2011-01-01
Background Alterations of endocannabinoid system in adipose tissue play an important role in lipid regulation and metabolic dysfunction associated with obesity. The purpose of this study was to determine whether gene expression levels of cannabinoid type 1 receptor (CB1) and fatty acid amide hydrolase (FAAH) are different in subcutaneous abdominal and gluteal adipose tissue, and whether hypocaloric diet and aerobic exercise influence subcutaneous adipose tissue CB1 and FAAH gene expression in obese women. Methods Thirty overweight or obese, middle-aged women (BMI = 34.3 ± 0.8 kg/m2, age = 59 ± 1 years) underwent one of three 20-week weight loss interventions: caloric restriction only (CR, N = 9), caloric restriction plus moderate-intensity aerobic exercise (CRM, 45-50% HRR, N = 13), or caloric restriction plus vigorous-intensity aerobic exercise (CRV, 70-75% HRR, N = 8). Subcutaneous abdominal and gluteal adipose tissue samples were collected before and after the interventions to measure CB1 and FAAH gene expression. Results At baseline, FAAH gene expression was higher in abdominal, compared to gluteal adipose tissue (2.08 ± 0.11 vs. 1.78 ± 0.10, expressed as target gene/β-actin mRNA ratio × 10-3, P < 0.05). Compared to pre-intervention, CR did not change abdominal, but decreased gluteal CB1 (Δ = -0.82 ± 0.25, P < 0.05) and FAAH (Δ = -0.49 ± 0.14, P < 0.05) gene expression. CRM or CRV alone did not change adipose tissue CB1 and FAAH gene expression. However, combined CRM and CRV (CRM+CRV) decreased abdominal adipose tissue FAAH gene expression (Δ = -0.37 ± 0.18, P < 0.05). The changes in gluteal CB1 and abdominal FAAH gene expression levels in the CR alone and the CRM+CRV group were different (P < 0.05) or tended to be different (P = 0.10). Conclusions There are depot differences in subcutaneous adipose tissue endocannabinoid system gene expression in obese individuals. Aerobic exercise training may preferentially modulate abdominal adipose tissue endocannabinoid-related gene expression during dietary weight loss. Trial Registration ClinicalTrials.gov: NCT00664729. PMID:22035053
Almeida, Mariana M; Dias-Rocha, Camilla P; Souza, André S; Muros, Mariana F; Mendonca, Leonardo S; Pazos-Moura, Carmen C; Trevenzoli, Isis H
2017-11-01
Perinatal maternal high-fat (HF) diet programmes offspring obesity. Obesity is associated with overactivation of the endocannabinoid system (ECS) in adult subjects, but the role of the ECS in the developmental origins of obesity is mostly unknown. The ECS consists of endocannabinoids, cannabinoid receptors (cannabinoid type-1 receptor (CB1) and cannabinoid type-2 receptor (CB2)) and metabolising enzymes. We hypothesised that perinatal maternal HF diet would alter the ECS in a sex-dependent manner in white and brown adipose tissue of rat offspring at weaning in parallel to obesity development. Female rats received standard diet (9 % energy content from fat) or HF diet (29 % energy content from fat) before mating, during pregnancy and lactation. At weaning, male and female offspring were killed for tissue harvest. Maternal HF diet induced early obesity, white adipocyte hypertrophy and increased lipid accumulation in brown adipose tissue associated with sex-specific changes of the ECS's components in weanling rats. In male pups, maternal HF diet decreased CB1 and CB2 protein in subcutaneous adipose tissue. In female pups, maternal HF diet increased visceral and decreased subcutaneous CB1. In brown adipose tissue, maternal HF diet increased CB1 regardless of pup sex. In addition, maternal HF diet differentially changed oestrogen receptor across the adipose depots in male and female pups. The ECS and oestrogen signalling play an important role in lipogenesis, adipogenesis and thermogenesis, and we observed early changes in their targets in adipose depots of the offspring. The present findings provide insights into the involvement of the ECS in the developmental origins of metabolic disease induced by inadequate maternal nutrition in early life.
Mela, Virginia; Piscitelli, Fabiana; Berzal, Alvaro Llorente; Chowen, Julie; Silvestri, Cristoforo; Viveros, Maria Paz; Di Marzo, Vincenzo
2016-08-01
Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues.
Fuss, Johannes; Bindila, Laura; Wiedemann, Klaus; Auer, Matthias K; Briken, Peer; Biedermann, Sarah V
2017-11-01
Endocannabinoids are critical for rewarding behaviors such as eating, physical exercise, and social interaction. The role of endocannabinoids in mammalian sexual behavior has been suggested because of the influence of cannabinoid receptor agonists and antagonists on rodent sexual activity. However, the involvement of endocannabinoids in human sexual behavior has not been studied. To investigate plasma endocannabinoid levels before and after masturbation in healthy male and female volunteers. Plasma levels of the endocannabinoids 2-arachidonoylglycerol (2-AG), anandamide, the endocannabinoid-like lipids oleoyl ethanolamide and palmitoyl ethanolamide, arachidonic acid, and cortisol before and after masturbation to orgasm. In study 1, endocannabinoid and cortisol levels were measured before and after masturbation to orgasm. In study 2, masturbation to orgasm was compared with a control condition using a single-blinded, randomized, 2-session crossover design. In study 1, masturbation to orgasm significantly increased plasma levels of the endocannabinoid 2-AG, whereas anandamide, oleoyl ethanolamide, palmitoyl ethanolamide, arachidonic acid, and cortisol levels were not altered. In study 2, only masturbation to orgasm, not the control condition, led to a significant increase in 2-AG levels. Interestingly, we also found a significant increase of oleoyl ethanolamide after masturbation to orgasm in study 2. Endocannabinoids might play an important role in the sexual response cycle, leading to possible implications for the understanding and treatment of sexual dysfunctions. We found an increase of 2-AG through masturbation to orgasm in 2 studies including a single-blinded randomized design. The exact role of endocannabinoid release as part of the sexual response cycle and the biological significance of the finding should be studied further. Cannabis and other drug use and the attainment of orgasm were self-reported in the present study. Our data indicate that the endocannabinoid 2-AG is involved in the human sexual response cycle and we hypothesize that 2-AG release plays a role in the rewarding consequences of sexual arousal and orgasm. Fuss J, Bindila L, Wiedemann K, et al. Masturbation to Orgasm Stimulates the Release of the Endocannabinoid 2-Arachidonoylglycerol in Humans. J Sex Med 2017;14:1372-1379. Copyright © 2017 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Enhanced endocannabinoid tone as a potential target of pharmacotherapy.
