently restricted to firm substrates. When consolidation processes are interrupted early, only an embryonic hard-ground that represents a minor halt in sedimentation was developed. Sometimes, consolidation processes continued leading to an intraformational hardground. Colonization by Trypanites solitarius (omission suite post-lithification) and Exogyra-like oystreids possibly characterizes hard substrate stage. When two discontinuity surfaces follow closely, a post-omission suite may be defined in relation to the lower cemented surface. As trace fossils are so closely related to changes in the degree of bottom lithification, they prove to be very useful as indicators of substrate evolution. The presence of discontinuity surfaces, evidenced by trace fossil association, suggests changes of sedimentary rate and environmental conditions that should be taken into account in future studies seeking to erect depositional models for these Cretaceous deposits.
NASA Astrophysics Data System (ADS)
Johnson, K. E.; Marsaglia, K. M.
2015-12-01
The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) arc volcanic sediment sources. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR) in the Amami-Sankaku Basin on International Ocean Discovery Program (IODP) Expedition 351 contains evidence of the variety of sediment sources that have existed in the area as a result of changing tectonic regimes through arc development, backarc basin formation and remnant arc abandonment. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. These materials contain a crucial record of arc development complementary to the Neogene history preserved in the active reararc (Expedition 350) and compressed whole-arc record in the current forearc (Expedition 352). A database of stratigraphic columns was created to display grain size trends, facies changes, and bedding characteristics. Individual beds (depositional events) were classified using existing and slightly modified classification schemes for muddy, sandy and gravel-rich gravity flow deposits, as well as muddy debris flows and tuffs. Utilizing the deep marine facies classes presented by Pickering et al. (1986), up section changes are apparent. Through time, as the arc developed, facies and bedding types and their proportions change dramatically and relatively abruptly. Following arc initiation facies are primarily mud-rich with intercalated tuffaceous sand. In younger intervals, sand to gravel gravity-flow deposits dominate, becoming more mud-rich. Muddy gravity flow deposits, however, dominate farther upsection. The overall coarsening-upward pattern (Unit III) is consistent with building of the arc edifice. Farther upsection (Unit II) an abrupt fining-upward trend represents the onset of isolation of the KPR as backarc spreading in the Shikoku Basin was initiated. This information will be combined with volcanic provenance and geochemical information from other studies, ultimately creating a deep-marine facies model for intraoceanic arc systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamlin, H.S.; Dutton, S.P.; Tyler, N.
The Tirrawarra Sandstone contains 146 million bbl of oil in Tirrawarra field in the Cooper basin of South Australia. We used core, well logs, and petro-physical data to construct a depositional-facies-based flow-unit model of the reservoir, which describes rock properties and hydrocarbon saturations in three dimensions. Using the model to calculate volumes and residency of original and remaining oil in place, we identified an additional 36 million bbl of oil in place and improved understanding of past production patterns. The Tirrawarra Sandstone reservoir was deposited in a Carboniferous-Permian proglacial intracratonic setting and is composed of lacustrine and fluvial facies assemblages.more » The stratigraphic framework of these nonmarine facies is defined by distinctive stacking patterns and erosional unconformities. Mudstone dominated zones that are analogous to marine maximum flooding surfaces bound the reservoir. At its base a progradational lacustrine-delta system, composed of lenticular mud-clast-rich sandstones enclosed in mudstone, is truncated by an unconformity. Sandstones in these lower deltaic facies lost most of their porosity by mechanical compaction of ductile grains. Sediment reworking by channel migration and locally shore-zone processes created by quartz-rich, multilateral sandstones, which retained the highest porosity and permeability of all the reservoir facies and contained most of the original oil in place. Braided-channel sandstones, however, are overlain by lenticular meandering-channel sandstones, which in turn grade upward into widespread mudstones and coals. Thus, this uppermost part of the reservoir displays a retrogradational stacking pattern and upward-decreasing reservoir quality. Our results demonstrate that depositional variables are the primary controls on reservoir quality and productivity in the Tirrawarra Sandstone.« less
Farid, Asam; Khalid, Perveiz; Jadoon, Khan Zaib; Jouini, Mohammed Soufiane
2014-10-01
Geostatistical variogram and inversion techniques combined with modern visualization tools have made it possible to re-model one-dimensional electrical resistivity data into two-dimensional (2D) models of the near subsurface. The resultant models are capable of extending the original interpretation of the data to depict alluvium layers as individual lithological units within the 2D space. By tuning the variogram parameters used in this approach, it is then possible to visualize individual lithofacies and geomorphological features for these lithologic units. The study re-examines an electrical resistivity dataset collected as part of a groundwater study in an area of the Bannu basin in Pakistan. Additional lithological logs from boreholes throughout the area have been combined with the existing resistivity data for calibration. Tectonic activity during the Himalayan orogeny uplifted and generated significant faulting in the rocks resulting in the formation of a depression which subsequently has been filled with clay-silt and dirty sand facies typical of lacustrine and flood plain environments. Streams arising from adjacent mountains have reworked these facies which have been eroded and replaced by gravel-sand facies along channels. It is concluded that the sediments have been deposited as prograding fan shaped bodies, flood plain, and lacustrine deposits. Clay-silt facies mark the locations of paleo depressions or lake environments, which have changed position over time due to local tectonic activity and sedimentation. The Lakki plain alluvial system has thus formed as a result of local tectonic activity with fluvial erosion and deposition characterized by coarse sediments with high electrical resistivities near the mountain ranges and fine sediments with medium to low electrical resistivities towards the basin center.
Sedimentary facies and Holocene depositional processes of Laura Island, Majuro Atoll
NASA Astrophysics Data System (ADS)
Yasukochi, Toru; Kayanne, Hajime; Yamaguchi, Toru; Yamano, Hiroya
2014-10-01
The depositional processes that formed Laura Island, Majuro Atoll, Marshall Islands, were reconstructed based on a facies analysis of island sediments and spine ratios, and radiocarbon ages of foraminifera. Sedimentary facies were analyzed from trenches and drill cores excavated on the island and its adjacent reef flat. Depositional ages were obtained using benthic foraminifera (Calcarina) whose spines had not been abraded. The facies were classified into two types: gravelly and sandy. The initial sediments of these sites consisted of gravelly facies in the lower horizon and sandy facies in the upper horizon. Their ages were approximately 2000 cal BP and coincident with the onset of a 1.1-m decline in regional relative sea level, which enabled deposition of the gravelly facies. Half of the sand fraction of the sediment was composed of larger benthic foraminifera. The spine ratio showed that their supply source on the reef flat was located oceanside of the island. The supply source appears to have been caused by the relative sea-level fall. This indicates that the studied island was formed by a relative reduction in wave energy and enhanced foraminiferal supply, both of which were triggered by the late Holocene relative sea-level fall.
NASA Astrophysics Data System (ADS)
Khalifa, M. A.; Catuneanu, O.
2008-05-01
The Lower Cenomanian Bahariya Formation in the Bahariya Oasis, Western Desert, Egypt, was deposited under two coeval environmental conditions. A fully fluvial system occurs in the southern portion of the Bahariya Oasis, including depositional products of meandering and braided streams, and a coeval fluvio-marine setting is dominant to the north. These deposits are organized into four unconformity-bounded depositional sequences, whose architecture is shaped by a complex system of incised valleys. The fluvial portion of the lower two depositional sequences is dominated by low-energy, meandering systems with a tabular geometry, dominated by overbank facies. The fluvial deposits of the upper two sequences represent the product of sedimentation within braided streams, and consist mainly of amalgamated channel-fills. The braided fluvial systems form the fill of incised valleys whose orientation follows a southeast-northwest trending direction, and which truncate the underlying sequences. Four sedimentary facies have been identified within the braided-channel systems, namely thin-laminated sandstones (Sh), cross-bedded sandstones (Sp, St), massive ferruginous sandstones (Sm) and variegated mudstones (Fm). The exposed off-channel overbank facies of the meandering systems include floodplain (Fm) and crevasse splay (Sl) facies. The fluvio-marine depositional systems consist of interbedded floodplain, coastal and shallow-marine deposits. The floodplain facies include fine-grained sandstones (Sf), laminated siltstones (Stf) and mudstones (Mf) that show fining-upward cycles. The coastal to shallow-marine facies consist primarily of mudstones (Mc) and glauconitic sandstones (Gc) organized vertically in coarsening-upward prograding cyclothems topped by thin crusts of ferricrete (Fc). The four depositional sequences are present across the Bahariya Oasis, albeit with varying degrees of preservation related to post-depositional erosion associated with the formation of sequence boundaries. These unconformities may be overlain by braided-stream channel sandstones at the base of incised valleys, or marked by ferricrete paleosols (lithofacies Fc) in the interfluve areas.
Karl, Herman A.
1989-01-01
High-resolution seismic-reflection data have been used to a varying degree by geoscientists to interpret the history of marine sediment accumulations around Antarctica. Reconnaissance analysis of 1-, 3.5-, and 12-kHz data collected by the U.S. Geological Survey in the western Ross Sea has led to the identification of eight echo-character facies and six microtopographic facies in the sediment deposits that overlie the Ross Sea unconformity. Three depositional facies regions, each characterized by a particular assemblage of echo-character type and microtopographic facies, have been identified on the continental shelf. These suites of acoustic facies are the result of specific depositional processes that control type and accumulation of sediment in a region. Evidence of glacial processes and products is uncommon in regions 1 and 2, but is abundant in region 3. McMurdo Sound, region 1, is characterized by a monospecific set of acoustic facies. This unique assemblage probably represents turbidity current deposition in the western part of the basin. Most of the seafloor in region 2, from about latitude 77??S to 75??S, is deeper than 600 m below sealevel. The microtopographic facies and echo-character facies observed on the lower slopes and basin floor there reflect the thin deposits of pelagic sediments that have accumulated in the low-energy conditions that are typical of deep-water environments. In shallower water near the boundary with region 3, the signature of the acoustic facies is different from that in deeper water and probably indicates higher energy conditions or, perhaps, ice-related processes. Thick deposits of tills emplaced by lodgement during the most recent advance of the West Antarctic Ice Sheet are common from latitude 75??S to the northern boundary of the study area just south of Coulman Island (region 3). The signature of microtopographic facies in this region reflects the relief of the base of the grounded ice sheet prior to decoupling from the seafloor. Current winnowing and scour of shallow parts of the seafloor inhibits sediment deposition and maintains the irregular, hummocky relief that characterizes much of the region. Seafloor relief of this type in other polar areas could indicate the former presence of grounded ice. ?? 1989.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, M.A.; Ochs, S.
1990-01-01
Deposition was partly controlled by paleotopographic relief of underlying Permian strata. Triassic Black Dragon sediments filled lowlands on an erosion surface (unconformity) cut into the Permian White Rim Sandstone and Kaibab Limestone. The Black Dragon Member consists of four distinct facies containing a wide variety of sedimentary structures that characterize both fluvial and tidal environments. The facies are: (1) a Chert Pebble Conglomerate (CPC) facies, characterized by calcite-cemented channel-fills of nodular and banded chert pebbles; (2) an Interbedded Sandstone, Siltstone, and Shale (SSS) facies, containing oscillation ripples and flaser bedding; (3) a large-scale Trough Cross-Stratified Sandstone (TXS) facies, consisting ofmore » 6.6-13.1 ft (2-4 m) thick sets of fine- to medium-grained sandstone; and (4) an Oolitic and Algal Limestone (OAL) facies, with cross-stratified oolitic beds, fenestral fabric, and laminated algal rip-up clasts. The CPC facies and the TXS facies were deposited by braided streams when the shoreline lay west of the San Rafael Swell. Rivers drained off and eroded localized Permian highlands, located most likely within a 62 mi (100 km) distance to the south and southeast of the study area. The SSS facies which constitutes the bulk of the Black Dragon Member, and the OAL facies are inter- and supratidal deposits formed during relative sea level highstands, when the shoreline lay within or east of the San Rafael Swell. A decrease in continent-derived sand supply and a corresponding increase in carbonate production within the OAL facies characterizes the end of Black Dragon deposition and the gradation into the overlying Sinbad Limestone Member.« less
NASA Astrophysics Data System (ADS)
Lirer, L.; Vinci, A.; Alberico, I.; Gifuni, T.; Bellucci, F.; Petrosino, P.; Tinterri, R.
2001-02-01
In the period between AD 79 and AD 472 eruptions, inter-eruption debris flow and hyperconcentrated-flood-flow deposits were deposited in the Somma-Vesuvio areas. These deposits, forming cliffs at the Torre Bassano and Torre Annunziata, were generated by highly erosive floods, whose erosive capacity was enhanced by acceleration due to the steepness of the volcano slopes. In this type of deposits were distinguished five depositional facies (from A to E) outcropping well at Torre Bassano where they are stacked in three fining-upward (FU) sequences, probably representing three forestepping — backstepping episodes in the emplacement area of gravity flows. These five facies from coarse to fine are interpreted to represent the downcurrent evolution of particular composite sediment gravity flows characterized by horizontal segregation of the main grain-size population. The blocking of these highly concentrated composite parent flows would first produce the deposition of the coarse front part to form facies A and then the overriding of this deposit by the bipartite flow, which constitutes the body of the flow. This flow is composed of a highly concentrated basal inertia carpet responsible for the deposition of facies B, C and D and an upper hyperconcentrated flood flow that forms facies E, through traction plus fallout processes, respectively. Finally, the occurrence of "lahar" type events at Somma-Vesuvio region even at present times is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espejo, E.S.; Lopez-Gamundi, O.R.
1994-01-01
The El Imperial Formation (mid-Carboniferous-Lower Permian) constitutes a progradational sandstone-rich succession deposited in the San Rafael foreland basin of western Argentina. Four facies associations have been identified: a basal glacial marine association, a shallow marine association, a deltaic association, and an uppermost fluvial association. Sand-prone deposits in the deltaic association, a shallow marine association, a deltaic association, and an uppermost fluvial association. Sand-prone deposits in the deltaic association are represented by prodelta and delta-front shales and subordinate fine sandstones (Facies A), deltaic platform, wave-reworked channel mouth-bar sandstones (Facies B), and fluvial-dominated distributary channel sandstones (Facies C). Analysis of framework grainsmore » of sandstone samples from Facies B and C shows two distinct mineral assemblages or petrofacies. The quartzose petrofacies is characterized by high contents of quartz and low percentages of feldspar and lithic grains. The quartzolithic petrofacies shows an increase in labile components, in particular lithic fragments, and a concomitant decrease in quartz. The quartzolithic petrofacies shows a source signature. Average detrital modes of sandstones from this petrofacies are similar to those from overlying fluvial sandstones. All wave-reworked, channel mouth-bar sandstones (Facies B) correspond compositionally to the quartzose petrofacies, whereas detrital modes from the distributary-channel sandstones (Facies C) fall into the quartzolithic petrofacies. This correspondence between depositional environment and petrofacies suggests a strong depositional influence on composition (depositional signature). Abrasion (mechanical breakdown) by wave action in shallow marine environments accounts for the quartz-rich nature and paucity of labile grains in the quartzose petrofacies.« less
Mullins, H.T.; Cook, H.E.
1986-01-01
Sediment gravity flow deposition along the deep-water flanks of carbonate platforms typically does not produce submarine fans. Rather, wedge-shaped carbonate aprons develop parallel to the adjacent shelf/slope break. The major difference between submarine fans and carbonate aprons is a point source with channelized sedimentation on fans, versus a line source with sheet-flow sedimentation on aprons. Two types of carbonate aprons may develop. Along relatively gentle (< 4??) platform-margin slopes, aprons form immediately adjacent to the shallow-water platform and are referred to as carbonate slope aprons. Along relatively steep (4-15??) platform margin slopes, redeposited limestones accumulate in a base-of-slope setting, by-passing an upper slope via a multitude of small submarine canyons, and are referred to as carbonate base-of-slope aprons. Both apron types are further subdivided into inner and outer facies belts. Inner apron sediments consist of thick, mud-supported conglomerates and megabreccias (Facies F) as well as thick, coarse-grained turbidites (Facies A) interbedded with subordinate amounts of fine-grained, peri-platform ooze (Facies G). Outer apron sediments consist of thinner, grain-supported conglomerates and turbidites (Facies A) as well as classical turbidites (Facies C) with recognizable Bouma divisions, interbedded with approximately equal proportions of peri-platform ooze (Facies G). Seaward, aprons grade laterally into basinal facies of thin, base-cut-out carbonate turbidites (Facies D) that are subordinate to peri-platform oozes (Facies G). Carbonate base-of-slope aprons grade shelfward into an upper slope facies of fine-grained peri-platform ooze (Facies G) cut by numerous small canyons that are filled with coarse debris, as well as intraformational truncation surfaces which result from submarine sliding. In contrast, slope aprons grade shelfward immediately into shoal-water, platform-margin facies without an intervening by-pass slope. The two carbonate apron models presented here offer alternatives to the submarine-fan model for paleoenvironmental analysis and hydrocarbon exploration for mass-transported carbonate facies. ?? 1986.
Farrell, K.M.
2001-01-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Farrell, K. M.
2001-02-01
This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.
NASA Astrophysics Data System (ADS)
Silva, C. A.; Souza Filho, P. M.; Gouvea Luiz, J.
2007-05-01
The Marapanim estuary is situated in the Para Coastal Plain, North Brazil. It is characterized by an embayed coastline developed on Neogene and Quaternary sediments of the Barreiras and Pos-Barreiras Group. This system is strongly influenced by macrotidal regimes with semidiurnal tides and by humid tropical climate conditions. The interpretation of GPR-reflections presented in this paper is based on correlation of the GPR signal with stratigraphic data acquired on the coastal plain through five cores that were taken along GPR survey lines from the recent deposits and outcrops observed along to the coastal area. The profiles were obtained using a Geophysical Survey Systems Inc., Model YR-2 GPR, with monostatic 700 MHz antenna that permitted to get records of subsurface deposits at 20m depth. Were collected 54 radar sections completing a total of 4.360m. The field data were analyzed using a RADAN software and applying different filters. The interpretation of radar facies following the principles of seismic stratigraphy that permitted analyze the sedimentary facies and facies architecture in order to understand the lithology, depositional environments and stratigraphic evolution of this sedimentary succession as well as to leading to a more precise stratigraphic framework for the Neogene to Quaternary deposits at Marapanim coastal plain. Facies characteristics and sedimentologic analysis (i.e., texture, composition and structure aspects) were investigated from five cores collected through a Rammkernsonde system. The locations were determined using a Global Positioning System. Remote sensing images (Landsat-7 ETM+ and RADARSAT-1 Wide) and SRTM elevation data were used to identify and define the distribution of the different morphologic units. The Coastal Plain extends west-east of the mouth of the Marapanim River, where were identified six morphologic units: paleodune, strand plain, recent coastal dune, macrotidal sandy beach, mangrove and salt marsh. The integration of GPR profiles and stratigraphy data allowed for the recognition of paleochannel geometry, with width of 150m and depth of 20m, developed on Barreiras Group, two discontinuity surfaces and three facies associations organized into sedimentary facies: (i) Tidal channel with mottled sand, Conglomerate with clay pebble and Ophiomorpha/linear Skolithos, channel-fill and tabular cross-bedding sand and sand/mud interlayer facies. (ii) Dune/interdune with wavy bedding and cross-bedding sand and planar bedding and tabular cross-bedding sand facies. (iii) infilled tidal channel with mottled sand, planar/flaser bedding sand, lenticular bedding clay and sand/mud interlayer facies. The present study demonstrates that some facies associations occur restricts to tidal paleochannels and shows features well preserved that are very important to reconstruction of the relative sea-level history in the Marapanim Estuary.
NASA Astrophysics Data System (ADS)
Evans, James E.; Reed, Jason M.
2007-03-01
Mississippian paleokarst served as a dust trap for the oldest known Paleozoic loessite in North America. The early Pennsylvanian Molas Formation consists of loessite facies (sorted, angular, coarse-grained quartz siltstone), infiltration facies (loess redeposited as cave sediments within paleokarst features of the underlying Mississippian Leadville Limestone), colluvium facies (loess infiltrated into colluvium surrounding paleokarst towers) and fluvial facies (siltstone-rich, fluvial channel and floodplain deposits with paleosols). The depositional system evolved from an initial phase of infiltration and colluvium facies that were spatially and temporally related to the paleokarst surface, to loessite facies that mantled the paleotopography, and to fluvial facies that were intercalated with marine-deltaic rocks of the overlying Pennsylvanian Hermosa Formation. This sequence is interpreted as a response to the modification of the dust-trapping ability of the paleokarst surface. Loess was initially eroded from the surface, transported and redeposited in the subsurface by the karst paleohydrologic system, maintaining the dust-trapping ability of the paleotopographic surface. Later, the paleotopographic surface was buried when loess accumulation rates exceeded the transport capacity of the karst paleohydrologic system. These changes could have occurred because of (1) increased dust input rates in western Pangaea, (2) rising base levels and/or (3) porosity loss due to deposition within paleokarst passageways.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCleary, J.; Rogers, T.; Ely, R.
Geophysical well log analysis, literature review, and field work were conducted to develop isopach, structure contour, outcrop, and facies maps and cross sections for the Devonian through Permian strata of a 14,586-km/sup 2/ (5632-square-mile) area in southeastern Utah. The study area includes part of the Paradox Basin, the salt deposits of which are of interest in siting studies for a nuclear waste repository. For this reason hydrologic models of this area are needed. This study, part of which included the development of a three-dimensional stratigraphic computer model utilizing Geographic Information System software, can serve as a base for hydrologic ormore » other models for this area. Within and adjacent to the study area, 730 wells were screened to select the 191 wells analyzed for the study. It was found that the Elbert through Molas formations did not exhibit noticeable facies changes within the study area. The Pinkerton Trail Formation exhibits moderate changes: anhydrite and shale become somewhat more abundant toward the northeast. Facies changes in the Paradox Formation are more dramatic. Thick saline facies deposits are present in the northeast, grading to thinner anhydrite and then to carbonate facies in the south and west. The lithology of the Honaker Trail Formation appears to be fairly uniform throughout the area. Facies changes in the Cutler Group are numerous and sometimes dramatic, and generally correspond to the named formations of the group. Other factors that could affect groundwater flow, such as stratigraphic cover of fine-grained rocks, area of formation outcrops, and fracturing and faulting are discussed and delineated on maps.« less
NASA Astrophysics Data System (ADS)
Prakojo, F.; Lobova, G.; Abramova, R.
2015-11-01
This paper is devoted to the current problem in petroleum geology and geophysics- prediction of facies sediments for further evaluation of productive layers. Applying the acoustic method and the characterizing sedimentary structure for each coastal-marine-delta type was determined. The summary of sedimentary structure characteristics and reservoir properties (porosity and permeability) of typical facies were described. Logging models SP, EL and GR (configuration, curve range) in interpreting geophysical data for each litho-facies were identified. According to geophysical characteristics these sediments can be classified as coastal-marine-delta. Prediction models for potential Jurassic oil-gas bearing complexes (horizon J11) in one S-E Western Siberian deposit were conducted. Comparing forecasting to actual testing data of layer J11 showed that the prediction is about 85%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugam, G.; Hermance, W.E.; Olaifa, J.O.
An integration of sedimentologic and 3D seismic data provides a basis for unraveling complex depositional processes and sand distribution of the Intra Qua Iboe (IQI) reservoir (Pliocene), Edop Field, offshore Nigeria. Nearly 3,000 feet of conventional core was examined in interpreting slump/slide/debris flow, bottom current, turbidity current, pelagic/hemipelagic, wave and tide dominated facies. The IQI was deposited on an upper slope in close proximity to the shelf edge. Through time, as the shelf edge migrated seaward, deposition began with a turbidite channel dominated slope system (IQI 1 and 2) and progressed through a slump/debris flow dominated slope system (IQI 3,more » the principal reservoir) to a tide and wave dominated, collapsed shelf-edge deltaic system (IQI 4). Using seismic time slices and corresponding depositional facies in the core, a sandy {open_quotes}fairway{open_quotes} has been delineated in the IQI 3. Because of differences in stacking patterns of sandy and muddy slump intervals, seismic facies show: (1) both sheet-like and mounded external forms (geometries), and (2) parallel/continuous as well as chaotic/hummocky internal reflections. In wireline logs, slump facies exhibits blocky, coarsening-up, fining-up, and serrated motifs. In the absence of conventional core, slump facies may be misinterpreted and even miscorrelated because seismic facies and log motifs of slumps and debris flows tend to mimic properties of turbidite fan deposits. The slump dominated reservoir facies is composed of unconsolidated fine-grained sand. Thickness of individual units varies from 1 to 34 feet, but amalgamated intervals reach a thickness of up to 70 feet and apparently form connected sand bodies. Porosity commonly ranges from 20 to 35%. Horizontal permeability commonly ranges from 1,000 to 3,000 md.« less
NASA Astrophysics Data System (ADS)
Atasoy, Serdar G.; Altıner, Demir; Okay, Aral I.
2017-04-01
Two stratigraphical sections were measured along the Upper Jurassic - Lower Cretaceous carbonate successions exposed in a tectonic klippe of the Sakarya Zone (Pontides), north of Sivrihisar. According to the biozonation and microfacies types, two coeval but dissimiliar rock successions, separated by a thrust fault, have been detected. These successions belong to different depositional belts of the Edremit-Bursa-Bilecik Carbonate Platform (EBBCP), western Sakarya Zone. The lower succession displays a slope to basin facies and consists of the Kimmeridgian - Berriasian Yosunlukbayırı Formation and the overlying Valanginian Soǧukçam Limestone. Within these deposits the following biozones were defined: Globuligerina oxfordiana - Mohlerina basiliensis Zone (Kimmeridgian), Saccocoma Zone (Lower Tithonian), Protopeneroplis ultragranulata Zone (Upper Tithonian), Crassicollaria (massutiana subzone) Zone (uppermost Tithonian), Calpionella (alpina, Remaniella, elliptica subzones) Zone (Lower Berriasian), Calpionellopsis (simplex, oblonga subzones) Zone (Upper Berriasian) and Calpionellites (darderi subzone) Zone (Lower Valanginian). This succession is overthrusted from north to south by another distinct succession characterized by the shallow marine carbonate facies of the Kimmeridgian Günören Formation. Within this unit Labyrinthina mirabilis - Protopeneroplis striata (Kimmeridgian) Zone is recognized. A facies model is proposed for the Sivrihisar transect of the EBBCP for Kimmeridgian - Valanginian interval, based on the distribution of microfacies types. The toe-of-slope facies are characterized by peloidal-bioclastic packstone, mudstone-wackestone and calpionellid/ radiolarian wackestone-packstone comprising pelagic taxa (calpionellids, radiolaria, Globochaete sp., Pithonella sp., Saccocoma sp., calcareous dinocysts, aptychi, very rare planktonic foraminifera and nannoconids) and rare fossil groups transported from the carbonate platform (benthic foraminifera, microencrusters, worm tubes, bivalve, crinoid and echinoid fragments). These deposits represent the background pelagic deposition on the slope. The slope facies are mainly composed of bioclastic-peloidal/ bioclastic-intraclastic packstone, rudstone-grainstone, bioclastic-lithoclastic floatstone-rudstone and reflect generally the increase in the amount of platform derived material (benthic foraminifera, microencrusters, worm tubes, corals, sponges, bryozoa). The matrix of these coarse grained deposits also contains pelagic taxa (calpionellids, radiolaria, Saccocoma sp., Globochaete sp., Pithonella sp., aptyhci). The slope facies are sometimes intercalataed with the toe-of-slope type facies indicating quiescence periods. The shallow marine carbonate platform deposits are characterized by peloidal-intraclastic poorly washed grainstone with bioclasts, bioclastic mudstone-wackestone, intraclastic packstone-rudstone and contain several shallow marine fossils (benthic foraminifera, encrustres and rare echnoid, bivalve and coral fragments) without any pelagic taxa. These carbonates are interpreted as back-reef platform deposits that should not be far away from the platform margin due to the co-occurence of Protopeneroplis striata and Mohlerina basiliensis, abundant in the shelf edge and reefal areas with the complex benthic foraminifera, Labyrinthina mirabilis common in lagoonal areas. If the position of the studied sections with respect to the EBBCP is considered, the studied basin and slope facies should represent the southern platform margin and slope environments of this carbonate platform that faced an ocean to the south during the Jurassic-Cretaceous. The slope and basinal facies overthrusted by the shallow marine deposits in a region situated to the south of the main İzmir-Ankara-Erzincan (İAE) suture suggests an important disruption and shortening of the EBBCP margin and slope deposits related to the closure of the İAE ocean.
NASA Astrophysics Data System (ADS)
Trofimovs, J.; Cas, R. A. F.; Davis, B. K.
2004-11-01
The Boorara Domain of the Kalgoorlie Terrane, Eastern Goldfields Superterrane, western Australia contains excellent exposure of Archaean felsic and ultramafic breccias characterised by facies associations interpreted to reflect a volcanic debris avalanche mode of deposition. Such Archaean volcanic deposits are typically difficult to identify due to poor preservation and exposure. However, primary volcanological and sedimentological features are preserved within the relatively low strain and low metamorphic grade (up to lower greenschist facies) Boorara Domain that allow accurate facies reconstruction. The breccia deposit is characterised by two clast populations. A 'block facies' comprised of metre- to decimetre-scale megablocks of dacite, basalt and komatiite is preserved within a 'mixed' matrix breccia facies of angular, coarse sand- to boulder-sized clasts. The megablocks preserve original stratigraphy and show fracturing and jigsaw-fit textures within the poorly sorted, unstratified, genetically related matrix. Overlying the volcanic debris avalanche deposit, are a series of stratified horizons. These deposits show evidence of hydraulic sorting within bedforms exhibiting normal grain-size grading and tractional scour and fill structures along their basal contacts. The stratified facies is interpreted to have been deposited by high concentration, high competency turbidity currents, triggered by slope stabilization slides in the source region. Primary contacts and volcanic textures preserved in decimetre-scale volcanic blocks allow reconstruction of the pre-collapse palaeovolcanological history of the source region. The volcanic debris avalanche deposit, together with the associated stratified sedimentary horizons, were produced by sector collapse of a submarine, dacitic volcanic dome. Contemporaneous komatiite intrusion into the dacite dome may have caused dome flank instability. However, the volcanic debris avalanche trigger is interpreted to be a post-lithification tectonic influence.
NASA Astrophysics Data System (ADS)
Sarki Yandoka, Babangida M.; Abubakar, M. B.; Abdullah, Wan Hasiah; Amir Hassan, M. H.; Adamu, Bappah U.; Jitong, John S.; Aliyu, Abdulkarim H.; Adegoke, Adebanji Kayode
2014-08-01
The Benue Trough of Nigeria is a major rift basin formed from the tension generated by the separation of African and South American plates in the Early Cretaceous. It is geographically sub-divided into Southern, Central and Northern Benue portions. The Northern Benue Trough comprises two sub-basins; the N-S trending Gongola Sub-basin and the E-W trending Yola Sub-basin. The Bima Formation is the oldest lithogenetic unit occupying the base of the Cretaceous successions in the Northern Benue Trough. It is differentiated into three members; the Lower Bima (B1), the Middle Bima (B2) and the Upper Bima (B3). Facies and their stratigraphical distribution analyses were conducted on the Lower Bima Member exposed mainly at the core of the NE-SW axially trending Lamurde Anticline in the Yola Sub-basin, with an objective to interpret the paleodepositional environments, and to reconstruct the depositional model and the stratigraphical architecture. Ten (10) lithofacies were identified on the basis of lithology, grain size, sedimentary structures and paleocurrent analysis. The facies constitute three (3) major facies associations; the gravelly dominated, the sandy dominated and the fine grain dominated. These facies and facies associations were interpreted and three facies successions were recognized; the alluvial-proximal braided river, the braided river and the lacustrine-marginal lacustrine. The stratigraphic architecture indicates a rifted (?pull-apart) origin as the facies distribution shows a progradational succession from a shallow lacustrine/marginal lacustrine (at the axial part of the basin) to alluvial fan (sediment gravity flow)-proximal braided river (gravel bed braided river) and braided river (channel and overbank) depositional systems. The facies stacking patterns depict sedimentation mainly controlled by allogenic factors of climate and tectonism.
NASA Astrophysics Data System (ADS)
Giordano, Guido
1998-12-01
The distribution of lithic clasts within two trachytic, small volume, pumiceous ignimbrites are described from the Quaternary `White Trachytic Tuff Cupa' formation of Roccamonfina volcano, Italy. The ignimbrites show a downslope grading of lithics, with a maximum size where there is a major break in the volcano's slope, rather than at proximal locations. This is also the location where ignimbrites are thickest and most massive. The break in slope is interpreted to have reduced flow capacity and velocity, increasing the sedimentation rate, so that massive ignimbrite formed by hindered settling sedimentation. Ignimbrite Cc, exhibits no vertical grading of lithics, though it does show downslope grading with maximum size at the major break in slope and a rapid decrease further downslope. Ignimbrite Cc thins away from the break in slope, and shows an upward fining of the grain size within the topmost few decimeters of the unit. The ignimbrite is stratified proximally, and grades to massive facies at the break in slope, and distally to stratified facies with numerous inverse-graded beds. The simplest mechanism accounting for these downslope variations is progressive aggradation from a quasi-steady, nonuniform pyroclastic density current. The changes in deposit thickness and facies are interpreted to record downcurrent changes in sedimentation rate. The upward fining reflects waning flow. Inversely graded, bedded depositional facies in distal areas is interpreted to reflect flow unsteadiness and a decrease in suspended sediment load. Ignimbrite Cd shows vertical, as well as downslope grading of lithics. This characteristic, coupled with the widespread massive facies of the deposit and the tabular unit geometry are features that can be reconciled with both the debris flow/plug analogy for pyroclastic flows ( Sparks, 1976) and the progressive aggradation model ( Branney and Kokelaar, 1992). However, none of them appears to satisfy completely the field evidences, implying that when dealing with massive ignimbrites, other evidence than lithic grading needs to be presented to better understand the related transport and depositional processes.
Adams, K.E.; Mull, C.G.; Crowder, R.K.
1997-01-01
Two opposing tectonic models have been offered to explain the regional structural relations in the north central Brooks Range fold-thrust belt of northern Alaska. The first suggests that rocks of the northern Endicott Mountains were thrust from south to north over the area of the present Mount Doonerak high and are therefore highly allochthonous. The second implies that the rocks of the northern Endicott Mountains were deposited in a basin that lay north of the Mount Doonerak high and later were thrust a short distance southward onto the northern flank of the high and are thus parautochthonous. To provide stratigraphic constraints for these models, this study examines Permian facies of the north central Brooks Range. Permian rocks in the north central Brooks Range comprise a thin (40 to 160 m thick), fining-upward succession of clastic, storm-influenced shelf deposits. When the rocks of the northern Endicott Mountains are restored south of the Mount Doonerak area, a minimum distance of 80 km, the Permian deposits grade systematically from distal facies (Siksikpuk Formation) in the southwest to proximal facies (Echooka Formation) in the northeast. Facies trends in the reconstructed Permian basin include, from southwest to northeast, (1) an increase in carbonate content and corresponding decrease in silica content, (2) a general darkening and thickening of shaley intervals, (3) an increase in proximal features of storm beds, including coarser, thicker, more abundant, and more closely spaced beds, and (4) an increase in abundance and diversity of the faunal assemblage with a corresponding decrease in age. These stratigraphic relations imply that rocks of the northern Endicott Mountains are allochthonous and structurally overlie a proximal stratigraphic succession similar to that exposed in the Mount Doonerak area and northeastern Brooks Range. Copyright 1997 by the American Geophysical Union.
Waythomas, C.F.; Wallace, K.L.
2002-01-01
An areally extensive volcanic mass-flow deposit of Pleistocene age, known as the Chetaslina volcanic mass-flow deposit, is a prominent and visually striking deposit in the southeastern Copper River lowland of south-central Alaska. The mass-flow deposit consists of a diverse mixture of colorful, variably altered volcanic rocks, lahar deposits, glaciolacustrine diamicton, and till that record a major flank collapse on the southwest flank of Mount Wrangell. The deposit is well exposed near its presumed source, and thick, continuous, stratigraphic exposures have permitted us to study its sedimentary characteristics as a means of better understanding the origin, significance, and evolution of the deposit. Deposits of the Chetaslina volcanic mass flow in the Chetaslina River drainage are primary debris-avalanche deposits and consist of two principal facies types, a near-source block facies and a distal mixed facies. The block facies is composed entirely of block-supported, shattered and fractured blocks with individual blocks up to 40 m in diameter. The mixed facies consists of block-sized particles in a matrix of poorly sorted rock rubble, sand, and silt generated by the comminution of larger blocks. Deposits of the Chetaslina volcanic mass flow exposed along the Copper, Tonsina, and Chitina rivers are debris-flow deposits that evolved from the debris-avalanche component of the flow and from erosion and entrainment of local glacial and glaciolacustrine diamicton in the Copper River lowland. The debris-flow deposits were probably generated through mixing of the distal debris avalanche with the ancestral Copper River, or through breaching of a debris-avalanche dam across the ancestral river. The distribution of facies types and major-element chemistry of clasts in the deposit indicate that its source was an ancestral volcanic edifice, informally known as the Chetaslina vent, on the southwest side of Mount Wrangell. A major sector collapse of the Chetaslina vent initiated the Chetaslina volcanic mass flow forming a debris avalanche of about 4 km3 that subsequently transformed to a debris flow of unknown volume.
NASA Astrophysics Data System (ADS)
Nabhan, Abdullah I.; Yang, Wan
2018-04-01
The facies and environments along the arid siliciclastic coast of Red Sea in Al Qahmah, Saudi Arabia are studied to establish a depositional model for interpretation of ancient rocks deposited in rift settings. Field and petrographic studies of 151 sediment samples in an area of 20 km2 define seven main facies types: beach, washover fan, tidal channel, dune, sabkha, delta, and wadi (seasonal stream). The wadi and delta facies are composed of poorly to moderately well-sorted, gravelly, medium-to-fine sands. Delta-front sands are redistributed by southward longshore currents to form a beach. Beach facies is composed of well-to-moderately sorted fine sands with minor gravels, which contain high concentrations of magnetite, ilmenite, garnet, pyroxene, amphibole, epidote, titanite, and apatite grains, indicating strong winnowing. Crabs and other burrowers destroy primary sedimentary structures and mix sediments in foreshore and backshore of the beaches. Wind and storm surge rework foreshore and backshore sediments to form washover fans. Sabkha facies occurs extensively in supratidal depressions behind beach, are flooded by rainstorms and spring tide, and capped by a 5-cm-thick crust composed of interlaminated halite, quartz, albite, minor gypsum and biotite, and rarely calcium carbonate. Halite occurs as thin sheets and gypsum as nodules with a chicken-wire structure. Clastic fraction in sabkha sediments ranges from coarse silt to coarse sand with moderate sorting, and is transported by currents and wind. Tidal inlets and tidal creeks assume abandoned wadis and are filled by muddy sand. Sand dunes and sand sheets are 1-7 m high and widely distributed due to variable wind directions. Fine-grained dune sands are moderately well sorted, whereas sheet sands are coarser and poorly sorted due to vegetation baffling. Most eolian sands are sourced from beach deposits. This suite of complex riverine, wave, tidal, wind, chemical, and biological processes form the facies mosaic along the arid Al Qahmah coast, which is strongly affected by climate-driven evaporation and wind action.
Hierarchy of facies of pyroclastic flow deposits generated by Laacher See type eruptions
NASA Astrophysics Data System (ADS)
Freundt, A.; Schmincke, H.-U.
1985-04-01
The upper Quaternary pyroclastic flow deposits of Laacher See volcano show compositional and structural facies variations on four different scales: (1) eruptive units of pyroclastic flows, composed of many flow units; (2) depositional cycles of as many as five flow units; flow units containing (3) regional intraflow-unit facies; and (4) local intraflow-unit subfacies. These facies can be explained by successively overlapping processes beginning in the magma column and ending with final deposition. The pyroclastic flow deposits thus reflect major aspects of the eruptive history of Laacher See volcano: (a) drastic changes in eruptive mechanism due to increasing access of water to the magma chamber and (b) change in chemical composition and crystal and gas content as evacuation of a compositionally zoned magma column progressed. The four scales of facies result from four successive sets of processes: (1) differentiation in the magma column and external factors governing the mechanism of eruption; (2) temporal variations of factors inducing eruption column collapse; (3) physical conditions in the eruption column and the way in which its collapse proceeds; and (4) interplay of flow-inherent and morphology-induced transport mechanics.
NASA Astrophysics Data System (ADS)
Lindquist, Sandra J.
1988-04-01
The Jurassic eolian Nugget Sandstone of the Utah-Wyoming thrust belt is a texturally heterogeneous formation with anisotropic reservoir inherited primarily from the depositional environment. Original reservoir quality has been reduced somewhat by cementation and slightly enhanced by dissolution. Low-permeability, gouge-filled micro-faults compartmentalize the formation, whereas intermittently open fractures provide effective permeability paths locally. Where productive, the Nugget Sandstone ranges from approximately 800 to 1050 ft (244-320 m) thick at subsurface depths of 7500 to 15,000 ft (2286-4572 m). Porosity ranges from several percent to 25%, and permeability covers five orders of magnitude from hundredths of milliDarcies to Darcies. Some Nugget reservoirs are fully charged with hydrocarbons. Different stratification types have unique depositional textures, primary and diagenetic mineralogies, and deformational fabrics resulting in characteristic porosity, permeability, permeability directionality, and pore geometry attributes. Such characteristics can be determined from core analysis, mercury injection, nuclear magnetic resonance, conventional log, dipmeter and production data. Nugget dune deposits (good reservoir facies) primarily consist of grainflow and wind-ripple cross-strata, the former of which have the better reservoir quality and the lesser heterogeneity in bedding texture. High-permeability facies are commonly affected by local quartz and nodular carbonate cementation, chlorite (and lesser illite) precipitation, and minor framework and cement dissolution. Gouge-filled micro-faults are the predominant deformational overprint. Interdune, sand-sheet, and other water-associated deposits (poor reservoir facies) are characterized by low-angle wind-ripple laminae and more irregular bedding, some of which is associated with damp or wet conditions. Water-associated Nugget stratification generally contains the finest grained depositional textures and has the poorest reservoir properties. These non-dune facies contain intergranular micritic carbonate and illite precipitates and are most affected by compaction and pressure solution phenomena. Open types of fractures are somewhat more likely in this lower permeability rock. Depositional models incorporating dune morphologies, facies distribution, permeability directionality, and theoretical concepts regarding dune migration through time are useful in delineating correlative intervals most likely to have continuity and potential communication of reservoir properties. Stratigraphic models can be adapted for reservoir simulation studies and also can be utilized in solving structural resolution problems if correlatable vertical sequences and relatively consistent cross-strata orientations exist.
NASA Astrophysics Data System (ADS)
Sawyer, Derek E.; Flemings, Peter B.; Dugan, Brandon; Germaine, John T.
2009-10-01
Clay-rich mass transport deposits (MTDs) in the Ursa Basin, Gulf of Mexico, record failures that mobilized along extensional failure planes and transformed into long runout flows. Failure proceeded retrogressively: scarp formation unloaded adjacent sediment causing extensional failure that drove successive scarp formation updip. This model is developed from three-dimensional seismic reflection data, core and log data from Integrated Ocean Drilling Project (IODP) Expedition 308, and triaxial shear experiments. MTDs are imaged seismically as low-amplitude zones above continuous, grooved, high-amplitude basal reflections and are characterized by two seismic facies. A Chaotic facies typifies the downdip interior, and a Discontinuous Stratified facies typifies the headwalls/sidewalls. The Chaotic facies contains discontinuous, high-amplitude reflections that correspond to flow-like features in amplitude maps: it has higher bulk density, resistivity, and shear strength, than bounding sediment. In contrast, the Discontinuous Stratified facies contains relatively dim reflections that abut against intact pinnacles of parallel-stratified reflections: it has only slightly higher bulk density, resistivity, and shear strength than bounding sediment, and deformation is limited. In both facies, densification is greatest at the base, resulting in a strong basal reflection. Undrained shear tests document strain weakening (sensitivity = 3). We estimate that failure at 30 meters below seafloor will occur when overpressure = 70% of the hydrostatic effective stress: under these conditions soil will liquefy and result in long runout flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamick, J.A.; Sartin, A.A.
1988-09-01
Hill sand is an informal subdivision of the Lower Cretaceous Rodessa Formation and is a common hydrocarbon reservoir in northeastern Texas, northern Louisiana, and southern Arkansas. The Hill sand is lithologically variable within the study area and consists of conglomerate, fine-grained sandstone, siltstone, mottled red-green claystone, black shale, and limestone. Five depositional environments were interpreted for lithofacies present in Hill sand cores from the North Shongaloo-Red Rock field. These include facies A, fluvial point bar; facies B, crevasse system; facies C, interdistributary bay; facies D, swamp; and facies E, carbonate interdistributary bay. Fluvial point bar and crevasse deposits commonly formmore » hydrocarbon reservoirs in the field. On a regional scale, depositional environments observed in the Hill sand include several fluvial deposystems trending northeast-southwest through Webster Parish. These deposystems terminate into deltaic distributary mouth bars along a northwest-southeast-trending coastline. Areas west of the coastline were occupied by shallow marine environments. Interchannel areas east of the coastline were occupied by interdistributary bay, lake, and crevasse environments in lower deltaic areas, and by lake, swamp, and crevasse environments in upper deltaic areas. Lowermost deposits of the Hill sand throughout the region are interpreted to consist of shallow marine environments. These marine deposits were overlain by thick, predominantly nonmarine sediments. Near the end of Hill sand deposition, the entire region was covered by very shallow marine environments, prior to deposition of the overlying First Lower Anhydrite Stringer.« less
Jutzeler, Martin; McPhie, Jocelyn
2017-06-27
Partly situated in the idyllic Mount Rainier National Park, this field trip visits exceptional examples of Oligocene subaqueous volcaniclastic successions in continental basins adjacent to the Ancestral Cascades arc. The >800-m-thick Ohanapecosh Formation (32–26 Ma) and the >300-m-thick Wildcat Creek (27 Ma) beds record similar sedimentation processes from various volcanic sources. Both show evidence of below-wave-base deposition, and voluminous accumulation of volcaniclastic facies from subaqueous density currents and suspension settling. Eruption-fed facies include deposits from pyroclastic flows that crossed the shoreline, from tephra fallout over water, and from probable Surtseyan eruptions, whereas re-sedimented facies comprise subaqueous density currents and debris flow deposits.
NASA Astrophysics Data System (ADS)
Beigi, Maryam; Jafarian, Arman; Javanbakht, Mohammad; Wanas, H. A.; Mattern, Frank; Tabatabaei, Amin
2017-05-01
This study aims to determine the depositional facies, diagenetic processes and sequence stratigraphic elements of the subsurface carbonate-evaporite succession of the Upper Jurassic (Kimmeridgian-Tithonian) Surmeh Formation of the Salman Oil Field (the Persian Gulf, Iran), in an attempt to explore their impacts on reservoir quality. The Surmeh Formation consists mainly of carbonate rocks, intercalated with evaporite layers. Petrographically, the Surmeh Formation consists of nine microfacies (MF1-MF9). These microfacies are grouped into three facies associations related to three depositional environments (peritidal flat, lagoon and high-energy shoal) sited on the inner part of a homoclinal carbonate ramp. The recorded diagenetic processes include dolomitization, anhydritization, compaction, micritization, neomorphism, dissolution and cementation. Vertical stacking patterns of the studied facies reveal the presence of three third-order depositional sequences, each of which consists of transgressive systems tract (TST) and highstand systems tract (HST). The TSTs comprise intertidal and lagoon facies whereas the HSTs include supratidal and shoal facies. In terms of their impacts on reservoir quality, the shoal facies represent the best reservoir quality, whereas the peritidal and lagoonal facies exhibit moderate to lowest reservoir quality. Also, poikilotopic anhydrite cement played the most significant role in declining the reservoir quality, whereas the widespread dissolution of labile grains and formation of moldic and vuggy pores contributed in enhancing the reservoir quality. In addition, the HSTs have a better reservoir quality than the TSTs. This study represents an approach to use the depositional facies, diagenetic alterations and sequence stratigraphic framework of carbonate -evaporite succession for a more successful reservoir characterization.
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.
2010-01-01
Late Devonian strata in the eastern United States are generally considered as having been deposited under warm tropical conditions. However, a stratigraphically restricted Late Devonian succession of diamictite- mudstonesandstone within the Spechty Kopf and Rockwell Formations that extends for more than 400 km along depositional strike within the central Appalachian Basin may indicate other wise. This lithologic association unconformably overlies the Catskill Formation, where a 3- to 5-m-thick interval of deformed strata occurs immediately below the diamictite strata. The diamictite facies consists of several subfacies that are interpreted to be subglacial, englacial, supraglacial meltout, and resedimented deposits. The mudstone facies that overlies the diamictite consists of subfacies of chaotically bedded, clast-poor mudstone, and laminated mudstone sub facies that represent subaqueous proximal debris flows and distal glaciolacustrine rhythmites or varvites, respectively. The pebbly sandstone facies is interpreted as proglacial braided outwash deposits that both preceded glacial advance and followed glacial retreat. Both the tectonic and depositional frameworks suggest that the facies were deposited in a terrestrial setting within the Appalachian foreland basin during a single glacial advance and retreat. Regionally, areas that were not covered by ice were subject to increased rainfall as indicated by wet-climate paleosols. River systems eroded deeper channels in response to sea-level drop during glacial advance. Marine facies to the west contain iceborne dropstone boulders preserved within contemporaneous units of the Cleveland Shale Member of the Ohio Shale.The stratigraphic interval correlative with sea-level drop, climate change, and glacigenic succession represents one of the Appalachian Basin's most prolific oil-and gas-producing intervals and is contemporaneous with a global episode of sea-level drop responsible for the deposition of the Hangenberg Shale/Sandstone of Europe. This interval records the Hangenberg biotic crisis near the Devonian-Carboniferous boundary. ?? 2009 Geological Society of America.
NASA Astrophysics Data System (ADS)
Burns, C. E.; Mountney, N. P.; Hodgson, D. M.; Colombera, L.
2017-04-01
Crevasse-splay deposits form a volumetrically significant component of many fluvial overbank successions (up to 90% in some successions).Yet the relationships between the morphological form of accumulated splay bodies and their internal facies composition remains poorly documented from ancient successions. This work quantifies lithofacies distributions and dimensions of exhumed crevasse-splay architectural elements in the Campanian Castlegate Sandstone and Neslen Formation, Mesaverde Group, Utah, USA, to develop a depositional model. Fluvial crevasse-splay bodies thin from 2.1 m (average) to 0.8 m (average) and fine from a coarsest recorded grain size of lower-fine sand to fine silt away from major trunk channel bodies. Internally, the preserved deposits of splays comprise laterally and vertically variable sandstone and siltstone facies associations: proximal parts are dominated by sharp and erosional-based sandstone-prone units, which may be structureless or may comprise primary current lineation on beds and erosional gutter casts; medial parts comprise sets of climbing-ripple strata and small scale deformed beds; distal parts comprise sets of lower-stage plane beds and complex styles of lateral grading into fine-grained floodbasin siltstones and coals. Lithofacies arrangements are used to establish the following: (i) recognition criteria for crevasse-splay elements; (ii) criteria for the differentiation between distal parts of crevasse-splay bodies and floodplain fines; and (iii) empirical relationships with which to establish the extent (ca. 500 m long by 1000 m wide) and overall semi-elliptical planform shape of crevasse-splay bodies. These relationships have been established by high-resolution stratigraphic correlation and palaeocurrent analysis to identify outcrop orientation with respect to splay orientation. This permits lateral changes in crevasse-splay facies architecture to be resolved. Facies models describing the sedimentology and architecture of crevasse-splay deposits preserved in floodplain successions serve as tools for determining both distance from and direction to major trunk channel sandbodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, M.H.; Gustason, E.R.
1987-05-01
The Muddy Sandstone at Kitty field is a valley-fill sequence that records a late Albian sea level rise and accompanying transgression. The valley was cut during a preceding sea level lowstand. Stratal geometries and facies successions within the valley fill demonstrate the history of transgression was not gradual and progressive. Rather, the valley fill comprises a series of discrete, time-bounded, depositional units which onlap the erosional surface. Five time-bounded depositional units were defined by facies successions and were used to define onlap geometries. Facies successions within individual units record progressive shoaling. Capping each succession, there may be a planar disconformity,more » a thin bioturbated interval, or the deepest water facies of the next depositional event. Thus, the termination of each depositional event is marked by an episode of rapid deepening. At a single geographic location, stratal successions within older depositional units represent more landward facies than those within younger units. Therefore, the onlap geometry of the valley-fill sequence consists of a landward-stepping arrangement of depositional units. The primary reservoirs within the valley-fill sequence, at Kitty field, are laterally coalesced, channel-belt sandstones at the base and barrier island sandstones at the top. Reservoir sandstones of lesser quality occur within the intermediate estuarine facies. The stacking pattern, developed by onlap of the units, results in multiple pay zones within mid-valley reaches. The boundaries of each depositional unit define a high-resolution, chronostratigraphic correlation of valley-fill strata, a correlation corroborated by bentonites. This correlation method gives an accurate description of the internal geometry of valley-fill strata and, therefore, provides a basis for understanding the process of transgressive onlap.« less
Yokose, H.; Lipman, P.W.
2004-01-01
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized a-a lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands. ?? Springer-Verlag 2004.
Mangano, M.G.; Buatois, L.A.
1997-01-01
The Ordovician Suri Formation is part of the infill of the Famatina Basin of northwest Argentina, which formed in an active setting along the western margin of early Paleozoic Gondwana. The lower part of this formation, the Vuelta de Las Tolas Member, records sedimentation on a slope apron formed in an intra-arc basin situated on a flooded continental arc platform. The coincidence of a thick Arenig-Llanvirn sedimentary succession and volcanic-plutonic arc rocks suggests an extensional or transtensional arc setting, and is consistent with evidence of an extensional regime within the volcanic arc in the northern Puna region. The studied stratigraphic sections consist of volcanic rocks and six sedimentary facies. The facies can be clustered into four facies associations. Association 1, composed of facies A (laminated siltstones and mudstones) and B (massive mudstones and siltstones), is interpreted to have accumulated from silty-muddy high-and low-density turbidity currents and highly fluid, silty debris flows, with subsequent reworking by bottom currents, and to a lesser extent, hemipelagic suspension in an open-slope setting. Facies association 2 is dominated by facies C (current-rippled siltstones) strata. These deposits are interpreted to record overbank sedimentation from fine-grained turbidity currents. Facies E (matrix-supported volcanic breccias) interbedded with andesitic lava units comprises facies association 3. Deposition was contemporaneous with subaqueous volcanic activity, and accumulated from cohesive debris flows in a coarse-grained wedge at the base of slope. Facies association 4 is typified by facies D (vitric fine-grained sandstones and siltstones) and F (channelized and graded volcanic conglomerates and breccias) deposits. These strata commonly display thinning-and fining-upward trends, indicating sedimentation from highly-concentrated volcaniclastic turbidity currents in a channelized system. The general characteristics of these deposits of fresh pyroclastic detritus suggest that their accumulation was contemporaneous with, or post-dated shallow-water or subaereal explosive volcanism. The Vuelta de Las Tolas Member tends to show an overall random facies patterns reflecting the strong influence of non-cyclical episodic processes related to arc volcanism and slope sedimentation. The scarcity of resident ichnofaunas and the presence of thick packages of uniform mudstones suggest deposition under oxygen-depleted conditions in a topographically confined, ponded sub-basin. Interbasinal correlations favor comparison with Middle Arenig slope-apron successions formed in the northern Puna Basin and suggest a southward prolongation of the Arenig volcanic arc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glicken, H.
Large volcanic debris avalanches are among the world's largest mass movements. The rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens produced a 2.8 km/sup 3/ deposit and is the largest historic mass movement. A Pleistocene debris avalanche at Mount Shasta produced a 26 km/sup 3/ deposit that may be the largest Quaternary mass movement. The hummocky deposits at both volcanoes consist of rubble divided into (1) block facies that comprises unconsolidated pieces of the old edifice transported relatively intact, and (2) matrix facies that comprises a mixture of rocks from the old mountain and material pickedmore » up from the surrounding terrain. At Mount St. Helens, the juvenile dacite is found in the matrix facies, indicating that matrix facies formed from explosions of the erupting magma as well as from disaggregation and mixing of blocks. The block facies forms both hummocks and interhummock areas in the proximal part of the St. Helens avalanche deposit. At Mount St. Helens, the density of the old cone is 21% greater than the density of the avalanche deposit. Block size decreases with distance. Clast size, measured in the field and by sieving, coverages about a mean with distance, which suggests that blocks disaggregated and mixed together during transport.« less
NASA Astrophysics Data System (ADS)
Guo, Chuan; Chen, Daizhao; Song, Yafang; Zhou, Xiqiang; Ding, Yi; Zhang, Gongjing
2018-06-01
During the Early Ordovician, the Tarim Basin (NW China) was mainly occupied by an extensive shallow-water carbonate platform, on which a carbonate ramp system was developed in the Bachu-Keping area of the western part of the basin. Three well-exposed typical outcrop sections of the Lower Ordovician Penglaiba Formation were investigated in order to identify the depositional facies and to clarify origins of meter-scale cycles and depositional sequences, thereby the platform evolution. Thirteen lithofacies are identified and further grouped into three depositional facies (associations): peritidal, restricted and open-marine subtidal facies. These lithofacies are vertically stacked into meter-scale, shallowing-upward peritidal and subtidal cycles. The peritidal cycles are mainly distributed in the lower and uppermost parts of the Penglaiba Formation deposited in the inner-middle ramp, and commonly start with shallow subtidal to intertidal facies followed by inter- to supratidal facies. In contrast, the subtidal cycles occur throughout the formation mostly in the middle-outer ramp and are dominated by shallow to relatively deep (i.e., intermediate) subtidal facies. The dominance of asymmetrical and incomplete cycles suggests a dominant control of Earth's orbital forcing on the cyclic deposition on the platform. On the basis of vertical facies and cycle stacking patterns, and accommodation changes illustrated by the Fischer plots from all studied sections, five third-order depositional sequences are recognized in the Penglaiba Formation. Individual sequences comprise a lower transgressive part and an upper regressive one. In shallow-water depositional environments, the transgressive packages are dominated by thicker-than-average subtidal cycles, indicating an increase in accommodation space, whereas regressive parts are mainly represented by thinner-than-average peritidal and subtidal cycles, denoting a decrease in accommodation space. In contrast, in intermediate to deep subtidal environments, transgressive and regressive packages display an opposite trend in accommodation space changes. Sequence boundaries (except the basal and top boundaries of the Penglaiba Formation) are usually represented by laterally traceable, transitional boundary zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space (or sea-level) inferred from vertical stacking patterns of facies and cycles suggests an overriding eustatic control on the formation of meter-scale cycles and third-order depositional sequences as well as platform evolution superimposed with local and/or regional tectonic influence during the Early Ordovician. This study would help understand the controls on the tempo-spatial facies distribution, stratal cyclicity and carbonate platform evolution in the western Tarim Basin during the Early Ordovician, facilitating prediction for favorable subsurface carbonate reservoirs and future hydrocarbon exploration and production in the Penglaiba Formation.
Depositional Environments of Late Danian Plant Localities: Chubut Provice, Patagonia, Argentina
NASA Astrophysics Data System (ADS)
Comer, E.; Slingerland, R. L.; Wilf, P.
2010-12-01
Diverse, well-preserved macroflora are observed within Cretaceous and Paleocene sediments of Chubut Province, Patagonia, Argentina. These macroflora are the most well preserved early Paleocene flora from Gondwana and add new insight into the diversity and environments of that epoch. Two major sites of fossil preservation, Palacio de los Loros and Parque Provincial Ormachea, sit near the top of the Late Danian (65.5-61.7 Ma) Salamanca Formation. Understanding the depositional history of the Salamanca is important in characterizing paleoenvironments in which these flora lived and relating these Patagonian macroflora to concurrent Paleocene flora within the Gondwanan supercontinent. During a two week field season, twenty stratigraphic sections were measured along the outcrop belt at Palacio de los Loros and Ormachea Park as well as two minor sites; Las Flores, and Rancho Grande. Photo mosaics, laser ranger data, and stratigraphic columns were merged with elevated geologic maps and imported into Fledermaus to generate a 3-D visualization of facies relationships. Rock samples were also collected and will be thin sectioned and analyzed for petrography and grain size. The Salamanca Fm. consists of 7 facies, listed here in stratigraphically ascending order: 1)Transgressive sands, 2)Wispy-bedded claystone, 3)Banco Verde, 4)White Cross bedded sandstone, 5)Accretion set siltstone, 6)Transitional silty claystone and 7)Banco Negro. Based on these facies, the Salamanca Fm. is interpreted as a marine-shelf to brackish, tide-dominated, estuarine deposit. The base of the Salamanca Fm. rests on an unconformity representing a marine flooding surface and lower sections of the Salamanca, facies 1 and 2, contain abundant glauconite and fossils indicative of a marine shelf environment. These facies give way upwards to bi-directional trough cross bedded sandstones interspersed with flaser bedded sandy siltstones (facies 3 and 4) indicating a less marine estuary with strong flow regimes and bi-directional currents. Unique features within these two facies such as microdeltas and plane parallel lamination indicate complex micro-environments and flow patterns. Fossil plant remains lie within lateral accretion sets or siltstone facies both above and below the trough cross-bedded sandstone facies. At the top of the Salamanca we reach facies 6 and 7 which transition from sandstone to black mudstone of the Banco Negro. Mammal fossils found in the Banco Negro identify it as a non-marine continental facies. The Late Paleocene Rio Chico formation that overlies the Banco Negro is identified as a continental fluvial formation indicating that facies 6 represents emptying of the estuary and a longstanding regional transition from a marine to a continental environment. To understand the origin of the tidal flows, a paleogeographic model of the Late Danian Patagonian shelf was constructed from facies distributions within the Salamanca Fm. A 2D hydrodynamic model driven by predicted tides in the paleo-Atlantic produces a tidal range of approximately 2m and strong ebb and flood tides throughout the central estuary. These observations are consistent with our interpretation of a meso-tidal estuarine environment as the paleo-flora accumulation site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, U.; Stein, R.
A 290-m-thick middle Cretaceous black shale sequence in the upper Magdalena Valley, a present-day intramontane basin located between the Central and Eastern cordilleras of Colombia, was investigated with organic-geochemical and microscopic analyses. As a result of the investigation, we were able to (1) differentiate four organic facies types, (2) estimate their source rock potential, and (3) integrated these facies into a sequence stratigraphic framework. The four organic facies types were type C, BC, B, and D. Type C contains a district terrigenous organic matter component in lowstand or highstand deposits. Organic facies type BC is characterized by an increase andmore » a better preservation of marine organic matter. BC belongs to the lower part of the transgressive systems tract. Sediments of organic facies type B have the highest amount of marine organic matter due to excellent preservation under anoxic conditions. The absence of bioturbation and the enrichment of trace metals are further implications for deposition under anoxic conditions. Facies type B is found in the upper part of the transgressive systems tract and contains the best petroleum source rock potential. Facies B occurrence coincides with sea level highstand and correlates especially with a maximum flooding in northern South America during the Turonian. Organic facies type D is also related to highstand deposits, but shows a high rate of reworking and degradation of organic matter.« less
Barker, C.E.; Pawlewicz, M.; Cobabe, E.A.
2001-01-01
A transect of three holes drilled across the Blake Nose, western North Atlantic Ocean, retrieved cores of black shale facies related to the Albian Oceanic Anoxic Events (OAE) lb and ld. Sedimentary organic matter (SOM) recovered from Ocean Drilling Program Hole 1049A from the eastern end of the transect showed that before black shale facies deposition organic matter preservation was a Type III-IV SOM. Petrography reveals that this SOM is composed mostly of degraded algal debris, amorphous SOM and a minor component of Type III-IV terrestrial SOM, mostly detroinertinite. When black shale facies deposition commenced, the geochemical character of the SOM changed from a relatively oxygen-rich Type III-IV to relatively hydrogen-rich Type II. Petrography, biomarker and organic carbon isotopic data indicate marine and terrestrial SOM sources that do not appear to change during the transition from light-grey calcareous ooze to the black shale facies. Black shale subfacies layers alternate from laminated to homogeneous. Some of the laminated and the poorly laminated to homogeneous layers are organic carbon and hydrogen rich as well, suggesting that at least two SOM depositional processes are influencing the black shale facies. The laminated beds reflect deposition in a low sedimentation rate (6m Ma-1) environment with SOM derived mostly from gravity settling from the overlying water into sometimes dysoxic bottom water. The source of this high hydrogen content SOM is problematic because before black shale deposition, the marine SOM supplied to the site is geochemically a Type III-IV. A clue to the source of the H-rich SOM may be the interlayering of relatively homogeneous ooze layers that have a widely variable SOM content and quality. These relatively thick, sometimes subtly graded, sediment layers are thought to be deposited from a Type II SOM-enriched sediment suspension generated by turbidities or direct turbidite deposition.
NASA Astrophysics Data System (ADS)
Chauhan, Teena; Noormets, Riko; Rasmussen, Tine L.
2016-04-01
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2-1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.
NASA Astrophysics Data System (ADS)
Goswami, Sukanta; Dey, Sukanta
2018-05-01
The felsic volcanics, tuff and volcaniclastic rocks within the Tadpatri Formation of Proterozoic Cuddapah basin are not extensively studied so far. It is necessary to evaluate the extrusive environment of felsic lavas with associated ash fall tuffs and define the resedimented volcaniclastic components. The spatial and temporal bimodal association were addressed, but geochemical and petrographic studies of mafic volcanics are paid more attention so far. The limited exposures of eroded felsic volcanics and tuffaceous volcaniclastic components in this terrain are highly altered and that is the challenge of the present facies analysis. Based on field observation and mapping of different lithounits a number of facies are categorized. Unbiased lithogeochemical sampling have provided major and selective trace element data to characterize facies types. Thin-section studies are also carried out to interpret different syn- and post- volcanic features. The facies analysis are used to prepare a representative facies model to visualize the entire phenomenon with reference to the basin evolution. Different devitrification features and other textural as well as structural attributes typical of flow, surge and ash fall deposits are manifested in the middle, lower and upper stratigraphic levels. Spatial and temporal correlation of lithologs are also supportive of bimodal volcanism. Felsic and mafic lavas are interpreted to have erupted through the N-S trending rift-associated fissures due to lithospheric stretching during late Palaeoproterozoic. It is also established from the facies model that the volcaniclastics were deposited in the deeper part of the basin in the east. The rifting and associated pressure release must have provided suitable condition of decompression melting at shallow depth with high geothermal gradient and this partial melting of mantle derived material at lower crust must have produced mafic magmas. Such upwelling into cold crust also caused partial heat transfer and associated melting of the surrounding shallow crustal rocks to generate felsic magmas.
NASA Astrophysics Data System (ADS)
Sanabria, Diego Ignacio
2001-07-01
Detailed outcrop analysis of the Lower Jurassic Kayenta Formation provides the basis for the formulation of a new sequence stratigraphic model for arid to semi-arid continental deposits and the generation of a comprehensive set of sedimentologic criteria for the recognition of ephemeral stream deposits. Criteria for the recognition of ephemeral deposits in the ancient record were divided into three categories according to the scale of the feature being considered. The first category takes into account sedimentary structures commonly found in the record of ephemeral stream deposits including hyperconcentrated and debris flow deposits, planar parallel bedding, sigmoidal cross-bedding, hummocky cross-bedding, climbing ripple lamination, scour-and-fill structures, convolute bedding, overturned cross-bedding, ball-and-pillow structures, pocket structures, pillars, mud curls, flaser lamination, algal lamination, termite nests, and vertebrate tracks. The second category is concerned with the mesoscale facies architecture of ephemeral stream deposits and includes waning flow successions, bedform climb, downstream accretion, terminal wadi splays, and channel-fill successions indicating catastrophic flooding. At the large-scale facies architecture level, the third category, ephemeral stream deposits are commonly arranged in depositional units characterized by a downstream decrease in grain size and scale of sedimentary structures resulting from deposition in terminal fan systems. Outcrops of the Kayenta Formation and its transition to the Navajo Sandstone along the Vermilion and Echo Cliffs of Northern Arizona indicate that wet/dry climatic cyclicity exerted a major control on regional facies architecture. Two scales of wet/dry climatic cyclicity can be recognized in northern Arizona. Three sequence sets composed of rocks accumulated under predominantly dry or wet conditions are the expression of long-term climatic cyclicity. Short-term climatic cyclicity, on the other hand, is represented by high-frequency sequences composed of eolian or ephemeral fluvial deposits overlain by perennial fluvial sediments. Increased evapotranspiration rates, depressed water tables, and accumulation of eolian or ephemeral fluvial deposits characterize the dry portion of these cycles. The wet part of the cycles is marked by an increase in precipitation and the establishment of perennial fluvial systems and lacustrine basins. This depositional model constitutes a valuable tool for correlation of similar deposits in the subsurface.
NASA Astrophysics Data System (ADS)
Lang, Joerg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta
2017-04-01
Bedforms related to supercritical flows have recently received much interest and the understanding of flow morphodynamics and depositional processes has been greatly advanced. However, outcrop studies of these bedforms are commonly hampered by their long wavelengths. Therefore, we combined outcrop-based facies analysis with extensive ground-penetrating radar (GPR) measurements. Different GPR antennas (200, 400 and 1500 MHz) were utilised to measure both long profiles and densely spaced grids in order to map the large-scale facies architecture and image the three-dimensional geometry of the deposits. The studied delta and subaqueous ice-contact fan successions were deposited within ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. These glacilacustrine depositional systems are characterised by high aggradation rates due to the rapid expansion and deceleration of high-energy sediment-laden flows, favouring the preservation of bedforms related to supercritical flows. In flow direction, delta foresets commonly display lenticular scours, which are 2 to 6 m wide and 0.15 to 0.5 m deep. Characteristically, scours are filled by upslope dipping backsets, consisting of pebbly sand. In a few cases, massive and deformed strata were observed, passing upflow into backsets. Across flow, scours are 2 to 3 m wide and typically display a concentric infill. The scour fills are commonly associated with subhorizontally or sinusoidal stratified pebbly sand. These facies types are interpreted as deposits of cyclic steps and antidunes, respectively, representing deposition from supercritical density flows, which formed during high meltwater discharge events or regressive slope failures (Winsemann et al., in review). The GPR-sections show that the scour fills form trains along the delta foresets, which can be traced for up to 15 m. The studied subaqueous ice-contact fan succession relates to the zone of flow transition of a supercritical plane-wall efflux-jet and is characterised by deposits of chutes-and-pools, antidunes and humpback dunes (Lang & Winsemann, 2013). In the GPR-sections, long wavelength (2 to 40 m) sinusoidal reflectors with lateral extents of up to 175 m represent the dominant radar facies, which is interpreted as deposits of stationary aggrading antidunes. This radar facies is associated with lenses (2 to 15 m wide, 0.5 to 1.5 m thick) filled with planar upflow-dipping reflectors, and sheet-like sigmoidal downflow-dipping reflectors, which are interpreted as deposits of chutes-and-pools and humpback dunes, respectively. Facies transitions occur from cyclic steps or chutes-and-pools to antidunes and from antidunes to humpback dunes, and are interpreted as related to the evolution of bedforms under spatially and temporarily changing flow conditions. References: Lang, J. & Winsemann, J. (2013) Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sedimentary Geology 296, 36-54. Winsemann, J., Lang, J., Loewer, M., Polom, U., Pollok, L., Igel, J. & Brandes, C. (in review) Forced regressive ice-marginal deltas in glacial lake basins: geomorphology, facies variability and large-scale depositional architecture.
NASA Technical Reports Server (NTRS)
Fouke, B. W.; Farmer, J. D.; Des Marais, D. J.; Pratt, L.; Sturchio, N. C.; Burns, P. C.; Discipulo, M. K.
2000-01-01
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.
Sand ridges off Sarasota, Florida: A complex facies boundary on a low-energy inner shelf environment
Twichell, D.; Brooks, Gillian L.; Gelfenbaum, G.; Paskevich, V.; Donahue, Brian
2003-01-01
The innermost shelf off Sarasota, Florida was mapped using sidescan-sonar imagery, seismic-reflection profiles, surface sediment samples, and short cores to define the transition between an onshore siliciclastic sand province and an offshore carbonate province and to identify the processes controlling the distribution of these distinctive facies. The transition between these facies is abrupt and closely tied to the morphology of the inner shelf. A series of low-relief nearly shore-normal ridges characterize the inner shelf. Stratigraphically, the ridges are separated from the underlying Pleistocene and Tertiary carbonate strata by the Holocene ravinement surface. While surficial sediment is fine to very-fine siliciclastic sand on the southeastern sides of the ridges and shell hash covers their northwestern sides, the cores of these Holocene deposits are a mixture of both of these facies. Along the southeastern edges of the ridges the facies boundary coincides with the discontinuity that separates the ridge deposits from the underlying strata. The transition from siliciclastic to carbonate sediment on the northwestern sides of the ridges is equally abrupt, but it falls along the crests of the ridges rather than at their edges. Here the facies transition lies within the Holocene deposit, and appears to be the result of sediment reworking by modern processes. This facies distribution primarily appears to result from south-flowing currents generated during winter storms that winnow the fine siliciclastic sediment from the troughs and steeper northwestern sides of the ridges. A coarse shell lag is left armoring the steeper northwestern sides of the ridges, and the fine sediment is deposited on the gentler southeastern sides of the ridges. This pronounced partitioning of the surficial sediment appears to be the result of the siliciclastic sand being winnowed and transported by these currents while the carbonate shell hash falls below the threshold of sediment movement and is left as a lag. The resulting facies boundaries on this low-energy, sediment-starved inner continental shelf are of two origins which both are tied to the remarkably subtle ridge morphology. Along the southeastern sides of the ridges the facies boundary coincides with a stratigraphic discontinuity that separates Holocene from the older deposits while the transition along the northwestern sides of the ridges is within the Holocene deposit and is the result of sediment redistribution by modern processes. ?? 2003 Elsevier B.V. All rights reserved.
Fouke, B W; Farmer, J D; Des Marais, D J; Pratt, L; Sturchio, N C; Burns, P C; Discipulo, M K
2000-05-01
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 degrees C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43-72 degrees C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30-62 degrees C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonite at lower temperatures. Calcite "ice sheets", calcified bubbles, and aggregates of aragonite needles ("fuzzy dumbbells") precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28-54 degrees C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28-30 degrees C) is composed of calcite spherules and calcite "feather" crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO2 degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding delta 13C. Travertine delta 13C and delta 18O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature (approximately 50-73 degrees C) depositional facies. Conversely, travertine precipitating in the lower-temperature (< approximately 50 degrees C) depositional facies exhibits delta 13C and delta 18O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H2S and the abundance of sulfide oxidizing microbes, preliminary delta 34S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO2 degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, T.J.
1990-04-01
The Lower Mississippian Joana Limestone in the southern Schell Creek and Egan ranges of east-central Nevada is composed of three depositional facies: the unbedded wackestone with grainstone/packstone facies or Facies 1; the bedded wackestone with mudstone facies or Facies 2; and the restricted wackestone, mudstone/shale facies, or Facies 3. Facies 1 is characterized by Waulsortian-type carbonate buildups with massive unbedded wackestone cores, grainstone flanking beds and grainstone/packstone capping units. Facies 2 is characterized by an upward progression of sedimentary bedding types from thinly laminated to large scale trough cross-bedding that indicates a shoaling upward of this facies. Facies 3 ismore » characterized by sparse wackestones, mudstones, and shale which show a decrease in both faunal types and diversity and an increase in fine clastics. The restricted wackestone, mudstone/shale facies grades upward into the Mississippian Chainman Shale. The age of the Joana Limestone is confirmed as late Kinderhookian to early Osagean based primarily on conodonts and foraminifera. In the middle beds of the Joana Limestone, the previously unreported upper Siphonodella crenulata conodont zone occurs which helps correlate the Joana Limestone with regional transgressive/regressive sea level events. Color alteration indices of these conodonts are 1.5 to 2, and occur in the oil generation window. Additionally, oil staining was observed in numerous samples located primarily in the lower half of the formation, represented by Facies 3, the unbedded wackestone with grainstone/packstone facies.« less
Douillet, Guilhem Amin; Tsang-Hin-Sun, Ève; Kueppers, Ulrich; Letort, Jean; Pacheco, Daniel Alejandro; Goldstein, Fabian; Von Aulock, Felix; Lavallée, Yan; Hanson, Jonathan Bruce; Bustillos, Jorge; Robin, Claude; Ramón, Patricio; Hall, Minard; Dingwell, Donald B
The deposits of the pyroclastic density currents from the August 2006 eruption of Tungurahua show three facies associations depending on the topographic setting: the massive, proximal cross-stratified, and distal cross-stratified facies. (1) The massive facies is confined to valleys on the slopes of the volcano. It contains clasts of >1 m diameter to fine ash material, is massive, and interpreted as deposited from dense pyroclastic flows. Its surface can exhibit lobes and levees covered with disk-shaped and vesicular large clasts. These fragile large clasts must have rafted at the surface of the flows all along the path in order to be preserved, and thus imply a sharp density boundary near the surface of these flows. (2) The proximal cross-stratified facies is exposed on valley overbanks on the upper part of the volcano and contains both massive coarse-grained layers and cross-stratified ash and lapilli bedsets. It is interpreted as deposited from (a) dense pyroclastic flows that overflowed the gentle ridges of valleys of the upper part of the volcano and (b) dilute pyroclastic density currents created from the dense flows by the entrainment of air on the steep upper flanks. (3) The distal cross-stratified facies outcrops as spatially limited, isolated, and wedge-shaped bodies of cross-stratified ash deposits located downstream of cliffs on valleys overbanks. It contains numerous aggrading dune bedforms, whose crest orientations reveal parental flow directions. A downstream decrease in the size of the dune bedforms, together with a downstream fining trend in the grain size distribution are observed on a 100-m scale. This facies is interpreted to have been deposited from dilute pyroclastic density currents with basal tractional boundary layers. We suggest that the parental flows were produced from the dense flows by entrainment of air at cliffs, and that these diluted currents might rapidly deposit through "pneumatic jumps". Three modes are present in the grain size distribution of all samples independently of the facies, which further supports the interpretation that all three facies derive from the same initial flows. This study emphasizes the influence of topography on small volume pyroclastic density currents, and the importance of flow transformation and flow-stripping processes.
NASA Astrophysics Data System (ADS)
Daw, Julianne
Throughout the Quaternary Period, the Delaware Estuary, which is located within the Mid-Atlantic region of the United States, has undergone substantial change as a result of sea-level fluctuations. To better understand the recent (late Pleistocene to Holocene) evolution of the region, chirp subbottom profiles were analyzed within Delaware Bay near the southern end of the Delaware River Navigation Channel including the adjacent shoals and sloughs, using RoxAnn bottom classification data and available vibracores to aid in interpreting sediment types and depositional environments within the study area. Using seismic processing software (SonarWiz6), chirp profiles were processed and reflection events were identified and their positions digitized. Major reflection events were analyzed using a seismic facies approach. The identified facies were each characterized as distinct units composed of reflections with unique elements, such as configuration, amplitude, and continuity. Five seismic facies were identified and their thicknesses determined. Depths to the major reflection events were correlated with sediment boundaries as observed in the available vibracores, allowing the seismic facies to be interpreted in terms of their associated sediment types and inferred environments of deposition. The distributions of surficial and subsurface seismic and sedimentological features were visualized using three-dimensional images. The interpretations of the identified facies are as follows: Facies I is a surficial unit of the modern Holocene estuarine deposits; Facies II is a beach-berm washover zone deposition; Facies III is a deposit of a lagoonal environment; Facies IV is a deposit of an open water environment; and Facies V is a marsh deposition. The chirp data, when integrated with available information from vibracores and RoxAnn bottom sediment classification, was also used to map the position of a former major river system (paleochannel). This paleochannel, trending generally northwest to southeast, can be correlated with the southern channel that was identified in previous work by Knebel and Circe (1988). In addition to the knowledge gained by studying the geological evolution of Delaware Bay, our data can be used by decision makers and stakeholders to inform future management of the Delaware Estuary in practical applications that range from planning for maintenance dredging of the navigation channel to determining locations and thicknesses of suitable sand resources for shoreline replenishment. The surficial layer that would be most affected by such applications is mostly composed of sand & muddy sand, but in the deeper portions and along the shoals, it is composed of mixed and coarse sediments and mud & sandy mud, respectively. Furthermore, the surficial unit is thickest (between 1.5 and 4 meters) in the central and eastern regions of the study area encompassing the deeper portions, and it is thinnest (up to 1 meter) along the western and northern regions that include the shoals.
Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain
Hans, Nelson C.; Baraza, J.; Maldonado, A.
1993-01-01
The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruno, C.; Eichenseer, H.; Calatayud, P.
The poster illustrates how the recent developments in genetic stratigraphy have contributed to constrain reservoir layering and to improve prediction of reservoir quality in the oil-bearing reservoir of N`KOSSA. The mixed lithology deposits formed during Albian times. Thanks to the excellent core coverage of the reservoir (4 cored wells over the entire reservoir interval), continuous sedimentological examination and interpretation of the facies succession have been carried out. The reservoir can be subdivided into composite sequences (50 to 150 in thick) which are made up of stacked metre-scale genetic units. Three different stacking patterns of genetic units have been identified; retrogradation,more » aggradation and progradation. These patterns reflect a gradual change of depositional regimes through time. Facies variations (texture, bio-association, geometry, spatial distribution) and early diagenetic overprints can be related to each type of stacking pattern. One additional model illustrates the depositional regime corresponding to low accomodation periods which mainly record siliciclastic input and extensive carbonate diagenesis by meteoric waters The resulting four models show the overall distribution of the main depositional units, the diagenetic zonations and the resulting overall reservoir qualities. This above approach have contributed to a more detailed reservoir architecture and a better delineation of reservoir heterogeneity due to both depositional and diagenetic regimes.« less
Depositional sequences and facies in the Torok Formation, National Petroleum Reserve, Alaska (NPRA)
Houseknecht, David W.; Schenk, Christopher J.
2002-01-01
Brookian turbidites (Cretaceous through Tertiary) have become oil exploration objectives on the NorthSlope of Alaska during the past decade, and it is likely this focus will extend into the National Petroleum Reserve-Alaska (NPRA). A regional grid of 2-D seismic data, sparse well control, and field work in the Brooks Range foothills provide constraints for an ongoing effort to establish a sequence stratigraphic framework for Brookian turbidites in the Torok Formation across NPRA. The Torok Formation and overlying Nanushuk Formation (both mostly Albian) display the overall seismic geometry of bottomset-clinoform-topset strata indicating northeastward migration of a shelf margin. Within bottomset and clinoform strata of the Torok, depositional sequences have been identified that represent four distinct phases of shelf-margin sedimentation. (1) Regression, representing low relative sea level, is characterized by the development of an erosional surface on the shelf and upper slope, and the deposition of turbidite channel deposits on the middle to lower slope and submarine fan deposits at the base of slope. These deposits constitute a lowstand systems tract (LST). (2) Transgression, representing rising relative sea level, is characterized by the deposition of a mudstone drape on the basin floor, slope, and outer shelf. This drape comprises relatively condensed facies that constitute a transgressive systems tract (TST). (3) Aggradation, representing high relative sea level, is characterized by the deposition of relatively thick strata on the outer shelf and moderately thick mudstones on the slope. (4) Progradation, also representing high relative sea level, is characterized by the deposition of relatively thin strata on the outer shelf and very thick mudstones on the slope. Together, deposits of the aggradation and progradation phases constitute a highstand systems tract (HST). Large scale geometries of Torok strata vary across the Colville basin. In southern NPRA, high rates of subsidence accommodated the deposition of a "foredeep clinoform wedge" that contains a high proportion of sand-rich LST deposits. In northern NPRA, lower rates of subsidence favored the accumulation of mud-rich HST deposits. The most favorable stratigraphic trapping geometries in the Torok Formation occur where amalgamated sandstones deposited in turbidite channels incised on the mid- to lower-slope and on the proximal parts of submarine fans during regression (LSTs) are capped by relatively condensed mudstone facies deposited during transgression (TSTs). Common successions observed in Torok cores include a spectrum of slope and turbidite facies. Upper slope facies comprise laminated mudstones and siltstones that locally display evidence of slumping, sliding, and chaotic failure. Lower slope facies comprise heterolithic turbidites at some locations and interlaminated mudstones and thin, very fine-grained sandstones at others. Torok turbidites include amalgamated sandstones deposited in channel systems as well as thin-bedded, widespread sandstones deposited by unconfined flows on lobes or in channel overbank settings. These turbidite facies likely occur in both channel-lobe systems and slope apron systems within the Torok.
NASA Astrophysics Data System (ADS)
Eriksson, Patrick G.; Reczko, Boris F. F.
1998-09-01
Five genetic facies associations/architectural elements are recognised for the epeiric sea deposits preserved in the Early Proterozoic Timeball Hill Formation, South Africa. Basal carbonaceous mudrocks, interpreted as anoxic suspension deposits, grade up into sheet-like, laminated, graded mudrocks and succeeding sheets of laminated and cross-laminated siltstones and fine-grained sandstones. The latter two architectural elements are compatible with the Te, Td and Tc subdivisions of low-density turbidity current systems. Thin interbeds of stromatolitic carbonate within these first three facies associations support photic water depths up to about 100 m. Laterally extensive sheets of mature, cross-bedded sandstone disconformably overlie the turbidite deposits, and are ascribed to lower tidal flat processes. Interbedded lenticular, immature sandstones and mudrocks comprise the fifth architectural element, and are interpreted as medial to upper tidal flat sediments. Small lenses of coarse siltstone-very fine-grained sandstone, analogous to modern continental rise contourite deposits, occur within the suspension and distal turbidite sediments, and also form local wedges of inferred contourites at the transition from suspension to lowermost turbidite deposits. Blanketing and progressive shallowing of the floor of the Timeball Hill basin by basal suspension deposits greatly reduced wave action, thereby promoting preservation of low-density turbidity current deposits across the basin under stillstand or highstand conditions. A lowstand tidal flat facies tract laid down widespread sandy deposits of the medial Klapperkop Member within the formation. Salinity gradients and contemporaneous cold periglacial water masses were probably responsible for formation of the inferred contourites. The combination of the depositional systems interpreted for the Timeball Hill Formation may provide a provisional model for Early Proterozoic epeiric basin settings.
NASA Astrophysics Data System (ADS)
Sarg, J. F.
2001-04-01
World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins. Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope. Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps. Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior. Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons.
Hosman, R.L.
1991-01-01
Although Cenozoic deposits are not uniformly differentiated, interstate correlations of major Paleocene and Eocene units are generally established throughout the area. Younger deposits are not as well differentiated. Some stratigraphic designations made at surface exposures cannot be extended into the sub-surface, and the scarcity of distinct geologic horizons has hampered differentiation on a regional scale. The complexities of facies development in Oligocene and younger coastal deposits preclude the development of extensive recognizable horizons needed for stratigraphic applications. Coastal deposits are a heterogeneous assemblage of deltaic, lagoonal, lacustrine, palustrine, eolian, and fluvial clastic facies and local calcareous reef facies. Even major time boundaries, as between geologic series, are not fully resolved. Surficial Quaternary deposits overlie the truncated subcrops of Tertiary strata and generally are distinguishable, although some contacts between Pleistocene and underlying Pliocene deposits have been a ?lstoncal source of controversy. Glacially related terraces are characteristic of the Pleistocene Epoch, and alluvium of aggrading streams typifies the Holocene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchen, D.G.; Hohn, M.E.; Aminian, K.
1993-04-01
The purpose of this research is to develop techniques to measure and predict heterogeneities in oil reservoirs that are the products of complex deposystems. The unit chosen for study is the Lower Mississippian Big Injun sandstone, a prolific oil producer (nearly 60 fields) in West Virginia. This research effort has been designed and is being implemented as an integrated effort involving stratigraphy, structural geology, petrology, seismic study, petroleum engineering, modeling and geostatistics. Sandstone bodies are being mapped within their regional depositional systems, and then sandstone bodies are being classified in a scheme of relative heterogeneity to determine heterogeneity across depositionalmore » systems. Facies changes are being mapped within given reservoirs, and the environments of deposition responsible for each facies are being interpreted to predict the inherent relative heterogeneity of each facies. Structural variations will be correlated both with production, where the availability of production data will permit, and with variations in geologic and engineering parameters that affect production. A reliable seismic model of the Big Injun reservoirs in Granny Creek field is being developed to help interpret physical heterogeneity in that field. Pore types are being described and related to permeability, fluid flow and diagenesis, and petrographic data are being integrated with facies and depositional environments to develop a technique to use diagenesis as a predictive tool in future reservoir development. Another objective in the Big Injun study is to determine the effect of heterogeneity on fluid flow and efficient hydrocarbon recovery in order to improve reservoir management. Graphical methods will be applied to Big Injun production data and new geostatistical methods will be developed to detect regional trends in heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridgley, Jennie
2001-08-21
The purpose of phase 1 and phase 2 of the Department of Energy funded project Analysis of oil- bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico was to define the facies of the oil producing units within the Mancos Shale and interpret the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) redefinition of the area and vertical extent of the ''Gallup sandstone'' or El Vado Sandstone Member of the Mancos Shale, (2) determination of the facies distribution within themore » ''Gallup sandstone'' and other oil-producing sandstones within the lower Mancos, placing these facies within the overall depositional history of the San Juan Basin, (3) application of the principals of sequence stratigraphy to the depositional units that comprise the Mancos Shale, and (4) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.« less
Braided fluvial sedimentation in the lower paleozoic cape basin, South Africa
NASA Astrophysics Data System (ADS)
Vos, Richard G.; Tankard, Anthony J.
1981-07-01
Lower Paleozoic braided stream deposits from the Piekenier Formation in the Cape Province, South Africa, provide information on lateral and vertical facies variability in an alluvial plain complex influenced by a moderate to high runoff. Four braided stream facies are recognized on the basis of distinct lithologies and assemblages of sedimentary structures. A lower facies, dominated by upward-fining conglomerate to sandstone and mudstone channel fill sequences, is interpreted as a middle to lower alluvial plain deposit with significant suspended load sedimentation in areas of moderate to low gradients. These deposits are succeeded by longitudinal conglomerate bars which are attributed to middle to upper alluvial plain sedimentation with steeper gradients. This facies is in turn overlain by braid bar complexes of large-scale transverse to linguoid dunes consisting of coarse-grained pebbly sandstones with conglomerate lenses. These bar complexes are compared with environments of the Recent Platte River. They represent a middle to lower alluvial plain facies with moderate gradients and no significant suspended load sedimentation or vegetation to stabilize channels. These bar complexes interfinger basinward with plane bedded medium to coarse-grained sandstones interpreted as sheet flood deposits over the distal portions of an alluvial plain with low gradients and lacking fine-grained detritus or vegetation.
Mid-Dinantian Waulsortian buildups in the Dublin Basin, Ireland
NASA Astrophysics Data System (ADS)
Somerville, Ian D.; Strogen, Peter; Jones, Gareth Ll.
1992-08-01
The sedimentary history and biostratigraphic setting of Waulsortian carbonate buildups of the Feltrim Limestone Formation (late Courceyan to early Chadian) within the Dublin Basin are described. There is no unique precursor or successor facies to this formation, and the massive Waulsortian banks are composed predominantly of peloidal, skeletal wackestones and lime mudstones with packstones near the tops of banks. These banks form tabular bodies of moderate relief and are interbedded with thin shales and argillaceous crinoidal limestones of inter-bank facies. In the southwest of the basin inter-bank facies are rare and the bank facies have abundant stromatactis cavities, and uniquely at Roselawn a fauna of rugose corals. All buildups in the Dublin Basin have Phase C and/or D component assemblages of Lees and Miller (1985) and are interpreted as accumulating in moderately shallow-water depths, near or within the photic zone. Isopachs for the Feltrim Limestone Formation show a NE-SW-trending axial depocentre where the Waulsortian facies is in excess of 400 m thickness. Deposition appears to have taken place on this "double-sided" ramp, in a manner similar to the model of Lees (1982) for Belgium and southern Britain. Soft-sediment deformation such as large-scale slumping, shale-injections and water-escape structures, not previously recorded from these rocks is widespread. The upper surface of the Feltrim Limestone Formation is fissured and displays a prominent erosion surface. Termination of Waulsortian facies deposition and influx of terrigenous sediment was caused by rapid uplift, attributed to Chadian tectonism. However, eustatic sea-level fall cannot be ruled out as a partial cause of the demise of the Waulsortian.
NASA Astrophysics Data System (ADS)
Gao, Da; Lin, Changsong; Yang, Haijun; Zuo, Fanfan; Cai, Zhenzhong; Zhang, Lijuan; Liu, Jingyan; Li, Hong
2014-04-01
The Late Ordovician Lianglitage Formation comprises 13 microfacies (Mf1-Mf13) that were deposited on a carbonate platform at the Tazhong Uplift of the Tarim Basin in Northwest China. Each type of microfacies indicates a specific depositional environment with a certain level of wave energy. Four primary groups of microfacies associations (MA1-MA4) were determined. These associations represent different depositional facies, including reef-shoal facies in the platform margin (MA1), carbonate sand shoal facies (MA2) and oncoid shoal (MA3) on open platforms, and lagoon and tidal flat facies (MA4) in the platform interior. Each microfacies association was generated in a fourth-order sedimentary sequence developing within third-order sequences (SQ1, SQ2, and SQ3, from bottom to top), showing a shallowing-upward trend. High-frequency sequences and facies correlation between wells suggests that the reef-shoal facies more successively developed in the southeastern part of the platform margin, and high-energy microfacies were more strictly confined by the top boundary of fourth-order sequences in the northwestern part of the platform. The highstand systems tract (HST) of the SQ2 is characterized by reef-shoals that developed along the platform margin and tidal flats and lagoons that developed in the platform interior, while the SQ3 is characterized by the oncoid shoal facies that generally developed on the uplift due to a regionally extensive transgression that occurred during the latter part of the Late Ordovician. The results of this study can be used for investigating the development and distribution of potential reservoirs; the reservoirs in southeastern part of the platform margin may be of premium quality because the high-energy microfacies were best preserved there.
NASA Astrophysics Data System (ADS)
Stingl, K.
1994-12-01
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.
NASA Astrophysics Data System (ADS)
Slagle, A.; Carbotte, S. M.; Ryan, W. B.; Bell, R.; Nitsche, F. O.; McHugh, C. M.
2002-12-01
An extensive database of geophysical and sampling data in the Hudson River has been obtained in ten study areas between the New York Harbor and the Troy Dam. These data include bathymetry, bank-to-bank coverage of side-looking sonar imagery, subbottom reflection profiles, sediment cores and grabs. Geophysical properties, including gamma density, magnetic susceptibility and P-wave velocity, have been measured in a 9.3 m Vibracore (SD-30) from the near-channel tidal flats of the Tappan Zee area. Three distinct sedimentary facies have been identified, based on changes in physical properties, lithology and seismic reflections. Facies 1 is an oyster-rich unit with unstratified sediments and high sound velocities, and is found in the upper 1.5 m of core SD-30. Chirp subbottom data, which provide reflectors down to approximately 4 m depth, show a distinct horizon at 1.5 m, supporting the change seen in physical property data and lithology at this depth. A unit characterized by laminated sediments, interbedded with homogeneous layers and coquina layers, is identified as Facies 2 and is found between 1.5 and 6.1 m. This facies has high magnetic susceptibility and the appearance of discrete density cycles. The oldest unit, Facies 3, extends from 6.1 m to the base of the core at 9.3 m. It is made up of oyster-rich, unbedded sediments and thick coquina layers, and is characterized by low magnetic susceptibility. Radiocarbon dating of oysters and bivalves indicates that the different facies in SD-30 correspond to different sedimentation rates, with highest values occurring during deposition of Facies 2. The facies changes and variations in sedimentation rates are attributed to an evolving depositional environment in the tidal flats of the Tappan Zee area due to rising sealevel. Extrapolating from nearby cores that penetrate deeper into the sedimentary record, Facies 3 sits above post-glacial fluvial sands and represents the transition from a fresh to more brackish environment, suitable for development of oyster beds. The laminated sediments of Facies 2 are attributed to infilling of the tidal flats during a rapid rise in sealevel. The lack of laminated sediments and low sedimentation rates of Facies 1 are attributed to the modern wave-base dominated depositional setting in the Tappan Zee area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handford, C.R.
Rather spotty but excellent exposures of the Cretaceous-age Turkana Grits occur near the western shore of Lake Turkana, northern Kenya. These very coarse to pebbly arkosic sandstones and sandy conglomerates were derived from and rest unconformably upon Precambrian metamorphic basement; they are overlain by late Tertiary basaltic flows that comprise much of the volcanics in the East African Rift Zone. The formation ranges up to 2000 ft thick in the Laburr Range. Several outcrops contain sauropod, crocodile, and tortoise remains as well as abundant trunks of petrified wood (Dryoxylon). Five major facies make up the Turkana Grits and record amore » major episode of continental fluvial deposition in basins flanked by Precambrian basement. Facies 1 is crudely stratified, cobble and boulder conglomerate (clast-supported); Facies 2 is crudely stratified pebble-cobble conglomerate and pebbly sandstone; Facies 3 is trough cross-bedded, very coarse sandstones containing fossils wood and vertebrate remains; Facies 4 is crudely stratified to massive sandstones with ironstone nodules; and Facies 5 is red, purple, and gray mudstone and mud shale with carbonate nodules. Facies 1 through 3 record deposition in proximal to medial braided-stream channel, longitudinal bar and dune complexes. Facies 4 is a lowland, hydromorphic paleosol, and Facies 5 represents overbank and abandoned channel-fill sedimentation in an alluvial plain.« less
Guidebook to the Gaudalupian symposium
Rohr, D.M.; Wardlaw, B.R.; Rudine, S.F.; Haneef, Mohammad; Hall, A.J.; Grant, R.E.
2000-01-01
Compared to the Guadalupe Mountains of Texas and New Mexico the depositional environments of the Permian strata of the Glass Mountains (and adjacent Del Norte Mountains) are less well known. In general, the Guadalupian facies in the the Glass and Del Norte mountains changes from predominantly carbonate facies in the northeast to thicker clastic facies in the southwest. Philip B. Kind (1931) originally considered this trend to reflect an uplifted clastic source to the southwest, with carbonate facies developing away from the source area. Ross (1986) interpreted the eastern portion of the Road Canyon and Word formations to consist the shelf, shelf-edge bioherm, and reef facies, and the southwest area to consist of deeper water siliceous shale, clastic limestone, and basinal sandstone facies. Probably the best known controversy in the Glass Mountains involves the depositional environment of the Skinner Ranch Formation (Leonardian according to Ross, 1986; Wolfcampian according to Cooper and Grant, 1972) at its type section on Leonard Mountain. Cooper and Grant (1964) identified in situ patch reefs at the base of the section, which were subsequently interpreted as displaced limestone blocks deposited in a slope environment (Rogers, 1972; Cys and Mazzullo, 1978; Ross, 1986). Later Flores, McMillan, and Watters (1977) interpreted the same units as subtidal and intertidal deposits. The Skinner Ranch Formation illustrates the complexities involved in interpreting the paleogeography of the Glass Mountains. If the Sinner Ranch contains displaced blocks, some eroded from older units, it explains the occurrence of Wolfcampian fossils in the Skinner Ranch (Ross, 1986).The slop facies interpretation also is used to place the shelf edge at that time between Skinner Ranch outcrops at Leonard Mountain and the lagoonal, backreef deposits of the Hess Formation to the east, although most of the actual shelf edge is not preserved (Ross, 1987:30). Similar conflicting interpretations exist in younger rocks in the western facies of the Leonardian Guadalupian to the southwest in the Del Norte Mountains. Ross (1986, 1987) considered the western facies of the Road Canyon and Word formations to be basinal shales and turbidites. Wardlaw et al. (1990) and Rohr et al. (1987) have interpreted this area to be shallow intertidal to lagoonal environments adjacent to an uplifted area to the south. The type section of the Road Canyon Formation is also a subject of disagreement and will be discusses in more detail later.
NASA Astrophysics Data System (ADS)
Mhd Hanapiah, N.; Yusoff, W. I. Wan; Zakariah, M. N. A.
2017-10-01
Overpressure studies in oil and gas exploration and production are carried out in order to mitigate any losses that could happen while drilling. These concerns can be addressed by enhancing the understanding of overpressure characterization in the fields. This research emphasizes in determining the pore pressure trend in Miri area to assist pore pressure prediction for future hydrocarbon exploration and production. Generally, pore pressure trends are related to mechanisms that contribute to the overpressure generation. In the region predominant overpressure are disequilibrium compaction within the prodelta shales meanwhile in outer shelf overpressure generation controlled by fluid expansion in deltaic sequence of inner shelf area. The objective of this research is to analyze the pore pressure profile of wells for determining vertical trends of pore pressure for various depositional environment facies of Miri area. Integration of rock physics and pore pressure analysis and relating the trends to environment depositional environment facies within shale underlying sand interval. Analysis done shows that overpressure top is characterize by depositional environment facies within shale underlying sand interval.
NASA Astrophysics Data System (ADS)
El-Sorogy, Abdelbaset S.; Ismail, Abdelmoneim; Youssef, Mohamed; Nour, Hamdy
2016-12-01
The Campanian Hajajah Limestone Member of the Aruma Formation was formed during two regressive episodes. Each of them formed of three depositional facies, from base to top: 1) intra-shelf basin facies, made up of fossiliferous green shale and mudstone with ostracods and badly preserved foraminifers. 2) fore-reef facies, consists of hard, massive, marly coralline limestone. The upper part is rich with low divers, badly to moderate preserved, solitary and colonial corals, and, 3) back reef and near-shore facies, consists of fossiliferous sandy dolomitized, bioturbated limestone with abundant reworked corals, bivalves, gastropods, and aggregate grains. On the basis of field observations, micro-and macrofossils and microfacies analysis, the Hajajah Limestone Member was deposited in distal marine settings below storm wave base in a low-energy environment changed upward to fore-reef framework in an open marine environment with moderate to high energy conditions and terminated with shallow marine facies with accumulation of skeletal grains by storms during regression.
Shallow water mud-mounds of the Early Devonian Buchan Group, East Gippsland, Australia
NASA Astrophysics Data System (ADS)
Tosolini, A.-M. P.; Wallace, M. W.; Gallagher, S. J.
2012-12-01
The Lower Devonian Rocky Camp Member of the Murrindal Limestone, Buchan Group of southeastern Australia consists of a series of carbonate mud-mounds and smaller lagoonal bioherms. The Rocky Camp mound is the best exposed of the mud-mounds and has many characteristics in common with Waulsortian (Carboniferous) mounds. Detailed paleoecological and sedimentological studies indicate that the mound initially accumulated in the photic zone, in contrast to most of the previously recorded mud-mounds. Five facies are present in the mud-mound: a Dasycladacean Wackestone Facies at the base of the mound represents a moderate energy, shallow water bank environment within the photic zone. A Crinioidal Wackestone Facies was deposited in a laterally equivalent foreslope setting. A Poriferan-Crinoidal Mudstone Facies developed in a quiet, deeper water, lee-side mound setting associated with a minor relative sea-level rise. A Stromatoporoid-Coralline Packstone Facies in the upper part of the mound deposited in a high-energy, fair-weather wave base, mound-front environment. The crest of the mound is represented by a Crinoidal-Receptaculitid Packstone Facies indicative of a moderate-energy mound-top environment in the photic zone, sheltered by the mound-front stromatoporoid-coral communities. A mound flank facies is present on the southern side of the mound and this consists of high-energy crinoidal grainstones. Mud-mound deposition was terminated by a transgression that deposited dark gray, fossil-poor marl of the overlying Taravale Formation. The Rocky Camp mound appears to have originated in shallow water photic zone conditions and grew into a high-energy environment, with the mound being eventually colonized by corals and stromatoporoids. The indications of a high-energy environment during later mound growth (growth form of colonial metazoans and grainstones of the flanking facies) suggest that the micrite in the mound was autochthonous and implies the presence of an energy damping mechanism (probably biological) at the mound surface.
Sedimentary Petrography and Facies Analysis at the Shaler Outcrop, Gale Crater, Mars
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Gupta, S.; Rubin, D. M.; Lewis, K. W.; Kocurek, G.; Anderson, R. B.; Bell, J. F.; Dromart, G.; Edgett, K. S.; Grotzinger, J. P.; Hardgrove, C. J.; Kah, L. C.; Leveille, R. J.; Malin, M.; Mangold, N.; Milliken, R.; Minitti, M. E.; Rice, M. S.; Rowland, S. K.; Schieber, J.; Stack, K.; Sumner, D. Y.; Team, M.
2013-12-01
The Mars Science Laboratory Curiosity rover has recently completed an investigation of a large fluvial deposit known informally as the Shaler outcrop (~1 m thick). Curiosity acquired data at the Shaler outcrop during sols 120-121 and 309-324. The Shaler outcrop is comprised of cross-bedded coarse-grained sandstones and recessive finer-grained intervals. Shaler is distinguished from the surrounding units by the presence of resistant beds exhibiting decimeter scale trough cross-bedding. Observations using the Mast Cameras, Mars Hand Lens Imager (MAHLI) and ChemCam Remote Micro Imager (RMI) enable the recognition of several distinct facies. MAHLI images were acquired on five distinct rock targets, and RMI images were acquired at 33 different locations. On the basis of grain size, erosional resistance, color, and sedimentary structures, we identify four facies: 1) resistant cross-stratified facies, 2) smooth, fine-grained cross-stratified facies, 3) dark gray, pitted facies, and 4) recessive, vertically fractured facies. Panoramic Mastcam observations reveal facies distributions and associations, and show cross-bedded facies that are similar to those observed at the Rocknest and Bathurst_Inlet locations. MAHLI and RMI images are used to determine the grain size, sorting, rounding and sedimentary fabric of the different facies. High-resolution images also reveal small-scale diagenetic features and sedimentary structures that are used to reconstruct the depositional and diagenetic history.
Nelson, C.H.; Baraza, J.; Maldonado, A.; Rodero, J.; Escutia, C.; Barber, J.H.
1999-01-01
The late Quaternary pattern of sedimentary facies on the Spanish Gulf of Cadiz continental shelf results from an interaction between a number of controlling factors that are dominated by the Atlantic inflow currents flowing southeastward across the Cadiz shelf toward the Strait of Gibraltar. An inner shelf shoreface sand facies formed by shoaling waves is modified by the inflow currents to form a belt of sand dunes at 10-20 m that extends deeper and obliquely down paleo-valleys as a result of southward down-valley flow. A mid-shelf Holocene mud facies progrades offshore from river mouth sources, but Atlantic inflow currents cause extensive progradation along shelf toward the southeast. Increased inflow current speeds near the Strait of Gibraltar and the strong Mediterranean outflow currents there result in lack of mud deposition and development of a reworked transgressive sand dune facies across the entire southernmost shelf. At the outer shelf edge and underlying the mid-shelf mud and inner shelf sand facies is a late Pleistocene to Holocene transgressive sand sheet formed by the eustatic shoreline advance. The late Quaternary pattern of contourite deposits on the Spanish Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are oblique to slope contours and the Mediterranean outflow current flowing northwestward parallel to the slope contours and down valleys between the ridges. Coincident with the northwestward decrease in outflow current speeds from the Strait there is the following northwestward gradation of contourite sediment facies: (1) upper slope sand to silt bed facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. By comparison, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean outflow current, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. Radiocarbon ages verify that the inner shelf shoreface sand facies (sedimentation rate 7.1 cm/kyr), mid-shelf mud facies (maximum rate 234 cm/kyr) and surface sandy contourite layer of 0.2-1.2 m thickness on the Cadiz slope (1-12 cm/kyr) have deposited during Holocene time when high sea level results in maximum water depth over the Gibraltar sill and full development of the Atlantic inflow and Mediterranean outflow currents. The transgressive sand sheet of the shelf, and the mud layer underlying the surface contourite sand sheet of the slope, correlate, respectively, with the late Pleistocene sea level lowstand and apparent weak Mediterranean outflow current.
NASA Astrophysics Data System (ADS)
Yesilova, Cetin; Yesilova, Pelin; Aclan, Mustafa; Gülyüz, Nilay
2017-04-01
In this study, stratigraphic and sedimentologic characteristics of Tandoǧdu travertines exposing at the 13 km southwest of Başkale, Van were examined. In this respect, we shed light on their formation conditions and depositional environment by determining their morphological characteristics and analyzing their facies distribution. In addition, kinematic studies were conducted by collecting structural data from the structures hosting the travertines. Tandoǧdu travertines having bed type and ridge type travertines have 5 distinct lithofacies based on the studies conducted. These are: (1) crystalline crust facies, (2) coated bubble facies, (3) paper-thin raft type facies, (4) lithoclast - breccia facies and (5) paleosoil facies. According to the examination of their morphologies and lithofacies; lithofacies were developed depending on the temperature of fluids forming the travertines. Distal from the source field of the hydrothermal fluids, paper-thin raft type facies were developed in shallow pools. Proximal to the source field of the hydrothermal fluids, crystalline crust facies and coated bubble facies were deposited. Existence of breccia facies indicates the effects of active tectonism during the formation of travertines. Hot hydrothermal pools on the ridge type travertines prove the still active tectonic activities. On-going studies aim to date growth of the travertines by U-Th dating method which will also shed some light on the tectonic scenario behind the evolution of the travertines.
Towards the definition of AMS facies in the deposits of pyroclastic density currents
Ort, M.H.; Newkirk, T.T.; Vilas, J.F.; Vazquez, J.A.; Ort, M.H.; Porreca, Massimiliano; Geissman, J.W.
2014-01-01
Anisotropy of magnetic susceptibility (AMS) provides a statistically robust technique to characterize the fabrics of deposits of pyroclastic density currents (PDCs). AMS fabrics in two types of pyroclastic deposits (small-volume phreatomagmatic currents in the Hopi Buttes volcanic field, Arizona, USA, and large-volume caldera-forming currents, Caviahue Caldera, Neuquén, Argentina) show similar patterns. Near the vent and in areas of high topographical roughness, AMS depositional fabrics are poorly grouped, with weak lineations and foliations. In a densely welded proximal ignimbrite, this fabric is overprinted by a foliation formed as the rock compacted and deformed. Medial deposits have moderate–strong AMS lineations and foliations. The most distal deposits have strong foliations but weak lineations. Based on these facies and existing models for pyroclastic density currents, deposition in the medial areas occurs from the strongly sheared, high-particle-concentration base of a density-stratified current. In proximal areas and where topography mixes this denser base upwards into the current, deposition occurs rapidly from a current with little uniformity to the shear, in which particles fall and collide in a chaotic fashion. Distal deposits are emplaced by a slowing or stalled current so that the dominant particle motion is vertical, leading to weak lineation and strong foliation.
Taylor, Emily M.; Sweetkind, Donald S.
2014-01-01
Understanding the subsurface geologic framework of the Cenozoic basin fill that underlies the Amargosa Desert in southern Nevada and southeastern California has been improved by using borehole data to construct three-dimensional lithologic and interpreted facies models. Lithologic data from 210 boreholes from a 20-kilometer (km) by 90-km area were reduced to a limited suite of descriptors based on geologic knowledge of the basin and distributed in three-dimensional space using interpolation methods. The resulting lithologic model of the Amargosa Desert basin portrays a complex system of interfingered coarse- to fine-grained alluvium, playa and palustrine deposits, eolian sands, and interbedded volcanic units. Lithologic units could not be represented in the model as a stacked stratigraphic sequence due to the complex interfingering of lithologic units and the absence of available time-stratigraphic markers. Instead, lithologic units were grouped into interpreted genetic classes, such as playa or alluvial fan, to create a three-dimensional model of the interpreted facies data. Three-dimensional facies models computed from these data portray the alluvial infilling of a tectonically formed basin with intermittent internal drainage and localized regional groundwater discharge. The lithologic and interpreted facies models compare favorably to resistivity, aeromagnetic, and geologic map data, lending confidence to the interpretation.
NASA Astrophysics Data System (ADS)
Sorrentino, Leonor; Stilwell, Jeffrey D.; Mays, Chris
2014-03-01
The Red Bluff Tuff Formation, an early Palaeogene volcano-sedimentary shallow marine succession from the Chatham Islands (New Zealand), provides a unique framework, in eastern 'Zealandia', to explore tephra dispersal processes associated with ancient small phreatomagmatic explosions (i.e. Surtseyan-style eruptions). Detailed sedimentological mapping, logging and sampling integrated with the results of extensive laboratory analyses (i.e. grain-size, componentry and applied palaeontological methods) elucidated the complex mechanisms of transport and deposition of nine identified resedimented fossiliferous volcaniclastic facies. These facies record the subaqueous reworking and deposition of tephra from the erosion and degradation of a proximal, entirely submerged ancient Surtseyan volcanic edifice (Cone II). South of this volcanic cone, the lowermost distal facies provides significant evidence of deposition as water-supported volcanic- or storm-driven mass flows (e.g. turbidity currents and mud/debris flows) of volcaniclastic and bioclastic debris, whereas the uppermost distal facies exhibit features of tractional sedimentary processes caused by shallow subaqueous currents. Further north, within the proximity of the volcanic edifice, the uppermost facies are represented by an abundant, diverse, large, and well preserved in situ fauna of shallow marine sessile invertebrates (e.g. corals and sponges) that reflect the protracted biotic stabiliszation and rebound following pulsed volcanic events. Over a period of time, these stable and wave-eroded volcanic platforms were inhabited by a flourishing and diversifying marine community of benthic and sessile pioneers (corals, bryozoans, molluscs, brachiopods, barnacles, sponges, foraminifera, etc.). This succession exhibits a vertical progression of sedimentary structures (i.e. density, cohesive and mass flows, and cross-bedding) and our interpretations indicate a shallowing upwards succession. This study reports for the first time mechanisms of degradation of a Surtseyan volcano on Chatham Islands and contributes to a better understanding of complex ancient volcano-sedimentary subaqueous terrains. This model of deposition (i.e. onlapping/overlapping features onto the remains of volcanic edifice(s), a vertical transition of structures from deeper- to shallower-marine environments, disaster faunas and subsequent preferential colonisation of diverse biota, including large in situ sessile invertebrates, on the summit), characterises an extraordinary example to be applied to other ancient subaqueous volcanic environments.
Smoot, J.P.
1991-01-01
The early Mesozoic Newark Supergroup consists of continental sedimentary rocks and basalt flows that occupy a NE-trending belt of elongate basins exposed in eastern North America. The basins were filled over a period of 30-40 m.y. spanning the Late Triassic to Early Jurassic, prior to the opening of the north Atlantic Ocean. The sedimentary rocks are here divided into four principal lithofacies. The alluvial-fan facies includes deposits dominated by: (1) debris flows; (2) shallow braided streams; (3) deeper braided streams (with trough crossbeds); or (4) intense bioturbation or hyperconcentrated flows (tabular, unstratified muddy sandstone). The fluvial facies include deposits of: (1) shallow, ephemeral braided streams; (2) deeper, flashflooding, braided streams (with poor sorting and crossbeds); (3) perennial braided rivers; (4) meandering rivers; (5) meandering streams (with high suspended loads); (6) overbank areas or local flood-plain lakes; or (7) local streams and/or colluvium. The lacustrine facies includes deposits of: (1) deep perennial lakes; (2) shallow perennial lakes; (3) shallow ephemeral lakes; (4) playa dry mudflats; (5) salt-encrusted saline mudflats; or (6) vegetated mudflats. The lake margin clastic facies includes deposits of: (1) birdfoot deltas; (2) stacked Gilbert-type deltas; (3) sheet deltas; (4) wave-reworked alluvial fans; or (5) wave-sorted sand sheets. Coal deposits are present in the lake margin clastic and the lacustrine facies of Carnian age (Late Triassic) only in basins of south-central Virginia and North and South Carolina. Eolian deposits are known only from the basins in Nova Scotia and Connecticut. Evaporites (and their pseudomorphs) occur mainly in the northern basins as deposits of saline soils and less commonly of saline lakes, and some evaporite and alkaline minerals present in the Mesozoic rocks may be a result of later diagenesis. These relationships suggest climatic variations across paleolatitudes, more humid to the south where coal beds are preserved, and more arid in the north where evaporites and eolian deposits are common. Fluctuations in paleoclimate that caused lake levels to rise and fall in hydrologically closed basins are preserved as lacustrine cycles of various scales, including major shifts in the Late Triassic from a wet Carnian to an arid Norian. In contrast, fluvial deposits were mainly formed in response to the tectonic evolution of the basins, but to some extent also reflect climatic changes. The Newark Supergroup illustrates the complexity of rift-basin sedimentation and the problems that may arise from using a single modern analog for sedimentary deposition spanning millions of years. It also shows that a tremendous wealth of depositional, climatic, and tectonic information is preserved in ancient rift-basin deposits which can be recovered if the depositional processes of modern rift-basin deposits are understood. ?? 1991.
Brezinski, David K.; Taylor, John F.; Repetski, John E.
2012-01-01
During deposition of the Tippecanoe megasequence, the peritidal shelf cycles were reestablished during deposition of the St. Paul Group. The vertical stacking of lithologies in the Row Park and New Market Limestones represents transgressive and regressice facies of a third-order deepening event. This submergence reached its maximum deepening within the lower Row Park Limestone and extended with the Nittany arch region with deposition of equivalent Loysburg Formation.. Shallow tidal-flat deposits were bordered to the south and east by deep-water ramp deposits of the Lincolnshire Formation. The St. Paul Group is succeeded upsection by ramp facies of the Chamersberg and the Edinburg Formations in the Great Valley, whereas shallow-shelf sedimentation continued in the Nittany-arch area with the depostion of the Hatter Limestoen and the Snyder and Linden Hall Formations. Carbonate deposition on the great American carbonate bank was brought to an end when it was buried beneath clastic flysch deposits of the Martinsberg Formation. Foundering of the bamk was diachronus, and the flysch seidments prograded from east to west.
Mangano, M.G.; Buatois, L.A.
1996-01-01
The Loma del Kilome??tro Member of the Lower Ordovician Suri Formation records arc-related shelf sedimentation in the Famatina Basin of northwest Argentina. Nine facies, grouped into three facies assemblages, are recognized. Facies assemblage 1 [massive and parallel-laminated mudstones (facies A) locally punctuated by normally graded or parallel-laminated silty sandstones (facies B] records deposition from suspension fall-out and episodic storm-induced turbidity currents in an outer shelf setting. Facies assemblage 2 [massive and parallel-laminated mudstones (facies A) interbedded with rippled-top very fine-grained sandstones (facies D)] is interpreted as the product of background sedimentation alternating with distal storm events in a middle shelf environment. Facies assemblage 3 [normally graded coarse to fine-grained sandstones (facies C); parallel-laminated to low angle cross-stratified sandstones (facies E); hummocky cross-stratified sandstones and siltstones (facies F); interstratified fine-grained sandstones and mudstones (facies G); massive muddy siltstones and sandstones (facies H); tuffaceous sandstones (facies I); and interbedded thin units of massive and parallel-laminated mudstones (facies A)] is thought to represent volcaniclastic mass flow and storm deposition coupled with subordinated suspension fall-out in an inner-shelf to lower-shoreface setting. The Loma del Kilo??metro Member records regressive-transgressive sedimentation in a storm- and mass flow-dominated high-gradient shelf. Volcano-tectonic activity was the important control on shelf morphology, while relative sea-level change influenced sedimentation. The lower part of the succession is attributed to mud blanketing during high stand and volcanic quiescence. Progradation of the inner shelf to lower shoreface facies assemblage in the middle part represents an abrupt basinward shoreline migration. An erosive-based, non-volcaniclastic, turbidite unit at the base of this package suggests a sea level fall. Pyroclastic detritus, andesites, and a non-volcanic terrain were eroded and their detritus was transported basinward and redeposited by sediment gravity flows during the low stand. The local coexistence of juvenile pyroclastic detritus and fossils suggests reworking of rare ash-falls. The upper part of the Loma del Kilo??metre Member records a transgression with no evidence of contemporaneous volcanism. Biostratinomic, paleoecologic, and ichnologic analyses support this paleoenvironmental interpretations and provide independent evidence for the dominance of episodic sedimentation in an arc-related shallow marine setting. Fossil concentrations were mainly formed by event processes, such as storms and volcaniclastic mass flows. High depositional rates inhibited formation of sediment-starved biogenic concentrations. Collectively, trace fossils belong to the Cruziana ichnofacies. Low diversity, scarcity, and presence of relatively simple forms indicate benthic activity under stressful conditions, most probably linked to high sedimentation rates. Contrasting sedimentary dynamics between 'normal shelves' and their volcaniclastic counterparts produce distinct and particular signatures in the stratigraphic record. Arc-related shelves are typified by event deposition with significant participation of sediment gravity flows, relatively high sedimentation rates, textural and mineralogical immaturity of sediments, scarcity and low diversity of trace fossils, and dominance of transported and reworked faunal assemblages genetically related to episodic processes.
NASA Astrophysics Data System (ADS)
Bayet-Goll, Aram; Esfahani, Fariba Shirezadeh; Daraei, Mehdi; Monaco, Paolo; Sharafi, Mahmoud; Mohammadi, Amir Akbari
2018-03-01
The Tournaisian-Visean carbonate successions of the Esfahan-Sirjan Basin (ESB) from Sanandaj-Sirjan Zone, Iran, have been used to generate a sequence stratigraphic model that enhances facies characterization and improves paleoenvironmental interpretation of shallow marine successions deposited along the southern margin of the Paleotethys. Detailed facies analysis allowed to differentiate seven facies, which, in order of decreasing abundance, are: (1) shaly and marly, F1; (2) peloidal mudstones/wackestones, F2; (3) peloidal/bioclastic packstones, F3; (4) intraclastic/bioclastic packstones/grainstones, F4; (5) oolitic/bioclastic packstone/grainstone, F5; (6) sandy intraclastic/bioclastic grainstones, F6; (7) sandy oolitic/bioclastic grainstones, F7. The different facies can be grouped into three facies associations that correspond to different environments of a carbonate platform with ramp geometry (homoclinal), from outer ramp (F1 and F2), mid-ramp (F3, F4 and F6) to inner ramp areas (F5 and F7). Meter-scale cycles are the basic building blocks of shallow marine carbonate successions of the Tournaisian-Viséan ramp of the ESB. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. According to the recognized facies and the stacking pattern of high-frequency cycles across the ramp, five large-scale cycles in the southeastern outcrops (Tournaisian-Viséan) and three large-scale cycles in the northwest outcrops (Viséan) related to eustatic sea-level changes can be recognized. The overall retrogradational nature of the carbonate ramp, illustrated by both vertical facies relationships and the stacking patterns of high-frequency cycles within the third-order cycles, implies that the deposition of the Tournaisian-Viséan successions mainly took place under a long-term transgressive sea-level trend. The stratigraphic architectural style of the sequences, characterized by the lack of lowstand deposits and exposure surfaces, associated with the evidence of progressive increase in the proportion of backstepping of facies belts across bounding surfaces and predominant subtidal characteristics, is in accordance with the long-term transgressive sea-level trend and greenhouse conditions during the Tournaisian-Viséan. The continued transgression on this broad shelfal platform could lead to the shutdown of the shallow water carbonate factory, reduction in sediment supply or sediment transport towards the offshore setting and the development of give-up sequences. The association of transgressive events with the deposition of thick open-marine marls/shales is a common feature in Tournaisian to Viséan times of the southern margin of the Paleotethys.
NASA Astrophysics Data System (ADS)
Nilsen, Tor H.
1989-11-01
The northeast trending Yukon-Koyukuk basin of west central Alaska consists of two subbasins, the Kobuk-Koyukuk subbasin to the north and east and the Lower Yukon subbasin to the southwest. The subbasins are separated by an arcuate Lower Cretaceous volcanic pile, the Hogatza trend, which is thought to be an accreted volcanic arc. The oldest part of the sedimentary fill of the subbasins consists of Valanginian to lower Albian(?) volcaniclastic rocks deposited on the flanks of the Hogatza trend. Following subsidence of the Hogatza trend, mid-Cretaceous clastic sedimentary strata of mainly Albian and Cenomanian age, and possibly as thick as 8000 m, were shed into the basin; these deposits were derived from surrounding uplands or borderlands in the Seward Peninsula to the west, the Brooks Range to the north, and the Ruby geanticline to the southeast. These mid-Cretaceous basin fill deposits can be divided into four main facies: (1) basin margin conglomerate facies, chiefly alluvial fan deposits that were transported basinward and rest in part unconformably on the surrounding uplands; (2) shelf facies, chiefly cross-stratified and hummocky cross-stratified sandstone deposited by wave-generated currents on a shelf that rimmed the basin on its western and northern margins; (3) deltaic facies, chiefly sandstone and shale deposited in delta plain and delta front environments on a large constructional delta that prograded westward from the eastern basin margin across both subbasins and across the subsided southern part of the Hogatza trend; and (4) turbidite facies, chiefly interbedded sandstone and shale deposited as elongate deep-sea fans and related deep-sea clastic systems by flows that transported sediment to the axial parts of both subbasins, northeastward in the Lower Yukon subbasin and eastward to southward in the Kobuk-Koyukuk subbasin. Sedimentation appears to have ended in the Santonian, followed by uplift, folding, and faulting of the basin fill. Less deformed, lower Tertiary nonmarine volcanic and volcaniclastic rocks unconformably overlie the more highly deformed Cretaceous strata.
Belt, Edward S.; Flores, Romeo M.; Warwick, Peter D.; Conway, Kevin M.; Johnson, Kirk R.; Waskowitz, Robert S.; Rahmani, R.A.; Flores, Romeo M.
1984-01-01
Facies analysis of the Ludlow and Tongue River Members of the Palaeocene Fort Union Formation provides an understanding of the relationship between fluviodeltaic environments and associated coal deposition in the south-western Williston Basin. The Ludlow Member consists of high-constructive delta facies that interfinger with brackish-water tongues of the Cannonball Member of the Fort Union Formation. The lower part of the Ludlow Member was deposited on a lower delta plain that consisted of interdistributary crevasse and subdelta lobes. The upper part of the Ludlow Member was deposited in meander belts of the upper delta plain. The delta plain facies of the Ludlow Member is overlain by alluvial plain facies consisting of swamp, crevasse-lobe, lacustrine, and trunk meander belt deposits of the Tongue River Member. The Ludlow delta is believed to have been fed by fluvial systems that probably flowed from the Powder River Basin to the Williston Basin undeterred by the Cedar Creek Anticline. However, the evidence indicates that the Cedar Creek Anticline was prominent enough, during early Tongue River Member deposition, to cause the obstruction of the regional fluvial system flowing from the SW, and the formation of local drainage.The Ludlow Member contains 18 coal beds in the area studied, of which the T-Cross and Yule coals are as thick as 4 m (12 ft). Abandoned delta lobes served as platforms where coals formed, which in turn, were drowned by mainly fresh water and subordinate brackish water. Repetition of deltaic sedimentation, abandonment, and occupation by swamp led to preservation of the T-Cross and Oyster coals in areas as extensive as 260 km2 (< 100 miles2).
NASA Astrophysics Data System (ADS)
Lambiase, Joseph J.; Suraya Tulot
2013-12-01
The depositional environments of the wave-dominant successions in the middle to late Miocene Belait and Sandakan Formations in northwestern and northern Borneo, respectively, were determined based on grain size distributions, sedimentary structures and facies successions, as well as trace and microfossil assemblages. Generally, progradational shoreface successions in the Belait Formation were deposited in very low wave energy environments where longshore currents were too weak to generate trough cross-bedding. Shoreface sands are laterally continuous for several km and follow the basin contours, suggesting attached beaches similar to the modern Brunei coastline. In contrast, trough cross-bedding is common in the coarser Sandakan Formation and back-barrier mangrove swamp deposits cap the progradational succession as on the modern northern Dent Peninsula coastline, indicating barrier development and higher wave energy conditions than in the Belait Formation. The Borneo examples indicate that barrier systems that include significant tidal facies form under higher wave energy conditions than attached beaches with virtually no tidal facies. Also, Borneo's low latitude climate promotes back-barrier mangrove which reduces tidal exchange and reduces tidal influence relative to comparable temperate climate systems. The results of the study indicate that depositional systems on low energy, wave-dominated coasts are highly variable, as are the sand bodies and facies associations they generate.
Suping, P.; Flores, R.M.
1996-01-01
Sedimentary facies types of the Pleistocene deposits of the Modern Pearl River Delta in Guangdong Province, China and Permian Member D deposits in Huainan coalfield in Anhui Province are exemplified by depositional facies of anastomosing fluvial systems. In both study areas, sand/sandstone and mud/mudstone-dominated facies types formed in diverging and converging, coeval fluvial channels laterally juxtaposed with floodplains containing ponds, lakes, and topogenous mires. The mires accumulated thin to thick peat/coal deposits that vary in vertical and lateral distribution between the two study areas. This difference is probably due to attendant sedimentary processes that affected the floodplain environments. The ancestral floodplains of the Modern Pearl River Delta were reworked by combined fluvial and tidal and estuarine processes. In contrast, the floodplains of the Permian Member D were mainly influenced by freshwater fluvial processes. In addition, the thick, laterally extensive coal zones of the Permian Member D may have formed in topogenous mires that developed on abandoned courses of anastomosing fluvial systems. This is typified by Seam 13-1, which is a blanket-like body that thickens to as much as 8 in but also splits into thinner beds. This seam overlies deposits of diverging and converging, coeval fluvial channels of the Sandstone D, and associated overbank-floodplain deposits. The limited areal extent of lenticular Pleistocene peat deposits of the Modern Pearl River Delta is due to their primary accumulation in topogenous mires in the central floodplains that were restricted by contemporaneous anastomosing channels.
Oligocene lacustrine tuff facies, Abu Treifeya, Cairo-Suez Road, Egypt
NASA Astrophysics Data System (ADS)
Abdel-Motelib, Ali; Kabesh, Mona; El Manawi, Abdel Hamid; Said, Amir
2015-02-01
Field investigations in the Abu Treifeya area, Cairo-Suez District, revealed the presence of Oligocene lacustrine volcaniclastic deposits of lacustrine sequences associated with an Oligocene rift regime. The present study represents a new record of lacustrine zeolite deposits associated with saponite clay minerals contained within reworked clastic vitric tuffs. The different lithofacies associations of these clastic sequences are identified and described: volcaniclastic sedimentary facies represent episodic volcaniclastic reworking, redistribution and redeposition in a lacustrine environment and these deposits are subdivided into proximal and medial facies. Zeolite and smectite minerals are mainly found as authigenic crystals formed in vugs or crusts due to the reaction of volcanic glasses with saline-alkaline water or as alteration products of feldspars. The presence of abundant smectite (saponite) may be attributed to a warm climate, with alternating humid and dry conditions characterised by the existence of kaolinite. Reddish iron-rich paleosols record periods of non-deposition intercalated with the volcaniclastic tuff sequence.
NASA Astrophysics Data System (ADS)
Bernard, Benjamin; van Wyk de Vries, Benjamin; Barba, Diego; Leyrit, Hervé; Robin, Claude; Alcaraz, Samantha; Samaniego, Pablo
2008-09-01
Chimborazo is a Late Pleistocene to Holocene stratovolcano located at the southwest end of the main Ecuadorian volcanic arc. It experienced a large sector collapse and debris avalanche (DA) of the initial edifice (CH-I). This left a 4 km wide scar, removing 8.0 ± 0.5 km 3 of the edifice. The debris avalanche deposit (DAD) is abundantly exposed throughout the Riobamba Basin to the Río Chambo, more than 35 km southeast of the volcano. The DAD averages a thickness of 40 m, covers about 280 km 2, and has a volume of > 11 km 3. Two main DAD facies are recognized: block and mixed facies. The block facies is derived predominantly from edifice lava and forms > 80 vol.% of the DAD, with a probable volume increase of 15-25 vol.%. The mixed facies was essentially created by mixing brecciated edifice rock with substratum and is found mainly in distal and marginal areas. The DAD has clear surface ridges and hummocks, and internal structures such as jigsaw cracks, injections, and shear-zone features are widespread. Structures such as stretched blocks along the base contact indicate high basal shear. Substratum incorporation is directly observed at the base and is inferred from the presence of substratum-derived material in the DAD body. Based on the facies and structural interpretation, we propose an emplacement model of a lava-rich avalanche strongly cataclased before and/or during failure initiation. The flow mobilises and incorporates significant substrata (10-14 vol.%) while developing a fine lubricating basal layer. The substrata-dominated mixed facies is transported to the DAD interior and top in dykes invading previously-formed fractures.
Evidence for a palaeo-subglacial lake on the Antarctic continental shelf
Kuhn, Gerhard; Hillenbrand, Claus-Dieter; Kasten, Sabine; Smith, James A.; Nitsche, Frank O.; Frederichs, Thomas; Wiers, Steffen; Ehrmann, Werner; Klages, Johann P.; Mogollón, José M.
2017-01-01
Subglacial lakes are widespread beneath the Antarctic Ice Sheet but their control on ice-sheet dynamics and their ability to harbour life remain poorly characterized. Here we present evidence for a palaeo-subglacial lake on the Antarctic continental shelf. A distinct sediment facies recovered from a bedrock basin in Pine Island Bay indicates deposition within a low-energy lake environment. Diffusive-advection modelling demonstrates that low chloride concentrations in the pore water of the corresponding sediments can only be explained by initial deposition of this facies in a freshwater setting. These observations indicate that an active subglacial meltwater network, similar to that observed beneath the extant ice sheet, was also active during the last glacial period. It also provides a new framework for refining the exploration of these unique environments. PMID:28569750
Silurian and Devonian in Vietnam—Stratigraphy and facies
NASA Astrophysics Data System (ADS)
Thanh, Tống Duy; Phương, Tạ Hoàng; Janvier, Philippe; Hùng, Nguyễn Hữu; Cúc, Nguyễn Thị Thu; Dương, Nguyễn Thùy
2013-09-01
Silurian and Devonian deposits in Viet Nam are present in several zones and regions, including Quang Ninh, East Bac Bo, and West Bac Bo Zones of the Bac Bo Region, the Dien Bien-Nghe An and Binh Tri Thien Zones of the Viet-Lao Region, and the South Trung Bo, and Western Nam Bo Zones of the South Viet Nam Region (Fig. 1). The main lithological features and faunal composition of the Silurian and Devonian Units in all these zones are briefly described. The Silurian consists of deep-water deposits of the upper parts of the Co To and Tan Mai Formations in the Quang Ninh Zone, the upper parts of the Phu Ngu Formation in the East Bac Bo Zone and the upper parts of the Long Dai and Song Ca Formations in the Viet-Lao Region. Shallow water facies Silurian units containing benthic faunas are more widely distributed, including the upper part of the Sinh Vinh and Bo Hieng Formations in the West Bac Bo Zone, the Kien An Formation in the Quang Ninh Zone, and, in the Viet-Lao Region, the Dai Giang Formation and the upper part of the Tay Trang Formation. No Lower and Middle Devonian deposits indicate deep water facies, but they are characterized by different shallow water facies. Continental to near shore, deltaic facies characterize the Lower Devonian Song Cau Group in the East Bac Bo Zone, the Van Canh Formation in the Quang Ninh Zone, and the A Choc Formation in the Binh Tri Thien Zone. Similar facies also occur in the Givetian Do Son Formation of the Quang Ninh Zone, and the Tan Lap Formation in the East Bac Bo Zone, and consist of coarse terrigenous deposits—cross-bedded conglomerates, sandstone, etc. Most Devonian units are characterized by shallow marine shelf facies. Carbonate and terrigenous-carbonate facies dominate, and terrigenous facies occur in the Lower and Middle Devonian sections in some areas only. The deep-water-like facies is characteriztic for some Upper Devonian formations in the Bac Bo (Bang Ca and Toc Tat Formations) and Viet-Lao Regions (Thien Nhan and Xom Nha Formations). These formations contain cherty shale or siliceous limestone, and fossils consist of conodonts, but there are also brachiopods and other benthos. They were possibly deposited in a deep water environment on the slope of the continental shelf. Most Devonian units distributed in the North and the Central Viet Nam consist of self shallow water sediments, and apparently they were deposited in a passive marginal marine environment. The coarse clastic continental or subcontinental deposits are distributed only in some areas of the East Bac Bo and of the Quang Ninh zones of the Bac Bo Region, and in the south of the Binh Tri Thien Zone. This situation suggests the influence of the Caledonian movement at the end of the Silurian period that called the Guangxi movement in South China.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yavuz, H.H.; Oercen, S.
1988-08-01
The continental and shallow marine clastics and carbonates exposed around the towns of Kale and Acipayam in southwestern Anatolia were investigated to interpret the depositional environments in the northern margin of the Mediterranean in terms of lithofacies and biozones. These deposits include Miogypsina intermedia and M. irregularis, indicating Burdigalian age when correlated with the same species in the different parts of the Tethys Sea and Indian-Pacific Oceans. The clastic lower part of the succession is characterized by sheet flow and braided-stream deposits of an alluvial-fan/fan-delta complex. Marine carbonates overlie these deposits, but in some places a transgressive lag deposit liesmore » between the unconformity surface and the carbonates. The lag deposit unit corresponds to the Gastropoda biozone, including Ostrea, Terebralia, and Pecten. Four carbonate facies are recognized: (1) Clayey limestones with ahermatypic corals, ostracods, macrofossils, and foraminifers. This facies corresponds to the Textularia-Rotalia biozone. (2) Packstones and grainstones with abundant nearshore and some offshore foraminifers, corresponding to the Miliolidae biozone. (3) Packstones and wackestones with offshore foraminifers. This facies includes the Miogypsina irregularis-Miogypsina intermedia biozone. (4) Boundstones and very poorly sorted reef-talus conglomerates including hermatypic corals, foraminifers, and binding foraminifers. This facies is the coral biozone. These sediments define the northern extent of the Tethys Sea in the investigated area during the Burdigalian. They were deposited in a shallow carbonate platform at the southern margin of the Anatolian mainland, which had a steep coast characterized by an alluvial-fan/fan-delta complex.« less
NASA Astrophysics Data System (ADS)
Vieira, Lucas Valadares; Scherer, Claiton Marlon dos Santos
2017-07-01
The Pennsylvanian Piauí Formation records the deposition of aeolian, fluvial and shallow marine systems accumulated in the cratonic sag Parnaíba basin. Characterization of the facies associations and sequence stratigraphic framework was done by detailed description and logging of outcrops. Six facies associations were recognized: aeolian dunes and interdunes, aeolian sandsheets, fluvial channels, tidally-influenced fluvial channels, shoreface and shoreface-shelf transition. Through correlation of stratigraphic surfaces, the facies associations were organized in system tracts, which formed eight high frequency depositional sequences, bounded by subaerial unconformities. These sequences are composed of a lowstand system tract (LST), that is aeolian-dominated or fluvial-dominated, a transgressive system tract (TST) that is formed by tidally-influenced fluvial channels and/or shoreface and shoreface-shelf transition deposits with retrogradational stacking, and a highstand system tract (HST), which is formed by shoreface-shelf transition and shoreface deposits with progradational stacking. Two low frequency cycles were determined by observing the stacking of the high frequency cycles. The Lower Sequence is characterized by aeolian deposits of the LST and an aggradational base followed by a progressive transgression, defining a general TST. The Upper Sequence is characterized by fluvial deposits and interfluve pedogenesis concurring with the aeolian deposits of the LST and records a subtle regression followed by transgression. The main control on sedimentation in the Piauí Formation was glacioeustasy, which was responsible for the changes in relative sea level. Even though, climate changes were associated with glacioeustatic phases and influenced the aeolian and fluvial deposition.
NASA Astrophysics Data System (ADS)
El-Azabi, M. H.; El-Araby, A.
2007-04-01
Superb outcrops of mixed siliciclastic/carbonate rocks mark the Coniacian-Santonian Matulla Formation exposed in Nezzazat and Ekma blocks, west central Sinai. They are built up of various lithofacies that reflect minor fluctuations in relative sea-level from lower intertidal to slightly deep subtidal settings. Relying on the facies characteristics and stratal geometries, the siliciclastic rocks are divided into seven depositional facies, including beach foreshore laminated sands, upper shoreface cross-bedded sandstone, lower shoreface massive bioturbated and wave-rippled sandstones, shallow subtidal siltstone and deep subtidal shale/claystone. The carbonate rocks comprise lower intertidal lime-mudstone, floatstone and dolostone, shallow subtidal skeletal shoal of oyster rudstone/bioclastic grainstone, and shoal margin packstone. Oolitic grain-ironstone and ferribands are partially intervened the facies types. Deposition has taken place under varied conditions of restricted, partly open marine circulation, low to high wave energy and normal to raised salinity during alternating periods of abundant and ceased clastic supply. The facies types are arranged into asymmetric upward-shallowing cycles that record multiple small-scale transgressive-regressive events. Lime-mudstone and sandstone normally terminate the regressive events. Four sequence boundaries marking regional relative sea-level falls divide the Matulla Formation into three stratigraphic units. These boundaries are Turonian/Coniacian, intra-Coniacian, Coniacian/Santonian and Santonian/Campanian. They do not fit with those sequence boundaries proposed in Haq et al.'s global eustatic curves (1988) except for the sea-level fall associated with the intra-Coniacian boundary. Other sequence boundaries have resulted from regional tectonic impact of the Syrian Arc Fold System that has been initiated in north Egypt during the Latest Turonian-Coniacian. These boundaries enclose three well-defined 3rd order depositional sequences; their enclosing shallowing-upward cycles (i.e. parasequences) record the 4th order relative sea-level fluctuations. 34 and 20 parasequence sets, in the order of a few meters to tens of meters thick, mark the Matulla sequences in Nezzazat and Ekma blocks respectively. Each sequence shows an initial phase of rapid sea-level rise with retrogradational sets, followed by lowering sea-level and progradation/aggradation of the parasequence sets. The transgressive deposits display predominance of deep subtidal lagoonal facies, while highstand deposits show an increase in siliciclastic and carbonate facies with the progressive decrease of lagoonal facies. The sedimentary patterns and environments suggest that the regional, partly eustatic sea-level (i.e. intra-Coniacian) changes controlled the overall architecture of the sequence distribution, whereas changes in the clastic input controlled the variations in facies associations within each depositional sequence.
NASA Astrophysics Data System (ADS)
Kasprzyk, Alicja
2003-05-01
Anhydrite deposits are widely distributed in the Middle Miocene Badenian evaporite basin of Poland, including the marginal sulphate platform and adjacent salt depocenter. Particular sedimentological, petrographic and geochemical characteristics of these anhydrite deposits and especially common pseudomorphic features, inherited from the precursor gypsum deposits, allow the interpretation of the original sedimentary facies. The observed facies distribution and succession (lower and upper members) reveal three distinct facies associations that record a range of depositional environments from nearshore to deeper basinal settings. Platform sulphates were deposited in subaerial and shallow-marine environments (shoreline and inner platform-lagoon system) mainly as autochthonous selenitic gypsum. This was reworked and redistributed into deeper waters (outer platform-lagoon, slope and the proximal basin floor system) to form resedimented facies composed mostly of allochthonous clastic gypsum and minor anhydrite. The general variation in petrographic and geochemical compositions of anhydrite lithofacies of the lower and upper members reflects the brine evolution, as the result of interactions between seawater, meteoric runoff and highly saline, residual pore fluids. The results indicate the importance of synsedimentary and diagenetic anhydritisation processes in formation of the Badenian anhydrite lithofacies, all of which preserve the original depositional features of the former gypsum. This also applies to the basinal anhydrite previously interpreted to have a depositional genesis. Two different genetic patterns of anhydrite have been reinforced by this study: (1) synsedimentary anhydritisation of gypsum deposits by highly concentrated brines or elevated temperatures in surficial to shallow-burial environments (lower member), and (2) successive phases (syndepositional de novo growth, early diagenetic to late diagenetic replacement of former gypsum) of anhydrite formation during progressive burial (upper member).
Foyle, A.M.; Oertel, G.F.
1997-01-01
High-frequency Quaternary glacioeustasy resulted in the incision of six moderate- to high-relief fluvial erosion surfaces beneath the Virginia inner shelf and coastal zone along the updip edges of the Atlantic continental margin. Fluvial valleys up to 5 km wide, with up to 37 m of relief and thalweg depths of up to 72 m below modern mean sea level, cut through underlying Pleistocene and Mio-Pliocene strata in response to drops in baselevel on the order of 100 m. Fluvially incised valleys were significantly modified during subsequent marine transgressions as fluvial drainage basins evolved into estuarine embayments (ancestral generations of the Chesapeake Bay). Complex incised-valley fill successions are bounded by, or contain, up to four stacked erosional surfaces (basal fluvial erosion surface, bay ravinement, tidal ravinement, and ebb-flood channel-base diastem) in vertical succession. These surfaces, combined with the transgressive oceanic ravinement that generally caps incised-valley fills, control the lateral and vertical development of intervening seismic facies (depositional systems). Transgressive stratigraphy characterizes the Quaternary section beneath the Virginia inner shelf where six depositional sequences (Sequences I-VI) are identified. Depositional sequences consist primarily of estuarine depositional systems (subjacent to the transgressive oceanic ravinement) and shoreface-shelf depositional systems; highstand systems tract coastal systems are thinly developed. The Quaternary section can be broadly subdivided into two parts. The upper part contains sequences consisting predominantly of inner shelf facies, whereas sequences in the lower part of the section consist predominantly of estuarine facies. Three styles of sequence preservation are identified. Style 1, represented by Sequences VI and V, is characterized by large estuarine systems (ancestral generations of the Chesapeake Bay) that are up to 40 m thick, have hemicylindrical wedge geometries, and occur within large, coast-oblique trending depressions (paleo-estuaries). Style 1 is dominated by fluvial through estuary-mouth depositional systems (Seismic Facies 1-4). Style 2 sequence preservation, represented by Sequences III and II, is dominantly an inner shelf and shoreface succession with a seaward-thickening tabular wedge geometry that does not exceed 15 m in thickness. These shoreface and inner shelf depositional systems of the upper transgressive systems tract (Seismic Facies 9) and highstand systems tract (Seismic Facies 7 and 11) are not associated with paleo-estuaries. Style 3 sequence preservation is represented by Sequence 1, the Holocene Sequence. It consists of lower transgressive systems tract fluvial-estuarine, lagoonal, and tidal-inlet fill deposits (Seismic Facies 1-6, and 8) overlain by upper transgressive systems tract shelf and shoreface sands (Seismic Facies 9). Style 3 has a crenulated wedge geometry, and is thickest beneath and seaward of the modern Chesapeake Bay mouth. It thins northward and landward onto Late Pleistocene interfluvial highs on the basinward side of the southern Delmarva Peninsula.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, W.A.; Tyler, N.
1989-03-01
Three reservoirs representing different depositional environments - barrier island (West Ranch field, south-central Texas), fluvial (La Gloria field, south Texas), and submarine fan (Spraberry trend, Midland basin) - illustrate variations in reservoir continuity. Pay continuity methods based on facies geometry and variations in permeability and thickness between wells can quantify reservoir heterogeneity in each of these examples. Although barrier-island reservoirs are relatively homogeneous, West Ranch field contains wide (1000-5000 ft or 300-1500 m) dip-parallel belts of lenticular inlet-fill facies that disrupt reservoir continuity in the main barrier-core facies. Other reservoir compartments in West Ranch field are in flood-tidal delta depositsmore » partly encased in lagoonal mudstones updip of the barrier core. Fluvial reservoirs have a higher degree of internal complexity than barrier-island reservoirs. In La Gloria field, reservoirs exhibit significant heterogeneity in the form of numerous sandstone stringers bounded vertically and laterally by thin mudstone layers. Successful infill wells in La Gloria field contact partly drained reservoir compartments in splay deposits that pinch out laterally into flood-plain mudstones. Recompletions in vertically isolated sandstone stringers in La Gloria field contact other reservoir compartments. Submarine fan deposits are extremely heterogeneous and may have the greatest potential for infill drilling to tap isolated compartments in clastic reservoirs. The Spraberry trend contains thin discontinuous reservoir sandstones deposited in complex mid-fan channels. Although facies relationships in Spraberry reservoirs are similar to those in fluvial reservoirs in La Gloria field, individual pay stringers are thinner and more completely encased in low-permeability mudstone facies.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moshier, S.O.; Stamper, M.E.
1994-08-01
Coon Creek field is a significant petroleum reservoir in the [open quotes]Big Lime[close quotes], Middle to Upper Mississippian Newman equivalent, in southeastern Kentucky. Initial production from select wells has exceeded 600 bbl of oil/day at drilling depths averaging 915 m (3300 ft). Facies patterns, dolomitization, porosity, and structure in this carbonate reservoir have been delineated by geophysical logs, subsurface mapping, and examination of cores and cuttings. The reservoir is set within a localized paleotopographic low on the unconformable surface of the underlying siliciclastic Borden Group; the Borden surface can express rapid relief of over a 10% grade within less thanmore » 300 m. Transgression across the exposed Borden surface resulted in the deposition of a complex system of carbonates lithofacies. Crinoidal dolostones, representing shallow subtidal skeletal bars and banks, form the basal Big Lime (1.5-6 m thick). They are overlain by a typical facies (30 m thick) of bryozoan grainstones/packstones, crinoid grainstones, and mixed skeletal wakestones/mudstones. The rybryozoanacies are characterized by unfragmented fenestrates cemented by radiaxial-fibrous calcite. Stratigraphic distributions indicate the bryozoan facies were broad buildups with crinoidal flank and cap deposits and muddy skeletal off-mount facies, similar to deeper water Waulsortian mounds in other basins. Pellet and ooid grainstones represent moderate- to high-energy subtidal shoal deposits that covered the mound complex. Hydrocarbon production is restricted in the field to the crinoid-bryozoan facies complex within the basal 30 m. Reservoir porosity and permeability have been enhanced by selective dolomitization of grainstones and fracturing related to postdepositional reactivation of basement faults.« less
Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.
2017-08-23
Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meckel, T. A.; Trevisan, L.; Krishnamurthy, P. G.
Small-scale (mm to m) sedimentary structures (e.g. ripple lamination, cross-bedding) have received a great deal of attention in sedimentary geology. The influence of depositional heterogeneity on subsurface fluid flow is now widely recognized, but incorporating these features in physically-rational bedform models at various scales remains problematic. The current investigation expands the capability of an existing set of open-source codes, allowing generation of high-resolution 3D bedform architecture models. The implemented modifications enable the generation of 3D digital models consisting of laminae and matrix (binary field) with characteristic depositional architecture. The binary model is then populated with petrophysical properties using a texturalmore » approach for additional analysis such as statistical characterization, property upscaling, and single and multiphase fluid flow simulation. One example binary model with corresponding threshold capillary pressure field and the scripts used to generate them are provided, but the approach can be used to generate dozens of previously documented common facies models and a variety of property assignments. An application using the example model is presented simulating buoyant fluid (CO 2) migration and resulting saturation distribution.« less
Bliss, James D.; Williams, S. Jeffress; Bolm, Karen S.
2009-01-01
Cape- and ridge-associated marine sand deposits, which accumulate on storm-dominated continental shelves that are undergoing Holocene marine transgression, are particularly notable in a segment of the U.S. Atlantic Continental Shelf that extends southward from the east tip of Long Island, N.Y., and eastward from Cape May at the south end of the New Jersey shoreline. These sand deposits commonly contain sand suitable for shore protection in the form of beach nourishment. Increasing demand for marine sand raises questions about both short- and long-term potential supply and the sustainability of beach nourishment with the prospects of accelerating sea-level rise and increasing storm activity. To address these important issues, quantitative assessments of the volume of marine sand resources are needed. Currently, the U.S. Geological Survey is undertaking these assessments through its national Marine Aggregates and Resources Program (URL http://woodshole.er.usgs.gov/project-pages/aggregates/). In this chapter, we present a hypothetical example of a quantitative assessment of cape-and ridge-associated marine sand deposits in the study area, using proven tools of mineral-resource assessment. Applying these tools requires new models that summarize essential data on the quantity and quality of these deposits. Two representative types of model are descriptive models, which consist of a narrative that allows for a consistent recognition of cape-and ridge-associated marine sand deposits, and quantitative models, which consist of empirical statistical distributions that describe significant deposit characteristics, such as volume and grain-size distribution. Variables of the marine sand deposits considered for quantitative modeling in this study include area, thickness, mean grain size, grain sorting, volume, proportion of sand-dominated facies, and spatial density, of which spatial density is particularly helpful in estimating the number of undiscovered deposits within an assessment area. A Monte Carlo simulation that combines the volume of sand-dominated-facies models with estimates of the hypothetical probable number of undiscovered deposits provides a probabilistic approach to estimating marine sand resources within parts of the U.S. Atlantic Continental Shelf and other comparable marine shelves worldwide.
Sequence stratigraphy of the Lower Triassic Sinbad Formation, San Rafael Swell, east-central, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goodspeed, T.H.; Elrick, M.; Lucas, S.G.
1993-04-01
The Lower Triassic Sinbad Fm (20--30 m thick) in the San Rafael Swell of east-central Utah is high energy carbonate deposits that conformably overlie tidal flat/fluvial channel deposits of the Black Dragon Fm. The Torrey Fm conformably overlies the Sinbad Fm and consists primarily of siliciclastic tidal flat and fluvial deposits. Five facies (in ascending order) are characteristic of the Sinbad Fm: (1) bioturbated calcisiltite with calcite-replaced evaporite nodules and ripple laminations, (2) skeletal-oolitic-intraclastic packstone and grainstone, (3) slightly bioturbated, mechanically laminated, pelletal calcisiltite (5) trough cross-bedded, peloidal to oolitic grainstone, and (5) thin-bedded, skeletal-pelletal-oolitic grainstone with mud to wackestonemore » drapes. Regional facies relationships of the Sinbad Fm indicate initial deepening followed by shallowing. The skeletal-intraclastic packstone and grainstone facies represents maximum flooding. This facies thickens to the northwest and contains an open marine molluscan fauna of ammonites, bivalves, gastropods and scaphopods. The ammonites are indicative of the Tardus Zone of late Smithian age. Deposits above the maximum flooding zone (MFZ) are restricted foreshoal, pelletal calcisiltite, oolitic shoal, and backshoal skeletal-oolitic (with a restricted fauna of molluscs and ostracods) deposits. This shallowing-upward sequence represents the early HST. The Sinbad Fm represents the MFZ and early HST of a 150-m-thick depositional sequence of rocks with the Black Dragon FM representing the TST, and the Torrey Fm representing the late HST.« less
Deciphering the record of short-term base-level changes in Gilbert-type deltas
NASA Astrophysics Data System (ADS)
Gobo, Katarina; Ghinassi, Massimiliano; Nemec, Wojciech
2016-04-01
The geometrical relationship of fluvial topset to subaqueous foreset in a Gilbert-type delta may be 'sigmoidal' (transitional) or 'oblique' (erosional), which is generally attributed - respectively - to a rise or fall of the delta shoreline's time-distance trajectory and considered to reflect base-level changes. However, since every episode of a base-level fall forces the fluvial distributary system to cut down, the delta-brink sigmoidal signature of a preceding base-level rise tends to be removed. The geometrical record of short-term base-level changes in a Gilbert-type delta thus tends to be obliterated by fluvial erosion. The issue addressed in this presentation is whether the fully-preserved foreset to bottomset deposits may serve as a key for deciphering the base-level history of an ancient Gilbert-type delta. Outcrop studies of Plio-Pleistocene Gilbert-type deltas at the southern margin of the Corinth Rift, Greece, reveal a genetic relationship between the delta-brink morphodynamics controlled by base level behaviour and the processes of subaqueous sediment dispersal on the delta slope and in its foot zone. The component facies are deposits of turbidity currents (whether slope-derived brief surges or longer-duration hyperpycnal flows), cohesionless debrisflows and loose-gravel debrisfalls. The development of sigmoidal delta-brink architecture appears to be accompanied by deposition of a debrite-dominated facies assemblage (DFA) of delta foreset beds, thought to form when the aggrading delta front tends to store sediment and undergoes discrete gravitational collapses. Development of oblique delta-brink architecture is accompanied by deposition of a turbidite-dominated facies assemblage (TFA) of foreset beds, which is thought to form when the delta-front accommodation decreases and the sediment carried by hyperpycnal effluent largely bypasses the front. The alternation of TFA and DFA facies assemblages in delta foreset is thus attributed to changes in delta-front accommodation driven by short-term base-level changes, with some accompanying inevitable 'noise' in the facies record due to the system autogenic variability and regional climatic fluctuations. Comparison of delta coeval foreset and toeset/bottomset deposits in a delta shows further a reverse pattern of reciprocal changes in facies assemblages, with the TFA assemblage of foreset deposits passing downdip into a DFA assemblage of delta-foot deposits, and the DFA assemblage of foreset deposits passing downdip into a TFA assemblage. This reverse reciprocal alternation of TFA and DFA facies assemblages is attributed to the delta-slope own morphodynamics. When the delta slope is dominated by deposition of debrisflows, only the most diluted turbulent flows and chute bypassing turbidity currents are reaching the delta-foot zone. When the delta slope is dominated by turbiditic sedimentation, larger chutes and gullies form - triggering and conveying debrisflows to the foot zone. These case studies as a whole shed a new light on the varying pattern of subaqueous sediment dispersal processes in an evolving Gilbert-type deltaic system and point to an the attractive possibility of the recognition of a 'hidden' record of base-level changes on the basis of detailed facies analysis.
Tectonic implications of facies patterns, Lower Permian Dry Mountain trough, east-central Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallegos, D.M.; Snyder, W.S.; Spinosa, C.
1991-02-01
Paleozoic tectonism is indicated by a study of a west-east facies analysis transect across the northern portion of the Lower Permian Dry Mountain trough (DMT). In an attempt to characterize the Early Permian basin-filling sequences, three broadly recognizable facies packages have been identified across the DMT: the western margin facies and the central basin facies of the DMT and an eastern shelf facies. In the western margin facies of the basin, pulses of tectonic activity are recorded at McCloud Spring in the Sulphur Springs Range. Here, shallow open-marine carbonate overlies eroded Vinini Formation and, in turn, is unconformably overlain bymore » basinal marine carbonate. An unconformity also marks the contact with the overriding prograding coarse clastic facies. These abrupt transitions suggest the sediments were deposited in a tectonically active area where they preservation of Waltherian sequences is unlikely to occur. Similarly abrupt transitions are evident in the western part of the central basin facies. At Portuguese Springs n the Diamond Range, a thin basal marine conglomerate delineates Lower Permian sedimentation over the Pennsylvanian Ely Formation. Coarsening-upward basinal carbonate strata of pelagic, hemipelagic, and turbidite components overlie the basal conglomerate. this progression of sediments is unconformably overlain by a subaerial sequence of coarse clastic deposits. Within the eastern part of the central basin facies in the Maverick Spring Range, the Lower Permian sediments are open-marine siltstone, wackestone, packstone, and grainstone. The sediments are assigned to a gradually sloping ramp, indicating the effects of tectonism on this margin of the basin were subdued.« less
Alluvial lithofacies recognition in a humid-tropical setting
NASA Astrophysics Data System (ADS)
Darby, Dennis A.; Whittecar, G. Richard; Barringer, Richard A.; Garrett, Jim R.
1990-05-01
Cobble gravel deposits in the Antigua Formation accumulated on a large alluvial fan or braid-plain west of the Cordillera Occidental in southwest Colombia. This formation was probably deposited during the Pleistocene in a very wet tropical climate (> 500 cm/yr rainfall). Fining-upwards sequences of clast-supported, imbricated boulders and cobbles dominate with maximum clast sizes between 30 and 300 cm. The sand matrix in the Antigua gravels and the minor (⩽ 10%) sand facies are weathered to clay at depths of up to 20 m. The sand facies contains abundant drift logs and leaf mats. Except for the absence of debris flows and the very coarse nature of the gravel, the Antigua gravels have lithofacies similar to the glacial outwash braid-plain in the proximal area of the Scott type model. Gravels and sands of the younger Panambi Formation were deposited by a braided stream that was smaller, confined by valley walls, and flowing at a lower gradient than the river that deposited the Antigua gravels. We recognize no sedimentologic characteristics of these deposits as diagnostic of a humid-tropical environment except for textural and compositional changes in matrix sediments caused by deep and rapid chemical weathering.
Eoff, Jennifer D.
2014-01-01
New data from detailed measured sections permit a comprehensive revision of the sedimentary facies of the Furongian (upper Cambrian; Jiangshanian and Sunwaptan stages) Tunnel City Group (Lone Rock Formation and Mazomanie Formation) of Wisconsin and Minnesota. Heterogeneous sandstones, comprising seven lithofacies along a depositional transect from shoreface to transitional-offshore environments, record sedimentation in a storm-dominated, shallow-marine epicontinental sea. The origin of glauconite in the Birkmose Member and Reno Member of the Lone Rock Formation was unclear, but its formation and preserved distribution are linked to inferred depositional energy rather than just net sedimentation rate. Flat-pebble conglomerate, abundant in lower Paleozoic strata, was associated with the formation of a condensed section during cratonic flooding. Hummocky cross-stratification was a valuable tool used to infer depositional settings and relative paleobathymetry, and the model describing formation of this bedform is expanded to address flow types dominant during its genesis, in particular the importance of an early unidirectional component of combined flow. The depositional model developed here for the Lone Rock Formation and Mazomanie Formation is broadly applicable to other strata common to the early Paleozoic that document sedimentation along flooded cratonic interiors or shallow shelves.
NASA Astrophysics Data System (ADS)
Cabaleri, Nora G.; Benavente, Cecilia A.; Monferran, Mateo D.; Narváez, Paula L.; Volkheimer, Wolfgang; Gallego, Oscar F.; Do Campo, Margarita D.
2013-10-01
Six facies associations are described for the Puesto Almada Member at the Cerro Bandera locality (Fossati sub-basin). They correspond to lacustrine, palustrine, and pedogenic deposits (limestones); and subordinated alluvial fan, fluvial, aeolian, and pyroclastic deposits. The lacustrine-palustrine depositional setting consisted of carbonate alkaline shallow lakes surrounded by flooded areas in a low-lying topography. The facies associations constitute four shallowing upward successions defined by local exposure surfaces: 1) a Lacustrine-Palustrine-pedogenic facies association with a 'conchostracan'-ostracod association; 2) a Palustrine facies association representing a wetland subenvironment, and yielding 'conchostracans', body remains of insects, fish scales, ichnofossils, and palynomorphs (cheirolepidiacean species and ferns growing around water bodies, and other gymnosperms in more elevated areas); 3) an Alluvial fan facies association indicating the source of sediment supply; and 4) a Lacustrine facies association representing a second wetland episode, and yielding 'conchostracans', insect ichnofossils, and a palynoflora mainly consisting of planktonic green algae associated with hygrophile elements. The invertebrate fossil assemblage found contains the first record of fossil insect bodies (Insecta-Hemiptera and Coleoptera) for the Cañadón Asfalto Formation. The succession reflects a mainly climatic control over sedimentation. The sedimentary features of the Puesto Almada Member are in accordance with an arid climatic scenario across the Upper Jurassic, and they reflect a strong seasonality with periods of higher humidity represented by wetlands and lacustrine sediments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jake, T.R.
1987-09-01
Evaluations were made of sedimentation patterns and depositional environments from approximately 450 core logs and 225 surface exposures in the Upper Potomac coalfield. The relationships between the clastic depositional facies and the distribution and quality of the Bakerstown and upper Freeport coals were also investigated. Data from 61 Bakerstown and 35 upper Freeport coal samples from selected cores indicate a change from uniform coal quality to highly variable coal quality when moving from related interchannel and bay-fill facies to channel, channel-fill, levee, and crevasse-splay facies. Areas of uniform coal quality range from 20-26% ash and 55-62% fixed carbon (weight percent,more » dry basis), whereas areas of highly variable coal quality range from 26-54% ash and 33-55% fixed carbon. The channel and related facies represent areas where increased fresh water was introduced into the topogenous swamp system, causing increased microbial degradation and the concentration of authigenic minerals within the peat material. These conditions, combined with the introduction of detrital minerals, resulted in areas of lower quality coal.« less
NASA Astrophysics Data System (ADS)
Beukes, N. J.; Smith, A.
2013-12-01
Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy in slightly oxygenated cold deep ocean water. Ferrihydrite, precipitated along the oxic-anoxic interface along the bottom of the buoyant plume could then settle to the floor of the basin without interference of dissolved ferrous iron. This model requires that oxygen, derived from photosynthesis in shallow water, circulated down to deep water creating a slightly oxygenated ocean basin system invaded by buoyant anoxic ferrous plumes. In areas where these plumes came in contact with the basin floor, magnetite and/or carbonate facies iron formation formed; the latter in areas of highest organic carbon influx. Extensive glacial diamictites in the Witwatersrand-Mozaan basin argues for climatic zonation in the Mesoarchean driving deep ocean currents. This model may explain why the rise of oxygen in the atmosphere was so long delayed after development of oxygenic photosynthesis; simply because in the dynamic ocean system oxygen could come into contact with much larger volumes of reduced species in the water column and along the ocean floor than in a static stratified system. It also impacts on reconstruction of microbial communities in Archean oceans.
NASA Astrophysics Data System (ADS)
Bódi, Erika; Buday, Tamás; McIntosh, Richard William
2013-04-01
Defining extraction-modified flow patterns with hydrodynamic models is a pivotal question in preserving groundwater resources regarding both quality and quantity. Modeling is the first step in groundwater protection the main result of which is the determination of the protective area depending on the amount of extracted water. Solid models have significant effects on hydrodynamic models as they are based on the solid models. Due to the legislative regulations, on protection areas certain restrictions must be applied which has firm consequences on economic activities. In Hungarian regulations there are no clear instructions for the establishment of either geological or hydrodynamic modeling, however, modeling itself is an obligation. Choosing the modeling method is a key consideration for further numerical calculations and it is decisive regarding the shape and size of the groundwater protection area. The geometry of hydrodynamic model layers is derived from the solid model. There are different geological approaches including lithological and sequence stratigraphic classifications furthermore in the case of regional models, formation-based hydrostratigraphic units are also applicable. Lithological classification is based on assigning and mapping of lithotypes. When the geometry (e.g. tectonic characteristics) of the research area is not known, horizontal bedding is assumed the probability of which can not be assessed based on only lithology. If the geological correlation is based on sequence stratigraphic studies, the cyclicity of sediment deposition is also considered. This method is more integrated thus numerous parameters (e.g. electrofacies) are taken into consideration studying the geological conditions ensuring more reliable modeling. Layers of sequence stratigraphic models can be either lithologically homogeneous or they may include greater cycles of sediments containing therefore several lithological units. The advantage of this is that the modeling can handle pinching out lithological units and lenticular bodies easier while most hydrodynamic softwares cannot handle flow units related to such model layers. Interpretation of tectonic disturbance is similar. In Hungary groundwater is extracted mainly from Pleistocene and Pannonian aquifers sediments of which were deposited in the ancient Pannonian Lake. When the basin lost its open-marine connection eustasy had no direct effects on facies changes therefore subsidence and sediment supply became the main factors. Various basin-filling related facies developed including alluvial plain facies, different delta facies types and pelitic deep-basin facies. Creating solid models based on sequence stratigraphic methods requires more raw data and also genetic approaches, in addition more working hours hence this method is seldom used in practice. Lithology-based models can be transformed into sequence stratigraphic models by extending the data base (e.g. detecting more survey data). In environments where the obtained models differ significantly notable changes can occur in the supply directions in addition the groundwater travel-time of the two models even on equal extraction terms. Our study aims to call attention to the consequences of using different solid models for typical depositional systems of the Great Hungarian Plain and to their effects on groundwater protection.
NASA Astrophysics Data System (ADS)
Edgar, L. A.; Gupta, S.; Rubin, D. M.; Schieber, J.; Stack, K.; Lewis, K. W.
2016-12-01
The Mars Science Laboratory (MSL) Curiosity rover investigated a number of sedimentary outcrops across Aeolis Palus. Observations of conglomerates, cross-bedded sandstones, and mudstones suggest that fluvial and lacustrine environments were common. Outcrops that expose cross-sections are particularly helpful for identifying stratigraphic relationships and changes through time. In the vicinity of an outcrop informally named Dingo Gap, the drive strategy shifted from driving on the topographic high areas to the topographic low areas, which resulted in a unique vantage point to observe stratigraphy in cross-section. During Sols 513-541, Curiosity investigated 4 m of stratigraphy exposed at Dingo Gap and Moonlight Valley. The valley walls reveal five distinct sedimentary facies, including 1) a fine-grained evenly laminated facies interpreted as upper plane bed stratification, 2) ripple and dune cross-stratified sandstone facies, interpreted to represent the southward migration of subaqueous bedforms, 3) fully preserved bedform sandstone facies, formed during high rates of deposition, 4) planar-bedded granule-rich sandstone facies, interpreted as sheet flood deposits, and 5) a weakly stratified, poorly-sorted conglomerate facies, interpreted to represent rapid deposition from a high-energy fluvial flow. The conglomerate facies is unlike other conglomerates observed thus far in the mission, on the basis of both texture and chemistry. Analysis of conglomerates reveal that they occur as distinct channel bodies, incised into cross-stratified sandstones. This coarsening upward signature is interpreted to record a prograding fan succession. Channel bodies appear to be time-equivalent, which suggests a major change in the system, likely associated with a drop in base level. The unique viewing geometry offered by Dingo Gap and Moonlight Valley makes it possible to observe these environmental changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cocozza, T.; Gandin, A.
Lower Cambrian Ceroide Limestone (Sardinia) and Lower Jurassic Massiccio Limestone (Tuscany) belong to sequences deposited in analogous tectono-sedimentary context: the former linked to the Caledonian Sardic Phase, the latter to the Alpine Orogeny. Both units consist of massive pure limestone characterized by marginal and lagoonal sequences repeatedly interfingering in the same geological structure. This distribution indicates a morphology of the platforms composed of banks (marginal facies) and shallow basins (lagoonal facies) comparable with a Bahamian complex. Dolomitization affects patchily the massive limestone bodies, and karstic features, breccias, and sedimentary dikes occur at their upper boundary. Both units overlie early dolomitemore » and evaporites (sabkha facies) containing siliciclastic intercalations in their lower and/or upper part and are unconformably covered by open-shelf red (hematitic), nodular limestone Ammonitico Rosso facies). The sedimentary evolution of the two sequences appears to have been controlled by synsedimentary tectonics whose major effects are the end of the terrigenous input, the bank-and-basin morphology of the platform, the irregular distribution of the dolomitization, and the nodular fabric of the overlying facies. The end of the Bahamian-type system is marked by the karstification of the emerged blocks and is followed by their differential sinking and burial under red-nodular facies. From a geodynamic viewpoint, sequences composed of Bahamian-like platform carbonates followed by Ammonitico Rosso facies imply deposition along continental margins subjected to block-faulting during an extensional regime connected with the beginning of continental rifting. Moreover, the variation from sabkha to Bahamian conditions suggests the drifting of the continent from arid to humid, tropical areas.« less
NASA Astrophysics Data System (ADS)
Postma, George; Kleverlaan, Kick
2018-02-01
New insights into flow characteristics of supercritical, high-density turbidity currents initiated renewed interest in a sand-rich lobe complex near the hamlet of Mizala in the Sorbas Basin (Tortonian, SE Spain). The field study was done using drone-made images taken along bed strike in combination with physical tracing of bounding surfaces and section logging. The studied lobe systems show a consistent built-up of lobe elements of 1.5-2.0 m thick, which form the building 'blocks' of the lobe system. The stacking of lobe elements shows lateral shift and compensational relief infill. The new model outlined in this paper highlights three stages of fan lobe development: I. an early aggradational stage with lobe elements characterized by antidune and traction-carpet bedforms and burrowed mud intervals (here called 'distal fan' deposits); II. a progradational stage, where the distal fan deposits are truncated by lobe elements of amalgamated sandy to gravelly units characterized by cyclic step bedform facies (designated as 'supra fan' deposits). The supra fan is much more channelized and scoured and of higher flow energy than the distal-fan. Aggradation of the supra-fan is terminated by a 'pappy' pebbly sandstone and by substrate liquefaction, 'pappy' referring to a typical, porridge-like texture indicating rapid deposition under conditions of little-to-no shear. The facies-bounded termination of the supra-fan is here related to its maximum elevation, causing the lobe-feeding supercritical flow to choke and to expand upwards by a strong hydraulic jump at the channel outlet; III. a backfilling stage, characterized by backfilling of the remaining relief with progressively thinning and fining of turbidite beds and eventually with mud. The three-stage development for fan-lobe building is deducted from reoccurring architectural and facies characteristics in three successive fan-lobes. The validity of using experimental, supercritical-flow fan studies for understanding the intrinsic mechanisms in sand-rich-fan lobe development is discussed.
NASA Astrophysics Data System (ADS)
Giunta, G.; Nigro, F.
1999-12-01
The Peloritani thrust belt belongs to the southern sector of the Calabrian Arc and is formed by a set of south-verging tectonic units, including crystalline basement and sedimentary cover (from the top: Aspromonte U.; Mela U.; Mandanici U.; Fondachelli U.; Longi-Taormina U.), piled up starting from Late Oligocene. At least two main terrigenous clastic formations lie with complicated relationships on top of the previous units: the Frazzanò Fm (Oligocene) and the Stilo-Capo d'Orlando Fm (Late Oligocene?-Early Miocene), as syn-to-post-tectonic deposits. These clastic deposits have different characteristics, in space and time, representing or flysch-like sequences involved in several thrust events (Frazzanò Fm) or molassic-like sequences (Stilo-Capo d'Orlando Fm), which unconformably overlie the tectonic units. In the present paper we describe a kinematic model of the progressive foreland migration of the Peloritani thrust belt, starting from Oligocene, carrying piggy-back basins and incorporating foredeep deposits, recognised in the Frazzanò-Stilo-Capo d'Orlando terrigenous successions. In general, the facies and structural observations on the overall Oligo-Miocene clastic sequences, outcropping in the Western Peloritani Mts, indicate: (a) the distal character of the Frazzanò Fm; (b) a complex group of terrigenous facies of the Stilo-Capo d'Orlando Fm, with lateral-to-vertical organisation, characterised by a distal-to-proximal-to-distal facies trend; (c) facies analogies of the basal portions of the Stilo-Capo d'Orlando Fm with the Frazzanò Fm; (d) the involvement of the Frazzanò Fm in lowermost and more external thrusting, and of the basal (Late Oligocene?) distal Stilo-Capo d'Orlando facies in the higher and inner thrusting during the early stages of deformation; (e) the involvement of the proximal Stilo-Capo d'Orlando facies in the tectonic edifice during the Early Miocene deformation; (f) the generally unconformable stratigraphical contacts of the higher proximal-to-distal (Early Miocene) Stilo-Capo d'Orlando facies on the constructing mobile belt; and (g) the presence of various thrust-faults, distinguished in a sequential order. The collected data allow us to hypothesise that the Oligo-Miocene tectono-sedimentary history was characterised by a foredeep with a deforming internal flank, probably lying in onlap on the constructing tectonic edifice (Frazzanò-lower Stilo-Capo d'Orlando Fms), and then deformed and covered by a piggy-back like sequence (middle-upper Stilo-Capo d'Orlando Fm), which was subsequently also deformed. The tectono-sedimentary evolution of the Peloritani belt has been probably developed through a progressive migration towards the foreland of a foredeep-compressional front couple and the chain body. The thrust stack progressively incorporates terrigenous foredeep deposits and in turn carried piggy-back basins.
Edwards, J.H.; Harrison, S.E.; Locker, S.D.; Hine, A.C.; Twichell, D.C.
2003-01-01
Seismic reflection profiles and vibracores have revealed that an inner shelf, sand-ridge field has developed over the past few thousand years situated on an elevated, broad bedrock terrace. This terrace extends seaward of a major headland associated with the modern barrier-island coastline of west-central Florida. The overall geologic setting is a low-energy, sediment-starved, mixed siliciclastic/carbonate inner continental shelf supporting a thin sedimentary veneer. This veneer is arranged in a series of subparallel, shore-oblique, and to a minor extent, shore-parallel sand ridges. Seven major facies are present beneath the ridges, including a basal Neogene limestone gravel facies and a blue-green clay facies indicative of dominantly authigenic sedimentation. A major sequence boundary separates these older units from Holocene age, organic-rich mud facies (marsh), which grades upward into a muddy sand facies (lagoon or shallow open shelf/seagrass meadows). Cores reveal that the muddy shelf facies is either in sharp contact or grades upward into a shelly sand facies (ravinement or sudden termination of seagrass meadows). The shelly sand facies grades upward to a mixed siliciclastic/carbonate facies, which forms the sand ridges themselves. This mixed siliciclastic/carbonate facies differs from the sediment on the beach and shoreface, suggesting insignificant sediment exchange between the offshore ridges and the modern coastline. Additionally, the lack of early Holocene, pre-ridge facies in the troughs between the ridges suggests that the ridges themselves do not migrate laterally extensively. Radiocarbon dating has indicated that these sand ridges can form relatively quickly (???1.3 ka) on relatively low-energy inner shelves once open-marine conditions are available, and that frequent, high-energy, storm-dominated conditions are not necessarily required. We suggest that the two inner shelf depositional models presented (open-shelf vs. migrating barrier-island) may have co-existed spatially and/or temporally to explain the distribution of facies and vertical facies contacts. ?? 2003 Elsevier B.V. All rights reserved.
McKirahan, J.R.; Goldstein, R.H.; Franseen, E.K.
2005-01-01
This study analyzes the three-dimensional variability of a 20-meter-thick section of Pennsylvanian (Missourian) strata over a 600 km2 area of northeastern Kansas, USA. It hypothesizes that sea-level changes interact with subtle variations in paleotopography to influence the heterogeneity of potential reservoir systems in mixed carbonate-silidclastic systems, commonly produdng build-and-fill sequences. For this analysis, ten lithofacies were identified: (1) phylloid algal boundstone-packstone, (2) skeletal wackestone-packstone, (3) peloidal, skeletal packstone, (4) sandy, skeletal grainstone-packstone, (5) oolite grainstone-packstone, (6) Osagia-brachiopod packstone, (7) fossiliferous siltstone, (8) lenticular bedded-laminated siltstone and fine sandstone, (9) organic-rich mudstone and coal, and (10) massive mudstone. Each facies can be related to depositional environment and base-level changes to develop a sequence stratigraphy consisting of three sequence boundaries and two flooding surfaces. Within this framework, eighteen localities are used to develop a threedimensional framework of the stratigraphy and paleotopography. The studied strata illustrate the model of "build-and-fill". In this example, phylloid algal mounds produce initial relief, and many of the later carbonate and silidclastic deposits are focused into subtle paleotopographic lows, responding to factors related to energy, source, and accommodation, eventually filling the paleotopography. After initial buildup of the phylloid algal mounds, marine and nonmarine siliciclastics, with characteristics of both deltaic lobes and valley fills, were focused into low areas between mounds. After a sea-level rise, oolitic carbonates formed on highs and phylloid algal facies accumulated in lows. A shift in the source direction of siliciclastics resulted from flooding or filling of preexisting paleotopographic lows. Fine-grained silidclastics were concentrated in paleotopographic low areas and resulted in clay-rich phylloid algal carbonates that would have made poor reservoirs. In areas more distant from silidclastic influx, phylloid algal facies with better reservoir potential formed in topographic lows. After another relative fall in sea level, marine carbonates and silidclastics were concentrated in paleotopographic low areas. After the next relative rise in sea level, there is little thickness or fades variation in phylloid algal limestone throughout the study area because: (1) substrate paleotopography had been subdued by filling, and (2) no silidclastics were deposited in the area. Widespread subaerial exposure and erosion during a final relative fall in sea level resulted in redevelopment of variable paleotopography. Build-and-fill sequences, such as these, are well known in other surface and subsurface examples. Initial relief is built by folding or faulting, differential compaction, erosion, or deposition of relief-building facies, such as phylloid algal and carbonate grainstone reservoir fades, or silidclastic wedges. Relief is filled through deposition of reservoir-fades siliciclastics, phylloid algal fades, and grainy carbonates, as well as nonreservoir facies, resulting in complex heterogeneity.
Flores, R.M.; Tur, S.M.
1982-01-01
Detailed facies analyses of closely spaced measured surface sections in the Trinidad and adjacent areas of Colorado reflect deposition in the river-influenced delta. That this deltaic system was accompanied by abandonment of subdeltas is indicated by a destructional-deltaic facies of heavily bioturbated, carbonaceous sandstones, siltstones, and shales best recorded in the delta front deposits of the Trinidad Sandstone. Coal accumulation of the Vermejo deposits nevertheless remained primarily controlled by persistent organic sedimentation in interdistributary backswamps. These backswamps, which accumulated thick, lenticular coals, were formed during the normal constructional phase of the delta plain. -from Authors
Facies remolding in allochthonous chalk packages, Ekofisk and Albuskjell fields, North Sea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lutz, S.J.; Ekdale, A.A.
1990-05-01
The Ekofish and Albuskjell fields in the Central Graben of the North Sea produce hydrocarbons from resedimented chalk reservoirs. Although the allochthonous nature of chalk in these fields has been recognized, the correlations of, and association between, allochthonous units has not been described. Core analysis of the Tor Formation (Maastrichtian) and the Ekofish Formation (Danian) reveals that slump deposits have been remolded into debris flows, ooze flows, and turbidites. Packages of allochthonous sediment were deposited in slope and base-of-slope environments. Two kinds of allochthonous packages occur. One package, 1-3-m thick, consists of a basal debris flow overlain by an oozemore » flow. The other package, 10-20-m thick, contains three units: a basal debris flow, an intermediate slump, and an overlying turbidite. Deposition of each type of package probably resulted from a single triggering event. Lateral changes in facies (increased convolution and decreased clastic content) and in type of deposit (slump or debris flow to ooze flow) within the packages resulted from differing degrees of deformation as the packages moved downslope. An increase in occurrence and angularity of chalk intraclasts, and in thickness of slump units from the Albuskjell field eastward to the Ekofisk field, suggest that the graben-bounding Hidra fault zone (about 30 km away) is the source of the allochthonous deposits. Vertical changes in the type of allochthonous package (from debris and ooze flows upward to slumps and turbidites) reflect decreasing topographic relief along the fault escarpment as the graben filled. This model of vertical (basin shallowing) and lateral (downslope) facies changes allows correlation of allochthonous chalk units, which are excellent hydrocarbon reservoirs.« less
Late Quaternary stratigraphy of the eastern Gulf of Maine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bacchus, T.S.; Belknap, D.F.
1993-03-01
Five distinct seismic facies describe the glacial, glacial-marine and postglacial sediments in the eastern Gulf of Maine. Regional cross-sections clearly document differences in the glacial-marine and postglacial stratigraphy between basins south of Truxton Swell, and Jordan basin to its north. Till occurs throughout the region as a thin veneer within basins, but thickens significantly over the ridges and swells separating basins. The ubiquitous presence of till suggests grounded ice occupied this area some time in the recent past. Ice-proximal glacial-marine (PGM) facies sediments of varying thickness mantle the entire area, occurring as a draped unit over pre-existing topography. Transitional glacial-marinemore » (TGM) facies also occur as a draped unit, but they show onlap onto basin margins. Sediments of the TGM facies are restricted to areas south of Truxton Swell. Ice-distal glacial-marine (DGM) facies sediments also mantle the entire area, but they occur primarily as a ponded, infilling unit. The nature and distribution of these glacial-marine facies within the eastern Gulf of Maine documents changes in the environment of deposition during deglaciation. In the authors model PGM facies sediments are considered to represent settling through the water column of coarse material from the base of an ice shelf. TGM facies sediments indicate retreat of this ice margin coupled with calving of large icebergs with significant amounts of coarse debris, DGM facies sediments indicate further retreat of the ice margin and a lessening of the influence of icebergs. Stepwise ice-margin retreat from south to north through a series of grounding lines and associated pinning points is evident by these time transgressive sedimentary facies that can be correlated across the region.« less
Ramp sedimentation in the Dinantian limestones of the Shannon Trough, Co. Limerick, Ireland
NASA Astrophysics Data System (ADS)
Somerville, Ian D.; Strogen, Peter
1992-08-01
During the late Chadian and Arundian (Lower Carboniferous), an extensive carbonate ramp (Limerick Ramp) developed over County Limerick, southwest Ireland, dipping northwestwards. Three distinct facies can be recognised corresponding to position on this ramp: inner, mid- and outer ramp. The inner ramp facies of oolitic and crinoidal grainstones (Herbertstown Limestone Formation) in east Limerick formed a major shoal behind which peritidal limestones were deposited. The mid-ramp facies of muddy bioclastic limestones and shales (Cooperhill facies) in north Limerick formed between fairweather and storm wave bases. The outer ramp (basinal) facies of mudstones and thin graded resedimented limestones (Rathkeale Beds) in west Limerick developed below storm wave base when fine terrigenous input was high. Later in the Arundian there was progradation of the nearshore oolitic and crinoidal grainstones over the mid-ramp facies. By the Holkerian, the deep-water basinal facies in west Limerick was buried beneath mid-ramp facies (Durnish Limestone). The initiation of the Limerick Ramp is closely related to the formation of the Shannon Trough. In the late Courceyan, accelerated subsidence in the Shannon area during deposition of Waulsortian facies marked the onset of a sag phase. Following a quiescent period in early Chadian, subsidence was renewed in the late Chadian and Arundian, when major facies changes occurred on the ramp. Comparison of the Shannon Trough with the Dublin Basin shows that in the latter, tectonic events in the Chadian and Arundian, particularly syn-sedimentary faulting, created a sharp division between platform and basinal sedimentation. Such tectonic influence is not recognised in the Shannon Trough. Here differential subsidence and eustatic sea-level changes led to more permanent ramp existence, modified only by westwards progradation.
Secondary carbonate porosity as related to early teritiary depositional facies, Zelten field, Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bebout, D.G.; Pendexter, C.
1975-04-01
Production from the Zelten field, Libya, is from the highly porous shelf limestones of the Zelten Member (Main Pay) of the Paleocene and lower Eocene Ruaga Limestone. Fifteen facies are recognized, mapped, and predicted. Seven of the facies comprise the larger part of the Zelten Member. These include miliolid-foraminiferal micrite, argillaceous bryozoan/echinoid micrite, argillaceous-molluscan micrite, coralgal micrite. Discocyclina-foraminiferal calcarenite, foraminiferal calcarenite and micrite, and Discocyclina-foraminiferal micrite. In the Zelten field secondary porosity is recorded as much as 40%; this porosity is related to the original depositional fabric of the sediment and, therefore, is facies controlled. Porosity is highest in themore » coralgal micrite and Discocyclina-foraminiferal calcarenite, which together form a NW.-SE. trend across the N. part of the field, and in the formaniniferal calcarenite and micrite. (10 refs.)« less
Barnhardt, W.A.; Sherrod, B.L.
2006-01-01
Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvial–deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.
NASA Astrophysics Data System (ADS)
Łapcik, Piotr
2018-02-01
Deep-sea channels are one of the architectonic elements, forming the main conduits for sand and gravel material in the turbidite depositional systems. Deep-sea channel facies are mostly represented by stacking of thick-bedded massive sandstones with abundant coarse-grained material, ripped-up clasts, amalgamation and large scale erosional structures. The Manasterz Quarry of the Ropianka Formation (Upper Cretaceous, Skole Nappe, Carpathians) contains a succession of at least 31 m of thick-bedded high-density turbidites alternated with clast-rich sandy debrites, which are interpreted as axial deposits of a deep-sea channel. The section studied includes 5 or 6 storeys with debrite basal lag deposits covered by amalgamated turbidite fills. The thickness of particular storeys varies from 2.5 to 13 m. Vertical stacking of similar facies through the whole thickness of the section suggest a hierarchically higher channel-fill or a channel complex set, with an aggradation rate higher than its lateral migration. Such channel axis facies cannot aggrade without simultaneous aggradation of levee confinement, which was distinguished in an associated section located to the NW from the Manasterz Quarry. Lateral offset of channel axis facies into channel margin or channel levee facies is estimated at less than 800 m. The Manasterz Quarry section represents mostly the filling and amalgamation stage of channel formation. The described channel architectural elements of the Ropianka Formation are located within the so-called Łańcut Channel Zone, which was previously thought to be Oligocene but may have been present already in the Late Cretaceous.
NASA Astrophysics Data System (ADS)
Astakhova, Anna; Khardikov, Aleksandr
2013-04-01
Sedimentation conditions of upper Permian volcano-clastic rocks of Ayan-Yurakhsky anticlinorium are the reason of discussions between researchers. It is important to correctly solve this problem. Investigation allows us to conclude that upper Permian sediments was formed due to high rate deltaic sedimentation on shelf and continental slope of epicontinental sea basin. More than 45 outcrops of upper Permian sediments were described within Ayan-Yurakhsky anticlinorium. Termochemical and X-ray phase, lithological facies, stadial, paleogeographic and others were applied. Investigation allows to classify following types: tuffs, tuffites of andesites, andesi-dacites, sandstone tuffs, siltstone tuffs and claystone tuffs. Two facies were deliniated in the research area: 1) delta channel facies 2) epicontinental sea shelf edge and continental slope. Delta channel facies are located on the south-west part of Aian-Yrahskiy anticlinorium. It is composed of silty packsand and psammitic tuff-siltstone alternation and gravel-psammitic andesi-dacitic tuffute and tuff-breccia bands. Sediments have cross-bedding, through cross-bedding, curvilinear lamination structures. Facies occurred during high rate deltaic sedimentation on the shelf of epicontinental sea. Epicontinental sea shelf edge and continental slope facies are located on the south-west part. Sediments are represented by large thickness tuff-siltstone with tuff-sandstone, tuff-madstone, tuff, tuffite bands and lenses. Large number of submarine landslides sediments provide evidence that there was high angle sea floore environment. 30-50 m diametr eruption centers were described by authors during geological traverses. They are located in Kulu river basin. Their locations are limited by deep-seated pre-ore fault which extended along Ayan-Yurakhsky anticlinorium. U-Pb SHRIMP method showed that the average age of circons, taken from eruption centers, is Permian (256,3±3,7 ma). This fact confirms our emphasis that eruption centers were the centre of underwater effusive explosions which had been occurred in late Permian time. Gold ore deposits mainly localized in the south of Ayan-Yurakhsky anticlinorium and associated with upper Permian deltaic facies sediments. Taking into account lithological facies feature and volcanoclastic origin of sediments it is reasonable to suggest expelled-catagenesis model of gold mineralization. Gold was entered in sedimentary basin with piroclastic material. During catagenesis stage gold migrated from complex of shelf edge and continental slope to fan delta front complex in conjunction with expelled water. The emplacement of ore gold deposits related with upper Permian sediments can be successfully predicted, using this model and associated techniques.
NASA Astrophysics Data System (ADS)
Mardassi, Besma
2017-10-01
Early Eocene deposits in Tunisia are marked by clear variations in terms of facies and thickness. Each facies corresponds to an appropriate depositional environment. Shallow water deposits pass gradually offshore into deeper carbonates along a homoclinal ramp. In Central Tunisia, detailed investigation of carbonate facies under transmitted light shows a particular richness of the middle part of Early Eocene deposits in nummulithoclasts. These facies are often frequent within corrugated banks. They are overlaying Globigerina rich well-bedded limestones and overlain by nummulites and Discocyclina rich massively-bedded carbonates. Nummulithoclasts occurrence is recorded on field by an abrupt vertical change from autochthonous thinly-bedded limestones to massively-bedded fossiliferous carbonates. Change concerns structures, textures and limestones' composition. Nummulithoclasts are associated either to planktonic micro-organisms or to benthic fauna and phosphates grains. The middle and the upper parts of the Early Eocene deposits, particularly, fossilize hummocky cross-stratifications and megaripples. Their presence advocates the role of energetic currents in sweeping nummulites from lower circatidal to upper bathyal environments. The absence of a slope break helped the settling of reworked nummulites within deeper environments. The abrupt change, nummulithoclast associations and current structures arouse reflection and make them not reliable to characterize depositional environments. However, their preferential occurrence within the middle part of Early Eocene deposits and the tight linkage with storm activity lead them to be considered as event. The large scale hummocks recorded on field suggests that nummulite fragmentation was triggered by tropical cyclones rather than humble storms. The frequent occurrence of cyclones which correspond to low pressure atmospheric systems seems in relation with a global warming enhancing the sea surface temperature.
Buatois, L.A.; Mangano, M.G.; Alissa, A.; Carr, T.R.