Toczek, Marek; Malinowska, Barbara
2018-07-01
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF 2α -EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone. Copyright © 2018 Elsevier Inc. All rights reserved.
Endocannabinoids Measurement in Human Saliva as Potential Biomarker of Obesity
Tabarin, Antoine; Clark, Samantha; Leste-Lasserre, Thierry; Marsicano, Giovanni; Piazza, Pier Vincenzo; Cota, Daniela
2012-01-01
Background The discovery of the endocannabinoid system and of its role in the regulation of energy balance has significantly advanced our understanding of the physiopathological mechanisms leading to obesity and type 2 diabetes. New knowledge on the role of this system in humans has been acquired by measuring blood endocannabinoids. Here we explored endocannabinoids and related N-acylethanolamines in saliva and verified their changes in relation to body weight status and in response to a meal or to body weight loss. Methodology/Principal Findings Fasting plasma and salivary endocannabinoids and N-acylethanolamines were measured through liquid mass spectrometry in 12 normal weight and 12 obese, insulin-resistant subjects. Salivary endocannabinoids and N-acylethanolamines were evaluated in the same cohort before and after the consumption of a meal. Changes in salivary endocannabinoids and N-acylethanolamines after body weight loss were investigated in a second group of 12 obese subjects following a 12-weeks lifestyle intervention program. The levels of mRNAs coding for enzymes regulating the metabolism of endocannabinoids, N-acylethanolamines and of cannabinoid type 1 (CB1) receptor, alongside endocannabinoids and N-acylethanolamines content, were assessed in human salivary glands. The endocannabinoids 2-arachidonoylglycerol (2-AG), N-arachidonoylethanolamide (anandamide, AEA), and the N-acylethanolamines (oleoylethanolamide, OEA and palmitoylethanolamide, PEA) were quantifiable in saliva and their levels were significantly higher in obese than in normal weight subjects. Fasting salivary AEA and OEA directly correlated with BMI, waist circumference and fasting insulin. Salivary endocannabinoids and N-acylethanolamines did not change in response to a meal. CB1 receptors, ligands and enzymes were expressed in the salivary glands. Finally, a body weight loss of 5.3% obtained after a 12-weeks lifestyle program significantly decreased salivary AEA levels. Conclusions/Significance Endocannabinoids and N-acylethanolamines are quantifiable in saliva and their levels correlate with obesity but not with feeding status. Body weight loss significantly decreases salivary AEA, which might represent a useful biomarker in obesity. PMID:22860123
Kirkham, Tim C; Williams, Claire M; Fezza, Filomena; Marzo, Vincenzo Di
2002-01-01
Endocannabinoids are implicated in appetite and body weight regulation. In rodents, anandamide stimulates eating by actions at central CB1 receptors, and hypothalamic endocannabinoids may be under the negative control of leptin. However, changes to brain endocannabinoid levels in direct relation to feeding or changing nutritional status have not been investigated.We measured anandamide and 2-arachidonoyl glycerol (2-AG) levels in feeding-associated brain regions of rats, during fasting, feeding of a palatable food, or after satiation. Endocannabinoid levels were compared to those in rats fed ad libitum, at a point in their daily cycle when motivation to eat was absent. Fasting increased levels of anandamide and 2-AG in the limbic forebrain and, to a lesser extent, of 2-AG in the hypothalamus. By contrast, hypothalamic 2-AG declined as animals ate. No changes were detected in satiated rats. Endocannabinoid levels in the cerebellum, a control region not directly involved in the control of food intake, were unaffected by any manipulation.As 2-AG was most sensitive to variation during feeding, and to leptin regulation in a previous study, we examined the behavioural effects of 2-AG when injected into the nucleus accumbens shell, a limbic forebrain area strongly linked to eating motivation. 2-AG potently, and dose-dependently, stimulated feeding. This effect was attenuated by the CB1 receptor antagonist SR141716.These findings provide the first direct evidence of altered brain levels of endocannabinoids, and of 2-AG in particular, during fasting and feeding. The nature of these effects supports a role for endocannabinoids in the control of appetitive motivation. PMID:12055133
Crystallographic study of FABP5 as an intracellular endocannabinoid transporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanson, Benoît; Wang, Tao; Sun, Jing
2014-02-01
FABP5 was recently found to intracellularly transport endocannabinoid signaling lipids. The structures of FABP5 complexed with two endocannabinoids and an inhibitor were solved. Human FABP5 was found to dimerize via a domain-swapping mechanism. This work will help in the development of inhibitors to raise endocannabinoid levels. In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5more » in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels.« less
Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura
2017-01-01
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight. PMID:28346523
Ramírez-López, María Teresa; Vázquez, Mariam; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemi; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Bindila, Laura; Rodríguez de Fonseca, Fernando
2017-01-01
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation
Krott, Lucia M.; Piscitelli, Fabiana; Heine, Markus; Borrino, Simona; Scheja, Ludger; Silvestri, Cristoforo; Heeren, Joerg; Di Marzo, Vincenzo