2002-01-01
Integrated ichnologic, sedimentologic, and stratigraphic studies of cores and well logs from Lower Pennsylvanian oil and gas reservoirs (lower Morrow Sandstone, southwest Kansas) allow distinction between fluvio-estuarine and open marine deposits in the Gentzler and Arroyo fields. The fluvio-estuarine facies assemblage is composed of both interfluve and valley-fill deposits, encompassing a variety of depositional environments such as fluvial channel, interfluve paleosol, bay head delta, estuary bay, restricted tidal flat, intertidal channel, and estuary mouth. Deposition in a brackish-water estuarine valley is supported by the presence of a low diversity, opportunistic, impoverished marine ichnofaunal assemblage dominated by infaunal structures, representing an example of a mixed, depauperate Cruziana and Skolithos ichnofacies. Overall distribution of ichnofossils along the estuarine valley was mainly controlled by the salinity gradient, with other parameters, such as oxygenation, substrate and energy, acting at a more local scale. The lower Morrow estuarine system displays the classical tripartite division of wave-dominated estuaries (i.e. seaward-marine sand plug, fine-grained central bay, and sandy landward zone), but tidal action is also recorded. The estuarine valley displays a northwest-southeast trend, draining to the open sea in the southeast. Recognition of valley-fill sandstones in the lower Morrow has implications for reservoir characterization. While the open marine model predicts a "layer-cake" style of facies distribution as a consequence of strandline shoreline progradation, identification of valley-fill sequences points to more compartmentalized reservoirs, due to the heterogeneity created by valley incision and subsequent infill. The open-marine facies assemblage comprises upper, middle, and lower shoreface; offshore transition; offshore; and shelf deposits. In contrast to the estuarine assemblage, open marine ichnofaunas are characterized by a high diversity of biogenic structures representing the activity of a benthic fauna developed under normal salinity conditions. Trace fossil and facies analyses allow environmental subdivision of the shoreface-offshore successions and suggest deposition in a weakly storm-affected nearshore area. An onshore-offshore replacement of the Skolithos ichnofacies by the Cruziana ichnofacies is clearly displayed. The lower Morrow fluvio-estuarine valley was incised during a drop of sea level coincident with the Mississippian-Pennsylvanian transition, but was mostly filled during a subsequent transgression. The transgressive nature of the estuarine infill is further indicated by the upward replacement of depauperate brackish-water trace fossil assemblages by the open-marine Cruziana ichnofacies. Additional stratal surfaces of allostratigraphic significance identified within the estuary include the bayline surface, the tidal ravinement surface, the wave ravinement surface, and a basinwide flooding surface recording inundation of the valley interfluves. A younger sequence boundary within the lower Morrow is also recorded in the Gentzler field at the base of a forced regression shoreface, demarcated by the firmground Glossifungites ichnofacies, indicating a rapid basinward facies migration during a sea-level drop. Trace fossil models derived from the analysis of Mesozoic and Cenozoic reservoirs are generally applicable to the study of these late Paleozoic reservoirs. Pennsylvanian brackish-water facies differ ichnologically from their post-Paleozoic counterparts, however, in that they have: (1) lower trace fossil diversity, (2) lower degree of bioturbation, (3) scarcity of crustacean burrows, (4) absence of firmground suites, and (5) absence of ichnotaxa displaying specific architectures designed to protect the tracemaker from salinity fluctuations. Morrow open-marine ichnofaunas closely resemble their post-Paleozoic equivalents. ?? 2002 Elsevier Science B.V. All rights reserved.
Depositional environment of the Onverwacht sedimentary rocks Barberton greenstone belt, South Africa
NASA Astrophysics Data System (ADS)
Paris, I. A.
The Onverwacht Group is the basal part of the ca 3.5 Ga succession forming the Barberton greenstone belt. It comprises a volcanic pile overlain by a thin layer of volcaniclastic sediments which, due to silicification, are extremely well preserved. There has been a controversy as to how and in what environment these sediments were formed, different sets of data being presented to reach opposite conclusions. The Onverwacht Group has been extensively repeated tectonically and here for the first time, sediments from different structural levels are studied together. Three separate facies have been recognised, a distal and proximal turbidite facies and a subaerial facies. Deposition of Onverwacht Group sedimentary rocks occurred in an oceanic basin characterised by the presence of emergent volcanic islands. After eruption, material was deposited both subaerially and in a shallow submarine environment on the volcanic slopes and, as a result of pyroclastic flow, in the deeper parts of the basin.
Marble-hosted ruby deposits of the Morogoro Region, Tanzania
NASA Astrophysics Data System (ADS)
Balmer, Walter A.; Hauzenberger, Christoph A.; Fritz, Harald; Sutthirat, Chakkaphan
2017-10-01
The ruby deposits of the Uluguru and Mahenge Mts, Morogoro Region, are related to marbles which represent the cover sequence of the Eastern Granulites in Tanzania. In both localities the cover sequences define a tectonic unit which is present as a nappe structure thrusted onto the gneissic basement in a north-western direction. Based on structural geological observations the ruby deposits are bound to mica-rich boudins in fold hinges where fluids interacted with the marble-host rock in zones of higher permeability. Petrographic observations revealed that the Uluguru Mts deposits occur within calcite-dominated marbles whereas deposits in the Mahenge Mts are found in dolomite-dominated marbles. The mineral assemblage describing the marble-hosted ruby deposit in the Uluguru Mts is characterised by corundum-dolomite-phlogopite ± spinel, calcite, pargasite, scapolite, plagioclase, margarite, chlorite, tourmaline whereas the assemblage corundum-calcite-plagioclase-phlogopite ± dolomite, pargasite, sapphirine, titanite, tourmaline is present in samples from the Mahenge Mts. Although slightly different in mineral assemblage it was possible to draw a similar ruby formation history for both localities. Two ruby forming events were distinguished by textural differences, which could also be modeled by thermodynamic T-XCO2 calculations using non-ideal mixing models of essential minerals. A first formation of ruby appears to have taken place during the prograde path (M1) either by the breakdown of diaspore which was present in the original sedimentary precursor rock or by the breakdown of margarite to corundum and plagioclase. The conditions for M1 metamorphism was estimated at ∼750 °C at 10 kbar, which represents granulite facies conditions. A change in fluid composition towards a CO2 dominated fluid triggered a second ruby generation to form. Subsequently, the examined units underwent a late greenschist facies overprint. In the framework of the East African Orogen we assume that the prograde ruby formation occurred at the commonly observed metamorphic event around 620 Ma. At the peak or during beginning of retrogression the fluid composition changed triggering a second ruby generation. The late stage greenschist facies overprint could have occurred at the waning stage of this metamorphic episode which is in the range of ∼580 Ma.
NASA Astrophysics Data System (ADS)
Anan, Tarek I.; El-Shahat, Adam; Genedi, Adel; Grammer, Michael
2013-06-01
Cenomanian-Turonian deposits are important reservoirs for many oil fields in the Western Desert and the Gulf of Suez region of Egypt. Study of the Raha and Abu Qada formations (Cenomanian-Turonian), from five dip-oriented outcrop locations in west central Sinai; indicates deposition of a mixed siliciclastic-carbonate system on a ramp setting. The inner ramp facies (bivalve and benthonic foraminiferal wackestone) grades northward to the mid ramp facies (echinoderm calcisphere packstone, and oyster floatstone), and outer ramp facies (planktonic foraminiferal wackestone and calcisphere wackestone). The two studied formations comprise one second-order depositional sequence (duration of approximately 10 Million years). This large scale sequence includes four third-order depositional sequences, three of which are observed in the Raha Formation, with the other one recorded in the Abu Qada Formation. Because west central Sinai was tectonically stable during the Cenomanian and Turonian, the main factor controlling the lateral and vertical distribution of facies tracts is likely due to changes in the relative sea level. The Cenomanian-Turonian boundary event is known as the largest oceanic anoxic event during the Cretaceous. This global event has been documented in three of the studied sections. The recorded δ13C excursions range from +3.04‰ to +5.24‰. These high positive excursions in δ13C are associated with highly negative values of δ18O (values range from -6.01‰ to -1.38‰).
Cyclic transgressive and regressive sequences, Paleocene Suite, Sirte basin, Libya
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abushagur, S.A.
1986-05-01
The Farrud lithofacies represent the main reservoir rock of the Ghani oil field and Western Concession Eleven of the Sirte basin, Libya. Eight microfacies are recognized in the Farrud lithofacies in the Ghani field area: (1) bryozoan-bioclastic (shallow, warm, normal marine shelf deposits); (2) micrite (suggesting quiet, low-energy conditions such as may have existed in a well-protected lagoon); (3) dasycladacean (very shallow, normal marine environment); (4) bioclastic (very shallow, normal marine environment with moderate to vigorous energy); (5) mgal (very shallow, normal marine environment in a shelf lagoon); (6) pelletal-skeletal (deposition within slightly agitated waters of a sheltered lagoon withmore » restricted circulation); (7) dolomicrite (fenestrate structures indicating a high intertidal environment of deposition); and (8) anhydrite (supratidal environment). The Paleocene suite of the Farrud lithofacies generally shows a prograding, regressive sequence of three facies: (1) supratidal facies, characterized by nonfossiliferous anhydrite, dolomite, and dolomitic pelletal carbonate mudstone; (2) intertidal to very shallow subtidal facies, characterized by fossiliferous, pelletal, carbonate mudstone and skeletal calcarenite; and (3) subtidal facies, characterized by a skeletal, pelletal, carbonate mudstone. Source rocks were primarily organic-rich shales overlying the Farrud reservoir rock. Porosity and permeability were developed in part by such processes as dolomitization, leaching, and fracturing in the two progradational, regressive carbonate facies. Hydrocarbons were trapped by a supratidal, anhydrite cap rock.« less
Brackish to hypersaline lake dolostones of the Mississippian
NASA Astrophysics Data System (ADS)
Bennett, Carys; Kearsey, Timothy; Davies, Sarah; Millward, David; Marshall, John
2016-04-01
Flat-lying ferroan dolomite beds are common in the Mississippian and occur along the southern margin of Laurassia, from Kentucky USA to Poland. These rocks are important as they record shallow marine to coastal plain environments that may have acted as a pathway or refugia for animals that were radiating into freshwaters such as tetrapods, fish, molluscs and arthropods. This study is a contribution to the TW:eed Project (Tetrapod World: early evolution and diversification), that examines the rebuilding of Carboniferous ecosystems following a mass extinction at the end of the Devonian. The project focuses on the Tournaisian Ballagan Formation of Scotland, which contains rare fish and tetrapod fossils. The formation is characterised by an overbank facies association of siltstone, sandstone and palaeosols, interbedded with dolostone and evaporite units, and cut by fluvial sandstone facies associations of fining-upwards conglomerate lags, cross-bedded sandstone and rippled siltstone. Two sites are used as a case study to describe the sedimentological, faunal and ichnofaunal diversity of these dolostones. More than 270 dolostone beds are recorded in each of the 500 metre depth Norham Core (near Berwick-upon-Tweed) and from a 520 metre thick field section at Burnmouth. The beds are laterally extensive, over ˜1 km, although individual units do not appear to correlate between the core and the field site. In the Norham Core dolostones comprise up to 14% of the succession. 17% of the beds contain marginal marine fossils: Spirorbis, rare orthocones, brachiopods and putative marine sharks. More common fauna include ostracods, bivalves, plants, eurypterids, gastropods and sarcopterygian fish, which are interpreted as brackish to freshwater tolerant. Bioturbation is fairly common with Serpula colonies within dolostone beds and Chondrites burrowing down from the base of dolostone beds. Some rare units in the field section have a bulbous bed surface and preserve tree root traces, and 9% of all dolostone beds in the Norham Core are pedogenically altered. The isotopic composition of dolomite beds is δ18O -3.6‰ to -1.7‰ and δ13C -2.6‰ to 1.6‰ which is consistent with a brackish as opposed to marine origin. The dolostones are categorised by their sedimentary composition: Facies 1: Cemented siltstone and sandstone; Facies 2: Homogeneous micrite to micro-crystaline dolomite, within a clay matrix; Facies 3: Bedded dolomite and siltstone; Facies 4: Mixed calcite and dolomite; Facies 5: Dolomite with gypsum and anhydrite. Formation processes are diverse, and include diagenetic cementation (Facies 1), deposition in saline (brackish) lakes (Facies 2), deposition in saline lakes with clastic sediment input (Facies 3), lagoonal to shallow-marine carbonate deposition (Facies 4), and hypersaline lake to sabkha environments (Facies 5). 60% of the beds are facies 2 or 3 and their sedimentology, fauna, ichnofauna and isotopic composition indicate a brackish-water origin. Other Mississippian dolostones from around the world also contain a fairly restricted fauna and have been interpreted as brackish water deposits. The mechanism of dolomite formation under these conditions is discussed. These dolostones provided extensive coastal lakes that may have been an important habitat for tetrapods and other transitional groups during the Mississippian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouke, B.W.; Farmer, J.D.; Des Marais, D.J.
Petrographic and geochemical analyses of travertine-depositing hot springs at Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, have been used to define five depositional facies along the spring drainage system. Spring waters are expelled in the vent facies at 71 to 73 C and precipitate mounded travertine composed of aragonite needle botryoids. The apron and channel facies (43--72 C) is floored by hollow tubes composed of aragonite needle botryoids that encrust sulfide-oxidizing Aquificales bacteria. The travertine of the pond facies (30--62 C) varies in composition from aragonite needle shrubs formed at higher temperatures to ridged networks of calcite and aragonitemore » at lower temperatures. Calcite ice sheets, calcified bubbles, and aggregates of aragonite needles (fuzzy dumbbells) precipitate at the air-water interface and settle to pond floors. The proximal-slope facies (28--54 C), which forms the margins of terracette pools, is composed of arcuate aragonite needle shrubs that create small microterracettes on the steep slope face. Finally, the distal-slope facies (28--30 C) is composed of calcite spherules and calcite feather crystals. Despite the presence of abundant microbial mat communities and their observed role in providing substrates for mineralization, the compositions of spring-water and travertine predominantly reflect abiotic physical and chemical processes. Vigorous CO{sub 2} degassing causes a +2 unit increase in spring water pH, as well as Rayleigh-type covariations between the concentration of dissolved inorganic carbon and corresponding {delta}{sup 13}C. Travertine {delta}{sup 13}C and {delta}{sup 18}O are nearly equivalent to aragonite and calcite equilibrium values calculated from spring water in the higher-temperature ({approximately}50--73 C) depositional facies. Conversely, travertine precipitating in the lower-temperature (<{approximately}50 C) depositional facies exhibits {delta}{sup 13}C and {delta}{sup 18}O values that are as much as 4% less than predicted equilibrium values. This isotopic shift may record microbial respiration as well as downstream transport of travertine crystals. Despite the production of H{sub 2}S and the abundance of sulfide-oxidizing microbes, preliminary {delta}{sub 34}S data do not uniquely define the microbial metabolic pathways present in the spring system. This suggests that the high extent of CO{sub 2} degassing and large open-system solute reservoir in these thermal systems overwhelm biological controls on travertine crystal chemistry.« less
NASA Astrophysics Data System (ADS)
Krupnik, D.; Khan, S.; Okyay, U.; Hartzell, P. J.; Biber, K.
2015-12-01
Ground based remote sensing is a novel technique for development of digital outcrop models which can be instrumental in performing detailed qualitative and quantitative sedimentological analysis for the study of depositional environment, diagenetic processes, and hydrocarbon reservoir characterization. For this investigation, ground-based hyperspectral data collection is combined with terrestrial LiDAR to study outcrops of Late Albian rudist buildups of the Edwards formation in the Lake Georgetown Spillway in Williamson County, Texas. The Edwards formation consists of shallow water deposits of reef and associated inter-reef facies, including rudist bioherms and biostromes. It is a significant aquifer and was investigated as a hydrocarbon play in south central Texas. Hyperspectral data were used to map compositional variation in the outcrop by distinguishing spectral properties unique to each material. Lithological variation was mapped in detail to investigate the structure and composition of rudist buildups. Hyperspectral imagery was registered to a 3D model produced from the LiDAR point cloud with an accuracy of up to one pixel. Flat-topped toucasid-rich bioherm facies were distinguished from overlying toucasid-rich biostrome facies containing chert nodules, overlying sucrosic dolostones, and uppermost peloid wackestones and packstones of back-reef facies. Ground truth was established by petrographic study of samples from this area and has validated classification products of remote sensing data. Several types of porosity were observed and have been associated with increased dolomitization. This ongoing research involves integration of remotely sensed datasets to analyze geometrical and compositional properties of this carbonate formation at a finer scale than traditional methods have achieved and seeks to develop a workflow for quick and efficient ground based remote sensing-assisted outcrop studies.
Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting
NASA Astrophysics Data System (ADS)
Fogg, Graham E.; Noyes, Charles D.; Carle, Steven F.
Information on sediment texture and spatial continuity are inherent to sedimentary depositional facies descriptions, which are therefore potentially good predictors of spatially varying hydraulic conductivity (K). Analysis of complex alluvial heterogeneity in Livermore Valley, California, USA, using relatively abundant core descriptions and field pumping-test data, demonstrates a depositional-facies approach to characterization of subsurface heterogeneity. Conventional textural classifications of the core show a poor correlation with K; however, further refinement of the textural classifications into channel, levee, debris-flow, and flood-plain depositional facies reveals a systematic framework for spatial modeling of K. This geologic framework shows that most of the system is composed of very low-K flood-plain materials, and that the K measurements predominantly represent the other, higher-K facies. Joint interpretation of both the K and geologic data shows that spatial distribution of K in this system could not be adequately modeled without geologic data and analysis. Furthermore, it appears that K should not be assumed to be log-normally distributed, except perhaps within each facies. Markov chain modeling of transition probability, representing spatial correlation within and among the facies, captures the relevant geologic features while highlighting a new approach for statistical characterization of hydrofacies spatial variability. The presence of fining-upward facies sequences, cross correlation between facies, as well as other geologic attributes captured by the Markov chains provoke questions about the suitability of conventional geostatistical approaches based on variograms or covariances for modeling geologic heterogeneity. Résumé Les informations sur la texture des sédiments et leur continuité spatiale font partie des descriptions de faciès sédimentaires de dépôt. Par conséquent, ces descriptions sont d'excellents prédicteurs potentiels des variations spatiales de la conductivité hydraulique (K). L'analyse de l'hétérogénéité des alluvions complexes de la vallée de Livermore (Californie, États-Unis), sur la base de descriptions de carottes relativement nombreuses et de données d'essais de pompage, montre que l'hétérogénéité souterraine peut être caractérisée par une approche des faciès de dépôt. Des classifications conventionnelles de la texture de la carotte montrent une corrélation médiocre avec K; toutefois, une amélioration ultérieure des classifications de texture en faciès de dépôt de chenal, de levée d'inondation, de coulée boueuse et de plaine d'inondation a fourni un cadre systématique pour une modélisation spatiale de K. Ce cadre géologique montre que le système est composé pour l'essentiel par des matériaux d'inondation à très faible perméabilité ceci laisse envisager qu'on ne peut pas supposer que K suit une distribution log-normal, sauf peut-être à l'intérieur de chaque faciès. Une modélisation par chaîne de Markov de la probabilité de passage, représentant la corrélation spatiale dans les faciès et entre eux, prend en compte les faits géologiques intéressants tout en fournissant une approche nouvelle pour une caractérisation statistique de la variabilité spatiale des faciès. La présence de séquences à faciès tronqués vers le haut, d'une corrélation croisée entre faciès, ainsi que d'autres caractères géologiques pris en compte par les chaînes de Markov conduisent à se poser des questions sur l'adéquation des approches géostatistiques conventionnelles utilisant les variogrammes ou les covariances pour modéliser l'hétérogénéité géologique. Resumen La información respecto a la textura de los sedimentos y la continuidad espacial es inherente a las descripciones de las facies deposicionales sedimentarias. De este modo, estas descripciones se convierten en excelentes predictores potenciales de las variaciones espaciales de la conductividad hidráulica (K). El análisis de la heterogeneidad en un aluvial en el Valle de Livermore (California, EEUU), a partir de las relativamente abundantes descripciones de testigos y de datos de ensayos de bombeo es una muestra del método de la facies deposicional para caracterizar la heterogeneidad subsuperficial. Las clasificaciones texturales convencionales de los testigos muestran una correlación pobre con K; sin embargo, el posterior refinamiento de la clasificación en canales, diques, flujo de derrubios y llanura de inundación revela un marco sistemático para la modelización espacial de K. Este marco geológico muestra que la mayor parte del sistema está compuesto por materiales de la llanura de inundación, de muy baja permeabilidad, y sugiere que no debe asumirse que K tiene una distribución log-normal, excepto quizás para cada facies por separado. Un modelo de cadena de Markov, tanto para representar la correlación espacial en cada facies como la relación entre las distintas facies, capta las características geológicas más importantes, a la vez que presenta un nuevo método para la caracterización estadística de la variabilidad espacial de las hidrofacies. La presencia de secuencias de facies más finas hacia la superficie, la correlación cruzada entre facies y otros atributos captados por las cadenas de Markov cuestionan lo adecuado de los métodos geoestadísticos convencionales basados en variogramas y covarianzas para modelar la heterogeneidad.
NASA Astrophysics Data System (ADS)
Bastos, Alex Cardoso; Costa Moscon, Daphnne Moraes; Carmo, Dannilo; Neto, José Antonio Baptista; da Silva Quaresma, Valéria
2015-02-01
Sediment dynamics in wave-dominated coastal embayments are generally controlled by seasonal meteorological conditions, storms having a particularly strong influence. In the present study, such hydrodynamic processes and associated deposits have been investigated in a coastal embayment located along the southeast coast of Brazil, i.e. Espírito Santo Bay, in the winter (June/July) of 2008. The bay has undergone a series of human interventions that have altered the local hydrodynamic processes and, consequently, the sediment transport patterns. Facies distribution and sediment dynamics were examined by acoustic seabed mapping, sediment and core sampling, hydrodynamic measurements and sand transport modelling. The results show that sediment distribution can be described in terms of nearshore and offshore zones. The offshore bay sector is predominantly composed of "palimpsest" lithoclastic medium-coarse sands deposited in the course of the early Holocene transgression that peaked about 5,000 years ago. In the inner bay or nearshore zone (up to depths of 4-8 m), these older transgressive deposits are today overlain by a thin (up to 30-cm-thick) and partly patchy blanket of younger regressive fine sand/muddy fine sands. Both coarse- and fine-grained facies are being reworked during high-energy events (Hs>1.5 m) when fine sediment is resuspended, weak tide-induced drift currents causing the sand patches to be displaced. The coarser sediment, by contrast, is mobilized as bedload to produce wave ripples with spacings of up to 1.2 m. These processes lead to a sharp spatial delimitation between a fine sand/mud facies and a rippled coarse sand facies. The fine sand patches have a relief of about 20-30 cm and reveal a typical internal tempestite depositional sequence. Fair-weather wave-induced sediment transport (Hs<1 m), supported by weak tidal currents, seems to only affect the fine sediment facies. Sediment dynamics in Espírito Santo Bay is thus essentially controlled by wave action during storms, tidal currents playing a very subordinate role. Anthropogenic changes due to the construction of a port at the entrance of the bay have not only produced erosion along the beach, but could also explain the occurrence of sand patches concentrated in the north-eastern part of the bay. Because storm-induced deposits of the type observed in this study have an inherently patchy distribution, this feature needs to be taken into consideration when interpreting the rock record in terms of modern analogues.
Controls on the quality of Miocene reservoirs, southern Gulf of Mexico
NASA Astrophysics Data System (ADS)
Gutiérrez Paredes, Hilda Clarisa; Catuneanu, Octavian; Hernández Romano, Ulises
2018-01-01
An investigation was conducted to determine the main controls on the reservoir quality of the middle and upper Miocene sandstones in the southern Gulf of Mexico based on core descriptions, thin section petrography and petrophysical data; as well as to explore the possible link between the sequence stratigraphic framework, depositional facies and diagenetic alterations. The Miocene deep marine sandstones are attributed to the falling-stage, lowstand, and transgressive systems tracts. The middle Miocene falling-stage systems tract includes medium-to very fine-grained, and structureless sandstones deposited in channels and frontal splays, and muddy sandstones, deposited in lobes of debrites. The lowstand and transgressive systems tracts consist of medium-to very fine-grained massive and normally graded sandstones deposited in channel systems within frontal splay complexes. The upper Miocene falling-stage systems tract includes medium-to coarse-grained, structureless sandstones deposited in channel systems and frontal splay, as well as lobes of debrites formed by grain flows and hybrid-flow deposits. The lowstand and transgressive systems tracts include fine-grained sandstones deposited in overbank deposits. The results reveal that the depositional elements with the best reservoir quality are the frontal splays deposited during the falling-stage system tracts. The reservoir quality of the Miocene sandstones was controlled by a combination of depositional facies, sand composition and diagenetic factors (mainly compaction and calcite cementation). Sandstone texture, controlled primarily by depositional facies appears more important than sandstone composition in determining reservoir quality; and compaction was more important than cementation in porosity destruction. Compaction was stopped, when complete calcite cementation occurred.
McGlue, Michael M.; Cohen, Andrew S.; Ellis, Geoffrey S.; Kowler, Andrew L.
2013-01-01
Depositional models of ancient lakes in thin-skinned retroarc foreland basins rarely benefit from appropriate Quaternary analogues. To address this, we present new stratigraphic, sedimentological and geochemical analyses of four radiocarbon-dated sediment cores from the Pozuelos Basin (PB; northwest Argentina) that capture the evolution of this low-accommodation Puna basin over the past ca. 43 cal kyr. Strata from the PB are interpreted as accumulations of a highly variable, underfilled lake system represented by lake-plain/littoral, profundal, palustrine, saline lake and playa facies associations. The vertical stacking of facies is asymmetric, with transgressive and thin organic-rich highstand deposits underlying thicker, organic-poor regressive deposits. The major controls on depositional architecture and basin palaeogeography are tectonics and climate. Accommodation space was derived from piggyback basin-forming flexural subsidence and Miocene-Quaternary normal faulting associated with incorporation of the basin into the Andean hinterland. Sediment and water supply was modulated by variability in the South American summer monsoon, and perennial lake deposits correlate in time with several well-known late Pleistocene wet periods on the Altiplano/Puna plateau. Our results shed new light on lake expansion–contraction dynamics in the PB in particular and provide a deeper understanding of Puna basin lakes in general.
Vallance, J.W.; Scott, K.M.
1997-01-01
The 3.8 km3 Osceola Mudflow began as a water-saturated avalanche during phreatomagmatic eruptions at the summit of Mount Rainier about 5600 years ago. It filled valleys of the White River system north and northeast of Mount Rainier to depths of more than 100 m, flowed northward and westward more than 120 km, covered more than 200 km2 of the Puget Sound lowland, and extended into Puget Sound. The lahar had a velocity of ???19 m/s and peak discharge of ???2.5 ?? 106 m3/s, 40 to 50 km downstream, and was hydraulically dammed behind a constriction. It was coeval with the Paradise lahar, which flowed down the south side of Mount Rainier, and was probably related to it genetically. Osceola Mudflow deposits comprise three facies. The axial facies forms normally graded deposits 1.5 to 25 m thick in lowlands and valley bottoms and thinner ungraded deposits in lowlands; the valley-side facies forms ungraded deposits 0.3 to 2 m thick that drape valley slopes; and the hummocky facies, interpreted before as a separate (Greenwater) lahar, forms 2-10-m-thick deposits dotted with numerous hummocks up to 20 m high and 60 m in plan. Deposits show progressive downstream improvement in sorting, increase in sand and gravel, and decrease in clay. These downstream progressions are caused by incorporation (bulking) of better sorted gravel and sand. Normally graded axial deposits show similar trends from top to bottom because of bulking. The coarse-grained basal deposits in valley bottoms are similar to deposits near inundation limits. Normal grading in deposits is best explained by incremental aggradation of a flow wave, coarser grained at its front than at its tail. The Osceola Mudflow transformed completely from debris avalanche to clay-rich (cohesive) lahar within 2 km of its source because of the presence within the preavalanche mass of large volumes of pore water and abundant weak hydrothermally altered rock. A survey of cohesive lahars suggests that the amount of hydrothermally altered rock in the preavalanche mass determines whether a debris avalanche will transform into a cohesive debris flow or remain a largely unsaturated debris avalanche. The distinction among cohesive lahar, noncohesive lahar, and debris avalanche is important in hazard assessment because cohesive lahars spread much more widely than noncohesive lahars that travel similar distances, and travel farther and spread more widely than debris avalanches of similar volume. The Osceola Mudflow is documented here as an example of a cohesive debris flow of huge size that can be used as a model for hazard analysis of similar flows.
NASA Astrophysics Data System (ADS)
Robertson Handford, C.
1990-08-01
Subaqueous deposits of aragonite, gypsum, and halite are accumulating in shallow solar salt ponds constructed in the Pekelmeer, a sea-level sauna on Bonaire, Netherlands Antilles. Several halite facies are deposited in the crystallizer ponds in response to differences in water depth and wave energy. Cumulate halite, which originates as floating rafts, is present only along the protected, upwind margins of ponds where low-energy conditions foster their formation and preservation. Cornet crystals with peculiar mushroom- and mortarboard-shaped caps precipitate in centimetre-deep brine sheets within a couple of metres of the upwind or low-energy margins. Downwind from these margins, cornet and chevron halite precipitate on the pond floors in water depths ranging from a few centimetres to ˜60 cm. Halite pisoids with radial-concentric structure are precipitated in the swash zone along downwind high-energy shorelines where they form pebbly beaches. This study suggests that primary halite facies are energy and/or depth dependent and that some primary features, if preserved in ancient halite deposits, can be used to infer physical energy conditions, subenvironments such as low- to high-energy shorelines, and extremely shallow water depths in ancient evaporite basins.
NASA Astrophysics Data System (ADS)
Torres-Martínez, Miguel A.; Barragán, Ricardo; Sour-Tovar, Francisco; González-Mora, Sergio
2017-11-01
The Paso Hondo Formation outcrops around of the Chicomuselo region, Chiapas State, Mexico. It is a Permian lithostratigraphic unit mainly composed of massive limestone which has been dated for the Artinskian-Kungurian (late Cisuralian). A microfacies analysis carried out on the carbonate rocks of a stratigraphic section, allowed for the first time the recognition of the depositional conditions that prevailed in the Chicomuselo region at the end of the Cisuralian. The facies associations studied allowed identifying different marine paleoenvironments related with a homoclinal carbonate ramp. The presence of anhydrite nodules, a mud-dominated carbonate production in euphotic zone (precursor of mudstones and packstones) and the presence of a diverse fauna mainly composed of photic-independent biota (mollusks, bryozoans, brachiopods and crinoids), indicate that the studied section was deposited in a relatively uniform low angle ramp. Thus, facies of different environments of inner ramp were detected, including those of a lagoon close to a peritidal area, with periodical restricted or open circulation, and open waters deposits influenced by the storm zone. In addition, mid-ramp facies were also observed. Facies associations of the basal levels on the studied section were mainly correlated with lagoonal shallow marine environments, being ostracods, calcispheres and peloids the dominant allochems. In contrast, there is a shift upwards to facies of open waters and mid-ramp environments, characterized by abundant skeletal grains of bryozoans, brachiopods and crinoids. The paleoenvironments recorded through the stratigraphic section were related with specific bathymetries, having a general tend towards the sea level rise. This record coincides with the global transgression event occurred during the Early Permian which have also been described for coeval localities of Texas and New Mexico in the United States and western Venezuela.
Sequence stratigraphic principles applied to the Miocene Hawthorn Group, west-central Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Norton, V.L.; Randazzo, A.F.
1993-03-01
Sequence boundaries for the Miocene Hawthorn Group in the ROMP 20 drill core from Osprey, Sarasota County, FL were generally delineated by lithologic variations recognized from core slabs, thin section analysis, and geophysical logs. At least six depositional sequences representing third order sea level fluctuations were identified. Depositional environments were determined on the basis of the characteristic lithologic constituents including rip-up clasts, pellets, fossils, laminations, burrow, degree of induration, and grain sorting. The sequence boundaries appear to have formed when the rate of the eustatic fall exceeded basin subsidence rates producing a relative sea level fall at a depositional shorelinemore » break. As a result of the basinward facies shift associated with this sequence type, peritidal facies may directly overlie deeper water facies. Subaerial exposure and erosion can be expected. The sequence of facies representing progressively deeper water depositional environments, followed by a progressive shallowing, were present between bounding surfaces. Among the six sequences recognized, four were clearly delineated as representative of regression, subaerial exposure, and subsequent transgression. Two sequences were less clearly defined and probably represent transitional facies which had exposure surfaces developed. Comparison of the petrologically established sequence stratigraphy with published sea level curves resulted in a strong correlation between the number of sequences recognized and the number of coastal on-lap/off-lap cycles depicted for the early to middle Miocene. This correlation suggests that petrologic examination of core slabs, with supplemental thin section data, can provide useful information regarding the recognition of stratigraphic sequences and relative sea level fluctuations, particularly, in situations where seismic data may not be available.« less
Anatomy of a cyclically packaged Mesoproterozoic carbonate ramp in northern Canada
NASA Astrophysics Data System (ADS)
Sherman, A. G.; Narbonne, G. M.; James, N. P.
2001-03-01
Carbonates in the upper member of the Mesoproterozoic Victor Bay Formation are dominated by lime mud and packaged in cycles of 20-50 m. These thicknesses exceed those of classic shallowing-upward cycles by almost a factor of 10. Stratigraphic and sedimentological evidence suggests high-amplitude, high-frequency glacio-eustatic cyclicity, and thus a cool global climate ca. 1.2 Ga. The Victor Bay ramp is one of several late Proterozoic carbonate platforms where the proportions of lime mud, carbonate grains, and microbialites are more typical of younger Phanerozoic successions which followed the global waning of stromatolites. Facies distribution in the study area is compatible with deposition on a low-energy, microtidal, distally steepened ramp. Outer-ramp facies are hemipelagic lime mudstone, shale, carbonaceous rhythmite, and debrites. Mid-ramp facies are molar-tooth limestone tempestite with microspar-intraclast lags. In a marine environment where stromatolitic and oolitic facies were otherwise rare, large stromatolitic reefs developed at the mid-ramp, coeval with inner-ramp facies of microspar grainstone, intertidal dolomitic microbial laminite, and supratidal evaporitic red shale. Deep-subtidal, outer-ramp cycles occur in the southwestern part of the study area. Black dolomitic shale at the base is overlain by ribbon, nodular, and carbonaceous carbonate facies, all of which exhibit signs of synsedimentary disruption. Cycles in the northeast are shallow-subtidal and peritidal in character. Shallow-subtidal cycles consist of basal deep-water facies, and an upper layer of subtidal molar-tooth limestone tempestite interbedded with microspar calcarenite facies. Peritidal cycles are identical to shallow-subtidal cycles except that they contain a cap of dolomitic tidal-flat microbial laminite, and rarely of red shale sabkha facies or of sandy polymictic conglomerate. A transect along the wall of a valley extending 8.5 km perpendicular to depositional strike reveals progradation of inner-ramp tidal flats over outer- and mid-ramp facies during shoaling. The maximum basinward progradation of peritidal facies coincides with a zone of slope failure that may have promoted the development of the stromatolitic reefs. The sea-level history of the Victor Bay Formation is represented by three hectometre-scale sequences. An initial flooding event resulted in deposition of the lower Victor Bay shale member. Upper-member carbonate cycles were then deposited during highstand. Mid-ramp slumping was followed by late-highstand reef development. The second sequence began with development of an inner-ramp lowstand unconformity and a thick mid-ramp lowstand wedge. A second transgression promoted a more modest phase of reef development at the mid-ramp and shallow-water deposition continued inboard. A third and final transgressive episode eventually led to flooding of the backstepping ramp. Overall consistent cycle thickness and absence of truncated cycles, as well as the high rate and amount of creation of accommodation space, suggest that the periodicity and amplitude of sea-level fluctuation were relatively uniform, and point to a eustatic rather than tectonic mechanism of relative sea-level change. High-amplitude, high-frequency eustatic sea-level change is characteristic of icehouse worlds in which short-term, large-scale sea-level fluctuations accompany rapidly changing ice volumes affected by Milankovitch orbital forcing. Packaging of cyclic Upper Victor Bay carbonates therefore supports the hypothesis of a late Mesoproterozoic glacial period, as proposed by previous workers.
NASA Astrophysics Data System (ADS)
Asvesta, Argyro; Dimitriadis, Sarantis
2010-06-01
In northern Greece, along the western edge of the Paleozoic Vertiscos terrane (Serbomacedonian massif) and within the Peonias subzone - the eastern part of the Vardar (Axios) Zone - a Silicic Volcano-Sedimentary (SVS) succession of Permo(?)-Skythian to Mid Triassic age records the development of a faulted continental margin and the formation of rhyolitic volcanoes along a continental shelf fringed by neritic carbonate accumulations. It represents the early rifting extensional stages that eventually led to the opening of the main oceanic basin in the western part of the Vardar (Axios) Zone (the Almopias Oceanic Basin). Even though the SVS succession is deformed, altered, extensively silicified and metamorphosed in the low greenschist facies, primary textures, original contacts and facies relationships are recognized in some places allowing clues for the facies architecture and the depositional environment. Volcanic and sedimentary facies analysis has been carried out at Nea Santa and Kolchida rhyolitic volcanic centres. Pyroclastic facies, mostly composed of gas-supported lapilli tuffs and locally intercalated accretionary lapilli tuffs, built the early cones which were then overridden by rhyolitic aphyric and minor K-feldspar-phyric lava flows. The characteristics of facies, especially the presence of accretionary lapilli, imply subaerial to coastal emplacement at this early stage. The mature and final stages of volcanism are mostly represented by quartz-feldspar porphyry intrusions that probably occupied the vents. At Nea Santa area, the presence of resedimented hyaloclastite facies indicates subaqueous emplacement of rhyolitic lavas and/or lobes. Moreover, quartz-feldspar-phyric sills and a partly extrusive dome featuring peperites at their margins are inferred to have intruded unconsolidated, wet carbonate sediments of the overlying Triassic Neritic Carbonate Formation, in a shallow submarine environment. The dome had probably reached above wave-base as is indicated by the presence of reworked rhyolitic clasts in the younger mixed rhyolite-carbonate epiclastic sedimentary facies. This facies is interpreted as mass- and debris-flow of mixed provenance, deposited below wave-base. The facies architecture of the SVS succession records a change in volcanic activity from explosive to effusive and then to intrusive. The depositional environment changed from subaerial-coastal to shallow submarine as the silicic volcanism evolved and carbonate sedimentation was progressively taking over, probably compensating for the gradual subsidence of the corresponding basin. Silicic magmatism and carbonate sedimentation were contemporaneous and spatially related. The timing of the rifting, the continental crustal elements involved and the accompanying tectonic, magmatic and sedimentary processes are features of the spatially and temporally evolving western peri-Tethyan region.
Hunter, R.E.
1980-01-01
These deposits comprise a basal gravelly unit and 3 overlying sandy units, each with mud beds, a paleosol, or the modern soil in its uppermost part. The gravelly unit is interpreted as a progradational deposit. The main parts of the sandy units are made up of 1) a crossbedded sand facies, the dominant structure in which is medium-scale crossbedding (interpreted as the product of small eolian dunes), and 2) an irregularly bedded sand facies, which is locally pebbly and is dominated by scour-and-fill structures, interpreted as deposits of interdune ephemeral streams, ephemeral ponds, and wet to dry subaerial flats. The mud beds and paleosols represent times of temporary stabilization of the dune field.- from Author
NASA Astrophysics Data System (ADS)
Kopp, R. E.; Schumann, D.; Raub, T. D.; Powars, D. S.; Godfrey, L. V.; Swanson-Hysell, N.; Maloof, A. C.; Vali, H.
2009-12-01
The Paleocene-Eocene Thermal Maximum is preserved within the mid-Atlantic Coastal Plain as a unique clay deposited in the Salisbury Embayment, a tectonic downwarp that stretches from southeastern Virginia to central New Jersey. The mostly massive and kaolinite-rich clay is distinct from the glauconitic sediments that otherwise characterize regional Paleocene and lower Eocene deposits. It contains abundant magnetite produced by magnetotactic bacteria and by larger, presumptively eukaryotic microorganisms not yet known from any other locality. Because most magnetotactic bacteria live within a specific, narrow redox environment -- the suboxic zone of a water column or sediments, where both oxygen and sulfide concentrations are low and iron concentrations relatively high -- their biominerals can be used as a paleoenvironmental tracer. High iron bioavailability indicates a relatively thick suboxic zone. The preservation of iron biominerals suggests that this zone was located in sediments, rather than in the water column, as water column suboxia is associated with high sedimentary organic carbon concentrations, which promote magnetite dissolution. The thickest modern, sedimentary, high-iron suboxic zones occur in tropical river-dominated shelves, such as the Amazon Shelf. These zones result from the combination of a moderately high input of reactive Fe (produced by tropical weathering conditions) with a high-energy environment (produced by tides, frontal-zone currents, and surface waves) that promotes the regular physical reworking of the sediments, thus allowing the re-oxidation of reduced Fe and increasing the availability of Fe as an electron acceptor. To test the "Appalachian Amazon" hypothesis, we mapped the distribution of magnetofossils throughout the Salisbury Embayment using ferromagnetic resonance spectroscopy and electron microscopy, supplemented by organic carbon isotope data. We find three magnetic facies in the clay: Facies 1, characterized by a mix of detrital particles and magnetofossils; Facies 2, with a higher magnetofossil-to-detrital ratio; and Facies 3, with only transient magnetofossils. Facies 1 occurs in inner-middle neritic deposits of central Maryland and northern Virginia, near where the modern Potomac crosses the Fall Line. Facies 2 occurs throughout the middle neritic deposits of eastern Maryland and Virginia and of southern New Jersey. Facies 3 occurs in the outer neritic deposits of eastern New Jersey and on the northern and southern flanks of the embayment. Consistent with the hypothesis, this distribution suggests a link between the magnetofossil distribution and a river system with an outlet in the vicinity of Facies 1. The development of such a river system may have been linked to a combination of more intense weathering, higher precipitation, and increased storminess.
Cement Distribution and Diagenetic Pathway of the Miocene Sediments on Kardiva Platform, Maldives.
NASA Astrophysics Data System (ADS)
Laya, J. C.; Prince, K.; Betzler, C.; Eberli, G. P.; Blättler, C. L.; Swart, P. K.; Reolid, J.; Alvarez Zarikian, C. A.; Reijmer, J.
2017-12-01
The Maldives archipelago is an ideal example for understanding the dynamics of isolated carbonate platforms. While previous sedimentological studies have focused on oceanographic and climatic controls on deposition, there have been limited studies on the diagenetic evolution of the Maldives archipelago. This project seeks to establish a relationship between the facies, cement distribution, and diagenetic evolution of the Kardiva Platform and associated diagenetic fluids. Samples from cores of IODP Expedition 359 at Sites U1645, U1469, and U1470 were analyzed for stable isotope geochemistry and detailed petrography including SEM, confocal and CL microscopy to investigate variations in facies, cements, porosity and diagenetic products. The facies analyzed consist mainly of planktonic and benthic foraminifers, red coralline algae, echinoderm, coral and skeletal fragments. The main facies include foraminifera grain/packstone, red algae rich grain/packstone, algal floatstone and coral floatstone. Those facies present a cyclic and general shallowing upwards trend. These facies are interpreted as shallow platform deposits on proximal areas to the margin associated with the oligophotic zone. Cement volume varies between 5% and 48%, and they have been classified as isopachous, bladed to fibrous (dog tooth), drusy and equant. Equant and drusy show recognizable growth bands with CL and confocal. Evidence of intense dissolution is shown by extensive moldic porosity within phreatic and limited vadose zones. In addition, dolomite appears as a replacement phase associated with red-algae-rich horizons and as cement on pore walls and voids. These deposits experienced a variety of diagenetic processes driven by the evolution of diagenetic fluid chemistry and by the nature of the skeletal components. Those processes can be tied to external controls such as climate (monsoonal effects), sea-level and currents.
The role of discharge variability in the formation and preservation of alluvial sediment bodies
NASA Astrophysics Data System (ADS)
Fielding, Christopher R.; Alexander, Jan; Allen, Jonathan P.
2018-03-01
Extant, planform-based facies models for alluvial deposits are not fully fit for purpose, because they over-emphasise plan form whereas there is little in the alluvial rock record that is distinctive of any particular planform, and because the planform of individual rivers vary in both time and space. Accordingly, existing facies models have limited predictive capability. In this paper, we explore the role of inter-annual peak discharge variability as a possible control on the character of the preserved alluvial record. Data from a suite of modern rivers, for which long-term gauging records are available, and for which there are published descriptions of subsurface sedimentary architecture, are analysed. The selected rivers are categorized according to their variance in peak discharge or the coefficient of variation (CVQp = standard deviation of the annual peak flood discharge over the mean annual peak flood discharge). This parameter ranges over the rivers studied between 0.18 and 1.22, allowing classification of rivers as having very low (< 0.20), low (0.20-0.40), moderate (0.40-0.60), high (0.60-0.90), or very high (> 0.90) annual peak discharge variance. Deposits of rivers with very low and low peak discharge variability are dominated by cross-bedding on various scales and preserve macroform bedding structure, allowing the interpretation of bar construction processes. Rivers with moderate values preserve mostly cross-bedding, but records of macroform processes are in places muted and considerably modified by reworking. Rivers with high and very high values of annual peak discharge variability show a wide range of bedding structures commonly including critical and supercritical flow structures, abundant in situ trees and transported large, woody debris, and their deposits contain pedogenically modified mud partings and generally lack macroform structure. Such a facies assemblage is distinctively different from the conventional fluvial style recorded in published facies models but is widely developed both in modern and ancient alluvial deposits. This high-peak-variance style is also distinctive of rivers that are undergoing contraction in discharge over time because of the gradual annexation of the channel belt by the establishment of woody vegetation. We propose that discharge variability, both inter-annual peak variation and "flashiness" may be a more reliable basis for classifying the alluvial rock record than planform, and we provide some examples of three classes of alluvial sediment bodies (representing low, intermediate, and high/very high discharge variability) from the rock record that illustrate this point.
New morphological mapping and interpretation of ejecta deposits from Orientale Basin on the Moon
NASA Astrophysics Data System (ADS)
Morse, Zachary R.; Osinski, Gordon R.; Tornabene, Livio L.
2018-01-01
Orientale Basin is one of the youngest and best-preserved multi-ring impact basins in the Solar System. The structure is ∼950 km across and is located on the western edge of the nearside of the Moon. The interior of the basin, which possesses three distinct rings and a post-impact mare fill, has been studied extensively using modern high-resolution datasets. Exterior to these rings, Orientale has an extensive ejecta blanket that extends out radially for at least 800 km from the basin rim in all directions and covers portions of both the nearside and farside of the Moon. These deposits, known as the Hevelius Formation, were first mapped using photographic data from the Lunar Orbiter IV probe. In this study, we map in detail the morphology of each distinct facies observed within the Orientale ejecta blanket using high resolution Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images and Lunar Orbiter Laser Altimeter (LOLA) elevation data. We identified 5 unique facies within the ejecta blanket. Facies A is identified as a region of hummocky plains located in a low-lying topographic region between the Outer Rook and Cordillera rings. This facies is interpreted to be a mix of crater-derived impact melt and km-scale blocks of ballistic ejecta and host rock broken up during the modification stage and formation of the Cordillera ring. Facies B is an inner facies marked by radial grooves extending outward from the direction of the basin center. This facies is interpreted as the continuous ballistic ejecta blanket. Facies C consists of inner and outer groupings of flat smooth-surfaced deposits isolated in local topographic lows. Facies D displays characteristic sinuous ridges and lobate extensions. Facies C and D are interpreted to be impact melt-rich materials, which manifest as flows and ponds. Our observations suggest that these facies were emplaced subsequent to the ballistic ejecta blanket - most likely during the modification stage of crater formation - and flowed and ponded in topographically low-lying regions. Facies E consists of distinct crater chains emanating radially from the basin center and extending from ∼700 to ∼1000 km from the center of Orientale. This facies is considered to be chains of secondary craters formed from large blocks of ballistic ejecta. Our mapping effort shows that the individual ejecta facies were influenced and controlled to varying degrees by pre-existing slopes and topography. At the basin scale, the overall downslope direction toward the lunar lowlands to the east and southeast of the basin center resulted in large impact melt flows 100's of kilometers in length, while the regional upslope trends in the west and northwest inhibited the development of extensive impact melt flows. On a smaller scale it can be observed that ground-hugging ejecta collected behind and flowed around high topographic obstacles while diverting into topographic low regions (e.g., around uplifted pre-existing crater rims, but down into pre-existing crater floors). The dispersion of the various ejecta facies mapped here also indicates both a direction and an angle for the impact event that formed Orientale Basin. The bilateral distribution of both ballistic and impact melt-rich ejecta deposits across a line running northeast - southwest suggests the impact occurred from the northeast toward the southwest. Careful mapping of the secondary impact crater chains (Facies E) shows the development of a ;forbidden zone; lacking these impacts to the northeast as well as a concentration of the longest secondary crater chains to the northwest and southeast, perpendicular to the aforementioned line of bilateral ejecta distribution. This distribution of secondary impact craters contrasts with the circularity of the basin and suggests that Orientale Basin was formed by ∼ 25-45° impact from the northeast.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, R.A.; Said, Md.J.; Bedingfield, J.R.
1994-07-01
The group J stratigraphic interval is lower Miocene (18.5-21 Ma) in age and was deposited during the early sag phase of the Malay Basin structural development. Reduction in depositional relief and first evidence of widespread marine influence characterize the transition into this interval. Twelve group J sequences have been identified. Reservoirs consist of progradational to aggradational tidally-dominated paralic to shallow marine sands deposited in the lowstand systems tract. Transgressive and highstand deposits are dominantly offshore shales. In PM-9, the original lift-related depocenters, coupled with changes in relative sea level, have strongly influenced group J unit thickness and the distribution ofmore » reservoir and seal facies. Two important reservoir intervals in PM-9 are the J18/20 and J15 sands. The reservoirs in these intervals are contained within the lowstand systems tracts of fourth-order sequences. These fourth-order sequences stack to form sequence sets in response to a third-order change in relative sea level. The sequences of the J18/20 interval stack to form part of a lowstand sequence set, whereas the J15 interval forms part of the transgressive sequence set. Reservoir facies range from tidal bars and subtidal shoals in the J18/20 interval to lower shoreface sands in the J15. Reservoir quality and continuity in group J reservoirs are dependent on depositional facies. An understanding of the controls on the distribution of facies types is crucial to the success of the current phase of field development and exploration programs in PM-9.« less
NASA Astrophysics Data System (ADS)
An, Kaixuan; Chen, Hanlin; Lin, Xiubin; Wang, Fang; Yang, Shufeng; Wen, Zhixin; Wang, Zhaoming; Zhang, Guangya; Tong, Xiaoguang
2017-12-01
The global rise in sea level during the Late Cretaceous has been an issue under discussion by the international geological community. Despite the significance, its impact on the deposition of continental basins is not well known. This paper presents the systematic review on stratigraphy and sedimentary facies compiled from 22 continental basins in northern Africa. The results indicate that the region was dominated by sediments of continental facies during Early Cretaceous, which were replaced by deposits of marine facies in Late Cretaceous. The spatio-temporal distribution of sedimentary facies suggests marine facies deposition reached as far south as Taoudeni-Iullemmeden-Chad-Al Kufra-Upper Egypt basins during Turonian to Campanian. These results indicate that northern Africa underwent significant transgression during Late Cretaceous reaching its peak during Turonian to Coniacian. This significant transgression has been attributed to the global high sea-level during this time. Previous studies show that global rise in sea level in Late Cretaceous may have been driven by an increase in the volume of ocean water (attributed to high CO2 concentration and subsequently warm climate) and a decrease in the volume of the ocean basin (attributed to rapid production of oceanic crust and seamounts). Tectonic mechanism of rapid production of oceanic crust and seamounts could play a fundamental role in driving the global rise in sea level and subsequent transgression in northern Africa during Late Cretaceous.
NASA Astrophysics Data System (ADS)
Cas, R. A. F.; Hayman, P.; Pittari, A.; Porritt, L.
2008-06-01
Five significant problems hinder advances in understanding of the volcanology of kimberlites: (1) kimberlite geology is very model driven; (2) a highly genetic terminology drives deposit or facies interpretation; (3) the effects of alteration on preserved depositional textures have been grossly underestimated; (4) the level of understanding of the physical process significance of preserved textures is limited; and, (5) some inferred processes and deposits are not based on actual, modern volcanological processes. These issues need to be addressed in order to advance understanding of kimberlite volcanological pipe forming processes and deposits. The traditional, steep-sided southern African pipe model (Class I) consists of a steep tapering pipe with a deep root zone, a middle diatreme zone and an upper crater zone (if preserved). Each zone is thought to be dominated by distinctive facies, respectively: hypabyssal kimberlite (HK, descriptively called here massive coherent porphyritic kimberlite), tuffisitic kimberlite breccia (TKB, descriptively here called massive, poorly sorted lapilli tuff) and crater zone facies, which include variably bedded pyroclastic kimberlite and resedimented and reworked volcaniclastic kimberlite (RVK). Porphyritic coherent kimberlite may, however, also be emplaced at different levels in the pipe, as later stage intrusions, as well as dykes in the surrounding country rock. The relationship between HK and TKB is not always clear. Sub-terranean fluidisation as an emplacement process is a largely unsubstantiated hypothesis; modern in-vent volcanological processes should initially be considered to explain observed deposits. Crater zone volcaniclastic deposits can occur within the diatreme zone of some pipes, indicating that the pipe was largely empty at the end of the eruption, and subsequently began to fill-in largely through resedimentation and sourcing of pyroclastic deposits from nearby vents. Classes II and III Canadian kimberlite models have a more factual, descriptive basis, but are still inadequately documented given the recency of their discovery. The diversity amongst kimberlite bodies suggests that a three-model classification is an over-simplification. Every kimberlite is altered to varying degrees, which is an intrinsic consequence of the ultrabasic composition of kimberlite and the in-vent context; few preserve original textures. The effects of syn- to post-emplacement alteration on original textures have not been adequately considered to date, and should be back-stripped to identify original textural elements and configurations. Applying sedimentological textural configurations as a guide to emplacement processes would be useful. The traditional terminology has many connotations about spatial position in pipe and of process. Perhaps the traditional terminology can be retained in the industrial situation as a general lithofacies-mining terminological scheme because it is so entrenched. However, for research purposes a more descriptive lithofacies terminology should be adopted to facilitate detailed understanding of deposit characteristics, important variations in these, and the process origins. For example every deposit of TKB is different in componentry, texture, or depositional structure. However, because so many deposits in many different pipes are called TKB, there is an implication that they are all similar and that similar processes were involved, which is far from clear.
NASA Astrophysics Data System (ADS)
Flores Hots, V. E.; Santos, H.
2016-12-01
Detailed stratigraphic columns were measured and microfacies analysis was performed in southwestern Puerto Rico to conduct a sequence stratigraphic analysis of Paleogene to Neogene strata. Two of the best exposed outcrops include the Guánica Bay and outcrops along Highway PR-132 in Guayanilla. Three depositional sequences, separated by two major sequence boundaries were found. The lower sequence occurs within the Juana Díaz Formation and is an open shelf to reef facies indicative of a Transgressive System Tract (TST), that is overlain by a High Stand System Tract (HST) marked by reef progradation. The HST in both Guánica Bay and Guayanilla is characterized by coral-rhodolith cyclicity however sections in Guánica Bay show pervasive recrystallization due to diagenetic alteration as a result of a long periods of exposure. This first sequence is Oligocene in age. The middle sequence, exposed at the eastern section of the Guánica Bay is also part of the Juana Díaz Formation and includes a turbiditic Lowstand System Tract (LST) of slope-like deposits flow, a TST constituted by coral rubble and skeletal grainstones belonging to a shallow island slope environment; and a HST that consists of an island slope chalk facies intercalated with turbidite grainstones derived storm events at the Guayanilla location. During the deposition of the middle sequence the Guánica Bay west section was topographically higher and exposed. The upper depositional sequence is Miocene in age and is composed of a TST with the transgression starting distally in the Guánica area and transgressing northward toward the Guayanilla area. These was correlated using high resolution 87Sr/86Sr isotope concentrations of shallow marine mollusks Kuphus incrassatus in the Ponce Formation at the Guánica Bay and Guayanilla locations. Facies patterns like the ones in the studied outcrops of southwestern Puerto Rico provide an exemplary environmental model of variability of paleodepositional relief, tectonic setting, variability in depositional setting of reef Sediment acumulations, the influence of storm events and variability in rock porosity by diagenetic processes yielding valuable models that may apply to potential Oligocene - Miocene hydrocarbon reservoirs.
NASA Astrophysics Data System (ADS)
Stack, K. M.; Edwards, C. S.; Grotzinger, J. P.; Gupta, S.; Sumner, D. Y.; Calef, F. J.; Edgar, L. A.; Edgett, K. S.; Fraeman, A. A.; Jacob, S. R.; Le Deit, L.; Lewis, K. W.; Rice, M. S.; Rubin, D.; Williams, R. M. E.; Williford, K. H.
2016-12-01
This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity's Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.
Stack, Kathryn M.; Edwards, Christopher; Grotzinger, J. P.; Gupta, S.; Sumner, D.; Edgar, Lauren; Fraeman, A.; Jacob, S.; LeDeit, L.; Lewis, K.W.; Rice, M.S.; Rubin, D.; Calef, F.; Edgett, K.; Williams, R.M.E.; Williford, K.H.
2016-01-01
This study provides the first systematic comparison of orbital facies maps with detailed ground-based geology observations from the Mars Science Laboratory (MSL) Curiosity rover to examine the validity of geologic interpretations derived from orbital image data. Orbital facies maps were constructed for the Darwin, Cooperstown, and Kimberley waypoints visited by the Curiosity rover using High Resolution Imaging Science Experiment (HiRISE) images. These maps, which represent the most detailed orbital analysis of these areas to date, were compared with rover image-based geologic maps and stratigraphic columns derived from Curiosity’s Mast Camera (Mastcam) and Mars Hand Lens Imager (MAHLI). Results show that bedrock outcrops can generally be distinguished from unconsolidated surficial deposits in high-resolution orbital images and that orbital facies mapping can be used to recognize geologic contacts between well-exposed bedrock units. However, process-based interpretations derived from orbital image mapping are difficult to infer without known regional context or observable paleogeomorphic indicators, and layer-cake models of stratigraphy derived from orbital maps oversimplify depositional relationships as revealed from a rover perspective. This study also shows that fine-scale orbital image-based mapping of current and future Mars landing sites is essential for optimizing the efficiency and science return of rover surface operations.
Egenhoff, Sven; Fishman, Neil; Ahlberg, Per; Maletz, Jorg; Jackson, Allison; Kolte, Ketki; Lowers, Heather; Mackie, James; Newby, Warren; Petrowsky, Matthew
2015-01-01
The Cambrian Alum Shale Formation in the Andrarum-3 core from Scania, southern Sweden, consists of black siliciclastic mudstone with minor carbonate intercalations. Four facies comprise three siliciclastic mudstones and one fine-grained carbonate. The facies reflect deposition along a transect from deep ramp to basin on a Cambrian shelf. The three mudstone facies contain abundant clay clasts and laterally variable siltstone laminae. Bed-load transport processes seem to have dominated deposition on this deep shelf. These sedimentary rocks record mainly event deposition, and only relatively few, thin laminae probably resulted from suspension settling. The Alum Shale Formation deep shelf did not show a bioturbation gradient, but fecal strings are common and Planolites burrows are rare in all mudstone facies. Evidence for biotic colonization indicates that this mudstone environment was not persistently anoxic, but rather was most likely intermittently dysoxic. The Alum Shale Formation in the Andrarum-3 core shows an overall decrease of grain size, preserved energy indicators, and carbonate content upsection interpreted to reflect a deepening upward. The succession can also be divided into four small-scale fining-upward cycles that represent deepening, and four overlying coarsening-upward cycles that represent upward shallowing.
NASA Astrophysics Data System (ADS)
Johnson, K. E.; Waldman, R.; Marsaglia, K. M.
2016-12-01
The Izu-Bonin-Mariana (IBM) Arc System, south of Japan, hosts a multitude of active and extinct (remnant) volcanic arcs and associated basins partly filled with volcanic sediment. Core extracted adjacent to the proto-IBM arc (Kyushu-Palau Ridge; KPR), in the Amami-Sankaku Basin (ASB) during International Ocean Discovery Program (IODP) Expedition 351, contains an incredibly well-preserved record of backarc sedimentation resulting from changing tectonic regimes during arc development and decline. Approximately 1000 meters of Eocene to Oligocene volcaniclastic sedimentary rocks were analyzed via shipboard core photos, core descriptions, and thin sections with the intention of understanding the depositional history at this site. A database of stratigraphic columns, 539 section and 147 core summaries, was created to display grain size trends, sedimentary structures, bedding characteristics, and facies changes. Individual depositional events were classified using existing and slightly modified classification schemes for muddy, sandy, and gravel-rich gravity flow deposits, as well as muddy deposits and tuffs. Downhole trends show repeating coarsening-upward intervals that grade from fine-grained turbidites to coarser turbidites and debrites. These trends indicate how the active depositional systems evolved upsection as the arc matured. Following arc initiation, facies deposited were primarily mud-rich; these coarsened-upward into 12 stacked sequences of submarine lobe and channel facies with sediment from one or more volcanic sources. These are interpreted to represent the building of the arc edifice that began 41 Ma. Four distinct periods of coarse lobe accumulation created a thick submarine fan over a period of nearly 13 million years. An abrupt shift to muddy turbidites at 30 Ma represents the onset of rifting of the paleo-IBM arc as backarc spreading in the Shikoku Basin was initiated and volcaniclastic supply to the ASB waned with formation of the KPR remnant arc.
Preservation of ancient ice at Pavonis and Arsia Mons: Tropical mountain glacier deposits on Mars
NASA Astrophysics Data System (ADS)
Head, James W.; Weiss, David K.
2014-11-01
Large tropical mountain glacier (TMG) deposits on the northwest flanks of the Tharsis Montes and Olympus Mons volcanoes are interpreted to be the record of ancient climates characteristic of Mars several hundred million years ago when planetary spin-axis obliquity was ~45°. During this era, polar volatiles (predominantly H2O) were mobilized and transferred equatorward, undergoing adiabatic cooling on the Tharsis volcano flanks, and precipitating snow and ice to form cold-based tropical mountain glaciers up to several kilometers in thickness. Subsequent climate change resulted in retreat, sublimation and collapse of the tropical mountain glaciers, leaving the three typical facies observed today: (1) concentric ridges, the ridged facies, interpreted as drop moraines; (2) knobby facies, interpreted as debris-dominated sublimation residue; and (3) the smooth facies, interpreted as remnant alpine glacial deposits. Ring-mold craters (RMCs) are distinctive features formed by impacts into debris-covered ice. We describe a set of relatively fresh ring-mold craters superposed on the Arsia and Pavonis Mons TMG deposits; we interpret these to indicate that the impact events penetrated a veneer of sublimation lag and excavated buried remnant glacial ice, despite the lack of detection of buried ice by orbital radar instruments. The diameter distribution of the RMCs suggest that the remnant ice lies at a depth of at least 16 m. The TMG deposit ages suggest that these ice deposits date from a period in the range of 125-220 million years before the present; the remnant ice may thus preserve records of the ancient atmospheric gas content and microbiota, as is common in terrestrial glacial ice. Preservation of this ice and the lack of any associated fluvial features suggest that the post-glacial climate has been cold, and related surface temperatures have not been sufficient to bring the buried deposits to the melting point of water.
NASA Astrophysics Data System (ADS)
Umazano, A. Martín; Krause, J. Marcelo; Bellosi, Eduardo S.; Perez, Mariano; Visconti, Graciela; Melchor, Ricardo N.
2017-08-01
The Cretaceous Puesto La Paloma (PLPM) and Cerro Castaño (CCM) members (Cerro Barcino Formation, Chubut Group) are pyroclastic-rich, alluvial successions deposited in the Somuncurá-Cañadón Asfalto Basin during sag and endorheic conditions. The PLPM comprises sheet-like tuffaceous sandstone strata, whereas the overlying CCM includes sheet-to ribbon-channel sandstone bodies intercalated within tuffaceous and fine-grained sediments. In this context, the goals of this contribution were: i) to make a detailed documentation of the contrasting sedimentary palaeonvironments; and ii) to infer the allocyclic controls that governed the sedimentation of both units. The study area is located in the western sector of the basin, where six localities, which were studied. Six facies associations were defined including ash-falls, sheet-floods, shallow lakes, aeolian, fluvial channel-belts, and reworked debris-flows. We defined four stratigraphic intervals for the studied sections, denominated 1 to 4 in chronological order of deposition, which increase their thicknesses toward the Puesto Mesa-Cerro León site. The interval 1 (18-42 m thick) corresponds to the PLPM and includes numerous pedogenized sheet-flood deposits, carbonate-rich lacustrine, aeolian sandy facies, and ash-fall beds. The interval 1 is interpreted as an ephemeral and unconfined alluvial system that interacted with aeolian dunes and dry interdune zones. The interval 2 (20-47 m thick) represents the lower part of the CCM. It shows an alternation of fluvial channel-belt deposits and vegetated floodplain facies with sediments originated from sheet-floods, lakes, and few ash-falls and debris-flows. The mean palaeoflow was toward E-SE, except in the northernmost locality where the drainage was towards SW. Proportion of channel-belt bodies ranges from 10 to 36%, reaching higher values in the northern part of the study area, where they are also thicker. The interval 2 represents a permanent, meandering or locally low-sinuosity, fluvial system, and displays both an increase of lacustrine facies and a decrease of ash-fall deposits. The interval 3 (7.5-27 m thick) corresponds to the middle part of the CCM, and lacks channel-belt bodies. It has the highest participation of sheet-flood and ash-fall deposits. This interval entirely records a pedogenized floodplain setting. In relation to the interval 2, participation of debris-flow deposits remains constant and lacustrine facies subtly increases. The interval 4 (18-148 m thick) represents the upper part of the CCM. It comprises an alternation of channel-belt bodies and pedogenized floodplain facies, the last characterized by sheet-flood, lake, debris-flow, and volcanic ash rain deposits. The mean palaeoflow was toward E-SE, except in the two localities positioned further north where the drainage was towards NE and SSE. Proportion of channel-belt deposits ranges from 6 to 32%. It represents channelized and perennial fluvial systems with meandering and locally low-sinuosity styles. Increase in channel proportion and thicker channel bodies are in the northern part of the study area. Particularly, in Puesto Mesa-Cerro León locality this interval is the thickest and has the highest proportion of thicker channel-belt bodies. We interpret these changes in facies architecture as the response to alternated periods of high (intervals 1 and 3) and low (intervals 2 and 4) primary pyroclastic sediment supply. Moreover, there was a climatic change to wetter conditions (intervals 1 to 2-4); as well as intrabasinal tectonic activity in northern area for intervals 2 and 4 inferred from palaeocurrent data.
NASA Astrophysics Data System (ADS)
Alván, Aldo; Jacay, Javier; Caracciolo, Luca; Sánchez, Elvis; Trinidad, Inés
2018-07-01
The Mesozoic rocks of southern Peru comprise a Middle Jurassic to Early Cretaceous sedimentary sequence deposited during a time interval of approximately 34 Myr. In Tacna, these rocks are detrital and constitute the Yura Group (Callovian to Tithonian) and the Hualhuani Formation (Berriasian). Basing on robust interpretation of facies and petrographic analysis, we reconstruct the depositional settings of such units and provide a refined stratigraphic framework. Accordingly, nine types of sedimentary facies and six architectural elements are defined. They preserve the record of a progradational fluvial system, in which two styless regulated the dispersion of sediments: (i) a high-to moderate-sinuosity meandering setting (Yura Group), and a later (ii) incipient braided setting (Hualhuani Formation). The Yura Group (Callovian-Tithonian) represents the onset of floodplain deposits and lateral accretion of point-bar deposits sited on a semi-flat topography. Nonetheless, the progradational sequence was affected by at least two rapid marine ingressions occurred during Middle Callovian and Tithonian times. Such marine ingressions reveal the proximity of a shallow marine setting and incipient carbonate deposition. In response to increase in topographic gradient, the Hualhuani Formation (Berriasian) deposited as extensive multistory sandy channels. The mineralogy of the Mesozoic sediments suggests sediment supplies and intense recycling from a craton interior (i.e. Amazon Craton and/or plutonic sources) located eastward of the study area.
NASA Astrophysics Data System (ADS)
Vezzoli, L.; Apuani, T.; Corazzato, C.; Uttini, A.
2017-02-01
The huge volcanic debris avalanche occurred at 4.5 ka is a major event in the evolution of the Cotopaxi volcano, Ecuador. The present volcanic hazard in the Cotopaxi region is related to lahars generated by volcanic eruptions and concurrent ice melting. This paper presents the geological and geotechnical field and laboratory characterization of the 4.5 ka Cotopaxi debris avalanche deposit and of the younger unconsolidated pyroclastic deposits, representing the probable source of future shallow landslides. The debris avalanche formed a deposit with a well-developed hummocky topography, and climbed a difference in height of about 260 m along the slopes of the adjacent Sincholagua volcano. The debris avalanche deposit includes four lithofacies (megablock, block, mixed, and sheared facies) that represent different flow regimes and degrees of substratum involvement. The facies distribution suggests that, in the proximal area, the debris avalanche slid predominantly confined to the valleys along the N and NE flank of the volcanic cone, emplacing a stack of megablocks. When the flow reached the break in slope at the base of the edifice, it became unconfined and spread laterally over most of the area of the Rio Pita valley. A dynamic block fragmentation and dilation occurred during the debris avalanche transport, emplacing the block facies. The incorporation of the older Chalupas Ignimbrite is responsible for the mixed facies and the sheared facies. Geotechnical results include a full-range grain size characterization, which enabled to make broader considerations on possible variability among the sampled facies. Consolidated drained triaxial compression tests, carried out on the fine fraction < 4.76 mm, point out that shear strength for cohesionless sandy materials is only due to effective friction angle, and show a quite homogeneous behaviour over the set of tested samples. The investigated post-4.5 pyroclastic deposits constitute a 5-12 m thick sequence of poorly consolidated materials that are interlayered with lava flows. Their geotechnical analyses have evidenced a strong variability in grain size distribution, reflecting the depositional processes, and a generally high porosity. Consolidated drained triaxial compression tests delineated a similar shear stress-strain behaviour among the different units, where shear strength is only due to friction angle. Failure surfaces are always well developed, indicating that the poorly consolidated pyroclastic cover could undergo failure leading to the formation of a gravity driven instability phenomena, like granular or debris flows, which are mainly controlled by the fine fraction. This work underlies the general necessity for a site-specific, and interdisciplinary approach in the characterization of volcanic successions to provide reliable data for gravitational instability studies.
Climatic controls on arid continental basin margin systems
NASA Astrophysics Data System (ADS)
Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni
2016-04-01
Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed models suggest that the deposits of the Brockram alluvial fans have the potential to contain numerous preferential flow zones. Where these flow zones are adjacent to the unique deposits of the zone of interaction it affects basin-scale fluid flow by: 1) interconnecting decent reservoirs in the distal extent of the basin; 2) creating flow pathways away from these reservoirs; 3) introducing secondary baffles into the system; and, 4) creating a bypass to charge these distal reservoirs.
NASA Astrophysics Data System (ADS)
Zand-Moghadam, Hamed; Moussavi-Harami, Reza; Mahboubi, Asadollah; Aghaei, Ali
2016-05-01
The Upper Jurassic (Oxfordian-Kimmeridgian) Mozduran Formation is the most important gas reservoirs of the northeast Iran. Siliciclastic facies of this formation in eastern most parts of the basin have not been studied yet. Therefore, four stratigraphic sections of Mozduran Formation have been selected in the Kole-Malekabad, Kale-Karab, Deraz-Ab and Karizak to interpret depositional history and analyze depositional sequences. Based on texture and sedimentary structures, 14 slilciclastic lithofacies were identified and classified into four categories, including conglomerate (Gms, Gp, Gt), sandstone (Sh, Sp, St, Sr, Sl, Sm, Se), mud rock (Fl) and intermediate sandstone-mud rock (Sr (Fl), Sr/Fl, Fl (Sr)). Identified lithofacies formed four architectural elements CH, SB, LA and FF. Lithofacies characteristics and architectural elements with mostly bimodal pattern of paleocurrents show that the majority of Mozduran lithofacies deposited in the coastal environment (tidal influence). Sequence stratigraphic analysis shows that the Kole-Malekabad section consists of two depositional sequences while other sections are characterized by three depositional sequences. The lower and upper sequence boundaries of the Mozduran Formation in all stratigraphic sections are SB1 that are distinguished by paleosol and sometime conglomerate horizons. Most of depositional sequences in studied sections are composed only of TST and HST. The TST deposits consist mostly of quartzarenite and litharenite petrofacies that have been deposited in the tidal zone. HST packages are mostly including mud rocks with interdeds of sandstone lithofacies that are deposited in supratidal setting. The LST facies is recognized only in the DS3 (equivalent to the second depositional sequences of the Kole-Malekabad), which consist of conglomerate facies. Instead, the Kole-Malekabad section is often composed of supratidal gypsiferrous shales, indicating sea level fall in the study area.
NASA Astrophysics Data System (ADS)
Alonso-Muruaga, Pablo J.; Limarino, Carlos O.; Spalletti, Luis A.; Colombo Piñol, Ferrán
2018-07-01
Fjord systems, represented by glacial diamictites and postglacial transgressive shales, formed in the basins of western Argentina during the late Carboniferous Gondwana glaciation. Well exposed fjord deposits of the Guandacol Formation were studied in the Loma de Los Piojos region (Protoprecordillera), where they fill a 2.9 km wide paleovalley with steep side walls and a relatively flat floor. The valley cross-cuts Lower Devonian sandstones and Mississippian mudstones and sandstones, and provides evidence of glacial abrasion, including striated pavements and glacial microtopography (grooves, ridges, and striae). Based on the analysis of seven sedimentary logs, eight sedimentary facies in the valley fill were recognized: (A) Massive diamictites; (B) Laminated mudstones with dropstones; (C) Stratified diamictites; (D) Clast-supported conglomerates and sandstones; (E) Deformed diamictites, conglomerates and sandstones; (F) Folded diamictites; (G) Mudstones interbedded with sandstones, and (H) Stacked and amalgamated sandstones. These sedimentary facies are grouped into two principal facies assemblages that represent different stages of the paleovalley fill. Assemblage 1 is composed of diamictites (Facies A, C and F), laminated mudstones with dropstones (Facies B), and conglomerates (Facies D and E), which represent glacially influenced sedimentation in the paleovalley. Assemblage 2 represents the paleovalley fill when glacial influence ceased, and comprises laminated mudstones interbedded with sandstones (facies G) and stacked sandstone beds (facies H) that mostly record deltaic sedimentation. Stratigraphic relationships, plant fossils found in the paleovalley walls and palynological assemblages recovered in mudstones of facies D help to establish an early Pennsylvanian age for both the incision and the filling of the paleovalley. The studied paleovalley records an exceptional example of the western Gondwanan glacial to postglacial transition. Due to the continuous stratigraphic succession within the paleovalley as well as palynological, megafloristic and radiometric data, this example provides a complete framework of the late Carboniferous postglacial evolution in western Gondwana.
NASA Astrophysics Data System (ADS)
Rodrigo, C.; Vilches, L.; Vallejos, C.; Fernandez, R.; Molares, R.
2015-12-01
The fjords of the South Shetland Islands (Antarctica) and Danco Coast (Antarctic Peninsula) represent climatic transitional areas (subpolar to polar). The analysis of the distribution of sub-bottom facies helps to understand the prevailing sedimentary and climatic processes. This work seeks to characterize and compare the fjord seismic facies, of the indicated areas, to determine the main sedimentary processes in these regions. Compressed High-Intensity Radiated Pulse (CHIRP) records from 3.5 kHz sub-bottom profiler were obtained from the cruise: NBP0703 (2007); and pinger 3.5 kHz sub-bottom profiler records from the cruises: ECA-50 INACH (2014), and First Colombian Expedition (2015). Several seismic facies were recognized in all studied areas with some variability on their thickness and extent, and indicate the occurrence of similar sedimentary processes. These are: SSD facies (strong to weak intensity, stratified, draped sheet external shape), is interpreted as sedimentary deposits originated from suspended sediments from glaciar plumes and/or ice-rafting. This facies, in general, is thicker in the fjords of King George Island than in the larger fjords of the Danco Coast; on the other hand, within the Danco Coast area, this facies is thinner and more scarce in the smaller fjords and bays. MCM facies (moderate intensity, chaotic and with mounds) is associated with moraine deposits and/or basement. This is present in all areas, being most abundant in the Danco Coast area. WIC facies (weak intensity and chaotic) is interpreted as debris flows, which are present in both regions, but is most common in small fjords or bays in the Danco Coast, perhaps due to higher slopes of the seabed. In this work we discuss the influence of local climate, sediment plumes from the glaciers and other sedimentary processes on the distribution and geometry of the identified seismic facies.
Stratigraphy of the Morrison and related formations, Colorado Plateau region, a preliminary report
Craig, Lawrence C.; ,
1955-01-01
Three subdivisions of the Jurassic rocks of the Colorado Plateau region are: the Glen Canyon group, mainly eolian and fluvial sedimentary rocks; the San Rafael group, marine and marginal marine sedimentary rocks; and the Morrison formation, fluvial and lacustrine sedimentary rocks. In central and eastern Colorado the Morrison formation has not been differ- entiated into members. In eastern Utah, northeastern Arizona, northwestern New Mexico, and in part of western Colorado, the Morrison may be divided into a lower part and an upper part; each part has two members which are di1Ierentiated on a lithologic basis. Where differentiated, the lower part of the Morrison consists either of the Salt Wash member or the Recapture member or both; these are equivalent in age and inter tongue and intergrade over a broad area in the vicinity of the Four Corners area of New Mexico, Colorado, Arizona, and Utah. The Salt Wash member is present in eastern Utah and parts of western Colorado, north- eastern Arizona, and northwestern New Mexico. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams diverging to the north and east from an apex in south-central Utah. The major source area of the Salt Wash was to the southwest of south-central Utah, probably in west-central Arizona and southeastern California. The member was derived mainly from sedimentary rocks. The Salt Wash deposits grade from predomi- nantly coarse texture at the apex of the 'fan' to predominantly flne texture at the margin of the 'fan'. The Salt Wash member has been arbitrarily divided into four facies: a con- glomera tic sandstone facies, a sandstone and mudstone facies, a claystone and lenticular sandstone facies, and a claystone and limestone facies. The Recapture member of the Morrison formation is present in northeastern Arizona, northwestern New Mexico, and small areas of southeastern Utah and southwestern Colorado near the Four Corners. It was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Recap- ture deposits grade from predominantly coarse texture sedimentary rocks to predominantly fine texture and have been arbitrarily divided into three facies: a conglomeratic sandstone facies, a sandstone facies, and a claystone and sandstone facies. The distribution of the facies indicates that the major source area of the Recapture was south of Gallup, N. Mex., probably in west-central New Mexico. The Recapture was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The upper part of the Morrison formation consists of the Westwater Canyon member and the Brushy Basin member. The Westwater Canyon member forms the lower portion of the upper part of the Morrison in northeastern Arizona, northwestern New Mexico, and places in southeastern Utah and southwestern Colorade near the Four Corners, and it intertongues and intergrades northward into the Brushy Basin member. The Westwater Canyon member was formed as a large alluvial plain or 'fan' by an aggrading system of braided streams. The Westwater deposits grade from predominantly coarse-textured sedimentary rocks to somewhat finer textured sedimentary rocks, and have been arbitrarily divided into two facies: a conglomeratic sandstone facies and a sandstone facies. The distribution of the facies indicates that the major source area of the Westwater was south of Gallup, N. Mex., probably in west-central New Mexico. The Westwater was derived from an area of intrusive and extrusive igneous rocks, metamorphic rocks, and sedimentary rocks. The similarity of the distribution and composition of the Westwater to the Recapture indicates that the Westwater represents essentially a continuation of deposition on the Recapture 'fan'; the Westwater contains, however, considerably coarser materials. Whereas the S
Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets Basin, Ukraine).
van Hinsbergen, Douwe J J; Abels, Hemmo A; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G; Geluk, Mark; Stephenson, Randell A
2015-03-20
The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential.
Sedimentary geology of the middle Carboniferous of the Donbas region (Dniepr-Donets basin, Ukraine)
van Hinsbergen, Douwe J. J.; Abels, Hemmo A.; Bosch, Wolter; Boekhout, Flora; Kitchka, Alexander; Hamers, Maartje; van der Meer, Douwe G.; Geluk, Mark; Stephenson, Randell A.
2015-01-01
The Paleozoic Dniepr-Donets Basin in Belarus, Ukraine, and Russia forms a major hydrocarbon province. Although well- and seismic data have established a 20 km thick stratigraphy, field-studies of its sediments are scarce. The inverted Donbas segment (Ukraine) exposes the middle Carboniferous part of the basin's stratigraphy. Here, we provide detailed sedimentological data from 13 sections that cover 1.5 of the total of 5 km of the Bashkirian and Moscovian stages and assess the paleoenvironment and paleo-current directions. Middle Carboniferous deposition occurred in a shelf environment, with coal deposition, subordinate fluvial facies, and abundant lower and middle shoreface facies, comprising an intercalated package of potential source and reservoir rocks. Sedimentary facies indicate a paleodepth range from below storm wave base to near-coastal swamp environments. Sedimentation and subsidence were hence in pace, with subtle facies changes likely representing relative sea-level changes. Paleocurrent directions are remarkably consistently southeastward in time and space in the different sedimentary facies across the Donbas Fold Belt, illustrating a dominant sedimentary infill along the basin axis, with little basin margin influence. This suggests that the middle Carboniferous stratigraphy of the Dniepr-Donets basin to the northwest probably contains significant amounts of fluvial sandstones, important for assessing hydrocarbon reservoir potential. PMID:25791400
NASA Astrophysics Data System (ADS)
Lang, Jörg; Sievers, Julian; Loewer, Markus; Igel, Jan; Winsemann, Jutta
2017-12-01
Bedforms related to supercritical flows are increasingly recognised as important constituents of many depositional environments, but outcrop studies are commonly hampered by long bedform wavelengths and complex three-dimensional geometries. We combined outcrop-based facies analysis with ground-penetrating radar (GPR) surveys to analyse the 3D facies architecture of subaqueous ice-contact fan and glacifluvial delta deposits. The studied sedimentary systems were deposited at the margins of the Middle Pleistocene Scandinavian ice sheets in Northern Germany. Glacifluvial Gilbert-type deltas are characterised by steeply dipping foreset beds, comprising cyclic-step deposits, which alternate with antidune deposits. Deposits of cyclic steps consist of lenticular scours infilled by backset cross-stratified pebbly sand and gravel. The GPR sections show that the scour fills form trains along the delta foresets, which can locally be traced for up to 15 m. Perpendicular and oblique to palaeoflow direction, these deposits appear as troughs with concentric or low-angle cross-stratified infills. Downflow transitions from scour fills into sheet-like low-angle cross-stratified or sinusoidally stratified pebbly sand, deposited by antidunes, are common. Cyclic steps and antidunes were deposited by sustained and surge-type supercritical density flows, which were related to hyperpycnal flows, triggered by major meltwater discharge or slope-failure events. Subaqueous ice-contact fan deposits include deposits of progradational scour fills, isolated hydraulic jumps, antidunes and (humpback) dunes. The gravel-rich fan succession consists of vertical stacks of laterally amalgamated pseudo-sheets, indicating deposition by pulses of waning supercritical flows under high aggradation rates. The GPR sections reveal the large-scale architecture of the sand-rich fan succession, which is characterised by lobe elements with basal erosional surfaces associated with scours filled with backsets related to hydraulic jumps, passing upwards and downflow into deposits of antidunes and (humpback) dunes. The recurrent facies architecture of the lobe elements and their prograding and retrograding stacking pattern are interpreted as related to autogenic flow morphodynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambrose, W.A.; Jackson, M.L.W.; Finley, R.J.
1988-01-01
Geologically based infill-drilling strategies hold great potential for extension of domestic gas resources. Traditional gas-well drilling and development have often assumed homogeneous and continuous reservoirs; uniform gas-well spacing has resulted in numerous untapped reservoirs isolated from other productive sand bodies. Strategically located infill wells drilled into these undrained reservoirs may ultimately contact an additional 20% of original gas in place in Texas gas fields. Tertiary formations in the Texas Gulf Coast commonly exhibit multiple fluvial and fluvial-deltaic reservoirs that contain vertical and horizontal permeability barriers. For example, the Frio La Gloria field (Jim Wells and Brooks Counties, Texas) contains isolatedmore » and compartmentalized reservoirs that can be related to the irregular distribution of heterogeneous facies. Net-sand and log-facies maps in areas of dense well spacing delineate relatively continuous pay defined by lenticular point-bar and channel-fill deposits 1,500-2,500 ft wide. These point-bar deposits are flanked laterally by sand-poor levee and splay facies that isolate the reservoirs into narrow, dip-elongate bands.« less
Trace fossil analysis of lacustrine facies and basins
Buatois, L.A.; Mangano, M.G.
1998-01-01
Two ichnofacies are typical of lacustrine depositional systems. The Scoyenia ichnofacies characterizes transitional terrestrial/nonmarine aquatic substrates, periodically inundated or desiccated, and therefore is commonly present in lake margin facies. The Mermia ichnofacies is associated with well oxygenated, permanent subaqueous, fine-grained substrates of hydrologically open, perennial lakes. Bathymetric zonations within the Mermia ichnofacies are complicated by the wide variability of lacustrine systems. Detected proximal-distal trends are useful within particular lake basins, but commonly difficult to extrapolate to other lakes. Other potential ichnofacies include the typically marine Skolithos ichnofacies for high-energy zones of lakes and substrate-controlled, still unnamed ichnofacies, associated to lake margin deposits. Trace fossils are useful for sedimentologic analysis of event beds. Lacustrine turbidites are characterized by low-diversity suites, reflecting colonization by opportunistic organisms after the turbidite event. Underflow current beds record animal activity contemporaneous with nearly continuous sedimentation. Ichnologic studies may also help to distinguish between marine and lacustrine turbidites. Deep-marine turbidites host the Nereites ichnofacies that consists of high diversity of ornate grazing traces and graphoglyptids, recording highly specialized feeding strategies developed to solve the problem of the scarcity of food in the deep sea. Deep lacustrine environments contain the Mermia ichnofacies, which is dominated by unspecialized grazing and feeding traces probably related to the abundance and accessibility of food in lacustrine systems. The lower diversity of lacustrine ichnofaunas in comparison with deep-sea assemblages more likely reflects lower species diversity as a consequence of less stable conditions. Increase of depth and extent of bioturbation through geologic time produced a clear signature in the ichnofabric record of lacustrine facies. Paleozoic lacustrine ichnofaunas are typically dominated by surface trails with little associated bioturbation. During the Mesozoic, bioturbation depth was higher in lake margin facies than in fully lacustrine deposits. While significant degrees of bioturbation were attained in lake margin facies during the Triassic, major biogenic disruption of primary bedding in subaqueous lacustrine deposits did not occur until the Cretaceous.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, M.J.; Pryor, W.A.
1985-02-01
The Spar Mountain Member of the Ste. Genevieve Limestone (middle Mississippian) in Hamilton County, Illinois, consists of 40-60 ft (12-18 m) of interbedded limestones, shales, and sandstones. Five cores and 1400 electric logs were used to delineate two shallowing-upward carbonate cycles and 2 major clastic pulses within the Spar Mountain. Eight lithofacies representing 6 depositional environments were identified. They are: (A) echinoderm-brachiopod dolostone to packstone (outer ramp), (B) ooid-peloidal grainstone (intermediate ramp), (C) skeletal grainstone (intermediate ramp), (D) ooid-molluscan-intraclastic wackestone to grainstone (inner ramp), (E) pelletal-skeletal wackestone (inner ramp), (F) quartzarenite (channelized nearshore), (G) quartz-sublithic arenite to wacke (delta platform),more » and (H) quartz mudstone (prodelta, delta platform). Deposition occurred on a southwest-dipping carbonate ramp, with siliciclastic sediments originating from the northeast. The sequence of facies and their inferred depositional environments record 2 major progradational episodes. Oolitic facies are interpreted to be of tidal-bar belt origin and quartzarenite facies are interpreted to be of delta-distributary channel origin. Their distribution is partially controlled by antecedent and syndepositional topography. Many of these paleotopographic highes are positive features today and yield pinch-out stratigraphic relationships. Paleogeographic reconstructions demonstrate that the primary control on facies distribution was the position of the delta proper along strike. However, depositional topography also influenced sedimentation, particularly in the sand-sized fraction. Using this concept, better prediction of underlying porous buildups (ooid shoals) is possible if thickness of the overlying siliciclastic is known. Within buildups, a complex diagenetic history complicates the distribution of porosity.« less
Extraterrestrial demise of banded iron formations 1.85 billion years ago
Slack, J.F.; Cannon, W.F.
2009-01-01
In the Lake Superior region of North America, deposition of most banded iron formations (BIFs) ended abruptly 1.85 Ga ago, coincident with the oceanic impact of the giant Sudbury extraterrestrial bolide. We propose a new model in which this impact produced global mixing of shallow oxic and deep anoxic waters of the Paleoproterozoic ocean, creating a suboxic redox state for deep seawater. This suboxic state, characterized by only small concentrations of dissolved O2 (???1 ??M), prevented transport of hydrothermally derived Fe(II) from the deep ocean to continental-margin settings, ending an ???1.1 billion-year-long period of episodic BIF mineralization. The model is supported by the nature of Precambrian deep-water exhalative chemical sediments, which changed from predominantly sulfide facies prior to ca. 1.85 Ga to mainly oxide facies thereafter. ?? 2009 Geological Society of America.
NASA Astrophysics Data System (ADS)
Spagnoli, Federico; Dinelli, Enrico; Giordano, Patrizia; Marcaccio, Marco; Zaffagnini, Fabio; Frascari, Franca
2014-11-01
The aim of this work was to identify sedimentary facies, i.e. facies having similar biogeochemical, mineralogical and sedimentological properties, in present and recent fine sediments of the Northern and Central Adriatic Sea with their spatial and temporal variations. Further aims were to identify the transportation, dispersion and sedimentation processes and provenance areas of sediments belonging to the facies. A Q-mode factor analysis of mineralogical, granulometric, geochemical (major and trace elements) and biochemical (organic carbon and total nitrogen) properties of surficial and sub-surficial sediments sampled in the PRISMA 1 Project has been used to identify the sedimentary facies. On the whole, four facies were identified: 1) Padanic Facies, made up of fine siliciclastic sediments which reach the Adriatic Sea mainly from the Po River and are distributed by the Adriatic hydrodynamic in a parallel belt off the Italian coast. Southward, this facies gradually mixes with sediments from the Apennine rivers and with biogenic autochthonous particulate; 2) Dolomitic Facies, made up of dolomitic sediments coming from the eastern Alps. This facies is predominant north of the Po River outfalls and it mixes with Padanic Facies sediments in front of the Po River delta; 3) Mn-carbonate Facies, made up of very fine sediments, rich in coccolithophores and secondary Mn-oxy-hydroxides resulting from the reworking of surficial fine sediments in shallow areas and subsequent deposition in deeper areas; 4) Residual Facies, made up of coarse siliciclastic sediments and heavy minerals resulting from the action of waves and coastal currents; this facies is present mainly in inshore areas. The zoning of the facies, resulting from this study, will make possible the identification, through further investigation, on a greater scale, of more accurate facies borders and the recognition of sub-facies, resulting from secondary or weaker biogeochemical processes.
Baucom, P.C.; Rigsby, C.A.
1999-01-01
Strata exposed in terraces and modern cutbanks along the Rio Desaguadero contain a variety of lithofacies that were deposited in four distinct facie??s associations. These facie??s associations document a history of aggradation and downcutting that is linked to Holocene climate change on the Altiplano. Braided-stream, meandering-stream, deltaic and shoreline, and lacustrine sediments preserved in multi-level terraces in the northern Rio Desaguadero valley record two high-water intervals: one between 4500 and 3900 yr BP and another between 2000 and 2200 yr BP. These wet periods were interrupted by three periods of fluvial downcutting, centered at approximately 4000 yr BP, 3600 yr BP, and after 2000 yr BP. Braided-river sediments preserved in a single terrace level in the southern Rio Desaguadero valley record a history of nearly continuous fluvial sedimentation from at least 7000 yr BP until approximately 3200 yr BP that was followed by a single episode (post-3210 yr BP) of downcutting and lateral migration. The deposition and subsequent fluvial downcutting of the northern strata was controlled by changes in effective moisture that can be correlated to Holocene water-level fluctuations of Lake Titicaca. The deposition and dissection of braided-stream sediments to the south are more likely controlled by a combination of base-level change and sediment input from the Rio Mauri. Copyright ??1999, SEPM (Society for Sedimentar)- Geology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilmore, T.
1987-08-01
The Early Mississippian Joana Limestone in the southern Schell Creek and Egan Ranges of east-central Nevada is divided into nine rock types: mudstone, fossiliferous mudstone, wackestone, peloidal wackestone, pelmatozoan wackestone, pelmatozoan packstone, pelmatozoan grainstone, and ooid packstone. From the combined rock type and larger scale outcrop information, three depositional facies were identified: (1) unbedded subtidal, (2) bedded subtidal, and (3) restricted subtidal, each containing a unique set of diagnostic microfacies. Facies thicknesses, lithologies, and contacts with adjacent stratigraphic units indicate a highly varied paleotopography of localized highs and basins during Joana deposition. It is suggested that Waulsortian-type buildups occur downslopemore » of some paleohighs in the unbedded subtidal facies. An age of upper Kinderhookian to lowest Osagean within the Mississippian Period was determined for the Joana, based primarily on conodonts and foraminifera. In the middle beds of the Joana, the previously unreported upper Siphonodella crenulata conodont zone occurs and relates the timing of the Joana to regional geologic events. Color alteration indices of these conodonts are 1.5 to 2, and occur in the oil generation window. Additionally, oil staining was noted in numerous samples primarily from the lower half of the formation, represented by the unbedded subtidal facies. Porosities of the formation are varied, ranging from no visible porosity to over 20% interparticle porosity in some pelmatozoan grainstones.« less
Sedimentary facies and environmental ichnology of a ?Permian playa-lake complex in western Argentina
Zhang, G.; Buatois, L.A.; Mangano, M.G.; Acenolaza, F.G.
1998-01-01
A moderately diverse arthropod icnofauna occurs in ?Permian ephemeral lacustrine deposits of the Paganzo Basin that crop out at Bordo Atravesado, Cuesta de Miranda, western Argentina. Sedimentary successions are interpreted as having accumulated in a playa-lake complex. Deposits include three sedimentary facies: (A) laminated siltstone and mudstone: (B) current-rippled cross-laminated very fine grained sandstone: and (C) climbing and wave-rippled cross-laminated fine-grained sandstone deposited by sheet floods under wave influence in the playa-lake complex. Analysis of facies sequences suggests that repeated vertical facies associations result from transgressive regressive episodes of variable time spans. The Bordo Atravesado ichnofauna includes Cruziana problematica, Diplocraterion isp., cf. Diplopadichnus biformis, Kouphichnium? isp., Merostomichnites aicunai, Mirandaichnium famatinense, Monomorphichnus lineatus, Palaeophyeus tubularis, Umfolozia sinuosa and Umfolozia ef. U. longula. The assemblage is largely dominated by arthropod trackways and represents an example of the Scoyenia ichnofacies. Trace fossils are mostly preserved as hypichnial ridges on the soles of facies C beds, being comparatively rare in facies A and B. Ichnofossil preservation was linked to rapid influx of sand via sheet floods entering into the lake. Four taphonomic variants (types 1-4) are recognized, each determined by substrate consistency and time averaging. Type 1 is recorded by the presence of low density assemblages consisting of poorly defined trackways, which suggests that arthropods crawled in soft, probably slightly subaqueous substrates. Type 2 is represented by low to moderate density suites that include sharply defined trackways commonly associated with mud cracks, suggesting that the tracemakers inhabited a firm, desiccated lacustrine substrate. Type 3 displays features of types 1 and 2 and represents palimpsestic bedding surfaces, resulting from the overprint of terrestrial ichnocoenoses over previously formed softground suites. Type 4 differs from type 2 only in that assemblages display a high density of traces, recorded by numerous superimposed trackways, which suggests a major time gap of subaerial exposure before sheet flood entrance. Therefore, type 4 surfaces are mostly interpreted as track imprinted omission surfaces.