2016-01-01
The endocannabinoids and their main receptor, cannabinoid type-1 (CB1), suppress intracellular cyclic AMP levels and have emerged as key players in the control of energy metabolism. CB1 agonists and blockers have been reported to influence the thermogenic function of white and brown adipose tissue (WAT and BAT), affecting body weight through the inhibition and stimulation of energy expenditure, respectively. The purpose of the current study was to investigate the regulation of the endocannabinoid system in WAT and BAT following exposure to either cold or specific agonism of β3-adrenoceptors using CL316,243 (CL), conditions known to cause BAT activation and WAT browning. To address this question, we performed quantitative PCR-based mRNA profiling of genes important for endocannabinoid synthesis, degradation, and signaling, and determined endocannabinoid levels by LC-MS in WAT and BAT of control, cold-exposed, and CL-treated wild-type mice as well as primary brown adipocytes. Treatment with CL and exposure to cold caused an upregulation of endocannabinoid levels and biosynthetic enzymes in WAT. Acute β3-adrenoceptor activation increased endocannabinoids and a subset of genes of biosynthesis in BAT and primary brown adipocytes. We suggest that the cold-mediated increase in endocannabinoid tone is part of autocrine negative feed-back mechanisms controlling β3-adrenoceptor-induced BAT activation and WAT browning. PMID:26768656
Wiskerke, Joost; Irimia, Cristina; Cravatt, Benjamin F; De Vries, Taco J; Schoffelmeer, Anton N M; Pattij, Tommy; Parsons, Loren H
2012-05-16
The present experiments employed in vivo microdialysis to characterize the effects of commonly used endocannabinoid clearance inhibitors on basal and depolarization-induced alterations in interstitial endocannabinoid levels in the nucleus accumbens of rat brain. Compounds targeting the putative endocannabinoid transporter and hydrolytic enzymes (FAAH and MAGL) were compared. The transporter inhibitor AM404 modestly enhanced depolarization-induced increases in 2-arachidonoyl glycerol (2-AG) levels but did not alter levels of N-arachidonoyl-ethanolamide (anandamide, AEA). The transport inhibitor UCM707 did not alter dialysate levels of either endocannabinoid. The FAAH inhibitors URB597 and PF-3845 robustly increased AEA levels during depolarization without altering 2-AG levels. The MAGL inhibitor URB602 significantly enhanced depolarization-induced increases in 2-AG, but did not alter AEA levels. In contrast, the MAGL inhibitor JZL184 did not alter 2-AG or AEA levels under any condition tested. Finally, the dual FAAH/MAGL inhibitor JZL195 significantly enhanced depolarization-induced increases in both AEA and 2-AG levels. In contrast to the present observations in rats, prior work in mice has demonstrated a robust JZL184-induced enhancement of depolarization-induced increases in dialysate 2-AG. Thus, to further investigate species differences, additional tests with JZL184, PF-3845, and JZL195 were performed in mice. Consistent with prior reports, JZL184 significantly enhanced depolarization-induced increases in 2-AG without altering AEA levels. PF-3845 and JZL195 produced profiles in mouse dialysates comparable to those observed in rats. These findings confirm that interstitial endocannabinoid levels in the brain can be selectively manipulated by endocannabinoid clearance inhibitors. While PF-3845 and JZL195 produce similar effects in both rats and mice, substantial species differences in JZL184 efficacy are evident, which is consistent with previous studies.
Guindon, Josée; Lai, Yvonne; Takacs, Sara M; Bradshaw, Heather B; Hohmann, Andrea G
2013-01-01
Cisplatin, a platinum-derived chemotherapeutic agent, produces mechanical and coldallodynia reminiscent of chemotherapy-induced neuropathy in humans. The endocannabinoid system represents a novel target for analgesic drug development. The endocannabinoid signaling system consists of endocannabinoids (e.g. anandamide (AEA) and 2-arachidonoylglycerol (2-AG)), cannabinoid receptors (e.g. CB(1) and CB(2)) and the enzymes controlling endocannabinoid synthesis and degradation. AEA is hydrolyzed by fatty-acid amide hydrolase (FAAH) whereas 2-AG is hydrolyzed primarily by monoacylglycerol lipase (MGL). We compared effects of brain permeant (URB597) and impermeant (URB937) inhibitors of FAAH with an irreversible inhibitor of MGL (JZL184) on cisplatin-evoked behavioral hypersensitivities. Endocannabinoid modulators were compared with agents used clinically to treat neuropathy (i.e. the opioid analgesic morphine, the anticonvulsant gabapentin and the tricyclic antidepressant amitriptyline). Cisplatin produced robust mechanical and cold allodynia but did not alter responsiveness to heat. After neuropathy was fully established, groups received acute intraperitoneal (i.p.) injections of vehicle, amitriptyline (30 mg/kg), gabapentin (100 mg/kg), morphine (6 mg/kg), URB597 (0.1 or 1 mg/kg), URB937 (0.1 or 1 mg/kg) or JZL184 (1, 3 or 8 mg/kg). Pharmacological specificity was assessed by coadministering each endocannabinoid modulator with either a CB(1) (AM251 3 mg/kg), CB(2) (AM630 3 mg/kg), TRPV1 (AMG9810 3 mg/kg) or TRPA1 (HC030031 8 mg/kg) antagonist. Effects of cisplatin on endocannabinoid levels and transcription of receptors (CB(1), CB(2), TRPV1, TRPA1) and enzymes (FAAH, MGL) linked to the endocannabinoid system were also assessed. URB597, URB937, JZL184 and morphine reversed cisplatin-evoked mechanical and cold allodynia to pre-cisplatin levels. By contrast, gabapentin only partially reversed the observed