NASA Astrophysics Data System (ADS)
Cardoso, Alexandre Ribeiro; Nogueira, Afonso César Rodrigues; Abrantes, Francisco Romério; Rabelo, Cleber Eduardo Neri
2017-03-01
The fragmentation of the West Gondwana during Early Triassic to Cretaceous was marked by intense climatic changes, concomitant with the establishment of extensive desertic/lacustrine systems. These deposits succeeded the emplacement and extrusion of lava flows, related to the pre-rift phase and initial opening of the Equatorial Atlantic Ocean. The thermal phase is recorded in the Upper Jurassic-Lower Cretaceous Pastos Bons Formation, exposed mainly in southeast parts of the Parnaíba Basin, Northeastern Brazil. The sedimentary facies of this unit were grouped in two facies associations (FA), representative of a shallow lacustrine system, influenced by episodic hyperpycnal and oscillatory flows. Central lake facies association (FA1) is composed by laminated mudstone (Ml), sandstone/mudstone rhythmite (S/Mr) and sandstone with even-parallel lamination (Sel). Flysch-like delta front (FA2) consists in sandstones with wave structures (Sw), sandstones with even-parallel stratification (Ses), massive sandstones (Sm), sandstones with soft-sediment deformation structures (Sd) and laminated mudstones (Ml). FA1 was deposited in the deepest portions of the lake, characterized by low energy, episodically disturbed by siliciclastic influx. FA2 presents sandy deposits generated by unconfined flow, probably fed by ephemeral stream flows that generated thickening upward of tabular sandstone beds. The progressive filling of the lake resulted in recurrent shoaling up of the water level and reworking by wave action. The installation of Pastos Bons lakes was controlled by thermal subsidence, mainly in restricted depocenters. The siliciclastic fluvial inflow can be related to the adjacent humid desertic facies, formed under climatic attenuation, typical of post-Triassic period, with reduced biological activity. Smectite and abundant feldspars, in lacustrine facies, corroborate an arid climate, with incipient chemical weathering. The new facies and stratigraphic data present in this paper provide an explanation about the implantation of a huge lacustrine system in the southern of Parnaiba Basin, with strong paleogeographic implications for the West-Central Gondwana during Late Jurassic to Early Cretaceous.
Sedimentology of the lower Karoo Supergroup fluvial strata in the Tuli Basin, South Africa
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Catuneanu, Octavian
2002-11-01
The Karoo Supergroup in the Tuli Basin (South Africa) consists of a sedimentary sequence (˜450-500 m) composed of four stratigraphic units, namely the informal Basal, Middle and Upper Units, and the formal Clarens Formation. The units were deposited in continental settings from approximately Late Carboniferous to Middle Jurassic. This paper focuses on the ˜60-m-thick Basal Unit, which was examined in terms of sedimentary facies and palaeo-environments based on evidence provided by primary sedimentary structures, palaeo-flow measurements, palaeontological findings, borehole data (59 core descriptions) and stratigraphic relations. Three main facies associations have been identified: (i) gravelstone (breccias and conglomerate-breccias), (ii) sandstone and (iii) fine-grained sedimentary rocks. The coarser facies are interpreted as colluvial fan deposits, possibly associated with glaciogenic diamictites. The sandstone facies association is mainly attributed to channel fills of low sinuosity, braided fluvial systems. The coal-bearing finer-grained facies are interpreted as overbank and thaw-lake deposits, and represent the lower energy correlatives of the sandy channel fills. Sediment aggradation in this fluvio-lacustrine system took place under cold climatic conditions, with floating lake ice likely associated with lacustrine environments. Palaeo-current indicators suggest that the highly weathered, quartz-vein-rich metamorphic rock source of the Basal Unit was situated east-northeast of the study area. The accumulation of the Basal Unit took place within the back-bulge depozone of the Karoo foreland system. In addition to flexural subsidence, the amount of accommodation in this tectonic setting was also possibly modified by extensional tectonism in the later stages of the basin development. Based on sedimentological and biostratigraphic evidence, the coal-bearing fine-grained facies association displays strong similarities with the Vryheid Formation of the main Karoo Basin to the south. The lowermost non-fossiliferous breccias have been correlated before with the Dwyka Group in the main Karoo, and hence the Basal Unit may be regarded as the distal equivalent of the Dwyka and Ecca groups to the south.
NASA Astrophysics Data System (ADS)
Smith, A. M.
1989-08-01
As a result of railway excavations the Pietermaritzburg Shale-Vryheid Formation transition is spectacularly exposed on the southern slope of Zungwini Mountain. Nine facies and three facies associations are recognised. Deposition occurred in a palaeoshelf and offshore setting. The reconstructed coastline was SW-NE with land to the northwest. The inner shelf was tide- and the outer-shelf storm-influenced. Fluvial input supplied sediment which was reworked into flood-tidal sandwaves, probably within the confines of an estuary. A rising sea level brought the sandwaves into the realm of a more distal, coast-parallel, storm-tidal current regime where reworking of the sediment occurred. Intense storm-augmented tidal currents swept some of the better-sorted material seaward to be deposited as storm layers in the inner and outer shelf. These same currents formed the low-density turbidites and sediment plumes from which the offshore argillaceous deposits were formed. The shelf edge poorly sorted rhythmite facies may have developed from sediment flushed out of the rivers during flood or from the flood-tidal sandwave system as a result of exceptional coastal storms.
NASA Astrophysics Data System (ADS)
Engel, Max; Brückner, Helmut; Wennrich, Volker; Scheffers, Anja; Kelletat, Dieter; Vött, Andreas; Schäbitz, Frank; Daut, Gerhard; Willershäuser, Timo; May, Simon Matthias
2010-11-01
A sediment record of three alluvial sites along the east- and northeast-oriented shore of Bonaire (Netherlands Antilles) provides evidence for the recurrence of several extraordinary wave impacts during the Holocene. The interpretation of onshore high-energy wave deposits is controversially discussed in recent sedimentary research. However, it represents a powerful tool to evaluate the hazard of tsunami and severe storms where historical documentation is short and/or fragmentary. A facies model was established based on sedimentary and geochemical characteristics as well as the assemblage and state of preservation of shells and shell fragments. Radiocarbon data and the comparison of the facies model with both recent local hurricane deposits and global "tsunami signature types" point to the occurrence of three major wave events around 3300, 2000-1700 and shortly before 500 BP. Since (i) the stratigraphically correlated sand layers fulfill several sedimentary characteristics commonly associated with tsunamis and (ii) modern strong hurricanes left only little or even no sediment in the study areas, they were interpreted as tsunamigenic. However, surges largely exceeding the energy of those accompanying modern hurricanes in the southern Caribbean cannot entirely be ruled out. The results are partially consistent with existing chronologies for Holocene extreme wave events deduced from supralittoral coarse-clast deposits on Aruba, Bonaire and Curaçao as well as overwash sediments from Cayo Sal, Venezuela.
NASA Astrophysics Data System (ADS)
Kernan, Nicholas Devereux
The Niobrara Formation is a fine-grained marine rock deposited in the Western Interior Seaway during the Late Cretaceous. It is composed of fossil-rich interlayered shale, marls, and chalks. Recent interest in the Niobrara has grown due to the advent of lateral drilling and multi-stage hydraulic fracturing. This technology allows operators to economically extract hydrocarbons from chalkier Niobrara facies. Yet two aspects of the Niobrara Formation have remained enigmatic. The first is the occurrence of abundant, randomly oriented, layer-bound, normal faults. The second is the large degree of vertical heterogeneity. This research aimed to increase understanding in both these aspects of the Niobrara Formation. Randomly oriented normal faults have been observed in Niobrara outcrops for nearly a hundred years. Recent high resolution 3D seismic in the Denver Basin has allowed investigators to interpret these faults as part of a polygonal fault system (PFS). PFS are layer bound extensional structures that typically occur in fine-grained marine sediments. Though their genesis and development is still poorly understood, their almost exclusive occurrence in fine-grained rocks indicates their origin is linked to lithology. Interpretation of a 3D seismic cube in Southeast Wyoming found a tier of polygonal faulting within the Greenhorn-Carlile formations and another tier of polygonal faulting within the Niobrara and Pierre formations. This research also found that underlying structural highs influence fault growth and geometries within both these tiers. Core data and thin sections best describe vertical heterogeneity in fine-grained rocks. This investigation interpreted core data and thin sections in a well in Southeast Wyoming and identified 10 different facies. Most of these facies fall within a carbonate/clay spectrum with clay-rich facies deposited during periods of lower sea level and carbonate-rich facies deposited during periods of higher sea level. Because the average operator will typically have little core but abundant well logs, this investigation used three different methods of describing facies variability with logs. Facies interpreted with these methods are referred to as electrofacies. First, a conventional interpretation of Niobrara sub-units was done using gamma ray and resistivity logs. Then a cluster analysis was conducted on an extensive petrophysical log suite. Finally, a neural network was trained with the previous core interpretation so that it learned to identify facies from logs. The research found that when little core is available a cluster analysis method can capture significant amounts of vertical heterogeneity within the Niobrara Formation. But if core is available then a neural network method provides more meaningful and higher resolution interpretations.
Antecedent rivers and early rifting: a case study from the Plio-Pleistocene Corinth rift, Greece
NASA Astrophysics Data System (ADS)
Hemelsdaël, Romain; Ford, Mary; Malartre, Fabrice
2016-04-01
Models of early rifting present syn-rift sedimentation as the direct response to the development of normal fault systems where footwall-derived drainage supplies alluvial to lacustrine sediments into hangingwall depocentres. These models often include antecedent rivers, diverted into active depocentres and with little impact on facies distributions. However, antecedent rivers can supply a high volume of sediment from the onset of rifting. What are the interactions between major antecedent rivers and a growing normal fault system? What are the implications for alluvial stratigraphy and facies distributions in early rifts? These questions are investigated by studying a Plio-Pleistocene fluvial succession on the southern margin of the Corinth rift (Greece). In the northern Peloponnese, early syn-rift deposits are preserved in a series of uplifted E-W normal fault blocks (10-15 km long, 3-7 km wide). Detailed sedimentary logging and high resolution mapping of the syn-rift succession (400 to 1300 m thick) define the architecture of the early rift alluvial system. Magnetostratigraphy and biostratigraphic markers are used to date and correlate the fluvial succession within and between fault blocks. The age of the succession is between 4.0 and 1.8 Ma. We present a new tectonostratigraphic model for early rift basins based on our reconstructions. The early rift depositional system was established across a series of narrow normal fault blocks. Palaeocurrent data show that the alluvial basin was supplied by one major sediment entry point. A low sinuosity braided river system flowed over 15 to 30 km to the NE. Facies evolved downstream from coarse conglomerates to fined-grained fluvial deposits. Other minor sediment entry points supply linked and isolated depocentres. The main river system terminated eastward where it built stacked small deltas into a shallow lake (5 to 15 m deep) that occupied the central Corinth rift. The main fluvial axis remained constant and controlled facies distribution throughout the early rift evolution. We show that the length scale of fluvial facies transitions is greater than and therefore not related to fault spacing. First order facies variations instead occur at the scale of the full antecedent fluvial system. Strike-parallel subsidence variations in individual fault blocks represent a second order controlling factor on stratigraphic architecture. As depocentres enlarged through time, sediments progressively filled palaeorelief, and formed a continuous alluvial plain above active faults. There was limited creation of footwall relief and thus no significant consequent drainage system developed. Here, instead of being diverted toward subsiding zones, the drainage system overfilled the whole rift from the onset of faulting. Moreover, the zones of maximum subsidence on individual faults are aligned across strike parallel to the persistent fluvial axis. This implies that long-term sediment loading influenced the growth of normal faults. We conclude that a major antecedent drainage system inherited from the Hellenide mountain belt supplied high volumes of coarse sediment from the onset of faulting in the western Corinth rift (around 4 Ma). These observations demonstrate that antecedent drainage systems can be important in the tectono-sedimentary evolution of rift basins.
Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado
Larson, P.B.; Cunningham, C.G.; Naeser, C.W.
1994-01-01
The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar albite components that reacted evolved to 0.92 as the reaction progressed. Much of the alkali feldspar albite component in the proximal facies reacted while the, primary plagioclase was still unreacted, but the ratio for these assemblages increased to 1.51 when the plagioclase entered the reaction paragenesis. Plagioclase reaction during distal propylitic alteration resulted in pseudomorphic albite mixed with illite and a loss of Na2O. CaO is lost in the distal facies as hornblende reacts to chlorite, although some calcium may be fixed in calcite. CaO is added to the proximal facies as the quantity of chlorite replacing hornblende increases and epidote and calcite are produced. ?? 1994 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Srivastava, V. K.; Singh, B. P.
2017-04-01
Late Paleocene sedimentation in the pericratonic Kachchh Basin marks the initial marine transgression during the Cenozoic era. A 17 m thick sandstone-dominated succession, known as the clastic member (CM) of the Matanomadh Formation (MF), is exposed sporadically in the basin. Three facies associations are reconstructed in the succession in three different sections. Facies association-1 contains matrix-supported pebbly conglomerate facies, horizontally-laminated sandstone-mudstone alternation facies, hummocky- and swaley cross-bedded sandstone facies, wave-rippled sandstone facies and climbing ripple cross-laminated sandstone facies. This facies association developed between shoreface and foreshore zone under the influence of storms on a barrier ridge. Facies association-2 contains sigmoidal cross-bedded sandstone facies, sandstone-mudstone alternation facies, flaser-bedded sandstone facies, herringbone cross-bedded sandstone facies and tangential cross-bedded sandstone facies. This facies association possessing tidal bundles and herringbone cross-beds developed on a tidal flat with strong tidal influence. Facies association-3 comprises pebbly sandstone facies, horizontally-bedded sandstone facies, tangential cross-bedded sandstone facies exhibiting reactivation surfaces and tabular cross-bedded sandstone facies. This facies association represents sedimentation in a river-dominated estuary and reactivation surfaces and herringbone cross-beds indicating tidal influence. The bipolar paleocurrent pattern changes to unipolar up-section because of the change in the depositional currents from tidal to fluvial. The sedimentation took place in an open coast similar to the Korean coast. The presence of neap-spring tidal rhythmites further suggests that a semidiurnal system similar to the modern day Indian Ocean was responsible for the sedimentation. Here, the overall sequence developed during the transgressive phase where barrier ridge succession is succeeded by the tidal flat succession and the latter, in turn, is succeeded by the estuarine succession. This study resolves the most debated issue of initial marine transgression in the Kachchh Basin during the Cenozoic.
The stratigraphic record of Khawr Al Maqta, Abu Dhabi, United Arab Emirates
NASA Astrophysics Data System (ADS)
Lokier, S. W.; Herrmann, S.
2012-04-01
Well-constrained modern depositional analogues are vital to the development of accurate geological reservoir models. The development of realistic hydrocarbon reservoir models requires the application of high-precision, well-constrained outcrop and sub-surface data sets with accurately-documented facies geometries and depositional sequence architectures. The Abu Dhabi coastline provides the best modern analogue for the study of ramp-style carbonate depositional facies akin to those observed in the sub-surface reservoirs of the United Arab Emirates (UAE). However, all previous studies have relied on temporally limited surface datasets. This study employed thirty five shallow subsurface cores spanning the width of the Khawr Al Maqta - the narrow shallow tidal channel that separates Abu Dhabi Island from the mainland. The cores were taken over a transect measuring 1.2 km in length by 50 m wide thus providing a high-resolution record of sub-surface facies geometries in a stratigraphically complex setting. Geometries in these Pleistocene to Holocene facies are complex with interdigitating, laterally heterogeneous carbonate, siliciclastic and evaporite units represented throughout the area of the study. Carbonate facies range from molluscan rudstones to marls and are all indicative of deposition in a shallow, relatively low energy marine setting akin to that seen in the environs of Abu Dhabi Island today. Texturally mature quartz sands occur as thin lenses and as thin cross bedded or laminated horizons up to twenty five centimetres thick. Glauconitic mudstones are common and locally exhibit evidence of rootlets and desiccation cracks. Evaporites are present in the form of gypsum occurring as isolated crystals and nodules or as massive chicken-wire units in excess of three metres thick. All of these textures are consistent with evaporite development in the shallow subsurface. Early, shallow-burial diagenesis has been important. Bioclasts are pervasively leached throughout the stratigraphic sequence thereby resulting in a significant enhancement in porosity in the carbonate lithologies. This pervasive mouldic porosity is locally occluded by the precipitation of gypsum cements. The displacive precipitation of significant quantities of gypsum has resulted in the deformation of primary sedimentary structures. This complex sequence of mixed carbonate-siliciclastic-evaporite lithofacies is interpreted to record repeated episodes of flooding and sub-aerial exposure associated with the waxing and waning of the Pleistocene ice-sheets. During periods of relative sea-level fall carbonate sequences entered the meteoric realm with the consequent dissolution of unstable bioclasts. Transgression and reflooding once again isolated Abu Dhabi Island from the mainland, thus permitting the precipitation of shallow-water carbonate lithofacies. During sea-level highstands the north-westerly Shamal wind transported carbonate sediments into the lee-of the island resulting in the south-easterly shore-wards development of a tombolo. However, the strong tidal currents of the Khawr Al Maqta prevented final connection to the mainland, thus ensuring the isolation of Abu Dhabi until the subsequent regression.
NASA Astrophysics Data System (ADS)
De Boever, Eva; Foubert, Anneleen; Oligschlaeger, Dirk; Claes, Steven; Soete, Jeroen; Bertier, Pieter; Özkul, Mehmet; Virgone, Aurélien; Swennen, Rudy
2016-07-01
Carbonate spring deposits gained renewed interest as potential contributors to subsurface reservoirs and as continental archives of environmental changes. In contrast to their fabrics, petrophysical characteristics - and especially the importance of microporosity (< 1µm) - are less understood. This study presents the combination of advanced petrophysical and imaging techniques to investigate the pore network characteristics of three, common and widespread spring carbonate facies, as exposed in the Pleistocene Cakmak quarry (Denizli, Turkey): the extended Pond, the dipping crystalline Proximal Slope Facies and the draping Apron and Channel Facies deposits formed by encrustation of biological substrate. Integrating mercury injection capillary pressure, bulk and diffusion Nuclear Magnetic Resonance (NMR), NMR profiling and Brunauer-Emmett-Teller (BET) measurements with microscopy and micro-computer tomography (µ-CT), shows that NMR T2 distributions systematically display a single group of micro-sized pore bodies, making up between 6 and 33% of the pore space (average NMR T2 cut-off value: 62 ms). Micropore bodies are systematically located within cloudy crystal cores of granular and dendritic crystal textures in all facies. The investigated properties therefore do not reveal differences in micropore size or shape with respect to more or less biology-associated facies. The pore network of the travertine facies is distinctive in terms of (i) the percentage of microporosity, (ii) the connectivity of micropores with meso- to macropores, and (ii) the degree of heterogeneity at micro- and macroscale. Results show that an approach involving different NMR experiments provided the most complete view on the 3-D pore network especially when microporosity and connectivity are of interest.
Lasemi, Y.; Ghomashi, M.; Amin-Rasouli, H.; Kheradmand, A.
2008-01-01
The Lower Triassic Sorkh Shale Formation is a dominantly red colored marginal marine succession deposited in the north-south trending Tabas Basin of east central Iran. It is correlated with the unconformity-bounded lower limestone member of the Elika Formation of the Alborz Mountains of northern Iran. The Sorkh Shale is bounded by the pre-Triassic and post-Lower Triassic interregional unconformities and consists mainly of carbonates, sandstones, and evaporites with shale being a minor constituent. Detailed facies analysis of the Sorkh Shale Formation resulted in recognition of several genetically linked peritidal facies that are grouped into restricted subtidal, carbonate tidal flat, siliciclastic tidal flat, coastal plain and continental evaporite facies associations. These were deposited in a low energy, storm-dominated inner-ramp setting with a very gentle slope that fringed the Tabas Block of east central Iran and passed northward (present-day coordinates) into deeper water facies of the Paleotethys passive margin of northern Cimmerian Continent. Numerous carbonate storm beds containing well-rounded intraclasts, ooids and bioclasts of mixed fauna are present in the Sorkh Shale Formation of the northern Tabas Basin. The constituents of the storm beds are absent in the fair weather peritidal facies of the Sorkh Shale Formation, but are present throughout the lower limestone member of the Elika Formation. The Tabas Block, a part of the Cimmerian continent in east central Iran, is a rift basin that developed during Early Ordovician-Silurian Paleotethys rifting. Facies and sequence stratigraphic analyses of the Sorkh Shale Formation has revealed additional evidence supporting the Tabas Block as a failed rift basin related to the Paleotethys passive margin. Absence of constituents of the storm beds in the fair weather peritidal facies of the Sorkh Shale Formation, presence of the constituents of the storm beds in the fair weather facies of the Elika Formation (the Sorkh Shale equivalent in the Alborz Paleotethys margin) and southward paleocurrent directions of carbonate storm beds suggest that the low topographic gradient of the ramp in the Tabas failed rift basin was facing the Paleotethys Ocean, where the storms were generated. In addition, northward paleocurrent directions of the fair weather facies and northward increase in carbonate content of the Sorkh Shale sequence further indicate that the Tabas Basin was tectonically a part of the Paleotethys passive margin. It is apparent that relative sea level, basin geometry and tectonic movements along the bounding faults played significant roles during deposition of the Sorkh Shale Formation by controlling accommodation space and facies variations along the Tabas failed rift basin.
Nugget-Navaho-Aztec sandstone: interaction of eolian sand sea with Andean-type volcanic arc
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzolf, J.E.
1986-05-01
The Nugget-Navaho-Aztec sand sea was deposited east of an Andean-type volcanic arc. During the early stage of eolian deposition, fluvially transported sand was concentrated in the marine littoral zone and returned inland by onshore winds from the northwest. With progressive development of the arc, the sea withdrew. Wind direction changed from northwest to northeast. Previously deposited eolian sand was transported southwestward into the volcanic arc. Proximity of the arc can be detected with great difficulty by examining eolian and underlying red-bed facies. In southern Nevada, the volcanic arc is undetectable in eolian facies, but thin sandstone beds containing volcanic clastsmore » or weathered feldspar in the finer grained red-bed facies indicate arc volcanism; volcanic clasts are distinct in a basal conglomerate. Westward into California, the sub-Aztec Sandstone contains volcanic pebbles. The upper part of the Aztec Sandstone contains a 1 to 2-m thick volcaniclastic siltstone. Farther west, the Aztec Sandstone is interbedded with volcanic flows, ash flows, and flow breccias. These rocks might easily be mistaken for red beds in well cores or cuttings. Sand in sets of large-scale cross-beds remain virtually identical in composition and texture to sand in eolian facies of the Colorado Plateau. Where sets of eolian cross-beds lie on volcanics, the quartzose sandstone contains pebble to cobble-size volcanic clasts. Locally, cross-bed sets of yellowish-white, quartzose sandstone alternate with purplish-gray cross-bed sets containing numerous pebble to cobble-size volcanic clasts. The ability to recognize volcanic indicators within Nugget-Navaho-Aztec eolian facies is important in delineating the western margin of the back-arc eolian basin.« less
NASA Technical Reports Server (NTRS)
Fastovsky, D. E.
1988-01-01
Reconstructions of mass extinction events are based upon faunal patterns, reconstructed from numerical and diversity data ultimately derived from rocks. It follows that geological complexity must not be subsumed in the desire to establish patterns. This is exemplified at the Terrestrial Cretaceous-Tertiary (K/T) boundary in eastern Montana and western North Dakota, where there are represented all of the major indicators of the terrestrial K/T transition: dinosaurian and non-dinosaurian vertebrate faunas, pollen, a megaflora, iridium, and shocked quartz. It is the patterns of these indicators that shape ideas about the terrestrial K/T transition. In eastern Montana and western North Dakota, the K/T transition is represented lithostratigraphically by the Cretaceous Hell Creek Formation, and the Tertiary Tullock Formation. Both of these are the result of aggrading, meandering, fluvial systems, a fact that has important consequences for interpretations of fossils they contain. Direct consequences of the fluvial depositional environments are: facies are lenticular, interfingering, and laterally discontinuous; the occurrence of fossils in the Hell Creek and Tullock formations is facies-dependent; and the K/T sequence in eastern Montana and western North Dakota is incomplete, as indicated by repetitive erosional contacts and soil successions. The significance for faunal patterns of lenticular facies, facies-dependent preservation, and incompleteness is discussed. A project attempting to reconstruct vertebrate evolution in a reproducible manner in Hell Creek-type sediments must be based upon a reliable scale of correlations, given the lenticular nature of the deposits, and a recognition of the fact that disparate facies are not comparable in terms of either numbers of preserved vertebrates or depositional rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sweetkind, D.S.; White, D.K.
Late Proterozoic through Lower Cambrian rocks in the southern Great Basin form a westward-thickening wedge of predominantly clastic deposits that record deposition on the early western shelf edge of western North America (Stewart and Poole, 1974; Poole and others, 1992). Regional analyses of geologic controls on ground-water flow in the southern Great Basin typically combined lithostratigraphic units into more general hydrogeologic units that have considerable lateral extent and distinct hydrologic properties. The Late Proterozoic through Lower Cambrian rocks have been treated as a single hydrogeologic unit, named the lower clastic aquitard (Winograd and Thordarson, 1975) or the quartzite confining unitmore » (Laczniak and others, 1996), that serves as the hydrologic basement to the flow system. Although accurate in a general sense, this classification ignores well-established facies relations within these rocks that might increase bedrock permeability and locally influence ground-water flow . This report presents a facies analysis of Late Proterozoic through Lower Cambrian rocks (hereafter called the study interval) in the Death Valley regional ground-water flow system - that portion of the southern Great Basin that includes Death Valley, the Nevada Test Site, and the potential high-level nuclear waste underground repository at Yucca Mountain (fig. 1). The region discussed in this report, hereafter called the study area, covers approximately 100,000 km2 (lat 35 degrees-38 degrees 15'N., long 115 degrees-118 degrees W.). The purpose of this analysis is to provide a general documentation of facies transitions within the Late Proterozoic through Lower Cambrian rocks in order to provide an estimate of material properties (via rock type, grain size, and bedding characteristics) for specific hydrogeologic units to be included in a regional ground-water flow model.« less
Fluvial-deltaic sedimentation and stratigraphy of the ferron sandstone
Anderson, P.B.; Chidsey, T.C.; Ryer, T.A.
1997-01-01
East-central Utah has world-class outcrops of dominantly fluvial-deltaic Turonian to Coniacian aged strata deposited in the Cretaceous foreland basin. The Ferron Sandstone Member of the Mancos Shale records the influences of both tidal and wave energy on fluvial-dominated deltas on the western margin of the Cretaceous western interior seaway. Revisions of the stratigraphy are proposed for the Ferron Sandstone. Facies representing a variety of environments of deposition are well exposed, including delta-front, strandline, marginal marine, and coastal-plain. Some of these facies are described in detail for use in petroleum reservoir characterization and include permeability structure.
NASA Astrophysics Data System (ADS)
Nasr El-Deen Badawy, A. M. E. S.; Abu El-Ata, A. S. A.
2016-12-01
The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.
NASA Astrophysics Data System (ADS)
Nasr El-Deen Badawy, A. M. E. S.
2015-12-01
The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.
NASA Astrophysics Data System (ADS)
Nasr El-Deen Badawy, A. M. E. S.
2016-02-01
The study area lies in the Central Marine Delta, which is located in the Baltim offshore concession, about 25 kms from the shoreline and 40 kms North Abu Madi-El Qara fields. The current study is aiming to give a comprehensive combined and conjugated study between well data and seismic survey interpretations. The former includes well logging data, acquired results of actual drilling and biostratigraphic study, to give an integrated picture for the considered area in a true attempt to visualize the geological and geophysical data given from both wells and seismic reflection surveys, and hence introduce an updated sequence stratigraphic framework for the Messinian sequence at the offshore Nile Delta area. The 3D geological model, based on all the available well data (faunal contents, litho-facies, log signatures…...etc.) and the seismic expressions (facies and geometry), has been constructed for the study area. This model shows that, the study area was changed from shelf (considered as erosional), to delta channels and then directed to the north. It changed to delta front mouth bars on the shoreface and affected by the main Rosetta fault to collect deposits as sand bars in the southern part on the downthrown side of the fault. Most deposits on this face were highstand system tracts. This deduced from the sequence stratigraphy study. The area was then sloped to the north, as shelf slope with the deposition of slumps, which was formed during erosions and mass flows. Some mud diapers also formed upon this slope. After dropping the sea level with the activity of some syn-sedimentary faults, some channels with sediment supply started their activities to dig their ways to the north.
Giddings Edwards (Cretaceous) field, south Texas: carbonate channel or elongate buildup
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lomando, A.J.; Mazzullo, S.J.
1989-03-01
Giddings Edwards field, located in Fayette County, Texas, is situated on the broad Cretaceous (Albian) shallow shelf, approximately 20 mi north of the main Edwards shelf-margin reef trend. The Giddings field produces gas from an elongate stratigraphic trap approximately 9.5 mi long and 1.8 mi wide, encased in argillaceous lime mudstones and shales; the field is oriented normal to the contiguous Edwards reef trend. Available cores and cuttings samples from the central portion of the field indicate that the field reservoir is composed of biopackstones and grainstones interpreted to have been deposited in a high-energy shelf environment. The facies systemmore » is characterized by stacked reservoirs having a maximum gross pay thickness of over 100 ft, containing primary interparticle and secondary biomoldic porosity, both of which have been modified slightly by chemical compaction and partial occlusion by sparry calcite and saddle dolomite cements. Despite reasonable subsurface sample and mechanical log control within and surrounding the field, its depositional origin remains equivocal. Such uncertainty has important bearing on predictive models for the exploration for additional Edwards shelfal hydrocarbon reservoirs. The elongate, biconvex geometry of the productive carbonate sands, their northward thinning, and apparent updip bifurcation suggest deposition in a shallow-shelf channel system. By contrast, an alternative correlation and interpretation based on geometry and facies is that of an elongate in-situ carbonate buildup. A number of modern analogs of elongate buildups normal to major reef systems are available from which to compare and model the depositional system of Giddings Edwards field. The evaluation of this field serves as an example of using a multiple working hypothesis to develop an accurate exploration model.« less
Creely, Scott; Force, Eric R.
2007-01-01
The middle Eocene Ione Formation extends over 200 miles (320 km) along the western edge of the Sierra Nevada. Our study was concentrated in the type region, 30 miles (48 km) along strike. There a bedrock ridge forms the seaward western side of the Ione depositional tract, defining a subbasin margin. The eastern limit of the type Ione is locally defined by high-angle faults. Ione sediments were spread over Upper Mesozoic metamorphic and plutonic bedrock, fed by gold-bearing streams dissecting the western slope of the ancestral Sierra Nevada. By middle Eocene time, a tropical or subtropical climate prevailed, leading to deep chemical weathering (including laterization) and a distinctively mature mineral assemblage was fed to and generated within Ione deposits. The Ione is noted for its abundant kaolinitic clay, some of it coarsely crystalline; the clay is present as both detrital grains and authigenic cement. Quartz is abundant, mostly as angular grains. Heavy mineral fractions are dominated by altered ilmenite and zircon. Distribution of feldspar is irregular, both stratigraphically and areally. Non-marine facies are most voluminous, and include conglomerates, especially at the base and along the eastern margins of the formation where they pass into Sierran auriferous gravels. Clays, grading into lignites, and gritty sands are also common facies. Both braided and meandering fluvial facies have been recognized. Shallow marine waters flooded the basin probably twice. Tongues of sediment exhibiting a variety of estuarine to marine indicators are underlain and overlain by fluvial deposits. Marine body fossils are found at only a few localities, but burrows identified as Ophiomorpha and cf. Thalassinoides are abundant in many places. Other clues to marginal marine deposition are the occurrence of glauconite in one bed, typical relations of lagoonal to beach (locally heavy-mineral-rich) lithofacies, closed-basin three-dimensional morphology of basinal facies, and high sulfur content of some marginal coals. The Ione has been said to be deltaic; however the two transgressional-regressional cycles we propose imply that only the regressional parts were deltaic. At other times, much of the type Ione would better be termed an intertidal estuary. Because the lower marine sequence was deposited against a paleobasin margin on the west, deltaic morphology was constrained, but apparently progradation was from north to south despite drainage into the basin from the east. Relations to the south are unclear due to the Stockton arch. The eastern margin of the type-Ione basin, and to some extent even its marine facies, are poorly constrained. A surface on Sierran bedrock to the east may have been stripped of some Ione basinal facies, leaving only coeval entrenched fluvial channel deposits.
NASA Astrophysics Data System (ADS)
Aranda, A. N.; Carlin, J. A.; Rhodes, B. P.; Kirby, M.
2016-02-01
Only 10-20% of the US Pacific coast is estimated to be suitable for marsh development. In southern California specifically, marshes are disappearing ecosystems due to high population and urbanization. The future environmental impacts from climate change on these ecosystems are complicated not only by anthropogenic influences, but also by seismic activity in the region. In general, marsh evolution and response to seismic activity has yet to be fully explored in southern California. This study aims to develop a sediment facies model for salt marsh evolution in southern California by utilizing the salt marshes of the Seal Beach Wetlands (SBW). The SBW is an ideal location to develop the facies model because it straddles the active Newport-Inglewood Fault Zone. We collected sediment cores from the SBW that underwent a variety of sedimentological and geochemical analyses including grain size, X-Ray Fluorescence core scanning, magnetic susceptibility, and loss-on-ignition.. The results show a facies model consisting of sequences of marsh accretion punctuated by seismic events. These seismic events caused the marsh to subside, effectively re-setting marsh development from peat generation at a vegetated marsh state, to subtidal to intertidal mud deposition. The model also allowed us to qualify and quantify marsh recovery as inferred from event intensity, where what we perceived as more intense events resulted in more significant ecosystem disturbances and longer recovery times. Understanding this interplay between seismic activity and marsh development highlights the fragile nature of these ecosystems to climate change and sea level rise, as these stresses will only become amplified by seismic events.
The changing seascape of Galway Bay, Western Ireland
NASA Astrophysics Data System (ADS)
Mc Cullagh, D.; Benetti, S.; Plets, R. M. K.; Edwards, R.
2016-12-01
During the late Quaternary significant environmental and relative sea-level variations have contributed to shaping present day coastlines. This is particularly evident along formerly glaciated continental margins. Strong evidence of these changes are recorded in Galway Bay, Western Ireland. This research uses a multidisciplinary approach. Seismic and multibeam data, sedimentological, micropaleontological, geochemical analysis and 15 radiocarbon dates of sediment cores from the bay provide post last glacial maximum (LGM) sea level and environmental reconstructions for the region. The acoustic stratigraphy of the bay includes 3 seismic units: the deepest unit represents the acoustic basement, composed of limestone and granite bedrock; the middle unit is composed of the oldest preserved sediments, deposited during and after the LGM, and interpreted to be glacial till. The uppermost unit represents deposition and reworking after glacial retreat. The erosive action of the ice sheet that extended off the Irish coast is thought to be responsible for the removal and reworking of all sediments older that the LGM. In the sediment cores, three main lithofacies were identified: 1) a sandy silt and clay facies, 2) a distinct shell hash interlayer and, 3) a fine silty sand facies. These 3 facies are found within the uppermost seismic unit, and initial radiocarbon dating of shells in 4 cores, constrain these sediments and the uppermost seismic unit to the Holocene. Preliminary qualitative analysis on foraminifera from several cores shows a general trend of progression from estuarine to open marine conditions, inferred from indicator species. This trend is supported by X-ray fluorescence (XRF) analysis which shows increased ratios of Cl/Fe in younger deposits. Constraining dates on sea level variations in the region will be added to the sea level database for Ireland and possibly used to adjust the existing relative sea level models. These are important for understating past sea level variations and modelling future trends.
Post-depositional alteration of titanomagnetite in a Miocene sandstone, south Texas (U.S.A.)
Reynolds, R.L.
1982-01-01
Petrographic and geochemical studies have yielded information on the time-space relationships of the post-depositional alteration of detrital titanomagnetite (Ti-mt) in fine- to medium-grained sandstone from unoriented core samples (taken below the water table at depths of 30-45 m) of the Miocene Catahoula Sandstone, south Texas. Aqueous sulfide introduced from sour gas reservoirs along a growth fault into part of the Catahoula shortly after deposition resulted in the replacement at the periphery of Ti-mt grains by iron disulfide (FeS2) minerals. Remnants of Ti-mt in cores of the partly sulfidized grains show no evidence of earlier hematitic oxidation. After sulfidization, part of the sandstone body was invaded by oxygenated groundwaters flowing down a shallowly inclined (1??) hydrologic gradient. The boundary between oxidized and reduced facies is clearly defined by the distribution of ferric and ferrous iron minerals, and the concentrations of Mo, U, and Se. In oxidized (light-red) strata that had not been previously subjected to sulfidic-reducing conditions but that are correlative with strata containing FeS2 minerals, Ti-mt has been partly to entirely replaced pseudomorphously by hematite to form martite. The absence of hematitic alteration of Ti-mt in the reduced facies is strong evidence that martite in the oxidized facies formed after deposition. ?? 1982.
Sedimentary record of erg migration
NASA Astrophysics Data System (ADS)
Porter, M. L.
1986-06-01
The sedimentary record of erg (eolian sand sea) migration consists of an idealized threefold division of sand-sea facies sequences. The basal division, here termed the fore-erg, is composed of a hierarchy of eolian sand bodies contained within sediments of the flanking depositional environment. These sand bodies consist of eolian strata deposited by small dune complexes, zibars, and sand sheets. The fore-erg represents the downwind, leading edge of the erg and records the onset of eolian sedimentation. Basin subsidence coupled with erg migration places the medial division, termed the central erg, over the fore-erg strata. The central erg, represented by a thick accumulation of large-scale, cross-stratified sandstone, is the product of large draa complexes. Eolian influence on regional sedimentation patterns is greatest in the central erg, and most of the sand transported and deposited in the erg is contained within this region. Reduction in sand supply and continued erg migration will cover the central-erg deposits with a veneer of back-erg deposits. This upper division of the erg facies sequence resembles closely the fore-erg region. Similar types of eolian strata are present and organized in sand bodies encased in sediments of the upwind flanking depositional environment(s). Back-erg deposits may be thin due to limited eolian influence on sedimentation or incomplete erg migration, or they may be completely absent because of great susceptibility to postdepositional erosion. Tectonic, climatic, and eustatic influences on sand-sea deposition will produce distinctive variations or modifications of the idealized erg facies sequence. The resulting variants in the sedimentary record of erg migration are illustrated with ancient examples from western North America, Europe, southern Africa, and South America.
Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington
Glicken, Harry
1996-01-01
This report provides a detailed picture of the rockslide-debris avalanche of the May 18, 1980, eruption of Mount St. Helens volcano. It provides a characterization of the deposit, a reinterpretation of the details of the first minutes of the eruption of May 18, and insight into the transport mechanism of the mass movement. Details of the rockslide event, as revealed by eyewitness photographs, are correlated with features of the deposit. The photographs show three slide blocks in the rockslide movement. Slide block I was triggered by a magnitude 5.1 earthquake at 8:32 a.m. Pacific Daylight Time (P.D.T.). An exploding cryptodome burst through slide block II to produce the 'blast surge.' Slide block III consisted of many discrete failures that were carried out in continuing pyroclastic currents generated from the exploding cryptodome. The cryptodome continued to depressurize after slide block III, producing a blast deposit that rests on top of the debris-avalanche deposit. The hummocky 2.5 cubic kilometer debris-avalanche deposit consists of block facies (pieces of the pre-eruption Mount St. Helens transported relatively intact) and matrix facies (a mixture of rocks from the old mountain and cryptodome dacite). Block facies is divided into five lithologic units. Matrix facies was derived from the explosively generated current of slide block III as well as from disaggregation and mixing of debris-avalanche blocks. The mean density of the old cone was measured to be abut 20 percent greater than the mean density of the avalanche deposit. Density in the deposit does not decrease with distance which suggests that debris-avalanche blocks were dilated at the mountain, rather than during transport. Various grain-size parameters that show that clast size converges about a mean with distance suggest mixing during transport. The debris-avalanche flow can be considered a grain flow, where particles -- either debris-avalanche blocks or the clasts within the blocks -- collided and created dispersive stress normal to the movement of material. The dispersive stress preserved the dilation of the material and allowed it to flow.
NASA Astrophysics Data System (ADS)
El-Azabi, M. H.; El-Araby, A.
2005-01-01
The Middle Triassic-Lower Cretaceous (pre-Late Albian) succession of Arif El-Naga anticline comprises various distinctive facies and environments that are connected with eustatic relative sea-level changes, local/regional tectonism, variable sediment influx and base-level changes. It displays six unconformity-bounded depositional sequences. The Triassic deposits are divided into a lower clastic facies (early Middle Triassic sequence) and an upper carbonate unit (late Middle- and latest Middle/early Late Triassic sequences). The early Middle Triassic sequence consists of sandstone with shale/mudstone interbeds that formed under variable regimes, ranging from braided fluvial, lower shoreface to beach foreshore. The marine part of this sequence marks retrogradational and progradational parasequences of transgressive- and highstand systems tract deposits respectively. Deposition has taken place under warm semi-arid climate and a steady supply of clastics. The late Middle- and latest Middle/early Late Triassic sequences are carbonate facies developed on an extensive shallow marine shelf under dry-warm climate. The late Middle Triassic sequence includes retrogradational shallow subtidal oyster rudstone and progradational lower intertidal lime-mudstone parasequences that define the transgressive- and highstand systems tracts respectively. It terminates with upper intertidal oncolitic packstone with bored upper surface. The next latest Middle/early Late Triassic sequence is marked by lime-mudstone, packstone/grainstone and algal stromatolitic bindstone with minor shale/mudstone. These lower intertidal/shallow subtidal deposits of a transgressive-systems tract are followed upward by progradational highstand lower intertidal lime-mudstone deposits. The overlying Jurassic deposits encompass two different sequences. The Lower Jurassic sequence is made up of intercalating lower intertidal lime-mudstone and wave-dominated beach foreshore sandstone which formed during a short period of rising sea-level with a relative increase in clastic supply. The Middle-Upper Jurassic sequence is represented by cycles of cross-bedded sandstone topped with thin mudstone that accumulated by northerly flowing braided-streams accompanying regional uplift of the Arabo-Nubian shield. It is succeeded by another regressive fluvial sequence of Early Cretaceous age due to a major eustatic sea-level fall. The Lower Cretaceous sequence is dominated by sandy braided-river deposits with minor overbank fines and basal debris flow conglomerate.
Harding, Sherie C.; Nash, Barbara P.; Petersen, Erich U.; Ekdale, A. A.; Bradbury, Christopher D.; Dyar, M. Darby
2014-01-01
The Main Glauconite Bed (MGB) is a pelleted greensand located at Stone City Bluff on the south bank of the Brazos River in Burleson County, Texas. It was deposited during the Middle Eocene regional transgression on the Texas Gulf Coastal Plain. Stratigraphically it lies in the upper Stone City Member, Crockett Formation, Claiborne Group. Its mineralogy and geochemistry were examined in detail, and verdine facies minerals, predominantly odinite, were identified. Few glauconitic minerals were found in the green pelleted sediments of the MGB. Without detailed mineralogical work, glaucony facies minerals and verdine facies minerals are easily mistaken for one another. Their distinction has value in assessing paleoenvironments. In this study, several analytical techniques were employed to assess the mineralogy. X-ray diffraction of oriented and un-oriented clay samples indicated a clay mixture dominated by 7 and 14Å diffraction peaks. Unit cell calculations from XRD data for MGB pellets match the odinite-1M data base. Electron microprobe analyses (EMPA) from the average of 31 data points from clay pellets accompanied with Mössbauer analyses were used to calculate the structural formula which is that of odinite: Fe3+ 0.89 Mg0.45 Al0.67 Fe2+ 0.30 Ti0.01 Mn0.01) Σ = 2.33 (Si1.77 Al0.23) O5.00 (OH)4.00. QEMSCAN (Quantitative Evaluation of Minerals by Scanning Electron Microscopy) data provided mineral maps of quantitative proportions of the constituent clays. The verdine facies is a clay mineral facies associated with shallow marine shelf and lagoonal environments at tropical latitudes with iron influx from nearby runoff. Its depositional environment is well documented in modern nearshore locations. Recognition of verdine facies clays as the dominant constituent of the MGB clay pellets, rather than glaucony facies clays, allows for a more precise assessment of paleoenvironmental conditions. PMID:24503875
NASA Astrophysics Data System (ADS)
Pedrazzi, D.; Marti, J.; Geyer, A.
2012-04-01
The El Golfo tuff cone is an example of phreatomagmatic edifice, developed in the western coast of Lanzarote (Canary Islands). El Golfo, together with other edifices of the same age, is aligned along a fracture oriented NEE-SWW coinciding with the main lineation of the historic volcanism in this part of the island. In this contribution we present a detailed stratigraphic study of the succession of deposits and we interpret them in terms of depositional processes and eruptive dynamics. The eruptive sequence is exclusively represented by a succession of pyroclastic deposits, and we infer it according to variations in flow regime and the magma-water interaction. Several pyroclastic units were identified according to facies variations based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms following the facies model proposed by Chough and Sohn (1990). The growth of the El Golfo tuff cone involved several stages based on variations in depositional processes. The edifice was constructed very rapidly around the vent controlling the amount of water that got access to the eruption conduit. Although the invariable phreatomagmatic character of most of the pyroclastic sequence, it is possible to deduce variations in the explosive energy, with a general increment upwards, according to the increase in the degree of fragmentation of pyroclasts, The absence of hyaloclastites, the nature of the palagonite alteration and the observed sedimentary structures, demonstrate the subaereal character of most of the deposits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampson, G.J.; Howell, J.A.; Flint, S.S.
1996-01-01
The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ([open quotes]Mancos B[close quotes]) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these [open quotes]stray[close quotes] sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discretemore » stratigraphic levels, thereby defining incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface [open quotes]Mancos B[close quotes] gas reservoir sandstones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hampson, G.J.; Howell, J.A.; Flint, S.S.
1996-12-31
The Mancos Shale, Book Cliffs, eastern Utah, represents the open marine mudstones of the Cretaceous Western Interior Seaway and contains a number of detached sandstone bodies ({open_quotes}Mancos B{close_quotes}) which are located 30-150 km down depositional dip from contemporaneous highstand shoreline deposits in the Blackhawk Formation. Examination of these {open_quotes}stray{close_quotes} sandstones reveals that they do not represent deep water deposition, as previously supposed, but instead comprise three shallow marine facies associations; (1) tidally-influenced fluvial channel fills, (2) fluvially-dominated delta front successions and (3) low-energy shorelines. Tidally-influenced fluvial channel fills are commonly stacked into multistorey bodies at discrete stratigraphic levels, thereby definingmore » incised valley fill (IVF) networks. Fluvially-dominated deltas are eroded into by, and lie at the down-dip terminations of, IVFs and are therefore interpreted as falling stage and lowstand shorelines. Low-energy shorelines are inferred to lie along strike from these deltas. The above shallow marine deposits have been mapped at five discrete stratigraphic horizons, which can be either traced or projected up-dip to previously-documented IVFs in the Blackhawk Formation. Their paleocurrents imply that falling stage and lowstand shoreline trends were sub-parallel to mapped highstand shorelines, although there is evidence for a perpendicular lowstand shoreline trend in the east of the study area. This facies and sequence stratigraphic re-interpretation enables predictive exploration modelling of subsurface {open_quotes}Mancos B{close_quotes} gas reservoir sandstones.« less
NASA Astrophysics Data System (ADS)
Young, Allison; Brett, Carlton; McLaughlin, Patrick
2017-04-01
A common problem in stratigraphic correlation is the difficulty of bridging shallow water shelf carbonates and down ramp shale-rich facies. This issue is well exemplified by the Upper Ordovician (lower Katian) Lexington Limestone of Kentucky, USA and adjacent dark shale facies in the deeper water Sebree Trough, an elongate, narrow bathymetric low abruptly north of the outcrop belt in the Ohio subsurface. Chronostratigraphic schemes for this interval have been proposed on the basis of conodont and graptolite biostratigraphy, mapping of event beds, and sequence stratigraphy through facies analysis. The relation of the siliciclastic rich offshore records of the "Point Pleasant-Utica" interval, well known to drillers because of its oil and gas potential, with the up-ramp shallow water carbonate dominated equivalents of the Lexington Formation is complicated by convoluted nomenclature, a major, abrupt change in facies, and disparity in the availability and completeness of records. Current genetic models of organic rich shale intervals, such as the Point Pleasant-Utica interval, are still lacking in detail, and will greatly benefit from detailed correlation with shallow water settings where more is understood about paleoclimatic conditions. In order to understand the development and evolution of this Late Ordovician Laurentian basin, it is important to understand the age relationships of depositional processes occurring at a range of depths, particularly in the less well studied epeiric sea setting of the "Point Pleasant-Utica" interval of Ohio and partial lateral equivalent, Lexington Formation of central Kentucky. The outcrop area of central Kentucky, exposed by the later uplift of the Cincinnati Arch, hosts numerous world-class exposures of the Lexington Formation, nearly all of which are representative of the highly fossiliferous, shallow-water marine platform carbonates. These successions display well differentiated depositional sequences, with sharp facies offsets, and mineralized surfaces. They also contain well studied fossil assemblages and event beds, which at the scale of an outcrop, allow for detailed paleoenvironmental interpretation. The offshore record of this interval, known almost exclusively from a few drill cores, displays an abrupt transition to distal, siliciclastic dominated facies, recording a more dysoxic and organic rich interval. Internal correlation of these shales has relied mostly on limited graptolite biostratigraphic and geochemical analysis. Here we seek to establish age relationships across a major facies transition between these two interrelated paleoenvironmental settings using high resolution whole rock carbon isotope analysis to integrate new and previous work on lithostratigraphy, biostratigraphy, and sequence stratigraphy of a series of cores and outcrops. Results to date demonstrate the persistence of carbon isotopic patterns (including the globally recognized GICE positive carbon isotopic excursion) permitting extension of correlation into basinal facies where tracking of stratigraphic sequences becomes difficult. A complicated relationship across the region is emerging involving both rapid facies transitions and submarine erosional cutout of units toward the center of the Sebree Trough. This study demonstrates the utility of an integrated stratigraphic approach for establishing high resolution regional correlations allowing for interpretations across a major facies transitions.
Campaña, I.; Pérez-González, A.; Benito-Calvo, A.; Rosell, J.; Blasco, R.; de Castro, J. M. Bermúdez; Carbonell, E.; Arsuaga, J. L.
2016-01-01
Gran Dolina is a cavity infilled by at least 25 m of Pleistocene sediments. This sequence contains the TD6 stratigraphic unit, whose records include around 170 hominin bones that have allowed the definition of a new species, Homo antecessor. This fossil accumulation was studied as a single assemblage and interpreted as a succession of several human home bases. We propose a complete stratigraphic context and sedimentological interpretation for TD6, analyzing the relationships between the sedimentary facies, the clasts and archaeo-palaeontological remains. The TD6 unit has been divided into three sub-units and 13 layers. Nine sedimentary facies have been defined. Hominin remains appear related to three different sedimentary facies: debris flow facies, channel facies and floodplain facies. They show three kinds of distribution: first a group of scattered fossils, then a group with layers of fossils in fluvial facies, and third a group with a layer of fossils in mixed fluvial and gravity flow facies. The results of this work suggest that some of these hominin remains accumulated in the cave by geological processes, coming from the adjacent slope above the cave or the cave entry, as the palaeogeography and sedimentary characteristics of these allochthonous facies suggest. PMID:27713562
NASA Astrophysics Data System (ADS)
Calder, E. S.; Sparks, R. S. J.; Gardeweg, M. C.
2000-12-01
Investigations have been made on the distribution of pumice and lithic clasts in the lithic rich Soncor ignimbrite (26.5 ka) and the 1993 pumice flow deposits of Lascar Volcano, Chile. The Soncor ignimbrite shows three main lithofacies which grade into one another. Coarse lithic breccias range from matrix poor stratified varieties, irregular shaped sheets and elongate hummocks in proximal environments, to breccia lenses with pumiceous ignimbrite matrix. Massive, lithic rich facies comprise the bulk of the ignimbrite. Pumice rich facies are bimodal with abundant large pumice clasts (often with reverse grading), rare lithic clasts and occur distally and on high ground adjacent to deep proximal valleys. In the 1993 pyroclastic flow deposits lithic rich facies are deposited on slopes up to 14° whereas pumice rich facies are deposited only on slopes <4°. Lithic rich parts show a thin pumice rich corrugated surface which can be traced into the pumice rich facies. The high lithic content in the Soncor ignimbrite is attributed to the destruction of a pre-existing dome complex, deep explosive cratering into the interior of the volcano and erosion during pyroclastic flow emplacement. Lithic clasts incorporated into the flows during erosion of the basement substrate have been distinguished from those derived from the vent. Categorisation of these lithics and knowledge of the local geology allows these clasts to be used as tracers to interpret former flow dynamics. Lithic populations demonstrate local flow paths and show that lithics are picked up preferentially where flows move around or over obstacles, or through constrictions. Eroded lithics can be anomalously large, particularly close to the location of erosion. Observations of both the Soncor ignimbrite and the 1993 deposits show that lithic rich parts of flows were much more erosive than pumice rich parts. Both the Soncor and 1993 deposits are interpreted as resulting from predominantly high concentration granular suspensions where particle-particle interactions played a major role. The concentrated flows segregated from more expanded and turbulent suspension currents within a few kilometres of the source. During emplacement some degree of internal mixing is inferred to have occurred enabling entrained lithics to migrate into flow interiors. The facies variations and distributions and the strong negative correlation between maximum pumice and lithic clast size are interpreted as the consequence of efficient density segregation within the concentrated flows. The frictional resistance of the lithic rich part is greater so that it deposits on steeper slopes and generally closer to the source. The lower density and more mobile pumice rich upper portions continued to flow and sequentially detached from the lithic rich base of the flow. Pumice rich portions moved to the margins and distal parts of the flow so that distal deposits are lithic poor and non-erosive. The flows are therefore envisaged as going though several important transformations. Proximally, dense, granular flow, undercurrents are formed by rapid sedimentation of suspension currents. Medially to distally the undercurrents evolve to flows with significantly different rheology and mobility characteristics as lithic clasts are sedimented out and distal flows become dominated by pumice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braide, S.P.
1990-05-01
The Upper Cretaceous Bida basin of central Nigeria is sandwiched between the Precambrian schist belts of the Northern Nigerian massif and the West African craton. Of interest is the southern part of the basin, which developed in continental settings, because the facies architecture of the sedimentary fill suggests a close relation between sedimentation dynamics and basin margin tectonics. This relationship is significant to an understanding of the basin's origin, which has been controversial. A simple sag and rift origin has been suggested, and consequently dominated the negative thinking on the hydrocarbon prospects of the basin which were considered poor. Thismore » detailed study of the facies indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to lacustrine facies. Paleogeographic reconstruction suggests lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin's axis and close to the margins. This suggests the depocenter must have migrated during the basin's depositional history and subsided rapidly to accommodate the 3.5-km-thick sedimentary fill. Although distinguishing pull-apart basins from rift basins, based solely on sedimentologic grounds, may be difficult, the temporal migration of the depocenter, as well as the basin architecture of upward coarsening cyclicity, show a strong tectonic and structural overprint that suggests a tectonic framework for the Southern Bida basin similar in origin to a pull-apart basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nadeem, A.; Keith, B.D.; Thompson, T.A.
Mapping of sedimentary surfaces in the Middle Mississippian Salem Limestone exposed on sawed quarry walls in south-central Indiana has revealed a hierarchy of depositional units representative of the extremely dynamic hydrographic regime of the upper shoreface zone. The depositional units on the scale of microform and mesoform are represented by the microfacies and the facies respectively. Based on their hierarchy, genetically related depositional units and associated bounding surfaces were grouped together to construct four architectural packages (APs) of the scale of mesoforms. AP-I is dominantly an echinoderm- and bryozoan-rich grainstone and consists of bedforms ranging from small ripples bounded bymore » first-order surfaces to two- and three- dimensional megaripples bounded by the second-order surfaces. It formed as part of a giant ramp (asymmetric wavefield) within the intrashoal channel setting. AP-II, also a skeletal grainstone, is a complex of giant sandwaves that moved into the area under the infulence of a storm and partly filled the basal channel form of AP-I. Large avalanche foresets with tangential toesets prevail. AP-III is a dark-gray spatially discontinuous skeletal grainstone to packstone that laterally grades into a skeletal packstone to wackestone. It locally developed overhangs, rips-ups, and hardground on its upper surface. AP-IV is a skeletal and oolitic grainstone formed of tabular two-dimensional megaripples (planar cross-beds) and three-dimensional oscillatory megaripples (trough cross-beds). These architectural packages based on the bedform architecture and micro-and mesoscale compositional changes can be used to characterize micro-, meso, and macroscale heterogeneities. Models of facies architecture from this and similar outcrop studies can be applied to the subsurface Salem reservoirs in the Illinois Basin using cores.« less
NASA Astrophysics Data System (ADS)
Zhang, Xia; Lin, Chun-Ming; Dalrymple, Robert W.; Gao, Shu; Canas, Daniel T.
2018-06-01
We evaluate the applicability of cone penetration testing (CPT), calibrated using adjacent cores, as a tool for the sedimentological and stratigraphic examination of late Quaternary tide-dominated successions in the eastern China coastal plain. The results indicate that the sedimentary facies and sequence-stratigraphic surfaces can be readily distinguished using CPT profiles in the Qiantang River incised-valley system because of their distinctive mechanical behavior. The lithologic character of the various facies, which is controlled mainly by sediment supply, dynamic processes and post-depositional diagenesis, is the key factor affecting how well the CPT technique works. Within this particular macrotidal environment, which is dominated by non-cohesive sand and silt in the tidal channels, the accumulation of fluid mud is rare. Consequently, the tidal-channel deposits exhibit the geotechnical properties of coarse-grained sediments, and can be easily distinguished from the mud-dominated facies. However, in the nearby Changjiang delta system which is characterized by very high suspended-sediment concentrations and an abundance of fine-grained cohesive sediments, the presence of channel-bottom fluid muds makes it difficult to recognize channel deposits, because of the lack of a sharp lithologic contrast at their base. Consequently, the CPT method might not be as universally effective in tide-dominated systems as it appears to be in wave-dominated settings. Care is needed in the interpretation of the results from tide-dominated successions because of the widespread presence of fluid muds, the heterolithic nature of tidal deposits, the rheological similarity between adjacent facies, and the averaging of geotechnical properties between the alternating finer and coarser layers.
GPR-derived architecture of a lahar-generated fan at Cotopaxi volcano, Ecuador
NASA Astrophysics Data System (ADS)
Ettinger, Susanne; Manville, Vern; Kruse, Sarah; Paris, Raphaël
2014-05-01
The internal geometry of volcaniclastic fans produced by aggradation during lahar events is difficult to examine in modern settings because of the frequent lack of three-dimensional exposures. This makes it challenging to (i) reconstruct the spatial and temporal evolution of such fans; and (ii) interpret observed facies stratigraphy in the context of lahar flow dynamics from proximal to distal fan reaches. This research therefore presents the results of a ground penetrating radar (GPR) survey of the Rumipamba fan at the mouth of the Burrohuaycu quebrada on the southwestern flank of Cotopaxi volcano. A survey grid consisting of 50 individual GPR profiles representing a total length of 19.4 km was constructed covering most of the 4-km2 large fan surface. All GPR profiles were collected using a PulseEKKO 100 with a 400 V transmitter. Fan sediments consist of sandy and gravelly lahar deposits, alternating with volcanic fallout including ash and pumice lapilli, at times reworked by fluvial processes. Deposits could be ground-truthed to a depth of ~3 m, whereas GPR penetration depth reaches 15 m. Data interpretation was based on classification into 15 distinct radar facies characterized by the nature of their bounding surfaces and/or internal features, cross-referenced where possible with shallow exposures. Three main facies were identified: parallel, irregular, and clinoform. Erosional contacts were distinguished from aggradational ones (vertical, channel fill, and lateral accretion). Flow parallel versus flow transverse and proximal-distal variations in deposit architecture were featured. The results of this study confirm the existence of two major channel systems in the northern and southern extremities of the fan and the more recent formation of a smaller central fan channel system. Deposit architecture is complex and facies chronologies illustrate that lahars have affected the entire survey area.
Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta
NASA Astrophysics Data System (ADS)
Pondrelli, M.; Rossi, A. P.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A.
2011-09-01
Geological, facies, geomorphological and allostratigraphic map of the Eberswalde fan delta area are presented. The Eberswalde fan delta is proposed as a sort of prototype area to map sedimentary deposits, because of its excellent data coverage and its variability in depositional as well as erosional morphologies and sedimentary facies. We present a report to distinguish different cartographic products implying an increasing level of interpretation. The geological map - in association with the facies map - represents the most objective mapping product. Formations are distinguished on the basis of objectively observable parameters: texture, color, sedimentary structures and geographic distribution. Stratigraphic relations are evaluated using Steno's principles. Formations can be interpreted in terms of depositional environment, but an eventual change of the genetic interpretation would not lead to a change in the geological map. The geomorphological map is based on the data represented in the geological map plus the association of the morphological elements, in order to infer the depositional sub-environments. As a consequence, it is an interpretative map focused on the genetic reconstruction. The allostratigraphic map is based on the morphofacies analysis - expressed by the geomorphological map - and by the recognition of surfaces which reflect allogenic controls, such as water level fluctuations: unconformities, erosional truncations and flooding surfaces. As a consequence, this is an even more interpretative map than the geomorphological one, since it focuses on the control on the sedimentary systems. Geological maps represent the most suitable cartographic product for a systematic mapping, which can serve as a prerequisite for scientific or landing site analyses. Geomorphological and allostratographic maps are suitable tools to broaden scientific analysis or to provide scientific background to landing site selection.
Metabasalts as sources of metals in orogenic gold deposits
NASA Astrophysics Data System (ADS)
Pitcairn, Iain K.; Craw, Dave; Teagle, Damon A. H.
2015-03-01
Although metabasaltic rocks have been suggested to be important source rocks for orogenic gold deposits, the mobility of Au and related elements (As, Sb, Se, and Hg) from these rocks during alteration and metamorphism is poorly constrained. We investigate the effects of increasing metamorphic grade on the concentrations of Au and related elements in a suite of metabasaltic rocks from the Otago and Alpine Schists, New Zealand. The metabasaltic rocks in the Otago and Alpine Schists are of MORB and WPB affinity and are interpreted to be fragments accreted from subducting oceanic crust. Gold concentrations are systematically lower in the higher metamorphic grade rocks. Average Au concentrations vary little between sub-greenschist (0.9 ± 0.5 ppb) and upper greenschist facies (1.0 ± 0.5 ppb), but decrease significantly in amphibolite facies samples (0.21 ± 0.07 ppb). The amount of Au depleted from metabasaltic rocks during metamorphism is on a similar scale to that removed from metasedimentary rocks in Otago. Arsenic concentrations increase with metamorphic grade with the metabasaltic rocks acting as a sink rather than a source of this element. The concentrations of Sb and Hg decrease between sub-greenschist and amphibolite facies but concentration in amphibolite facies rocks are similar to those in unaltered MORB protoliths and therefore unaltered oceanic crust cannot be a net source of Sb and Hg in a metamorphic environment. The concentrations of Au, As, Sb, and Hg in oceanic basalts that have become integrated into the metamorphic environment may be heavily influenced by the degree of seafloor alteration that occurred prior to metamorphism. We suggest that metasedimentary rocks are much more suitable source rocks for fluids and metals in orogenic gold deposits than metabasaltic rocks as they show mobility during metamorphism of all elements commonly enriched in this style of deposit.
Vallier, T. L.; Brooks, H.C.
1994-01-01
PART 1: Stratigraphic and sedimentological analysis of sedimentary sequences from the Wallowa terrane of northeastern Oregon has provided a unique insight into the paleogeography and depositional history of the terrane, as well as establishing important constraints on its tectonic evolution and accretionary history. Its Late Triassic history is considered here by examining the two most important sedimentary units in the Wallowa terrane-the Martin Bridge Limestone and the Hurwal Formation. Conformably overlying epiclastic volcanic rocks of the Seven Devils Group, the Martin Bridge Limestone comprises shallow-water platform carbonate rocks and deeper water, off-platform slope and basin facies. Regional stratigraphic and tectonic relations suggest that the Martin Bridge was deposited in a narrow, carbonate-dominated (forearc?) basin during a lull in volcanic activity. The northern Wallowa platform was a narrow, rimmed shelf delineated by carbonate sand shoals. Interior parts of the shelf were characterized by supratidal to shallow subtidal carbonates and evaporites, which were deposited in a restricted basin. In the southern Wallowa Mountains, lithofacies of the Martin Bridge are primarily carbonate turbidites and debris flow deposits, which accumulated on a carbonate slope apron adjacent to the northern Wallowa rimmed shelf from which they were derived. Drowning of the platform in the latest Triassic, coupled with a renewed influx of volcanically derived sediments, resulted in the progradation of fine-grained turbidites of the Hurwal Formation over the carbonate platform. Within the Hurwal, Norian conglomerates of the Excelsior Gulch unit contain exotic clasts of radiolarian chert, which were probably derived from the Bakei terrane. Such a provenance provides evidence of a tectonic link between the Baker and Wallowa terranes as early as the Late Triassic, and offers support for the theory that both terranes were part of a more extensive and complex Blue Mountains island-arc terrane. PART 2: Mesozoic rocks exposed along the Snake River in the northern Wallowa terrane represent a volcanic island and its associated sedimentary basins within the Blue Mountains island arc of Washington, Oregon, and Idaho. In the northern part of the Wallowa terrane, rock units include the Wild Sheep Creek, Doyle Creek, and Coon Hollow Formations, the (informal) Imnaha intrusion, and the (informal) Dry Creek stock. The volcanic rocks of the Ladinian to Karnian Wild Sheep Creek Formation show two stages of evolution-an early dacitic phase Gower volcanic faciesY and a late mafic phase (upper volcanic facies). The two volcanic facies are separated by eruption-generated turbidites of siliceous argillites and arkosic arenites (argillitesandstone facies). The two magmatic phases of the Wild Sheep Creek Formation may be recorded by the compositional zoning from older quartz diorite and diorite to younger gabbro in the Imnaha intrusion. Although the Late Triassic Imnaha intrusion is in fault contact with the Wild Sheep Creek Formation, it may be a subduction-related pluton and was the likely magma source for the Wild Sheep Creek Formation. Interbedded with the upper volcanic facies are eruption-generated turbidite and debris flow deposits (sandstone-breccia facies) and thick carbonate units (limestone facies). The limestone facies consists of two marker units, which may represent carbonate platform environments. Clast imbrication, fossil orientation, and cross-stratification in the Wild Sheep Creek Formation indicate a shoaling to subaerial volcanic island to the south and southeast; sediment was transported to the north and northwest. The Karnian Doyle Creek Formation consists largely of epiclastic conglomerate, sandstone, and shale that were deposited in welloxygenated basins. Vitric tuffs interbedded with these sediments suggest shallow or subaerial pyroclastic eruptions. Quartz diorite clasts in this formation may indicate uplift
Sedimentary Facies of the West Crocker Formation North Kota Kinabalu-Tuaran Area, Sabah, Malaysia
NASA Astrophysics Data System (ADS)
Mohamed, Azfar; Hadi Abd Rahman, Abdul; Suhaili Ismail, Mohd
2016-02-01
Newly outcrops exposed in the West Crocker Formation have led to the detail sedimentolgical analysis of the formation. Eight sedimentary facies have been recognised in which it was divided into three main groups: (1) sand-dominated facies (F1-F2), (2) poorly- sorted unit mixed sand and mud-dominated facies (F3), and (3) mud-dominated facies (F4-F5). These are: F1- graded sandstone (massive to planar laminated), F2-ripple-cross laminated, wavy and convolute lamination sandstone, F3-chaotic beds of mixed sandstone and mudstone blocks and clasts, F4-lenticular bedded of sandstone, and F5-shale. The studies of the formation has come out that it was deposited in a sand-rich submarine fan with specific location located at (1) inner fan channel-levee complex; (2) mid-fan channelised lobes, and (3) outer fan.
NASA Astrophysics Data System (ADS)
Majid, M. Firdaus A.; Suhaili Ismail, M.; Rahman, A. Hadi A.; Azfar Mohamed, M.
2017-10-01
Newly exposed outcrop of Miocene shallow marine sandstone in Sandakan Formation, allows characterization of the facies distribution and petrophysical properties of shoreface to offshore transition environment. Six facies are defined: (1) Poorly bioturbated Hummocky Cross Stratified (HCS) sandstone (F1), (2) Moderately bioturbated HCS sandstone (F2), (3) Well bioturbated HCS sandstone (F3), (4) Poorly bioturbated Swaley Cross Stratified (SCS) sandstone (F4), (5) Interbedded HCS sandstone with sand-silt mudstone, (6) Heterolithic mudstone. The sedimentary successions were deposited in upper to lower shoreface, and offshore transition environment. Facies F3, F4 and F5 shows good reservoir quality with good porosity and fair permeability values from 20% to 21% and 14 mD to 33 mD respectively. While Facies F1 exhibits poor reservoir quality with low permeability values 3.13 mD.
NASA Astrophysics Data System (ADS)
Łoziński, Maciej; Ziółkowski, Piotr; Wysocka, Anna
2017-10-01
The Orava Basin is an intramontane depression filled with presumably fine-grained sediments deposited in river, floodplain, swamp and lake settings. The basin infilling constitutes a crucial record of the neoalpine evolution of the Inner/Outer Carpathian boundary area since the Neogene, when the Jurassic-Paleogene basement became consolidated, uplifted and eroded. The combination of sedimentological and structural studies with anisotropy of magnetic susceptibility (AMS) measurements provided an effective tool for recognition of terrestrial environments and deformations of the basin infilling. The lithofacies-oriented sampling and statistical approach to the large dataset of AMS specimens were utilized to define 12 AMS facies based on anisotropy degree (P) and shape (T). The AMS facies allowed a distinction of sedimentary facies ambiguous for classical methods, especially floodplain and lacustrine sediments, as well as revealing their various vulnerabilities to tectonic modification of AMS. A spatial analysis of facies showed that tuffites along with lacustrine and swamp deposits were generally restricted to marginal and southern parts of the basin. Significant deformations were noticed at basin margins and within two intrabasinal tectonic zones, which indicated the tectonic activity of the Pieniny Klippen Belt after the Middle Miocene. The large southern area of the basin recorded consistent N-NE trending compression during basin inversion. This regional tectonic rearrangement resulted in a partial removal of the southernmost basin deposits and shaped the basin's present-day extent.
NASA Astrophysics Data System (ADS)
Starek, Dušan; Fuksi, Tomáš
2017-08-01
A part of the Upper Oligocene sand-rich turbidite systems of the Central Carpathian Basin is represented by the Zuberec Formation. Sand/mud-mixed deposits of this formation are well exposed in the northern part of the basin, allowing us to interpret the turbidite succession as terminal lobe deposits of a submarine fan. This interpretation is based on the discrimination of three facies associations that are comparable to different components of distributive lobe deposits in deep-water fan systems. They correspond to the lobe off-axis, lobe fringe and lobe distal fringe depositional subenvironments, respectively. The inferences about the depositional paleoenvironment based on sedimentological observations are verified by statistical analyses. The bed-thickness frequency distributions and vertical organization of the facies associations show cyclic trends at different hierarchical levels that enable us to reconstruct architectural elements of a turbidite fan. First, small-scale trends correspond with shift in the lobe element centroid between successive elements. Differences in the distribution and frequency of sandstone bed thicknesses as well as differences in the shape of bed-thickness frequency distributions between individual facies associations reflect a gradual fining and thinning in a down-dip direction. Second, meso-scale trends are identified within lobes and they generally correspond to the significant periodicity identified by the time series analysis of the bed thicknesses. The meso-scale trends demonstrate shifts in the position of the lobe centroid within the lobe system. Both types of trends have a character of a compensational stacking pattern and could be linked to autogenic processes. Third, a largescale trend documented by generally thickening-upward stacking pattern of beds, accompanied by a general increase of the sandstones/mudstones ratio and by a gradual change of percentage of individual facies, could be comparable to lobe-system scale. This trend probably indicates a gradual basinward progradation of lobe system controlled by allogenic processes related to tectonic activity of sources and sea-level fluctuations.
Lasemi, Y.; Jalilian, A.H.
2010-01-01
The lower part of the Lower to Upper Jurassic Surmeh Formation consists of a succession of shallow marine carbonates (Toarcian-Aalenian) overlain by a deep marine basinal succession (Aalenian-Bajocian) that grades upward to Middle to Upper Jurassic platform carbonates. The termination of shallow marine carbonate deposition of the lower part of the Surmeh Formation and the establishment of deep marine sedimentation indicate a change in the style of sedimentation in the Neotethys passive margin of southwest Iran during the Middle Jurassic. To evaluate the reasons for this change and to assess the basin configuration during the Middle Jurassic, this study focuses on facies analysis and sequence stratigraphy of the basinal deposits (pelagic and calciturbidite facies) of the Surmeh Formation, referred here as 'lower shaley unit' in the Central Zagros region. The upper Aalenian-Bajocian 'lower shaley unit' overlies, with an abrupt contact, the Toarcian-lower Aalenian platform carbonates. It consists of pelagic (calcareous shale and limestone) and calciturbidite facies grading to upper Bajocian-Bathonian platform carbonates. Calciturbidite deposits in the 'lower shaley unit' consist of various graded grainstone to lime mudstone facies containing mixed deep marine fauna and platform-derived material. These facies include quartz-bearing lithoclast/intraclast grainstone to lime mudstone, bioclast/ooid/peloid intraclast grainstone, ooid grainstone to packstone, and lime wackestone to mudstone. The calciturbidite layers are erosive-based and commonly exhibit graded bedding, incomplete Bouma turbidite sequence, flute casts, and load casts. They consist chiefly of platform-derived materials including ooids, intraclasts/lithoclasts, peloids, echinoderms, brachiopods, bivalves, and open-ocean biota, such as planktonic bivalves, crinoids, coccoliths, foraminifers, and sponge spicules. The 'lower shaley unit' constitutes the late transgressive and the main part of the highstand systems tract of a depositional sequence and grades upward to platform margin and platform interior facies as a result of late highstand basinward progradation. The sedimentary record of the 'lower shaley unit' in the Central Zagros region reveals the existence of a northwest-southeast trending platform margin during the Middle Jurassic that faced a deep basin, the 'Pars intrashelf basin' in the northeast. The thinning of calciturbidite layers towards the northeast and the widespread Middle Jurassic platform carbonates in the southern Persian Gulf states and in the Persian Gulf area support the existence of a southwest platform margin and platform interior source area. The platform margin was formed as a result of tectonic activity along the preexisting Mountain Front fault associated with Cimmerian continental rifting in northeast Gondwana. Flooding of the southwest platform margin during early to middle Bajocian resulted in the reestablishment of the carbonate sediment factory and overproduction of shallow marine carbonates associated with sea-level highstand, which led to vertical and lateral expansion of the platform and gradual infilling of the Pars intrashelf basin by late Bajocian time. ?? 2010 Springer-Verlag.
NASA Astrophysics Data System (ADS)
Alves, Tiago M.; Cupkovic, Tomas
2018-05-01
Depositional facies resulting from footwall degradation in extensional basins of SE Crete are studied based on detailed geological maps, regional transects, lithological columns and outcrop photos. During an extensional episode affecting Crete in the late Miocene-early Pliocene, depocentres trending N20°E and N70°E were filled with fan deltas, submarine mass-wasting deposits, sandy turbidites and fine-grained hemipelagites sourced from both nearby and distal sediment sources. Deposition of proximal continental and shallow-marine units, and relatively deep (marine) turbidites and mass-transport deposits, occurred within a complex mosaic of tectonically controlled depocentres. The new geological maps and transects in this work reveal that depositional facies in SE Crete were controlled by: a) their relative proximity to active faults and uplifting footwall blocks, b) the relative position (depth and relative height above sea level) of hanging-wall basins, and c) the nature of the basement units eroded from adjacent footwall blocks. Distal sediment sources supplied background siliciclastic sediment ('hemipelagites'), which differ markedly from strata sourced from local footwalls. In parallel, mass-transport of sediment was ubiquitous on tectonically active slopes, and so was the presence of coarse-grained sediment with sizes varying from large blocks > 50 m-wide to heterolithic mass-transport deposits and silty-sandy turbidites. We expect similar tectono-sedimentary settings to have predominated in tectonically active Miocene basins of the eastern Mediterranean, in which hydrocarbon exploration is occurring at present, and on rifted continental margins across the world.
Dubiel, Russell F.
1983-01-01
Closely spaced measured stratigraphic sections of the lower part of the Late Triassic Chinle Formation in the White Canyon area of southeastern Utah depict a fluvial-deltaic-lacustrine depositional sequence that hosts uranium deposits in basal fluvial sandstones. The basal Shinarump Member consists of predominantly trough-crossbedded, coarse-grained sandstone and minor gray, carbonaceous mudstone and is interpreted as a valley-fill sequence overlain by deposits of a braided stream system. The overlying Monitor Butte Member is composed of cyclic- and foreset-bedded siltstone, sandstone, and mudstone and is interpreted as a succession of low-energy fluvial, deltaic and orqanicrich, lacustrine-marsh sediments. The overlying Moss Back Member is composed of a laterally extensive, coarse- to medium-grained, conglomeratic sandstone and is interpreted as a braided-stream system that flowed north to northwest. The entire sequence was deposited in response to changes in local base level associated with a large lake that lay to the west. Isopachs of lithofacies indicate distinct lacustrine basins and a correspondence between these facies and modern structural synclines. Facies changes and coincidence of isopach thicks suggest that structural synclines were active in the Late Triassic and influenced the pattern of sediment distribution within the basins. Uranium mineralization appears to be related to certain low-energy depositional environments in that uranium is localized in fluvial sandstones that lie beneath organic-rich lacustrine-marsh mudstones and carbonaceous delta-front sediments. The reducing environment preserved in these facies may have played an important role in the localization of uranium.
NASA Astrophysics Data System (ADS)
Papini, Mauro; Benvenuti, Marco
2008-04-01
The latest Early to Middle Jurassic succession of the Antsiranana Basin (NW Madagascar) records the complex transition from the continental rifting of Gondwana to the drifting of Madagascar-India from East Africa. The Madagascan Late Paleozoic-Mesozoic successions have been included in several paleogeographic and geodynamic models explaining the evolution of the Gondwana margins. Nevertheless, in some cases, as for the Toarcian-Bathonian deposits of the Antsiranana Basin, no significant stratigraphic revision has been carried out since the early 1970s. New field surveys allow reconsidering the stratigraphic and structural context and the palaeoenvironmental meaning of Toarcian-Bathonian successions occurring in different parts of the basin. These successions rest on the Triassic-Early Jurassic Isalo Sandstone which records pre-breakup rift events with a dominantly fluvial deposition. This situation is similar to other continental rift basins of Gondwana. After a regional Toarcian transgression the different portions of the Antsiranana Basin were characterized by significantly diversified and coeval depositional environments. The basin can be subdivided in a SW and NE part separated by a NW-SE trending structural high. In the SW part of the basin (Ampasindava sub-basin) the so-called "Jurassique paralique" [Rerat, J.C., 1964. Note sur les variations de faciès des sèries jurassiques du nord de Madagascar. Comptes Rendus Semaine gèologique, Tananarive, pp. 15-22] or " Facies Mixtes de la Presqu'ile de Ampasindava" [Besairie, H., Collignon, M., 1972. Géologie de Madagascar; I. Les terrains sédimentaires. Annales Géologiques de Madagascar, 35, 1-463], a 1500 m thick prevalently terrigenous deposit, has been subdivided into four units. They document the long-lasting development of coastal-deltaic systems in a highly subsiding area. In the NE portion of the basin (Ankarana-Analamera sub-basin), a coeval mixed carbonate-terrigenous succession subdivided in five units for a total thickness of 500 m, was deposited during relative sea-level fluctuations in a ramp setting characterized by relatively lower subsidence. The stratigraphic-depositional evolution was dependant on the presence of NW-trending, actively growing highs which fed the south-western sub-basin. The clastic supply balanced the tectonically created accommodation space in this portion of the basin. The revised and extended paleogeographical reconstruction has been included into a breakup model of the East Africa-Madagascar rift during the opening of the Mozambique Channel.
NASA Astrophysics Data System (ADS)
Graettinger, A. H.; Valentine, G. A.; Sonder, I.; Ross, P. S.; White, J. D. L.
2015-12-01
Buried-explosion experiments were used to investigate the spatial and volumetric distribution of extra-crater ejecta resulting from a range of explosion configurations with and without a crater present. Explosion configuration is defined in terms of scaled depth, the relationship between depth of burial and the cube root of explosion energy, where an optimal scaled depth explosion produces the largest crater diameter for a given energy. The multiple explosion experiments provide an analog for the formation of maar-diatreme ejecta deposits and the deposits of discrete explosions through existing conduits and hydrothermal systems. Experiments produced meter-sized craters with ejecta distributed between three major facies based on morphology and distance from the crater center. The proximal deposits form a constructional steep-sided ring that extends no more than two-times the crater radius away from center. The medial deposits form a low-angle continuous blanket that transitions with distance into the isolated clasts of the distal ejecta. Single explosion experiments produce a trend of increasing volume proportion of proximal ejecta as scaled depth increases (from 20-90% vol.). Multiple explosion experiments are dominated by proximal deposits (>90% vol.) for all but optimal scaled depth conditions (40-70% vol.). In addition to scaled depth, the presence of a crater influences jet shape and how the jet collapses, resulting in two end-member depositional mechanisms that produce distinctive facies. The experiments use one well-constrained explosion mechanism and, consequently, the variations in depositional facies and distribution are the result of conditions independent of that mechanism. Previous interpretations have invoked variations in fragmentation as the cause of this variability, but these experiments should help with a more complete reconstruction of the configuration and number of explosions that produce a tephra ring.
Sedimentary facies and Holocene progradation rates of the Changjiang (Yangtze) delta, China
NASA Astrophysics Data System (ADS)
Hori, Kazuaki; Saito, Yoshiki; Zhao, Quanhong; Cheng, Xinrong; Wang, Pinxian; Sato, Yoshio; Li, Congxian
2001-11-01
The Changjiang (Yangtze) River, one of the largest rivers in the world, has formed a broad tide-dominated delta at its mouth during the Holocene sea-level highstand. Three boreholes (CM97, JS98, and HQ98) were obtained from the Changjiang delta plain in 1997-1998 to clarify the characteristics of tide-dominated delta sediments and architecture. Based on sediment composition and texture, and faunal content, core sediments were divided into six depositional units. In ascending order, they were interpreted as tidal sand ridge, prodelta, delta-front, subtidal to lower intertidal flat, upper intertidal flat, and surface soil deposits. The deltaic sequence from the prodelta deposits to the delta front deposits showed an upward-coarsening succession, overlain by an upward-fining succession from the uppermost part of the delta front deposits to the surface soil. Thinly interlaminated to thinly interbedded sand and mud (sand-mud couplets), and bidirectional cross laminations in these deposits show that tide is the key factor affecting the formation of Changjiang deltaic facies. Sediment facies and their succession combined with AMS 14C dating revealed that isochron lines cross unit boundaries clearly, and delta progradation has occurred since about 6000 to 7000 years BP, when the rising sea level neared or reached its present position. The average progradation rate of the delta front was approximately 50 km/kyear over the last 5000 years. The progradation rate, however, increased abruptly ca. 2000 years BP, going from 38 to 80 km/kyear. The possible causes for this active progradation could have been an increase in sediment production in the drainage basin due to widespread human interference and/or decrease in deposition in the middle reaches related to the channel stability caused by human activity and climatic cooling after the mid-Holocene.
Sedimentology of the upper Karoo fluvial strata in the Tuli Basin, South Africa
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Catuneanu, Octavian
2001-08-01
The sedimentary rocks of the Karoo Supergroup in the Tuli Basin (South Africa) may be grouped in four stratigraphic units: the basal, middle and upper units, and the Clarens Formation. This paper presents the findings of the sedimentological investigation of the fluvial terrigenous clastic and chemical deposits of the upper unit. Evidence provided by primary sedimentary structures, palaeontological record, borehole data, palaeo-flow measurements and stratigraphic relations resulted in the palaeo-environmental reconstruction of the upper unit. The dominant facies assemblages are represented by sandstones and finer-grained sediments, which both can be interbedded with subordinate intraformational coarser facies. The facies assemblages of the upper unit are interpreted as deposits of a low-sinuosity, ephemeral stream system with calcretes and silcretes in the dinosaur-inhabited overbank area. During the deposition of the upper unit, the climate was semi-arid with sparse precipitation resulting in high-magnitude, low-frequency devastating flash floods. The current indicators of the palaeo-drainage system suggest flow direction from northwest to southeast, in a dominantly extensional tectonic setting. Based on sedimentologic and biostratigraphic evidence, the upper unit of the Tuli Basin correlates to the Elliot Formation in the main Karoo Basin to the south.
Tape, C.H.; Cowan, Clinton A.; Runkel, Anthony C.
2003-01-01
This study documents for the first time tidal bundling in a lower Paleozoic sheet sandstone from the cratonic interior of North America, providing insights into the hydrodynamics of ancient epicontinental seas. The Jordan Sandstone (Upper Cambrian) in the Upper Mississippi Valley contains large-scale planar tabular cross-sets with tidal-bundle sequences, which were analyzed in detail at an exceptional exposure. Tidal-bundle sequences (neap-spring-neap cycles) were delineated by foreset thickening-thinning patterns and composite shale drapes, the latter of which represent accumulations of mud during the neap tides of neap-spring-neap tidal cycles. Fourier analysis of the bundle thickness data from the 26 measurable bundle sequences revealed cycles ranging from 15 to 34 bundles per sequence, which suggests a semidiurnal or mixed tidal system along this part of the Late Cambrian shoreline. We extend the tidal interpretation to widespread occurrences of the same facies in outcrops of lesser quality, where the facies is recognizable but too few bundles are exposed for tidal cycles to be measured. By doing so, this study shows that tidally generated deposits have a significant geographic and temporal extent in Upper Cambrian strata of central mid-continent North America. The deposition and preservation of tidal facies was related to the intermittent development of shoreline embayments during transgressions. The tidally dominated deposits filled ravined topographies that were repeatedly developed on the updip parts of the shoreface. Resulting coastal geomorphologies, accompanied perhaps by larger-scale changes in basinal conditions and/or configuration, led to changes in depositional conditions from wave-dominated to tide-dominated. Outcrops of the Jordan Sandstone tidal facies in the Upper Mississippi Valley represent the farthest inboard recorded transmission of ocean-generated tides in the Laurentian epicontinental seas, demonstrating that tidal currents were significant agents in the transport of sand along the far cratonic interior shorelines of Cambrian North America. The results of this study improve the facies-level understanding of the genesis of sheet sandstones. Furthermore, tidalites documented here occur in a specific position within a sequence stratigraphic architecture for the Jordan Sandstone. This provides a framework to compare these ancient deposits and processes to younger (e.g., Carboniferous) epicontinental systems where stratal and sediment dynamics are better documented. ?? 2003, SEPM (Society for Sedimentary Geology).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davies, D.J.; Parker, S.J.
The Alabama exclusive economic zone (EEZ) contains an abundance of orthoquartzitic shelf sand ridges elongate northwest-southeast diagonally from the shoreline. Soft-sediment peels from 59 Vibracores[sup TM] from the Alabama inner shelf permit detailed description of sand ridge sedimentary structures, fabrics, and eight sea-floor sediment types. These overlie the pre-Holocene sequence boundary and lower Holocene transgressive sediments. In general, the ridges are capped by coarse stacked graded shelly sands, echinoid sands, and clean sands deposited well above storm wave base. The graded shelly sand microfacies, the most common sediment type, is inferred to represent shelf storm deposits because of its gradedmore » nature, sharp base, and variable thickness (0.1 to 4 m). Considerable patchiness of facies is found on a single sand ridge. The facies patchiness may result from the interplay between relict sediment distribution, present hydrodynamics and local difference in preserved shell content. Due to the microtidal regime of the Alabama EEZ and the prevalence of the graded sands on the ridge crests, the ridges are interpreted to be dominantly storm-wave in origin. This type of coarse, clean sandy deposit is a poorly studied yet important possible model for many shelf-sand petroleum reservoirs.« less
Malmon, Daniel V.; Howard, Keith A.; House, P. Kyle; Lundstrom, Scott C.; Pearthree, Philip A.; Sarna-Wojcicki, Andrei M.; Wan, Elmira; Wahl, David B.
2011-01-01
The Chemehuevi Formation forms a conspicuous, widespread, and correlative set of nonmarine sediments lining the valleys of the Colorado River and several of its larger tributaries in the Basin and Range geologic province. These sediments have been examined by geologists since J. S. Newberry visited the region in 1857 and are widely cited in the geologic literature; however their origin remains unresolved and their stratigraphic context has been confused by inconsistent nomenclature and by conflicting interpretations of their origin. This is one of the most prominent stratigraphic units along the river below the Grand Canyon, and the formation records an important event or set of events in the history of the Colorado River. Here we summarize what is known about these deposits throughout their range, present new stratigraphic, sedimentologic, topographic, and tephrochronologic data, and formally define them as a lithostratigraphic unit. The Chemehuevi Formation consists primarily of a bluff-forming mud facies, consisting of gypsum-bearing, horizontally bedded sand, silt, and clay, and a slope-forming sand facies containing poorly bedded, well sorted, quartz rich sand and scattered gravel. The sedimentary characteristics and fossil assemblages of the two facies types suggest that they were deposited in flood plain and channel environments, respectively. In addition to these two primary facies, we identify three other mappable facies in the formation: a thick-bedded rhythmite facies, now drowned by Lake Mead; a valley-margin facies containing abundant locally derived sediment; and several tributary facies consisting of mixed fluvial and lacustrine deposits in the lower parts of major tributary valleys. Observations from the subsurface and at outcrops near the elevation of the modern flood plain suggest that the formation also contains a regional basal gravel member. Surveys of numerous outcrops using high-precision GPS demonstrate that although the sand facies commonly overlies the mud facies where the two are found together, contacts between the two occur over a range in elevation, and as a consequence, the sand and mud facies are similarly distributed both horizontally and vertically throughout the valley. Collectively, the outcrops of the formation lie below a smooth elevation envelope that slopes 50 percent more steeply than the historic (pre-Hoover Dam) valley, from nearly 150 m above the historic flood plain near the mouth of the Grand Canyon to less than 30 m above the flood plain at the head of the flood plain near Yuma, Arizona. The steepness of the valley at the peak of aggradation probably represents a depositional slope. Layers of fine grained volcanic tephra have been found below and within the Chemehuevi Formation at five widely separated sites, one of which is now submerged beneath Lake Mead. Major element geochemistry of glass shards from the four accessible tephra sites were analyzed. Three of the sampled tephra layers are interbedded within the Chemehuevi Formation, and a fourth tephra conformably underlies the formation. The three interbedded tephra layers are similar enough to one another that they are probably from the same eruptive unit, hereafter referred to as the Monkey Rock tephra bed. The other sample, which locally underlies the formation, is similar enough to the Monkey Rock tephra bed to suggest it is from the same volcanic source area; however, it may not be from the same eruption, and thus may not be the same age. On the basis of the stratigraphic contexts of chemically similar tephra layers found elsewhere in the Basin and Range, we suspect that the source area is the Mammoth Mountain dome complex in Long Valley, east-central California. Two samples of proximal Mammoth Mountain pumice were analyzed and produced geochemical signatures similar to all four of the Chemehuevi Formation tephra, supporting Mammoth Mountain as a possible source area. The Mammoth Mountain volcanic center produced eruptions between about 111±2 and 57±2 ka and was most active in the later part of this time interval, during Marine Oxygen Isotope (MOI) stage 4 (between 74 and 59 ka ago). Chemically similar tephra in cores from Owens Lake and Walker Lake are approximately 70 and 74 ky old, based on age models of those cores. Other lines of stratigraphic evidence from nine tephra-containing sections in the Basin and Range are also consistent with an age assignment for the Monkey Rock tephra of ~72 ky, near the beginning of MOI stage 4. We propose to designate the Chemehuevi Formation as a formal lithostratigraphic unit, and propose as the type section a well exposed outcrop near the ranger station at Katherine Landing, Arizona, in the Lake Mead National Recreation Area. This exposure shows the two dominant facies, an example of one of the four known tephra layers, and interbedded lenses of locally derived gravel. In the type section, as in many of the other examples of the formation, the sand facies overlies the mud facies on a conspicuous, abrupt erosional surface; however, nearby is a contiguous section demonstrating that the mud and sand facies interfinger. In addition to the type section, measured reference sections compiled here illustrate other important lithologic and stratigraphic features of the formation. Our preferred interpretation of the Chemehuevi Formation is that it contains the remnants of deposits formed during a single major episode of fluvial aggradation, during which the Colorado River filled its valley with a great volume of dominantly sand-size sediment. This would reflect an increase in the supply of sand-size sediment, and(or) a reduction in transport capacity below the mouth of Grand Canyon. The most likely cause for the aggradation is an extraordinary increase in sand supply, likely due to widespread climatic change. However, other explanations have not been ruled out. Other aggradation events predated the Chemehuevi Formation, and some smaller events may have postdated the formation. However, the Chemehuevi Formation contains the remnants of the most recent large magnitude (>100 m) aggradation of the Colorado River.
Facies development in the Lower Freeport coal bed, west-central Pennsylvania, U.S.A.
Pierce, B.S.; Stanton, R.W.; Eble, C.F.
1991-01-01
The Lower Freeport coal bed in west-central Pennsylvania is interpreted to have formed within a lacustrine-mire environment. Conditions of peat formation, caused by the changing chemical and physical environments, produced five coal facies and two mineral-rich parting facies within the coal bed. The coal bed facies are compositionally unique, having developed under varying conditions, and are manifested by megascopic, petrographic, palynologic and quality characteristics. The initial environment of the Lower Freeport peat resulted in a coal facies that is relatively high in ash yield and contains large amounts of lycopod miospores and moderate abundances of cryptotelinite, crypto-gelocollinite, inertinite and tree fern miospores. This initial Lower Freeport peat is interpreted to have been a topogenous body that was low lying, relatively nutrient rich (mesotrophic to eutrophic), and susceptible to ground water and to sediment influx from surface water. The next facies to form was a ubiquitous, clay-rich durain parting which is attributed to a general rise in the water table accompanied by widespread flooding. Following formation of the parting, peat accumulation resumed within an environment that inhibited clastic input. Development of doming in this facies restricted deposition of the upper shale parting to the margins of the mire and allowed low-ash peat to form in the interior of the mire. Because this environment was conducive to preservation of cellular tissue, this coal facies also contains large amounts of crypto-telinite. This facies development is interpreted to have been a transitional phase from topogenous, planar peat formation to slightly domed, oligotrophic (nutrient-poor) peat formation. As domed peat formation continued, fluctuations in the water table enabled oxidation of the peat surface and produced high inertinite concentrations toward the top of the coal bed. Tree ferns became an increasingly important peat contributor in the e upper facies, based on the palynoflora. This floral change is interpreted to have resulted from the peat surface becoming less wet or better drained, a condition that inhibited proliferation of lycopod trees. Accumulation of the peat continued until rising water levels formed a freshwater lake within which clays and silts were deposited. The development of the Lower Freeport peat from a planar mire through transitional phases toward domed peat formation may be an example of the type of peat formation of other upper Middle and Upper Pennsylvanian coal beds. ?? 1991.
NASA Astrophysics Data System (ADS)
Leppard, Christopher W.; Gawthorpe, Rob L.
2006-09-01
In most marine rift basins, subsidence outpaces sedimentation during rift climax times. Typically this results in sediment-starved hangingwall depocentres dominated by deep-marine mudstones, with subordinate local development of coarser clastics in the immediate hangingwall derived from restricted catchments on the immediate footwall scarp. To highlight the spatial variability of rift climax facies and the controls upon them, we have investigated the detailed three-dimensional geometry and facies relationships of the extremely well exposed Miocene, rift climax Lower Rudeis Formation in the immediate hangingwall to the Thal Fault Zone, Suez Rift, Egypt. Detailed sedimentological analyses allows the Lower Rudeis Formation to be divided into two contemporaneous depositional systems, (1) a laterally continuous slope system comprising, hangingwall restricted (< 250 m wide) slope apron, slope slumps, fault scarp degradation complex and laterally extensive lower slope-to-basinal siltstones, and (2) a localized submarine fan complex up to 1 km wide and extending at least 2 km basinward of the fault zone. Interpretation of individual facies, facies relationships and their spatial variability indicate that deposition in the immediate hangingwall to the Thal Fault occurred via a range of submarine concentrated density flows, surge-like turbidity flows, mass wasting and hemipelagic processes. Major controls on the spatial variability and stratigraphic architecture of the depositional systems identified reflect the influence of the steep footwall physiography, accommodation and drainage evolution associated with the growth of the Thal Fault. The under-filled nature of the hangingwall depocentre combined with the steep footwall gradient result in a steep fault-controlled basin margin characterised by either slope bypass or erosion, with limited coastal plain or shelf area. Sediment supply to the slope apron deposits is controlled in part by the evolution and size of small footwall drainage catchments. In contrast, the localized submarine fan is interpreted to have been fed by a larger, antecedent drainage network. The structural style of the immediate footwall is also believed to exert a control on facies development and stratigraphic evolution. In particular, fault scarp degradation is enhanced by fault propagation folding which creates basinward-dipping bedding planes in the pre-rift footwall strata that large pre-rift blocks slide on.
Facies analysis of Lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece)
NASA Astrophysics Data System (ADS)
Pomoni-Papaioannou, F.
The Upper Triassic carbonate sediments of Argolis Peninsula are part of the Upper Triassic-Lower Jurassic extensive and thick neritic carbonate formations (Pantokrator facies) that formed at the passive Pelagonian margin and are considered as Dachstein-type platform carbonates. Facies analysis of the Upper Triassic "Lofer-type" lagoonal-peritidal cycles in the Dhidimi area, proved that cycles, although mostly incomplete, were regressive shallowing-upward. The ideal elementary cyclothems are meter-scale in thickness and begin with a subtidal bed (Member C), represented by a peloidal dolostone with megalodonts (wackestone or packstone), being followed by a stromatolitic intertidal dolomitic mudstone and/or fenestral intertidal dolomitic mudstone (Member B) that is overlain by dolocrete (terrestrial stromatolites or pisoidic dolomite) or a supratidal "soil conglomerate" in red micritic matrix (Member A). Lofer-cycle boundaries are defined at the erosional surfaces and accordingly the Lofer cyclothems are unconformity-bounded units. Due to common post-depositional truncation of the subtidal and intertidal facies, the supratidal members prevail, being developed, in places, directly upon subaerial exposure surfaces (erosionally reduced cyclothems). Peritidal layers are characterized by a well-expressed lamination, sheet cracks, tepee structures, fenestral pores and karst dissolution cavities. The studied lagoonal-peritidal cycles are considered to have been deposited in a tidal-flat setting (inner platform), repeatedly exposed under subaerial conditions, in the context of a broader tropical rimmed platform. Although the studied area was tectonically active due to rift-activity and the autocyclic processes should also be taken in consideration, the great lateral correlatability of cycles, the facies shifting and the widespread erosion that resulted in superposition of supratidal-pedogenic facies directly upon subtidal members (subaerial erosional unconformity), indicating a sea-level drop, reflect allocyclic control via high-frequency eustatic sea-level oscillation (orbital forcing). Sediment deposition occurred during low-stand system tract (LST), that probably continued also in the transgressive system tract (TST) and reflects an overall sea-level fall. Under these conditions dissolution and cement precipitation episodes, as well development of paleosols and karsts, were triggered, during a relatively less arid interval.
NASA Astrophysics Data System (ADS)
Khalaf, Ezz El Din Abdel Hakim
2013-07-01
Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1990-05-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, facies stacking patterns, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level change and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed by typingmore » the outcrop sections to an integrated well-log/seismic grid through outcrop gamma-ray-spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies, evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary, Downlap surfaces exhibited increased proportions of pelagic facies around the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or no significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to the rock properties to genetic processes for construction of predictive models.« less
A Late Pleistocene-Holocene wetland megafan in the Brazilian Amazonia
NASA Astrophysics Data System (ADS)
Rossetti, D. F.; Zani, H.; Cohen, M. C. L.; Cremon, É. H.
2012-12-01
Despite the growing interest in megafans, definitions provided for this type of environmental setting have not yet been widely agreed upon. A record of sedimentary facies distribution in both space and time including a larger number of analogs is particularly needed for improving megafan facies models. This work focuses on a large fan-like feature from an Amazonian wetland in northern Brazil. Morphological data based on remote sensing, as well as sedimentary facies and radiocarbon analyses, were integrated to propose that this feature is related to a megafan system active during the Late Pleistocene to Holocene. The megafan displays a divergent drainage network, gently-dipping slope, and concave-up and convex-up longitudinal and transverse profiles, respectively. Near surface deposits correspond to fining and coarsening upward sands related to active channels and overbank sand sheets/terminal fan lobes. Sediments are interbedded with abandoned channel/floodplain and lake/pond muds. Morphostructural analyses and drainage anomalies revealed a geological setting affected by reactivation of pre-existing faults contemporaneous with sediment accumulation. Establishment of a megafan system in this wetland most likely occurred within a slightly tectonically subsiding basin under favorable climatic conditions. During wet seasons, high water discharge would have favored sediment transport from highlands into this depositional site. High summer temperatures and drought under a monsoonal regime kept the water levels low. The described megafan could serve as an analog for contemporary tropical wetland megafans formed under a monsoonal climate regime.
NASA Astrophysics Data System (ADS)
Benssaou, M.; Hamoumi, N.
2001-04-01
L'étude lithostratigraphique en sédimentologique des formations du Cambrien inférieur de l'Anti-Atlas occidental (Maroc) a permis de mettre en évidence la diversité extrême des faciès allant des faciès continentaux jusqu'au faciès franchement marins. La répartition verticale de ces faciès ainsi que leurs associations ont permis de (i) proposer un nouveau découpage de la succession en formations lithostratigraphiques, (ii) reconstituer les milieux de dépôt (système fluviatile, lacs, fan-deltas, milieu littoral, plate-forme dominée par des constructions stromatolitiques et récifales et plate-forme dominée par les tempêtes) et (iii) établir des modèles paléogéographiques retraçant les différentes étapes d'évolution de ce bassin qui fait partie de la plate-forme nord-gondwanienne au Cambrien inférieur. Lithostratigraphical and sedimentological studies of the Early Cambrian formations in the western Anti-Atlas (Morocco) evidence their large diversity of facies ranging from continental to clearly marine. Vertical distribution and associations of facies afford opportunities to (i) suggest a new classification of the sedimentary sequence in terms of lithostratigraphic formations, (ii) restore the depositional environments (fluvial system, lake, delta fan, coast, stromatolite and reef-dominated platform, tempest-dominated platform), and (iii) establish palæogeographic models displaying the different evolutionary stages of this basin that constituted a part of the Lower Cambrian north-Gondwanian platform.
Paleolimnology of Lake Tubutulik, an iron-meromictic Eocene Lake, eastern Seward Peninsula, Alaska
Dickinson, K.A.
1988-01-01
Sideritic lacustrine mudstone was found in drill core from a uranium deposit in the Death Valley area in the eastern part of the Seward Peninsula, Alaska. The precursor sediments for this rock were deposited in an unusual "iron-meromictic" Eocene lake, herein named Lake Tubutulik, which occupied part of the Boulder Creek basin, a structural graben that is probably a southern extension of the larger Death Valley basin. The Boulder Creek basin is bounded on the west by granite of the Late Cretaceous Darby Pluton, on the east by Precambrian to Paleozoic metasedimentary rocks. The lake basin was formed by basaltic flows that dammed the river valley of the ancestral Tubutulik River in early Eocene time. Lake Tubutulik contained a nearshore facies of fine-grained organic mud and an offshore facies of laminated sideritic mud. The offshore (profundal) laminated mudstone consists of alternating layers of authigenic siderite and detrital layers containing mostly quartz and clay minerals. Both lacustrine facies contain turbidities. The lacustrine sediments graded laterally into an onshore facies of colluvial and fluvial sandstone, paludal mudstone, and coal. The ancient lake apparently occupied a small deep basin in a tectonically active area of high relief. Meromixus was probably stabilized by reduced iron and bicarbonate dissolved in the monimolimnion. The intensity of meromixus decreased as the lake became shallower from sediment filling. The source of the iron, abundant in the monimolimnion of Lake Tubutulik, was probably the Eocene basalt. Based on carbon isotope analysis of the siderite, the dissolved bicarbonate in the profundal facies was largely inorganic. Sideritic carbon in one sample from the onshore paludal facies has an isotopic signature (??13C = +16.9) consistent with residual carbon formed during methanogenic fermentation. ?? 1988.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ridgley, Jennie
2001-08-21
The purpose of the phase 2 Mesaverde study part of the Department of Energy funded project ''Analysis of oil-bearing Cretaceous Sandstone Hydrocarbon Reservoirs, exclusive of the Dakota Sandstone, on the Jicarilla Apache Indian Reservation, New Mexico'' was to define the facies of the oil-producing units within the subsurface units of the Mesaverde Group and integrate these results with outcrop studies that defined the depositional environments of these facies within a sequence stratigraphic context. The focus of this report will center on (1) integration of subsurface correlations with outcrop correlations of components of the Mesaverde, (2) application of the sequence stratigraphicmore » model determined in the phase one study to these correlations, (3) determination of the facies distribution of the Mesaverde Group and their relationship to sites of oil and gas accumulation, (4) evaluation of the thermal maturity and potential source rocks for oil and gas in the Mesaverde Group, and (5) evaluation of the structural features on the Reservation as they may control sites of oil accumulation.« less
NASA Astrophysics Data System (ADS)
Shettima, Bukar; Kyari, Aji Maina; Aji, Mallam Musa; Adams, Fatimoh Dupe
2018-07-01
Lithofacies analyses of the upper part of the Chad Formation (Bama Ridge Complex) in the Bornu Sub-basin of the Chad Basin indicated four facies associations; fluvial, deltaic, shoreface and lacustrine sequences. The fluvial sequences are composed of fining upward cycles with successive occurrence of planar crossbedded sandstone facies displaying unimodal paleocurrent system and rare mudstone facies typical of braided river system. The deltaic succession consists of both fining and coarsening upwards cycles with the former depicting fluvial setting of an upper delta plain while the later suggestive of mouth-bar sequences. The setting displays a polymodal current system of fluvial, waves, storms and tides that were primarily induced by complex interactions of seiches and lunar tides. Similar current systems devoid of fluvial patterns were reflected in the coarsening upward packages of the shoreface sequences. Lacustrine succession composed of thick bioturbated mudstone facies generally defines the base of these coarsening upward profiles, giving a fluvio-lacustrine geomorphic relief where complex interaction developed the deltaic and shoreface facies along its shorelines. Clay mineral fractions of the formation are dominantly kaolinitic, indicating a predominantly humid tropical-subtropical climatic condition during their deposition. This climatic regime falls within the African humid period of the early-mid Holocene that led to the third lacustrine transgression of the Lake Mega-Chad, whereas the subordinate smectite mineralization points to aridification that characterizes most of the post humid period to recent.
Cone penetration test for facies study: a review
NASA Astrophysics Data System (ADS)
Satriyo, N. A.; Soebowo, E.
2018-02-01
Engineering geology investigation through Cone Penetration Test (with pore-pressure measurements) approach is one of the most effective methods to find out sub surface layer. This method is generally used in Late Quaternary and typical deposit and can also be used for sedimentological purposes. CPTu and drilling core for high-resolution stratigraphy sub surface have been done in many research. These combined data can also be used to detail correlations of sub surface stratigraphy, to identify facies change and to determine the interpretation of sequence stratigraphy. The determination facies distribution research based on CPTu profile, which was included in quantitative data, is rarely done especially in Indonesia which has a different climate. Whereas drilling core description using grain size analysis will provide information on validation about physical lithology characteristics which are developed in research area. The interpretation is given using CPTu curve pattern and cone resistance parameter of CPTu’s data correlated with physical characteristics of drilling core. The cone resistance will provide the strength of the sediment layer which also gives the range of data between clay and sand. Finally, the review will show that each of developing facies characteristic provides a specific curve pattern and every sediment deposit facies can be determined by the transformation of CPTu curve profile. Despite the fact that the research using those methods are quite comprehensive, a review is presented on each of these methods related with the chronologic factor seen by the geological time and different characteristics sediment of different location.
NASA Astrophysics Data System (ADS)
Diria, Shidqi A.; Musu, Junita T.; Hasan, Meutia F.; Permono, Widyo; Anwari, Jakson; Purba, Humbang; Rahmi, Shafa; Sadjati, Ory; Sopandi, Iyep; Ruzi, Fadli
2018-03-01
Upper Red Bed, Menggala Formation, Bangko Formation, Bekasap Formation and Duri Formationare considered as the major reservoirs in Central Sumatra Basin (CSB). However, Telisa Formation which is well-known as seal within CSB also has potential as reservoir rock. Field study discovered that lenses and layers which has low to high permeability sandstone enclosed inside low permeability shale of Telisa Formation. This matter is very distinctive and giving a new perspective and information related to the invention of hydrocarbon potential in reservoir sandstone that isolated inside low permeability shale. This study has been conducted by integrating seismic data, well logs, and petrophysical data throughly. Facies and static model are constructed to estimate hydrocarbon potential resource. Facies model shows that Telisa Formation was deposited in deltaic system while the potential reservoir was deposited in distributary mouth bar sandstone but would be discontinued bedding among shale mud-flat. Besides, well log data shows crossover between RHOB and NPHI, indicated that distributary mouth bar sandstone is potentially saturated by hydrocarbon. Target area has permeability ranging from 0.01-1000 mD, whereas porosity varies from 1-30% and water saturation varies from 30-70%. The hydrocarbon resource calculation approximates 36.723 MSTB.
NASA Astrophysics Data System (ADS)
Hage, S.; Cartigny, M.; Hughes Clarke, J. E.; Clare, M. A.; Sumner, E.; Hubbard, S. M.; Talling, P.; Lintern, G.; Stacey, C.; Vardy, M. E.; Hunt, J.; Vendettuoli, D.; Yokokawa, M.; Hizzett, J. L.; Vellinga, A. J.; Azpiroz, M.
2017-12-01
Turbidity currents transfer globally significant amounts of sediment via submarine channels from the continental margin to deep submarine fans. Submarine channel inception is thought to result from erosive, supercritical turbidity currents that are common in proximal settings of the marine realm. Recent monitoring of submarine processes have provided the first measurements of supercritical turbidity currents (Hughes Clarke, 2016), demonstrating that they drive the upstream migration of crescentic bedforms in confined submarine channels. Although upstream-migrating bedforms are common in confined channels across the world's oceans, there is considerable debate over the type of deposits that they produce. It is important to understand what types of deposit record these supercritical bedforms to potentially identify them from geological archives. For the first time, we combine direct measurements from supercritical field-scale turbidity currents with the facies and depositional architecture resulting from such flows. We show how the subsurface architecture evolves in a highly active channel at Squamish submarine delta, British Columbia, Canada. Repeated upstream migration of bedforms is found to create two main deposit geometries. First, regular back-stepping beds result from flow deceleration on the slightly-inclined sides of the bedforms. Second, lens-shaped scour fills composed of massive deposits result from erosion of the back-stepping beds by subsequent turbidity currents. We relate our findings to a range of ancient outcrop studies to demonstrate that supercritical flows are common in proximal settings through the geological record. This study provides the first direct observation-based model to identify confined supercritical turbidity currents and their associated upslope-migrating bedforms in the sedimentary record. This is important for correctly identifying the proximal sites of ancient submarine channels that served as past conduits for globally significant quantities of sediment to reach the deep sea.
NASA Astrophysics Data System (ADS)
Jorissen, Elisabeth L.; de Leeuw, Arjan; van Baak, Christiaan G. C.; Mandic, Oleg; Stoica, Marius; Abels, Hemmo A.; Krijgsman, Wout
2018-06-01
Sedimentological facies models for (semi-)isolated basins are less well developed than those for marine environments, but are critical for our understanding of both present-day and ancient deltaic sediment records in restricted depositional environments. This study considers an 835 m thick sedimentary succession of mid-Pliocene age, which accumulated in the Dacian Basin, a former embayment of the Black Sea. Detailed sedimentological and palaeontological analyses reveal a regression from distal prodelta deposits with brackish water faunas to delta-top deposits with freshwater faunas. Sediments contain frequent hyperpycnal plumes and an enrichment in terrestrial organic material, ichnofossils and in situ brackish and freshwater faunas. Deltaic progradation created thin, sharply-based sand bodies formed by multiple terminal distributary channels, covering a wide depositional area. The system experienced frequent delta-lobe switching, resulting in numerous thin parasequences. Parasequences are overlain by erosive reddish oxidized sand beds, enriched in broken, abraded brackish and freshwater shells. These beds were formed after sediment starvation, on top of abandoned delta lobes during each flooding event. A robust magnetostratigraphic time frame allowed for comparison between the observed sedimentary cyclicity and the amplitude and frequency of astronomical forcing cycles. Our results indicate that parasequence frequencies are significantly higher than the number of time equivalent astronomical cycles. This suggests that delta-lobe switching was due to autogenic processes. We consider the observed facies architecture typical for a delta prograding on a low-gradient slope into a shallow, brackish, protected, semi-isolated basin. Furthermore, in the absence of significant wave and tidal influence, sediment progradation in such a protected depositional setting shaped a delta, strongly river-dominated.
Slack, John F.; Falck, Hendrik; Kelley, Karen D.; Xue, Gabriel G.
2017-01-01
Detailed lithogeochemical data are reported here on early Paleozoic sedimentary rocks that host the large Howards Pass stratiform Zn-Pb deposits in Yukon-Northwest Territories. Redox-sensitive trace elements (Mo, Re, V, U) and Ce anomalies in members of the Duo Lake Formation record significant environmental changes. During the deposition of lower footwall units (Pyritic siliceous and Calcareous mudstone members), bottom waters were anoxic and sulphidic, respectively; these members formed in a marginal basin that may have become increasingly restricted with time. Relative to lower members, a major environmental change is proposed for deposition of the overlying Lower cherty mudstone member, which contains phosphorite beds up to ∼0.8 m thick in the upper part, near the base of the Zn-Pb deposits. The presence of these beds, together with models for modern phosphorite formation, suggests P input from an upwelling system and phosphorite deposition in an upper slope or outer shelf setting. The overlying Active mudstone member contains stratabound to stratiform Zn-Pb deposits within black mudstone and gray calcareous mudstone. Data for unmineralized black mudstone in this member indicate deposition under diverse redox conditions from suboxic to sulphidic. Especially distinctive in this member are uniformly low ratios of light to heavy rare earth elements that are unique within the Duo Lake Formation, attributed here to the dissolution of sedimentary apatite by downward-percolating acidic metalliferous brines. Strata that overlie the Active member (Upper siliceous mudstone member) consist mainly of black mudstone with thin (0.5–1.5 cm) laminae of fine-grained apatite, recording continued deposition on an upper slope or outer shelf under predominantly suboxic bottom waters. Results of this study suggest that exploration for similar stratiform sediment-hosted Zn-Pb deposits should include the outer parts of ancient continental margins, especially at and near stratigraphic transitions from marginal basin facies to overlying slope or shelf facies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedesco, L.P.; Aller, R.C.
A variety of sedimentological criteria and direct field observations indicate that deposits of shallow carbonate platforms and mud banks are extensively transformed during megafaunal bioturbation by deep-burrowing crustaceans. {sup 210}Pb dating of surficial sediment and burrow fills dissected from the upper 1--3 m of sediments at four sites on the Caicos Platform and in South Florida corroborates sedimentologic descriptions of rapid biogenic alteration of entire facies. {sup 210}Pb distributions from the study sites show that at least some infill is predominantly surficial sediment. Assuming that all identifiable deep burrow fills containing excess {sup 210}Pb derive from the uppermost 0--5 cmmore » interval, an estimate of facies replacement by nonlocal transport can be made based on measured excess {sup 210}Pb values of fill and the corresponding total discernible fill volume in cores. Calculations indicate that at the sites studied, burrow excavation and infilling can completely transform the upper 1--2 m, and possibly 3.5 m, of deposits in 100--600 yr. More rapid transformation of deposits is required if fill is derived from below 5 cm. Biogenic transformation rates are sufficiently fast compared to net sedimentation that burrow infills, not primarily physical deposition, determine the composition, porosity, fabric, and texture of the preserved facies. The {sup 210}Pb profiles in the deepest regions of deposits in the present cases are further complicated by basal enrichments of {sup 226}Ra, which apparently diffuses upwards from Pleistocene calcrete surfaces into overlying Holocene sediment. This diffusion requires careful documentation of supported {sup 210}Pb near this contact, but also offers the potential for an additional transport tracer internal to the deposits.« less
Quaternary Geologic Framework of the St. Clair River between Michigan and Ontario, Canada
Foster, David S.; Denny, Jane F.
2009-01-01
Concern about the effect of geomorphic changes in the St. Clair River on water levels in the Upper Great Lakes resulted in the need for information on the geologic framework of the river. A geophysical survey of the Upper St. Clair River between Port Huron, MI, and Sarnia, Ontario, Canada, was conducted to determine the Quaternary geologic framework of the region. Previously available and new sediment samples and photographic and video data support the interpretation of the seismic stratigraphy and surficial geology. Three seismic stratigraphic units and two unconformities were identified. Glacial drift, consisting of interbedded till and glaciolacustrine deposits, overlies shale. Glaciofluvial and modern fluvial processes have eroded the glacial drift. Glaciofluvial, glaciolacustrine, fluvial, and lacustrine deposits overlie this unconformity. Seismic facies were interpreted to identify areas where these geologic facies exist; however, in the absence of distinct boundaries between facies, these deposits were mapped as one undifferentiated unit. This unit is thickest in the northernmost 3 kilometers of the river, where it consists of relatively coarse-grained fluvial, reworked glaciofluvial, and possibly glaciofluvial deposits. To the south, this coarse-grained unit thins or is absent. The undifferentiated unit comprises most of the surficial deposits in the northernmost river area. Some areas of glacial drift, predominantly till, are exposed at the lake and riverbed. The shale is not exposed anywhere in the region. Geophysical surveys at sites downriver, together with the results of previous studies, indicate that the geologic framework is similar to that in the northernmost river area except for the absence or reduced thickness of the coarse-grained fluvial deposits. Instead, glacial drift is exposed at the riverbed or is covered by a veneer of sediment. This information on the substrate is important for ongoing sediment transport studies.
NASA Astrophysics Data System (ADS)
Ubeid, Khalid Fathi
2016-06-01
The Quaternary rocks of the Gaza Strip mainly consist of clastic sedimentary rocks. In Wadi Gaza, the outcropping rocks consist of brownish fine-grained deposits, sandstones, and conglomerates. The deposits have been studied from a genetic point of view, and six facies have been described: (i) graded clast-supported conglomerates, (ii) cross-bedded clast-supported conglomerates, (iii) sandy matrix conglomerates, (iv) cross-laminated medium-grained sandstones, (v) graded coarse-grained sandstones, and (vi) massive sandstones. The field work observations and granulometric analysis show that the sphericity of the grains increase toward the west, where its value ranges from ∼0.64 in the east to ∼0.70 in the west. In addition, the grain forms tend to be disc shape in the east, whereas they tend to be disc-to spheroid shape in the west, and they become well rounded to well sorted toward the west. Moreover, the features, geometry, and spatial relationship among these facies suggest that the Wadi Gaza was meandering wadi fed from Beir Sheva and the Northern Negev in the southeast of Gaza Strip through Wadi Al Shallala and Wadi Sheneq and from Hebron mountains in the West Bank at the east through Wadi Al Shari'a alluvials. Within the Gaza Strip, paleocurrent data ranges from 210° to 310°, indicating a mean a paleoflow direction to the W (276°) and a median value about 275°. The sedimentary rocks in the Wadi Gaza are considered to be deposited in two periods of climate conditions: the coarse-grained rocks were deposited during the period of wet condition before 12.4 ka age, whereas the eolinite fine-grained rocks were deposited during semiarid climate conditions which are younger in age than 12.4 ka.
Stratigraphy of lower to middle Paleozoic rocks of northern Nevada and the Antler orogeny
Ketner, Keith B.
2013-01-01
Commonly accepted concepts concerning the lower Paleozoic stratigraphy of northern Nevada are based on the assumption that the deep-water aspects of Ordovician to Devonian siliceous strata are due to their origin in a distant oceanic environment, and their presence where we find them is due to tectonic emplacement by the Roberts Mountains thrust. The concept adopted here is based on the assumption that their deep-water aspects are the result of sea-level rise in the Cambrian, and all of the Paleozoic strata in northern Nevada are indigenous to that area. The lower part of the Cambrian consists mainly of shallow-water cross-bedded sands derived from the craton. The upper part of the Cambrian, and part of the Ordovician, consists mainly of deep-water carbonate clastics carried by turbidity currents from the carbonate shelf in eastern Nevada, newly constructed as a result of sea-level rise. Ordovician to mid-Devonian strata are relatively deep-water siliceous deposits, which are the western facies assemblage. The basal contact of this assemblage on autochthonous Cambrian rocks is exposed in three mountain ranges and is clearly depositional in all three. The western facies assemblage can be divided into distinct stratigraphic units of regional extent. Many stratigraphic details can be explained simply by known changes in sea level. Upper Devonian to Mississippian strata are locally and westerly derived orogenic clastic beds deposited disconformably on the western facies assemblage. This disconformity, clearly exposed in 10 mountain ranges, indicates regional uplift and erosion of the western facies assemblage and absence of local deformation. The disconformity represents the Antler orogeny.
NASA Astrophysics Data System (ADS)
Potter-McIntyre, S. L.; Chan, M. A.; McPherson, B. J. O. L.
2014-12-01
The upper part of the Brushy Basin Member in the Four Corners region of the U.S. was deposited in an ephemeral alkaline saline lake system with copious input of volcanic ash. The variegated shale formation provides a setting for the study of early diagenetic iron cycling that records the action of alkaline saline fluid chemistries reacting with volcaniclastic sediments in the presence of microbes. A bull's-eye pattern of authigenic minerals with increasing alteration towards the basinal center similar to modern alkaline saline lakes provides evidence for an extreme paleoenvironmental interpretation. The purpose of this research is to document specific factors, such as reactive sediments, microbial influences, and grain size that affect concretion formation and iron cycling in an ancient extreme environment. Three broad diagenetic facies are interpreted by color and associated bioturbation features: red, green and intermediate. Diagenetic facies reflect meter-scale paleotopography: red facies represent shallow water to subaerial, oxidizing conditions; green facies reflect saturated conditions and reducing pore water chemistry shortly after deposition, and intermediate facies represent a combination of the previous two conditions. Evidence of biotic influence is abundant and trace fossils exhibit patterns associated with the diagenetic facies. Red diagenetic facies typically contain burrows and root traces and green diagenetic facies exhibit restricted biotic diversity typically limited to algal molds (vugs). Microbial fossils are well-preserved and are in close proximity to specific iron mineral textures suggesting biotic influence on the crystal morphology. Three categories of concretions are characterized based on mineralogy: carbonate, iron (oxyhydr)oxide and phosphate concretions. Concretion mineralogy and size vary within an outcrop and even within a stratigraphic horizon such that more than one main category is typically present in an outcrop. Variation in concretion mineralogy and morphology within the Brushy Basin Member suggests that alkaline saline fluid chemistries in concert with microbial interaction created diagenetic microenvironments within a larger lake system to influence iron cycling and these reactions can be spatially variable even on 10s of cm scales.
Facies mosaic in a fiord: Carboniferous-Permian Talchir Formation, India
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, P.K.; Mukhopadhyay, G.; Bhattacharya, H.N.
1988-01-01
Facies analysis of the basal 37m of the Carboniferous-Permian Talchir Formation is a glacier-fed bedrock trough in Dudhi nala, Bihar, India, provides insight into the pattern of sedimentation of course gravels in a fiord. Rapid transitions between 11 recognized facies, together with their complex organization, random variability in bed thickness, and differences in clast, shape, size, and composition indicate coalescence of fans developed from numerous point sources bordering the elongated trough. Converging slide masses and lodgment tillites on the slopes flanking the trough give way to sediment gravity flow deposits composed of an array of conglomerates (matrix and clast supportedmore » with normal, inverse of absence of grading), attendant turbidite sands, and prodelta mud. The rheology of the in-trough flows ranged from plastic laminar to fluidal turbulent in response to flow from slope to floor of the trough. Rapid calving of icebergs during the onset of deglaciation established a wave regime at the mouth of the trough and deposited cross-stratified sandstone replete with dripstones. The impact of large dripstones landing triggered turbidity currents. Continued rise in water level led to eventual preservation of the fan complex under onlapping wave-built shoal facies that grade into a sequence of upward-thinning hummocky cross-stratified sandstone beds virtually devoid of dripstones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dandavati, K.S.; Fox, J.E.
1980-04-01
Sedimentary structures, along with textural and compositional evidence gathered from two stratigraphic sections of the Lower Cretaceous Inyan Kara Group in Calico and Fuson Canyons on the southeastern flank of the Black Hills, suggest the following depositional framework: the basal, Chilson Member of the Lakota Formation consists of a series of upward fining sequences deposited in point-bar and flood-plain environments of a northeasterly flowing, meandering river system. Fluvial sandstones in the Chilson include channel-fill, channel margin, crevasse microdelta and levee facies. The Minnewaste Limestone Member and the lower part of the overlying Fuson Member of the Lakota Formation were depositedmore » in low-energy, lacustrine environments. Flood oriented tidal-delta facies overlain by tidal flat deposits in the upper part of the Fuson Member suggest an earlier incursion of the initial Cretaceous seaway, at least locally, than previously documented in the region. Lower Fall River deposits represent northeast-trending barrier bar and northwest-trending deltaic distributary mouth bar facies, reflecting an increase in sediment supply. Upper Fall River sandstones include distributary mouth bar and lower foreshore deposits. Altered sandstones of the basal Chilson Member and the lower part of the Fuson Member in Calico Canyon contain anomalous values of U/sub 3/O/sub 8/. Fossil wood and bone samples are also enriched in trace elements of U, V, and Mo, suggesting that uranium-bearing solutions might have passed through porous and permeable sandstones of the study area, possibly flowing toward the northeast along Chilson paleochannels.« less
NASA Astrophysics Data System (ADS)
Berrendero, Esther; Arenas, Concha; Mateo, Pilar; Jones, Brian
2016-05-01
The River Piedra in the Monasterio de Piedra Natural Park (NE Spain) is a modern tufa-depositing river that encompasses various depositional environments that are inhabited by different cyanobacterial populations. Molecular (16S rDNA) and morphological analyses of the cyanobacteria from different facies showed that Phormidium incrustatum dominates in the fast-flowing water areas where the mean depositional rate is 1.6 cm/year. Stromatolites in these areas are formed of palisades of hollow calcite tubes (inner diameter of 6.0-7.5 μm, walls 2-12 μm thick) that formed through calcite encrustation around the filaments followed by decay of the trichomes. In contrast, in slow-flowing water areas with lower depositional rates (mean depositional rate of 0.3 cm/year), Phormidium aerugineo-caeruleum is the dominant species. In these areas, randomly oriented calcite tubes (inner diameter of 5-6 μm, walls 3-8 μm thick) formed by calcite encrustation, are found in thin and uneven laminae and as scattered tubes in the loose lime mud and sand-sized carbonate sediment. Although this species did not build laminated deposits, it gave cohesiveness to the loose sediment. In the stepped and low waterfalls, with intermediate deposition rates (mean depositional rate of 0.9 cm/year), both species of Phormidium are found in association with spongy moss and algal boundstones, which is consistent with the variable flow conditions in this setting. The calcite encrustations on the cyanobacteria from different environments exhibit irregular patterns that may be linked to changes in the calcite saturation index. The physicochemical conditions associated with extracellular polymeric substances may be more significant to CaCO3 precipitation in microbial mats in slow-flowing water conditions than in fast-flowing water conditions. These results show that flow conditions may influence the distribution of different cyanobacteria that, in turn, leads to the development of different sedimentary facies and structures in fluvial carbonate systems.
Pyroclastic flow hazard assessment at Somma-Vesuvius based on the geological record
NASA Astrophysics Data System (ADS)
Gurioli, L.; Sulpizio, R.; Cioni, R.; Sbrana, A.; Santacroce, R.; Luperini, W.; Andronico, D.
2010-11-01
During the past 22 ka of activity at Somma-Vesuvius, catastrophic pyroclastic density currents (PDCs) have been generated repeatedly. Examples are those that destroyed the towns of Pompeii and Ercolano in AD 79, as well as Torre del Greco and several circum-Vesuvian villages in AD 1631. Using new field data and data available from the literature, we delineate the area impacted by PDCs at Somma-Vesuvius to improve the related hazard assessment. We mainly focus on the dispersal, thickness, and extent of the PDC deposits generated during seven plinian and sub-plinian eruptions, namely, the Pomici di Base, Greenish Pumice, Pomici di Mercato, Pomici di Avellino, Pompeii Pumice, AD 472 Pollena, and AD 1631 eruptions. We present maps of the total thickness of the PDC deposits for each eruption. Five out of seven eruptions dispersed PDCs radially, sometimes showing a preferred direction controlled by the position of the vent and the paleotopography. Only the PDCs from AD 1631 eruption were influenced by the presence of the Mt Somma caldera wall which stopped their advance in a northerly direction. Most PDC deposits are located downslope of the pronounced break-in slope that marks the base of the Somma-Vesuvius cone. PDCs from the Pomici di Avellino and Pompeii Pumice eruptions have the most dispersed deposits (extending more than 20 km from the inferred vent). These deposits are relatively thin, normally graded, and stratified. In contrast, thick, massive, lithic-rich deposits are only dispersed within 7 to 8 km of the vent. Isopach maps and the deposit features reveal that PDC dispersal was strongly controlled by the intensity of the eruption (in terms of magma discharge rate), the position of the vent area with respect to the Mt Somma caldera wall, and the pre-existing topography. Facies characteristics of the PDC deposits appear to correlate with dispersal; the stratified facies are consistently dispersed more widely than the massive facies.
NASA Astrophysics Data System (ADS)
Lang, Jörg; Winsemann, Jutta
2013-10-01
The preservation of bedforms related to supercritical flows and hydraulic jumps is commonly considered to be rare in the geologic record, although these bedforms are known from a variety of depositional environments. This field-based study presents a detailed analysis of the sedimentary facies and stacking pattern of deposits of cyclic steps, chutes-and-pools, antidunes and humpback dunes from three-dimensional outcrops. The well exposed Middle Pleistocene successions from northern Germany comprise glacilacustrine ice-contact subaqueous fan and glacial lake-outburst flood deposits. The studied successions give new insights into the depositional architecture of bedforms related to supercritical flows and may serve as an analogue for other high-energy depositional environments such as fluvial settings, coarse-grained deltas or turbidite systems. Deposits of cyclic steps occur within the glacial lake-outburst flood succession and are characterised by lenticular scours infilled by gently to steeply dipping backsets. Cyclic steps formed due to acceleration and flow thinning when the glacial lake-outburst flood spilled over a push-moraine ridge. These bedforms are commonly laterally and vertically truncated and alternate with deposits of chutes-and-pools and antidunes. The subaqueous fan successions are dominated by laterally extensive sinusoidal waveforms, which are interpreted as deposits of aggrading stationary antidunes, which require quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by downflow divergent cross-stratification, displaying differentiation into topsets, foresets and bottomsets, and are interpreted as deposited at the transition from subcritical to supercritical flow conditions or vice versa. Gradual lateral and vertical transitions between humpback dunes and antidune deposits are very common. The absence of planar-parallel stratification in all studied successions suggests that the formation of these bedforms is suppressed in flows characterised by hydraulic jumps under highly aggradational conditions. The large-scale lateral and vertical successions of bedforms are interpreted as representing the temporal and spatial evolution of the initial supercritical flows, which was strongly affected by the occurrence of hydraulic jumps. Small-scale facies changes and the formation of individual bedforms are interpreted as controlled by fluctuating discharge, bed topography and pulsating unstable flows.
Carbonate platform, slope, and basinal deposits of Upper Oligocene, Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armin, R.A.; Cutler, W.G.; Mahadi, S.
1987-05-01
Upper Oligocene platform carbonates (Berai Formation) occur extensively on the Barito shelf in southeastern Kalimantan (Borneo) and are flanked northward by coeval slope and basinal deposits (Bongan Formation) which accumulated in the southwestern part of the Kutei basin. Isolated carbonate buildups equivalent to the Berai Formation also occur within the Kutei basin and were probably deposited on basement highs. The distribution of these facies is fairly well constrained by the study of outcrops, wells, and seismic profiles. The Berai Formation consists of diverse limestone types with a wide range of textures and with dominant skeletal components of large foraminifera, redmore » algae, and corals. Deposition of the Berai Formation occurred in moderate- and high-energy shallow-marine conditions. Slope and basin facies occur in extensional basins adjacent to the shelfal carbonates and peripheral to isolated carbonate buildups. Slope deposits consist of hemipelagic claystone, debris-flow conglomerate, calciturbidite, and volcaniclastic intervals. syndepositional downslope transport of slope deposits was an important process, as indicated by intervals containing redeposited debris flows, intraformational truncation surfaces, slide blocks, and associated shear planes. Recurrent movement on basin-margin faults and local volcanism probably perpetuated instability of slope deposits. Basinal deposits consist of calcareous claystone with intercalated thin, distal calciturbidite and volcaniclastic beds.« less
NASA Astrophysics Data System (ADS)
Abbas, Muhammad Asif; Kaminski, Michael; Umran Dogan, A.
2016-04-01
The Silurian Sharawra Formation has great importance as it rests over the richest source rock of the Qusaiba Formation in central Saudi Arabia. The Sharawra Formation has four members including Jarish, Khanafriyah, Nayyal, and Zubliyat. The formation mainly consists of sandstone and siltstone with subordinate shale sequences. The lack of published research on this formation requires fundamental studies that can lay the foundation for future research. Three outcrops were selected from the Old Qusaiba Village in Central Saudi Arabia for field observations, petrographical and petrophysical study. Thin section study has been aided by quantitative mineralogical characterization using scanning electron microscopy - energy dispersive spectroscopy and powder x-ray diffraction (XRD) for both minerals, cements, and clay minerals (detrital and authigenic). The outcrops were logged in detail and nine different lithofacies have been identified. The thin section study has revealed the Sharawra Formation to be mainly subarkosic, while the mica content increases near to its contact with the Qusaiba Formation. The XRD data has also revealed a prominent change in mineralogy with inclusion of minerals like phlogopite and microcline with depths. Field observations delineated a prominent thinning of strata as lithofacies correlation clearly shows the thinning of strata in the southwestern direction. The absence of outcrop exposures further supports the idea of southwestern thinning of strata. This is mainly attributed to local erosion and the presence of thicker shale interbeds in the southeastern section, which was probably subjected to more intense erosion than the northwestern one. The Sharawra Formation rests conformably over the thick transgressive shale sequence, deposited during the post glacial depositional cycle. The lowermost massive sandstone bed of the Sharawra Formation represents the beginning of the regressive period. The shale interbeds in the lower part are evidence of moderate-scale transgressive episodes, while the thin shale interbeds in the middle and upper part of the Sharawra Formation represent small-scale transgressions. Overall, the Sharawra Formation contains a series of repetitive transgressive and regressive events and has been interpreted as a pro-deltaic deposit in previous studies. In the present study, the lowermost sandstone thickly bedded facies lie within the transition zone environment. The siltstone facies and the horizontally stratified facies show a middle shore face environment. The middle shore face environment is present locally. The bioturbation in the uppermost facies is indicative of the upper shore face environment. The porosity values do not vary much, as the average porosity for the sandstone facies is about 15%, for the siltstones it ranges about 7%. The permeability is variable throughout the formation, the values range from 50 to 300 md. Although sandstone has a good porosity and permeability, the siltstone facies exhibit poor petrophysical characteristics. In terms of reservoir characterization, the mineralogical mature, moderately well sorted top most sandstone facies, with appreciable porosity and permeability can be considered as a potential reservoir rock. This study has provided a base for future quantitative studies in this important formation in the area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenewerk, P.; Goddard, D.; Echols, J.
The decline in production in several fields in Concordia Parish, Louisiana, has created interest in the economic feasibility of producing the remaining bypassed oil in the lower Wilcox Group. One of these fields, Bee Brake, has been one of the more prolific oil-producing fields in east-central Louisiana. The producing interval, the Minter sandstones, at a depth of about 6,775 ft typically consists of an upper Bee Brake sandstone and a lower Angelina sandstone. A detailed study of a conventional core in the center of the field reveals a 15-ft-thick Minter interval bounded above and below by sealing shales and lignitesmore » of lower delta plain marsh facies. The upper 4-ft-thick Bee Brake is a very fine silty sandstone with characteristics of a small overbank or crevasse splay deposit. The lower 3-ft-thick oil-producing Angelina sandstone consists of very fine and fine sandstone of probable overbank or crevasse facies. Cumulative production from the Angelina is about 1.8 million stock-tank barrels of oil. Special core analysis data (capillary pressure, relative permeability, and waterflood recovery) have been used to develop a simulation model of the two reservoirs in the Minter. This model incorporates the geologic and engineering complexities noted during evaluation of the field area. Operators can use the model results in this field to design an optimal development plan for enhanced recovery.« less
NASA Astrophysics Data System (ADS)
Burchette, Trevor P.; Paul Wright, V.; Faulkner, Tom J.
1990-07-01
A 1000 m thick early Mississippian carbonate supersequence, the "Carboniferous Limestone" of southwest Britain, consists of three third-order depositional sequences. These comprise parasequences in various configurations, and the whole forms a carbonate ramp stack. Within this framework five major oolitic carbonate sandbodies developed: (a) Castell Coch Limestone, (b) Stowe Oolite, (c) Brofiscin Oolite, (d) Gully Oolite, and (e) High Tor Limestone. The depositional regime was storm- and wave-dominated throughout and the major sandbodies represent a range of progradational carbonate beaches, barriers and detached subtidal shoals. Analysis of the three-dimensional shapes and distribution of these five examples shows that they evolved to produce three major carbonate sandbody geometries: (a) strings, (b) sheets, and (c) wedges. These geometries are characterised using the five field examples and offered as a template which may assist in the exploration and reservoir modelling of petroleum-rich high-energy ramp systems. Progradation, for up to 40 km, of barrier islands (Stowe Oolite) and beach-ridge plains (Gully Oolite Formation) generated strings, and "thick" sheets individually up to 10-20 m thick. "Thin" shoreface-retreat carbonate packstone/grainstone sheets up to 5 m thick (High Tor limestone) developed during transgressions as veneers across flooding surfaces. These are comparable with sheet sands developed in siliciclastic shelf depositional systems. Progradation, for up to 30 km, and vertical aggradation of shoreline-detached oolite shoals (Castell Coch limestone, Brofiscin Oolite), generated basinwards-expanding or thinning wedges up to 30 m thick. Tectonically controlled stacking of strandplain sheets produced a composite carbonate sandbody up to 80 m thick (Gully Oolite). The intrinsic (sedimentary) and extrinsic (eustacy, tectonism, climate) factors which controlled these sandbody geometries are addressed. Establishing the positions of the sandbodies accurately within depositional sequences allows them to be located within inferred seismic sequence geometries and provides one possible solution to the difficult problem of predicting carbonate facies distribution in subtle stratigraphic plays. In this ramp system, the most homogeneous sandbodies (up to 30 m grainstones), with greatest reservoir facies potential, are represented by shoal-belt wedges. Potential grainstone reservoir facies in the prograding shorelines are limited to the upper parts of individual shoreface sequences (max. 10 m grainstones). For shoreline carbonate sandbodies, the greatest reservoir and stratigraphic trapping potential exists in the earliest ramp parasequences where enveloping offshore sediments are siliciclastic mudstones. In later stages, potential seals are likely to be less reliable, low-porosity outer ramp carbonates.
Kirschbaum, Mark A.; Hettinger, Robert D.
2004-01-01
Facies and sequence-stratigraphic analysis identifies six high-resolution sequences within upper Campanian strata across about 120 miles of the Book Cliffs in western Colorado and eastern Utah. The six sequences are named after prominent sandstone units and include, in ascending order, upper Sego sequence, Neslen sequence, Corcoran sequence, Buck Canyon/lower Cozzette sequence, upper Cozzette sequence, and Cozzette/Rollins sequence. A seventh sequence, the Bluecastle sequence, is present in the extreme western part of the study area. Facies analysis documents deepening- and shallowing- upward successions, parasequence stacking patterns, downlap in subsurface cross sections, facies dislocations, basinward shifts in facies, and truncation of strata.All six sequences display major incision into shoreface deposits of the Sego Sandstone and sandstones of the Corcoran and Cozzette Members of the Mount Garfield Formation. The incised surfaces represent sequence-boundary unconformities that allowed bypass of sediment to lowstand shorelines that are either attached to the older highstand shorelines or are detached from the older highstand shorelines and located southeast of the main study area. The sequence boundary unconformities represent valley incisions that were cut during successive lowstands of relative sea level. The overlying valley-fill deposits generally consist of tidally influenced strata deposited during an overall base level rise. Transgressive surfaces can be traced or projected over, or locally into, estuarine deposits above and landward of their associated shoreface deposits. Maximum flooding surfaces can be traced or projected landward from offshore strata into, or above, coastal-plain deposits. With the exception of the Cozzette/Rollins sequence, the majority of coal-bearing coastal-plain strata was deposited before maximum flooding and is therefore within the transgressive systems tracts. Maximum flooding was followed by strong progradation of parasequences and low preservation potential of coastal-plain strata within the highstand systems tract. The large incised valleys, lack of transgressive retrogradational parasequences, strong progradational nature of highstand parasequences, and low preservation of coastal-plain strata in the highstand systems tracts argue for relatively low accommodation space during deposition of the Sego, Corcoran, and Cozzette sequences. The Buck Canyon/Cozzette and Cozzette/Rollins sequences contrast with other sequences in that the preservation of retrogradational parasequences and the development of large estuaries coincident with maximum flooding indicate a relative increase in accommodation space during deposition of these strata. Following maximum flooding, the Buck Canyon/Cozzette sequence follows the pattern of the other sequences, but the Cozzette/Rollins sequence exhibits a contrasting offlapping pattern with development of offshore clinoforms that downlap and eventually parallel its maximum flooding surface. This highstand systems tract preserves a thick coal-bearing section where the Rollins Sandstone Member of the Mount Garfield Formation parasequences prograde out of the study area, stepping up as much as 800 ft stratigraphically over a distance of about 90 miles. This progradational stacking pattern indicates a higher accommodation space and increased sedimentation rate compared to the previous sequences.
NASA Astrophysics Data System (ADS)
Mader, Nadine K.; Redfern, Jonathan; El Ouataoui, Majid
2017-06-01
Upper Triassic continental clastics (TAGI: Trias Argilo-Greseux Inferieur) in the Essaouira Basin are largely restricted to the subsurface, which has limited analysis of the depositional environments and led to speculation on potential provenance of the fluvial systems. Facies analysis of core from the Meskala Field onshore Essaouira Basin is compared with tentatively time-equivalent deposits exposed in extensive outcrops in the Argana Valley, to propose a process orientated model for local versus regional sediment distribution patterns in the continuously evolving Moroccan Atlantic rift during Carnian to Norian times. The study aims to unravel the climatic overprint and improve the understanding of paleo-climatic variations along the Moroccan Atlantic margin to previously recognised Upper Triassic pluvial events. In the Essaouira Basin, four facies associations representing a progressive evolution from proximal to distal facies belts in a continental rift were established. Early ephemeral braided river systems are succeeded by a wet aeolian sandflat environment with a strong arid climatic overprint (FA1). This is followed by the onset of perennial fluvial deposits with extensive floodplain fines (FA2), accompanied by a distinct shift in fluvial style, suggesting increase in discharge and related humidity, either locally or in the catchment area. The fluvial facies transitions to a shallow lacustrine or playa lake delta environment (FA3), which exhibits cyclical abandonment. The delta is progressively overlain by a terminal playa with extensive, mottled mudstones (FA4), interpreted to present a return from cyclical humid-arid conditions to prevailing aridity in the basin. In terms of regional distribution and sediment source provenance, paleocurrent data from Carnian to Norian deposits (T5 to T8 member) in the Argana Valley suggest paleoflow focused towards the S and SW, not directed towards the Meskala area in the NW as previously suggested. A major depo-centre for fluvial sediments is instead located in the southern Argana Valley, possibly the Souss Basin. To effectively source the reservoir sandstones found in the Meskala Field, a more local provenance area has hence to be envisaged. Despite this, the direct comparison of the genetic evolution of sedimentary sequences in the Argana Valley and Essaouira Basin shows a similar progression from dominantly arid ephemeral depositional environments to humid perennial sedimentation, returning to prominent arid conditions. This suggests climatic control in both regions, where an enhanced humid signal drives perennial fluvial flow in otherwise arid dominated sequences. On a regional scale, this is suggested to record the impact of strong Triassic pluvial events previously recognised in other basins along the Central Atlantic margin during the Carnian to Norian periods.
NASA Astrophysics Data System (ADS)
Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar
2016-05-01
The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.
NASA Astrophysics Data System (ADS)
Kwon, Yoo Jin; Kwon, Yi Kyun
2017-04-01
The Middle Ordovician Yeongheung Formation consists of numerous meter-scale, shallowing-upward cycles which were deposited on a shallow-marine carbonate platform. Many diagnostic sedimentary textures and structures such as supratidal laminite, tepee structure, and solution-collapsed breccia are observed, which enable to infer the dry climate and high salinity conditions during deposition of the formation. In order to understand its depositional history, this study focuses on vertical and spatial stacking patterns of the second- to third-order sequences through the detailed outcrop description and geologic mapping. A total 19 lithofacies have been recognized, which can be grouped into 5 facies associations (FAs): FA1 (Supratidal flat), FA2 (Supratidal or dolomitization of peritidal facies), FA3 (Intertidal flat), FA4 (Shallow subtidal to peritidal platform), FA5 (Shallow subtidal shoal). Global mega-sequence boundary (Sauk-Tippecanoe) occurs in solution-collapsed breccia zone in the lower part of the formation. Correlation of the shallowing-upward cycle stacking pattern across the study area defines 6 transgressive-regressive depositional sequences. Each depositional sequences comprises a package of vertical and spatial staking of shallow subtidal cycles in the lower part and peritidal cycles in the upper part of the formation. According to sequence stratigraphic interpretation, the reconstructed relative sea-level curve of the Yeongweol platform is very similar to that of the Taebaek platform. Based on the absence of siliciclastic sequence such as the Jigunsan Formation and the lithologic & stratigraphic differences, however, the Yeongweol and Taebaek groups might not belong to a single depositional system within the North China platform. The Yeongweol Group can be divided by the four subunits into their unique lithologic successions and geographic distributions. The Eastern subunit of the Yeongweol Group is composed dominantly of carbonate rocks with a high composition ratio of siliciclastic materials dominated facies in the upper part of the Yeongheung Formation. The Middle1 subunit is pervasively recognized by subaerial exposures facies (carbonate breccia, paleosol), whereas the Middle2 subunit is similar to the Middle1 subunit except for the absence of subaerial exposure features. The Western subunit lost some of its primary sedimentary structure and texture in comparison to other subunits, because of the active recrystallization, metamorphism, structural deformation and carbonate diagenesis. This study reveals depositional history and refines sequence stratigraphy of the Yeongheung Formation, promoting understanding of the basin evolution of the Yeongweol Group.
NASA Astrophysics Data System (ADS)
Velez, C. C.; McLaughlin, P. P.; McGeary, S.
2008-05-01
A land streamer system, an alternative to conventional seismic acquisition equipment for collecting large amounts of seismic reflection data in urbanized and semi urbanized areas, is being used to conduct a near surface high-resolution seismic experiment in Northern New Castle County, Delaware. The main goal of this project is to provide continuous data of the subsurface in order to improve our understanding on the connectivity of sand bodies and water flow pathways distribution in ancient fluvial deposits, such as those of the Potomac Formation, that were deposited along passive margin, alluvial plain settings. Such understanding is necessary to create accurate models for groundwater flow and to identify groundwater contaminant pathways. The Potomac Formation was deposited during the Albian to early Cenomanian. In northern Delaware, these sediments are entirely fluvial deposits that are thought to onlap Paleozoic basement, and are truncated by an unconformity. McKenna et al. (2004) recognized five facies for this unit in Delaware: amalgamated sands, thick individual sands, thin sands, interlaminated sands, and mottled silts and clays, and described the sands of the unit as being laterally discontinuous, resulting in a "labyrinth style heterogeneity". Benson's (2006) well-log correlations show the depth of the basement ranging from 115 m to 400 m in the study area of this project. A noise test and a 1.2 km long high-resolution seismic reflection line collected using conventional seismic reflection methods during the preliminary phase of the project indicate that seismic methods can be used in this area to image the subsurface as shallow as 18 m and as deep as 315 m, and suggest that the basement is being imaged. During this project, a 30-km seismic dataset and two continuous cores will be collected. Sonic logs collected at the cores will be used to create synthetic seismograms to create depth sections that will be correlated with existing geophysical logs and existing sediment samples to create cross sections, a model of the geometry of the fluvial system, and facies maps. The core samples will be used to determine porosity and permeability which will allow better understanding of the heterogeneity of this unit. This project is important because the methodology to be used will provide a robust 2-D dataset that will allow one to test/revise the existing facies analysis, and stratigraphic correlations that are based in 1-D well data and are actually used for ground water modeling in the state of Delaware where the population depends and benefits from groundwater supply.
NASA Astrophysics Data System (ADS)
Raye, Urmidola; Pufahl, Peir K.; Kyser, T. Kurtis; Ricard, Estelle; Hiatt, Eric E.
2015-09-01
The Sokoman Formation is a ca. 100-m-thick succession of interbedded iron formation and fine-grained siliciclastics deposited at 1.88 Ga. Accumulation occurred on a dynamic paleoshelf where oxygen stratification, coastal upwelling of hydrothermally derived Fe and Si, microbial processes, tide and storm currents, diagenesis, and low-grade prehnite-pumpellyite metamorphism controlled lithofacies character and produced complex associations of multigenerational chert, hematite, magnetite, greenalite, stilpnomelane and Fe carbonate. Hematite-rich facies were deposited along suboxic segments of the coastline where photosynthetic oxygen oases impinged on the seafloor. Hematitic, cross-stratified grainstones were formed by winnowing and reworking of freshly precipitated Fe-(oxyhydr)oxide and opal-A by waves and currents into subaqueous dunes. Magnetite-rich facies contain varying proportions of greenalite and stilpnomelane and record deposition in anoxic middle shelf environments beneath an oxygen chemocline. Minor negative Ce anomalies in hematitic facies, but prominent positive Ce and Eu anomalies and high LREE/HREE ratios in magnetite-rich facies imply the existence of a weakly oxygenated surface ocean above anoxic bottom waters. The Fe isotopic composition of 31 whole rock (-0.46 ⩽ δ56Fe ⩽ 0.47‰) and 21 magnetite samples (-0.29 ⩽ δ56Fe ⩽ 0.22‰) from suboxic and anoxic lithofacies was controlled primarily by the physical oceanography of the paleoshelf. Despite low-grade metamorphism recorded by the δ18O values of paragenetically related quartz and magnetite, the Sokoman Formation preserves a robust primary Fe isotopic signal. Coastal upwelling is interpreted to have affected the isotopic equilibria between Fe2+aq and Fe-(oxyhydr)oxide in open marine versus coastal environments, which controlled the Fe isotopic composition of lithofacies. Unlike previous work that focuses on microbial and abiotic fractionation processes with little regard for paleoenvironment, our work demonstrates that depositional setting is paramount in governing the Fe isotopic composition of iron formations irrespective of what Fe-bearing minerals precipitated.
NASA Astrophysics Data System (ADS)
Koirala, Dibya Raj; Ettensohn, Frank R.; Clepper, Marta L.
2016-11-01
The Lexington or Trenton Limestone is an Upper Ordovician (Chatfieldian-Edenian; upper Sandbian-lower Katian), temperate-water unit, averaging about 60-m thick, that was deposited in relatively shallow waters across the Lexington Platform in east-central United States during the Taconian Orogeny. Lexington/Trenton shallow-water deposition ended across most of the platform in late Chatfieldian time and from that point deepened upward into the more shale-rich Clays Ferry, Point Pleasant and Kope formations due to apparent sea-level rise. In central Kentucky, however, deposition of the Lexington Limestone continued into early Edenian time and includes up to 50 m of additional coarse calcarenites and calcirudites at the top, which form the Tanglewood buildup and reflect locally regressive conditions, apparently related to local structural uplift. Consequently, in central Kentucky, the Lexington is more than 100-m thick, and Lexington deposition on the buildup continued into early Edenian time as an intra-platform shoal complex that tongues out into deeper-water units in all directions. In an attempt to understand how this shoal complex developed, we examined the last major body of coarse skeletal sands in the central Kentucky Lexington Limestone, the upper tongue of the Tanglewood Member, a 12-m-thick succession of fossiliferous calcarenite and calcirudite that occurs across an area of 5200 km2 near the center of the Lexington Platform. Although relatively homogeneous, the upper Tanglewood is divisible into five, small-scale, fining-upward, sequence-like cycles, which contain prominent, widespread deformed horizons. Facies analysis indicates that four lithofacies, which reflect distinct depositional environments, comprise the sequences across the shoal complex. Lithofacies were correlated across the shoal complex by integrating cyclicity and widespread deformed horizons in order to delineate the locations of major depositional environments. Facies analysis shows that the thickest and coarsest parts of each sequence, and the shallowest depositional environments, coincide with basement fault blocks, which are known to have experienced uplift during earlier Lexington Limestone deposition. The occurrence of thick, coarse facies on the same blocks suggests that the blocks continued to experience uplift into shallow water, where tides and waves redistributed sediments during upper Tanglewood deposition. Although eustasy apparently controlled cyclicity, Taconian far-field forces generated by orogeny in the east seem to have influenced facies distribution in each cycle through reactivation of basement fault zones as synsedimentary growth faults. The example of the upper Tanglewood Member shows that tectonic far-field forces can exert important influences on the development of carbonate depositional environments, even in distal intracratonic settings like the Lexington Platform.
NASA Astrophysics Data System (ADS)
York, Carly C.
The Sego Sandstone located in western Colorado is a member of the Upper Cretaceous Mesaverde Group and is considered an analogue of the Canadian heavy oil sands. Deposition of the Sego Sandstone occurred during the Upper Campanian (~78 Ma) at the end of the Sevier Orogeny and the beginning of the Laramide Orogeny on the western edge of the Cretaceous Interior Seaway. Although regional studies have detailed time equivalent deposits in the Book Cliffs, UT, the tidally influenced and marginal marine lithofacies observed north of Rangely, CO are distinctly different from the dominately fluvial and tidally-influenced delta facies of Book Cliff outcrops to the southwest. This study characterized flood-tidal delta deposits within the Sego Sandstone, the subsidence history of the Upper Cretaceous sedimentary rocks within the present day Piceance Creek Basin in NW Colorado, and the detrital zircon signal and oldest depositional age of the Sego Sandstone. The goals of this study are to (i) identify relative controls on reservoir characteristics of marginal marine deposits, specifically in flood-tidal delta deposits; (ii) identify the possible mechanisms responsible for subsidence within the present day Piceance Creek Basin during the Late Cretaceous; and (iii) better constrain the provenance and maximum depositional age of the Sego Sandstone. In this study I compared grain size diameter, grain and cement composition, and the ratio of pore space/cement from thin sections collected in tidal, shoreface, and flood-tidal delta facies recognized along detailed measured stratigraphic sections. This analysis provides a detailed comparison between different depositional environments and resultant data showed that grain size diameter is different between tidal, shoreface, and flood-tidal delta facies. Identifying the subsidence mechanisms affecting the Piceance Creek Basin and sediment source of the Late Cretaceous sediments, on the other hand, is important for evaluation of controls on basin filling. Additionally, U-Pb analysis better constrains youngest depositional age for the Sego Sandstone in northwestern Colorado to 76 Ma years old, where previously constraints have been based on stratigraphic relationships and biostratigraphy in eastern Utah and southeastern Colorado.
CATS - A process-based model for turbulent turbidite systems at the reservoir scale
NASA Astrophysics Data System (ADS)
Teles, Vanessa; Chauveau, Benoît; Joseph, Philippe; Weill, Pierre; Maktouf, Fakher
2016-09-01
The Cellular Automata for Turbidite systems (CATS) model is intended to simulate the fine architecture and facies distribution of turbidite reservoirs with a multi-event and process-based approach. The main processes of low-density turbulent turbidity flow are modeled: downslope sediment-laden flow, entrainment of ambient water, erosion and deposition of several distinct lithologies. This numerical model, derived from (Salles, 2006; Salles et al., 2007), proposes a new approach based on the Rouse concentration profile to consider the flow capacity to carry the sediment load in suspension. In CATS, the flow distribution on a given topography is modeled with local rules between neighboring cells (cellular automata) based on potential and kinetic energy balance and diffusion concepts. Input parameters are the initial flow parameters and a 3D topography at depositional time. An overview of CATS capabilities in different contexts is presented and discussed.
NASA Astrophysics Data System (ADS)
Tang, Y.
2009-12-01
Northern South China Sea Margin locates in Eurasian plate,Indian-Australia plate,Pacific Plates.The South China Sea had underwent a complicated tectonic evolution in Cenozoic.During rifting,the continental shelf and slope forms a series of Cenozoic sedimentary basins,including Qiongdongnan basin,Pearl River Mouth basin,Taixinan basin.These basins fill in thick Cenozoic fluviolacustrine facies,transitional facies,marine facies,abyssal facies sediment,recording the evolution history of South China Sea Margin rifting and ocean basin extending.The studies of tectonics and deposition of depression in the Southern Chaonan Sag of lower continental slope in the Norther South China Sea were dealt with,based on the sequence stratigraphy and depositional facies interpretation of seismic profiles acquired by cruises of“China and Germany Joint Study on Marine Geosciences in the South China Sea”and“The formation,evolution and key issues of important resources in China marginal sea",and combining with ODP 1148 cole and LW33-1-1 well.The free-air gravity anomaly of the break up of the continental and ocean appears comparatively low negative anomaly traps which extended in EW,it is the reflection of passive margin gravitational effect.Bouguer gravity anomaly is comparatively low which is gradient zone extended NE-SW.Magnetic anomaly lies in Magnetic Quiet Zone at the Northern Continental Margin of the South China Sea.The Cenozoic sediments of lower continental slope in Southern Chaonan Sag can be divided into five stratum interface:SB5.5,SB10.5,SB16.5,SB23.8 and Hg,their ages are of Pliocene-Quaternary,late Miocene,middle Miocene,early Miocene,paleogene.The tectonic evolution of low continental slope depressions can be divided into rifting,rifting-depression transitional and depression stages,while their depositional environments change from river to shallow marine and abyssa1,which results in different topography in different stages.The topographic evolvement in the study area includes three stages,that is Eogene,middle stage of lately Oligocene to early Miocene and middle Miocene to Present.Result shows that there are a good association of petroleum source rocks,reservoir rocks and seal rocks and structural traps in the Cenozoic and Mesozoic strata,as well as good conditions for the generation-migration-accumulation-preservation of petroleum in the lower continatal slope of Southern Chaoshan Sag.So the region has good petroleum prospect. Key words:Northern South China Sea;Chaoshan Sag; lower continental slope; deposition.
The Large-Scale Debris Avalanche From The Tancitaro Volcano (Mexico): Characterization And Modeling
NASA Astrophysics Data System (ADS)
Morelli, S.; Gigli, G.; Falorni, G.; Garduno Monroy, V. H.; Arreygue, E.
2008-12-01
The Tancitaro is an andesitic-dacitic stratovolcano located in the Michoacán Guanajuato volcanic field within the west-central portion of the trans-Mexican Volcanic Belt. The volcanism in this area is characterized by two composite volcanoes, the highest of which is the Tancitaro volcanic edifice (3840 m), some low angle lava cones and more than 1,000 monogenetic cinder cones. The distribution of the cinder cones is controlled by NE-SW active faults, although there are also additional faults with NNW-SSE trends along which some cones are aligned. The Tancitaro stratovolcano is located at the intersection of the tectonical structures that originate these alignments. All this geological activity has contributed to the gravitational instability of the volcano, leading to a huge sector collapse which produced the investigated debris avalanche. The collapse structure is an east-facing horseshoe-shaped crater (4 km wide and 5.3 km long), related with a large fan that was deposited within the Tepalcatepec depression. The deposit starts only 7 km downslope from the failure scar, it is 66 km long and covers an area of approximately 1155 km2. The landslide magnitude is about 20 km3 and it was firstly determined by the reconstruction of the paleo-edifice using a GIS software and then validated by the observation of significant outcrops. The fan was primarily formed by the deposit of this huge debris avalanche and subsequently by debris flow and fluvial deposits. Field investigations on the fan area highlighted the presence of two texturally distinct parts, which are referred to the 'block facies' and the 'matrix facies'. The first sedimentary structure is responsible for the typical hummock morphologies in the proximal area, as seen in many other debris avalanche deposits. Instead in the distal zones, the deposit is made up by the 'mixed block and matrix facies'. Blocks and megablocks, some of which are characterized by a jigsaw puzzle texture, gradually decrease in size until they disappear entirely in the most distal reaches. The granulometric analysis and the comparison between the debris avalanche of the Tancitaro and other collapses with similar morphometric features (vertical relief during runout, travel distance, volume and area of the deposit) indicate that the collapse was most likely not primed by any type of eruption, but rather triggered by a strong seismic shock that could have induced the failure of a portion of the edifice, already deeply altered by intense hydrothermal fluid circulation. It is also possible to hypothesize that mechanical fluidization may have been the mechanism controlling the long runout of the avalanche, as has been determined for other well-known events. The behavior of the Tancitaro debris avalanche was numerically modeled using the DAN-W code. By opportunely modifying the rheological parameters of the different models selectable within DAN, it was determined that the two-parameter 'Voellmy model' provides the best approximation of the avalanche movement. The Voellmy model produces the most realistic results in terms of runout distance, velocity and spatial distribution of the failed mass. Since the Tancitaro event was not witnessed directly, it is possible to infer approximate velocities only from comparisons with similar and documented events, namely the Mt. St. Helens debris avalanche occurred on May 18, 1980.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohacs, K.M.
1991-02-01
Deep basinal rocks of the Monterey Formation can be allocated to different depositional environments based on an integration of bedding, stacking patterns of facies, lithology, biofacies, and inorganic and organic chemistry. These rocks show evidence of systematic changes in depositional environments that can be related to eustatic sea level changes and basin evolution. Even deep-basinal environments are affected by changing sea level through changes in circulation patterns and intensities, nutrient budgets and dispersal patterns, and location and intensity of the oceanic oxygen minimum. The sequence-stratigraphic framework was constructed based on the physical expression of the outcrop strata and confirmed bymore » typing the outcrop sections to an integrated will-log/seismic grid through outcrop gamma-ray spectral profiles. Interpretation of a sequence boundary was based on increased proportions of hemipelagic facies and evidence of increased bottom-energy levels above the boundary, and local erosion and relief on the surface. The proportion of shallower water and reworked dinoflagellates increased to a local maximum above the boundary. Downlap surfaces exhibited increased proportions of pelagic facies around the surface, a secular change in the dominant lithology across the surface, evidence of decreased bottom-energy levels and terrigenous sedimentation rates, and little or not significant erosion on the surface. The proportion of deeper water dinoflagellates increased to a local maximum at or near the downlap surface; there was no evidence of reworked individuals. The detailed sequence-stratigraphic framework makes it possible to tie rock properties to genetic processes for construction of predictive models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seni, S.J.; Choh, S.J.
1994-01-01
Sandstone reservoirs in the Jackson barrier/strandplain play are characterized by low recovery efficiencies and thus contain a large hydrocarbon resource target potentially amenable to advanced recovery techniques. Prado field, Jim Hogg County, South Texas, has produced over 23 million bbl of oil and over 32 million mcf gas from combination structural-stratigraphic traps in the Eocene lower Jackson Group. Hydrocarbon entrapment at Prado field is a result of anticlinal nosing by differential compaction and updip pinch-out of barrier bar sandstone. Relative base-level lowering resulted in forced regression that established lower Jackson shoreline sandstones in a relatively distal location in central Jimmore » Hogg County. Reservoir sand bodies at Prado field comprise complex assemblages of barrier-bar, tidal-inlet fill, back-barrier bar, and shoreface environments. Subsequent progradation built the barrier-bar system seaward 1 to 2 mi. Within the barrier-bar system, favorable targets for hydrocarbon reexploration are concentrated in tidal-inlet facies because they possess the greatest degree of depositional heterogeneity. The purpose of this report is (1) to describe and analyze the sand-body architecture, depositional facies variations, and structure of Prado field, (2) to determine controls on distribution of hydrocarbons pertinent to reexploration for bypassed hydrocarbons, (3) to describe reservoir models at Prado field, and (4) to develop new data affecting the suitability of Jackson oil fields as possible candidates for thermally enhanced recovery of medium to heavy oil.« less
Neogene evolution of northern Mahakam Delta, East Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armin, R.A.; Abdoerrias, R.; Boer, W.D. de
1996-01-01
A regional sequence-stratigraphic study of the lower Kutei basin, embracing present coastal and offshore East Kalimantan, was undertaken to decipher the Neogene history of an important oil-producing province. The chronostratigraphic framework developed during this study was applied to facies analyses, organic geochemistry, and 2-D basin modeling. Integration of these disciplines powerfully illuminated the relationships between structuring, sedimentation, and hydrocarbon migration, Sedimentation in the lower Kutei basin since the late Middle Miocene has been dominated by the tidal-fluvial Mahakam delta system. During this time the principal river transport system has remained in about the same location as the present-day Mahakam River.more » Thick successions of monotonously similar deltaic facies were stacked vertically, punctuated by progradational or backstepping (flooding) units. Middle to Upper Miocene shelf edges of the delta platform, which are commonly sites of carbonate buildups, offlap from west to east towards the present-day shelf edge. Growth faults active during ca. 12-9 Ma are clustered just basinward of a prominent aggradational Middle Miocene shelf margin, and they exerted profound control on facies distribution. Tectonic quiescence prevailed during ca. 9-4 Ma, and in this period widespread regressive deltaic deposition over a broad, stable delta platform created the most important reservoirs. Subsequently, during Late Pliocene and younger time, many early growth faults were reactivated, and new faults also formed eastward toward the present shelf margin. Here, economically significant intervals consist mainly of lowstand deposits that accumulated in shelf-margin half-grabens created by these Plio-Pleistocene faults.« less
Neogene evolution of northern Mahakam Delta, East Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armin, R.A.; Abdoerrias, R.; Boer, W.D. de
1996-12-31
A regional sequence-stratigraphic study of the lower Kutei basin, embracing present coastal and offshore East Kalimantan, was undertaken to decipher the Neogene history of an important oil-producing province. The chronostratigraphic framework developed during this study was applied to facies analyses, organic geochemistry, and 2-D basin modeling. Integration of these disciplines powerfully illuminated the relationships between structuring, sedimentation, and hydrocarbon migration, Sedimentation in the lower Kutei basin since the late Middle Miocene has been dominated by the tidal-fluvial Mahakam delta system. During this time the principal river transport system has remained in about the same location as the present-day Mahakam River.more » Thick successions of monotonously similar deltaic facies were stacked vertically, punctuated by progradational or backstepping (flooding) units. Middle to Upper Miocene shelf edges of the delta platform, which are commonly sites of carbonate buildups, offlap from west to east towards the present-day shelf edge. Growth faults active during ca. 12-9 Ma are clustered just basinward of a prominent aggradational Middle Miocene shelf margin, and they exerted profound control on facies distribution. Tectonic quiescence prevailed during ca. 9-4 Ma, and in this period widespread regressive deltaic deposition over a broad, stable delta platform created the most important reservoirs. Subsequently, during Late Pliocene and younger time, many early growth faults were reactivated, and new faults also formed eastward toward the present shelf margin. Here, economically significant intervals consist mainly of lowstand deposits that accumulated in shelf-margin half-grabens created by these Plio-Pleistocene faults.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team`s ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sola, M.; Haakon Nordby, L.; Dailey, D.V.
High resolution 3-D visualization of horizon interpretation and seismic attributes from large 3-D seismic surveys in deepwater Nigeria has greatly enhanced the exploration team's ability to quickly recognize prospective segments of subregional and prospect specific scale areas. Integrated workstation generated structure, isopach and extracted horizon consistent, interval and windowed attributes are particularly useful in illustrating the complex structural and stratigraphical prospectivity of deepwater Nigeria. Large 3-D seismic volumes acquired over 750 square kilometers can be manipulated within the visualization system with attribute tracking capability that allows for real time data interrogation and interpretation. As in classical seismic stratigraphic studies, patternmore » recognition is fundamental to effective depositions facies interpretation and reservoir model construction. The 3-D perspective enhances the data interpretation through clear representation of relative scale, spatial distribution and magnitude of attributes. In deepwater Nigeria, many prospective traps rely on an interplay between syndepositional structure and slope turbidite depositional systems. Reservoir systems in many prospects appear to be dominated by unconfined to moderately focused slope feeder channel facies. These units have spatially complex facies architecture with feeder channel axes separated by extensive interchannel areas. Structural culminations generally have a history of initial compressional folding with late in extensional collapse and accommodation faulting. The resulting complex trap configurations often have stacked reservoirs over intervals as thick as 1500 meters. Exploration, appraisal and development scenarios in these settings can be optimized by taking full advantage of integrating high resolution 3-D visualization and seismic workstation interpretation.« less
Process sedimentology of submarine fan deposits - new perspectives
NASA Astrophysics Data System (ADS)
Postma, George
2017-04-01
To link submarine fan process sedimentology with sand distribution, sand body architecture, texture and fabric, the field geologist studies sedimentary facies, facies associations (fan elements) and stratigraphy. Facies analysis resides on factual knowledge of modern fan morphodynamics and physical modelling of en-masse sediment transport. Where do we stand after 55 years of submarine research, i.e. the date when the first submarine fan model was launched by Arnold Bouma in 1962? Since that date students of submarine fans have worked on a number of important, recurring questions concerned with facies analysis of submarine successions in outcrop and core: 1. What type of sediment transport produced the beds? 2. What facies can be related to initial flow conditions? 3. What is the significance of grain size jumps and bounding surface hierarchy in beds consisting of crude and spaced stratification (traction carpets)? Do these point to multi flow events or to flow pulsations by one and the same event? 4. What facies associations relate to the basic elements of submarine fans? 5. What are the autogenic and allogenic signatures in submarine fans? Particularly in the last decade, the enormous technical advancement helped to obtain high-quality data from observations of density flows in modern canyons, deep basins and deep-water delta slopes (refs 1,2,3). In combination with both physical (refs 4,5) and numerical modelling (ref 6) these studies broke new ground into our understanding of density flow processes in various submarine environments and have led to new concepts of submarine fan building by super- and subcritical high-density flow (ref 7). Do these new concepts provide better answers to our recurrent questions related to the morphodynamics of submarine fans and prediction of sand body architecture? In discussing this open question, I shall 1. apply the new concepts to a modern and ancient example of a channel-lobe-transition-zone (ref 8); 2. raise the problem of recognizing time in turbidite beds and sequences; 3. discuss consequences for the Bouma facies model and suggest an alternative model Uncertainties in facies analysis remain and clear understanding of submarine fan morphodynamics awaits further monitoring of the modern fan environments and new modelling studies (ref 9). References 1. Fildani, A. Normark, W.R., Kostic, S., and Parker, G., 2006. Sedimentology, 53, 1265-1287. 2. Paull, C.K., Ussler, W., Caress, D.W., Lundsten, E., Covault, J.A., Maier, K.L., Xu, J., and Augenstein, S., 2010. Geosphere, 6, 755-774. 3. Hughes Clarke, J. E., 2016. Nature Communications 7:11896 4. Spinewine, B., Sequeiros, O.E., Garcia, M.H., Beaubouef, R.T., Sun, T., and Savoye, B., 2009. J of Sediment Research, v. 79, 608-628. 5. Hoyal, D. C. J. D., and B. A. Sheets (2009) The 33rd International Association of Hydraulic Research Congress. 6. Kostic, S., 2011. Geosphere, 7, 294-304. 7. Postma, G. and Cartigny, M., 2014. Geology, 42, 987-990. 8. Postma G, et al. , 2016, In: Lamarche G, Mountjoy J (eds) Submarine mass movements and their consequences. Springer, Dordrecht, pp 469-478. 9. Talling, P.J., et al. ., 2015. Journal of Sedimentary Research, 85, 153-169.
Sedimentary control of volcanic debris-avalanche structures and transformation into lahars
NASA Astrophysics Data System (ADS)
Bernard, Karine; van Wyk de Vries, Benjamin; Thouret, Jean-Claude; Roche, Olivier; Samaniego Eguiguren, Pablo
2017-04-01
Volcanic debris avalanche structures and related transformations into lahars have been extensively analysed in order to establish a sedimentary classification of the deposits. Textural and structural variations of eight debris-avalanche deposits (DADs) have been correlated with Shape Preferred Orientation of 30,000 clasts together with grain-size distributions and statistical parameters from 156 sieved matrix samples. Granular segregation patterns have been observed with structural fault controls: proximal granular-segregation structures of the Tutupaca DAD ridges in Peru, basal sheared bands along overthrust lateral levee (Mt. Dore, France), mixing and cataclasis of fault-controlled deposits in half-graben during lateral spreading of distal thrust lobe (Pichu-Pichu, Peru), neo-cataclasis at the frontal thrust lobe (Meager, Canada and Mt. Dore, France). A logarithmic regression characterises the % matrix vs. matrix/gravels showing proximal and primary cataclasis, hybrid DADs with polymodal matrix and mixed facies up to transformations into lahar (Misti, Mt Dore). The sequential fragmentation helps to distinguish DAD that belong to Andean and Cascade Volcanic arcs (Tutupaca and Misti, Peru; Meager, Canada) to the hybrid DADs, before distal transformation into lahars (Pichu-Pichu); and hydrovolcanic fragmentation characterises the transformed lahar deposits (Misti). The fractal values of 150 sieved samples range between 2.3 and 2.7, implying extensional fractures with granular disaggregation. Skewness vs. kurtosis values help to distinguish the proximal mass wasting deposits and the transformed deposits by dilution. The sorting vs. median values enable us to differentiate the hybrid DADs with the transformed deposits by dilution. The sedimentological statistical parameters with Shape Preferred Orientation analysis that have been correlated with textural and structural observations show textural fabrics resulting from kinematic processes: cataclasis, hybrid matrix facies and transformations. Inherited fractures from tectono-volcanic structures contribute to the particle size distributions of DAD and associated deposits such as pyroclastic and lahar deposits (Misti, Mt Dore, Tutupaca). The statistical results highlight granular structure and kinematic process of DAD transformations into lahars and associated deposits, which would contribute to understand the rheological process behind the excess DAD run-out and to test granular models for DAD transformations. Key words: volcanic debris-avalanche deposits, lahar transformation, structure, sedimentology, hazard
NASA Astrophysics Data System (ADS)
Krimi, Mabrouk; Ouaja, Mohamed; Zargouni, Fouad
2017-11-01
The carbonate Zebbag Formation of Upper Albian to Lower Turonian age which outcrops along the Dahar cuestas (south eastern Tunisia) includes several breccia intervals. The stratigraphic hierarchy of these breccia levels led to achieving a detailed sequential analysis within a spectrum of depositional environments extending from subtidal to inner to middle ramp settings. Six major transgressive/regressive sequences make up the stacking of the elementary sequences beginning with transgressive and/or storm wave breccias capped by desiccation and/or collapse breccias. The stratigraphic evolutionary history of the breccia facies are interpreted as the result of the interplay between eustatic and tectonic factors. This model is in accord with the tectonic activities common during Upper Albian-Lower Turonian responsible for the sequences onlapping.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marzono, M.; Pense, G.; Andronaco, P.
The geology of the Mary Ann field is better understood in light of regional studies, which help to establish a depositional model in terms of both facies and thickness variations. These studies also illustrate major differences between onshore and offshore Norphlet deposits concerning topics such as diagenesis, hydrocarbon trapping, and migration. The Jurassic Norphlet sandstone was deposited in an arid basin extending from east Texas to Florida by a fluvial-eolian depositional system, prior to the transgression of the Smackover Formation. Until discovery of the Mary Ann field in 1979, Norphlet production was restricted to onshore areas, mostly along the Pickens-Pollardmore » fault system in Mississippi, Alabama, and Florida. The Mary Ann field is a Norphlet dry-gas accumulation, and was the first offshore field in the Gulf of Mexico to establish economic reserves in the Jurassic. The field is located in Mobile Bay, approximately 25 mi (40 km) south of Mobile, Alabama. Formed by a deep-seated (more than 20,000 ft or 6096 m) faulted salt pillow, Mary Ann field produces from a series of stacked eolian dune sands situated near the Norphlet paleocoastline. Five lithofacies have been recognized in cores from the Mobil 76 No. 2 well. Each lithofacies has a distinct reservoir quality. Optimum reservoir faces are the dune and sheet sands. Nonreservoir facies are interdune (wet and dry), marine reworked, and evaporitic sands. Following deposition, these sediments have undergone varying amounts of diagenesis. Early cementation of well-sorted sands supported the pore system during compaction. However, late cementation by chlorite, silica, and alteration of liquid hydrocarbons to an asphaltic residue have completely occluded the pore system in parts of the reservoir.« less
Evolution of fluvial styles in the Eocene Wasatch Formation, Powder River Basin, Wyoming
Warwick, Peter D.; Flores, Romeo M.; Ethridge, Frank G.; Flores, Romeo M.
1987-01-01
Vertical and lateral facies changes in the lower part of the Eocene Wasatch Formation in the Powder River Basin, Wyoming represent an evolution of fluvial systems that varied from meandering to anastomosing. The meandering facies in the lower part of the study interval formed in a series of broad meanderbelts in a northnorthwestflowing system. Upon abandonment this meanderbelt facies served as a topographic high on which a raised or ombrotrophic Felix peat swamp developed. Peat accumulated until compaction permitted encroachment of crevasse splays from an adjoining transitional facies which consists of deposits of a slightly sinuous fluvial system. Crevasse splays eventually prograded over the peat swamp that was partly covered by lakes. Bifurcation, reunification, and transformation of crevasse channels into major conduits produced an anastomosing system that was characterized by diverging and converging channels separated by floodbasins drowned by lakes and partly covered swamps.
Halite-clay interplay in the Israeli Messinian
NASA Astrophysics Data System (ADS)
Cohen, Avigdor
1993-08-01
The Mavqi'im Formation in Israel is the equivalent of the evaporite part of the Messinian stage (Upper Miocene). It is found in the subsurface in the offshore with eastward extensions into ancient buried channels in the coastal plain and in the Jordan Rift valley and in a few outcrops southwest of Lake Tiberias. Most of the anhydrite horizons can be used as correlation markers. Lateral facies changes between halite, anhydrite and shales can be traced. This is interpreted as contemporaneous sedimentation in giant marine salt ponds (halite and anhydrite) and in drowned desert valleys and/or salt-marsh coasts (shales with sabkha-like anhydrites). Another type of shale is that directly underflooring halite horizons. It is regarded as deep-water halite facies, in contrast with shallow-water facies where halite overlies gypsum and/or anhydrite. A "twofold bull's-eye model" is proposed, which assumes that either: (a) sedimentation of gypsum and halite was 'separated in space'—i.e., gypsum was deposited in the part of the basin proximal to oceanic inlets or on shallow shelves, whereas halite was deposited in the central deep part of the basin or on its distal edge; or (b) sedimentation of gypsum and halite was not contemporaneous, or 'separated in time'—i.e., in the deep parts of the basin gypsum precipitates were disintegrated by anaerobic bacteria which removed the sulfate. The lower limit of gypsum deposition is considered to be 200 m, which is the lower limit of the photic and wave zones. In the Israeli Messinian there is no difference between the clay minerals of marine and fluvial shales. Differentiation of marine shales from fluvial and mud flat shales is based on their geometry, i.e., thin persistent horizons spreading across the whole area versus thick shale lenses wedging out in 500-1000 m distances. Another consideration is the palynologic and microfauna remains: in the first case the cyst/pollen ratio may be as high as 100, whereas in the second pollen is dominant.
NASA Astrophysics Data System (ADS)
Liu, Entao; Wang, Hua; Li, Yuan; Huang, Chuanyan
2015-04-01
In sedimentary basins, a transfer zone can be defined as a coordinated system of deformational features which has good prospects for hydrocarbon exploration. Although the term 'transfer zone' has been widely applied to the study of extensional basins, little attention has been paid to its controlling effect on sequence tracking pattern and depositional facies distribution. Fushan Depression is a half-graben rift sub-basin, located in the southeast of the Beibuwan Basin, South China Sea. In this study, comparative analysis of seismic reflection, palaeogeomorphology, fault activity and depositional facies distribution in the southern slope indicates that three different types of sequence stacking patterns (i.e. multi-level step-fault belt in the western area, flexure slope belt in the central area, gentle slope belt in the eastern area) were developed along the southern slope, together with a large-scale transfer zone in the central area, at the intersection of the western and eastern fault systems. Further analysis shows that the transfer zone played an important role in the diversity of sequence stacking patterns in the southern slope by dividing the Fushan Depression into two non-interfering tectonic systems forming different sequence patterns, and leading to the formation of the flexure slope belt in the central area. The transfer zone had an important controlling effect on not only the diversity of sequence tracking patterns, but also the facies distribution on the relay ramp. During the high-stand stage, under the controlling effect of the transfer zone, the sediments contain a significant proportion of coarser material accumulated and distributed along the ramp axis. By contrast, during the low-stand stage, the transfer zone did not seem to contribute significantly to the low-stand fan distribution which was mainly controlled by the slope gradient (palaeogeomorphology). Therefore, analysis of the transfer zone can provide a new perspective for basin analysis. In addition, the transfer zone area demonstrated unique hydrocarbon accumulation models different from the western and eastern areas. It was not only a structural high combined with sufficient coarse-grained reservoir quality sands, but was also associated with large-scale sublacustrine fan deposits with high quality reservoirs, indicating that the recognition of transfer zones can improve the prediction of hydrocarbon occurrences in similar settings.
NASA Astrophysics Data System (ADS)
Afife, Mohamed M.; Sallam, Emad S.; Faris, Mohamed
2017-10-01
This study aims to integrate sedimentological, log and core analyses data of the Middle Miocene Nullipore Formation at the Ras Fanar Field (west central Gulf of Suez, Egypt) to evaluate and reconstruct a robust petrophysical model for this reservoir. The Nullipore Formation attains a thickness ranging from 400 to 980 ft and represents a syn-rift succession of the Middle Miocene marine facies. It consists of coralline-algal-reefal limestone, dolomitic limestone and dolostone facies, with few clay and anhydrite intercalations. Petrographically, seven microfacies types (MF1 to MF7) have been recognized and assembled genetically into three related facies associations (FA1 to FA3). These associations accumulated in three depositional environments: 1) peritidal flat, 2) restricted lagoon, and 3) back-shoal environments situated on a shallow inner ramp (homoclinal) setting. The studied rocks have been influenced by different diagenetic processes (dolomitization, cementation, compaction, authigenesis and dissolution), which led to diminishing and/or enhancing the reservoir quality. Three superimposed 3rd-order depositional sequences are included in the Nullipore succession displaying both retrogradational and aggradational packages of facies. Given the hydrocarbon potential of the Nullipore Formation, conventional well logs of six boreholes and core analyses data from one of these wells (RF-B12) are used to identify electrofacies zones of the Nullipore Formation. The Nullipore Formation has been subdivided into three electrofacies zones (the Nullipore-I, Nullipore-II, and Nullipore-III) that are well-correlated with the three depositional sequences. Results of petrographical studies and log analyses data have been employed in volumetric calculations to estimate the amount of hydrocarbon-in-place and then the ultimate recovery of the Nullipore reservoir. The volumetric calculations indicate that the total volume of oil-in-place is 371 MMSTB at 50% probability (P50), whereas the total recoverable oil is 148.5 MMSTB at P50. The volumetric calculations for the Nullipore zones match the production data indicating a good simulation for the reservoir productivity through the petrophysical parameters. Comparison of the volumetric calculations of the oil and the cumulative production of the Ras Fanar Oil Field indicates remaining reserves of less than 30% of the total recoverable oil. Therefore, the search for unconventional and/or deeper reservoirs at other water contacts is recommended.
NASA Astrophysics Data System (ADS)
Bowling, R. D.; Laya, J. C.; Everett, M. E.
2018-07-01
The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometre length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which support the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.
NASA Astrophysics Data System (ADS)
Ogata, Kei; Storti, Fabrizio; Balsamo, Fabrizio; Bedogni, Enrico; Tinterri, Roberto; Fetter, Marcos; Gomes, Leonardo; Hatushika, Raphael
2016-04-01
Natural fractures deeply influence subsurface fluid flow, exerting a primary control on resources like aquifers, hydrocarbons and geothermal reservoirs, and on environmental issues like CO2 storage and nuclear waste disposal. In layered sedimentary rocks, depositional processes-imprinted rock rheology favours the development of both mechanical anisotropy and heterogeneity on a wide range of scales, and are thus expected to strongly influence location and frequency of fractures. To better constrain the contribution of stratigraphic, sedimentological and petrophysical attributes, we performed a high-resolution, multidisciplinary study on a selected stratigraphic interval of jointed foredeep turbidites in the Miocene Marnoso-arenacea Formation (Northern Apennines, Italy), which are characterised by a great lateral and vertical variability of grain-size and depositional structures. Statistical relationships among field and laboratory data significantly improve when the single facies scale is considered, and, for similar facies recording different evolutionary stages of the parent turbidity currents, we observed a direct correlation between the three-dimensional anisotropies of rock hardness tensors and the normalized fracture frequencies, testifying for the primary sedimentary flow-related control on fracture distributions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson, K.M.; Dodson, P.; Fiorillo, A.R.
1991-03-01
Fluvial architecture of dinosaur bonebeds in the Cretaceous Judith River Formation, south-central Montana, has been the subject of intensive paleontological study for many years. However, little has been published on the sedimentology of the formation in this area. The authors have completed a preliminary field study of fluvial facies, with a view towards correcting this omission. Initial results include detailed facies descriptions and maps for five quarries along a line of transect stretching some 40 km parallel to depositional dip. Facies identified are predominantly overbank splays and levees, with common point bar/alluvial channel units and occasional small, possibly estuarine sandmore » bodies in parts of the section. Shell beds (mainly oysters) and bedded, 1 m thick coals are also significant in some sections. Preliminary attempts at paleohydrology suggest river channels in some parts of the section were about 100 m wide and 2 m deep; however, other parts of the section exhibit much larger channel widths. Channel stacking is common. Preliminary results suggest a strong correlation between the occurrence of reddish brown carbonaceous silty shales, and dinosaur bone deposits.« less
NASA Astrophysics Data System (ADS)
Bowling, R. D.; Laya, J. C.; Everett, M. E.
2018-05-01
The study of exposed carbonate platforms provides observational constraints on regional tectonics and sea-level history. In this work Miocene-aged carbonate platform units of the Seroe Domi Formation are investigated, on the island of Bonaire, located in the Southern Caribbean. Ground penetrating radar (GPR) was used to probe near-surface structural geometries associated with these lithologies. The single cross-island transect described herein allowed for continuous mapping of geologic structures on kilometer length scales. Numerical analysis was applied to the data in the form of k-means clustering of structure-parallel vectors derived from image structure tensors. This methodology enables radar facies along the survey transect to be semi-automatically mapped. The results provide subsurface evidence to support previous surficial and outcrop observations, and reveal complex stratigraphy within the platform. From the GPR data analysis, progradational clinoform geometries were observed on the northeast side of the island which supports the tectonics and depositional trends of the region. Furthermore, several leeward-side radar facies are identified which correlate to environments of deposition conducive to dolomitization via reflux mechanisms.
NASA Astrophysics Data System (ADS)
Kamola, Diane L.; Chan, Marjorie A.
1988-04-01
The Permian Cutler Formation (White Rim Sandstone) in the Capitol Reef National Park area in southern Utah is an excellent example of a coastal dune complex subjected to periodic flooding by marine waters. Wind-ripple, grainfall and grainflow laminae compose the cross-sets deposited by eolian dunes. However, wave-reworked structures such as oscillation ripples, the occurrence of the characteristically marine trace fossils Thalassinoides and Chondrites, and interfingering marine carbonate beds of the Kaibab Formation collectively indicate marine interaction with the eolian environment. Four facies are distinguished: cross-stratified sandstone, burrowed to bioturbated sandstone, brecciated and deformed sandstone, and ripple-laminated sandstone and thin carbonate beds. One unusual aspect of the cross-stratified sandstone facies is the abundance of coarse-grained sand. Coarse-grained sand is atypical in many ancient eolian slipface deposits, but occurs here in large slipface foresets as both grainflow and wind-ripple deposits. No water-laid structures are found in these slipface deposits. Coarse-grained sand was probably transported to the Cutler shoreline by fluvial systems draining the Uncompahgre Uplift to the east, and then concentrated as coarse-grained ripples in interdune areas. Some of these coarse-grained ripples migrated up the stoss side of the dunes and accumulations of coarse-grained sand avalanched down the crest to form grainflow deposits. An extensive amount of soft-sediment deformation is indicated by the presence of convolute bedding and brecciation. These features occur near the zone of interfingering with marine carbonate beds of the Kaibab Formation. The water-saturated and moist conditions required for extensive deformation may have been controlled by the proximity of these sandstones to the shoreline, and fluctuations in the associated groundwater table.
NASA Astrophysics Data System (ADS)
Kearsey, Tim; Williams, John; Finlayson, Andrew; Williamson, Paul; Dobbs, Marcus; Kingdon, Andrew; Campbell, Diarmad
2014-05-01
Geological maps and 3D models usually depict lithostragraphic units which can comprise of many different types of sediment (lithologies). The lithostratigraphic units shown on maps and 3D models of glacial and post glacial deposits in Glasgow are substantially defined by the method of the formation and age of the unit rather than its lithological composition. Therefore, a simple assumption that the dominant lithology is the most common constituent of any stratigraphic unit is erroneous and is only 58% predictive of the actual sediment types seen in a borehole. This is problematic for non-geologist such as planners, regulators and engineers attempting to use these models to inform their decisions and can lead to such users viewing maps and models as of limited use in such decision making. We explore the extent to which stochastic modelling can help to make geological models more predictive of lithology in heterolithic units. Stochastic modelling techniques are commonly used to model facies variations in oil field models. The techniques have been applied to an area containing >4000 coded boreholes to investigate the glacial and fluvial deposits in the centre of the city of Glasgow. We test the predictions from this method by deleting percentages of the control data and re-running the simulations to determine how predictability varies with data density. We also explore the best way of displaying such stochastic models to and suggest that displaying the data as probability maps rather than a single definitive answer better illustrates the uncertainties inherent in the input data. Finally we address whether is it possible truly to be able to predict lithology in such geological facies. The innovative Accessing Subsurface Knowledge (ASK) network was recently established in the Glasgow are by the British Geological Survey and Glasgow City Council to deliver and exchange subsurface data and knowledge. This provides an idea opportunity to communicate and test a range of models and to assess their usefulness and impact on a vibrant community of public and private sector partners and decision makers.
NASA Astrophysics Data System (ADS)
Lube, Gert; Breard, Eric C. P.; Cronin, Shane J.; Procter, Jonathan N.; Brenna, Marco; Moebis, Anja; Pardo, Natalia; Stewart, Robert B.; Jolly, Arthur; Fournier, Nicolas
2014-10-01
The 6 August 2012 Te Maari eruption produced violent and widespread "cold" Pyroclastic Density Currents (PDCs) following unroofing of the pressurized hydrothermal system. Despite an erupted volume of only ~ 5 × 105 m3, and lacking any juvenile component, the 340,000 m3 of PDCs spread over an area of 6.1 km2 and had mobilities that were on the order of volcanic blasts or blast-like PDCs. This great mobility was due to strong lateral focussing of explosion energy, producing jets with initial velocities > 100 m/s. We present a type-stratigraphy for these hydrothermal-derived low-temperature PDCs that show a tripartite deposit sequence. Each of the deposit units dominates respectively three outward-gradational sedimentary facies, reflecting transitions in the propagating PDC transport and depositional mechanisms. The largest PDCs, directed west and east of the Upper Te Maari area were generated from outer-cone breccias and tuffs that were mostly highly hydrothermally altered. Landsliding and the geometry of the hydrothermal area led to the directed jetting. Initial particle-laden jets laid sheets, grading into lobes of proximal massive sand to gravel-rich facies dominated by unit A and extending up to 1 km from the vents. As the jets were collapsing, a vertically and longitudinally stratified PDC developed within the first few hundred metres from source. Exponential thinning and coarse-tail grading-dominated fining with radial distance of massive unit A resulted from fast deposition and progressive depletion of the most concentrated flow region behind the PDC head. Markedly slower tractional sedimentation from the passing PDC body and tail deposited the highly stratified and ripple-bedded fine-coarse ash of unit B. This formed distinctive dune fields of the medial dune-bedded ash-rich facies. Upwards in depositional sequences the waning of the current can be seen, by replacement of higher-energy bedforms to progressively lower ones. Downstream progressive waning and further depletion are characterised by the development of the distal wavy to planar-bedded ash-rich facies. This is increasingly dominated by the uppermost deposition unit C of laminated fine-med ash deposited by gently turbulent, dilute phoenix clouds. These high energy PDCs, sourced from flank hydrothermal systems should be regarded as a serious threat in any multihazard assessment of a stratovolcano, even though they may not be one of the major magmatic vent sites. In addition, further detailed studies of these hydrothermal jetting events and their deposits should be pursued in order to better understand large-volume volcanic blasts, which appear to be a larger scale sibling phenomenon.