allodynia while amitriptyline, administered acutely, was ineffective. CB(1) or CB(2) antagonists completely blocked the anti-allodynic effects of both FAAH (URB597, URB937) and MGL (JZL184) inhibitors to mechanical and cold stimulation. By contrast, the TRPV1 antagonist AMG9810 blocked the anti-allodynic efficacy of both FAAH inhibitors, but not the MGL inhibitor. By contrast, the TRPA1 antagonist HC30031 did not attenuate anti-allodynic efficacy of any endocannabinoid modulator. When the levels of endocannabinoids were examined, cisplatin increased both anandamide (AEA) and 2-arachidonoylglycerol (2-AG) levels in the lumbar spinal cord and decreased 2-AG levels (but not AEA) in dorsal hind paw skin. RT-PCR showed that mRNA for FAAH, but not other markers, was upregulated by cisplatin treatment in lumbar spinal cord. The present studies demonstrate that cisplatin alters endocannabinoid tone and that inhibition of endocannabinoid hydrolysis alleviates chemotherapy-induced mechanical and cold allodynia. The anti-allodynic effects of FAAH and MGL inhibitors are mediated by CB(1) and CB(2) cannabinoid receptors, whereas TRPV1, but not TRPA1, -dependent mechanisms contribute to the anti-allodynic efficacy of FAAH (but not MGL) inhibitors. Strikingly, endocannabinoid modulators potently suppressed cisplatin-evoked allodynia with a rapid onset and showed efficacy that equaled or exceeded that of major classes of anti-neuropathic pain medications used clinically. Thus, inhibition of endocannabinoid hydrolysis, via FAAH or MGL inhibitors, represents an efficacious pharmacological approach for suppressing chemotherapy-induced neuropathic pain. Copyright © 2012 Elsevier Ltd. All rights reserved.
Quantification of endocannabinoids in postmortem brain of schizophrenic subjects.
Muguruza, Carolina; Lehtonen, Marko; Aaltonen, Niina; Morentin, Benito; Meana, J Javier; Callado, Luis F
2013-08-01
Numerous studies have implicated the endocannabinoid system in the pathophysiology of schizophrenia. Endocannabinoids have been measured in blood and cerebrospinal fluid in schizophrenic patients but, to the date, there are no published reports dealing with measurements of endocannabinoid levels in schizophrenics' brain tissue. In the present study, postmortem brain samples from 19 subjects diagnosed with schizophrenia (DSM-IV) and 19 matched controls were studied. In specific brain regions, levels of four endocannabinoids (2-arachidonoylglycerol (2-AG), arachidonoylethanolamine (anandamide, AEA), dihomo-γ-linolenoylethanolamine (LEA), and docosahexaenoylethanolamine (DHEA)) and two cannabimimetic compounds (palmitoyl-ethanolamine (PEA) and oleoyl-ethanolamine (OEA)) were measured using quantitative liquid chromatography with triple quadrupole mass spectrometric detection. Suffering from schizophrenia significantly affects the brain levels of 2-AG (p<0.001), AEA (p<0.0001), DHEA (p<0.0001), LEA (p<0.01) and PEA (p<0.05). In schizophrenic subjects, the three studied brain regions (cerebellum: 130±18%; p=0.16; hippocampus: 168±28%, p<0.01; prefrontal cortex: 237±45%, p<0.05) showed higher 2-AG levels when compared to matched controls. Conversely, AEA levels were lower in all brain regions of schizophrenic subjects (cerebellum: 66±7%, p<0.01; hippocampus: 66±7%, p<0.01; prefrontal cortex: 75±10%, p=0.07). Statistically significant lower levels of DHEA were also found in cerebellum (60±6%, p<0.001) and hippocampus (68±7%, p<0.05) of schizophrenic subjects. PEA (71±6%, p<0.05) and LEA (72±6%, p<0.05) levels were also found to be lower in cerebellum. No significant differences were found in OEA levels. Our results evidence specific alterations in the levels of some endocannabinoids in different brain regions of schizophrenic subjects. Furthermore, these data evidence the involvement of the endocannabinoid system in the pathophysiology of schizophrenia. Copyright © 2013 Elsevier B.V. All rights reserved.
Chemical probes to potently and selectively inhibit endocannabinoid cellular reuptake.
Chicca, Andrea; Nicolussi, Simon; Bartholomäus, Ruben; Blunder, Martina; Aparisi Rey, Alejandro; Petrucci, Vanessa; Reynoso-Moreno, Ines Del Carmen; Viveros-Paredes, Juan Manuel; Dalghi Gens, Marianela; Lutz, Beat; Schiöth, Helgi B; Soeberdt, Michael; Abels, Christoph; Charles, Roch-Philippe; Altmann, Karl-Heinz; Gertsch, Jürg
2017-06-20
The extracellular effects of the endocannabinoids anandamide and 2-arachidonoyl glycerol are terminated by enzymatic hydrolysis after crossing cellular membranes by facilitated diffusion. The lack of potent and selective inhibitors for endocannabinoid transport has prevented the molecular characterization of this process, thus hindering its biochemical investigation and pharmacological exploitation. Here, we report the design, chemical synthesis, and biological profiling of natural product-derived N -substituted 2,4-dodecadienamides as a selective endocannabinoid uptake inhibitor. The highly potent (IC 50 = 10 nM) inhibitor N -(3,4-dimethoxyphenyl)ethyl amide (WOBE437) exerted pronounced cannabinoid receptor-dependent anxiolytic, antiinflammatory, and analgesic effects in mice by increasing endocannabinoid levels. A tailored WOBE437-derived diazirine-containing photoaffinity probe (RX-055) irreversibly blocked membrane transport of both endocannabinoids, providing mechanistic insights into this complex process. Moreover, RX-055 exerted site-specific anxiolytic effects on in situ photoactivation in the brain. This study describes suitable inhibitors to target endocannabinoid membrane trafficking and uncovers an alternative endocannabinoid pharmacology.