NASA Astrophysics Data System (ADS)
Sun, L.; Khan, S.; Godet, A.
2017-12-01
This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic carbon content deposited during the Late Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures. Major element geochemistry confirmed the mineral quantification. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and claystones (volcanic ash beds). The lack of spatial associations between the grainstones and claystones on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.
NASA Astrophysics Data System (ADS)
Sun, Lei; Khan, Shuhab; Godet, Alexis
2018-01-01
This study used ground-based hyperspectral imaging to map an outcrop of the Eagle Ford Group in west Texas. The Eagle Ford Group consists of alternating layers of mudstone - wackestone, grainstone - packstone facies and volcanic ash deposits with high total organic content deposited during the Cenomanian - Turonian time period. It is one of the few unconventional source rock and reservoirs that have surface representations. Ground-based hyperspectral imaging scanned an outcrop and hand samples at close ranges with very fine spatial resolution (centimeter to sub-millimeter). Spectral absorption modeling of clay minerals and calcite with the modified Gaussian model (MGM) allowed quantification of variations of mineral abundances. Petrographic analysis confirmed mineral identifications and shed light on sedimentary textures, and major element geochemistry supported the mineral quantification. Mineral quantification resulted in mapping of mudstone - wackestone, grainstone - packstone facies and bentonites (volcanic ash beds). The lack of spatial associations between the grainstones and bentonites on the outcrop calls into question the hypothesis that the primary productivity is controlled by iron availability from volcanic ash beds. Enrichment of molybdenum (Mo) and uranium (U) indicated "unrestricted marine" paleo-hydrogeology and anoxic to euxinic paleo-redox bottom water conditions. Hyperspectral remote sensing data also helped in creating a virtual outcrop model with detailed mineralogical compositions, and provided reservoir analog to extract compositional and geo-mechanical characteristics and variations. The utilization of these new techniques in geo-statistical analysis provides a workflow for employing remote sensing in resource exploration and exploitation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bjerstedt, T.W.; Erickson, J.M.
The Cambrian-Ordovician Potsdam Sandstone, Theresa Formation, and Canadian correlatives in the St. Lawrence Lowlands preserve tide-dominated facies during the basal Cambrian transgression. Low intertidal sand flats in the upper Potsdam contain a Skolithos Ichnofacies dominated by Diplocraterion parallelum in clean, herringbone cross-bedded sandstones indicative of high tidal current energy. Wind-wave-driven longshore and tidal currents along a macrotidal coastline were funneled northeast-southwest by Precambrian topographic relief of up to 65 m. This relief is now expressed as the Thousand Islands of New York and Canada. The conformably overlying Theresa Formation preserves a shoaling-upward sequence of mixed clastic-carbonate facies. Shallow subtidal andmore » peritidal facies contain a mixed Skolithos-Cruziana Ichnofacies in sharply alternating lithofacies consisting of gray, intensely bioturbated, poorly sorted calcareous sandstone, and meter-thick, white cross-bedded sandstone. The parallelism between ichnofacies and lithofacies indicates that environmental energy level and persistence rather than water depth controlled trace fossil distribution. Bioturbated sandstones contain a Cruziana ichnofacies of abundant deposit feeders including: Fustiglyphus , Gyrochorte , Neonereites uniserialis , Phycodes flabellum, Planolites beverlyensis, Rosselia socialis, and Teichichnus. Suspension feeders are represented by D. habichi, D. parallelum, Skolithos, Monocraterion, and possibly Palaeophycus tubularis. Scavenging or deposit-feeding arthropods are represented by rare Cruziana furrows. Cross-bedded sandstones contain a Skolithos Ichnofacies of shallow Skolithos and Monocraterion burrows, and an undescribed large epistratal eurypterid( ) trail.« less
Miocene reef carbonates of Mariana Islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegrist, H.G. Jr.
1988-01-01
Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extend (>20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocene inmore » the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergency of narrow reef tracts as has been postulated by others for south Guam. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less
NASA Astrophysics Data System (ADS)
Cabaleri, Nora G.; Benavente, Cecilia A.
2013-02-01
The Las Chacritas Member is the lower part of the Cañadón Asfalto Formation (Jurassic). The unit is a completely continental limestone succession with volcanic contributions that were deposited during the development of the Cañadón Asfalto Rift Basin (Chubut province, Patagonia, Argentina). A detailed sedimentological analysis was performed in the Fossati depocenter to determine the paleoenvironments that developed in the context of this rift. The Las Chacritas Member represents a carbonate paleolake system with ramp-shaped margins associated with wetlands that were eventually affected by subaerial exposure and pedogenesis. This process is represented by three main subenvironments: a) a lacustrine setting sensu stricto (lacustrine limestone facies association), represented by Mudstones/Wackestones containing porifera spicules (F1), Intraclastic packstones (F6) and Tabular stromatolites (F10) in which deposition and diagenesis were entirely subaqueous; b) a palustrine setting (palustrine limestone facies association) containing Microbial Mudstones (F2), Intraclastic sandy packstone with ostracode remains (F3), Oncolitic packstone (F5), Brecciated limestone (F7) and Nodular-Mottled limestone (F8) representing shallow marginal areas affected by groundwater fluctuations and minor subaerial exposure; and c) a pedogenic paleoenvironment (pedogenic limestone facies association) including Intraclastic limestone (F4) and Packstones containing Microcodium (F9) facies displaying the major features of subaerial exposure, pedogenic diagenesis and the development of paleosols. The fluvial-palustrine-lacustrine succession shows a general shallow upward trend in which contraction-expansion cycles are represented (delimited by exposure and surface erosion). The variations in the successive formations reflect the responses to fluctuations in a combination of two major controls, the tectonic and local climatic variables. The predominance of the palustrine facies associations was determined by its accommodation space as well as the local climate conditions. The variations in the lacustrine limestone facies associations reflect differential patterns of subsidence within the sub-basin. The diagnostic features of the palustrine limestone facies associations (organic matter (OM) content, microinvertebrate fauna, abundant mud cracks, brecciation, presence of evaporitic minerals) frame the sub-basin in a climatic context intermediate between arid and subhumid conditions.
Kulpecz, A.A.; Miller, K.G.; Sugarman, P.J.; Browning, J.V.
2008-01-01
Paleogeographic, isopach, and deltaic lithofacies mapping of thirteen depositional sequences establish a 35 myr high resolution (> 1 Myr) record of Late Cretaceous wave- and tide-influenced deltaic sedimentation. We integrate sequences defined on the basis of lithologic, biostratigraphic, and Sr-isotope stratigraphy from cores with geophysical log data from 28 wells to further develop and extend methods and calibrations of well-log recognition of sequences and facies variations. This study reveals the northeastward migration of depocenters from the Cenomanian (ca. 98 Ma) through the earliest Danian (ca. 64 Ma) and documents five primary phases of paleodeltaic evolution in response to long-term eustatic changes, variations in sediment supply, the location of two long-lived fluvial axes, and thermoflexural basement subsidence: (1) Cenomanian-early Turonian deltaic facies exhibit marine and nonmarine facies and are concentrated in the central coastal plain; (2) high sediment rates, low sea level, and high accommodation rates in the northern coastal plain resulted in thick, marginal to nonmarine mixed-influenced deltaic facies during the Turonign-Coniacian; (3) comparatively low sediment rates and high long-term sea level in the Santonian resulted in a sediment-starved margin with low deltaic influence; (4) well-developed Campanian deltaic sequences expand to the north and exhibit wave reworking and longshore transport of sands, and (5) low sedimentation rates and high long-term sea level during the Maastrichtian resulted in the deposition of a sediment-starved glauconitic shelf. Our study illustrates the widely known variability of mixed-influence deltaic systems, but also documents the relative stability of deltaic facies systems on the 106-107 yr scale, with long periods of cyclically repeating systems tracts controlled by eustasy. Results from the Late Cretaceous further show that although eustasy provides the template for sequences globally, regional tectonics (rates of subsidence and accommodation), changes in sediment supply, proximity to sediment input, and flexural subsidence from depocenter loading determines the regional to local preservation and facies expression of sequences. Copyright ?? 2008, SEPM (Society for Sedimentary Geology).
Late Pleistocene and Holocene sedimentary facies on the Ebro continental shelf
Diaz, J.; Nelson, C.H.; Barber, J.H.; Giro, S.
1990-01-01
Late Pleistocene-Holocene history of the Ebro continental shelf of northeastern Spain is recorded in two main sedimentary units: (1) a lower, transgressive unit that covers the shelf and is exposed on the outer shelf south of 40??40???N, and (2) an upper, progradational, prodeltaic unit that borders the Ebro Delta and extends southward along the inner shelf. The lower transgressive unit includes a large linear shoal found at a water depth of 90 m and hardground mounds at water depths of 70-80 m. Some patches of earlier Pleistocene prodelta mud remain also, exposed or covered by a thin veneer of transgressive sand on the northern outer shelf. This relict sand sheet is 2-3 m thick and contains 9000-12,500 yr old oyster and other shells at water depths of 78-88 m. The upper prodelta unit covers most of the inner shelf from water depths of 20-80 m and extends from the present Ebro River Delta to an area to the southwest where the unit progressively thins and narrows. Interpretation of high-resolution seismic reflection data shows the following facies occurring progressively offshore: (1) a thick stratified facies with thin progradational "foresets beds", (2) a faintly laminated facies with sparse reflectors of low continuity, and (3) a thin transparent bottomset facies underlain by a prominent flat-lying reflector. Deposition in the northern half of the prodelta began as soon as the shoreline transgressed over the mid-shelf, but progradation of the southern half did not begin until about 1000-3000 yrs after the transgression. A classic deltaic progradational sequence is shown in the Ebro prodelta mud by (1) gradation of seismic facies away from the delta, (2) coarsening-upward sequences near the delta and fining-upward sequences in the distal mud belt deposits, and (3) thin storm-sand layers and shell lags in the nearshore stratified facies. The boundaries of the prodeltaic unit are controlled by increased current speeds on the outer shelf (where the shelf narrows) and by development of the shoreface sand body resulting from shoaling waves on the inner shelf. ?? 1990.
NASA Astrophysics Data System (ADS)
Sundal, A.; Skurtveit, E.; Midtkandal, I.; Hope, I.; Larsen, E.; Kristensen, R. S.; Braathen, A.
2016-12-01
The thick and laterally extensive Middle Jurassic Entrada Sandstone forms a regionally significant reservoir both in the subsurface and as outcrops in Utah. Individual layers of fluvial sandstone within otherwise fine-grained aeolian dunes and silty inter-dune deposits of the Entrada Earthy Member are of particular interest as CO2 reservoir analogs to study injectivity, reservoir-caprock interaction and bypass systems. Detailed mapping of facies and deformation structures, including petrographic studies and core plug tests, show significant rock property contrasts between layers of different sedimentary facies. Beds representing fluvial facies appear as white, medium-grained, well-sorted and cross-stratified sandstone, displaying high porosity, high micro-scale permeability, low tensile strength, and low seismic velocity. Subsequent to deposition, these beds were structurally deformed and contain a dense network of deformation bands, especially in proximity to faults and injectites. Over- and underlying low-permeability layers of inter-dune aeolian facies contain none or few deformation bands, display significantly higher rock strengths and high seismic velocities compared to the fluvial inter-beds. Permeable units between low-permeability layers are prone to become over-pressured during burial, and the establishment of fluid escape routes during regional tectonic events may have caused depressurization and selective collapse of weak layers. Through-cutting, vertical sand pipes display large clasts of stratified sandstone suspended in remobilized sand matrix, and may have served as permeable fluid conduits and pressure vents before becoming preferentially cemented and plugged. Bleached zones around faults and fractures throughout the succession indicate leakage and migration of reducing fluids. The fluvial beds are porous and would appear in wireline logs and seismic profiles as excellent reservoirs; whereas due to dense populations of deformation bands they may in fact display reduced horizontal and vertical permeability locally. Facies-related differences in geomechanical properties, pressure distribution and selective structural collapse have significant implications for injectivity and reservoir behavior.
FitzGerald, D.M.; Kulp, M.; Penland, S.; Flocks, J.; Kindinger, J.
2004-01-01
The Barataria barrier coast formed between two major distributaries of the Mississippi River delta: the Plaquemines deltaic headland to the east and the Lafourche deltaic headland to the west. Rapid relative sea-level rise (1??03 cm year-1) and other erosional processes within Barataria Bay have led to substantial increases in the area of open water (> 775 km2 since 1956) and the attendant bay tidal prism. Historically, the increase in tidal discharge at inlets has produced larger channel cross-sections and prograding ebb-tidal deltas. For example, the ebb delta at Barataria Pass has built seaward > 2??2 km since the 1880s. Shoreline erosion and an increasing bay tidal prism also facilitated the formation of new inlets. Four major lithofacies characterize the Barataria coast ebb-tidal deltas and associated sedimentary environments. These include a proximal delta facies composed of massive to laminated, fine grey-brown to pale yellow sand and a distal delta facies consisting of thinly laminated, grey to pale yellow sand and silty sand with mud layers. The higher energy proximal delta deposits contain a greater percentage of sand (75-100%) compared with the distal delta sediments (60-80%). Associated sedimentary units include a nearshore facies consisting of horizontally laminated, fine to very fine grey sand with mud layers and an offshore facies that is composed of grey to dark grey, laminated sandy silt to silty clay. All facies coarsen upwards except the offshore facies, which fines upwards. An evolutionary model is presented for the stratigraphic development of the ebb-tidal deltas in a regime of increasing tidal energy resulting from coastal land loss and tidal prism growth. Ebb-tidal delta facies prograde over nearshore sediments, which interfinger with offshore facies. The seaward decrease in tidal current velocity of the ebb discharge produces a gradational contact between proximal and distal tidal delta facies. As the tidal discharge increases and the inlet grows in dimensions, the proximal and distal tidal delta facies prograde seawards. Owing to the relatively low gradient of the inner continental shelf, the ebb-tidal delta lithosome is presently no more than 5 m thick and is generally only 2-3 m in thickness. The ebb delta sediment is sourced from deepening of the inlet and the associated channels and from the longshore sediment transport system. The final stage in the model envisages erosion and segmentation of the barrier chain, leading to a decrease in tidal discharge through the former major inlets. This process ultimately results in fine-grained sedimentation seaward of the inlets and the encasement of the ebb-tidal delta lithosome in mud. The ebb-tidal deltas along the Barataria coast are distinguished from most other ebb deltas along sand-rich coasts by their muddy content and lack of large-scale stratification produced by channel cut-and-fills and bar migration. ?? 2004 International Association of Sedimentologists.
Kingsbury Stewart, Esther; Mauk, Jeffrey L.
2017-01-01
We use core descriptions and portable X-ray fluorescence analyses to identify lithofacies and stratigraphic surfaces for the Mesoproterozoic Nonesuch Formation within the Ashland syncline, Wisconsin. We group lithofacies into facies associations and construct a sequence stratigraphic framework based on lithofacies stacking and stratigraphic surfaces. The fluvial-alluvial facies association (upper Copper Harbor Conglomerate) is overlain across a transgressive surface by the fluctuating-profundal facies association (lower Nonesuch Formation). The fluctuating-profundal facies association comprises a retrogradational sequence set overlain across a maximum flooding surface by an aggradational-progradational sequence set comprising fluctuating-profundal, fluvial-lacustrine, and fluvial-alluvial facies associations (middle Nonesuch through lower Freda Formations). Lithogeochemistry supports sedimentologic and stratigraphic interpretations. Fe/S molar ratios reflect the oxidation state of the lithofacies; values are most depleted above the maximum flooding surface where lithofacies are chemically reduced and are greatest in the chemically oxidized lithofacies. Si/Al and Zr/Al molar ratios reflect the relative abundance of detrital heavy minerals vs. clay minerals; greater values correlate with larger grain size. Vertical facies association stacking records depositional environments that evolved from fluvial and alluvial, to balanced-fill lake, to overfilled lake, and returning to fluvial and alluvial. Elsewhere in the basin, where accommodation was greatest, some volume of fluvial-lacustrine facies is likely present below the transgressive stratigraphic surface. This succession of continental and lake-basin types indicates a predominant tectonic driver of basin evolution. Lithofacies distribution and geochemistry indicate deposition within an asymmetric half-graben bounded on the east by a west-dipping growth fault. While facies assemblages are lacustrine and continental, periodic marine incursions are probable, especially across maximum transgressive surfaces.We demonstrate a sequence-stratigraphic approach may be applied to fine-grained Precambrian sediments using traditional rock description and supporting lithogeochemistry. Identification of a characteristic lithofacies succession in Mesoproterozoic sediments demonstrates fundamental controls commonly interpreted for Phanerozoic lake systems may be extended into the Precambrian. These controls result in a predictable association of lithofacies, with distinct physical, biological, and geochemical properties. This has regional significance for carbon sequestration and the distribution of mineral and hydrocarbon resources and broader significance for addressing Mesoproterozoic paleogeographic reconstructions and questions related to the evolution of terrestrial life.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hlaing, K.K.; Lemoy, C.; Maret, J.P.
Conventional sonic measurements of shear and compressional slowness are body waves that travel within the formation and are commonly used for petrophysical analysis of a well. Low-frequency Stoneley waves travel within the well bore and are traditionally used to interpret fractures and formation permeability, usually by analyzing the energy losses and, to a lesser extent, the slowness. The authors have found that Stoneley energy has been very useful in the identification of vuggy carbonate facies linked to paleokarstic surfaces in the Upper Burman limestone reservoir of Miocene age, in the YADANA gas deposit, offshore Myanmar. One good example is seenmore » in well YAD-1 where the carbonate reservoir has been cored, allowing precise facies and porosity type determination. Matching Stoneley energy and core description show a striking correlation between loss of energy and vuggy carbonate facies due to karstic diagenetic processes, always in relation with reefal or near reefal facies. Accordingly, facies interpretation has tentatively been done in the deeper, noncored reservoir zone, where losses of energy are important and considered as indicating karstic influence and the specific environment.« less
NASA Astrophysics Data System (ADS)
Ragusa, Jérémy; Kindler, Pascal
2016-04-01
A coupled analysis of modal composition, grain size and sedimentary features of gravity-flow deposits in the Gurnigel nappe shows that the transition from coarse proximal to fine distal deposits is accompanied by a change in composition from siliciclastic to calcareous. Such compositional variation should be taken into account when interpretating deep-sea deposits if sampling is restricted to a single part of the fan. The Chablais Prealps (Haute-Savoie, France) represent a well-preserved accretionary wedge in the Western Alps. They comprise a stack of northward-thrusted sedimentary cover nappes originating from the Ultrahelvetic realm (distal part of the European margin) to the southern part of the Piemont Ocean. The present study focuses on the Voirons Flysch, belonging to the Gurnigel nappe, which includes four formations consisting of gravity-flow deposits (from bottom to top): (1) the Voirons Sandstone Fm., composed of channel to lobe deposits; (2) the Vouan Conglomerate Fm., represented by the proximal part of a channel system; (3) the Boëge Marls Fm., constituted by distal lobe deposits; finally, (4) the Bruant Sandstone Fm., which consists in channel to lobe deposits. Recent biostratigraphic results using planktonic foraminifers attributed a Middle to Late Eocene age to the Voirons Flysch, which was formerly believed to range from the Paleocene to the Middle Eocene (based on calcareous nannofossils). A total of 270 thin sections with stained feldspars were prepared, representing the four formations of the Voirons Flysch. Circa 300 extrabasinal grains were counted per thin section using the classic Indiana method. In addition, the quantity of intrabasinal grains (i.e. bioclasts, glauconite), cement and porosity was analysed. Cement was stained with alizarine and potassium ferrocyanide. 200 grain-size measurements on ca. 100 samples were performed using 3D conversion and statistical moment analysis. Sedimentary observations for each sampled bed were categorized following Mutti's turbiditic facies scheme. Cluster analysis on the composition of major grains discriminated 10 clusters which are merged into seven petrofacies (P1 - P7) following optical observations under the microscope: P1: poorly cemented porous arenite; P2: all porosity are filled by calcitic cement; P3: well-cemented volcano-clastic arenite; P4: red algae-rich highly cemented arenite to calcarenite; P5: highly cemented arenite; P6: globigerina-rich laminated calcarenite and P7: glauconitic quartzarenite. Grain-size distribution is grouped following the petrofacies. They provide a homogeneous distribution within each petrofacies with a gradual fining and progressively increasing sorting from P1 to P7. Moreover, Mutti's facies distribution indicates a progressive change towards more distal environments: from channel facies (F2 to F5) in P1-P3 to lobe facies (F8 to F9) in P4-P6. The washed composition of the P7 petrofacies is interpreted as distal turbidites that were reworked by bottom currents. The results presented here reveal a link between sand composition, grain size and gravity-flow facies. They highlight that composition of gravity flows is modified during their basinward transport. Consequently, coarse proximal deposits are more siliciclastic with limited filling of voids due to low carbonate contents. On the contrary, carbonate content increases significantly in the fine-grained calcarenites of the distal petrofacies. In distal settings, the segregation of light and porous foraminifera from the heavier siliciclastic fraction occurs under the increasing importance of traction currents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fracasso, M.A.; Dutton, S.P.; Finley, R.J.
The Travis Peak formation (lower Cretaceous) in the eastern East Texas basin is a fluvio-deltaic depositional system divided into large-scale facies packages: a middle sandstone-rich fluvial and delta-plain sequence that is gradationally overlain and underlain by a marine-influenced delta-fringe zone with a higher mudstone content. Domes and structural terraces on the west flank of the Sabine Uplift influenced deposition of Travis Peak sediments, and most Travis Peak gas production in this area is from thin sandstones (<25 ft(<7.6 m) thick) in the upper delta-fringe facies. The trapping mechanism is stratigraphic pinch-out of sandstones or porosity zones within sandstone, or both,more » on the flanks of structures. Detailed mapping of producing sandstone sequences in the uppermost upper delta-fringe on the western flank of the Bethany structure has delineated fluvial channelways, distributary or tidal channels, and barrier of distributary-mouth bars. Most Travis Peak gas production in the Bethany West area is from the bases of channel sandstones in a marine-influenced facies belt. Travis Peak sandstones in the eastern East Texas basin have undergone a complex series of diagenetic modifications. Precipitation of authigenic quartz, ankerite, dolomite, illite, and chlorite and the introduction of reservoir bitumen were the most important causes of occlusion of primary porosity and reduction of permeability. Permeability decreases with depth in the Travis Peak, which suggests that the diagenetic processes that caused extensive cementation and resultant low permeability throughout most of the formation operated less completely on sediments deposited near the top of the succession.« less
Chronology of the cave interior sediments at Gran Dolina archaeological site, Atapuerca (Spain)
NASA Astrophysics Data System (ADS)
Parés, J. M.; Álvarez, C.; Sier, M.; Moreno, D.; Duval, M.; Woodhead, J. D.; Ortega, A. I.; Campaña, I.; Rosell, J.; Bermúdez de Castro, J. M.; Carbonell, E.
2018-04-01
The so-called "Gran Dolina site" (Atapuerca mountain range, N Spain) is a karstic cavity filled by sediments during the Pleistocene, some of which contain a rich ensemble of archaeological and paleontological records. These sediments have contributed significantly to our understanding of early human dispersal in Europe but, in contrast, older, interior facies deposits have received much less of attention. The stratigraphy of Gran Dolina reveals an abrupt sedimentary change of interior to entrance facies from bottom to top, reflecting a significant paleoenvironmental change that promoted the accumulation of sediments transported from the vicinity of the cave by water or "en masse". Since the major magnetic polarity reversal known as the Matuyama-Brunhes boundary (0.78 Ma) was detected within the TD7 unit in the middle of the stratigraphic section, we carried out a new combined paleomagnetic, radiometric (U-Pb), and electron spin resonance (ESR) dating study of the lower part of the sequence in order to constrain the chronology of the interior facies at Gran Dolina. U-Pb analysis of speleothems did not produce age information as the samples proved to be extremely unradiogenic. The magnetic stratigraphy of the cave interior sediments reveals a dominant reverse magnetic polarity, coherent with a Matuyama age, and interrupted by a normal polarity magnetozone interpreted as the Jaramillo Subchron (1.0-1.1 Ma). ESR ages on quartz grains from the upper part of the interior facies sediments are coherent with such an interpretation. We conclude that the fluvial deposits (interior facies) that constitute the cave floor began accumulating before 1.2 Ma. The development of large cave entrances at Gran Dolina occurred shortly after the Jaramillo Subchron but before ca 900 ka ago.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schlanger, S.O.
Prior to 1968, ooids had not been described from shallow-water carbonate complexes deposited in atoll, seamount, or guyot settings in the Pacific basin. This apparent lack of an oolite facies in the Pacific was puzzling, considering the abundance of ooids in modern Bahamian settings and in the Phanerozoic record in general. Since 1968, Deep Sea Drilling Project operations, marine seismic stratigraphic studies, dredging on drowned atolls, and field studies of an emergent atoll have revealed the presence of a Cretaceous oolite limestone atop Ita Maitai Guyot, Paleocene ooids on Koko Seamount, late Paleocene to middle Eocene ooids on Ojin Seamount,more » Eocene ooids on Harrie Guyot, and Holocene oolite limestone on Malden Island. At Ita Maitai Guyot the oolite limestone overlies normal lagoon sediments and is overlain by deep-water pelagic carbonate. At Malden Island, which is an emergent atoll, 3550-year-old oolite limestone overlies a 125,000-year-old reef complex. At Harrie Guyot and at Koko and Ojin Seamounts, ooids are associated with drowned atoll reef and lagoon complexes. The paleolatitude of deposition of the oolite facies lay between 5/sup 0/S and 18/sup 0/N. In these settings the formation of the oolite facies was apparently related to a rapid rise in sea level that caused flooding of an antecedent reef complex which failed to keep up with the rise in sea level. In Pacific basin environments the oolite facies is a minor and temporally ephemeral one which accounts for its scarcity in the stratigraphic record from this region.« less
Reservoir characterization and modeling of deltaic facies, Lower Wilcox, Concordia Parish, Louisiana
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schenewerk, P.; Goddard, D.; Echols, J.
Production decline in several fields in Concordia Parish, Louisiana, has sparked interest in the economic feasibility of producing the remaining bypassed oil in the lower Wilcox. One of these fields, the Bee Brake field, located in townships 4N, 6E and 4N, 7E, has been one of the more prolific oil-producing areas in east central Louisiana. The producing interval in the field, the Minter, typically consists of an upper Bee Brake sand and a lower Angelina sand. Cumulative production from the Angelina has been 2.1 mm STB of oil. A detailed study of a conventional core in the center of themore » field presented a 15-ft-thick Minter interval bounded above and below by sealing shales and lignites of lower delta plain marsh facies. The lower oil producing 3-ft thick Angelina consists of fine to medium sandstone of overbank bay fill facies. The upper 4-ft thick Bee Brake is a very fine silty sandstone with characteristics of a crevasse splay deposit. Special core analysis data (capillary pressure, relative permeability, and waterflood recovery) were obtained and have been used to develop a simulation model of the two reservoirs in the Minter. This model incorporates the geologic and engineering complexities noted during the first comprehensive evaluation of the field area. The model results will be used by the operators in the field to plan the optimal development for enhanced recovery. In addition, the production potential of the Bee Brake sand has been defined.« less
Normark, W.R.; Piper, D.J.W.; Hiscott, R.N.
1998-01-01
Hueneme and Dume submarine fans in Santa Monica Basin consist of sandy channel and muddy levee facies on the upper fan. lenticular sand sheets on the middle fan. and thinly bedded turbidite and hemipelagic facies elsewhere. Fifteen widely correlatable key seismic reflections in high-resolution airgun and deep-towed boomer profiles subdivide the fan and basin deposits into time-slices that show different thickness and seismic-facies distributions, inferred to result from changes in Quaternary sea level and sediment supply. At times of low sea level, highly efficient turbidity currents generated by hyperpycnal flows or sediment failures at river deltas carry sand well out onto the middle-fan area. Thick, muddy flows formed rapidly prograding high levees mainly on the western (right-hand) side of three valleys that fed Hueneme fan at different times: the most recently active of the lowstand fan valleys. Hueneme fan valley, now heads in Hueneme Canyon. At times of high sea level, fans receive sand from submarine canyons that intercept littoral-drift cells and mixed sediment from earthquake-triggered slumps. Turbidity currents are confined to 'underfit' talweg channels in fan valleys and to steep, small, basin-margin fans like Dume fan. Mud is effectively separated from sand at high sea level and moves basinward across the shelf in plumes and in storm-generated lutite flows, contributing to a basin-floor blanket that is locally thicker than contemporary fan deposits and that onlaps older fans at the basin margin. The infilling of Santa Monica Basin has involved both fan and basin-floor aggradation accompanied by landward and basinward facies shifts. Progradation was restricted to the downslope growth of high muddy levees and the periodic basinward advance of the toe of the steeper and sandier Dume fan. Although the region is tectonically active, major sedimentation changes can be related to eustatic sea-level changes. The primary controls on facies shifts and fan growth appear to be an interplay of texture of source sediment, the efficiency with which turbidity currents transport sand, and the effects of delta distributary switching, all of which reflect sea-level changes.
Limestones: the love of my life - sun, sea and cycles (Jean Baptiste Lamarck Medal Lecture)
NASA Astrophysics Data System (ADS)
Tucker, M. E.
2009-04-01
In studies of sedimentary rocks we are striving to understand the short and long-term controls on deposition that lead to the variety of facies we see in the geological record. With the development and application of sequence stratigraphy has come the realisation that in most cases the stratigraphic record is not random, but there are patterns and trends in the nature (composition, facies, diagenesis) and thickness of sedimentary units. In addition, sedimentary cycles are widely, if not ubiquitously, developed through stratigraphic successions, and do themselves vary in thickness and facies through a formation and through time. In many cases, orbital forcing is clearly a major control, in addition to longer term tectonic and tectono-eustatic processes. Understanding the major controls on the stratigraphic record and the processes involved in deposition enables us to develop a degree of prediction for the occurrence of particular facies and rock-types. This is especially significant in terms of hydrocarbon potential in frontier basins, notably in the search for source and reservoir rocks. In the case of carbonate and carbonate-evaporite successions, recent work is showing that even at the higher-frequency scale of individual beds and bed-sets, there are regular patterns and changes in thickness. These show that controls on deposition are not random but well organised. Studies of Carboniferous shelf/mid-ramp bioclastic limestones and Jurassic shallow-marine oolites from England reveal systematic variations in bed thickness, as well as oxygen isotopes, Sr and org C values. Permian lower slope carbonates from NE England show thinning-thickening-upward patterns in turbidite bed thickness on several orders of scale. Turbidity current frequency of 1 per ~200 years can be deduced from thicknesses of interbedded laminated facies, which provide the timescale. Beds in ancient shelf and slope carbonates of many geological periods are on a millennial-scale and their features and patterns clearly indicate that millennial-scale changes in climate, most likely driven by fluctuations in solar output, analogous to the D-O cycles of the Quaternary, were responsible, and that these were then modulated by orbital forcing. Solar forcing rules in carbonates, even at the highest frequency.
NASA Astrophysics Data System (ADS)
Zhang, Hua; Harter, Thomas; Sivakumar, Bellie
2006-06-01
Facies-based geostatistical models have become important tools for analyzing flow and mass transport processes in heterogeneous aquifers. Yet little is known about the relationship between these latter processes and the parameters of facies-based geostatistical models. In this study, we examine the transport of a nonpoint source solute normal (perpendicular) to the major bedding plane of an alluvial aquifer medium that contains multiple geologic facies, including interconnected, high-conductivity (coarse textured) facies. We also evaluate the dependence of the transport behavior on the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system's hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute traveltime probability density function (pdf) for solute flux from the water table to the bottom boundary (the production horizon) of the aquifer. The cases examined include two-, three-, and four-facies models, with mean length anisotropy ratios for horizontal to vertical facies, ek, from 25:1 to 300:1 and with a wide range of facies volume proportions (e.g., from 5 to 95% coarse-textured facies). Predictions of traveltime pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer. Those predictions of traveltime pdfs also are affected by the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and, to a lesser degree, the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, traveltime is not lognormally distributed as is often assumed. Also, macrodispersive behavior (variance of the traveltime) is found not to be a unique function of the conductivity variance. For the parameter range examined, the third moment of the traveltime pdf varies from negatively skewed to strongly positively skewed. We also show that the Markov chain approach may give significantly different traveltime distributions when compared to the more commonly used Gaussian random field approach, even when the first- and second-order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport, and uncertainty about that choice must be considered in evaluating the results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wahid, Ali, E-mail: ali.wahid@live.com; Salim, Ahmed Mohamed Ahmed, E-mail: mohamed.salim@petronas.com.my; Yusoff, Wan Ismail Wan, E-mail: wanismail-wanyusoff@petronas.com.my
2016-02-01
Geostatistics or statistical approach is based on the studies of temporal and spatial trend, which depend upon spatial relationships to model known information of variable(s) at unsampled locations. The statistical technique known as kriging was used for petrophycial and facies analysis, which help to assume spatial relationship to model the geological continuity between the known data and the unknown to produce a single best guess of the unknown. Kriging is also known as optimal interpolation technique, which facilitate to generate best linear unbiased estimation of each horizon. The idea is to construct a numerical model of the lithofacies and rockmore » properties that honor available data and further integrate with interpreting seismic sections, techtonostratigraphy chart with sea level curve (short term) and regional tectonics of the study area to find the structural and stratigraphic growth history of the NW Bonaparte Basin. By using kriging technique the models were built which help to estimate different parameters like horizons, facies, and porosities in the study area. The variograms were used to determine for identification of spatial relationship between data which help to find the depositional history of the North West (NW) Bonaparte Basin.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nibbelink, K.A.; Sorgenfrei, M.C.; Rice, D.E.
Yombo field in the Congo is sourced from the lacustrine shales of the presalt rift stage and produces from the Albian and Cenomanian, postsalt, Sendji carbonate and Tchala Sandstone. The Yombo prospect exploration model included an upper Sendji stratigraphic trap with two components and a structural nose. The buried hill component of the trap is formed by topographic relief on the reservoir below the top Sendji unconformity. The lower Sendji slump blocks provide a high on which the upper Sendji grainstone shoal facies develop. Both depositional relief and erosion during the top Sendji unconformity contribute to the topography. An isochronmore » thick in the overlying Tchala valley-fill sediments defined a drainage pattern on the unconformity around the buried hill of the underlying upper Sendji. The facies change component is formed by the pinch-out of the grainstone shoal reservoir facies into porous, but impermeable lagoonal dolomite interbedded with anhydrite and shale. Capillary pressure measurements on the 16% porosity, 0.1 md permeability lagoonal dolomite, along with pore throat radius and buoyancy calculations, demonstrated this facies could trap a significant column of low-gravity oil at shallow depth. The Tchala Sandstone contains several separate hydrocarbon accumulations. A stratigraphic trap in the lower Tchala is formed by marine and tidal channel sandstones pinching out into lagoonal shales. The nearshore marine sandstones of the upper Tchala contain additional hydrocarbons in structural and stratigraphic traps. The stratigraphic pinch-out that cross the Yombo nose trap a significant hydrocarbon accumulation, even though the four-way structural closure is relatively small.« less
The Bouma Sequence and the turbidite mind set
NASA Astrophysics Data System (ADS)
Shanmugam, G.
1997-11-01
Conventionally, the Bouma Sequence [Bouma, A.H., 1962. Sedimentology of some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.], composed of T a, T b, T c, T d, and T e divisions, is interpreted to be the product of a turbidity current. However, recent core and outcrop studies show that the complete and partial Bouma sequences can also be interpreted to be deposits formed by processes other than turbidity currents, such as sandy debris flows and bottom-current reworking. Many published examples of turbidites, most of them hydrocarbon-bearing sands, in the North Sea, the Norwegian Sea, offshore Nigeria, offshore Gabon, Gulf of Mexico, and the Ouachita Mountains, are being reinterpreted by the present author as dominantly deposits of sandy debris flows and bottom-current reworking with only a minor percentage of true turbidites (i.e., deposits of turbidity currents with fluidal or Newtonian rheology in which sediment is suspended by fluid turbulence). This reinterpretation is based on detailed description of 21,000 ft (6402 m) of conventional cores and 1200 ft (365 m) of outcrop sections. The predominance of interpreted turbidites in these areas by other workers can be attributed to the following: (1) loose applications of turbidity-current concepts without regard for fluid rheology, flow state, and sediment-support mechanism that result in a category of 'turbidity currents' that includes debris flows and bottom currents; (2) field description of deep-water sands using the Bouma Sequence (an interpretive model) that invariably leads to a model-driven turbidite interpretation; (3) the prevailing turbidite mind set that subconsciously forces one to routinely interpret most deep-water sands as some kind of turbidites; (4) the use of our inability to interpret transport mechanism from the depositional record as an excuse for assuming deep-water sands as deposits of turbidity currents; (5) the flawed concept of high-density turbidity currents that allows room for interpreting debris-flow deposits as turbidites; (6) the flawed comparison of subaerial river currents (fluid-gravity flows dominated by bed-load transport) with subaqueous turbidity currents (sediment-gravity flows dominated by suspended load transport) that results in misinterpreting ungraded or parallel-stratified deep-sea deposits as turbidites; and (7) the attraction to use obsolete submarine-fan models with channels and lobes that require a turbidite interpretation. Although the turbidite paradigm is alive and well for now, the turbidites themselves are becoming an endangered facies!
NASA Astrophysics Data System (ADS)
Weissmann, G. S.; Hartley, A. J.; Scuderi, L. A.; Nichols, G. J.; Owen, A.; Wright, S.; Felicia, A. L.; Holland, F.; Anaya, F. M. L.
2015-12-01
Since tectonic subsidence in sedimentary basins provides the potential for long-term facies preservation into the sedimentary record, analysis of geomorphic elements in modern continental sedimentary basins is required to understand facies relationships in sedimentary rocks. We use a database of over 700 modern sedimentary basins to characterize the fluvial geomorphology of sedimentary basins. Geomorphic elements were delineated in 10 representative sedimentary basins, focusing primarily on fluvial environments. Elements identified include distributive fluvial systems (DFS), tributive fluvial systems that occur between large DFS or in an axial position in the basin, lacustrine/playa, and eolian environments. The DFS elements include large DFS (> 30 km in length), small DFS (< 30 km in length), coalesced DFS in bajada or piedmont plains, and incised DFS. Our results indicate that over 88% of fluvial deposits in the evaluated sedimentary basins are present as DFS, with tributary systems covering a small portion (1-12%) of the basin. These geomorphic elements are commonly arranged hierarchically, with the largest transverse rivers forming large DFS and smaller transverse streams depositing smaller DFS in the areas between the larger DFS. These smaller streams commonly converge between the large DFS, forming a tributary system. Ultimately, most transverse rivers become tributary to the axial system in the sedimentary basin, with the axial system being confined between transverse DFS entering the basin from opposite sides of the basin, or a transverse DFS and the edge of the sedimentary basin. If axial systems are not confined by transverse DFS, they will form a DFS. Many of the world's largest rivers are located in the axial position of some sedimentary basins. Assuming uniformitarianism, sedimentary basins from the past most likely had a similar configuration of geomorphic elements. Facies distributions in tributary positions and those on DFS appear to display specific morphologic patterns. Tributary rivers tend to increase in size in the downstream direction. Because axial tributary rivers are present in confined settings in the sedimentary basin, they migrate back and forth within a relatively narrow belt (relative to the overall size of the sedimentary basin). Thus, axial tributary rivers tend to display amalgamated channel belt form with minimal preservation potential of floodplain deposits. Chute and neck cutoff avulsions are also common on meandering rivers in these settings. Where rivers on DFS exit their confining valley on the basin margin, sediment transport capacity is reduced and sediment deposition occurs resulting in development of a 'valley exit' nodal avulsion point that defines the DFS apex. Rivers may incise downstream of the basin margin valley because of changes in sediment supply and discharge through climatic variability or tectonic processes. We demonstrate that rivers on DFS commonly decrease in width down-DFS caused by infiltration, bifurcation, and evaporation. In proximal areas, channel sands are amalgamated through repeated avulsion, reoccupation of previous channel belts, and limited accumulation space. When rivers flood on the medial to distal portions of a DFS, the floodwaters spread across a large area on the DFS surface and typically do not re-enter the main channel. In these distal areas, rivers on DFS commonly avulse, leaving a discrete sand body and providing high preservation potential for floodplain deposits. Additional work is needed to evaluate the geomorphic character of modern sedimentary basins in order to construct improved facies models for the continental sedimentary rock record. Specifically, models for avulsion, bifurcation, infiltration, and geomorphic form on DFS are required to better define and subsequently predict facies geometries. Studies of fluvial systems in sedimentary basins are also important for evaluating flood patterns and groundwater distributions for populations in these regions.
NASA Astrophysics Data System (ADS)
Matte, R. R.; Zambonato, E. E.
2012-04-01
Located in the Mucuri Basin on the continental shelf of southern Bahia state, northeast Brazil, about 70 km from the city of Caravelas,the Abrolhos archipelago is made up of five islands; Santa Barbara, Redonda, Siriba, Guarita and Sueste. The exhumed sediments in the Abrolhos archipelago are a rare record of the turbidite systems which fill the Brazilian Atlantic Basin, and are probably an unprecedented example of a plataform turbidite system (Dr. Mutti, personal communication). Despite the limited area, the outcrops display a wide facies variation produced by different depositional processes, and also allow for the observation of the layer geometries. Associated with such sedimentary rocks, the Abrolhos Volcanic Complex belongs stratigraphically to the Abrolhos Formation. These igneous rocks were dated by the Ar / Ar method, with ages ranging from 60 to 40 My, placing such Volcanic Complex between the Paleocene and Eocene. The sedimentary section is best exposed in the Santa Barbara and Redonda islands and altogether it is 70 m thick. The measured vertical sections show a good stratigraphic correlation between the rocks of the western portion of the first island and those of Redonda Island. However, there is no correlation between the eastern and western portions of Santa Barbara Island, since they are very likely interrupted by the igneous intrusion and possibly by faulting. The sedimentary stack consists of deposits with alternated regressive and transgressive episodes interpreted as high frequency sequences. The coarse facies, sandstones and conglomerates, with abrupt or erosive bases record regressive phases. On the other hand, finer sandstones and siltstones facies, which are partly bioturbated, correspond to phases of a little sediment supply. In the central and eastern portions of Santa Barbara Island, there is a trend of progradational stacking, while both in the western portion of Santa Barbara and in Redonda islands an agradational trend is observed. The predominance of layers with tabular geometry, characteristic of turbidite lobes, the presence of hummocky stratification, trace fossils typical of shallow water (Ophiomorphs and Thalassinoides), all associated with the occurrence of the carbonaceous material as well as plant fragments suggest a deltaic/ plataform depositional context. Textural features and sedimentary structures observed in the conglomerates and sandstones show the action of gravitational flows of high and low density. The fine interlaminated sandstones and siltstones later deformed as slumps or slides, and conglomerates with oriented clasts indicate, respectively, mass movements and action of debris flow. Conglomeratic lags levels record a bypass phenomenon. There are no biostratigraphic data in these studied outcrops. However, petrographic analyses revealed the presence of fragments of igneous rocks (basalts and diabases) in both sandstones and conglomerates, suggesting a relative contemporaneity between igneous activity and sediment deposition. Futhermore, petrographic analyses also found poor permo-porous conditions in the reservoirs due to the presence of fragments of volcanic rocks and the abundance of intraclasts / pseudomatrix.
Warwick, Peter D.; Flores, Romeo M.; Nichols, Douglas J.; Murphy, Edward C.; Pashin, Jack C.; Gastaldo, Robert A.
2004-01-01
The Fort Union Formation in the Williston Basin of North Dakota, South Dakota, and Montana comprises chronostratigraphic and depositional sequences of Paleocene age. Individual chronostratigraphic sequences are defined by palynostratigraphic (pollen and spore) biozones and radiometric (40Ar/39Ar) ages obtained from tonsteins or volcanic ash layers. Analyses of depositional sequences are based on lithofacies constrained by the radiometric ages and biozones.The lower Paleocene (biozones P1-P3) contains three marine parasequences (landward stepping) in southwestern North Dakota that sequentially onlapped westward between 65 and 61 Ma (lower Ludlow and Cannonball Members). Maximum flooding (transgressive systems tract) occurred during an approximate 1-m.y. interval from 65 to 64 Ma, which regionally is correlated biostratigraphically to a tidally influenced, distributary-shoreface, and fluvial-channel complex in the Cave Hills, northwestern South Dakota, and to channel-dominated fluvial (low-stand incised paleovalley systems) and tidally influenced, flood-plain-deltaic transition facies in the Ekalaka area of southeastern Montana.The progradational parasequences in the Cannonball Member consist of shore-face sandstone beds (with ravinement lag deposits) deposited by strand-plain barrier systems. Landward of the barrier systems, tidal-estuarine and mire deposits included thick but laterally discontinuous peat accumulations (e.g., Beta and Yule coal beds in the Ludlow Member, southwestern North Dakota). However, landward of the coastal deposits, the laterally equivalent T-Cross-Big Dirty coal zone (dated 64.78 Ma) in southeastern Montana formed as thick, laterally extensive peat accumulations in mires in a fluvial setting. In the flood-plain-deltaic, tidal transition zone near Ekalaka, Montana, the Ludlow Member consists of flood-plain facies, discontinuous coal beds, and rooted and burrowed horizons that contain the marine or brackish trace fossil Skolithos. The flood-plain-deltaic tidal transition zone facies are incised by a massive, agglomerated channel sandstone complex (paleovalley fill) that is exposed along the modern Snow Creek drainage south of Mill Iron, Montana. The flood-plain-tidal transition zone was reworked during the maximum sea level highstand during the early Paleocene. This event was followed by a fall of sea level and deposition of the paleovalley fill.Sea level fall during the mid-Paleocene (biozones P3 and P4) produced a regressive shallow-marine and lower deltaic tidal system (seaward stepping) that deposited strata that thin toward the east. These strata are overlain by a widespread paleosol (Rhame bed) and, in turn, a lignite-bearing fluvial facies (Tongue River Member) containing the laterally persistent Harmon-Hanson coal zone (61.23 Ma). Upper Paleocene biozone P5 is represented by fluvial, coal-bearing strata that contain several economically minable coal beds (HT Butte, Hagel, and Beulah-Zap zones, Sentinel Butte Member).The Fort Union Formation of the Williston Basin contains significant coal resources. These coal deposits are now being explored for their potential coal-bed gas resources. A better understanding of the depositional setting for these deposits can lead to improved exploration and exploitation practices and a better understanding of regional paleogeography and paleoclimate during the Paleocene.
Chiappe, L.; Rivarola, D.; Cione, A.; Fregenal-Martinez, M.; Sozzi, H.; Buatois, L.; Gallego, O.; Laza, J.; Romero, E.; Lopez-Arbarello, A.; Buscalioni, A.; Marsicano, C.; Adamonis, S.; Ortega, F.; McGehee, S.; Di, Iorio O.
1998-01-01
A sedimentological analysis of the basal section of the Early Cretaceous, lacustrine Lagarcito Formation at "Loma del Pterodaustro" (San Luis, Argentina) and a summary of its biological components are presented. Three sedimentological facies can be recognized in the basal sequence of the Lagarcito Formation. Fossil remains are particularly abundant in laminated claystones of a facies interpreted as deposits formed in offshore areas of the lake. The preservation of delicate structures allows recognition of these deposits as a Konservat Lagersta??tte. Up to now, rocks at "Loma del Pterodaustro" have yielded plants, conchostracans, semionotid and pleuropholid fishes, pterodactyloid pterosaurs, and a variety of invertebrate traces. The chronology of the Lagarcito Formation is discussed and it is concluded that this unit is of Albian age. The palaeoenvironment of deposition of the basal sequence of the Lagarcito Formation at "Loma del Pterodaustro" is interpreted as a perennial, shallow lake developed within an alluvial plain, under semiarid climatic conditions.
Maier, Katherine L.; Gatti, Emma; Wan, Elmira; Ponti, Daniel J.; Pagenkopp, Mark; Starratt, Scott W.; Olson, Holly A.; Tinsley, John
2015-01-01
We document characteristics of tephra, including facies and geochemistry, from 27 subsurface sites in the Sacramento-San Joaquin Delta, California, to obtain stratigraphic constraints in a complex setting. Analyzed discrete tephra deposits are correlative with: 1) an unnamed tephra from the Carlotta Formation near Ferndale, California, herein informally named the ash of Wildcat Grade (<~1.450 - >~0.780 Ma), 2) the Rockland ash bed (~0.575 Ma), 3) the Loleta ash bed (~0.390 Ma), and 4) a middle Pleistocene tephra resembling volcanic ash deposits at Tulelake, California, and Pringle Falls, Bend, and Summer Lake, Oregon, herein informally named the dacitic ash of Hood (<~0.211 to >~0.180 Ma, correlated age). All four tephra are derived from Cascades volcanic sources. The Rockland ash bed erupted from the southern Cascades near Lassen Peak, California, and occurs in deposits up to >7 m thick as observed in core samples taken from ~40 m depth below land surface. Tephra facies and tephra age constraints suggest rapid tephra deposition within fluvial channel and overbank settings, likely related to flood events shortly following the volcanic eruption. Such rapidly deposited tephra are important chronostratigraphic markers that suggest varying sediment accumulation rates (~0.07-0.29 m/1000 yr) in Quaternary deposits below the modern Sacramento-San Joaquin Delta. This study provides the first steps in developing a subsurface Quaternary stratigraphic framework necessary for future hazard assessment.
NASA Astrophysics Data System (ADS)
Suriano, J.; Mardonez, D.; Mahoney, J. B.; Mescua, J. F.; Giambiagi, L. B.; Kimbrough, D.; Lossada, A.
2017-04-01
The South Central Andes at 30°S represent a key area to understand the Andes geodynamics as it is in the middle of the flat slab segment and all the morphotectonic units of the Central Andes are well developed. This work is focused in the proximal synorogenic deposits of the Western Precordillera, in the La Tranca valley, in order to unravel the uplift sequence of this belt. Nine facies associations were recognized; most of them represent piedmont facies with local provenance from Precordillera and were deposited in the wedge-top depozone, as is expected for proximal sinorogenic deposits. However there are intercalations of transference fluvial systems, which show mixed provenance indicating that Permo-Triassic igneous rocks were already exposed to the west (Frontal Cordillera). There are also lacustrine deposits which are interpreted as the result of damming by fault activity at east of the studied basin. Finally, two maximum depositional ages at ca. 11 Ma and 8 Ma of these deposits indicate that the onset of uplift of the Precordillera at 30°S is little older than 11 Ma. These data change two previous ideas about the evolution of the Precordillera: its uplift at 30° S is younger than proposed by previous works and it is nearly synchronous along strike.
Stepped fans and facies-equivalent phyllosilicates in Coprates Catena, Mars
NASA Astrophysics Data System (ADS)
Grindrod, P. M.; Warner, N. H.; Hobley, D. E. J.; Schwartz, C.; Gupta, S.
2018-06-01
Stepped fan deposits and phyllosilicate mineralogies are relatively common features on Mars but have not previously been found in association with each other. Both of these features are widely accepted to be the result of aqueous processes, but the assumed role and nature of any water varies. In this study we have investigated two stepped fan deposits in Coprates Catena, Mars, which have a genetic link to light-toned material that is rich in Fe-Mg phyllosilicate phases. Although of different sizes and in separate, but adjacent, trough-like depressions, we identify similar features at these stepped fans and phyllosilicates that are indicative of similar formation conditions and processes. Our observations of the overall geomorphology, mineralogy and chronology of these features are consistent with a two stage formation process, whereby deposition in the troughs first occurs into shallow standing water or playas, forming fluvial or alluvial fans that terminate in delta deposits and interfinger with interpreted lacustrine facies, with a later period of deposition under sub-aerial conditions, forming alluvial fan deposits. We suggest that the distinctive stepped appearance of these fans is the result of aeolian erosion, and is not a primary depositional feature. This combined formation framework for stepped fans and phyllosilicates can also explain other similar features on Mars, and adds to the growing evidence of fluvial activity in the equatorial region of Mars during the Hesperian and Amazonian.
NASA Astrophysics Data System (ADS)
Spychala, Y. T.; Hodgson, D. M.; Flint, S. S.; Mountney, N. P.
2015-06-01
Intraslope lobe deposits provide a process record of the infill of accommodation on submarine slopes and their recognition enables the accurate reconstruction of the stratigraphic evolution of submarine slope systems. Extensive exposures of discrete sand-prone packages in Units D/E and E, Fort Brown Formation, Karoo Basin, South Africa, permit analysis of the sedimentology and stacking patterns of three intraslope lobe complexes and their palaeogeographic reconstruction via bed-scale analysis and physical correlation of key stratal surfaces. The sand-prone packages comprise tabular, aggradationally to slightly compensationally stacked lobe deposits with constituent facies associations that can be attributed to lobe axis, lobe off-axis, lobe-fringe and distal lobe-fringe environments. Locally, intraslope lobe deposits are incised by low aspect ratio channels that mark basinward progradation of the deepwater system. The origin of accommodation on the slope for lobe deposition is interpreted to be due to differential compaction or healing of scars from mass wasting processes. The stacking patterns and sedimentary facies arrangement identified in this study are distinct from those of more commonly recognized basin-floor lobe deposits, thereby enabling the establishment of recognition criteria for intraslope lobe deposits in other less well exposed and studied fine-grained systems. Compared to basin floor lobes, intraslope lobes are smaller in volume, influenced by higher degrees of confinement, and tend to show aggradational stacking patterns.
NASA Astrophysics Data System (ADS)
West, L. M.; Steel, R.; Olariu, C.
2017-12-01
Study of seafloor bathymetry, numerical and physical modeling, and direct observation of turbidity currents increasingly suggests that sediment gravity flows over moderately steep basin slopes commonly reach Froude supercritical states. However, interpretation of supercritical features in deepwater outcrops remains limited in both quantity and scope, leaving stratigraphic qualities of supercritical deposits poorly understood. Slope turbidites on along steep margins of the early Gulf of California are exposed in seismic scale outcrops of the Late Miocene Lycium Member in the Fish Creek-Vallecito Basin of south-central California where they build 100s m-thick slopes. Measured sections, bedding orientation, and facies descriptions collected both for strike- and dip-oriented sections are combined with photogrammetric to characterize selected bedforms in three-dimensions. Analysis shows upflow accreting stacks of 10s of beds into a variety of bedforms with wavelengths and widths tens to hundreds of meters in scale and heights of 5-15 m. Beds have low-angle sinusoidal to sigmoidal down dip geometries and lens or lobate strike geometries. Bedding facies are dominated by 5-50 cm thick, normally graded, laminated sandstones capped by 1-3 cm bioturbated muds. Sandstones transition into interbedded sandstones and silty mudstones or 1-2 m thick silty mudstones. In places, Present also are incisional, steeply dipping backsets of 0.5-3 m-thick boulder-rich, amalgamated, structureless sandtones with abundant soft sediment deformation. that can transition downflow into arching, thinning, normally-graded sandstones. These bedforms are interpreted here as large-scale, long-lived supercritical deposits that represent preserved antidune and possibly cyclic steps bedforms or as-yet undefined bedforms incorporating by not bound by hydraulic jumps. This characterization provides new understanding of the nature of supercritical deposits and an important framework criteria for recognizing similar deposits elsewhere.
Hydrogeologic Framework of the Salt Basin, New Mexico and Texas
NASA Astrophysics Data System (ADS)
Ritchie, A. B.; Phillips, F. M.
2010-12-01
The Salt Basin is a closed drainage basin located in southeastern New Mexico (Otero, Chaves, and Eddy Counties), and northwestern Texas (Hudspeth, Culberson, Jeff Davis, and Presidio Counties), which can be divided into a northern and a southern system. Since the 1950s, extensive groundwater withdrawals have been associated with agricultural irrigation in the Dell City, Texas region, just south of the New Mexico-Texas border. Currently, there are three major applications over the appropriations of groundwater in the Salt Basin. Despite these factors, relatively little is known about the recharge rates and storage capacity of the basin, and the estimates that do exist are highly variable. The Salt Basin groundwater system was declared by the New Mexico State Engineer during 2002 in an attempt to regulate and control growing interest in the groundwater resources of the basin. In order to help guide long-term management strategies, a conceptual model of groundwater flow in the Salt Basin was developed by reconstructing the tectonic forcings that have affected the basin during its formation, and identifying the depositional environments that formed and the resultant distribution of facies. The tectonic history of the Salt Basin can be divided into four main periods: a) Pennsylvanian-to-Early Permian, b) Mid-to-Late Permian, c) Late Cretaceous, and d) Tertiary-to-Quaternary. Pennsylvanian-to-Permian structural features affected deposition throughout the Permian, resulting in three distinct hydrogeologic facies: basin, shelf-margin, and shelf. Permian shelf facies rocks form the primary aquifer within the northern Salt Basin, although minor aquifers occur in Cretaceous rocks and Tertiary-to-Quaternary alluvium. Subsequent tectonic activity during the Late Cretaceous resulted in the re-activation of many of the earlier structures. Tertiary-to-Quaternary Basin-and-Range extension produced the current physiographic form of the basin.
NASA Astrophysics Data System (ADS)
Brandano, Marco; Civitelli, Giacomo
2007-10-01
The soft bottom of the Mediterranean continental shelf is characterized by a heterozoan skeletal assemblage ( sensu [James, N.P., 1997. The cool-water carbonate depositional realm. In: James, N.P., Clarke, J. (Eds), Cool-water Carbonates. Spec. Publ. Soc. Sediment. Geol., vol. 56, pp.1-20.]). Although the contemporary presence of terrigenous and skeletal carbonate sediments has been well established [Tortora, P., 1996. Depositional and erosional coastal processes during the last postglacial sea-level rise: an example from the Central Tyrrhenian continental shelf (Italy). J. Sed. Res. 66, 391-405.; Fornós, J.J., Ahr, W.M., 1997. Temperate carbonates on a modern, low-energy, isolated ramp: the Balearic Platform, Spain. Journal of Sedimentary Research , 67, 364-373.; Fornós, J.J., Ahr, W.M., 2006. Present-day temperate carbonate sedimentation on the Balearic Platform, western Mediterranean: compositional and textural variation along a low-energy isolated ramp. In: Pedley, H.M., Carannante, G. (Eds.) 2006, Cool-water Carbonates: Depositional Systems and Palaeoenvironmental Controls. Geological Society, London, Special Publications, 255, pp. 121-135], the interactions between carbonate and terrigenous-siliciclastic sedimentation has not been documented well enough. A total of 33 surface sediment samples from the Pontinian shelf (Tyrrhenian Sea, central Mediterranean) have been analysed. Sampling stations range from 15 to 250 mwd (meter water depth) and are located along five transects (PonzaW, PonzaNW, Ponza NE, Ponza E, Zannone), plus four samples collected around Palmarola Island. Sectors colonized by seagrass meadows have not been sampled. A total of 6 sedimentary facies (F) and 10 microfacies (mf) have been recognized by using component analyses, grain size percentage, sorting, carbonate content and authigenic mineralization rate. These facies and microfacies represent the Pontian Islands shelf sedimentation, in the interval between the upper infralittoral and the epibathyal zones that represent shelf-break and upper slope sedimentation. The Maerl facies (F4a,b; mf4a,b) and the skeletal sands (F2a,b; mf2a1, mf2a2, mf2b) fall within the circalittoral zone. The circalittoral zone in the water depth interval between 82 m and 112 m display relict facies (F6, mf6). Finally facies F5 (Siliciclastic sands) includes subfacies F5b (mf5b), located in the circalittoral zone at depths of 49 to 101 mwd and restricted to the western and eastern sectors of Ponza, and subfacies F5a in the upper infralittoral zone (15 mwd/25 mwd) where erosional processes prevail. Carbonate content analyses indicate that maximum carbonate production on the Pontinian shelf took place in the 60-80 mwd interval. Facies F4 (Maerl) represents the environment characterized by the highest carbonate production rates. In the Pontian area siliciclastic-carbonate mixing took place in the infralittoral zone and in the lower circalittoral zone. In the infralittoral zone erosional processes on the rocky shoreline produced lithoclasts and vulcanoclastic deposits that were reworked by wave-induced near-shore currents. In the lower circalittoral zone the prolific production by photic biota (red algae) ends, while skeletal remains of the aphotic environment mixes with planktonic sediments characterized by low carbonate values. Sand (63 μm-2 mm) is the dominant grain size class, however gravel-dominated facies (F4 Maerl) are present in water depths (50 to 112 mwd) which are significantly below the storm wave base. Glauconite mineralization appears on the Pontinian shelf from 50 mwd and increases in abundance along the deeper bathymetries. The compositional characteristics of relict facies F6 shows the concurrence of biota assemblages of the infralittoral and circalittoral zones, likely representing the record of the last Holocene transgressive event (18 ky) and expressed by the overlapping of components of different environments.
NASA Astrophysics Data System (ADS)
Drake, William R.; Umhoefer, Paul J.; Griffiths, Alexis; Vlad, Ann; Peters, Lisa; McIntosh, William
2017-11-01
The late Oligocene to mid-Miocene volcanic and volcaniclastic rocks of the Comondú Group are well exposed along the Main Rift Escarpment of Baja California Sur from the Bahía de La Paz region to Bahía Concepción. New mapping and stratigraphic analysis of the Comondú Group from Bahía de La Paz to Loreto reveal facies trends and correlations that form the foundation for a continuous stratigraphic framework for the Comondú Group along a 300 km-long transect on the eastern coast of the Baja California peninsula. Broad but distinct lithostratigraphic trends, alluvial fan facies, and volcanic and volcaniclastic facies record an overall coarsening-upwards package that includes ignimbrite deposits within increasingly proximal alluvial fan deposits, both derived from the east. Geochronology of the unit, including 32 isotope ages and 12 previously unpublished 40Ar/39Ar ages, provide the timing of four main increasingly proximal depositional events. Non-marine sandstone, defining the base of the Comondú Group, was first deposited between 26 Ma and 24 Ma. Emplacement of rhyolitic ignimbrites initiated between 24 Ma and 23 Ma and marked a westward expansion of volcanic activity affiliated with the Sierra Madre Occidental ignimbrite sequences in southern Sinaloa, western Durango, and northern Nayarit. A change in volcanism occurred at 19 Ma to 18 Ma with more ignimbrites, increased intermediate compositions, and the appearance of local vents and proximal volcanic facies. A final localized change of volcanism occurred from 14 to 12 Ma in the Loreto area with an increase of proximal alluvial fan deposits and local volcanoes in the Upper Comondú Group. The bulk of the Upper Comondú Group is absent south of the Loreto area and has either been removed by erosion as a source for the Magdalena Fan in the Pacific Ocean, or was focused primarily in the Loreto area and northward. We use a pre-rift tectonic reconstruction of the Gulf of California to align broad stratigraphic trends along the peninsula, the Gulf conjugate margins, and within the Gulf. The Cascadia arc of Oregon and northern California may be a modern analog for the Comondú Group with a linear volcanic arc formed above shrinking subducting microplates, and a broad backarc region of moderate extension and scattered volcanism.
NASA Astrophysics Data System (ADS)
Sitaula, R. P.; Aschoff, J.
2013-12-01
Regional-scale sequence stratigraphic correlation, well log analysis, syntectonic unconformity mapping, isopach maps, and depositional environment maps of the upper Mesaverde Group (UMG) in Uinta basin, Utah suggest higher accommodation in northeastern part (Natural Buttes area) and local development of lacustrine facies due to increased subsidence caused by uplift of San Rafael Swell (SRS) in southern and Uinta Uplift in northern parts. Recently discovered lacustrine facies in Natural Buttes area are completely different than the dominant fluvial facies in outcrops along Book Cliffs and could have implications for significant amount of tight-gas sand production from this area. Data used for sequence stratigraphic correlation, isopach maps and depositional environmental maps include > 100 well logs, 20 stratigraphic profiles, 35 sandstone thin sections and 10 outcrop-based gamma ray profiles. Seven 4th order depositional sequences (~0.5 my duration) are identified and correlated within UMG. Correlation was constructed using a combination of fluvial facies and stacking patterns in outcrops, chert-pebble conglomerates and tidally influenced strata. These surfaces were extrapolated into subsurface by matching GR profiles. GR well logs and core log of Natural Buttes area show intervals of coarsening upward patterns suggesting possible lacustrine intervals that might contain high TOC. Locally, younger sequences are completely truncated across SRS whereas older sequences are truncated and thinned toward SRS. The cycles of truncation and thinning represent phases of SRS uplift. Thinning possibly related with the Uinta Uplift is also observed in northwestern part. Paleocurrents are consistent with interpretation of periodic segmentation and deflection of sedimentation. Regional paleocurrents are generally E-NE-directed in Sequences 1-4, and N-directed in Sequences 5-7. From isopach maps and paleocurrent direction it can be interpreted that uplift of SRS changed route of sediment supply from west to southwest. Locally, paleocurrents are highly variable near SRS further suggesting UMG basin-fill was partitioned by uplift of SRS. Sandstone composition analysis also suggests the uplift of SRS causing the variation of source rocks in upper sequences than the lower sequences. In conclusion, we suggest that Uinta basin was episodically partitioned during the deposition of UMG due to uplift of Laramide structures in the basin and accommodation was localized in northeastern part. Understanding of structural controls on accommodation, sedimentation patterns and depositional environments will aid prediction of the best-producing gas reservoirs.
Kirschbaum, Mark A.; Mercier, Tracey J.
2013-01-01
Regional variations in thickness and facies of clastic sediments are controlled by geographic location within a foreland basin. Preservation of facies is dependent on the original accommodation space available during deposition and ultimately by tectonic modification of the foreland in its postthrusting stages. The preservation of facies within the foreland basin and during the modification stage affects the kinds of hydrocarbon reservoirs that are present. This is the case for the Cretaceous Mowry Shale and Frontier Formation and equivalent strata in the Rocky Mountain region of Colorado, Utah, and Wyoming. Biostratigraphically constrained isopach maps of three intervals within these formations provide a control on eustatic variations in sea level, which allow depositional patterns across dip and along strike to be interpreted in terms of relationship to thrust progression and depositional topography. The most highly subsiding parts of the Rocky Mountain foreland basin, near the fold and thrust belt to the west, typically contain a low number of coarse-grained sandstone channels but limited sandstone reservoirs. However, where subsidence is greater than sediment supply, the foredeep contains stacked deltaic sandstones, coal, and preserved transgressive marine shales in mainly conformable successions. The main exploration play in this area is currently coalbed gas, but the enhanced coal thickness combined with a Mowry marine shale source rock indicates that a low-permeability, basin-centered play may exist somewhere along strike in a deep part of the basin. In the slower subsiding parts of the foreland basin, marginal marine and fluvial sandstones are amalgamated and compartmentalized by unconformities, providing conditions for the development of stratigraphic and combination traps, especially in areas of repeated reactivation. Areas of medium accommodation in the most distal parts of the foreland contain isolated marginal marine shoreface and deltaic sandstones that were deposited at or near sea level lowstand and were reworked landward by ravinement and longshore currents by storms creating stratigraphic or combination traps enclosed with marine shale seals. Paleogeographic reconstructions are used to show exploration fairways of the different play types present in the Laramide-modified, Cretaceous foreland basin. Existing oil and gas fields from these plays show a relatively consistent volume of hydrocarbons, which results from the partitioning of facies within the different parts of the foreland basin.
Kirschbaum, Mark A.; Schenk, Christopher J.
2010-01-01
Valley-fill deposits form a significant class of hydrocarbon reservoirs in many basins of the world. Maximizing recovery of fluids from these reservoirs requires an understanding of the scales of fluid-flow heterogeneity present within the valley-fill system. The Upper Cretaceous Dakota Sandstone in the San Rafael Swell, Utah contains well exposed, relatively accessible outcrops that allow a unique view of the external geometry and internal complexity of a set of rocks interpreted to be deposits of an incised valley fill. These units can be traced on outcrop for tens of miles, and individual sandstone bodies are exposed in three dimensions because of modern erosion in side canyons in a semiarid setting and by exhumation of the overlying, easily erodible Mancos Shale. The Dakota consists of two major units: (1) a lower amalgamated sandstone facies dominated by large-scale cross stratification with several individual sandstone bodies ranging in thickness from 8 to 28 feet, ranging in width from 115 to 150 feet, and having lengths as much as 5,000 feet, and (2) an upper facies composed of numerous mud-encased lenticular sandstones, dominated by ripple-scale lamination, in bedsets ranging in thickness from 5 to 12 feet. The lower facies is interpreted to be fluvial, probably of mainly braided stream origin that exhibits multiple incisions amalgamated into a complex sandstone body. The upper facies has lower energy, probably anastomosed channels encased within alluvial and coastal-plain floodplain sediments. The Dakota valley-fill complex has multiple scales of heterogeneity that could affect fluid flow in similar oil and gas subsurface reservoirs. The largest scale heterogeneity is at the formation level, where the valley-fill complex is sealed within overlying and underlying units. Within the valley-fill complex, there are heterogeneities between individual sandstone bodies, and at the smallest scale, internal heterogeneities within the bodies themselves. These different scales of fluid-flow compartmentalization present a challenge to hydrocarbon exploration targeting paleovalley deposits, and producing fields containing these types of reservoirs may have significant bypassed pay, especially where well spacing is large.
NASA Astrophysics Data System (ADS)
Mosher, D. C.; Baldwin, K.; Gebhardt, C.
2016-12-01
Barriers to data collection such as perennial ice cover, climate, and remoteness have contributed to a paucity of geologic data in the Arctic. The last decade, however, has seen a multi-national push to increase the quantity and extent of data available at high latitudes. With increased availability of geophysical and geological data holdings, we expand on previous mapping initiatives by creating a comprehensive surficial geology map as a layer to the International Bathymetric Chart of the Arctic Ocean (IBCAO), providing a way to collectively analyze physiography, morphology and geology. Acoustic facies derived from subbottom profiles, combined with morphology illuminated from IBCAO and multibeam bathymetric datasets, and ground truth data compiled from cores and samples are used to map surficial geology units. We identified over 25 seismo-acoustic facies leading to interpretation of 12 distinct geologic units for the Arctic Ocean. The largest variety of seismic facies occurs on the shelves, which demonstrate the complex ice-margin history (e.g. chaotic bottom echoes with amorphous subbottom reflections that imply ice scouring processes). Shelf-crossing troughs generally lead to trough mouth fans on the continental margin with characteristic glaciogenic debris flow deposits (acoustically transparent units) comprising the bulk of the sedimentary succession. Other areas of continental slopes show a variety of facies suggesting sediment mass failure and turbidite deposition. Vast areas of the deep water portion of the Arctic are dominated by parallel reflections, indicative of hemi-pelagic and turbidity current deposition. Some deep water parts of the basin, however, show evidence of current reworking (sigmoidal reflections within bedforms), and contain deep sea channels with thalwegs (bright reflections within channels) and levee deposits (reflection pinch-out). These results delineated in the surficial geology map provide a comprehensive database of regional geologic information of the Arctic Ocean that can be applied to a variety of disciplines, including the study of Arctic sedimentary processes, climatologic and oceanographic processes, environmental and geohazard risk assessment, resource management, and Extended Continental Shelf mapping.
Miocene reef carbonates of Mariana Islands
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegrist, H.G. Jr.
1988-02-01
Miocene carbonates in the southern Mariana Islands are impressive for their lithologic diversity, thicknesses (over 250 m), and geographic extent (> 20% combined outcrop coverage over four major high islands: Guam, Rota, Tinian and Saipan). Sections are dominated either by lagoonal algal-foraminiferal wackestones and mudstones with locally abundant high-energy shelly-skeletal facies, or by rubbly to muddy, fore-reef-to-bank deposits of packstones and grainstones with highly diverse and variable biogenic clasts. Fresh to deeply weathered volcaniclastic material may comprise at least 80% of some high-energy fore-reef facies, whereas lagoonal and bank deposits usually contain less than 0.5% terrigenous material. Surprisingly, the Miocenemore » in the Marianas lacks almost completely any reef-core facies. Several poorly developed coral-rich mounds on Saipan and localized laminated red algal buildups on Guam appear to constitute the extant reef-wall facies in the Miocene. The lack of buildups may be a matter of differential survival; it may result from headland erosion and benching associated with emergence of narrow reef tracts as has been postulated by others for south Guam. Alternatively, the authors are proposing that Miocene bathymetry and the volume of terrigenous influx militated against significant reef core formation. Radiometric age dating of these reef carbonates has proven unsuccessful because pervasive diagenesis has transformed the entire Miocene section into low-magnesium calcite with minor and occasional dolomite. Freshwater phreatic diagenesis accounts for the principal porosity variation and trace element distribution.« less
NASA Astrophysics Data System (ADS)
Ishihara, Yoshiro; Sasaki, Yasunori; Sasaki, Hana; Onishi, Yuri
2016-04-01
Fine-grained sediment gravity flow deposits induced by flood and lake slope failure events are frequently intercalated in lacustrine successions. When sediment gravity flow deposits are present in varved sediments, it is suggested that they provide valuable information about sediment gravity flows, because they can easily trace laterally and can give the magnitude of erosion and recurrence interval of events. In addition, because large sedimentary bodies of stacked sediment gravity flow deposits in varved sediments of a calm lake are not suggested, a relatively simple depositional environment is expected. In the present study, we analysed sedimentary facies of sediment gravity flow deposits in varved lacustrine diatomites in the Middle Pleistocene Hiruzenbara and Miyajima formations in Japan, and concluded a depositional model of the lacustrine sediment gravity flow deposits. Varved diatomites: The Hiruzenbara Fm., a dammed lake fill as foots of Hiruzen Volcanos, is deposited during an interglacial period during MIS12 to 15. Varves of ca. 8000 yr were measured in a 20 m intercalating flood and lake slope failure-induced sediment gravity flow deposits. The Miyajima Fm., distributed in a paleo-caldera lake in NE Japan, includes many sediment gravity flow deposits possibly originated from fandeltas around the lake. These formations have differences in their depositional setting; the Hiruzebara Fm. was deposited in a large lake basin, whereas the Miyajima Fm. was deposited in a relatively small basin. Because of the depositional setting, intercalation of volcaniclastics is dominant in the Miyajima Fm. Lacustrine sediment gravity flow deposits: Sediment gravity flow deposits in both formations can be classified into flood- and lake slope failure-induced types based on the sedimentary facies. Composites of the both types are also found. Flood-induced types comprise fine-grained silts dominated by carbonaceous fragments, whereas lake slope failure-induced types are dominated by rip-up clasts of diatomite. The former is well continued in outcrops; however, the thickness of the latter is changeable and the lower contact is erosive. In the Hirzenbara Fm., flood-induced type includes epiphytic diatom valves as river inflows, whereas slope failure-induced type is composed of diatom valves of varved diatomite. Flood-induced types are suggested to be classified into hyperpycnal flow and hypopycnal flow types with regard to the presence of basal erosion. On the other hand, slope failure-induced types can be interpreted as debris flow deposits occurred in the lakes. Differences in the two types are also shown as bed-thickness frequency distributions indicating event magnitude.
NASA Astrophysics Data System (ADS)
Ngecu, Wilson M.; Gaciri, Steve J.
1995-10-01
The greenstone belt of the Tanzanian shield in Western Kenya is composed of two supracrustal successions, which form the Nyanzian and Kavirondian Groups. The Nyanzian Group at the base is composed of mafic tholeiitic basalts, calc-alkaline dacites and rhyolites. The group is unconformably overlain by the Kavirondian Group. During recent field mapping, the Kavirondian Group was divided into three formations. The Shivakala Formation consists of thickly bedded basal conglomerates, which are interbedded with thin sandstone beds. The Igukhu Formation conformably overlies the Shivakala Formation and is composed of thickly and locally thinly bedded greywacke. The uppermost Mudaa Formation is composed of blocky mudstones and thinly laminated shales. A high proportion of volcanic, granitic and chert pebbles in the conglomerates, along with abundant quartz, feldspars and mudstone fragments in the greywacke, indicates a mixed provenance of volcanic, granitic and recycled sedimentary rocks. Primary sedimentary structures and lithofacies associations indicate that the conglomerates were deposited in an alluvial fan/fan-delta setting. The greywackes represent proximal turbidites while the mudstone and shales were deposited mainly as distal turbidites. In the study area there is no evidence of transitional nearshore or shallow marine facies transitional to the continental and deep marine facies.
Kelly, Karen; Slack, John; Selby, David
2009-01-01
The Brooks Range contains enormous accumulations of zinc and copper, either as VMS or sediment-hosted deposits. The Ruby Creek and Omar deposits are Cu-Co stratabound deposits associated with dolomitic breccias. Numerous volcanogenic Cu-Zn (+/-Ag, Au) deposits are situated ~20 km north of the Ruby Creek deposit. The carbonate-hosted deposits consist of chalcopyrite and bornite that fill open spaces, replace the matrix of the breccias, and occur in later cross-cutting veins. Cobaltiferous pyrite, chalcocite, minor tennantite-tetrahedrite, galena, and sphalerite are also present. At Ruby Creek, phases such as carrollite, renierite, and germanite occur rarely. The deposits have undergone post-depositional metamorphism (Ruby Creek, low greenschist facies; Omar, blueschist facies). The unusual geochemical signature includes Cu-Co +/- Ag, As, Au, Bi, Ge, Hg, Sb, and U with sporadic high Re concentrations (up to 2.7 ppm). New Re-Os data were obtained for chalcopyrite, bornite, and pyrite from the Ruby Creek deposit (analyses of sulfides from Omar are in progress). The data show extremely high Re abundances (hundreds of ppb, low ppm) and contain essentially no common Os. The Re-Os data provide the first absolute ages of ore formation for the Ruby Creek deposit and demonstrate that the Re-Os systematics of pyrite, chalcopyrite, and bornite are unaffected by greenschist metamorphism. The Re-Os data show that the main phase of Cu mineralization occurred at 384 +/-4.2 Ma, which coincides with zircon U-Pb ages from igneous rocks that are spatially and genetically associated with VMS deposits. This suggests a temporal link between regional magmatism and hydrothermal mineralization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurst, J.M.; Lapointe, P.A.; Nyein, U.K.
Three Oligocene-Miocene carbonate depositional morphologies commonly occur: shoals, reefs, and isolated platforms. Lenticular shoals (0-25 m thick, 1 km long) are stacked and intercalated with siliciclastic mudstones. Facies include trough/festoon cross-bedded benthic foram grainstones passing laterally and vertically into red-algal dominated graded-laminated beds, bioturbated silty calcareous mudstone, and siliciclastic sandy foram wackestone and packstone. The morphology and facies are hydrodynamically controlled. Pinnacle reefs (1-2 km[sup 2]) dominated by red-algae, branching corals, and large mollusks occur on structure or aligned within shelf mudstones. The latter location reflects low sedimentation rates and hydrodynamic control. Isolated platforms (up to 150 km[sup 2]) aremore » environmental mosaics of marginal path reefs and shoals, interior lagoons, and islands plus marginal slopes. Facies are similar to shoals and reefs except there are more muddy fabrics and less high-energy facies. They develop on tilted fault blocks or eroded submerged arcs in the offshore Gulf of Martaban, distal to the ancestral Irrawaddy delta.« less
NASA Astrophysics Data System (ADS)
Palma, Ricardo M.; Kietzmann, Diego A.; Bressan, Graciela S.; Martín-Chivelet, Javier; López-Gómez, José; Farias, María E.; Iglesias Llanos, María P.
2013-11-01
The La Manga Formation consists of marine carbonates and represents most of the sedimentary record of the Callovian-Oxfordian in the Neuquén Basin. Three localities in the southern Mendoza province were studied and their cyclicity was determined by means of facies analysis and their vertical arrangement. Facies of inner ramp, that were deposited in extremely shallow-water environments with intermittent subaerial exposures have been broken down into shallow subtidal, and intertidal-supratidal environments. Shallow subtidal facies are arranged into decimetre scale upward-shallowing cycles composed of marls, laminated or massive mudstones or bioclastic wackestones and intraclastic wackestone-packstones. Intertidal-supratidal centimetre-scale cycles consist of an upward-shallowing succession of restricted facies, overlaid by horizontal or crinkle microbial laminites, flat pebble conglomerates or breccias beds. The defined cycles show a shallowing upward trend in which the evidence of relative sea-level lowering is accepted. The interpretation of Fischer plots allowed the recognition of changes in accommodation space.
NASA Astrophysics Data System (ADS)
Zhang, H.; Harter, T.; Sivakumar, B.
2005-12-01
Facies-based geostatistical models have become important tools for the stochastic analysis of flow and transport processes in heterogeneous aquifers. However, little is known about the dependency of these processes on the parameters of facies- based geostatistical models. This study examines the nonpoint source solute transport normal to the major bedding plane in the presence of interconnected high conductivity (coarse- textured) facies in the aquifer medium and the dependence of the transport behavior upon the parameters of the constitutive facies model. A facies-based Markov chain geostatistical model is used to quantify the spatial variability of the aquifer system hydrostratigraphy. It is integrated with a groundwater flow model and a random walk particle transport model to estimate the solute travel time probability distribution functions (pdfs) for solute flux from the water table to the bottom boundary (production horizon) of the aquifer. The cases examined include, two-, three-, and four-facies models with horizontal to vertical facies mean length anisotropy ratios, ek, from 25:1 to 300:1, and with a wide range of facies volume proportions (e.g, from 5% to 95% coarse textured facies). Predictions of travel time pdfs are found to be significantly affected by the number of hydrostratigraphic facies identified in the aquifer, the proportions of coarse-textured sediments, the mean length of the facies (particularly the ratio of length to thickness of coarse materials), and - to a lesser degree - the juxtapositional preference among the hydrostratigraphic facies. In transport normal to the sedimentary bedding plane, travel time pdfs are not log- normally distributed as is often assumed. Also, macrodispersive behavior (variance of the travel time pdf) was found to not be a unique function of the conductivity variance. The skewness of the travel time pdf varied from negatively skewed to strongly positively skewed within the parameter range examined. We also show that the Markov chain approach may give significantly different travel time pdfs when compared to the more commonly used Gaussian random field approach even though the first and second order moments in the geostatistical distribution of the lnK field are identical. The choice of the appropriate geostatistical model is therefore critical in the assessment of nonpoint source transport.
NASA Astrophysics Data System (ADS)
Gershenzon, Naum; Soltanian, Mohamadreza; Ritzi, Robert, Jr.; Dominic, David
2015-04-01
Geological heterogeneities essentially affect the dynamics of a CO2 plume in subsurface environments. Recent studies have led to new conceptual and quantitative models for sedimentary architecture in fluvial deposits over a range of scales that are relevant to the performance of some deep saline reservoirs [1, 2]. Previously we showed how the dynamics of a CO2 plume, during and after injection, is influenced by the hierarchical and multi-scale stratal architecture in such reservoirs [3]. The results strongly suggest that representing these small scales (few cm in vertical direction and few meters in horizontal direction) features and representing how they are organized within a hierarchy of larger-scale features, is critical to understanding capillary trapping processes. The results also demonstrated the importance of using separate capillary pressure and relative permeability relationships for different textural facies types. Here we present the result of simulation of CO2 trapping in deep saline aquifers using two different conventional approaches, i.e. Brooks-Corey and van Genuchten, to capillary pressure. We showed that capillary trapping as well as dissolution rates are very different for the Brooks-Corey and van Genuchten approaches if reservoir consists from various species with different capillary pressure and relative permeability curves. We also found a dramatic difference in simulation time; using the van Genuchten approach improves convergence and thus reduces calculation time by one-two orders of magnitude. [1] Bridge, J.S. (2006), Fluvial facies models: Recent developments, in Facies Models Revisited, SEPM Spec. Publ., 84, edited by H. W. Posamentier and R. G. Walker, pp. 85-170, Soc. for Sediment. Geol. (SEPM), Tulsa, Okla [2] Ramanathan, R., A. Guin, R.W. Ritzi, D.F. Dominic, V.L. Freedman, T.D. Scheibe, and I.A. Lunt (2010), Simulating the heterogeneity in channel belt deposits: Part 1. A geometric-based methodology and code, Water Resources Research, v. 46, W04515. [3] Gershenzon N.I., M. Soltanian, R.W. Ritzi Jr., and D.F. Dominic (2014) Influence of small scale heterogeneity on CO2 trapping processes in deep saline aquifers, Energy Procedia, 59, 166 - 173.
NASA Astrophysics Data System (ADS)
Heubeck, Christoph; Lowe, Donald R.; Byerly, Gary R.
2010-05-01
Archaean tectonophysical models distinguish between thick, rigid and thin, mobile crust; from these the major mechanisms and rates for continental growth are derived. Archaean sedimentary rocks, preserved in metamorphosed and highly deformed greenstone belts, can contribute to constrain these models by estimating subsidence rates, derived from the combination of facies changes and precise age dates. Largely siliciclastic strata of the Moodies Group form the topmost unit of the Barberton Supergroup of the Barberton Greenstone Belt (BGB), South Africa, represent one of the world's oldest unmetamorphosed quartz-rich sedimentary sequences, and reach ca. 3500m thick (Lowe and Byerly, 2007). Large parts of the Moodies Group were deposited in apparent sedimentary continuity in alluvial, fluvial, shoreline and shallow-marine environments (e.g., Eriksson, 1979; Heubeck and Lowe, 1994). Distinctive sources and variations in facies indicate that Moodies deposition occurred at times in several basins. In several now tectonically separated regions, a regional basaltic lava (unit MdL of Anhaeusser, 1968) separates a lower unit (ca. 2000m thick and possibly representing an extensional setting) from an upper unit (ca. 1500m thick and characterized by progressive unconformities, rapidly changing facies, thicknesses, and sandstone petrographic composition). Single zircons separated from a felsic air-fall tuff of the middle Moodies Group and immediately overlying the basaltic lava in the Saddleback Syncline were dated on the Stanford-USGS SHRIMP RG. Out of 24 dated grains, two near-concordant groups have mean ages of 3230,6+-6,1Ma (2σ; n=9) and 3519+-7 Ma (2σ; n=9), respectively. We interpret the former age as representing the depositional age of the tuff, the latter as representing inherited zircons from underlying Onverwacht-age basement. The interpreted depositional age of the Moodies tuff is indistinguishable from numerous similar ages from felsic and dacitic volcanics at the top of the underlying Fig Tree Group (Schoongezicht Fm.; Byerly et al., 1996), implying that ca. 2000m of Moodies sandstones and subordinate siltstones and conglomerates were deposited in not more than a few (0-6) Ma. Their comparatively low degree of facies variation and lithological change implies a balance between rates of sediment supply and of subsidence, creating thick stacked units. Ferruginous shales and thin BIFs of the upper Moodies Group suggest that background 'Fig-Tree-style' sedimentation continued during Moodies time but was mostly overwhelmed by the apparently brief but massive influx of medium- to coarse-grained quartzose sediment. Because two progressive unconformities, marking Moodies basin uplift and onset of renewed overall BGB shortening, occur only 50 m above this dated unit, they are likely of a similar age and imply that dominant NW-SE-directed shortening in the BGB began shortly after 3230+-6 Ma. The combination of these new data with published information thus suggest that the Moodies Basin formed after 3225+-6 Ma (i.e., at the earliest at 3231) but was already largely filled and began to be deformed by 3231+-6 (i.e., at the latest by 3225). Moodies deposition thus happened geologically nearly instantaneously following the end of Fig Tree volcanism, took very little time and deposited large volumes of sediments on a rapidly subsiding basement just prior to large-scale BGB deformation. REFERENCES Byerly, G.R., Kroner, A., Lowe, D.R., Todt W., Walsh, M.M., 1996, Prolonged magmatism and time constraints for sediment deposition in the early Archean Barberton greenstone belt: Evidence from the Upper Onverwacht and Fig Tree groups: Precambrian Research, 78, p. 125-138. Eriksson, K.A., 1979, Marginal marine depositional processes from the Archaean Moodies Group, Barberton Mountain Land, South Africa: Evidence and significance: Precambrian Res., 8, p. 153-182. Heubeck, C. and Lowe, D.R., 1994, Depositional and tectonic setting of the Archaean Moodies Group, Barberton Greenstone Belt, South Africa: Precambrian Res., 68, p. 257-290. Lowe, D.R., and Byerly, G.R., 2007, An overview of the geology of the Barberton Greenstone Belt and vicinity: Implications for early crustal development; in: M.J. von Kranendonk, R.H. Smithies and V.C. Bennett, eds., Earth's Oldest Rocks. - Elsevier (Developments in Precambrian Geology), vol. 15, p. 481-526.
NASA Astrophysics Data System (ADS)
Yoon, Seok-Hoon; Koh, Chang-Seong; Joe, Young-Jin; Woo, Ju-Hwan; Lee, Hyun-Suk
2017-04-01
The Horn River Basin in the northeastern British Columbia, Canada, is one of the largest unconventional gas accumulations in North America. It consists mainly of Devonian shales (Horn River Formation) and is stratigraphically divided into three members, the Muskwa, Otterpark and Evie in descending order. This study focuses on sedimentary processes and depositional environments of the Horn River shale based on sedimentary facies analysis aided by well-log mineralogy (ECS) and total organic carbon (TOC) data. The shale formation consists dominantly of siliceous minerals (quartz, feldspar and mica) and subordinate clay mineral and carbonate materials, and TOC ranging from 1.0 to 7.6%. Based on sedimentary structures and micro texture, three sedimentary facies were classified: homogeneous mudstone (HM), indistinctly laminated mudstone (ILM), and planar laminated mudstone (PLM). Integrated interpretation of the sedimentary facies, lithology and TOC suggests that depositional environment of the Horn River shale was an anoxic quiescent basin plain and base-of-slope off carbonate platform or reef. In this deeper marine setting, organic-rich facies HM and ILM, dominant in the Muskwa (the upper part of the Horn River Formation) and Evie (the lower part of the Horn River Formation) members, may have been emplaced by pelagic to hemipelagic sedimentation on the anoxic sea floor with infrequent effects of low-density gravity flows (turbidity currents or nepheloid flows). In the other hand, facies PLM typifying the Otterpark Member (the middle part of the Horn River Formation) suggests more frequent inflow of bottom-hugging turbidity currents punctuating the hemipelagic settling of the background sedimentation process. The stratigraphic change of sedimentary facies and TOC content in the Horn River Formation is most appropriately interpreted to have been caused by the relative sea-level change, that is, lower TOC and frequent signal of turbidity current during the sea-level lowstand and vice versa. Therefore, the Horn River Formation represents an earlier upward shallowing environmental change from a deep basin (Evie) to shallower marginal slope (middle Otterpark), then turning back to the deeper marine environment (Muskwa) in association with overall regression-lowstand-transgression of the sea level. (This study is supported by "Research on Exploration Technologies and an Onsite Verification to Enhance the Fracturing Efficiency of a Shale Gas Formation" of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea.)
Cretaceous sedimentation and tectonism in the southeastern Kaiparowits region, Utah
Peterson, Fred
1969-01-01
Upper Cretaceous strata in the southeastern Kaiparowits region of south-central Utah consist of approximately 3,500 feet of interfingering sandstone, mudstone, shale, and coal in the Dakota Formation (oldest), Tropic Shale, Straight Cliffs Formation, and Wahweap Formation (youngest). The formations consist of several depositional facies that can be recognized by characteristic lithologies bedding structures, and fossils; these are the alluvial plain, deltaic plain, lagoonal-paludal, barrier sandstone, and offshore marine facies. The distribution of facies clearly defines the paleogeography of the region during several cycles of marine transgression and regression. The nonmarine beds were deposited on a broad alluvial coastal plain that was bordered on the west and southwest by highlands and on the east and northeast by the Western Interior seaway. The marine beds were deposited whenever the seaway advanced into or across the region. The Dakota Formation and the lower part of the Tropic Shale were deposited in nonmarine and marine environments, while the shoreline advanced generally westward across the region. The middle and upper part of the Tropic Shale and the Tibbet Canyon and Smoky Hollow Members of the Straight Cliffs Formation were deposited in marine and nonmarine environments when the seaway had reached its greatest areal extent and began a gradual northeastward withdrawal. An unconformity at the top of the Smoky Hollow represents a period of erosion and possibly nondeposition before deposition of the John Henry Member of the Straight Cliffs. The John Henry Member grades from nonmarine in the southwest to predominantly marine in the northeast, and was deposited during two relatively minor cycles of transgression and regression. The Drip Tank Member at the top of the Straight Cliffs Formation is a widespread sandstone unit deposited mainly in fluvial environments. Some of the beds in the northeastern part of the region were probably deposited in marine waters during the final incursion of the seaway into the Kaiparowits region. The overlying Wahweap Formation was deposited in nonmarine environments. Slight but continued tectonism during Late Cretaceous time is indicated by lateral changes of facies and thickness variations that coincide at least partly with present structures. These criteria indicate that Laramide tectonism consisted of two phases. An early phase that lasted from about late Albian to late Campanian time included regional subsidence, basin downwarping, and movement on local folds and faults. A later phase that lasted from late Campanian to about late Paleocene time included regional uplift, monoclinal flexing, and probable new faulting, as well as continued basin downwarping and movement on local folds and probably on the older faults. The principal economic resource in the Kaiparowits region is bituminous or subbituminous coal in the john Henry Member. Because basin downwarping and movement on local folds occurred during deposition, the thicker and more continuous coal beds are in the ancestral synclines and tile deeper part of the structural basin. Presently indicated resources total 7.3 billion tons, but considerably larger quantities are probably present in the unexplored parts of the region. Several potential resources include ground water, titaniferous sandstone, and possibly oil and gas.
NASA Astrophysics Data System (ADS)
Lamourou, Ali; Touir, Jamel; Fagel, Nathalie
2017-05-01
A sedimentological and mineralogical study of sedimentary cores allowed reconstructing the evolution of depositional environments along the Northern coast of Sfax (Tunisia). The aim of this research work is to identify the factors controlling the sedimentation from the Holocene to the Present time. Three 30-m sediment cores collected by drilling at 30 m water depth were analyzed for their color, magnetic susceptibility signal, grain size by laser diffraction, organic matter content by loss of ignition, carbonate content by calcimetry and mineralogy by X-ray diffraction on bulk powder and clay <2 μm. They broadly present the same sedimentological and mineralogical features. Microscopical observations of petrographic slides allowed identifying six main sedimentary facies. Bulk mineralogical assemblages comprised clay minerals, quartz, calcite, gypsum and K-feldspars were examined. Considerable change was observed in the carbonate content that mimicked the bioclaste abundance and diluted the detrital minerals (clay minerals, quartz and feldspars). The gypsum mainly occurred in the lower sedimentary columns (SC12 and SC9) and in the upper/middle of core SC6. The clay fraction was made of a mixture of kaolinite, illite, smectite and palygorskite with no clear variation through core depth. Both grain-size parameters and magnetic susceptibility profile showed a sharp transition in the upper 2-5 m of the sedimentological columns. Coarse, sandy to gravely sediments characterized by a low magnetic susceptibility signal were replaced by fine bioclastic-rich clayey sediments. The analysis of vertical succession of depositional facies revealed a fluvial depositional environment (coastal plain) basically marked by fluvial channels and inundation plains at the bottom of all cores. However, core-top sediments recorded a littoral marine environment with sand depositions rich in gastropods, lamellibranches and algæ. Depositional facies, sedimentological and mineralogical parameters were consistent with a transition from a fluviatile depositional environment with some emersion phases marked by the gypsum precipitation, to a marine littoral environment. Such evolution was accompanied with a relative sea-level rise which flooded the fluvial system at the coastal plain during the Holocene, in agreement with sea-level fluctuations in southeast Tunisia during the Holocene.
NASA Astrophysics Data System (ADS)
Schwalbach, C. E.; Brett, C. E.; Aucoin, C. D.; Dattilo, B. F.