Dyall, Simon C
2017-11-01
The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.
Luongo, Livio; Maione, Sabatino; Di Marzo, Vincenzo
2014-02-01
Although originally described as a signalling system encompassing the cannabinoid CB1 and CB2 receptors, their endogenous agonists (the endocannabinoids), and metabolic enzymes regulating the levels of such agonists, the endocannabinoid system is now viewed as being more complex, and including metabolically related endocannabinoid-like mediators and their molecular targets as well. The function and dysfunction of this complex signalling system in the molecular and cellular mechanisms of pain transduction and control has been widely studied over the last two decades. In this review article, we describe some of the latest advances in our knowledge on the role of the endocannabinoid system, in its most recent and wider conception, in pain pathways, by focusing on: (1) neuron-glia interactions; and (2) emerging data on endocannabinoid cross-talk with neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity
Argueta, Donovan A.; DiPatrizio, Nicholas V.
2017-01-01
The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60 days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB1Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60 days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB1Rs with the peripherally-restricted neutral cannabinoid CB1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6 h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB1Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid system (i.e., cannabinoid receptors, and endocannabinoid biosynthetic and degradative enzymes) was dysregulated in WD mice when compared to SC mice. Our results suggest that hyperphagia associated with WD-induced obesity is driven by enhanced endocannabinoid signaling at peripheral CB1Rs. PMID:28065722
Peripheral endocannabinoid signaling controls hyperphagia in western diet-induced obesity.
Argueta, Donovan A; DiPatrizio, Nicholas V
2017-03-15
The endocannabinoid system in the brain and periphery plays a major role in controlling food intake and energy balance. We reported that tasting dietary fats was met with increased levels of the endocannabinoids, 2-arachidonoyl-sn-glycerol (2-AG) and anandamide, in the rat upper small intestine, and pharmacological inhibition of this local signaling event dose-dependently blocked sham feeding of fats. We now investigated the contribution of peripheral endocannabinoid signaling in hyperphagia associated with chronic consumption of a western-style diet in mice ([WD] i.e., high fat and sucrose). Feeding patterns were assessed in male C57BL/6Tac mice maintained for 60days on WD or a standard rodent chow (SD), and the role for peripheral endocannabinoid signaling at CB 1 Rs in controlling food intake was investigated via pharmacological interventions. In addition, levels of the endocannabinoids, 2-AG and anandamide, in the upper small intestine and circulation of mice were analyzed via liquid chromatography coupled to tandem mass spectrometry to evaluate diet-related changes in endocannabinoid signaling and the potential impact on food intake. Mice fed WD for 60days exhibited large increases in body weight, daily caloric intake, average meal size, and rate of feeding when compared to control mice fed SD. Inhibiting peripheral CB 1 Rs with the peripherally-restricted neutral cannabinoid CB 1 receptor antagonist, AM6545 (10mg/kg), significantly reduced intake of WD during a 6h test, but failed to modify intake of SD in mice. AM6545 normalized intake of WD, average meal size, and rate of feeding to levels found in SD control mice. These results suggest that endogenous activity at peripheral CB 1 Rs in WD mice is critical for driving hyperphagia. In support of this hypothesis, levels of 2-AG and anandamide in both, jejunum mucosa and plasma, of ad-libitum fed WD mice increased when compared to SC mice. Furthermore, expression of genes for primary components of the endocannabinoid system (i.e., cannabinoid receptors, and endocannabinoid biosynthetic and degradative enzymes) was dysregulated in WD mice when compared to SC mice. Our results suggest that hyperphagia associated with WD-induced obesity is driven by enhanced endocannabinoid signaling at peripheral CB 1 Rs. Copyright © 2017 Elsevier Inc. All rights reserved.
Lindgren, Lenita; Gouveia-Figueira, Sandra; Nording, Malin L; Fowler, Christopher J
2015-09-29
The endocannabinoid system is involved in the regulation of stress and anxiety. In a recent study, it was reported that short-term changes in mood produced by a pleasant ambience were correlated with changes in the levels of plasma endocannabinoids and related N-acylethanolamines (Schrieks et al. PLoS One 10: e0126421, 2015). In the present study, we investigated whether stress reduction by touch massage (TM) affects blood plasma levels of endocannabinoids and related N-acylethanolamines. A randomized two-session crossover design for 20 healthy participants was utilised, with one condition that consisted of TM and a rest condition as control. TM increased the perceived pleasantness rating of the participants, and both TM and rest reduced the basal anxiety level as assessed by the State scale of the STAI-Y inventory. However, there were no significant effects of either time (pre- vs. post-treatment measures) as main effect or the interaction time x treatment for the plasma levels of the endocannabinoids anandamide and 2-arachidonoylglycerol or for eight other related lipids. Four lipids showed acceptable relative reliabilities, and for two of these (linoleoyl ethanolamide and palmitoleoyl ethanolamide) a significant correlation was seen between the TM-related change in levels, calculated as (post-TM value minus pre-TM value) - (post-rest value minus pre-rest value), and the corresponding TM-related change in perceived pleasantness. It is concluded that in the participants studied here, there are no overt effects of TM upon plasma endocannabinoid levels. Possible associations of related N-acylethanolamines with the perceived pleasantness should be investigated further.
Evaluation of Uniform Cost Accounting System to Fully Capture Depot Level Repair Costs.
1985-12-01
RD-RI65 522 EVALUATION OF UNIFORM COST ACCOUNTING SYSTEM TO FULLY i/I CAPTURE DEPOT LEVEL REPAIR COSTS (U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA D R...8217.LECTE B ,- THESIS EVALUATION OF UNIFORM COST ACCOUNTING SYSTEM 0TO FULLY CAPTURE DEPOT LEVEL REPAIR COSTS Jby __jDavid Richmond O’Brien lj,,, December...Include Security Classification) EVALUATION OF UNIFORM COST ACCOUNTING SYSTEM TO FULLY CAPTURE DEPOT LEVEL REPAIR COSTS 12 PERSONAL AUTHOR(S) O’Brien- David
Endocannabinoids and Mental Disorders.
Rubino, Tiziana; Zamberletti, Erica; Parolaro, Daniela
2015-01-01
Preclinical and clinical data fully support the involvement of the endocannabinoid system in the etiopathogenesis of several mental diseases. In this review we will briefly summarize the most common alterations in the endocannabinoid system, in terms of cannabinoid receptors and endocannabinoid levels, present in mood disorders (anxiety, posttraumatic stress disorder, depression, bipolar disorder, and suicidality) as well as psychosis (schizophrenia) and autism. The arising picture for each pathology is not always straightforward; however, both animal and human studies seem to suggest that pharmacological modulation of this system might represent a novel approach for treatment.
Emerging Role of (Endo)Cannabinoids in Migraine.
Leimuranta, Pinja; Khiroug, Leonard; Giniatullin, Rashid
2018-01-01
In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients. We further discuss the control of cortical excitability by cannabinoids via inhibition of cortical spreading depression (CSD) underlying the migraine aura. Finally, we present our view on perspectives of Cannabis-derived (extracted or synthetized marijuana components) or novel endocannabinoid therapeutics in migraine treatment.
Galdino, Giovane; Romero, Thiago; Silva, José Felippe Pinho da; Aguiar, Daniele; Paula, Ana Maria de; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea
2014-09-01
Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength, and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors, and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase in endocannabinoid plasma levels. The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception.
Fabp1 gene ablation inhibits high-fat diet-induced increase in brain endocannabinoids.
Martin, Gregory G; Landrock, Danilo; Chung, Sarah; Dangott, Lawrence J; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm
2017-01-01
The endocannabinoid system shifts energy balance toward storage and fat accumulation, especially in the context of diet-induced obesity. Relatively little is known about factors outside the central nervous system that may mediate the effect of high-fat diet (HFD) on brain endocannabinoid levels. One candidate is the liver fatty acid binding protein (FABP1), a cytosolic protein highly prevalent in liver, but not detected in brain, which facilitates hepatic clearance of fatty acids. The impact of Fabp1 gene ablation (LKO) on the effect of high-fat diet (HFD) on brain and plasma endocannabinoid levels was examined and data expressed for each parameter as the ratio of high-fat diet/control diet. In male wild-type mice, HFD markedly increased brain N-acylethanolamides, but not 2-monoacylglycerols. LKO blocked these effects of HFD in male mice. In female wild-type mice, HFD slightly decreased or did not alter these endocannabinoids as compared with male wild type. LKO did not block the HFD effects in female mice. The HFD-induced increase in brain arachidonic acid-derived arachidonoylethanolamide in males correlated with increased brain-free and total arachidonic acid. The ability of LKO to block the HFD-induced increase in brain arachidonoylethanolamide correlated with reduced ability of HFD to increase brain-free and total arachidonic acid in males. In females, brain-free and total arachidonic acid levels were much less affected by either HFD or LKO in the context of HFD. These data showed that LKO markedly diminished the impact of HFD on brain endocannabinoid levels, especially in male mice. © 2016 International Society for Neurochemistry.
Endocannabinoids selectively enhance sweet taste.
Yoshida, Ryusuke; Ohkuri, Tadahiro; Jyotaki, Masafumi; Yasuo, Toshiaki; Horio, Nao; Yasumatsu, Keiko; Sanematsu, Keisuke; Shigemura, Noriatsu; Yamamoto, Tsuneyuki; Margolskee, Robert F; Ninomiya, Yuzo
2010-01-12
Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known orexigenic mediators that act via CB(1) receptors in hypothalamus and limbic forebrain to induce appetite and stimulate food intake. Circulating endocannabinoid levels inversely correlate with plasma levels of leptin, an anorexigenic mediator that reduces food intake by acting on hypothalamic receptors. Recently, taste has been found to be a peripheral target of leptin. Leptin selectively suppresses sweet taste responses in wild-type mice but not in leptin receptor-deficient db/db mice. Here, we show that endocannabinoids oppose the action of leptin to act as enhancers of sweet taste. We found that administration of AEA or 2-AG increases gustatory nerve responses to sweeteners in a concentration-dependent manner without affecting responses to salty, sour, bitter, and umami compounds. The cannabinoids increase behavioral responses to sweet-bitter mixtures and electrophysiological responses of taste receptor cells to sweet compounds. Mice genetically lacking CB(1) receptors show no enhancement by endocannnabinoids of sweet taste responses at cellular, nerve, or behavioral levels. In addition, the effects of endocannabinoids on sweet taste responses of taste cells are diminished by AM251, a CB(1) receptor antagonist, but not by AM630, a CB(2) receptor antagonist. Immunohistochemistry shows that CB(1) receptors are expressed in type II taste cells that also express the T1r3 sweet taste receptor component. Taken together, these observations suggest that the taste organ is a peripheral target of endocannabinoids. Reciprocal regulation of peripheral sweet taste reception by endocannabinoids and leptin may contribute to their opposing actions on food intake and play an important role in regulating energy homeostasis.