2015-12-01
The Upper Ordovician Rowland Member (Drakes Formation) exposed in the Cincinnati Arch region displays a suite of unusual facies that appear to record an environmental transition during the Late Ordovician. The Rowland displays four well-defined lithofacies, each containing a distinct biofacies. Proximal facies consist of green to gray shaly lime mudstones (often dolomitized), with ripples and desiccation cracks; these facies are sparsely fossiliferous, but show an abundance of infaunal filter feeders indicated by glauconite-filled burrows. These facies pass downramp into pale medium-bedded argillaceous micritic limestones, which are also sparsely fossiliferous but locally contain abundant deposit feeding organisms including brachiopods, small bryozoans, mollusks, and non-calcified algae. Select horizons yield rugosan and large colonial corals. These micritic beds often interfinger with a series of thick skeletal grainstone lenses that represent tidally influenced high-energy shoals and are exceptionally rich in well-preserved gastropods. To the north, these grainstones pass abruptly into offshore gray shaly packstone facies more typical of the Cincinnatian and contain a higher diversity of epifaunal brachiopods and ramose bryozoans. Compared to upramp facies of older Cincinnatian cycles, those of the Rowland show a greater thickness, relatively more micrite and glauconite, and higher abundance of corals and gastropods. These changes appear to be associated with a strong transgression underlain by a regional (and possibly global) lowstand erosional surface, as well as the Waynesville carbon isotope excursion. Additionally, these facies are correlative with similar transgressive facies in other regions, which also overlie regional lowstand unconformities. Increased micrite production instead of skeletal carbonates and the abundance of herbivorous? gastropods rather than echinoderms and bryozoans may indicate large-scale eutrophication and algal production. Ecologically, these events may signify a change in overall taxonomic composition and replacement of incumbent taxa that post-dates the Richmondian invasion. Together, the lithologic and biologic facies patterns of the Rowland may be associated with a rapid rise in base level and the Boda global warming event.
Characterizing Geological Facies using Seismic Waveform Classification in Sarawak Basin
NASA Astrophysics Data System (ADS)
Zahraa, Afiqah; Zailani, Ahmad; Prasad Ghosh, Deva
2017-10-01
Numerous effort have been made to build relationship between geology and geophysics using different techniques throughout the years. The integration of these two most important data in oil and gas industry can be used to reduce uncertainty in exploration and production especially for reservoir productivity enhancement and stratigraphic identification. This paper is focusing on seismic waveform classification to different classes using neural network and to link them according to the geological facies which are established using the knowledge on lithology and log motif of well data. Seismic inversion is used as the input for the neural network to act as the direct lithology indicator reducing dependency on well calibration. The interpretation of seismic facies classification map provides a better understanding towards the lithology distribution, depositional environment and help to identify significant reservoir rock
NASA Astrophysics Data System (ADS)
Vezzoli, Luigina; Corazzato, Claudia
2016-05-01
In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.
NASA Astrophysics Data System (ADS)
Sabouhi, Mostafa; Sheykh, Morteza; Darvish, Zohreh; Naghavi Azad, Maral
2010-05-01
The Qom formation was formed in the Oligo-Miocene during the final sea transgression in Central Iran. This Formation in the Central Iran Basin Contains oil and gas. Organic geochemical analysis in previous studies indicated that the hydrocarbons migrated from deeper source rocks, likely of Jurassic age. In the Central Iran Basin, the Qom Formation is 1,200m thick and is abounded by the Oligocene Lower Red Formation and the middle Miocene Upper Red Formation. In previous studies, the Qom Formation was divided into nine members designated from oldest to youngest: a, b, c1 to c4, d, e, and f, of which "e" is 300m thick and constitutes the main reservoir. Our study focused on a Qom Section located in the Arvaneh (Semnan) region of Central Iran that is 498m thick. The lower part of the formation was not deposited, and only the following four members of early Miocene age (Aquitanian-Burdigalian) was identified between the lower and upper Red Formation. The studied section mainly consist of limestone, marl, sandy limestone, sandy marl and argillaceous limestone.According to this study(field and laboratory investigations), 9 carbonate microfacies were recognized which are grouped into four facies associations (microfacies group). These facies associations present platform to basin depositional setting and are nominated as: A (Tidal-flat), B (Lagoon), C (Slope) and D (Open marine). Based on paleoecology and Petrographic analysis, it seems the Qom Formation was deposited in a Carbonate shelf setting. The Qom formation constitutes a regional transgressive-regressive sequence that is bounded by two continental units (Lower and Upper Red Formation).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hovorka, S.D.; Dutton, A.R.; Ruppel, S.C.
1994-09-01
The three-dimensional distribution of water in the Edwards aquifer was assessed using a core and log-based study. Porosity distribution reflects both depositional fabric and subsequent diagenesis. Vertical facies stacking patterns influence the depositional porosity as well as dolomitization and diagentic porosity modification. Subtidal facies deposited during sea level highstands are generally undolomitized and exhibit low porosity (5-10%); platform grainstones typically have high depositional porosity and significant solution enhancement (20-42% porosity). Dolomitized subtidal facies in tidal-flat-capped cycles have very high porosity (20-40%) because of selective dolomite dissolution in the freshwater aquifer. Porosity in gypsum beds is high in some areas becausemore » of dissolution and collapse, but low where gypsum was replaced by calcite cement. Low-energy subtidal and evaporitic units in the Maverick basin have porosity generally less than 15%. The overlying basinal packstones and grainstones have solution-enhanced porosities of 25 to 35%. Diagenesis associated with fluctuations in water chemistry near the saline-freshwater interface may explain one high-porosity trend. Other complex patterns of high and low porosity are attributed to structurally and hydrologically controlled porosity enhancement and cementation. Three-dimensional mapping of porosity trends provides data for improved aquifer management. Only about 3% of the maximum stored water lies above the water table at which natural spring flow is diminished. An average specific yield of 42% in the unconfined aquifer is determined from total porosity, changes in the water-table elevation, and changes in estimated recharge and discharge. Average storativity of 2.6 x 10{sup -4} in the confined Edwards is estimated using average porosity and barometric efficiency calculated from comparing water-level hydrographs and atmospheric pressure changes.« less
Structural development of an Archean Orogen, Western Point Lake, Northwest Territories
NASA Astrophysics Data System (ADS)
Kusky, Timothy M.
1991-08-01
The Point Lake orogen in the central Archean Slave Province of northwestern Canada preserves more than 10 km of structural relief through an eroded antiformal thrust stack and deeper anastomosing midcrustal mylonites. Fault restoration along a 25 km long transect requires a minimum of 69 km slip and 53 km horizontal shortening. In the western part of the orogen the basal decollement places mafic plutonic/volcanic rocks over an ancient tonalitic gneiss complex. Ten kilometers to the east in the Keskarrah Bay area, slices of gneiss unroofed on brittle thrusts shed molasse into several submerged basins. Conglomerates and associated thinly bedded sedimentary rocks are interpreted as channel, levee, and overbank facies of this thrust-related sedimentary fan system. The synorogenic erosion surface at the base of the conglomerate truncates premetamorphic or early metamorphic thrust faults formed during foreland propagation, while other thrusts related to hinterland-progressing imbrication displace this unconformity. Tightening of synorogenic depositional troughs resulted in the conglomerates' present localization in synclines to the west of associated thrust faults and steepening of structural dips. Eastern parts of the orogen consist of isoclinally folded graywackes composed largely of Mutti and Ricci-Lucchi turbidite facies B, C, and D, interpreted as submarine fan deposits eroded from a distant volcanic arc. Thrust faults in the metasedimentary terrane include highly disrupted slate horizons with meter-scale duplex structures, and recrystallized calcmylonites exhibiting sheath folds and boudin trains with very large interboudin distances. The sequence of fabric development and the overall geometry of this metasedimentary terrane strongly resembles younger forearc accretionary prisms. Conditions of deformation along the thrusts parallel the regional metamorphic zonation: amphibolite facies in the basal decollement through greenschist facies shear zones to cataclastic crush zones in the region of emergent thrusts in Keskarrah Bay. Depth differences can account for only half of the metamorphic gradient; thermal profiles which increased downwards in obducted greenstone belts and synthrusting plutonism explains other high metamorphic gradients. A tectonic model involving the collision of an accretionary prism with a continental margin best explains the structural and sedimentological evolution of the orogen.
Depositional history of the Mississippian Ullin and Fort Payne Formations in the Illinois Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lasemi, Z.; Treworgy, J.D.; Norby, R.D.
1994-04-01
Field and subsurface data suggest that the mid-Mississippian Ullin Limestone in the Illinois Basin is composed of coalesced Waulsortian-type mounds and porous bryozoan-dominated buildups. Waulsortian mounds in the basin contain a lime mudstone to wackestone core that is flanked and capped by in situ porous bryozoan bafflestone or transported crinoidal-bryozoan packstone and grainstone. The mound core facies appear to be most common in the lower part of the Ullin and is thicker in a deeper outer-ramp setting. Shoreward and up-section (upper part of the outer-ramp through mid-ramp setting), the core facies is generally thinner, while the flanking and capping faciesmore » are thicker. Isopachous maps of the Ullin and Fort Payne suggest the presence of several large areas of thick carbonate buildups (Ullin) surrounded by a deep-water, sub-oxic environment (Fort Payne) in the Illinois Basin. Progradation of these buildups and associated facies resulted in a shallower ramp setting during deposition of the upper Ullin. Storm-generated carbonate sandwaves became widespread on this ramp. Sandwaves were mobile and for the most part unfavorable sites for further development of thick mud mounds and/or in situ bryozoan buildups. However, isolated mounds and flanking buildups are present in the upper part of the Ullin, and, together with the sandwaves, formed an irregular topography that led to the development of oolitic grainstone shoals during deposition of the overlying Salem Limestone.« less
NASA Astrophysics Data System (ADS)
Catuneanu, O.; Khalifa, M. A.; Wanas, H. A.
2006-08-01
The Lower Cenomanian Bahariya Formation corresponds to a second-order depositional sequence that formed within a continental shelf setting under relatively low-rate conditions of positive accommodation (< 200 m during 3-6 My). This overall trend of base-level rise was interrupted by three episodes of base-level fall that resulted in the formation of third-order sequence boundaries. These boundaries are represented by subaerial unconformities (replaced or not by younger transgressive wave ravinement surfaces), and subdivide the Bahariya Formation into four third-order depositional sequences. The construction of the sequence stratigraphic framework of the Bahariya Formation is based on the lateral and vertical changes between shelf, subtidal, coastal and fluvial facies, as well as on the nature of contacts that separate them. The internal (third-order) sequence boundaries are associated with incised valleys, which explain (1) significant lateral changes in the thickness of incised valley fill deposits, (2) the absence of third-order highstand and even transgressive systems tracts in particular areas, and (3) the abrupt facies shifts that may occur laterally over relatively short distances. Within each sequence, the concepts of lowstand, transgressive and highstand systems tracts are used to explain the observed lateral and vertical facies variability. This case study demonstrates the usefulness of sequence stratigraphic analysis in understanding the architecture and stacking patterns of the preserved rock record, and helps to identify 13 stages in the history of base-level changes that marked the evolution of the Bahariya Oasis region during the Early Cenomanian.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brosse, E.; Burris, J.; Ouidin, J.L.
1990-06-01
Since the Miocene, the delta of the Mahakam River has accumulated thousands of meters of sediments in the eastern part of the Kutei Basin (Kalimantan, Indonesia). Source-rock candidates are the coals of the deltaic plain and several types of shales, mainly the delta front/prodelta area. Organic matter basically derives from higher plants, but each source facies presents important intrinsic variations of petroleum potential. These variations are overprinted by subsequent maturation trends. Geochemical and petrographical data are integrated on the general framework provided by a new synthetic interpretation of the sedimentary sequences, relying upon the concepts of seismic stratigraphy. From coremore » samples at a given level of maturation, the variations of several organic parameters are discussed in relation to the depositional paleoenvironment and to the possible precursors. 1D and 2D numerical routines are used to reconstruct the maturation history of source rocks. These tools are based upon a kinetic modeling of kerogen cracking. Model outputs are compared with observed maturation trends. The understanding of the initial organic facies distribution provides precise constraints in the selection of a homogenous samples set for this comparison purpose.« less
NASA Technical Reports Server (NTRS)
Stucky, Richard K.; Krishtalka, Leonard; Redline, Andrew D.; Lang, Harold R.
1987-01-01
Both Landsat TM and aircraft Thermal IR Multispectral Scanner (TIMS) data have been used to map the lithofacies of the Wind River Basin's Eocene physical and biological environments. Preliminary analyses of these data have furnished maps of a fault contact boundary and a complex network of fluvial ribbon channel sandstones. The synoptic view thereby emerging for Eocene fluvial facies clarifies the relationships of ribbon channel sandstones to fossil-bearing overbank/floodplain facies and certain peleosols. The utility of TM and TIMS data is thereby demonstrated.
Sequential filling of a late paleozoic foreland basin
Mars', J. C.; Thomas, W.A.
1999-01-01
Through the use of an extensive data base of geophysical well logs, parasequence-scale subdivisions within a late Paleozoic synorogenic clastic wedge resolve cycles of sequential subsidence of a foreland basin, sediment progradation, subsidence of a carbonate shelf edge, diachronously subsiding discrete depositional centers, and basinwide transgression. Although temporal resolution of biostratigraphic markers is less precise in Paleozoic successions than in younger basins, parasequence-scale subdivisions provide more detailed resolution within marker-defined units in Paleozoic strata. As an example, the late Paleozoic Black Warrior basin in the foreland of the Ouachita thrust belt is filled with a synorogenic clastic wedge, the lower part of which intertongues with the fringe of a cratonic carbonate facie??s in the distal part of the basin. The stratal geometry of one tongue of the carbonate facie??s (lower tongue of Bangor Limestone) defines a ramp that grades basinward into a thin black shale. An overlying tongue of the synorogenic clastic wedge (lower tongue of Parkwood Formation) consists of cyclic delta and delta-front deposits, in which parasequences are defined by marine-flooding surfaces above coarsening- and shallow ing-upward successions of mudstone and sandstone. Within the lower Parkwood tongue, two genetic stratigraphie sequences (A and B) are defined by parasequence offlap and downlap patterns and are bounded at the tops by basinwide maximum-flooding surfaces. The distribution of parasequences within sequences A and B indicates two cycles of sequential subsidence (deepening) and progradation, suggesting subsidence during thrust advance and progradation during thrust quiescence. Parasequence stacking in sequences A and B also indicates diachronous differential tectonic subsidence of two discrete depositional centers within the basin. The uppermost sequence (C) includes reworked sandstones and an overlying shallow-marine limestone, a vertical succession that reflects no tectonic subsidence, a very minor or null sediment supply, and basinwide transgression. The temporal resolution at parasequence scale significantly improves the resolution of the tectonic history of the thrust belt-foreland basin system. Copyright ?? 1999, SEPM (Society for Sedimentary Geology).
NASA Astrophysics Data System (ADS)
Kramer, N.; Harry, D. L.; Wohl, E. E.
2010-12-01
This study is one of the first to use near surface geophysical techniques to characterize the subsurface stratigraphy in a high alpine, low gradient valley with a past glacial history and to obtain a preliminary grasp on the impact of Holocene beaver activity. Approximately 1 km of seismic refraction data and 5 km of GPR data were collected in Beaver Meadows, Rocky Mountain National Park. An asymmetric wedge of sediment ranging in depth from 0-20 m transverse to the valley profile was identified using seismic refraction. Complementary analysis of the GPR data suggests that the valley fill can be subdivided into till deposited during the Pleistocene glaciations and alluvium deposited during the Holocene. Two main facies were identified in the GPR profiles through pattern recognition. Facie Fd, which consists of chaotic discontinuous reflectors with an abundance of diffractions, is interpreted to be glacial till. Facie Fc, which is a combination of packages of complex slightly continuous reflectors interfingered with continuous horizontal to subhorizontal reflectors, is interpreted to be post-glacial alluvium and includes overbank, pond and in-channel deposits. Fc consistently overlies Fd throughout the study area and is no more than 7 m thick in the middle of the valley. The thickness of Holocene sedimentation (<7 m) is much less than the total amount of valley fill identified in the seismic refraction survey (0-20 m). A subfacie of Fc, Fch, which has reflectors with long periods was identified within Fc and is interpreted to be ponded sediments. The spatial distribution of facie Fch, along with: slight topographical features resembling buried beaver dams, a high abundance of fine sediment including silts and clays, historical records of beavers, and the name "Beaver Meadows" all suggest that Holocene beaver activity played a large role in sediment accumulation at this site, despite the lack of surficial relict beaver dams containing wood.
Late Devonian shale deposition based on known and predicted occurrence of Foerstia in Michigan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, R.D.
The fossil Foerstia (Protosalvinia) marks a time zone within Late Devonian shale sequences in the eastern US. Its recent discovery in Michigan has led to more accurate correlations among the three large eastern basins. Subdivisions of the Devonian-Mississippi shale sequence in Michigan based on gamma-ray correlations reveal an idealized black shale geometry common to other eastern black shales, such as the Sunbury of Michigan and Ohio, the Clegg Creek of Indiana, the Dunkirk of Pennsylvania and New York, and the lower Huron of Ohio and West Virginia. In Michigan, Foerstia occurs at a stratigraphic position postulated to mark a majormore » change in depositional conditions and source areas. This position strengthens the physical and paleontologic evidence for a formal division of the Antrim. Isopach maps of the shale sequence above and below Foerstia show a relatively uniform and continuous black shale deposit (units 1A, 1B, and 1C) below Foerstia. This deposit is unlike the wedge of sediment found above Foerstia, which is composed of a western facies (Ellsworth) and an eastern facies (upper Antrim) that should be combined in a single stratigraphic unit conforming to Forgotson's concept of a format.« less
Late Mississippian (Chesterian) carbonate to carbonate-clastic cycles in the eastern Illinois Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L.B.; Read, J.F.
1994-03-01
Late Mississippian (Chesterian) rocks of the eastern Illinois Basin in Kentucky and Indiana show depositional cycles (3--20 meters thick) composed of a range of facies deposited during the transition from carbonate-dominated deposition of the Middle Mississippian to the predominantly siliciclastic regime of the Pennsylvanian. Within the basal Ste. Genevieve Formation (30--70 meters thick) there are five predominantly carbonate cycles. Cycle bases vary from thin calcareous sandstone near the northern clastic source to ooid-quartz dolomitic pelletal grainstone and mudstone further south. Massive cross-bedded and channeled ooid-skeletal grainstones represent the cycle tops and are commonly capped by caliche and subaerial breccia, particularlymore » where there was no subsequent siliciclastic deposition. The cycles are interpreted to be driven by fourth-order (400 k.y.) glacio-eustatic sea-level fluctuations based on coincidence of the calculated cycle period with the long-term eccentricity signal, the Late Mississippian onset of Gondwana glaciation and cycle correlation over more than 100 kilometers. The breccia and caliche formed during lowstands, the siliciclastics, eolianites and dolomitic pelletal grainstones are transgressive facies and the ooid-skeletal grainstones represent sea-level highstands.« less
Erosion and sedimentation during the September 2015 flooding of the Kinu River, central Japan.
Dan Matsumoto; Sawai, Yuki; Yamada, Masaki; Namegaya, Yuichi; Shinozaki, Tetsuya; Takeda, Daisuke; Fujino, Shigehiro; Tanigawa, Koichiro; Nakamura, Atsunori; Pilarczyk, Jessica E
2016-09-28
Erosional and sedimentary features associated with flooding have been documented in both modern and past cases. However, only a few studies have demonstrated the relationship between these features and the corresponding hydraulic conditions that produced them, making it difficult to evaluate the magnitude of paleo-flooding. This study describes the characteristics associated with inundation depth and flow direction, as well as the erosional and sedimentary features resulting from the disastrous flooding of the Kinu River, central Japan, in September 2015. Water levels rose rapidly due to heavy rainfall that eventually overtopped, and subsequently breached, a levee in Joso City, causing destructive flooding on the surrounding floodplain. Distinctive erosional features are found next to the breached levee, while depositional features, such as a sandy crevasse-splay deposit are found further away from the breach. The deposit can be divided into three units based on sedimentary facies. The vertical and lateral changes of these sedimentary facies may be the result of temporal and spatial changes associated with flow during the single flooding event. These observations and quantitative data provide information that can be used to reveal the paleohydrology of flood deposits in the stratigraphic record, leading to improved mitigation of future flooding disasters.
NASA Astrophysics Data System (ADS)
Sparice, Domenico; Scarpati, Claudio; Perrotta, Annamaria; Mazzeo, Fabio Carmine; Calvert, Andrew T.; Lanphere, Marvin A.
2017-11-01
Pre-caldera (> 22 ka) lateral activity at Somma-Vesuvius is related to scoria- and spatter-cone forming events of monogenetic or polygenetic nature. A new stratigraphic, sedimentological, textural and lithofacies investigation was performed on five parasitic cones (Pollena cones, Traianello cone, S. Maria a Castello cone and the recently found Terzigno cone) occurring below the Pomici di Base (22 ka) Plinian products emplaced during the first caldera collapse at Somma-Vesuvius. A new Ar/Ar age of 23.6 ± 0.3 ka obtained for the Traianello cone as well as the absence of a paleosol or reworked material between the S. Maria a Castello cone and the Pomici di Base deposits suggest that such cone-forming eruptions occurred near the upper limit of the pre-caldera period (22-39 ky). The stratigraphy of three of these eccentric cones (Pollena cones and Traianello cone) exhibits erosion surfaces, exotic tephras, volcaniclastic layers, paleosols, unconformity and paraconformity between superimposed eruptive units revealing their multi-phase, polygenetic evolution related to activation of separate vents and periods of quiescence. Such eccentric cones have been described as composed of scoria deposits and pure effusive lavas by previous authors. Lavas are here re-interpreted as welded horizons (lava-like) composed of coalesced spatter fragments whose pyroclastic nature is locally revealed by relicts of original fragments and remnants of clast outlines. These welded horizons show, locally, rheomorphic structures allowing to define them as emplaced as clastogenic lava flows. The lava-like facies is transitional, upward and downward, to less welded facies composed of agglutinated to unwelded spatter horizons in which clasts outlines are increasingly discernible. Such textural characteristics and facies variation are consistent with a continuous fall deposition of Hawaiian fire-fountains episodes alternated with Strombolian phases emplacing loose scoria deposits. High enrichment factor values, measured in the scoria deposits, imply the ejection of large proportion of ash even during Strombolian events.
Characterization and origin of spongillite-hosting sediment from João Pinheiro, Minas Gerais, Brazil
NASA Astrophysics Data System (ADS)
Almeida, A. C. S.; Varajão, A. F. D. C.; Gomes, N. S.; Varajão, C. A. C.; Volkmer-Ribeiro, C.
2010-03-01
Spongillite from João Pinheiro, Minas Gerais, Brazil is mainly known for its use in brick production and in the refractory industry. Very few studies have focused on its geological context. Spongillite-rich deposits occur in shallow ponds on a karstic planation surface developed on rocks of the Neoproterozoic São Francisco Supergroup. Cenozoic siliciclastic sediments are related to this surface. A field study of these deposits and analysis of multispectral images showed a SE-NW preferential drainage system at SE, suggesting that Mesozoic Areado Group sandstones were the source area of the spongillite-hosting sediments. Mineralogical and textural characterization by optical microscopic analysis, X-ray diffraction (XRD), differential and gravimetric thermal analysis (DTA-GTA), infrared spectroscopy (IR) and scanning electron microscopy (SEM) of seven open-pit spongillite-rich deposits (Avião, Carvoeiro, Vânio, Preguiça, Divisa, Severino, Feijão) showed a sedimentological similarity between the deposits. They are lens-shaped and are characterized at the bottom by sand facies, in the middle by spicules-rich muddy-sand facies and at the top by organic matter-rich muddy-sand facies. Petrographically, the spongillite-hosting sediments and the siliclastic sediments of the Areado Group show detrital phases with similar mineralogical and textural features, such as the presence of well-sorted quartz grains and surface features of abrasion typical of aeolian reworking that occurred in the depositional environment in which the sandstones of the Areado Group were formed. Detrital heavy minerals, such as staurolite, zircon, tourmaline, and clay minerals, such as kaolinite, low amounts of illite, scarce chlorite and mixed-layer chlorite/smectite and illite/smectite occur in the spongillite-hosting sediments and in sandstones from the Areado Group. In both formations, staurolite has similar chemical composition. These mineralogical and textural features show that the sediments of the Areado Group constitute the main source of the pond sediments that host spongillite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yount, J.C.; Harwood, D.S.; Bradbury, J.P.
1993-04-01
Mohawk Valley (MV) contain thick, well-exposed sections of Quaternary basin-fill sediments, with abundant interbedded tephra and a diverse assemblage of sedimentary facies. The eastern arm of MV, extending from Clio to Portola, contains as much as 100 m of trough cross-bedded cobble to pebble gravel and planar and trough cross-bedded coarse and medium sand, interpreted as braided stream deposits. Sections exposed in the western arm of MV consist in their lower parts of massive organic-rich silt and clay interbedded with blocky to fissile peat beds up to 1 m thick. Diatom assemblages are dominated by benthic species indicating fresh marshmore » environments with very shallow water depths of one meter or less. Proglacial lacustrine deposits of limited lateral extent are present within the outwash complexes as evidenced by varved fine sand and silt couplets, poorly sorted quartz-rich silt beds containing dropstones, and contorted beds of diamict grading laterally into slump blocks surrounded by wood-bearing silt and silty sand. The Rockland Ash (400 ka) is a prominent marker in the middle or lower part of many sections throughout MV, indicating that at least half of the basin-fill sequence is Late Quaternary in age. A log buried in diamict slumped into a proglacial lake lying approximately 3 km downstream from the Tioga Stage ice termini in Jamison and Gray Eagle Creeks yields an age of 18,715 [+-]235 C[sup 14] years BP. Previous interpretations of MV deposits originating in a large, deep lake with water depths in excess of 150 m are untenable given the sedimentary facies and diatom floras that dominate the valley. Unexhumed valleys such as Sierra Valley to the east and Long Valley to the northwest which contain large meadows traversed by braided streams are probably good analogs for the conditions that existed during the accumulation of the Mohawk Valley deposits.« less
NASA Astrophysics Data System (ADS)
Ma, W.; Jafarpour, B.
2017-12-01
We develop a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information:: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) and its multiple data assimilation variant (ES-MDA) are adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at select locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.
NASA Technical Reports Server (NTRS)
Farmer, Jack D.
2004-01-01
The vision of this project was to improve our understanding of the processes by which microbiological information is captured and preserved in rapidly mineralizing sedimentary environments. Specifically, the research focused on the ways in which microbial mats and biofilms influence the sedimentology, geochemistry and paleontology of modem hydrothermal spring deposits in Yellowstone national Park and their ancient analogs. Toward that goal, we sought to understand how the preservation of fossil biosignatures is affected by 1) taphonomy- the natural degradation processes that affect an organism from the time of its death, until its discovery as a fossil and 2) diagenesis- longer-term, post-depositional processes, including cementation and matrix recrystallization, which collectively affect the mineral matrix that contains fossil biosignature information. Early objectives of this project included the development of observational frameworks (facies models) and methods (highly-integrated, interdisciplinary approaches) that could be used to explore for hydrothermal deposits in ancient terranes on Earth, and eventually on Mars.
NASA Astrophysics Data System (ADS)
Maghfouri, Sajjad; Rastad, Ebrahim; Mousivand, Fardin; Lin, Ye; Zaw, Khin
2016-08-01
The southwest Sabzevar basin is placed in the southwestern part of a crustal domain known as the Sabzevar zone, at the north of Central Iranian microcontinent. This basin hosts abundant mineral deposits; particularly of the Mn exhalative and Cu-Zn volcanogenic massive sulfide (VMS) types. The evolution of this basin is governed by the Neo-tethys oceanic crust subduction beneath the Central Iranian microcontinent and by the resulting continental arc (Sanandaj-Sirjan) and back-arc (Sabzevar-Naien). This evolution followed two major sequences: (I) Lower Late Cretaceous Volcano-Sedimentary Sequence (LLCVSS), which is indicated by fine-grained siliciclastic sediments, gray basic coarse-grained different pyroclastic rocks and bimodal volcanism. During this stage, tuff-hosted stratiform, exhalative Mn deposits (Nudeh, Benesbourd, Ferizy and Goft), oxide Cu deposits (Garab and Ferizy) and Cu-Zn VMS (Nudeh, Chun and Lala) deposits formed. (II) Upper Late Cretaceous Sedimentary Dominated Sequence (ULCSS), including pelagic limestone, marly tuff, silty limestone and marl with minor andesitic tuff rocks. The economically most important Mn (Zakeri and Cheshmeh-sefid) deposits of Sabzevar zone occur within the marly tuff of this sequence. The Nudeh Cu-Zn volcanogenic massive sulfide (VMS) deposit is situated in the LLCVSS. The host-rock of deposits consists of alkali olivine basalt flow and tuffaceous silty sandstone. Mineralization occurs as stratiform blanket-like and tabular orebodies. Based on ore body structure, mineralogy, and ore fabric, we recognize three different ore facies in the Nudeh deposit: (1) a stringer zone, consisting of a discordant mineralization of sulfides forming a stockwork of sulfide-bearing quartz veins cutting the footwall volcano-sedimentary rocks; (2) a massive ore, consisting of massive replacement pyrite, chalcopyrite, sphalerite and Friedrichite with magnetite; (3) bedded ore, with laminated to disseminated pyrite, and chalcopyrite. Chloritization, silicification, sericitization and epidotization are the main wall-rock alterations; alteration intensity increases towards the stringer zone. The δ34S composition of the sulfides ranges from -1.5‰ to +3.69‰ with a general increase of δ34S ratios of massive ore facies to stockwork zone. The heavier values indicate that some of the sulfur was derived from seawater sulfate that was ultimately thermochemically reduced in deep hydrothermal reaction zones. Sulfur isotopes, along with sedimentological, textural, petrological, mineralogical, and geochemical evidences, suggest that this deposit should be classified as a Besshi-type VMS ore deposit.
NASA Astrophysics Data System (ADS)
Wunsch, Marco; Betzler, Christian; Eberli, Gregor P.; Lindhorst, Sebastian; Lüdmann, Thomas; Reijmer, John J. G.
2018-01-01
New geophysical data from the leeward slope of Great Bahama Bank show how contour currents shape the slope and induce re-sedimentation processes. Along slope segments with high current control, drift migration and current winnowing at the toe of slope form a deep moat. Here, the slope progradation is inhibited by large channel incisions and the accumulation of large mass transport complexes, triggered by current winnowing. In areas where the slope is bathed by weaker currents, the accumulation of mass transport complexes and channel incision is rather controlled by the position of the sea level. Large slope failures were triggered during the Mid-Pleistocene transition and Mid-Brunhes event, both periods characterized by changes in the cyclicity or the amplitude of sea-level fluctuations. Within the seismic stratigraphic framework of third order sequences, four sequences of higher order were identified in the succession of the upper Pleistocene. These higher order sequences also show clear differences in function of the slope exposure to contour currents. Two stochastic models emphasize the role of the contour currents and slope morphology in the facies distribution in the upper Pleistocene sequences. In areas of high current influence the interplay of erosional and depositional processes form a complex facies pattern with downslope and along strike facies alterations. In zones with lower current influence, major facies alternations occur predominately in downslope direction, and a layer-cake pattern characterizes the along strike direction. Therefore, this study highlights that contour currents are an underestimated driver for the sediment distribution and architecture of carbonate slopes.
ChemCam results from the Shaler outcrop in Gale crater, Mars
Anderson, Ryan B.; Bridges, J.C.; Williams, A.; Edgar, L.; Ollila, A.; Williams, J.; Nachon, Marion; Mangold, N.; Fisk, M.; Schieber, J.; Gupta, S.; Dromart, G.; Wiens, R.; Le Mouélic, Stéphane; Forni, O.; Lanza, N.; Mezzacappa, Alissa; Sautter, V.; Blaney, D.; Clark, B.; Clegg, S.; Gasnault, O.; Lasue, J.; Léveillé, Richard; Lewin, E.; Lewis, K.W.; Maurice, S.; Newsom, H.; Schwenzer, S.P.; Vaniman, D.
2015-01-01
The ChemCam campaign at the fluvial sedimentary outcrop “Shaler” resulted in observations of 28 non-soil targets, 26 of which included active laser induced breakdown spectroscopy (LIBS), and all of which included Remote Micro-Imager (RMI) images. The Shaler outcrop can be divided into seven facies based on grain size, texture, color, resistance to erosion, and sedimentary structures. The ChemCam observations cover Facies 3 through 7. For all targets, the majority of the grains were below the limit of the RMI resolution, but many targets had a portion of resolvable grains coarser than ∼0.5 mm. The Shaler facies show significant scatter in LIBS spectra and compositions from point to point, but several key compositional trends are apparent, most notably in the average K2O content of the observed facies. Facies 3 is lower in K2O than the other facies and is similar in composition to the “snake,” a clastic dike that occurs lower in the Yellowknife Bay stratigraphic section. Facies 7 is enriched in K2O relative to the other facies and shows some compositional and textural similarities to float rocks near Yellowknife Bay. The remaining facies (4, 5, and 6) are similar in composition to the Sheepbed and Gillespie Lake members, although the Shaler facies have slightly elevated K2O and FeOT. Several analysis points within Shaler suggest the presence of feldspars, though these points have excess FeOT which suggests the presence of Fe oxide cement or inclusions. The majority of LIBS analyses have compositions which indicate that they are mixtures of pyroxene and feldspar. The Shaler feldspathic compositions are more alkaline than typical feldspars from shergottites, suggesting an alkaline basaltic source region, particularly for the K2O-enriched Facies 7. Apart from possible iron-oxide cement, there is little evidence for chemical alteration at Shaler, although calcium-sulfate veins comparable to those observed lower in the stratigraphic section are present. The differing compositions, and inferred provenances at Shaler, suggest compositionally heterogeneous terrain in the Gale crater rim and surroundings, and intermittent periods of deposition.
NASA Astrophysics Data System (ADS)
Harryandi, Sheila
The Niobrara/Codell unconventional tight reservoir play at Wattenberg Field, Colorado has potentially two billion barrels of oil equivalent requiring hundreds of wells to access this resource. The Reservoir Characterization Project (RCP), in conjunction with Anadarko Petroleum Corporation (APC), began reservoir characterization research to determine how to increase reservoir recovery while maximizing operational efficiency. Past research results indicate that targeting the highest rock quality within the reservoir section for hydraulic fracturing is optimal for improving horizontal well stimulation through multi-stage hydraulic fracturing. The reservoir is highly heterogeneous, consisting of alternating chalks and marls. Modeling the facies within the reservoir is very important to be able to capture the heterogeneity at the well-bore scale; this heterogeneity is then upscaled from the borehole scale to the seismic scale to distribute the heterogeneity in the inter-well space. I performed facies clustering analysis to create several facies defining the reservoir interval in the RCP Wattenberg Field study area. Each facies can be expressed in terms of a range of rock property values from wells obtained by cluster analysis. I used the facies classification from the wells to guide the pre-stack seismic inversion and multi-attribute transform. The seismic data extended the facies information and rock quality information from the wells. By obtaining this information from the 3D facies model, I generated a facies volume capturing the reservoir heterogeneity throughout a ten square mile study-area within the field area. Recommendations are made based on the facies modeling, which include the location for future hydraulic fracturing/re-fracturing treatments to improve recovery from the reservoir, and potential deeper intervals for future exploration drilling targets.
NASA Astrophysics Data System (ADS)
Caron, V.; Ekomane, E.; Mahieux, G.; Moussango, P.; Ndjeng, E.
2010-06-01
This paper presents a lithologic and stratigraphic description of the Neoproterozoic (ante- or syn- Pan-African orogeny) Mintom Formation (new) of southeastern Cameroon, and provides a new facies and geochemical analysis of the sedimentary succession, formerly referred to as the upper Dja series. The Mintom Formation can be subdivided from base to top into four members that record a general increase in carbonate content. The members (all new) from lower to upper are: Kol Member (diamictite and pelite), Metou Member (dolostone), Momibolé Member (calcareous pelite), and Atog Adjap Member (limestone). Although the lithostratigraphic architecture looks very similar to that of well-documented syn- and post-glacial Neoproterozoic deposits, physical evidence of glacial influence is absent. By contrast with other Central African Neoproterozoic carbonates deposited in ramp settings, the succession does not contain open marine facies. Limestones consist of monotonous subhedral microsparitic calcite mosaics and display occasional microbial laminae. These observations force reevaluation of both previous paleoenvironmental interpretations of the deposits and their comparison with neighboring Ediacaran carbonates. We assume that the graded basal succession from diamictite to laminated pelitic facies is compatible with emplacement of mass flow deposits in toe-of-slope setting during regional uplift. Interpretation of the overlying Métou dolostone is uncertain though sedimentological and geochemical properties point to a likely quiet depositional setting. The upper part of the Formation, including the Momibolé and Atog Adjap Members, is conspicuously laminated, in places rhythmically and ripple-bedded, suggesting shallow subaqueous and calm depositional conditions only interrupted by occasional slumps indicative of a locally steepened bottom topography. Evaporitic fabrics and fenestral pores further indicate shallow water, possibly peritidal, environmental conditions. In spite of indications of shale and post-depositional contamination, rare earth elements (REE) plus yttrium (Y) patterns obtained from carbonate samples point to a non-marine origin for the Atog Adjap limestone, but instead deposition in lacustrine or lagoonal settings under freshwater influence. This interpretation suggests that the Mintom Formation formed in a small-scale palaeodepression, isolated from the open marine environment, where confined lagoonal or lacustrine sedimentation developed. The final Neoproterozoic evolution of the Mintom Formation was dominated by erosional features, including striations and stair-cased groove structures reported for the first time here, and revealing the passage of glaciers of likely Ediacaran age.
NASA Astrophysics Data System (ADS)
Ichang'l, D. W.; MacLean, W. H.
The Migori segment is an 80 by 20 km portion of the Nyanza greenstone belt which forms the northern part of the Archean Tanzanian Craton in western Kenya, northern Tanzania and southeastern Uganda. It consists of two volcanic centres, each with central, proximal and distal volcanic facies, comprising the Migori Group, the Macalder and Lolgorien Subgroups, and eleven volcano-sedimentary formations. The centres are separated by a basin of tuffs and greywacke turbidites. The volcanics are bimodal mafic basalt and dolerite ( Zr/Y = 3.8 - 6.5, La N/Yb N = 1.0 - 2.4) , and felsic calc-alkaline dacite-rhyolite ( Zr/Y = 10 - 21, La N/Yb N = 19 - 42 ) and high-K dacite ( Zr/Y = 9 - 16, La N/Yb N = 21 - 22 ). Felsic units form approximately three-fourths of the volcanic stratigraphy. Basalts, calc-alkaline dacites and rhyolites were deposited in a submarine environment, but the voluminous high-K dacites were erupted subaerially. The turbidites contain units of iron-formations. Granitic intrusions are chemically continuous with the high-K dacites. The felsic volcanics are anologous to those found at modern volcanic arc subduction settings involving continental crust. The Macalder ZnCuAuAg volcanogenic massive sulphide deposits is in central facies basalts-greywacke-rhyolite. Gold mineralisation occurs in proximal facies tuffs and iron formation, and in oblique and semi-conformable quartz veins. Greenstones in the Nyanza belt are dominated by calc-alkaline felsic volcanics in constrast to the komatiite-tholeiitic basalt volcanism in the Kaapvaal Craton of South Africa, and a mixture of the two types in the Zimbabwe Craton.
NASA Astrophysics Data System (ADS)
Fambrini, Gelson Luís; Neumann, Virgínio Henrique M. L.; Menezes-Filho, José Acioli B.; Da Silva-Filho, Wellington F.; De Oliveira, Édison Vicente
2017-12-01
Sedimentological analysis of the Missão Velha Formation (Araripe Basin, northeast Brazil) is the aim of this paper through detailed facies analysis, architectural elements, depositional systems and paleocurrent data. The main facies recognized were: (i) coarse-grained conglomeratic sandstones, locally pebbly conglomerates, with abundant silicified fossil trunks and several large-to-medium trough cross-stratifications and predominantly lenticular geometry; (ii) lenticular coarse-to-medium sandstones with some granules, abundant silicified fossil wood, and large-to-medium trough cross-stratifications, cut-and fill features and mud drapes on the foresets of cross-strata, (iii) poorly sorted medium-grained sandstones with sparse pebbles and with horizontal stratification, (iv) fine to very fine silty sandstones, laminated, interlayered with (v) decimetric muddy layers with horizontal lamination and climbing-ripple cross-lamination. Nine architectural elements were recognized: CH: Channels, GB: Gravel bars and bed forms, SB: Sand bars and bedforms, SB (p): sand bedform with planar cross-stratification, OF: Overbank flow, DA: Downstream-accretion macroforms, LS: Laminated sandsheet, LA: Lateral-accretion macroforms and FF: Floodplain fines. The lithofacies types and facies associations were interpreted as having been generated by alluvial systems characterized by (i) high energy perennial braided river systems and (ii) ephemeral river systems. Aeolian sand dunes and sand sheets generated by the reworking of braided alluvial deposits can also occur. The paleocurrent measurements show a main dispersion pattern to S, SE and SW, and another to NE/E. These features imply a paleodrainage flowing into the basins of the Recôncavo-Tucano-Jatobá.
NASA Astrophysics Data System (ADS)
Tawfik, Mohamed; El-Sorogy, Abdelbaset; Moussa, Mahmoud
2016-07-01
The shallow-water carbonates of the Middle Eocene in northern Egypt represent a Tethyan reef-rimmed carbonate platform with bedded inner-platform facies. Based on extensive micro- and biofacies documentation, five lithofacies associations were defined and their respective depositional environments were interpreted. Investigated sections were subdivided into three third-order sequences, named S1, S2 and S3. Sequence S1 is interpreted to correspond to the Lutetian, S2 corresponds to the Late Lutetian and Early Bartonian, and S3 represents the Late Bartonian. Each of the three sequences was further subdivided into fourth-order cycle sets and fifth-order cycles. The complete hierarchy of cycles can be correlated along 190 km across the study area, and highlighting a general "layer-cake" stratigraphic architecture. The documentation of the studied outcrops may contribute to the better regional understanding of the Middle Eocene formations in northern Egypt and to Tethyan pericratonic carbonate models in general.
Baldridge, A.M.; Hook, S.J.; Crowley, J.K.; Marion, G.M.; Kargel, J.S.; Michalski, J.L.; Thomson, B.J.; de Souza, Filho C.R.; Bridges, N.T.; Brown, A.J.
2009-01-01
Studies of the origin of the Martian sulfate and phyllosilicate deposits have led to the hypothesis that there was a marked, global-scale change in the Mars environment from circum-neutral pH aqueous alteration in the Noachian to an acidic evaporitic system in the late Noachian to Hesperian. However, terrestrial studies suggest that two different geochemical systems need not be invoked to explain such geochemical variation.Western Australian acidic playa lakes have large pH differences separated vertically and laterally by only a few tens of meters, demonstrating how highly variable chemistries can coexist over short distances in natural environments. We suggest diverse and variable Martian aqueous environments where the coetaneous formation of phyllosilicates and sulfates at the Australian sites are analogs for regions where phyllosilicates and sulfates coexist on Mars. In these systems, Fe and alkali earth phyllosilicates represent deep facies associated with upwelling neutral to alkaline groundwater, whereas aluminous phyllosilicates and sulfates represent near-surface evaporitic facies formed from more acidic brines. Copyright 2009 by the American Geophysical Union.
Temperature and Oxygenation of the Shallow Tethys During the End-Triassic Extinction Event.
NASA Astrophysics Data System (ADS)
Petryshyn, V.; Lalonde, S.; Greene, S. E.; Sansjofre, P.; Ibarra, Y.; Corsetti, F. A.; Bottjer, D. J.; Tripati, A.
2016-12-01
The end-Triassic mass extinction is one of the most severe biotic crises in Earth's history. It has been hypothesized that the extinction was triggered by the rapid emplacement of the Central Atlantic Magmatic Province (CAMP), a large igneous province related to the initial rifting Pangaea 200 million years ago. A massive amount of CO2 and other volatiles were released into the atmosphere due to CAMP volcanism, causing global climate changes and mass extinction. In the uppermost Triassic strata of the Lilstock Formation, southwest United Kingdom, the extinction horizon is well-preserved and marked by a notable deposit of stromatolitic carbonate known as the Cotham Marble (CM). The CM was deposited in the shallow Tethys sea between the paleocontinents of Laurasia and Gondwana, though the specific paleoenvironment (e.g. open ocean vs. restricted basin/lagoon) is debated. The CM alternates between two facies: a fine continuous laminated (L) facies, and dendritic (D) structures that are passively infilled. Clumped isotope paleothermometry of the microbialites reveals a distinct difference between L and D microfacies, with L portions forming at 30.1 ±4.5°C, and D portions forming at 15.2 ±2.1°C, which may suggest restriction during the growth of L facies. High-precision trace element data from weak leaching of carbonate reveal rare earth element (REE) spectra broadly similar to modern seawater, with positive La anomalies, supra-chondritic Y/Ho ratios, and mild light-to-heavy REE enrichment. Y/Ho ratios are similar between the two microfacies, suggesting that changes in basinal restriction may not have actually been an important factor. Unlike modern oxic seawater, the CM displays true positive Ce anomalies that are pronounced in L microfacies and weak-to-absent in D microfacies. The REE data point to variable ambient redox conditions characterized by water column anoxia during growth of D facies and perhaps even stratification during the growth of the L facies.
Regional chronostratigraphic and depositional hydrocarbon trends in offshore Louisiana State waters
DOE Office of Scientific and Technical Information (OSTI.GOV)
John, C.J.; Jones, B.J.; Harder, B.J.
1996-09-01
Successful exploration for hydrocarbons in the Northern Gulf of Mexico basin requires a systematic understanding of hydrocarbon producing trends, sand body geometries and the geologic, engineering and reservoir parameters of the producing sands. This study forms part of the Offshore Atlas project in progress at the University of Texas at Austin, Bureau of Economic Geology, Texas, in co-operation with the U.S. Department of Interior, Minerals Management Service, and the Geological Survey of Alabama, and is aimed at achieving this goal. In this study, 26 chronozones were grouped into 12 sub-groups. The chronozones were defined on the basis of the benthicmore » foraminiferal biostratigraphic zones and were correlated across the Gulf using well log and seismic data and were projected from the Federal offshore into the State waters. The chronozones on each well log in the 22 cross sections constructed from West Cameron area eastward to the Chandeleur, Breton Sound and Main Pass areas, were subdivided as applicable into four depositional groups consisting of aggradational, progradational, transgressive and submarine fan facies based primarily on SP log shapes. In the Louisiana State waters there are 86 fields containing 679 reservoirs. This includes 212 oil, 344 gas, 33 condensate and 90 combination type reservoirs. Total combined cumulative production (1975-1995) is 454,335,217 barrels of oil, 114,327,696 barrels of condensate and 5,436,623,888 thousand cubic feet of gas. Total assigned production shows the progradational facies to be most productive yielding 51.69% oil 93.84% condensate, and 77.47% gas. The aggradational facies sands produced 46.96% oil, 1.70% condensate and 17.78%. gas. The submarine fan facies yielded 1.21% oil, 4.45% condensate, and 6.74% gas. Production from the transgressive facies sands was less than 0.2% of the total assigned production of oil, gas and condensate.« less
NASA Astrophysics Data System (ADS)
Zhang, X.; Lin, C. M., Sr.; Dalrymple, R. W.; Gao, S., Sr.
2017-12-01
Cone penetration testing (CPT) has proved to be as an effective method for sedimentological purposes in wave-dominated coastal environments. This study, based upon interpretation of 500 CPTs, carried out in the late Quaternary Qiantang River incised-valley fill over the eastern China coastal plain, shows how CPTs can also be used for detailed facies characterization and identification of the key surfaces for sequence-stratigraphic interpretation in tide-dominated systems based upon estimation of three major parameters: cone-tip resistance (qc), sleeve friction (fs), and the ratio of fs and qc (FR). Plotting of qc versus FR, in combination with the CPT curve shape and the relative depth in profile, is adopted as the major tool. The lithologic character which is controlled mainly by sediment supply and dynamics, and post-depositional diagenesis is respected as the main factor affecting how well the CPT technique works. Within this particular tide-dominated environment, dominated by non-cohesive sand and silt, the accumulation of the materials from fluid muds is rare. As a result, the tidal-channel deposits exhibit the nature of coarse-grained deposits, different from that of the other mud-dominated facies associations. On the other hand, a distinct layer of fine-grained deposit at the base of the Holocene sequences was subjected to early diagenesis during the last glacial maximum and early transgression, to become uniformly hard and over-consolidated, geotechnically distinct from the overlying softer sediments. Besides, due to the different sediment dynamics, the tidal-flat and salt-marsh deposits exhibit a distinct geotechnical behavior with the offshore shallow marine muddy deposits. All the above mentioned situations provide the basis for the recognition of facies association and the correlated key surfaces, even for the mapping of the incised-valley boundary. As a consequence, the CPT method has a potential to be a very attractive alternative to economically less convenient methods for the geological mapping in the tide-dominated coastal plain areas.
NASA Astrophysics Data System (ADS)
Lang, Joerg; Winsemann, Jutta
2015-04-01
Subaqueous ice-contact fans are deposited by high-energy plane-wall jets from subglacial conduits into standing water bodies. Highly aggradational conditions during flow expansion and deceleration allow for the preservation of bedforms related to supercritical flows, which are commonly considered rare in the depositional record. We present field examples from gravelly and sandy subaqueous ice-contact fan successions, which indicate that deposition by supercritical flows might be considered as a characteristic feature of these depositional systems. The studied successions were deposited in deep ice-dammed lakes, which formed along the margins of the Middle Pleistocene Scandinavian ice sheets across Northern Germany. The gravel-rich subaqueous fan deposits are dominated by large scour-fills (up to 25 m wide and 3 m) deep and deposits of turbulent hyperconcentrated flows, which are partly attributed to supercritical flow conditions (Winsemann et al., 2009). Scours (up to 4.5 m wide and 0.9 m deep) infilled by gravelly backsets are observed above laterally extensive erosional surfaces and are interpreted as deposits of cyclic steps. Laterally discontinuous beds of low-angle cross-stratified gravel are interpreted as antidune deposits. Downflow and up-section the gravel-rich deposits pass into sand-rich successions, which include deposits of chutes-and-pools, breaking antidunes, stationary antidunes and humpback dunes (Lang and Winsemann, 2013). Deposits of chutes-and-pools and breaking antidunes are characterised by scour-fills (up to 4 m wide and 1.2 m deep) comprising backsets or gently dipping sigmoidal foresets. Stationary antidune deposits consist of laterally extensive sinusoidal waveforms with long wavelengths (1-12 m) and low amplitudes (0.1-0.5 m), which formed under quasi-steady flows at the lower limit of the supercritical flow stage and high rates of sedimentation. Humpback dunes are characterised by divergent sigmoidal foresets and are interpreted as bedforms related to transcritical flow conditions. Deposits of aggrading stationary antidunes and humpback dunes represent a characteristic facies association of the distal zone of flow transition. Downflow the succession passes into deposits of large 3D dunes and climbing ripples. The large-scale lateral and vertical successions of bedforms are interpreted as representing the temporal and spatial evolution of the supercritical meltwater jets, which was affected by hydraulic jumps. Small-scale facies changes and the formation of individual bedforms are interpreted as controlled by fluctuating discharge, pulsating unstable flows and bed topography. References: Lang, J., Winsemann, J. (2013) Lateral and vertical facies relationships of bedforms deposited by aggrading supercritical flows: from cyclic steps to humpback dunes. Sedimentary Geology 296, 36-54. Winsemann, J., Hornung, J.J., Meinsen, J., Asprion, U., Polom, U., Brandes, C., Bussmann, M., Weber, C., (2009) Anatomy of a subaqueous ice-contact fan and delta complex, Middle Pleistocene, North-west Germany, Sedimentology 56, 1041-1076.
Helley, E.J.; Graymer, R.W.
1997-01-01
Alameda County is located at the northern end of the Diablo Range of Central California. It is bounded on the north by the south flank of Mount Diablo, one of the highest peaks in the Bay Area, reaching an elevation of 1173 meters (3,849 ft). San Francisco Bay forms the western boundary, the San Joaquin Valley borders it on the east and an arbitrary line from the Bay into the Diablo Range forms the southern boundary. Alameda is one of the nine Bay Area counties tributary to San Francisco Bay. Most of the country is mountainous with steep rugged topography. Alameda County is covered by twenty-eight 7.5' topographic Quadrangles which are shown on the index map. The Quaternary deposits in Alameda County comprise three distinct depositional environments. One, forming a transgressive sequence of alluvial fan and fan-delta facies, is mapped in the western one-third of the county. The second, forming only alluvial fan facies, is mapped in the Livermore Valley and San Joaquin Valley in the eastern part of the county. The third, forming a combination of Eolian dune and estuarine facies, is restricted to the Alameda Island area in the northwestern corner of the county.
Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stegen, James C.; Konopka, Allan; McKinely, Jim
Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number ofmore » microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.« less
Comparative facies formation in selected coal beds of the Powder River Basin
Stanton, R.W.; Moore, Timothy A.; Warwick, Peter D.; Crowley, S.S.; Flores, Romeo M.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean
1989-01-01
Petrologic studies of thick coal beds [Warwick, 1985; Moore, 1986; Moore and others, 1986; Moore and others, 1987; Warwick and Stanton, in press], which build on sedimentological interpretations [Flores, this volume] of associated units, provide data to interpret and contrast the varieties of peat formation in the Powder River Basin. Detailed analyses of the composition of coal beds lead to more complete interpretations regarding the depositional environment on a regional and local scale. Our efforts in the Powder River Basin [areas A-D in fig. 1 of Flores, this volume] have resulted in a series of site-specific studies that interpret the types of peat formation from the arrangement of different facies which comprise the coal beds and from the spatial form of the coal beds.Our approach was to use a combination of megascopic criteria for facies sampling, and where only core was available, to analyze many interval samples to discriminate facies by their maceral composition. Coal beds in the Powder River Basin are composed of laterally continuous, compositional subunits of the bed (facies) that can be discerned most easily in weathered highwall exposures, less readily in fresh highwalls, and very poorly in fresh-cut core surfaces. In general, very low ash (
NASA Astrophysics Data System (ADS)
Biel, C.; Subías, I.; Acevedo, R. D.; Yusta, I.; Velasco, F.
2012-04-01
The Arroyo Rojo Zn-Pb-Cu volcanogenic massive sulfide deposit is the main deposit of the Fin del Mundo District in the Fuegian Andes, Argentina. This deposit is hosted by a Middle Jurassic volcanic and volcanoclastic sequence forming the Lemaire Formation. The latter consists, from the base up, of the following: rhyolitic and dacitic porphyritic rocks, ignimbrite, tuff, and flow. It is underlain by a pre-Jurassic basement and overlain by the hyaloclastic andesites of the Yahgán Formation. The Arroyo Rojo consists of stacked lenticular lenses that are associated with disseminated mineralization in both the footwall and the hanging wall. The internal structure of the ore lenses is marked by the occurrence of massive, semi-massive and banded facies, along with stringer and brecciated zones and minor ore disseminations. The mineral assemblage comprises mainly pyrite and sphalerite, with minor amounts of galena and chalcopyrite and rare pyrrhotite, arsenopyrite, tetrahedrite and bournonite. The ores and the volcanic host rocks have metamorphosed to greenschist facies and were overprinted by a penetrative tectonic foliation, which led to the development of mylonitic, and cataclastic textures, recrystallization and remobilization. Primary depositional characteristics and regional and hydrothermal alteration patterns were preserved despite deformation and metamorphism. Therefore, primary banding was preserved between facies boundaries. In addition, some remnants of magmatic origin are recognizable in preserved phenocrysts and volcaniclastic phenoclasts. Most of the volcanic and volcaniclastic rocks of the host sequence show a rhyolitic to rhyo-dacitic composition. Regional seafloor alteration, characterized by the presence of clinozoisite, Fe-chlorite and titanite, along with quartz and albite, is partially obliterated by hydrothermal alteration. The hydrothermal alteration is stratabound with the following assemblages, which developed from the base to top: (1) Quartz-Chlorite ± Sericite, (2) Quartz-Chlorite, (3) Chlorite ± Quartz-Sericite-Calcite, (4) Quartz-Chlorite ± Calcite and (5) Sericite + Quartz ± Chlorite ± Calcite. Magnesium-chlorite and phengitic white mica typically occur in the vicinity of the Arroyo Rojo ore lenses. To provide field criteria for exploration vectoring, the chemical composition of chlorite and the phengitic and paragonitic content of the white mica were determined and correlated with PIMA Fe-OH and Al-OH absorption wavelengths, respectively, relative to their proximity to the mineralized lenses. The results of this study can be used to help identify (1) felsic proximal facies associations, (2) ore horizons and (3) favorable hydrothermal alteration zones in other parts of the Fin del Mundo district.
NASA Astrophysics Data System (ADS)
Harper, D. A. T.; Rasmussen, C. M. Ø.; Munnecke, A.; Jin, J.; Stouge, S.; Rasmussen, J. A.
2012-04-01
Key sections through the Upper Ordovician (Katian-Hirnantian) and Lower Silurian (Rhuddanian) in Peary Land, North Greenland, demonstrate a succession of events related to the waxing and waning of contemporary glaciation on the far-off supercontinent of Gondwana. The Børglum River Formation was deposited in the palaeoequatorial marginal seas of Laurentia during the Katian. The upper Børglum River Formation contains a thick (130 m) unit of thick-bedded carbonate with pervasive Thalassinoides ichnofacies, which is also typical of the Selkirk Member (c. 40 m) of the Red River Formation in Canada and coeval rocks in Nevada. In addition to these ichnofossils, the shelly faunas are also similar, emphasized by the dominance of giant nautiloids, relatively abundant stromatoporoids and receptaculitids, and large gastropods. The Thalassinoides ichnofacies points to a remarkable palaeogeographic extension from an intracratonic basin to a pericratonic shelf over a distance of 11,000 km. This facies consistency implies a near homogeneous and stable depositional environment along the palaeoequator of Laurentia during the Late Ordovician. The succeeding Turesø Formation is more variable and less laterally extensive, characterized in its lower part by mud mounds, shelly coquinas and peritidal, cyclical deposits in a regressive sequence. These shallower-water facies are associated with a marked positive carbon isotope excursion that elsewhere is associated with the end Ordovician extinction. Following a probable hiatus, transgression is associated with the sequential development of Viridita and Virgiana dominated coquinas during the Rhudannian, taxa with widespread distributions across the rest of Laurentia and beyond.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cole, R.D.; Nelson, W.J.
1993-03-01
The Mississippian Ste. Genevieve and Paoli Limestones and sandstones of the Aux Vases Formation are lateral facies of one another. This interpretation is based on comprehensive investigations of outcrops, and selected cores, samples of well cuttings, and geophysical logs conducted over a period of four years. Both units exhibit similar sedimentological characteristics and represent open marine, shallow subtidal, and intertidal environments. The presence of low-angle cross-laminae, ripple- and plane-laminae, climbing ripples, and ooid shoals suggest most deposition occurred under low energy conditions. Lenticular, channel-like scour and fill structures that contain both fine-grained quartz sand and abraded, disarticulated fossil fragments indicatemore » localized higher energy deposition. The authors studies indicate that siliciclastic vs. carbonate deposition was controlled strictly by available sediment, and not by regressive (siliciclastic) and transgressive (carbonate) events, as inferred by previous workers. This conclusion is based on lateral facies relationships, and the supplanting of carbonates by clastics occurring in the upper part of the Ste. Genevieve through the middle part of the Paoli. The Aux Vases is thickest, coarsest, and least mature in the northwestern part of the Illinois Basin, and pinches out to the southeast. This implies a northwesterly source for clastics, perhaps the Transcontinental Arch. After early Chesterian time, the Transcontinental Arch apparently supplied little or no sediment to any flanking basin. The Ste. Genevieve, Paoli, and Aux Vases are major oil-producing units in the Illinois Basin. New understanding of regional relationships should enhance exploratory success and improve recovery from established fields.« less
Rodriguez-Pascua, M. A.; Bischoff, J.; Garduno-Monroy, Victor H.; Pérez-López, R.; Giner-Robles, J.L.; Israde-Alcántara, I.; Calvo, J.P.; Williams, Ross W.
2009-01-01
The Quaternary lacustrine basin of Cordovilla (CB) represents one of the most active tectonic areas of the Prebetic Zone (Albacete, SE of Spain). The Quaternary sedimentary deposits of this basin are mainly endoreic lacustrine carbonate and alluvial deposits, developed in a semi-arid climate (Pleistocene-present). The basin is a NW-SE-elongated graben bounded by a major right-lateral oblique-fault, the Pozohondo Fault. This fault trends NW-SE, with an approximate trace of 55 km, and is composed of various segments which are identified by fault scarps. In order to establish the slip-rate of the most active segment of the Pozohondo Fault, called the Cordovilla segment, we carried out a detailed study of the affected Quaternary lacustrine deposits. We found that the lacustrine facies could be related to episodic moderate paleoearthquakes. The slip-rate is calculated to be 0.05 and 0.09 mm/yr, using radiometric dating for the vertical offsets of the lacustrine facies. A trenching study at the northern part of the Cordovilla segment revealed two events caused by paleoearthquakes, with the most recent expressed as an oblique-fault off-setting a poorly-developed soil. The magnitude of the last event was greater than 6, using various empirical relationships for the fault displacement and the surface-length rupture. We estimate episodic activity across the Cordovilla segment, to be characterized by moderate-sized paleoearthquakes (M6), which is in agreement with the tectonic context of an intraplate zone of the Iberian plate. ?? 2009 Elsevier B.V.
Discrete Regularization for Calibration of Geologic Facies Against Dynamic Flow Data
NASA Astrophysics Data System (ADS)
Khaninezhad, Mohammad-Reza; Golmohammadi, Azarang; Jafarpour, Behnam
2018-04-01
Subsurface flow model calibration involves many more unknowns than measurements, leading to ill-posed problems with nonunique solutions. To alleviate nonuniqueness, the problem is regularized by constraining the solution space using prior knowledge. In certain sedimentary environments, such as fluvial systems, the contrast in hydraulic properties of different facies types tends to dominate the flow and transport behavior, making the effect of within facies heterogeneity less significant. Hence, flow model calibration in those formations reduces to delineating the spatial structure and connectivity of different lithofacies types and their boundaries. A major difficulty in calibrating such models is honoring the discrete, or piecewise constant, nature of facies distribution. The problem becomes more challenging when complex spatial connectivity patterns with higher-order statistics are involved. This paper introduces a novel formulation for calibration of complex geologic facies by imposing appropriate constraints to recover plausible solutions that honor the spatial connectivity and discreteness of facies models. To incorporate prior connectivity patterns, plausible geologic features are learned from available training models. This is achieved by learning spatial patterns from training data, e.g., k-SVD sparse learning or the traditional Principal Component Analysis. Discrete regularization is introduced as a penalty functions to impose solution discreteness while minimizing the mismatch between observed and predicted data. An efficient gradient-based alternating directions algorithm is combined with variable splitting to minimize the resulting regularized nonlinear least squares objective function. Numerical results show that imposing learned facies connectivity and discreteness as regularization functions leads to geologically consistent solutions that improve facies calibration quality.
NASA Astrophysics Data System (ADS)
Hunt, James; Wynn, Russell
2010-05-01
The Icod landslide from the northern flank of Tenerife not only generated a debris avalanche phase (Watts & Masson, 1995; Masson et al. 2002), but produced a volcaniclastic turbidite that spans three interconnected basins. The Icod turbidite (160,000ka) was reported and correlated during work in the Madeira Abyssal Plain (Pearce & Jarvis, 1992; Rothwell, Pearce & Weaver, 1992). Here it forms a series of vertically stacked sand bodies accumulating into a single event bed. However, the Madeira Abyssal Plain is fed from the Agadir Basin by a series of channels, thus invoking a level of complexity to the deposit with the flow exiting channels at different times. The Icod turbidite can be found deposited more proximally to source in the Agadir Basin as a 0.3-0.6m stacked sand with accompanying 0.2-1.5m mudcap. With this stacked sand facies present here a number of other mechanisms can still be viable: (1) multistage retrogressive landslide failure, (2) flow reflection and (3) internal waves. Geochemical methodologies including ICP-AES, ICP-MS, XRF, ITRAX micro-XRF, SEM EDS and laser-diffraction grain-size analysis have been employed here to investigate the potential of a retrogressive failure at source being the driver of this facies. Evidence suggests that this stacked sand facies in this case is derived from the failure mechanism at source. Five vertical sand packages have been identified and correlated through the Agadir Basin, with the initial basal package representing the thickest. However, this amalgamated sand displays degrees of complexity with correlated internal erosional surfaces marked by sand-sand grain-size breaks. There are also sand-sand grain-size breaks found at the transition between facies associated with flow properties i.e. Bouma Tb parallel laminations and Bouma Tc ripple laminations. Each of the stacked sand intervals also has a sand-mud grain-size break present at the top of the package. This sand-mud break could possibly indicate (1) bypass of coarse silt or (2) removal of previously deposited silt by erosion of a post-depositional mudflow associated with mudcap remobilisation. Further to the stacked subunit facies and grain-size breaks, there are additional complexities to the deposit. An omission of a typical Bouma Ta facies is observed, replaced with a thick well-developed banded Bouma Tb, representing density sorting and flow fractionation of dense basaltic clasts and >100μm foraminifera. Above developing ripple laminations associated with Bouma Tc development is a 0.2-0.5m thick convolute laminated sand. This convoluted sand represents increasing shear stress across developing ripples. Grain-size analysis and ITRAX x-radiographs highlighted an additional process within the mudcaps of the Icod turbidite within the Agadir Basin. The mudcap thickens towards the base of incline from the Agadir Basin to the Selvage Islands. Within the cores with an over-thickened mudcap, the mudcap contained silt contortions. X-radiographs using ITRAX further displayed these contorted silts in the mudcaps. Grain-size analysis was used to confirm the presence of silt and poor sorting through the regions of contortions. These contorted muds have a debritic fabric, and could represent post-depositional remobilisation of the accumulative suspended clay fraction as a mudflow, as it was settling on a gradient and destabilising. This presentation will show the complexities present in even distal sheet turbidites, and that detailed multidisciplinary studies are required to unravel the mechanisms at work during their deposition. Pearce, T.J., & Jarvis I. 1992. Composition and provenance of turbidite sands: Late Quaternary, Madeira Abyssal Plain. Rothwell, R.G., Pearce, I., & Weaver, P.P.E. 1992. Late Quaternary evolution of the Madeira Abyssal Plain, Canary Basin, NE Atlantic. Basin Research, vol.4, no.2, p.103-131. Watts, A.B., & Masson, D.G. 1995. A giant landslide on the north flank of Tenerife, Canary Islands. Journal of Geophysical Research, vol.100, no.B12, p.24,487-24,498. Masson, D.G., Watts, A.B., Gee, M.J.R., Urgeles, R., Mitchell, N.C., Le Bas, T.P., & Canals, M. 2002. Slope failures on the flanks of the western Canary Islands. Earth-Science Reviews, 57, p.1-35.
NASA Astrophysics Data System (ADS)
Smirnov, P. V.; Konstantinov, A. O.; Aleksandrova, G. N.; Kuzmina, O. B.; Shurygin, B. N.
2017-08-01
Peculiarities of the material composition and microstructure of coastal facies of Turtas Lake-Sea were studied in its marginal southwestern part for the first time. Interpretation of the lithological data showed that the deposits considered were formed under the conditions of a slightly saline basin and nearby full-flow river network. Based on the lithological, geochemical, and micropaleontological studies of clay-siliceous rocks of the Lower Turtas Formation (the boundary zone between the Tyumen and Sverdlovsk regions), additional support for the freshwater lake regime of the Late Oligocene Turtas basin is given.
NASA Astrophysics Data System (ADS)
Ivantsov, S. V.; Bystritskaya, L. I.; Krasnolutskii, S. A.; Lyalyuk, K. P.; Frolov, A. O.; Alekseev, A. S.
2016-09-01
On the basis of the lithological-facies analysis, it was established that deposits of the Upper Itat Subformation, comprising the Dubinino locality of the Middle Jurassic flora and insects (Sharypovo district, Krasnoyarsk krai), accumulated in alluvial and lacustrine and, to a lesser extent, floodplain environments (floodplain and alluvial fan facies). The occurrence of remains of insects, macroremains of flora, spores, and pollen allowed us to make a paleoreconstruction of an area with a strongly dissected relief: continental fresh-water reservoir (lake) with varying degree of overflow, surrounded by hills covered with gymnospermous and ginkgo forests.
NASA Astrophysics Data System (ADS)
Gilbert, Graham L.; Cable, Stefanie; Thiel, Christine; Christiansen, Hanne H.; Elberling, Bo
2017-05-01
The Zackenberg River delta is located in northeast Greenland (74°30' N, 20°30' E) at the outlet of the Zackenberg fjord valley. The fjord-valley fill consists of a series of terraced deltaic deposits (ca. 2 km2) formed during relative sea-level (RSL) fall. We investigated the deposits using sedimentological and cryostratigraphic techniques together with optically stimulated luminescence (OSL) dating. We identify four facies associations in sections (4 to 22 m in height) exposed along the modern Zackenberg River and coast. Facies associations relate to (I) overriding glaciers, (II) retreating glaciers and quiescent glaciomarine conditions, (III) delta progradation in a fjord valley, and (IV) fluvial activity and niveo-aeolian processes. Pore, layered, and suspended cryofacies are identified in two 20 m deep ice-bonded sediment cores. The cryofacies distribution, together with low overall ground-ice content, indicates that permafrost is predominately epigenetic in these deposits. Fourteen OSL ages constrain the deposition of the cored deposits to between approximately 13 and 11 ka, immediately following deglaciation. The timing of permafrost aggradation was closely related to delta progradation and began following the subaerial exposure of the delta plain (ca. 11 ka). Our results reveal information concerning the interplay between deglaciation, RSL change, sedimentation, permafrost aggradation, and the timing of these events. These findings have implications for the timing and mode of permafrost aggradation in other fjord valleys in northeast Greenland.
Pattern recognition analysis and classification modeling of selenium-producing areas
Naftz, D.L.
1996-01-01
Established chemometric and geochemical techniques were applied to water quality data from 23 National Irrigation Water Quality Program (NIWQP) study areas in the Western United States. These techniques were applied to the NIWQP data set to identify common geochemical processes responsible for mobilization of selenium and to develop a classification model that uses major-ion concentrations to identify areas that contain elevated selenium concentrations in water that could pose a hazard to water fowl. Pattern recognition modeling of the simple-salt data computed with the SNORM geochemical program indicate three principal components that explain 95% of the total variance. A three-dimensional plot of PC 1, 2 and 3 scores shows three distinct clusters that correspond to distinct hydrochemical facies denoted as facies 1, 2 and 3. Facies 1 samples are distinguished by water samples without the CaCO3 simple salt and elevated concentrations of NaCl, CaSO4, MgSO4 and Na2SO4 simple salts relative to water samples in facies 2 and 3. Water samples in facies 2 are distinguished from facies 1 by the absence of the MgSO4 simple salt and the presence of the CaCO3 simple salt. Water samples in facies 3 are similar to samples in facies 2, with the absence of both MgSO4 and CaSO4 simple salts. Water samples in facies 1 have the largest selenium concentration (10 ??gl-1), compared to a median concentration of 2.0 ??gl-1 and less than 1.0 ??gl-1 for samples in facies 2 and 3. A classification model using the soft independent modeling by class analogy (SIMCA) algorithm was constructed with data from the NIWQP study areas. The classification model was successful in identifying water samples with a selenium concentration that is hazardous to some species of water-fowl from a test data set comprised of 2,060 water samples from throughout Utah and Wyoming. Application of chemometric and geochemical techniques during data synthesis analysis of multivariate environmental databases from other national-scale environmental programs such as the NIWQP could also provide useful insights for addressing 'real world' environmental problems.
Trace-fossil and storm-deposit relationships of San Carlos formation, west Texas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metz, C.L.; Bednarski, S.P.
1986-05-01
Two distinct assemblages of trace fossils are preserved in the storm deposits in delta-front facies of the Upper Cretaceous San Carlos Formation, west Texas. The assemblages represent two widely differing responses to storm deposition and sediment-trace-fossil relationships, indicating that other environmental parameters, probably water depth and oxygen levels, influenced trace-fossil distribution within the San Carlos delta front. Evidence of the storm-deposited nature of the sandstones includes a scoured basal contact, planar to hummocky cross-stratification, and a upper contact that is either ripple marked or is gradational with overlying shales.
Stratigraphic architecture and gamma ray logs of deeper ramp carbonates (Upper Jurassic, SW Germany)
NASA Astrophysics Data System (ADS)
Pawellek, T.; Aigner, T.
2003-07-01
The objective of this paper is to contribute to the development of sequence stratigraphic models for extensive epicontinental carbonate systems deposited over cratonic areas. Epicontinental carbonates of the SW German Upper Jurassic were analysed in terms of microfacies, sedimentology and sequence stratigraphy based on 2.5 km of core, 70 borehole gamma ray logs and 24 quarries. Facies analysis revealed six major facies belts across the deeper parts of the carbonate ramp, situated generally below fair-weather wave base, and mostly below average storm wave base but in the reach of occasional storm events. Observed stratigraphic patterns differ in some aspects from widely published sequence stratigraphic models: Elementary sedimentary cycles are mostly more or less symmetrical and are, thus, referred to as "genetic sequences" or "genetic units" [AAAPG Bull. 55 (1971) 1137; Frazier, D.E., 1974. Depositional episodes: their relationship to the Quaternary stratigraphic framework in the northwestern portion of the Gulf Basin. University of Texas, Austin, Bureau of Economic Geology Geologicalo Circular 71-1; AAPG Bull. 73 (1989) 125; Galloway, W.E., Hobday, D.K., 1996. Terrigenous Clastic Depositional Systems. 489 pp., Springer; Cross, T.A., Baker, M.R., Chapin, M.S., Clark, M.S., Gardner, M.H., Hanson, M.S., Lessenger, M.A., Little, L.D., McDonough, K.J., Sonnenfeld, M.D., Valasek, D.W., Williams, M.R., Witter, D.N., 1993. Applications of high-resolution sequence stratigraphy to reservoir analysis. Edition Technip 1993, 11-33; Bull. Cent. Rech. Explor. Prod. Elf-Aquitaine 16 (1992) 357; Homewood, P., Mauriaud, P., Lafont, F., 2000. Best practices in sequence stratigraphy. Elf EP Mem. 25, 81 pp.; Homewood, P., Eberli, G.P., 2000. Genetic stratigraphy on the exploration and production scales. Elf EP Mem. 24, 290 pp.], in contrast to the asymmetrical, shallowing-upward "parasequences" of the EXXON approach. Neither sequence boundaries nor maximum flooding surfaces could be clearly delineated. Cycle boundaries are generally not represented by sharp stratal surfaces but are always transitional and, thus, referred to as "turnarounds" [Nor. Pet. Soc. Spec. Publ. 8 (1998) 171]. Several types of genetic sequences were delineated. Both major types of facies and sequences show characteristic gamma ray log signatures. Based on the cycle stacking and the gamma ray patterns, a hierarchy of sequences was recognized, probably driven in part by 100,000- and 400,000-year Milankovitch signals. The cyclicity allowed regional correlations across various depositional environments such as sponge-microbial bioherms and coeval basins. The basin-wide correlation revealed evidence for a subtle clinoform-type stratigraphic architecture along very gentle slopes, rather than a so far assumed simple "layer cake" pattern.
Pilot points method for conditioning multiple-point statistical facies simulation on flow data
NASA Astrophysics Data System (ADS)
Ma, Wei; Jafarpour, Behnam
2018-05-01
We propose a new pilot points method for conditioning discrete multiple-point statistical (MPS) facies simulation on dynamic flow data. While conditioning MPS simulation on static hard data is straightforward, their calibration against nonlinear flow data is nontrivial. The proposed method generates conditional models from a conceptual model of geologic connectivity, known as a training image (TI), by strategically placing and estimating pilot points. To place pilot points, a score map is generated based on three sources of information: (i) the uncertainty in facies distribution, (ii) the model response sensitivity information, and (iii) the observed flow data. Once the pilot points are placed, the facies values at these points are inferred from production data and then are used, along with available hard data at well locations, to simulate a new set of conditional facies realizations. While facies estimation at the pilot points can be performed using different inversion algorithms, in this study the ensemble smoother (ES) is adopted to update permeability maps from production data, which are then used to statistically infer facies types at the pilot point locations. The developed method combines the information in the flow data and the TI by using the former to infer facies values at selected locations away from the wells and the latter to ensure consistent facies structure and connectivity where away from measurement locations. Several numerical experiments are used to evaluate the performance of the developed method and to discuss its important properties.
NASA Astrophysics Data System (ADS)
Llorca, Jaime; Schulte, Lothar; Carvalho, Filipe
2016-04-01
The Haslital delta (upper Aare River catchment, Bernese Alps) progradated into the Lake Brienz after the retreat of the Aare Glacier (post-LGM). Present delta plain geomorphology and spatial distribution of sedimentary facies result from historical fluvial dynamics and aggradation. Over centuries, local communities have struggled to control the Aare floods and to mitigate their effects on the floodplain (by means of raising artificial levees, channelizing the course, creating an underground drainage network, constructing dams at the basin headwaters). This study focuses on the spatial and temporal evolution of sediment dynamics of the floodplain by analyzing fluvial sedimentary records . The internal variability of lithostratigraphic sequences is a key issue to understand hydrological processes in the basin under the effect of environmental and anthropogenic changes of the past. The floodplain lithostratigraphy was reconstructed by coring alongside four cross-sections; each one is composed of more than 25 shallow boreholes (2 m deep) and two long drillings (variable depth, up to 9 m). The chronostratigraphical models were obtained by AMS 14C dating, and information of paleofloods and channel migration were reconstructed from historical sources (Schulte et al., 2015). The identification of different sedimentary facies, associated with the fluvial architecture structures, provides information on variations of vertical and lateral accretion processes (Houben, 2007). The location and geometry of buried channel-levee facies (gravel and coarse sand layers) indicate a significant mobility of the riverbed of the Hasli-Aare river, following an oscillatory pattern during the last millennia. Furthermore, fine sedimentary deposits and peat layers represent the existence of stable areas where floods have a low incidence. Once the different types of deposits were identified, aggradation rates were estimated in order to determine the spatial variability of the accumulation process. Results suggest a longitudinal decrease of sedimentation rates from the apex towards the distal section of the delta plain. Differences in rates are also found within each cross-section (e.g. channel-levée: higher rates; interdistributary depression: lower rates), suggesting an asymmetric growth of the floodplain. A GIS paleosurfaces model was executed to calculate the fluvial sediment storage, which was subdivided in 300-year time slices, thus contributing to identify temporal trends in floodplain aggradation. The results were analyzed with regard to external drivers that control the sedimentation processes in the Haslital delta, such as climate and/or anthropogenic factors (land-use changes, hydraulic management), as well as the influence of the internal system settings. The facies-based approach provides an explanation of both the spatial and temporal components of delta plain formation; and produces valid information for local flood risk management, concerning the problem of alpine floodplains aggradation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armentrout, J.M.; Smith-Rouch, L.S.; Bowman, S.A.
1996-08-01
Numeric simulations based on integrated data sets enhance our understanding of depositional geometry and facilitate quantification of depositional processes. Numeric values tested against well-constrained geologic data sets can then be used in iterations testing each variable, and in predicting lithofacies distributions under various depositional scenarios using the principles of sequence stratigraphic analysis. The stratigraphic modeling software provides a broad spectrum of techniques for modeling and testing elements of the petroleum system. Using well-constrained geologic examples, variations in depositional geometry and lithofacies distributions between different tectonic settings (passive vs. active margin) and climate regimes (hothouse vs. icehouse) can provide insight tomore » potential source rock and reservoir rock distribution, maturation timing, migration pathways, and trap formation. Two data sets are used to illustrate such variations: both include a seismic reflection profile calibrated by multiple wells. The first is a Pennsylvanian mixed carbonate-siliciclastic system in the Paradox basin, and the second a Pliocene-Pleistocene siliciclastic system in the Gulf of Mexico. Numeric simulations result in geometry and facies distributions consistent with those interpreted using the integrated stratigraphic analysis of the calibrated seismic profiles. An exception occurs in the Gulf of Mexico study where the simulated sediment thickness from 3.8 to 1.6 Ma within an upper slope minibasin was less than that mapped using a regional seismic grid. Regional depositional patterns demonstrate that this extra thickness was probably sourced from out of the plane of the modeled transect, illustrating the necessity for three-dimensional constraints on two-dimensional modeling.« less
NASA Astrophysics Data System (ADS)
Gall, Jean-Claude
The Buntsandstein in the Northern Vosges (France) originates mainly in an inland braidplain fluvial environment which passes in the upper part of the sequence into deltaic milieu in the coastal plain along the border of the sea, with the continental environment finally being drowned with the transgression of the shallow sea. The fluvial sedimentation is characterized by the presence of two facies throughout the Buntsandstein : channel facies and overbank plain facies. The channel facies comprises sandy and conglomeratic deposits forming within active streams by strong currents, whereas the overbank plain facies is built up of silty-clayey sandstones or silt/clay originating in stagnant water in abandoned watercourses, ponds, pools and puddles. The significance of particularly the floodplain sediments is subjected to considerable changes throughout the Buntsandstein sequence. There are all stages of transition between overbank plain deposits being only preserved in ghost-like facies as reworked clasts due to effective secondary removal of primarily occasionally formed suspension fines, and an abundance of autochthonous floodplain sediments in the depositional record resulting from favourable conditions of primary origin and secondary preservation. Reworked ventifacts within fluvial channel sediments testify to subordinate aeolian influences in the alluvial plain, with reasonable reworking, however, having removed all in situ traces of wind activity. Declining aridity of palaeoclimate towards the top is indicated by the appearance of violet horizon palaeosols in the Zone-Limite-Violette and the Couches intermédiaires being accompanied by Bröckelbank carbonate breccias originating from concentration of reworked fragments of pedogenic carbonate nodules. Biogenic traces are in the lower part of the sequence mainly present as Planolites burrows in the finer-grained sediments. Palaeosalinities as revealed from boron contents indicate progressively increasing supersaturation of stagnant waters with time. The fluvial environment persists up to the lower part of the Grès à Voltzia where the progression of the sea towards the west gives rise to a close intertonguing of fluvial and marine influences in a deltaic setting. Lenticular sandstone bodies are laid down as stream mouth bars at the end of the distributary channels and as river bars in the watercourses during both normal and flood discharge. Silty-clayey sediments settle out in stagnant water in restricted ponds, pools and puddles as well as in extensive veneers of shallow water in the overbank plain between the streams. Carbonate-bearing deposits originate in the coastal littoral mud flat, marsh seam, beach belt and tidal flat. The Grès à Voltzia has the greatest palaeoenvironmental and palaeoecological significance in the Buntsandstein of the Northern Vosges due to the occurrence of a wealth of extraordinarily well-preserved plant and animal fossils (having been recovered by Louis Grauvogel during almost 50 years and since abt. 25 years by Jean-Claude Gall). The rich suite of faunal and floral elements includes aquatic invertebrates, terrestrial animals and continental plants. The aquatic invertebrate fauna lives in fresh lakes and brackish ponds in the overbank plain and in brackish lagoons in the coastal seam as well as in hypersaline and euhaline marginal marine waters. The terrestrial plants colonize both dry and wet substrates, and the continental fauna consists of mainly arthropods, amphibians and reptiles inhabiting the levee zones of standing and flowing waters and strolling across the desiccated flats. The marine euryhaline association of invertebrates is with time replaced by a stenohaline community, and the deltaic plain of the Grès à Voltzia is finally inundated by a pellicular transgression representing the first stage of the Muschelkalk sea setting an end to Buntsandstein continental deposition.
Influence of depositional environment on diagenesis in St. Peter sandstone, Michigan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundgren, C.E. Jr.; Barnes, D.A.
1989-03-01
The Middle Ordovician St. Peter Sandstone in the Michigan basin was deposited in marine peritidal to storm-dominated, outer shelf depositional environments that evolved in a regionally significant transgressive pattern. The formation is bounded by carbonate and shaly clastic strata of the Prairie du Chien Group below and is transitional to condensed sequence clastics and carbonates of the Glenwood Formation above. Sedimentologic and petrographic analysis of conventional core from 25 wells suggests that reservoir quality in the formation is strongly dependent on a complex diagenetic history, especially the nature and subsequent dissolution of intergranular carbonate in the sandstone. Petrographic evidence indicatesmore » that porosity in the formation formed by dissolution of precursor dolomite of various origins and, locally, the formation of pore-filling authigenic clay (chlorite-illite). Authigenic clay is the incongruent dissolution product of dolomite, detrital K-feldspar, and, possibly, muscovite and results in diminished reservoir quality where abundant in the St. Peter Sandstone. Authigenic clay is volumetrically more significant in the upper portions of the formation and is associated with higher concentrations of detrital K-feldspar. Depositional facies controlled the distribution and types of intergranular carbonate (now dolomite) and detrital K-feldspar in the St. Peter Sandstone and hence reservoir quality; both components were more significant in storm-shelf sandstone facies.« less
Erosion and sedimentation during the September 2015 flooding of the Kinu River, central Japan
Dan Matsumoto; Sawai, Yuki; Yamada, Masaki; Namegaya, Yuichi; Shinozaki, Tetsuya; Takeda, Daisuke; Fujino, Shigehiro; Tanigawa, Koichiro; Nakamura, Atsunori; Pilarczyk, Jessica E.
2016-01-01
Erosional and sedimentary features associated with flooding have been documented in both modern and past cases. However, only a few studies have demonstrated the relationship between these features and the corresponding hydraulic conditions that produced them, making it difficult to evaluate the magnitude of paleo-flooding. This study describes the characteristics associated with inundation depth and flow direction, as well as the erosional and sedimentary features resulting from the disastrous flooding of the Kinu River, central Japan, in September 2015. Water levels rose rapidly due to heavy rainfall that eventually overtopped, and subsequently breached, a levee in Joso City, causing destructive flooding on the surrounding floodplain. Distinctive erosional features are found next to the breached levee, while depositional features, such as a sandy crevasse-splay deposit are found further away from the breach. The deposit can be divided into three units based on sedimentary facies. The vertical and lateral changes of these sedimentary facies may be the result of temporal and spatial changes associated with flow during the single flooding event. These observations and quantitative data provide information that can be used to reveal the paleohydrology of flood deposits in the stratigraphic record, leading to improved mitigation of future flooding disasters. PMID:27677769
NASA Astrophysics Data System (ADS)
Pomar, F.; del Valle, L.; Fornós, J. J.; Gómez-Pujol, L.
2018-05-01
Aeolian-alluvial sedimentary interaction results in the formation of deposits characterized by typical alluvial sedimentary structures, but is composed of conspicuous amounts of aeolian sediments. The literature on this topic is limited and most works relate more with continental aeolian dunes or fluvial dune interference with fan bodies. Furthermore, there is a lack of examples of aeolian-alluvial sedimentary interference in coastal settings. In the western Mediterranean, there are many Pleistocene alluvial fan deposits built up partly by sediment originating from coastal dunes dismantled by alluvial streams. Very often, these deposits show a continuous sedimentary sequence through which we can derive the contribution and predominance of coastal, alluvial-colluvial and aeolian processes and their controls on landscape formation. This is an outstanding feature within coastal systems since it shows marine sediments reworked and integrated within coastal dune fields by aeolian transport, and the latter built up into alluvial fan bodies. In this sense, aeolian-alluvial interaction is the geomorphic-sedimentary expression of the coexistence and overlapping of alluvial and aeolian environments resulting in deposits sharing sedimentary features from both environments. The aim of this paper is to unravel the contribution of coastal dunes in the construction of alluvial fans bodies and identify the main sedimentary facies that constitute these deposits, as well as their climatic controls. For this reason, Es Caló fan (northern Mallorca) has been selected due to its well-exposed deposits exhibiting the alternation of aeolian, alluvial and colluvial deposits. Sedimentological and stratigraphic analyses based on 33 logs and complementary analyses demonstrate that most of the facies constituting the fan body are made up completely of marine bioclastic sands. These deposits record an alluvial fan sedimentary environment characterized by sediments inputs that do not proceed from non-alluvial/fluvial/colluvial systems. In fact they relate with a marine source. Chronologies on aeolianites of northern Mallorca indicate that up to four periods of aeolian deposition took place during cooling stages and marine regressions over the last 100 kyr. Moreover, the alternation of short warming-cooling fluctuations between the cooling stages may have provided the conditions necessary to generate stormy weather in the western Mediterranean, resulting in aeolian-alluvial interactions. Additionally, the dynamics of this sedimentary environment were only possible because during the Last Glacial Maximum, the sea level remained low enough to allow for the formation of coastal dune fields and fans.
NASA Astrophysics Data System (ADS)
Cassidy, M. M.
2016-12-01
Many workers recognize that large salt deposits form in post-rift sag basins which were subaerial and susceptible to rapid flooding from adjacent oceansl. I have termed these basins "subaerial basins below sea level" or "SABSEL" basins. A key marker of SABSEL basins are terrestrial sediments immediately overlain by deepwater sediments with no transition. Desert deposits -including Aeolian dunes- are preserved in the adiabatically heated depression. Dunes are not eroded by transgressing seas but are drowned by rising water as in a bath tub. They maintain their shape. Deepwater marine black shales or limestones drape the dunes. The Southern North sea is an example. Above the original marine shale over the dunes are evaporites. Winds descending into the basin were heated by adiabatic compression providing the very hot air need to allow survival of potassium salts. A similar situation was probably active during the Messinian salinity crisis in the Mediterranean basin, and the opening of the South Atlantic. In the Gulf of Mexico (GOM) a desert is on the Louann salt. Here the sea invaded the lows first to deposit the salt overlying tilted fault blocks of the opening basin, as in the Afar Triangle of Africa. In the GOM entry to the west fed in sea water, then closed. The Norphlet desert formed. Streams carried sands to the basin to be spread by winds where they willed, not limited to sand entry areas. Upon deposition their original weight depressed the salt. Seismic shows depressions in the salt but the dunes are high at the top Norphlet, forming distinctive small "eyes" at the top salt. The 600 foot dunes are draped by deep water dolomitic finely laminated organic rich black/ brown shale, the Brown Dense Facies of the Smackover formation. The lack of reworking of the dunes found by detailed seismic is distinctive of deposition in a SABSEL basin. The overlap of terrestrial sediments by deep water deposition is good evidence of sudden flooding. In summary this vertical succession of facies in the Jurassic can be explained as a SABSEL Basin. Evidence of Norphlet presence exists east of the Mississippi delta and the in Campeche embayment of Mexico. Search for its distinctive seismic signature throughout the Gulf of Mexico should continue, and may yield more large gas deposits.
NASA Astrophysics Data System (ADS)
Sincavage, R.; Betka, P. M.; Seeber, L.; Steckler, M. S.; Zoramthara, C.
2017-12-01
The closure of an ocean basin involves the interplay of tectonics and sedimentology, whereby thick successions of fluvio-deltaic and shallow marine sediment accumulate in the closing gap between the subduction zone and passive margin. The transition from subduction to collision involves processes that are inherently time-transgressive and co-evolve to influence the nature of the developing tectonic wedge. The Indo-Burman Ranges (IBR) of eastern India present a unique opportunity to examine this scenario on a variety of spatial (10-2-105 m2) and temporal (1 a-10 Ma) scales. Recent field mapping campaigns in the IBR have illuminated analogous depositional environments expressed in the Neogene outcrops of the IBR and the Holocene sediment archive of the Ganges-Brahmaputra-Meghna delta (GBMD). Six distinct lithofacies are present in shallow-marine to fluvial strata of the IBR, containing sedimentary structures that reflect depositional environments correlative with the modern delta. Cyclical alternations of fine sands and silts in packages on the order of 15-20 cm thick define part of the shallow-marine section (M2 facies) that we interpret to represent the foreset beds of the ancient subaqueous delta. The overall scale and sedimentary structures of M2 compare favorably with modern foreset deposits in the Bay of Bengal. Tan-orange medium-grained, well sorted fluvial sandstone that contain large scale (1-10 m) tabular and trough cross bedding represent large-river channel deposits (F2 facies) that overlie the shallow marine strata. F2 deposits bear a striking resemblance in scale and character to bar deposits along the modern Jamuna River. Preliminary grain size analyses on the F2 facies yield grain size distributions that are remarkably consistent with Brahmaputra-sourced mid-Holocene sediments from Sylhet basin within the GBMD. Current research on the GBMD has revealed quantifiable trends in bed thicknesses, downstream fining, and grain size within fluvial deposits. These data will be coupled with ongoing structural and geo- and thermochronology field studies of the IBR that aim to continue to reveal the structural and stratigraphic evolution of this geologically active and densely populated region.
Flores, Romeo M.; Myers, Mark D.; Houseknecht, David W.; Stricker, Gary D.; Brizzolara, Donald W.; Ryherd, Timothy J.; Takahashi, Kenneth I.
2007-01-01
Stratigraphic and sedimentologic studies of facies of the Upper Cretaceous rocks along the Colville River Bluffs in the west-central North Slope of Alaska identified barrier shoreface deposits consisting of vertically stacked, coarsening-upward parasequences in the Schrader Bluff Formation. This vertical stack of parasequence deposits represents progradational sequences that were affected by shoaling and deepening cycles caused by fluctuations of sea level. Further, the vertical stack may have served to stabilize accumulation of voluminous coal deposits in the Prince Creek Formation, which formed braided, high-sinuosity meandering, anastomosed, and low-sinuosity meandering fluvial channels and related flood plain deposits. The erosional contact at the top of the uppermost coarsening-upward sequence, however, suggests a significant drop of base level (relative sea level) that permitted a semiregional subaerial unconformity to develop at the contact between the Schrader Bluff and Prince Creek Formations. This drop of relative sea level may have been followed by a relative sea-level rise to accommodate coal deposition directly above the unconformity. This rise was followed by a second drop of relative sea level, with formation of incised valley topography as much as 75 ft deep and an equivalent surface of a major marine erosion or mass wasting, or both, either of which can be traced from the Colville River Bluffs basinward to the subsurface in the west-central North Slope. The Prince Creek fluvial deposits represent late Campanian to late Maastrichtian depositional environments that were affected by these base level changes influenced by tectonism, basin subsidence, and sea-level fluctuations.
NASA Astrophysics Data System (ADS)
Hill, J. R.; Christensen, P. R.
2017-06-01
Following the most recent updates to the Mars Odyssey Thermal Emission Imaging System daytime and nighttime infrared global mosaics, a colorized global map was produced that combines the thermophysical information from the nighttime infrared global mosaic with the morphologic context of the daytime infrared global mosaic. During the validation of this map, large numbers of low thermal inertia ejecta deposits surrounding small young impact craters were observed. A near-global survey (60°N-60°S) identified 4024 of these low thermal inertia ejecta deposits, which were then categorized based on their apparent state of degradation. Mapping their locations revealed that they occur almost exclusively in regions with intermediate-to-high thermal inertias, with distinct clusters in northern Terra Sirenum, Solis Planum, and southwestern Daedalia Planum. High-Resolution Imaging Science Experiment images show that the thermophysically distinct facies of the deposits are well correlated with the estimated average ejecta grain sizes, which decrease with radial distance from the crater. Comparisons with recent primary impact craters and secondary impact craters surrounding Zunil Crater show that the low thermal inertia ejecta deposits very closely resemble the secondary craters, but not the primary craters. We conclude that the low thermal inertia ejecta deposits are secondary impact crater ejecta deposits, many of which originated from the rayed crater primary impact events, and are both well preserved and easily identifiable due to the absence of dust cover and aeolian modification that would otherwise reduce the thermal contrast between the ejecta facies and the surrounding terrain.
Nickel and cobalt distribution in the laterites of the Lomié region, south-east Cameroon
NASA Astrophysics Data System (ADS)
Yongue-Fouateu, R.; Ghogomu, R. T.; Penaye, J.; Ekodeck, G. E.; Stendal, H.; Colin, F.
2006-05-01
In the Lomié region (south-east Cameroon), strong weathering of serpentinized ultramafic rocks has produced a thick laterite cover with significant nickel and cobalt contents. The highest concentrations of these elements are located in the middle section of the laterite profiles, in the lower clay horizon, and preferentially along the slopes of the interfluves. The investigation of the composition of the laterite ores (by whole-rock analysis) and of the main components, using SEM/microprobe and XRD, reveals the presence of four main enriched facies: a non-differentiated facies, a layered smectitic facies, a quartz-rich facies and a gibbsitic nodular facies. Nickel, with generally low concentrations (less than 2% NiO), is hosted by several secondary mineral phases (goethite, Mn-oxyhydroxides and smectite locally). Cobalt is generally of higher grade (up to 0.9% CoO), and is associated with cryptocrystalline and crystallized Mn-oxyhydroxides. SEM/microprobe observations suggest that nickel and cobalt concentration in secondary minerals is due to repeated remobilization. This has also favored the formation of mineral phases, of which the best crystallized and most richly mineralized are mainly those of the asbolan-lithiophorite group. The SEM studies indicate that these mineral phases show various morphologies related to their chemical composition: poorly crystallized nipple shaped (Fe, Mn, Ni), fine cross-bedded needles (Mn, Ni) and elongated crystals (Mn, Al, Ni, Co) occur in the layered smectitic facies, while platy and needle-like forms (Mn, Al, Ni, Co) characterize the gibbsitic nodular facies. The predominantly cobaltiferous nature of the Lomié laterite ore deposit is the result of remobilizations and transformations of elements that led to the impoverishment of both the Ni-Co contents of the laterite but most importantly of Ni rather than Co.