Nicholson, James; Azim, Syed; Rebecchi, Mario J; Galbavy, William; Feng, Tian; Reinsel, Ruth; Rizwan, Sabeen; Fowler, Christopher J; Benveniste, Helene; Kaczocha, Martin
2015-01-01
There is compelling evidence in humans that peripheral endocannabinoid signaling is disrupted in obesity. However, little is known about the corresponding central signaling. Here, we have investigated the relationship between gender, leptin, body mass index (BMI) and levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the serum and cerebrospinal fluid (CSF) of primarily overweight to obese patients with osteoarthritis. Patients (20 females, 15 males, age range 44-78 years, BMI range 24-42) undergoing total knee arthroplasty for end-stage osteoarthritis were recruited for the study. Endocannabinoids were quantified by liquid chromatography - mass spectrometry. AEA and 2-AG levels in the serum and CSF did not correlate with either age or BMI. However, 2-AG levels in the CSF, but not serum, correlated negatively with CSF leptin levels (Spearman's ρ -0.48, P=0.0076, n=30). No such correlations were observed for AEA and leptin. In the patient sample investigated, there is a negative association between 2-AG and leptin levels in the CSF. This is consistent with pre-clinical studies in animals, demonstrating that leptin controls the levels of hypothalamic endocannabinoids that regulate feeding behavior.
Crystallographic study of FABP5 as an intracellular endocannabinoid transporter
Sanson, Benoît; Wang, Tao; Sun, Jing; Wang, Liqun; Kaczocha, Martin; Ojima, Iwao; Deutsch, Dale; Li, Huilin
2014-01-01
In addition to binding intracellular fatty acids, fatty-acid-binding proteins (FABPs) have recently been reported to also transport the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG), arachidonic acid derivatives that function as neurotransmitters and mediate a diverse set of physiological and psychological processes. To understand how the endocannabinoids bind to FABPs, the crystal structures of FABP5 in complex with AEA, 2-AG and the inhibitor BMS-309403 were determined. These ligands are shown to interact primarily with the substrate-binding pocket via hydrophobic interactions as well as a common hydrogen bond to the Tyr131 residue. This work advances our understanding of FABP5–endocannabinoid interactions and may be useful for future efforts in the development of small-molecule inhibitors to raise endocannabinoid levels. PMID:24531463
Modulation of sweet taste sensitivities by endogenous leptin and endocannabinoids in mice
Niki, Mayu; Jyotaki, Masafumi; Yoshida, Ryusuke; Yasumatsu, Keiko; Shigemura, Noriatsu; DiPatrizio, Nicholas V; Piomelli, Daniele; Ninomiya, Yuzo
2015-01-01
Leptin is an anorexigenic mediator that reduces food intake by acting on hypothalamic receptor Ob-Rb. In contrast, endocannabinoids are orexigenic mediators that act via cannabinoid CB1 receptors in hypothalamus, limbic forebrain, and brainstem. In the peripheral taste system, leptin administration selectively inhibits behavioural, taste nerve and taste cell responses to sweet compounds. Opposing the action of leptin, endocannabinoids enhance sweet taste responses. However, potential roles of endogenous leptin and endocannabinoids in sweet taste remain unclear. Here, we used pharmacological antagonists (Ob-Rb: L39A/D40A/F41A (LA), CB1: AM251) and examined the effects of their blocking activation of endogenous leptin and endocannabinoid signalling on taste responses in lean control, leptin receptor deficient db/db, and diet-induced obese (DIO) mice. Lean mice exhibited significant increases in chorda tympani (CT) nerve responses to sweet compounds after LA administration, while they showed no significant changes in CT responses after AM251. In contrast, db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid (2-arachidonoyl-sn-glycerol (2-AG)) levels in the taste organ, and enhanced expression of a biosynthesizing enzyme (diacylglycerol lipase α (DAGLα)) of 2-AG in taste cells. In DIO mice, the LA effect was gradually decreased and the AM251 effect was increased during the course of obesity. Taken together, our results suggest that circulating leptin, but not local endocannabinoids, may be a dominant modulator for sweet taste in lean mice; however, endocannabinoids may become more effective modulators of sweet taste under conditions of deficient leptin signalling, possibly due to increased production of endocannabinoids in taste tissue. Key points Potential roles of endogenous leptin and endocannabinoids in sweet taste were examined by using pharmacological antagonists and mouse models including leptin receptor deficient (db/db) and diet-induced obese (DIO) mice. Chorda tympani (CT) nerve responses of lean mice to sweet compounds were increased after administration of leptin antagonist (LA) but not affected by administration of cannabinoid receptor antagonist (AM251). db/db mice showed clear suppression of CT responses to sweet compounds after AM251, increased endocannabinoid levels in the taste organ, and enhanced expression of a biosynthesizing enzyme of endocannabinoids in taste cells. The effect of LA was gradually decreased and that of AM251 was increased during the course of obesity in DIO mice. These findings suggest that circulating leptin, but not local endocannabinoids, is a dominant modulator for sweet taste in lean mice and endocannabinoids become more effective modulators of sweet taste under conditions of deficient leptin signalling. PMID:25728242
Wingenfeld, Katja; Dettenborn, Lucia; Kirschbaum, Clemens; Gao, Wei; Otte, Christian; Roepke, Stefan
2018-03-16