NASA Astrophysics Data System (ADS)
Yang, Byong Cheon; Chang, Tae Soo
2018-04-01
Generalized coastal facies models invariably assume that tidal flats and intertidally exposed shorefaces along macrotidal coasts are tide-dominated. Recent advances in coastal sedimentology, however, have revealed that wave-dominated macrotidal flats also occur in a wide range of coastal settings, in particular where tidal modulation forces the lateral translation of the wave-affected zone across the tidally exposed shoreface with the rising tide. Despite tidal modulation, the depositional character in the latter case (abundant storm deposits) exhibits a high degree of similarity with conventional subtidal shorefaces, implying that it is inherently difficult to distinguish between the two coastal systems in the rock record. In the present study, integrated sedimentological and ichnological data from the Dongho coast, which is located along the southwest coast of Korea, provide valuable information for the establishment of facies criteria that can assist in the recognition of such coastal deposits. In fact, the sedimentary character of the study area, which is dominated by an abundance of wave-formed structures, resembles that generally associated with subtidal shorefaces. In addition, the depositional processes responsible for sediment accumulation are, in the present case, also strongly influenced by pronounced seasonal variations in wave energy. In this context, the study has revealed a number of major features that appear to be characteristic of wave-dominated intertidal flats and shorefaces: (1) firmground muds may be encountered on the beach face, where intense swash-backwash motions are dominant; (2) the thickness of storm deposits decreases landward, reflecting the progressive decrease in wave energy; (3) ichnologically, there is an offshore shift in the dominance of trace fossils from the Skolithos ichnofacies, including Ophiomorpha, Thalassinoides and Psilonichnus, to a proximal expression of the Cruziana ichnofacies, which includes Siphonichnus and Asterosoma; (4) compared with subtidal shorefaces, the overall ichnological suite is represented by a substantial reduction in diversity and less uniformly distributed burrows. Although these findings have not yet been applied to the rock record, they should nevertheless assist in the distinction between corresponding coastal deposits.
NASA Astrophysics Data System (ADS)
Wesolowski, Lindsey J. N.; Buatois, Luis A.; Mángano, M. Gabriela; Ponce, Juan José; Carmona, Noelia B.
2018-05-01
Shorefaces can display strong facies variability and integration of sedimentology and ichnology provides a high-resolution model to identify variations among strongly storm-dominated (high energy), moderately storm-affected (intermediate energy), and weakly storm-affected (low energy) shoreface deposits. In addition, ichnology has proved to be of help to delineate parasequences as trace-fossil associations are excellent indicators of environmental conditions which typically change along the depositional profile. Shallow-marine deposits and associated ichnofaunas from the Mulichinco Formation (Valanginian, Lower Cretaceous) in Puerta Curaco, Neuquén Basin, western Argentina, were analyzed to evaluate stress factors on shoreface benthos and parasequence architecture. During storm-dominated conditions, the Skolithos Ichnofacies prevails within the offshore transition and lower shoreface represented by assemblages dominated by Thalassinoides isp. and Ophiomorpha irregulaire. Under weakly storm-affected conditions, the Cruziana Ichnofacies is recognized, characterized by assemblages dominated by Thalassinoides isp. and Gyrochorte comosa in the offshore transition, and by Gyrochorte comosa within the lower shoreface. Storm-influenced conditions yield wider ichnologic variability, showing elements of both ichnofacies. Storm influence on sedimentation is affected by both allogenic (e.g. tectonic subsidence, sea-level, and sediment influx) and autogenic (e.g. hydrodynamic) controls at both parasequence and intra-parasequence scales. Four distinct types of parasequences were recognized, strongly storm-dominated, moderately storm-affected, moderately storm-affected - strongly fair-weather reworked, and weakly storm-affected, categorized based on parasequence architectural variability derived from varying degrees of storm and fair-weather wave influence. The new type of shoreface described here, the moderately storm-affected - strongly fair-weather reworked shoreface, features storm deposits reworked thoroughly by fair-weather waves. During fair-weather wave reworking, elements of the Cruziana Ichnofacies are overprinted upon relict elements of the Skolithos Ichnofacies from previous storm induced deposition. This type of shoreface, commonly overlooked in past literature, expands our understanding of the sedimentary dynamics and stratigraphic architecture in a shoreface susceptible to various parasequence and intra-parasequence scale degrees of storm and fair-weather wave influence.
NASA Astrophysics Data System (ADS)
Berryman, Kelvin; Clark, Kate; Cochran, Ursula; Beu, Alan; Irwin, Sarah
2018-04-01
At Table Cape, Mahia Peninsula, North Island, New Zealand, four marine terraces have been uplifted coseismically during the past 3500 years. Detailed facies assessment of the terrace coverbed sequence coupled with identification of modern analogues on the active shore platform were used to infer the process of marine terrace formation and to estimate the timing and amount of past uplift events (earthquakes). The modern platform can be subdivided into seven depositional zones: subtidal, outer platform, intertidal sand pockets, inner platform, high-tide, mid-storm, and storm beach. Terrace coverbeds were characterised from two trenches excavated across the full width of the uplifted terrace sequence. Off-lapping packages of high tidal, mid-storm, and storm beach sediments were most common. Outer platform sediments occurred only rarely near the base of some uplifted shore platforms. Overlying the marine sediments were near-horizontal terrestrial deposits of airfall tephra (on the two highest terraces), subsoil, topsoil, rare wedges of colluvial sediment (slopewash) shed from terrace risers, and an anomalous deposit possibly emplaced by a tsunami. Fifty-one radiocarbon ages, obtained from molluscs in the marine coverbeds, showed a general pattern of seaward-younging across the coastal plain and across each terrace and a less pronounced pattern of decreasing age upward in each coverbed sequence. The distinctive stepped geomorphology of the terraces, the facies and age structure of the terrace deposits and historical earthquake causation of similar terraces elsewhere in New Zealand provided the data to invoke an earthquake-driven model for terrace formation. Marine terrace development following an uplift event involved rapid cutting of a new intertidal shore platform and generally regressive deposition of high-tide to storm beach deposits. Following further uplift, the platform became a geomorphic terrace (above marine influence) and was then mantled by terrestrial sediments. On the two highest terraces at Table Cape, airfall tephras mantling the marine coverbeds provided a minimum age for terrace uplift. The youngest radiocarbon ages from high-tide deposits high in the stratigraphy and near the seaward edge of each terrace provided the best estimates for the timing of uplift. Based on the new radiocarbon ages and the constraining airfall tephra ages, we revised the earthquake ages to 3530-3350, 1810-1730, 1560-1300 and 300-100 cal. YBP. Associated best estimates of the coseismic uplift amounts were 2.1, 1.4, 1.8, and 3.1 m respectively, once we accounted for eustatic sea level changes through the late Holocene.
NASA Astrophysics Data System (ADS)
van Otterloo, Jozua; Cas, Raymond A. F.; Sheard, Malcolm J.
2013-08-01
The ˜5 ka Mt. Gambier Volcanic Complex in the Newer Volcanics Province, Australia is an extremely complex monogenetic, volcanic system that preserves at least 14 eruption points aligned along a fissure system. The complex stratigraphy can be subdivided into six main facies that record alternations between magmatic and phreatomagmatic eruption styles in a random manner. The facies are (1) coherent to vesicular fragmental alkali basalt (effusive/Hawaiian spatter and lava flows); (2) massive scoriaceous fine lapilli with coarse ash (Strombolian fallout); (3) bedded scoriaceous fine lapilli tuff (violent Strombolian fallout); (4) thin-medium bedded, undulating very fine lapilli in coarse ash (dry phreatomagmatic surge-modified fallout); (5) palagonite-altered, cross-bedded, medium lapilli to fine ash (wet phreatomagmatic base surges); and (6) massive, palagonite-altered, very poorly sorted tuff breccia and lapilli tuff (phreato-Vulcanian pyroclastic flows). Since most deposits are lithified, to quantify the grain size distributions (GSDs), image analysis was performed. The facies are distinct based on their GSDs and the fine ash to coarse+fine ash ratios. These provide insights into the fragmentation intensities and water-magma interaction efficiencies for each facies. The eruption chronology indicates a random spatial and temporal sequence of occurrence of eruption styles, except for a "magmatic horizon" of effusive activity occurring at both ends of the volcanic complex simultaneously. The eruption foci are located along NW-SE trending lineaments, indicating that the complex was fed by multiple dykes following the subsurface structures related to the Tartwaup Fault System. Possible factors causing vent migration along these dykes and changes in eruption styles include differences in magma ascent rates, viscosity, crystallinity, degassing and magma discharge rate, as well as hydrological parameters.
NASA Astrophysics Data System (ADS)
Solak, Cemile; Taslı, Kemal; Koç, Hayati
2016-10-01
The study area comprises southern non-metamorphic part of the Bolkar Mountains which are situated in southern Turkey, eastern part of the Central Taurides. The studied five outcrops form geologically parts of the tectonostratigraphic units called as allochthonous Aladag Unit and autochthonous Geyikdagi Unit. The aim of this study is to describe microfacies and depositional environments of the Bolkar Mountains Early Cretaceous shallow- water platform carbonates. The Lower Cretaceous is represented by continuous thick- bedded to massive dolomite sequence ranging from 100 to 150 meters thick, which only contains locally laminated limestone intercalations in the Yüğlük section and thick to very thick-bedded uniform limestones ranging from approximately 50 to 120 meters, consist of mainly laminated- fenestral mudstone, peloidal-intraclastic grainstone-packstone, bioclastic packstone- wackestone, benthic foraminiferal-intraclastic grainstone-packstone, ostracod-fenestral wackestone-mudstone, dasycladacean algal packstone-wackestone and ooidal grainstone microfacies. Based on a combination sedimantological data, facies/microfacies and micropaleontological (predominantly dasycladacean algae and diverse benthic foraminifera) analysis, it is concluded that Early Cretaceous platform carbonates of the Bolkar Mountains reflect a tidally affected tidal-flat and restricted lagoon settings. During the Berriasian- Valanginian unfavourable facies for benthic foraminifera and dolomitization were predominate. In the Hauterivian-early Aptian, the effect of dolomitization largely disappeared and inner platform conditions still prevailed showing alternations of peritidal and lagoon facies, going from peritidal plains (representing various sub-environments including supratidal, intertidal area, tidal-intertidal ponds and ooid bars) dominated by ostracod and miliolids, to dasycladacean algae-rich restricted lagoons-subtidal. These environments show a transition in the vertical and lateral directions in all studied stratigraphic sections.
NASA Astrophysics Data System (ADS)
Song, Sheng; Feng, Xiuli; Li, Guogang; Liu, Xiao; Xiao, Xiao; Feng, Li
2018-06-01
Sedimentary sequence and sediment provenance are important factors when it comes to the studies on marine sedimentation. This paper studies grain size distribution, lithological characteristics, major and rare earth elemental compositions, micropaleontological features and 14C ages in order to examine sedimentary sequence and sediment provenance of the core BH6 drilled at the mouth of the Yellow River in Bohai Sea. According to the grain size and the micropaleontological compositions, 4 sedimentary units have been identified. Unit 1 (0-8.08 mbsf) is of the delta sedimentary facies, Unit 2 (8.08-12.08 mbsf) is of the neritic shelf facies, Unit 3 (12.08-23.85 mbsf) is of near-estuary beach-tidal facies, and Unit 4 (23.85 mbsf-) is of the continental lake facies. The deposits from Unit 1 to Unit 3 have been found to be marine strata formed after the Holocene transgression at about 10 ka BP, while Unit 4 is continental lacustrine deposit formed before 10 ka BP. The provenances of core BH6 sediments show properties of the continental crust and vary in different sedimentary periods. For Unit 4 sediments, the source regions are dispersed while the main provenance is not clear, although the parent rock characteristics of a few samples are similar to the Luanhe River sediments. For Unit 3, sediments at 21.1-23.85 mbsf have been mainly transported from the Liaohe River, while sediments above 21.1 mbsf are mainly from the Yellow River and partially from the Liaohe River. For Unit 2, the sediments have been mainly transported from the Yellow River, with a small amount from other rivers. For Unit 1, the provenance is mainly the Yellow River catchment. These results help in better understanding the evolution of the Yellow River Delta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, T.J.
1987-05-01
The lower to middle Eocene Juncal Formation, north of the Santa Ynez fault in easternmost Santa Barbara County, represents the onset of marine sedimentation following an approximately 20-m.y. hiatus. The Juncal paraconformably overlies the upper Campanian Unnamed sandstone and is gradationally overlain by the middle Eocene Matilija Formation. Access to the Juncal exposures of this area was considerably enhanced by the Wheeler fire of July 1985. Facies analysis of both the vertical and lateral exposures of the Juncal Formation (approx. 1400 m thick) indicate that the Juncal represents coalescing outer-fan depositional lobes. This interpretation is based on the lateral continuitymore » of sandstone beds, presence of thickening-upward cycles, and high-concentration sediment gravity flows, bathyal fauna, and regional associations. Local channelization (to 10 m deep) represents the extension of a mid-fan channel over its associated depositional lobe. Outcrops are subparallel to depositional strike in the eastern part of the study area and form a broad syncline in the western part. Together, these exposures allow documentation of the depositional lobes vertically, laterally, and longitudinally. Outer-fan deposits of the Juncal Formation are part of a progradational basin-filling episode. The Juncal grades upward into the outer- to mid-fan depositions of the lower Matilija Formation. The upper Matilija Formation shoals upward into deltaic facies. This regressive sedimentary sequence was probably initiated by the major sea level fall which occurred near the early/middle Eocene boundary and coincides with the onset of fan sedimentation elsewhere along the California margin. Within the study area, depositional lobe activity was probably governed by either minor fluctuations in relative sea level or channel switching up-system.« less
NASA Astrophysics Data System (ADS)
Díaz-Molina, Margarita; Kälin, Otto; Benito, M. Isabel; Lopez-Martinez, Nieves; Vicens, Enric
2007-07-01
The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface deposits include fine- to coarse-grained hybrid arenites and subordinate quartz-dominated conglomerates with ripple structures of wave and wave-current origin. Beachface deposits are mainly storm beach conglomerates, but parallel-laminated foreshore arenites locally occur. Backbarrier lagoon deposits comprise of washover sandy conglomerates that grade laterally into sandy lime mudstones, biomicrites and marls. Beach ridge sediment, wherein the bulk of dinosaur eggs and eggshell debris occurs, predominantly is a reddish hybrid arenite that has undergone a complex early diagenetic evolution, including marine and meteoric cementation followed by soil development. The reddish arenites overlie wave-dominated shoreface deposits and in places pass laterally into lagoonal deposits. They originally formed shore ridges, that became stabilized during progradational episodes by pedogenesis (beach ridge, sensu [Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83-108.]), which also affected the dinosaur eggs. The eggshell-bearing beach ridge arenites are typically preserved at the top of parasequences forming the systems tracts of a third-order sequence. Thick packages of this facies resulted from aggradation of barrier/beach ridge deposits, whose preservation below surfaces of transgressive erosion was favoured by incipient lithification.
Stratigraphy of the Mississippi-Alabama shelf and the Mobile River incised-valley system
Kindinger, Jack G.; Balson, Peter S.; Flocks, James G.; Dalrymple, Robert W.; Boyd, Ron; Zaitlin, Brian A.
1994-01-01
The Holocene incised-valley fill (estuarine facies) underlying Mobile Buy fit well into the conceptual facies model of a microtidal wave-dominated estuary. The model does not fit as well, however, with the rapidly transgressed shelf portion of the incised valley. The down dip section does not contain a clearly identifiable (from seismic profiles) estuarine facies; the valley fill is primarily fluvial and is overlain by marine shoals. In the Mobile River incised valley, the distal portion of the valley was rapidly drowned, allowing the thin estuarine facies to be reworked. The proximal portion was drowned more slowly, leaving the estuarine facies intact. Thus, the single incised valley contains two very different types of fill.
NASA Astrophysics Data System (ADS)
Busby, Cathy J.; Bassett, Kari N.
2007-09-01
The three-dimensional arrangement of volcanic deposits in strike-slip basins is not only the product of volcanic processes, but also of tectonic processes. We use a strike-slip basin within the Jurassic arc of southern Arizona (Santa Rita Glance Conglomerate) to construct a facies model for a strike-slip basin dominated by volcanism. This model is applicable to releasing-bend strike-slip basins, bounded on one side by a curved and dipping strike-slip fault, and on the other by curved normal faults. Numerous, very deep unconformities are formed during localized uplift in the basin as it passes through smaller restraining bends along the strike-slip fault. In our facies model, the basin fill thins and volcanism decreases markedly away from the master strike-slip fault (“deep” end), where subsidence is greatest, toward the basin-bounding normal faults (“shallow” end). Talus cone-alluvial fan deposits are largely restricted to the master fault-proximal (deep) end of the basin. Volcanic centers are sited along the master fault and along splays of it within the master fault-proximal (deep) end of the basin. To a lesser degree, volcanic centers also form along the curved faults that form structural highs between sub-basins and those that bound the distal ends of the basin. Abundant volcanism along the master fault and its splays kept the deep (master fault-proximal) end of the basin overfilled, so that it could not provide accommodation for reworked tuffs and extrabasinally-sourced ignimbrites that dominate the shallow (underfilled) end of the basin. This pattern of basin fill contrasts markedly with that of nonvolcanic strike-slip basins on transform margins, where clastic sedimentation commonly cannot keep pace with subsidence in the master fault-proximal end. Volcanic and subvolcanic rocks in the strike-slip basin largely record polygenetic (explosive and effusive) small-volume eruptions from many vents in the complexly faulted basin, referred to here as multi-vent complexes. Multi-vent complexes like these reflect proximity to a continuously active fault zone, where numerous strands of the fault frequently plumb small batches of magma to the surface. Releasing-bend extension promotes small, multivent styles of volcanism in preference to caldera collapse, which is more likely to form at releasing step-overs along a strike-slip fault.
Piper, D.J.W.; Hiscott, R.N.; Normark, W.R.
1999-01-01
The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known. The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses. Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.
Powell, R.D.; Molnia, B.F.
1989-01-01
High precipitation from Gulf of Alaska air masses can locally reach up to 800 cm a-1. This precipitation on tectonically active mountains creates cool-temperate glaciation with extremely active erosion and continuously renewed resources. High basal debris loads up to 1.5 m thick of pure debris and rapid glacial flow, which can be more than 3000 m a-1, combine to produce large volumes of siliciclastic glacimarine sediment at some of the highest sediment accumulation rates on record. At tidewater fronts of valley glaciers, sediment accumulation rates can be over 13 m a-1 and deltas commonly grow at about 106 m3 a-1. Major processes influencing glacimarine sedimentation are glacial transport and glacier-contact deposition, meltwater (subaerial and submarine) and runoff transport and deposition, iceberg rafting and gouging, sea-ice transport, wave action and storm reworking, tidal transport and deposition, alongshelf transport, sliding and slumping and gravity flows, eolian transport, and biogenic production and reworking. Processes are similar in both shelf and fjord settings; however, different intensities of some processes create different facies associations and geometries. The tectonoclimatic regime also controls morphology because bedrock structure is modified by glacial action. Major glacimarine depositional systems are all siliciclastic. They are subglacial, marginal-morainal bank and submarine outwash, and proglacial/paraglacial-fluvial/deltaic, beach, tidal flat/estuary, glacial fjord, marine outwash fjord and continental shelf. Future research should include study of long cores with extensive dating and more seismic surveys to evaluate areal and temporal extent of glacial facies and glaciation; time-series oceanographic data, sidescan sonar surveys and submersible dives to evaluate modern processes; biogenic diversity and production to evaluate paleoecological, paleobiogeographic and biofacies analysis; and detailed comparisons of exposed older rock of the Yakataga Formation to evaluate how glacial style has evolved over 6.3 Ma. ?? 1989.
Branney, M.J.; Bonnichsen, B.; Andrews, G.D.M.; Ellis, B.; Barry, T.L.; McCurry, M.
2008-01-01
A new category of large-scale volcanism, here termed Snake River (SR)-type volcanism, is defined with reference to a distinctive volcanic facies association displayed by Miocene rocks in the central Snake River Plain area of southern Idaho and northern Nevada, USA. The facies association contrasts with those typical of silicic volcanism elsewhere and records unusual, voluminous and particularly environmentally devastating styles of eruption that remain poorly understood. It includes: (1) large-volume, lithic-poor rhyolitic ignimbrites with scarce pumice lapilli; (2) extensive, parallel-laminated, medium to coarse-grained ashfall deposits with large cuspate shards, crystals and a paucity of pumice lapilli; many are fused to black vitrophyre; (3) unusually extensive, large-volume rhyolite lavas; (4) unusually intense welding, rheomorphism, and widespread development of lava-like facies in the ignimbrites; (5) extensive, fines-rich ash deposits with abundant ash aggregates (pellets and accretionary lapilli); (6) the ashfall layers and ignimbrites contain abundant clasts of dense obsidian and vitrophyre; (7) a bimodal association between the rhyolitic rocks and numerous, coalescing low-profile basalt lava shields; and (8) widespread evidence of emplacement in lacustrine-alluvial environments, as revealed by intercalated lake sediments, ignimbrite peperites, rhyolitic and basaltic hyaloclastites, basalt pillow-lava deltas, rhyolitic and basaltic phreatomagmatic tuffs, alluvial sands and palaeosols. Many rhyolitic eruptions were high mass-flux, large volume and explosive (VEI 6-8), and involved H2O-poor, low-??18O, metaluminous rhyolite magmas with unusually low viscosities, partly due to high magmatic temperatures (900-1,050??C). SR-type volcanism contrasts with silicic volcanism at many other volcanic fields, where the fall deposits are typically Plinian with pumice lapilli, the ignimbrites are low to medium grade (non-welded to eutaxitic) with abundant pumice lapilli or fiamme, and the rhyolite extrusions are small volume silicic domes and coule??es. SR-type volcanism seems to have occurred at numerous times in Earth history, because elements of the facies association occur within some other volcanic fields, including Trans-Pecos Texas, Etendeka-Paran, Lebombo, the English Lake District, the Proterozoic Keewanawan volcanics of Minnesota and the Yardea Dacite of Australia. ?? Springer-Verlag 2007.
NASA Technical Reports Server (NTRS)
Heubeck, C.; Lowe, D. R.
1994-01-01
The 3.22-3.10 Ga old Moodies Group, uppermost unit of the Swaziland Supergroup in the Barberton Greenstone Belt (BGB), is the oldest exposed, well-preserved quartz-rich sedimentary sequence on earth. It is preserved in structurally separate blocks in a heavily deformed fold-and-thrust belt. North of the Inyoka Fault, Moodies strata reach up to 3700 m in thickness. Detailed mapping, correlation of measured sections, and systematic analysis of paleocurrents show that the lower Moodies Group north of the Inyoka Fault forms a deepening- and fining-upward sequence from a basal alluvial conglomerate through braided fluvial, tidal, and deltaic sandstones to offshore sandy shelf deposits. The basal conglomerate and overlying fluvial facies were derived from the north and include abundant detritus eroded from underlying Fig Tree Group dacitic volcanic rocks. Shoreline-parallel transport and extensive reworking dominate overlying deltaic, tidal, and marine facies. The lithologies and arrangement of Moodies Group facies, sandstone petrology, the unconformable relationship between Moodies strata and older deformed rocks, presence of at least one syndepositional normal fault, and presence of basaltic flow rocks and airfall fall tuffs interbedded with the terrestrial strata collectively suggest that the lower Moodies Group was deposited in one or more intramontane basins in an extensional setting. Thinner Moodies sections south of the Inyoka Fault, generally less than 1000 m thick, may be correlative with the basal Moodies Group north of the Inyoka Fault and were probably deposited in separate basins. A northerly derived, southward-thinning fan-delta conglomerate in the upper part of the Moodies Group in the central BGB overlies lower strata with an angular unconformity. This and associated upper Moodies conglomerates mark the beginning of basin shortening by south- to southeast-directed thrust faulting along the northern margin of the BGB and suggest that the upper Moodies Group was deposited in a foreland basin. Timing, orientation, and style of shortening suggest that this deformation eventually incorporated most of the BGB into a major fold-and-thrust belt.
NASA Astrophysics Data System (ADS)
Cukur, Deniz; Um, In-Kwon; Chun, Jong-Hwa; Kim, So-Ra; Lee, Gwang-Soo; Kim, Yuri; Kong, Gee-Soo; Horozal, Senay; Kim, Seong-Pil
2018-04-01
This study investigates sediment transport and depositional processes from a newly collected dataset comprising sub-bottom chirp profiles, multibeam bathymetry, and sediment cores from the northeastern continental margin of Korea in the East Sea (Japan Sea). Twelve echo-types and eleven sedimentary facies have been defined and interpreted as deposits formed by shallow-marine, hemipelagic sedimentation, bottom current, and mass-movement processes. Hemipelagic sedimentation, which is acoustically characterized by undisturbed layered sediments, appears to have been the primary sedimentary process throughout the study area. The inner and outer continental shelf (<150 m water depth) have been influenced by shallow-marine sedimentary processes. Two slope-parallel canyons, 0.2-2 km wide and up to 30 km long, appear to have acted as possible conduits for turbidity currents from the shallower shelf into the deep basins. Bottom current deposits, expressed as erosional moats immediately below topographic highs, are prevalent on the southern lower slope at water depths of 400-450 m. Mass-movements (i.e., slides/slumps, debris flow deposits) consisting of chaotic facies characterize the lower slope and represent one of the most important sedimentary processes in the study area. Piston cores confirm the presence of mass-transport deposits (MTDs) that are characterized by mud clasts of variable size, shape, and color. Multibeam bathymetry shows that large-scale MTDs are chiefly initiated on the lower slope (400-600 m) with gradients up to 3° and where they produce scarps on the order of 100 m in height. Sandy MTDs also occur on the upper continental slope adjacent to the seaward edge of the shelf terrace. Earthquakes associated with tectonic activity and the development of fluid overpressure is considered as the main conditioning factor for destabilizing the slope sediments. Overall, the sedimentary processes show typical characteristics of a fine-grained clastic slope apron and change down-slope and differ within each physiographic province. Furthermore, the influence of geological inheritance (i.e., structural folds and faults) on geomorphology and sediment facies development is an important additional factor on the lower slopes. Together, these factors provide a rational basis for continental margin seabed characterization.
NASA Astrophysics Data System (ADS)
Khalaf, Ezz El Din Abdel Hakim
Fatira area in the Central Eastern Desert, Egypt, is a composite terrane consisting of Neoproterozoic volcanics and sediments laid down in submarine to subaerial environment, intruded by voluminous old to young granitic rocks. The various lithofacies of the study area can be grouped in three distinct lithostratigraphic sequences, which are described here in stratigraphic order, from base to top as the Fatira El Beida, Fatira El Zarqa and Gabal Fatira sequences. Each depositional sequence, is intimately related to volcanic activity separated by time intervals of volcanic inactivity, such as marked hiatuses, reworked volcaniclasts, and or turbidite sedimentation. Four submarine facies groups have been recognized within the oldest, folded eruption sequence of Fatira El Beida. The southern part of the study area is occupied by sheet lava (SL), pillow lavas (PL), pillow breccias (PB), and overlying Bouma turbiditic volcaniclastites (VC). The four facies groups of Fatira El Beida sequence occur in a predictable upward-deepening succession, essentially from base to top, an SL-PL-PB-VC stacking pattern. The coeval tholeiitic mafic and felsic volcaniclastic rocks of this sequence indicate an extensional back-arc tectonic setting. The El Beida depositional sequence appears to fit a submarine-fan and slope-apron environment in an intra-arc site. The Fatira El Zarqa sequence involves a large volume of subaerial calc-alkaline intermediate to felsic volcanics and an unconformably overlying siliciclastic succession comprising clast-supported conglomerates (Gm), massive sandstone sheet floods (Sm) and mudstones (FI), together with a lateritic argillite paleosol (P) top formed in an alluvial-fan system. The youngest rock of Gabal Fatira sequence comprises anorogenic trachydacites and rhyolites with locally emergent domes associated with autobrecciation and sill-dyke rock swarms that could be interpreted as feeders and subvolcanic intrusions. Unconformity and lithofacies assemblages define seven events and three unconformity-bounded tectonic stages that record uplift-subsidence cycles in the study area. A proximal-distal relationship has been established within the depositional products, based on the relative dominance of erosional and depositional features.
NASA Astrophysics Data System (ADS)
Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.
2018-04-01
Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.
Stolper, D A; Love, G D; Bates, S; Lyons, T W; Young, E; Sessions, A L; Grotzinger, J P
2017-05-01
The Athel silicilyte is an enigmatic, hundreds of meters thick, finely laminated quartz deposit, in which silica precipitated in deep water (>~100-200 m) at the Ediacaran-Cambrian boundary in the South Oman Salt Basin. In contrast, Meso-Neoproterozoic sinks for marine silica were dominantly restricted to peritidal settings. The silicilyte is known to contain sterane biomarkers for demosponges, which today are benthic, obligately aerobic organisms. However, the basin has previously been described as permanently sulfidic and time-equivalent shallow-water carbonate platform and evaporitic facies lack silica. The Athel silicilyte thus represents a unique and poorly understood depositional system with implications for late Ediacaran marine chemistry and paleoecology. To address these issues, we made petrographic observations, analyzed biomarkers in the solvent-extractable bitumen, and measured whole-rock iron speciation and oxygen and silicon isotopes. These data indicate that the silicilyte is a distinct rock type both in its sedimentology and geochemistry and in the original biology present as compared to other facies from the same time period in Oman. The depositional environment of the silicilyte, as compared to the bounding shales, appears to have been more reducing at depth in sediments and possibly bottom waters with a significantly different biological community contributing to the preserved biomarkers. We propose a conceptual model for this system in which deeper, nutrient-rich waters mixed with surface seawater via episodic mixing, which stimulated primary production. The silica nucleated on this organic matter and then sank to the seafloor, forming the silicilyte in a sediment-starved system. We propose that the silicilyte may represent a type of environment that existed elsewhere during the Neoproterozoic. These environments may have represented an important locus for silica removal from the oceans. © 2017 John Wiley & Sons Ltd.
Spectral properties and ASTER-based alteration mapping of Masahim volcano facies, SE Iran
NASA Astrophysics Data System (ADS)
Tayebi, Mohammad H.; Tangestani, Majid H.; Vincent, Robert K.; Neal, Devin
2014-10-01
This study applies Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and the Mixture Tuned Matched Filtering (MTMF) algorithm to map the sub-pixel distribution of alteration minerals associated with the Masahim volcano, SE Iran for understanding the spatial relationship between alteration minerals and volcano facies. Investigations of the alteration mineralogy were conducted using field-spectroscopy, X-ray diffraction (XRD) analysis and ASTER Short Wave Infrared (SWIR) spectral data. In order to spectrally characterize the stratovolcano deposits, lithological units and alteration minerals, the volcano was divided into three facies: the Central, Proximal, and Medial-distal facies. The reflectance spectra of rock samples show absorption features of a number of minerals including white mica, kaolinite, montmorillonite, illite, goethite, hematite, jarosite, opal, and chlorite. The end-members of key alteration minerals including sericite (phyllic zone), kaolinite (argillic zone) and chlorite (propylitic zone) were extracted from imagery using the Pixel Purity Index (PPI) method and were used to map alteration minerals. Accuracy assessment through field observations was used to verify the fraction maps. The results showed that most prominent altered rocks situated at the central facies of volcano. The alteration minerals were discriminated with the coefficient of determination (R2) of 0.74, 0.81, and 0.68 for kaolinite, sericite, and chlorite, respectively. The results of this study have the potential to refine the map of alteration zones in the Masahim volcano.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cross, S.L.; Lighty, R.G.
Coral-rudist reefs of the Lower Cretaceous Mural limestone, southeastern Arizona, show a pronounced relationship between specific reef facies, primary porosity, and early submarine diagenesis. These large open-shelf reefs differ from the well-studied low-relief rudist buildups, and provide an alternate analog for many Cretaceous reef reservoirs. Arizona buildups have diverse corals, high depositional relief, and a well-developed facies zonation from fore reef to back reef: skeletal grainstone talus, muddy fore reef with branching and lamellar corals, massive reef crest with abundant lamellar corals and sandy matrix, protected thickets of delicate branching corals and large rudist mounds, and a wide sediment apronmore » of well-washed coral, rudist, and benthic foraminiferal sands. These well-exposed outcrops permit a detailed facies comparison of primary interparticle porosity. Porosity as high as 40% in grainstones was occluded by later subsurface cements. Reef-framework interparticle porosity was negligible because fore-reef coral and back-reef rudist facies were infilled by muds, and high-energy reef-crest frameworks were filled by peloidal submarine cement crusts and muddy skeletal sands. These thick crusts coated lamellar corals in cryptic and open reef-crest areas, and are laminated with ripple and draped bed forms that suggest current influence. Similar peloidal crusts and laminated textures are common magnesium-calcite submarine cement features in modern reefs. By documenting specific facies control on early cementation and textural variability, patterns of late-stage subsurface diagenesis and secondary porosity may be more easily explained for Cretaceous reef reservoirs. Significant primary porosity might be retained between sands in back-reef facies and within coral skeletons.« less
NASA Astrophysics Data System (ADS)
Kasi, A.; Kassi, A.; Friis, H.; Umar, M.
2013-12-01
The Pishin Belt is a NE-SW trending mixed flysch and molasse basin, situated at the northwestern part of Pakistan, bordered by Afghan Block of the Eurasian Plate in the west and Indian Plate in the east. Western boundary of the belt is marked by the well-known Chaman Transform Fault, whereas the Zhob Valley Thrust and Muslim Bagh-Zhob Ophiolite mark the eastern boundary. The Belt is divisible into six tectono-stratigraphic zones bounded by major thrusts. Muslim Bagh-Zhob Ophiolite is the base and Zone-I of this belt. Zone-II comprises shallow marine and flysch successions of the Eocene Nisai Formation and Oligocene Khojak Formation. The Early to Middle Miocene Dasht Murgha group comprises Zone-III, the Late Miocene-Pliocene Malthanai formation comprises Zone-IV, the Pleistocene Bostan Formation makes Zone-V, and the flat-laying Holocene deposits of the Zhob Valley comprise Zone-VI. The Neogene molasse successions of the Pishin Belt include the Dasht Murgha group, Malthanai formation and Bostan Formation; these are mostly composed of sandstone, claystone and conglomerate lithologies. Sandstones have been classified as lithic arenites and their QFL values suggest quartzolithic composition. Twelve distinct lithofacies have been recognized in the succession and thus grouped into four types of facies associations. Lithofacies include clast-supported massive gravel (Gcm), clast-supported crudely bedded gravel (Gh), cross-stratified conglomerate (Gt and Gp), trough cross-stratified sandstone (St), planar cross-stratified sandstone (Sp), ripple cross-laminated sandstone (Sr), horizontally stratified sandstone (Sh), low-angle cross-stratified sandstone (Sl), massive sandstones (Sm), massive mudstone and siltstone (Fm) and paleosol carbonate (P). The lithofacies associations include channel facies association (CHA), crevasse-splay facies association (CSA), natural-levee facies association (LVA) and floodplain facies association (FPA). The lithofacies associations suggest that the Dasht Murgha group was deposited by a sandy braided to mixed-load high-sinuosity fluvial system, the Malthanai formation by a mixed-load high-sinuosity fluvial system and Bostan Formation by gravelly braided channels of a coalescing alluvial fan system. We propose that prolonged and continued collision of the Indian Plate with the Afghan Block of the Eurasian Plate resulted in the closure of the Katawaz Remnant Ocean (the southwestern extension of the Neo-Tethys) in the Early Miocene. Uplifted orogens of the Muslim Bagh-Zhob Ophiolite and marine successions of the Nisai and Khojak formations served as the major source terrains for the Miocene through Holocene molasse succession in the south and southeast verging successive thrust-bound foreland basins at the outer most extremity of the Pishin Belt.
NASA Astrophysics Data System (ADS)
Pe-Piper, Georgia; Dolansky, Lila; Piper, David J. W.
2005-07-01
The Lower Cretaceous fluvial sandstone-mudstone succession of the Chaswood Formation is the proximal equivalent of offshore deltaic rocks of the Scotian Basin that are reservoirs for producing gas fields. This study interprets the mineralogical consequences of Cretaceous weathering and early diagenesis in a 130-m core from the Chaswood Formation in order to better understand detrital and diagenetic minerals in equivalent rocks offshore. Mineralogy was determined by X-ray diffraction, electron microprobe analysis and scanning electron microscopy. The rocks can be divided into five facies associations: light gray mudstone, dark gray mudstone, silty mudstone and muddy sandstone, sorted sandstone and conglomerate, and paleosols. Facies transitions in coarser facies are related to deposition in and near fluvial channels. In the mudstones, they indicate an evolutionary progression from the dark gray mudstone facies association (swamps and floodplain soils) to mottled paleosols (well-drained oxisols and ultisols following syntectonic uplift). Facies transitions and regional distribution indicate that the light gray mudstone facies association formed from early diagenetic oxidation and alteration of the dark gray mudstone facies association, probably by meteoric water. Principal minerals in mudstones are illite/muscovite, kaolinite, vermiculite and quartz. Illite/muscovite is of detrital origin, but variations in abundance show that it has altered to kaolinite in the light gray mudstone facies association and in oxisols. Vermiculite developed from the weathering of biotite and is present in ultisols. The earliest phase of sandstone cementation in reducing conditions in swamps and ponds produced siderite nodules and framboidal pyrite, which were corroded and oxidized during subsequent development of paleosols. Kaolinite is an early cement, coating quartz grains and as well-crystallized, pore-filling booklets that was probably synchronous with the formation of the light gray mudstone facies association. Later illite and barite cement indicate a source of abundant K and Ba from formation water. This late diagenesis of sandstone took place when the Chaswood Formation was in continuity with the main Scotian Basin, prior to Oligocene uplift of the eastern Scotian Shelf. Findings of this study are applicable to other mid-latitude Cretaceous weathering and early diagenetic environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, J.R. Jr.
1984-04-01
Reservoir characterization of Mesaverde meanderbelt sandstones is used to determined directional continuity of permeable zones. A 500-m (1600 ft) wide fluvial meanderbelt in the Mesaverde Group is exposed as laterally continuous 3-10-m (10-33-ft) high sandstone cliffs north of Rangely, Colorado. Forty-eight detailed measured sections through 3 point bar complexes oriented at right angles to the long axis of deposition and 1 complex oriented parallel to deposition were prepared. Sections were tied together by detailed sketches delineating and tracing major bounding surfaces such as scours and clay drapes. These complexes contain 3 to 8 multilateral sandstone packages separated by 5-20 cmmore » (2-8 in.) interbedded siltstone and shale beds. Component facies are point bars, crevasse splays, chute bars, and floodplain/overbank deposits. Two types of lateral accretion surfaces are recognized in the point bar facies. Gently dipping lateral accretions containing fining-upward sandstone packages. Large scale trough cross-bedding at the base grades upward into ripples and plane beds. Steeply dipping lateral accretion surfaces enclose beds characterized by climbing ripple cross laminations. Bounding surfaces draped by shale lags can seal vertically stacked point bars from reservoir communication. Scoured boundaries allow communication in some stacked point bars. Crevasse splays showing climbing ripples form tongues of very fine-grained sandstone which flank point bars. Chute channels commonly cut upper point bar surfaces at their downstream end. Chute facies are upward-fining with small scale troughs and common dewatering structures. Siltstones and shales underlie the point bar complexes and completely encase the meanderbelt system. Bounding surfaces at the base of the complexes are erosional and contain large shale rip-up clasts.« less
Dumoulin, Julie A.; Bradley, Dwight C.; Harris, Anita G.
2000-01-01
Paleozoic rocks in the Dyckman Mountain area (northeastern Medfra quadrangle; Farewell terrane) include both shallowand deep-water lithologies deposited on and adjacent to a carbonate platform. Shallow-water strata, which were recognized by earlier workers but not previously studied in detail, consist of algal-laminated micrite and skeletal-peloidal wackestone, packstone, and lesser grainstone. These rocks are, at least in part, of Early and (or) Middle Devonian age but locally could be as old as Silurian; they accumulated in shallow subtidal to intertidal settings with periodically restricted water circulation. Deepwater facies, reported here for the first time, are thin, locally graded beds of micrite and calcisiltite and subordinate thick to massive beds of lime grainstone and conglomerate. Conodonts indicate an age of Silurian to Middle Devonian; the most tightly dated intervals are early Late Silurian (early to middle Ludlow). These strata formed as hemipelagic deposits, turbidites, and debris flows derived from shallow-water lithologies of the Nixon Fork subterrane. Rocks in the Dyckman Mountain area are part of a broader facies belt that is transitional between the Nixon Fork carbonate platform to the west and deeper water, basinal lithologies (Minchumina “terrane”) to the east. Transitional facies patterns are complex because of Paleozoic shifts in the position of the platform margin, Mesozoic shortening, and Late Cretaceous-Tertiary disruption by strike-slip faulting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, M.W.; Hine, A.C.; David, R.A.
1985-01-01
Analysis of aerial photographs and surficial sediment samples from the northern islands of the west-central barrier system of Florida indicates that: (1) seagrass beds in the nearshore zone have controlled onshore/longshore sand transport, and (2) resulting sedimentary accumulations within nearshore seagrass beds make differentiation of nearshore and backbarrier facies difficult. Between 1957 and 1973, an extensive seagrass community occupying the nearshore zone off Anclote Key disappeared, thus allowing the sudden and rapid onshore and longshore transport of sand. The 1000 year old barrier island lengthened 30% by recurved spit growth in this very short period of time. Although there aremore » not direct observations, four possible causes of seagrass mortality have been postulated, and of these overgrazing as a result of the accelerated population growth of sea urchins (Lytechinus variegatus) seems to be the most likely cause. Because of the ability of seagrasses to trap fine-grained sediments, contribute organic matter, and provide for low-energy, sheltered, molluscan biocoenosis, there is little depositional difference between these nearshore and backbarrier/lagoonal facies. This work indicates that the development and destruction of benthic floral communities should be considered as a process that generates or accentuates episodicity/cyclicity in the sedimentary record. Additionally, such changes in these communities should be expected to present a blurred distinction between certain types of coastal sedimentary facies.« less
NASA Astrophysics Data System (ADS)
Dupont-Nivet, Guillaume; Licht, Alexis; Bernard, Annabelle; Roperch, Pierrick; Win, Zaw; Jaeger, Jean-Jacques; Aung, Day Wa; Kaythi, Myat; Hnin Swe, Hnin; Poblete, Fernando
2017-04-01
Sedimentary basins in Myanmar have recorded key events of the India-Asia collision including associated geodynamic movements and paleoclimatic records. In particular, Paleogene deposits provide invaluable insight on the accretion of the Burma terrane, its rotation associated with the alleged extrusion of Indochina and the formation of the Indo-Burman ranges. They also yield unique records of monsoonal intensity during the growth of the Tibetan Plateau and a rich paleontological assemblage including some of the earliest primates. However, understanding the potential relations between these recorded events is strongly hindered by insufficient age control on these deposits. As part of the Myanmar Geodynamic & Paleoclimate Initiative and the ERC "MAGIC" project, our initial focus is to date Paleogene deposits of Myanmar with better accuracy using magnetostratigraphy. We present preliminary results from the Chindwin Basin where we sampled a 400-meter section of the top of the Yaw formation recording a major sedimentological facies transition previously estimated roughly as Eocene to Oligocene in age. Detailed rock magnetic analyses enabled to identify and isolate primary Characteristic Remanent Magnetizations of normal and reversed polarities carried by iron sulfides, iron carbonates and/or iron oxides. A correlation to the Geomagnetic Polarity Time Scale can be proposed suggesting deposition between the base of chrons C16n2n and the base of C13r (36.3 and 34.8 Ma). This age suggests the facies transition may be more likely associated with regional tectonics such as the Indo-Burman uplift rather than sea-level drop linked to ice-sheet formation at the Eocene-Oligocene Transition at 33.9 Ma. In addition, the mean observed paleomagnetic declination (13.3+/-3.7°) is statistically indistinguishable from declinations expected by geodynamic models with limited vertical-axis rotations of the Burma terrane and therefore supports little to no rotational extrusion since 35 Ma.
NASA Astrophysics Data System (ADS)
Ielpi, Alessandro
2012-07-01
A late Pliocene incised valley fill to lacustrine succession, which contains an interbedded brown coal seam (< 20 m thick), is examined in terms of facies analysis, physical stratigraphy and sequence architecture. The succession (< 50 m thick) constitutes the first depositional event of the Castelnuovo Synthem, which is the oldest unconformity bounded stratigraphic unit of the nonmarine Upper Valdarno Basin, Northern Apennines (Italy). The integration of field surveys and borehole logs identified the following event sequence: first valley filling stages by coarse alluvial fan and channelised streams; the progressive setting of low gradient floodbasins with shallow floodplain lakes; subsequent major waterlogging and extensive peat mire development; and system drowning and establishment of permanent lacustrine conditions. The deposits are grouped in a set of nested valley fills and are arranged as high-frequency depositional sequences. The sequences are bounded by minor erosive truncations and have distinctive upward trends: lowstand system tract thinning; transgressive system tract thickening; highstand system tract thinning and eventual non-deposition; and the smoothing of along-sequence boundary sub-aerial incisions. Such features fit in with the notion of an idealised model where second-order (high-frequency) fluctuations, modulated by first-order (low-frequency) base-level rising, have short-lived standing + falling phases and prolonged transgressions, respectively. Furthermore, the general sequence architecture reveals how a mixed palustrine-siliciclastic system differs substantially from a purely siliciclastic one. In the transgressive phases, terrigenous starvation induces prevailing peat accumulation, generating abnormally thick transgressive system tracts that eventually come to occupy much of the same transgression-generated accommodation space. In the highstand phases, the development of thick highstand system tracts is then prevented by sediment upstream trapping due to retrogressive fluvial aggradations, probably coupled with low-accommodation settings inherited from the transgressive phases.
Geochemistry of Eagle Ford group source rocks and oils from the first shot field area, Texas
Edman, Janell D.; Pitman, Janet K.; Hammes, Ursula
2010-01-01
Total organic carbon, Rock-Eval pyrolysis, and vitrinite reflectance analyses performed on Eagle Ford Group core and cuttings samples from the First Shot field area, Texas demonstrate these samples have sufficient quantity, quality, and maturity of organic matter to have generated oil. Furthermore, gas chromatography and biomarker analyses performed on Eagle Ford Group oils and source rock extracts as well as weight percent sulfur analyses on the oils indicate the source rock facies for most of the oils are fairly similar. Specifically, these source rock facies vary in lithology from shales to marls, contain elevated levels of sulfur, and were deposited in a marine environment under anoxic conditions. It is these First Shot Eagle Ford source facies that have generated the oils in the First Shot Field. However, in contrast to the generally similar source rock facies and organic matter, maturity varies from early oil window to late oil window in the study area, and these maturity variations have a pronounced effect on both the source rock and oil characteristics. Finally, most of the oils appear to have been generated locally and have not experienced long distance migration.
Grimes, David J.; Earhart, Robert L.; de Carvalho, Delfim; Oliveira, Vitor; Oliveira, Jose T.; Castro, Paulo
1998-01-01
This report describes geochemical and geological studies which were conducted by the U.S. Geological Survey (USGS) and the Servicos Geologicos de Portugal (SPG) in the Portuguese pyrite belt (PPB) in southern Portugal. The studies included rare earth element (REE) distributions and geological and geochemical controls on the distribution of gold. Rare earth element distributions were determined in representative samples of the volcanic rocks from five west-trending sub-belts of the PPB in order to test the usefulness of REE as a tool for the correlation of volcanic events, and to determine their mobility and application as hydrothermal tracers. REE distributions in felsic volcanic rocks show increases in the relative abundances of heavy REE and a decrease in La/Yb ratios from north to south in the Portuguese pyrite belt. Anomalous amounts of gold are distributed in and near massive and disseminated sulfide deposits in the PPB. Gold is closely associated with copper in the middle and lower parts of the deposits. Weakly anomalous concentrations of gold were noted in exhalative sedimentary rocks that are stratigraphically above massive sulfide deposits in a distal manganiferous facies, whereas anomalously low concentrations were detected in the barite-rich, proximal-facies exhalites. Altered and pyritic felsic volcanic rocks locally contain highly anomalous concentrations of gold, suggesting that disseminated sulfide deposits and the non-ore parts of massive sulfide deposits should be evaluated for their gold potential.
LePain, D.L.; Stanley, Richard G.; Helmold, K.P.
2016-01-01
The Talkeetna Formation is a prominent lithostratigraphic unit in south-central Alaska. In the Iniskin–Tuxedni area, Detterman and Hartsock (1966) divided the formation into three mappable units including, from oldest to youngest, the Marsh Creek Breccia, the Portage Creek Agglomerate, and the Horn Mountain Tuff Members. The Horn Mountain Tuff Member was thought to include rocks deposited in a nonmarine setting based on the presence of “tree stumps in an upright position” (Detterman and Hartsock, 1966, p. 19) near the top of the type section at Horn Mountain. Bull (2015) recognized possible nonmarine volcaniclastic rocks in the member during the 2014 field season in a saddle on the north side of Horn Mountain (figs. 2-1 and 2-2). The authors visited this location in 2015 and measured a short stratigraphic section to document facies, interpret depositional setting, and constrain age. This report summarizes our field observations and presents preliminary interpretations.
Brezinski, D.K.; Cecil, C.B.; Skema, V.W.; Stamm, R.
2008-01-01
A Late Devonian polymictic diamictite extends for more than 400??km from northeastern Pennsylvania across western Maryland and into east-central West Virginia. The matrix-supported, unbedded, locally sheared diamictite contains subangular to rounded clasts up to 2??m in diameter. The mostly rounded clasts are both locally derived and exotic; some exhibit striations, faceting, and polish. The diamictite commonly is overlain by laminated siltstone/mudstone facies associations (laminites). The laminites contain isolated clasts ranging in size from sand and pebbles to boulders, some of which are striated. The diamictite/laminite sequence is capped by massive, coarse-grained, pebbly sandstone that is trough cross-bedded. A stratigraphic change from red, calcic paleo-Vertisols in strata below the diamictite to non-calcic paleo-Spodosols and coal beds at and above the diamictite interval suggests that the climate became much wetter during deposition of the diamictite. The diamictite deposit is contemporaneous with regressive facies that reflect fluvial incision during the Late Devonian of the Appalachian basin. These deposits record a Late Devonian episode of climatic cooling so extreme that it produced glaciation in the Appalachian basin. Evidence for this episode of climatic cooling is preserved as the interpreted glacial deposits of diamictite, overlain by glaciolacustrine varves containing dropstones, and capped by sandstone interpreted as braided stream outwash. The Appalachian glacigenic deposits are contemporaneous with glacial deposits in South America, and suggest that Late Devonian climatic cooling was global. This period of dramatic global cooling may represent the end of the mid-Paleozoic warm interval that began in the Middle Silurian. ?? 2008 Elsevier B.V. All rights reserved.
Leslie, Shannon R.; Miller, David M.; Wooden, Joseph L.; Vazquez, Jorge A.
2010-01-01
New detailed geologic mapping and geochronology of the Barstow Formation at Harvard Hill, 30 km east of Barstow, CA, help to constrain Miocene paleogeography and tectonics of the central Mojave Desert. A northern strand of the Quaternary ENE-striking, sinistral Manix fault divides the Barstow Formation at Harvard Hill into two distinct lithologic assemblages. Strata north of the fault consist of: a green rhyolitic tuff, informally named the Shamrock tuff; lacustrine sandstone; partially silicified thin-bedded to massive limestone; and alluvial sandstone to pebble conglomerate. Strata south of the fault consist of: lacustrine siltstone and sandstone; a rhyolitic tuff dated at 19.1 Ma (U-Pb); rock-avalanche breccia deposits; partially silicified well-bedded to massive limestone; and alluvial sandstone and conglomerate. Our U-Pb zircon dating of the Shamrock tuff by SHRIMP-RG yields a peak probability age of 18.7 ± 0.1 Ma. Distinctive outcrop characteristics, mineralogy, remanent magnetization, and zircon geochemistry (Th/U) suggest that the Shamrock tuff represents a lacustrine facies of the regionally extensive Peach Spring Tuff (PST). Here we compare zircon age and geochemical analyses from the Shamrock tuff with those of the PST at Stoddard Wash and provide new insight into the age of zircon crystallization in the PST rhyolite. Results of our field studies show that Miocene strata at Harvard Hill mostly accumulated in a lacustrine environment, although depositional environments varied from a relatively deep lake to a very shallow lake or even onshore setting. Rock-avalanche breccias and alluvial deposits near the base of the exposed section indicate proximity to a steep basin margin and detrital studies suggest a southern source for coarse-grained deposits; therefore, we may infer a southern basin-margin setting at Harvard Hill during the early Miocene. Our geochronology demonstrates that deposition of the Barstow Formation at Harvard Hill extended from before ~19.1 Ma until well after ~18.7 Ma, similar to timing of Barstow Formation lake deposition in the Calico Mountains but at least 3 million years older than comparable lacustrine facies in the Mud Hills type section. These observations are consistent with either of two paleogeographic models: westward transgression of lacustrine environments within a single large basin, or sequential development of geographically distinct eastern and western sub-basins.
NASA Astrophysics Data System (ADS)
Pichat, Alexandre; Hoareau, Guilhem; Legeay, Etienne; Lopez, Michel; Bonnel, Cédric; Callot, Jean-Paul; Ringenbach, Jean-Claude
2017-04-01
The Sivas Basin, located in the central part of the Anatolian Plateau in Turkey, formed after the closure of the northern Neotethys from Paleocene to Pliocene times. It developed over an ophiolitic basement obducted from the north during the Late Cretaceous. During Paleocene to Eocene times, the onset of the Tauride compression led to the development of a foreland basin affected by north-directed thrusts. The associate general deepening of the basin favored the accumulation of a thick marine turbiditic succession in the foredeep area, followed by a fast shallowing of the basin and thick evaporitic sequence deposition during the late Eocene. We present here the detailed sedimentological architecture of this flysch to evaporite transition. In the northern part of the basin, volcanoclastic turbidites gradually evolved into basinal to prodelta deposits regularly fed by siliciclastic material during flood events. Locally (to the NE), thick-channelized sandstones are attributed to the progradation of delta front distributary channels. The basin became increasingly sediment-starved and evolved toward azoic carbonates and shaly facies, interlayered with organic-rich shales before the first evaporitic deposits. In the southern part of the basin, in the central foredeep, the basinal turbidites become increasingly gypsum-rich and record a massive mega-slump enclosing olistoliths of gypsum and of ophiolitic rocks. Such reworked evaporites were fed by the gravitational collapsing of shallow water evaporites that had previously precipitated in silled piggy-back basins along the southern fold-and-thrust-belt of the Sivas Basin. Tectonic activity that led to the dismantlement of such evaporites probably also contributed to the closure of the basin from the marine domain. From the north to the south, subsequent deposits consist in about 70 meters of secondary massive to fine-grained gypsiferous beds interpreted as recording high to low density gypsum turbidites. Such facies were probably fed from shallow water evaporitic platforms developing contemporaneously along the borders of the halite-? and gypsum-saturated basin. Finally, the reworked evaporites are sealed by a thick (> 100 m) chaotic and coarse crystalline gypsum mass, carrying folded rafts and boudins of carbonate and gypsum beds. Such unit is interpreted as a gypsiferous caprock resulting from the leaching of significant amount of halite deposits. Gypsum crystals are secondary and grew from the hydration of anhydrite grains left as a residual phase after the leaching of halite. The halite probably formed in a perennial shallow hypersaline basin fed in solute by marine seepages. This former halite sequence is interpreted to have triggered mini-basin salt tectonics during the Oligo-Miocene. The described facies and proposed scenario of the Tuzhisar Formation in the central part of the Sivas Basin may find analogies with other Central Anatolian Basins (e.g. the Ulukisla Basin) or with other basin-wide salt accumulations in the world (e.g. in the Carpathian Foredeep).
NASA Astrophysics Data System (ADS)
Hardin, L. A.; Wellner, J. S.
2010-12-01
Beascochea Bay has an overall rapid rate of sedimentation due to retreating fast-flowing ice, and thus contains high-resolution records of Antarctica’s glacial and climate history. Beascochea Bay is a 16 km long by 8 km wide bay located on the western margin of the Antarctica Peninsula, centered between Anvers Island and Renaud Island, but open to the Bellingshausen Sea. Currently, three tidewater glaciers draining the Bruce Plateau of Graham Land enter into the fjords of Beascochea Bay, releasing terrigenous sediments which have left a record of the fluctuations of the Antarctic Peninsula Ice Cap since the grounded ice decoupled from the seafloor after the last glacial maximum. These three glaciers have played a significant role in providing sediment to the main basin, allowing a detailed sediment facies analysis to be conducted from eight sediment cores which were collected during the austral summer of 2007. Pebbly silty clay sediment cores, along with 3.5 kHz seismic data and multibeam swath bathymetry data, are integrated to reconstruct a glacial retreat timeline for the middle to late Holocene, which can be compared to the recent retreat rates over the last century. Paleoenvironment of deposition is determined by mapping lateral facies changes from the side fjords (proximal) to the outer basin (distal), as each region records the transition from glacial-marine sediments to open-marine sediments. As the ice retreated from the outer basin to the inner basin, and most recently leaving the side fjords, each facies deposited can be age-constrained by radiocarbon, 210Pb, and 137Cs dating methods. A distinct 137Cs signal is readily seen in two kasten cores from a side fjord and the inner basin of Beascochea Bay. This dating method revealed an average sedimentation rate of 2.7 mm per year for approximately the last century, which is comparable to 210Pb rates obtained in other studies. Lithology variations in each sediment core record indications of ice-shelf influence in Beascochea Bay throughout the Holocene deglaciation. The distinctively laminated sub-ice shelf facies can be clearly seen in the x-rays of these cores, and can be easily distinguished from the poorly sorted glacial-marine facies and the greenish finer-grained facies deposited in open-marine conditions. A 14 m long sediment core taken from the outer basin of Beascochea Bay recovered the greatest length of sediment and dates back to the middle Holocene. X-rays of this core show a possible mid-Holocene retreat of the ice shelf followed by intermittent advance and retreat that precedes the most recent retreat. The inner basin of Beascochea Bay has been without an ice shelf for the last 200 years, based on the sedimentation rates of the last century projected downcore.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Link, M.H.; Helmold, K.P.
1988-02-01
The lower Miocene Galoc clastic unit, offshore Palawan, Philippines, is about 500-600 ft thick. The unit overlies the Galoc Limestone and is overlain by the Pelitic Pagasa Formation. The Galoc clastic unit consists of alternating quartzose sandstone, mudstone, and resedimented carbonate deposited at bathyal depths, mainly as turbidites. The deep-water deposits are confined to the axis of a northeast-trending trough in which slope, submarine channel, interchannel, depositional lobe, slump, and basinal facies are recognized. Eroded shallow-marine carbonate lithoclasts are commonly incorporated within the siliciclastic turbidites. The main reservoir sandstones occur in submarine channels and depositional lobes. The sandstones are texturallymore » submature, very fine to medium-grained feldspathic litharenites and subarkoses. The sandstones have detrital modes of Q78:F11:L11 and Qm51:F11:Lt38, with partial modes of the monocrystalline components of Qm82:P13:K5. Lithic fragments include chert, shale, schist, volcanic rock fragments, and minor plutonic rock fragments. Porosity in the better reservoir sandstones ranges from 11 to 25%, and calcite is the dominant cement. Dissolution textures and inhomogeneity of calcite distribution suggest that at least half of the porosity in the sandstones has formed through the leaching of calcite cement and labile framework grains. A source terrain of quartzo-feldspathic sediments and metasediments, chert, volcanics, and acid-intermediate plutonic rocks is visualized.« less
Middle Eocene seagrass facies from Apennine carbonate platforms (Italy)
NASA Astrophysics Data System (ADS)
Tomassetti, Laura; Benedetti, Andrea; Brandano, Marco
2016-04-01
Two stratigraphic sections located in the Latium-Abruzzi (Monte Porchio, Central Apennines, Central Italy) and in the Apulian carbonate platform (S. Cesarea-Torre Tiggiano, Salento, Southern Italy) were measured and sampled to document the sedimentological characteristic and the faunistic assemblages of Middle Eocene seagrass deposits. The faunistic assemblages are dominated by porcellaneous foraminifera Orbitolites, Alveolina, Idalina, Spiroloculina, Quinqueloculina, Triloculina and abundant hooked-shaped gypsinids, associated with hooked red algae and green algae Halimeda. Fabiania, rotaliids and textulariids as well as nummulitids are subordinated. The samples were assigned to Lutetian (SBZ13-16) according to the occurrence of Nummulites cf. lehneri, Alveolina ex. gr. elliptica, Idalina berthelini, Orbitolites complanatus, Slovenites decastroi and Medocia blayensis. At Santa Cesarea reticulate nummulites occur in association with Alveolina spp. and Halkyardia minima marking the lower Bartonian (SBZ17). Three main facies associations have been recognised: I) larger porcellaneous foraminiferal grainstones with orbitolitids and alveolinids deposited into high-energy shallow-water settings influenced by wave processes that reworked the sediments associated with a seagrass; II) grainstone to packstone with small porcellaneous foraminifera and abundant permanently-attached gypsinids deposited in a more protected (e.g., small embayment) in situ vegetated environment; III) bioclastic packstone with parautochthonous material reworked from the seagrass by rip currents and accumulated into rip channels in a slightly deeper environment. The biotic assemblages suggest that the depositional environment is consistent with tropical to subtropical vegetated environments within oligotrophic conditions.
NASA Astrophysics Data System (ADS)
Burnham, Brian Scott
Outcrop analogue studies of fluvial sedimentary systems are often undertaken to identify spatial and temporal characteristics (e.g. stacking patterns, lateral continuity, lithofacies proportions). However, the lateral extent typically exceeds that of the exposure, and/or the true width and thickness are not apparent. Accurate characterisation of fluvial sand bodies is integral for accurate identification and subsequent modelling of aquifer and hydrocarbon reservoir architecture. The studies presented in this thesis utilise techniques that integrate lidar, highresolution photography and differential geospatial measurements, to create accurate three-dimensional (3D) digital outcrop models (DOMs) of continuous 3D and laterally extensive 2D outcrop exposures. The sedimentary architecture of outcrops in the medial portion of a large Distributive Fluvial System (DFS) (Huesca fluvial fan) in the Ebro Basin, north-east Spain, and in the fluvio-deltaic succession of the Breathitt Group in the eastern Appalachian Basin, USA, are evaluated using traditional sedimentological and digital outcrop analytical techniques. The major sand bodies in the study areas are quantitatively analysed to accurately characterise spatial and temporal changes in sand body architecture, from two different outcrop exposure types and scales. Several stochastic reservoir simulations were created to approximate fluvial sand body lithological component and connectivity within the medial portion of the Huesca DFS. Results demonstrate a workflow and current methodology adaptation of digital outcrop techniques required for each study to approximate true geobody widths, thickness and characterise architectural patterns (internal and external) of major fluvial sand bodies interpreted as products of DFSs in the Huesca fluvial fan, and both palaeovalleys and progradational DFSs in the Pikeville and Hyden Formations in the Breathitt Group. The results suggest key geostatistical metrics, which are translatable across any fluvial system that can be used to analyse 3D digital outcrop data, and identify spatial attributes of sand bodies to identify their genetic origin and lithological component within fluvial reservoir systems, and the rock record. 3D quantitative analysis of major sand bodies have allowed more accurate width vs. thickness relationships within the La Serreta area, showing a vertical increase in width and channel-fill facies, and demonstrates a 22% increase of in-channel facies from previous interpretations. Additionally, identification of deposits that are products of a nodal avulsion event have been characterised and are interpreted to be the cause for the increase in width and channel-fill facies. Furthermore, analysis of the Pikeville and Hyden Fms contain sand bodies of stacked distributaries and palaeovalleys, as previously interpreted, and demonstrates that a 3D spatial approach to determine basin-wide architectural trends is integral to identifying the genetic origin, and preservation potential of sand bodies of both palaeovalleys and distributive fluvial systems. The resultant geostatistics assimilated in the thesis demonstrates the efficacy of integrated lidar studies of outcrop analogues, and provide empirical relationships which can be applied to subsurface analogues for reservoir model development and the distribution of both DFS and palaeovalley depositional systems in the rock record.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokogian, D.A.; Vasquez, J.R.
1996-01-01
The project objectives were to define the upside potential and identified drilling locations, both for exploratory and development wells, in Loma Negra-Nl-Huincul old fields, inactive due to pressure depletion Fields are located in Dorsal de Huincul area (Huincul Range) which is a highly complex structure associated with a major transtensive-transpressive wrench system. Several angular unconformities are very noticeable, having eroded hundreds of meters of the stratigraphic column. Study was focused on the fluvial-deltaic sediments of the Cuyo Group (Bajocian-Bathonian), the main productive levels in the area. An understanding of the stratigraphic units, visible at outcrop, seismic and well scales, providedmore » the appropriated framework for the analysis. Seismic facies, detailed log and core analysis allowed us to generate paleogeographic maps and predict the reservoir distribution into each individual stratigraphic unit, Fluvial channels, overbank, crevasses splay, mouth-bar, interdistributary and delta front facies were recognized. Finally, the integrated model was compared and adjusted with the outcrop data. As a result of this study, exploratory and development wells were proposed, being all of them productive either gas or oil. Several of the new drilled wells found new productive horizons with original reservoir pressure, proving the presence of different tanks predicted by the model. This fact encourages the evaluation of the whole adjacent areas. Summing up, this integrated approach using the best outputs of the geology and geophysics in subsurface as well as in surface has been proved as a powerful tool to explore and reactivate a very mature area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kokogian, D.A.; Vasquez, J.R.
1996-12-31
The project objectives were to define the upside potential and identified drilling locations, both for exploratory and development wells, in Loma Negra-Nl-Huincul old fields, inactive due to pressure depletion Fields are located in Dorsal de Huincul area (Huincul Range) which is a highly complex structure associated with a major transtensive-transpressive wrench system. Several angular unconformities are very noticeable, having eroded hundreds of meters of the stratigraphic column. Study was focused on the fluvial-deltaic sediments of the Cuyo Group (Bajocian-Bathonian), the main productive levels in the area. An understanding of the stratigraphic units, visible at outcrop, seismic and well scales, providedmore » the appropriated framework for the analysis. Seismic facies, detailed log and core analysis allowed us to generate paleogeographic maps and predict the reservoir distribution into each individual stratigraphic unit, Fluvial channels, overbank, crevasses splay, mouth-bar, interdistributary and delta front facies were recognized. Finally, the integrated model was compared and adjusted with the outcrop data. As a result of this study, exploratory and development wells were proposed, being all of them productive either gas or oil. Several of the new drilled wells found new productive horizons with original reservoir pressure, proving the presence of different tanks predicted by the model. This fact encourages the evaluation of the whole adjacent areas. Summing up, this integrated approach using the best outputs of the geology and geophysics in subsurface as well as in surface has been proved as a powerful tool to explore and reactivate a very mature area.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Lin; Gong, Huili; Dai, Zhenxue
Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.« less
Zhu, Lin; Gong, Huili; Dai, Zhenxue; ...
2017-02-03
Alluvial fans are highly heterogeneous in hydraulic properties due to complex depositional processes, which make it difficult to characterize the spatial distribution of the hydraulic conductivity ( K). An original methodology is developed to identify the spatial statistical parameters (mean, variance, correlation range) of the hydraulic conductivity in a three-dimensional (3-D) setting by using geological and geophysical data. More specifically, a large number of inexpensive vertical electric soundings are integrated with a facies model developed from borehole lithologic data to simulate the log 10( K) continuous distributions in multiple-zone heterogeneous alluvial megafans. The Chaobai River alluvial fan in the Beijing Plain,more » China, is used as an example to test the proposed approach. Due to the non-stationary property of the K distribution in the alluvial fan, a multiple-zone parameterization approach is applied to analyze the conductivity statistical properties of different hydrofacies in the various zones. The composite variance in each zone is computed to describe the evolution of the conductivity along the flow direction. Consistently with the scales of the sedimentary transport energy, the results show that conductivity variances of fine sand, medium-coarse sand, and gravel decrease from the upper (zone 1) to the lower (zone 3) portion along the flow direction. In zone 1, sediments were moved by higher-energy flooding, which induces poor sorting and larger conductivity variances. The composite variance confirms this feature with statistically different facies from zone 1 to zone 3. Lastly, the results of this study provide insights to improve our understanding on conductivity heterogeneity and a method for characterizing the spatial distribution of K in alluvial fans.« less
NASA Astrophysics Data System (ADS)
Todes, J.; Jones, M. M.; Sageman, B. B.; Osburn, M. R.
2017-12-01
Rhythmic lithologic variations (limestone-shale couplets) interpreted to reflect Milankovitch cycles occur at the onset of Ocean Anoxic Event 2 (OAE2) in deposits of the Western Interior Seaway. These couplets have been interpreted to reflect climate cycles: however, the physical mechanism(s) through which climate cycles were translated to the sedimentary record during peak greenhouse conditions remain unsettled. Although glacioeustasy has been considered, variance in surface ocean temperature, ocean circulation, or local hydrology may be more plausible options. Compound-specific hydrogen isotope ratios (δ2H) of n-alkanes and other biomarkers may provide a means to evaluate such mechanisms. Since sedimentary alkanes are direct products of plants and membrane lipid diagenesis and are resistant to secondary hydrogen exchange during thermal maturation at low (<100 oC) temperatures, they have the potential to reflect the isotopic composition of primary waters. The Tropic Shale of the Kaiparowits Plateau (Southern Utah) provides an exceptional opportunity to explore δ2H variability in this interval. Outcrop samples of three couplets have been extracted, separated, and analyzed to ascertain facies-specific δ2H variability. Strong odd-over-even n-alkane chain length distributions suggest low thermal maturity and the possible preservation of primary δ2H values. Short and long chain n-alkanes are potentially sourced from planktonic biomass and terrestrial plants, respectively, enabling a comparison of climatic processes between marine and terrestrial settings. Biomarkers, including both steranes and hopanes, are also preserved and reflect putative source organisms and local paleoenvironmental conditions. Facies-specific δ2H analysis will allow for evaluation of changes in the dominant source of atmospheric moisture in the Western Interior during orbitally-forced climate cycles. Organic matter deposited during periods of northerly Boreal influence would have a depleted 2H-isotope composition relative to those deposited during periods of more southerly Tethys influence. In this model, these variations are reflected by lithology - limestone deposition would occur during warm, evaporative Tethys-dominated times, while cooler, wetter Boreal periods would promote shale deposition.
Mesozoic Alpine facies deposition as a result of past latitudinal plate motion.
Muttoni, Giovanni; Erba, Elisabetta; Kent, Dennis V; Bachtadse, Valerian
2005-03-03
The fragmentation of Pangaea as a consequence of the opening of the Atlantic Ocean is documented in the Alpine-Mediterranean region by the onset of widespread pelagic sedimentation. Shallow-water sediments were replaced by mainly pelagic limestones in the Early Jurassic period, radiolarian cherts in the Middle-Late Jurassic period, and again pelagic limestones in the Late Jurassic-Cretaceous period. During initial extension, basin subsidence below the carbonate compensation depth (CCD) is thought to have triggered the transition from Early Jurassic limestones to Middle-Late Jurassic radiolarites. It has been proposed that the transition from radiolarites to limestones in the Late Jurassic period was due to an increase in calcareous nannoplankton abundance when the CCD was depressed below the ocean floor. But in modern oceans, sediments below the CCD are not necessarily radiolaritic. Here we present palaeomagnetic samples from the Jurassic-Cretaceous pelagic succession exposed in the Lombardian basin, Italy. On the basis of an analysis of our palaeolatitudinal data in a broader palaeogeographic context, we propose an alternative explanation for the above facies tripartition. We suggest that the Lombardian basin drifted initially towards, and subsequently away from, a near-equatorial upwelling zone of high biosiliceous productivity. Our tectonic model for the genesis of radiolarites adds an essential horizontal plate motion component to explanations involving only vertical variations of CCD relative to the ocean floor. It may explain the deposition of radiolarites throughout the Mediterranean and Middle Eastern region during the Jurassic period.
NASA Astrophysics Data System (ADS)
Khodabakhshi, M.; Jafarpour, B.
2013-12-01
Characterization of complex geologic patterns that create preferential flow paths in certain reservoir systems requires higher-order geostatistical modeling techniques. Multipoint statistics (MPS) provides a flexible grid-based approach for simulating such complex geologic patterns from a conceptual prior model known as a training image (TI). In this approach, a stationary TI that encodes the higher-order spatial statistics of the expected geologic patterns is used to represent the shape and connectivity of the underlying lithofacies. While MPS is quite powerful for describing complex geologic facies connectivity, the nonlinear and complex relation between the flow data and facies distribution makes flow data conditioning quite challenging. We propose an adaptive technique for conditioning facies simulation from a prior TI to nonlinear flow data. Non-adaptive strategies for conditioning facies simulation to flow data can involves many forward flow model solutions that can be computationally very demanding. To improve the conditioning efficiency, we develop an adaptive sampling approach through a data feedback mechanism based on the sampling history. In this approach, after a short period of sampling burn-in time where unconditional samples are generated and passed through an acceptance/rejection test, an ensemble of accepted samples is identified and used to generate a facies probability map. This facies probability map contains the common features of the accepted samples and provides conditioning information about facies occurrence in each grid block, which is used to guide the conditional facies simulation process. As the sampling progresses, the initial probability map is updated according to the collective information about the facies distribution in the chain of accepted samples to increase the acceptance rate and efficiency of the conditioning. This conditioning process can be viewed as an optimization approach where each new sample is proposed based on the sampling history to improve the data mismatch objective function. We extend the application of this adaptive conditioning approach to the case where multiple training images are proposed to describe the geologic scenario in a given formation. We discuss the advantages and limitations of the proposed adaptive conditioning scheme and use numerical experiments from fluvial channel formations to demonstrate its applicability and performance compared to non-adaptive conditioning techniques.
NASA Astrophysics Data System (ADS)
Araújo, Raphael Neto; Nogueira, Afonso César Rodrigues; Bandeira, José; Angélica, Rômulo Simões
2016-04-01
The Permian Period of the Parnaíba Basin, northern Brazil, represented here by deposits from the Pedra de Fogo Formation, records important events that occurred in Western Gondwana near its boundary with the Mesozoic Era. The analysis of outcrop based facies from the Permian Pedra de Fogo Formation, which is 100 m thick, carried out along the eastern and western borders of the Parnaiba Basin, allowed the identification of eleven sedimentary facies, which were grouped into three distinct facies associations (FA), representative of a shallow lacustrine system associated with mudflats and ephemeral rivers. Bioturbation, desiccation cracks, silcretes and various siliceous concretions characterize the Pedra de Fogo deposits. The FA1 mudflat deposits occur predominantly at the base of the Pedra de Fogo Formation and consist of laminated claystone/mudstone, mudcrack-bearing sandstones/mudstones and sandstones exhibiting cross-lamination, massive and megaripple bedding. Popcorn-like silicified nodules and casts indicate evaporite deposits. Other common features are silica concretions, silicified tepees and silcretes. FA2 represents nearshore deposits and consists of fine-grained sandstones with evenly parallel lamination, climbing ripple cross-lamination, massive and megaripple bedding and mudstone/siltstone showing evenly parallel lamination. FA3 refers to wadi/inundite deposits, generally organized as fining-upward cycles of metric size, composed of conglomerates and medium-grained pebbly sandstones showing massive bedding and cross-stratification, as well as claystone/siltstone showing evenly parallel to undulate lamination. Scour-and-fill features are isolated in predominantly tabular deposits composed of mudstones interbedded with fine to medium-grained sandstones showing planar to slightly undulate lamination. Silicified plant remains previously classified as belonging to the Psaronius genus found in the uppermost levels of the Pedra de Fogo Formation, near the contact with the Motuca Formation, are considered here as excellent biostratigraphic markers. Fish remains, ostracods, bryozoans and scolecodonts represent other fossils that are present in the succession. Mudflat deposits developed in an arid and hot climate probably in the Early Permian. Semi-arid conditions prevailed in the Middle Permian allowing the proliferation of fauna and flora in adjacent humid regions and onto the lake margin. The climate variation was responsible for the contraction and expansion phases of the lake, fed by sporadic sheet floods carrying plant remains. The reestablishment of the arid climate, at the end of Permian, marks the final sedimentation of the Pedra de Fogo Formation, linked to the consolidation of the Pangaea Supercontinent. This last event was concomitant with the deposition of the Motuca Formation red beds and the development of extensive ergs related to the Triassic Sambaíba Formation in Western Gondwana.
NASA Astrophysics Data System (ADS)
Chappell, John
1993-03-01
The estuarine plain of the macrotidal Daly River, in monsoonal northern Australia, is underlain by extensive mid-Holocene mangrove swamp sediments which accumulated during the last stages of Post-glacial sea-level rise. Sediment yield from the catchment is too low to account for the volume which accumulated during sea-level rise, and onshore transport is invoked. This is supported by radiocarbon ages and facies analysis of the transgressive sediment tract beneath the maximum flooding surface (MFS), and of the tract of vertical sedimentation which extends from the MFS to the surface of estuarine/fluvial transition (the EFT). The EFT occurred about 5000 to 6000 BP throughout the estuarine plain. A contrasting situation exists in the lowland Holocene basin of the microtidal Sepik and Ramu rivers in Papua New Guinea, which derive sediment from highly tectonic catchments. A tectonic basin, which was a shallow brackish inland sea after Post-glacial transgression, is separated by a low divide from a deltaic plain. Progradation of the deltaic plain commenced about 3500 BP after regressive sedimentation eclipsed the inland sea in the tectonic basin. Contrasting organic facies, mangrove in the Daly and freshwater swamp deposits in the Sepik-Ramu, highlight differences between facies models of the two systems. Differences between fluvio-tidal regimes are reflected by the EFT, which is synchronous in the Daly and diachronous in the Sepik-Ramu, and possibly by the MFS which is diachronous in the Daly and may be synchronous in the Sepik-Ramu.
McLaughlin, Donald H.; Arce Herrera, Marino
1970-01-01
At least four evaporite sequences are interbedded with Cretaceous strata in the Bogotga area of the Cordillera Oriental of Colombia. The easternmost and oldest evaporite interval is of probable Berriasian-Valanglnian age; the next oldest is of probable late Barremian-early Aptian age, and is followed by a possible late Aptian sequence. The westernmost and best known sequence is Turonian-early Coniacian in age, in the Sabana de Bogota. This youngest sequence contains the thickest known salt deposits and is probably the most widespread geographically. Three gypsum deposits of probable Barremian-Valanginian age are in the eastern part of the area under investigation. These deposits may have been leached from former salt accumulations. No other evaporites are exposed, but numerous brine springs are known, That the sources of these brines are neither deep not distant is suggested by the generally high concentrations, of the brines, the local presence of rute (leached salt residue), and the commonly significant amounts of H2S gas emitted at these springs. The rock salt exposed in three accessible mines commonly has a characteristic lamination caused by alternating layers of relatively pure halite and very argillaceous halite. Ubiquitously scattered throughout all salt deposits are small clasts of black, commonly pyritic, marly claystone. This lithology is also present as large claystone bodies conformably interbedded in the salt strata. Anhydrite is rare and is apparently more abundant at the Zipaquira mine that at the Nemocon and Upin mine. Paleontologic evidence in the Sabana de Bogota demonstrates that the salt-claystone series, hematite impregnated strata, and carbonaceous to locally coaly claystone are coeval. The salt-claystone facies may have been deposited in shallow evaporite pans that were separated within the overall evaporite interval by barriers on which the locally hematitic strata were deposited. The carbonaceous facies may also have formed in barrier areas or on the edges of the evaporite basins. Whether or not this facies relationship prevails in the older evaporite intervals is not known; meager evidence suggests that it does. Nonmetallic mineral resources other than the evaporite minerals are phosphate rock, limestone, kaolinite, and emeralds. Metallic mineral deposits present in the Zone include hematite at Pericos, La Caldera, Tibirita, Nueva Vizcaya, and Cerro de Montecristo; chalcopyrite at Cerro do Cobre and at Farallones de Medina; galena in several places along the Rio Farallones and Rio Gacheta; and spahlerite in the Junin district.
Geologic map of the Vail West quadrangle, Eagle County, Colorado
Scott, Robert B.; Lidke, David J.; Grunwald, Daniel J.
2002-01-01
This new 1:24,000-scale geologic map of the Vail West 7.5' quadrangle, as part of the USGS Western Colorado I-70 Corridor Cooperative Geologic Mapping Project, provides new interpretations of the stratigraphy, structure, and geologic hazards in the area on the southwest flank of the Gore Range. Bedrock strata include Miocene tuffaceous sedimentary rocks, Mesozoic and upper Paleozoic sedimentary rocks, and undivided Early(?) Proterozoic metasedimentary and igneous rocks. Tuffaceous rocks are found in fault-tilted blocks. Only small outliers of the Dakota Sandstone, Morrison Formation, Entrada Sandstone, and Chinle Formation exist above the redbeds of the Permian-Pennsylvanian Maroon Formation and Pennsylvanian Minturn Formation, which were derived during erosion of the Ancestral Front Range east of the Gore fault zone. In the southwestern area of the map, the proximal Minturn facies change to distal Eagle Valley Formation and the Eagle Valley Evaporite basin facies. The Jacque Mountain Limestone Member, previously defined as the top of the Minturn Formation, cannot be traced to the facies change to the southwest. Abundant surficial deposits include Pinedale and Bull Lake Tills, periglacial deposits, earth-flow deposits, common diamicton deposits, common Quaternary landslide deposits, and an extensive, possibly late Pliocene landslide deposit. Landscaping has so extensively modified the land surface in the town of Vail that a modified land-surface unit was created to represent the surface unit. Laramide movement renewed activity along the Gore fault zone, producing a series of northwest-trending open anticlines and synclines in Paleozoic and Mesozoic strata, parallel to the trend of the fault zone. Tertiary down-to-the-northeast normal faults are evident and are parallel to similar faults in both the Gore Range and the Blue River valley to the northeast; presumably these are related to extensional deformation that occurred during formation of the northern end of the Rio Grande rift system in Colorado. In the southwestern part of the map area, a diapiric(?) exposure of the Eagle Valley Evaporite exists and chaotic faults and folds suggest extensive dissolution and collapse of overlying bedrock, indicating the presence of a geologic hazard. Quaternary landslides are common and indicate that landslide hazards are widespread in the area, particularly where old slide deposits are disturbed by construction. The late Pliocene(?) landslide that consists largely of a smectitic upper Morrison Formation matrix and boulders of Dakota Sandstone is readily reactivated. Debris flows are likely to invade low-standing areas within the towns of Vail and West Vail where tributaries of Gore Creek issue from the mountains on the north side of the valley.
NASA Astrophysics Data System (ADS)
Hopper, J. R.; Castro, C. F.; Knutz, P. C.; Funck, T.
2017-12-01
Seismic reflection data collected in the western Amundsen Basin as part of the Law of the Sea program for the Kingdom of Denmark show a uniform and continuous cover of sediments over oceanic basement. An interpretation of seismic facies units shows that the depositional history of the basin reflects changing tectonic, climatic, and oceanographic conditions throughout the Cenozoic. In this contribution, the Miocene to present history is summarized. Two distinct changes in the depositional environment are proposed, first in response to the development of a deep water connection between the Arctic and North Atlantic, and the second in response to the onset of perennial sea ice cover in the Arctic. In the early to mid-Miocene, a buildup of contourite deposits indicates a distinct change in sedimentation that is particularly well developed near the flank of the Lomonosov Ridge. It is suggested that this is a response to the opening of the Fram Strait and the establishment of geostrophic bottom currents that flowed from the Laptev Sea towards Greenland. These deposits are overlain by a seismic facies unit characterized by buried channels and erosional features. These include prominent basinward levee systems that suggest a channel morphology maintained by overbank deposition of muddy sediments carried by suspension currents periodically spilling over the channel pathway. These deposits indicate a change to a much higher energy environment that is proposed to be a response to brine formation associated with the onset of perennial sea ice cover in the Arctic Ocean. This interpretation implies that the development of extensive sea ice cover results in a significant change in the energy environment of the ocean that is reflected in the depositional and erosional patterns observed. The lack of similar high energy erosional features and the presence of contourite deposits throughout most of the Miocene may indicate the Arctic Ocean was relatively ice-free until the very latest Miocene.
NASA Astrophysics Data System (ADS)
Viglietti, Pia A.; Smith, Roger M. H.; Rubidge, Bruce S.
2018-02-01
Important palaeoenvironmental differences are identified during deposition of the latest Permian Daptocephalus Assemblage Zone (DaAZ) of the South African Beaufort Group (Karoo Supergoup), which is also divided into a Lower and Upper subzone. A lacustrine floodplain facies association showing evidence for higher water tables and subaqueous conditions on the floodplains is present in Lower DaAZ. The change to well-drained floodplain facies association in the Upper DaAZ is coincident with a faunal turnover as evidenced by the last appearance of the dicynodont Dicynodon lacerticeps, the therocephalian Theriognathus microps, the cynodont Procynosuchus delaharpeae, and first appearance of the dicynodont Lystrosaurus maccaigi within the Ripplemead member. Considering the well documented 3-phased extinction of Karoo tetrapods during the Permo-Triassic Mass Extinction (PTME), the facies transition between the Lower and Upper DaAZ represents earlier than previously documented palaeoenvironmental changes associated with the onset of this major global biotic crisis.
NASA Astrophysics Data System (ADS)
Cawthra, H. C.; Jacobs, Z.; Compton, J. S.; Fisher, E. C.; Karkanas, P.; Marean, C. W.
2018-02-01
Pleistocene shoreline deposits comprised of calcified shallow marine (palaeobeach) and aeolian (palaeodune) facies found along mid-latitude coastlines can be useful indicators of past sea levels. Here, we describe a succession of such deposits that are presently exposed both above (subaerial) and below (submerged) mean sea level along the southern Cape coast of South Africa, 18 km east of the town of Mossel Bay. The submerged units provide a window on Late Pleistocene coastal processes, as palaeoshoreline deposits in this study extend to water depths of up to 55 m on the mid-shelf. Five sedimentary facies were identified in the strata and were compared to modern depositional environments of the local littoral zone, which include aeolian dune, upper shoreface, foreshore, intertidal swash and back-barrier settings. Twenty-two geological units were observed and mapped. Some of these units were directly dated with optically stimulated luminescence (OSL) dating. OSL ages were obtained for ten samples from the subaerial and twelve samples from the submerged deposits. Those geological units not directly dated were interpreted based on sedimentology and field/stratigraphic relationships to dated units. The stratigraphy and chronology of the succession indicates a record of initial deposition during Termination II (T-II) meltwater events, preceding and leading to marine isotope stage (MIS) 5e. Indicators for multiple sea-level fluctuations between MIS 5d and MIS 4, and sediment deposition at the end of MIS 4 and start of MIS 3 are also found. Both regressive and transgressive depositional cycles are well-preserved in the succession. We propose that palaeodune and palaeobeach deposits along the South Coast of South Africa have no clear preference for deposition during sea-level transgressions or regressions. Sediment deposition more closely mirrors the rate of sea level change, with deposition and preservation either during times of rapid sea-level movement, or oscillation around still-stand events. Periods of relatively slow average rise or fall of sea level are represented by erosional planation surfaces in this record.
NASA Astrophysics Data System (ADS)
Lang, Jörg; Brandes, Christian; Winsemann, Jutta
2017-03-01
Erosion and deposition by supercritical density flows can strongly impact the facies distribution and architecture of submarine fans. Field examples from coarse-grained channel-levée complexes from the Sandino Forearc Basin (southern Central America) show that cyclic-step and antidune deposits represent common sedimentary facies of these depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. During channel avulsion, large-scale scour-fill complexes (18 to 29 m deep, 18 to 25 m wide, 60 to > 120 m long) were incised by supercritical density flows. The multi-storey infill of the large-scale scour-fill complexes comprises amalgamated massive, normally coarse-tail graded or widely spaced subhorizontally stratified conglomerates and pebbly sandstones, interpreted as deposits of the hydraulic-jump zone of cyclic steps. The large-scale scour-fill complexes can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump zone deposits. Channel fills include repeated successions deposited by cyclic steps with superimposed antidunes. The deposits of the hydraulic-jump zone of cyclic steps comprise regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m long) infilled by intraclast-rich conglomerates or pebbly sandstones, displaying normal coarse-tail grading or backsets. These deposits are laterally and vertically associated with subhorizontally stratified, low-angle cross-stratified or sinusoidally stratified sandstones and pebbly sandstones, which were deposited by antidunes on the stoss side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic steps with superimposed antidunes form fining-upwards successions with decreasing antidune wavelengths, indicating waning flows. Such cyclic step-antidune successions form the characteristic basal infill of mid-fan channels, and are inferred to be related to successive supercritical high-density turbidity flows triggered by retrogressive slope failures.
NASA Astrophysics Data System (ADS)
Lang, Joerg; Brandes, Christian; Winsemann, Jutta
2017-04-01
The facies distribution and architecture of submarine fans can be strongly impacted by erosion and deposition by supercritical density flows. We present field examples from the Sandino Forearc Basin (southern Central America), where cyclic-step and antidune deposits represent important sedimentary facies of coarse-grained channel-levée complexes. These bedforms occur in all sub-environments of the depositional systems and relate to the different stages of avulsion, bypass, levée construction and channel backfilling. Large-scale scours (18 to 29 m deep, 18 to 25 m wide, 60 to >120 m long) with an amalgamated infill, comprising massive, normally coarse-tail graded or spaced subhorizontally stratified conglomerates and pebbly sandstones, are interpreted as deposits of the hydraulic-jump zone of cyclic steps. These cyclic steps probably formed during avulsion, when high-density flows were routed into the evolving channel. The large-scale scour fills can be distinguished from small-scale channel fills based on the preservation of a steep upper margin and a coarse-grained infill comprising mainly amalgamated hydraulic-jump deposits. Channel fills include repetitive successions deposited by cyclic steps with superimposed antidunes. The hydraulic-jump zone of cyclic-step deposits comprises regularly spaced scours (0.2 to 2.6 m deep, 0.8 to 23 m wide), which are infilled by intraclast-rich conglomerates or pebbly sandstones and display normal coarse-tail grading or backsets. Laterally and vertically these deposits are associated with subhorizontally stratified, low-angle cross-stratified or sinusoidal stratified pebbly sandstones and sandstones (wavelength 0.5 to 18 m), interpreted as representing antidune deposits formed on the stoss-side of the cyclic steps during flow re-acceleration. The field examples indicate that so-called crudely or spaced stratified deposits may commonly represent antidune deposits with varying stratification styles controlled by the aggradation rate, grain-size distribution and amalgamation. The deposits of small-scale cyclic steps with superimposed antidunes form fining upwards successions with decreasing antidune wavelengths. Such cyclic step-antidune successions are the characteristic basal infill of channels, probably related to supercritical high-density turbidity flows triggered by retrogressive slope failures.
Coral distribution patterns in Miocene Reefs of Anguilla, Leeward Islands, West Indies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foster, A.B.; Johnson, K.G.
1988-01-01
Anguilla, a 27 by 5 km island at 18/sup 0/13'N, 63/sup 0/05'W, parallels the northwest edge of the Anguilla bank (St. Martin plateau) in the outer lesser Angilles volcanic arc, which was active from the Eocene to Oligocene. Except for scattered exposures of tuff or basalt, the island is composed predominantly of reefal limestones and marls of the 70-m thick, middle Miocene Anguilla Formation, deposited on a shallow inner shelf platform extending from volcanoes near St. Martin. The reef framework consists of branched and platy corals interspersed with calcareous sand lenses. Although the limestones have been uplifted and subjected tomore » minor faulting, little evidence supports extensive transport across a slope. Coral distribution patterns have been quantified across the reefal units by point-counting species occurrences at 0.16-m intervals within 1-m/sup 2/ quadrants placed haphazardly across vertical exposures. Eight coral species (of possibly 18 total) were recorded. Cluster analysis delineated four facies: (1) a low-diversity facies dominated by branched Porites, (2) an intermediate diversity facies dominated by branched Porites, (3) a high-diversity facies dominated by massive Montastraea, Siderastrea, and Porites, and (4) an intermediate diversity facies dominated by platy Porites. These facies consists of lenses, no more than 100 m long and 2 m high, arranged in no apparent regular sequence. Thus, they do not represent zones across a depth gradient. Comparisons with living Caribbean reefs suggests that the Anguilla Miocene reefs were similar to small, modern, backreef fringing and patch reefs near the San Blas Islands of Panama, reefs whose variable composition and patchy distribution depend largely on sedimentation and current patterns.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zempolich, W.G.
The Lower Ammonitico Rosso (L.A.R.) of the western Venetian Alps is a thin, red nodular limestone that overlies a thick Late Triassic to Middle Jurassic (Aalenian) shallow-water platform sequence. It is thought to represent a Middle Jurassic (Bajocian) drowning event whereby the Trento Platform became a submerged plateau. The L.A.R. is problematic in that it (1) is rich in ammonites and other pelagic fauna; (2) contains stromatolites, oncolites, and shallow-water sedimentary structures; and (3) directly overlies platform sediments that contain complex brecciated fabrics filled by cement and Bajocian-age sediment. These seemingly contradictory features have generated much debate as to themore » sequence stratigraphy of the Trento Platform. New evidence suggests that the L.A.R. was deposited in a shallow-water environment following a period of subaerial exposure. In an east-west transect from the platform edge to platform interior, a clear transition is exhibited from high- and low-energy open-marine facies to restricted lagoonal facies. High-energy open-marine facies include well-sorted skeletal- and peloidal-rich sands possessing low-angle to planar cross stratification and thin, fairly sorted ammonite- and belemnite-rich gravels. Sands include both shallow-water and pelagic fauna; gravels commonly contain ripup clasts from underlying sediments. Low-energy open-marine facies consist of buff colored wackestones and packstones that contain ammonites, belemnites, pelagic bivalves, and peloids. With respect to paleogeography, the abrupt transition from open-marine facies at the platform edge to lagoonal facies in the platform interior indicates that thrombolites, stromatolites, and oncolites accumulated in a shallow restricted environment.« less
NASA Astrophysics Data System (ADS)
Pueyo-Anchuela, Ó.; Casas-Sainz, A. M.; Soriano, M. A.; Pocoví-Juan, A.
Complex geological shallow subsurface environments represent an important handicap in urban and building projects. The geological features of the Central Ebro Basin, with sharp lateral changes in Quaternary deposits, alluvial karst phenomena and anthropic activity can preclude the characterization of future urban areas only from isolated geomechanical tests or from non-correctly dimensioned geophysical techniques. This complexity is here analyzed in two different test fields, (i) one of them linked to flat-bottomed valleys with irregular distribution of Quaternary deposits related to sharp lateral facies changes and irregular preconsolidated substratum position and (ii) a second one with similar complexities in the alluvial deposits and karst activity linked to solution of the underlying evaporite substratum. The results show that different geophysical techniques allow for similar geological models to be obtained in the first case (flat-bottomed valleys), whereas only the application of several geophysical techniques can permit to correctly evaluate the geological model complexities in the second case (alluvial karst). In this second case, the geological and superficial information permit to refine the sensitivity of the applied geophysical techniques to different indicators of karst activity. In both cases 3D models are needed to correctly distinguish alluvial lateral sedimentary changes from superimposed karstic activity.
Mega debris flow deposits on the western Wilkes Land margin, East Antarctica
Donda, F.; O'Brien, P.E.; De Santis, L.; Rebesco, M.; Brancolini, Giuliano
2007-01-01
Multichannel seismic data collected off Western Wilkes Land (East Antarctica) reveal the occurrence of mega debris flow deposits on the lower slope and rise that were formed throughout the Miocene. Commonly, debris flow units are separated by thin deposits of well-stratified facies, interpreted as predominantly glaciomarine mixed contouritic and distal turbidite deposits. These units could act as weak layers and could have played a major role in the slope instability. High sedimentation rates, due to large amounts of sediment delivered from a temperate, wet-based ice sheet, constituted a key factor in the sediment failures. The main trigger mechanism would probably have been earthquakes enhanced by isostatic rebound following major ice sheet retreats.