Endocannabinoids are involved in depressive and anxious symptoms and might play a role in stress-associated psychiatric disorders. While alterations in the endogenous cannabinoid system have been repeatedly found in patients with posttraumatic stress disorder (PTSD), this system has been mostly neglected in borderline personality disorder (BPD). However, there is first evidence for elevated serum levels of the endocannabinoids arachidonylethanolamide (AEA) and 2-arachidonyl-sn-glycerol (2-AG) in BPD patients compared to healthy controls and PTSD patients. In this study, hair endocannabinoids were analyzed, reflecting long-term endocannabinoid concentrations. We assessed AEA concentrations as well as 2-AG and the 2-AG main isomer 1-AG (1-AG/2-AG) in hair in women with BPD (n = 15) and age- and education-matched healthy women (n = 16). We found significantly reduced log AEA in BPD patients compared to healthy women (p = .03) but no differences in log 1-AG/2-AG concentrations. In addition, there was no association between 1-AG/2-AG and hair cortisol, but we found a non-significant correlation between hair concentrations of AEA and cortisol (p = .06). Our data indicate altered long-term release of endogenous cannabinoids in women with BPD depending on type of endocannabinoid. AEA has been suggested to modulate the basal activity of the endocannabinoid system and seems to attenuate depressive and anxious symptoms. Thus, chronically reduced AEA might contribute to psychiatric symptoms in BPD.
Galdino, Giovane; Romero, Thiago; da Silva, José Felippe Pinho; Aguiar, Daniele; de Paula, Ana Maria; Cruz, Jader; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor; Di Marzo, Vincenzo; Perez, Andrea
2014-01-01
Background Resistance exercise (RE) is also known as strength training, and it is performed to increase the strength and mass of muscles, bone strength and metabolism. RE has been increasingly prescribed for pain relief. However, the endogenous mechanisms underlying this antinociceptive effect are still largely unexplored. Thus, we investigated the involvement of the endocannabinoid system in RE-induced antinociception. Methods Male Wistar rats were submitted to acute RE in a weight-lifting model. The nociceptive threshold was measured by a mechanical nociceptive test (paw pressure) before and after exercise. To investigate the involvement of cannabinoid receptors and endocannabinoids in RE-induced antinociception, cannabinoid receptor inverse agonists, endocannabinoid metabolizing enzyme inhibitors and an anandamide reuptake inhibitor were injected before RE. After RE, CB1 cannabinoid receptors were quantified in rat brain tissue by Western blot and immunofluorescence. In addition, endocannabinoid plasma levels were measured by isotope dilution-liquid chromatography mass spectrometry. Results RE-induced antinociception was prevented by preinjection with CB1 and CB2 cannabinoid receptor inverse agonists. By contrast, preadministration of metabolizing enzyme inhibitors and the anandamide reuptake inhibitor prolonged and enhanced this effect. RE also produced an increase in the expression and activation of CB1 cannabinoid receptors in rat brain tissue and in the dorsolateral and ventrolateral periaqueductal regions and an increase of endocannabinoid plasma levels. Conclusion The present study suggests that a single session of RE activates the endocannabinoid system to induce antinociception. PMID:24977916
Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J
2016-02-01
Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. © The Author(s) 2015.
Peripheral Endocannabinoid System Activity in Patients Treated With Sibutramine
Engeli, Stefan; Heusser, Karsten; Janke, Jürgen; Gorzelniak, Kerstin; Bátkai, Sándor; Pacher, Pál; Harvey-White, Judith; Luft, Friedrich C.; Jordan, Jens
2008-01-01
Objective The endocannabinoid system (ECS) promotes weight gain and obesity-associated metabolic changes. Weight loss interventions may influence obesity-associated risk indirectly through modulation of the peripheral ECS. We investigated the effect of acute and chronic treatment with sibutramine on components of the peripheral ECS. Methods and Procedures Twenty obese otherwise healthy patients received randomized, double-blind, crossover treatment with placebo and 15 mg/day sibutramine for 5 days each, followed by 12 weeks open-label sibutramine treatment. We determined circulating anandamide and 2-arachidonoylglycerol and expression levels of endocannabinoid genes in subcutaneous abdominal adipose tissue biopsies. Results Body weight was stable during the acute treatment period and decreased by 6.0 ± 0.8 kg in those patients completing 3 months of sibutramine treatment (P < 0.05). Circulating endocannabinoids and the expression of ECS genes did not change with acute or chronic sibutramine treatment. Discussion The ECS is activated in obesity. We did not find any influence of 5% body weight loss induced by sibutramine on circulating levels of endocannabinoids and adipose-tissue expression of endocannabinoid genes in obese subjects. These data confirm our previous findings on dietary weight loss and suggest that the dysregulation of the ECS may be a cause rather than a consequence of obesity. PMID:18356837
Aguilar, David D; Giuffrida, Andrea; Lodge, Daniel J
2017-01-01
Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the CSF levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared to THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. PMID:26510449
FABP-1 gene ablation impacts brain endocannabinoid system in male mice.
Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Huang, Huan; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R; Murphy, Eric J; Golovko, Mikhail Y; Kier, Ann B; Schroeder, Friedhelm
2016-08-01
Liver fatty acid-binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid-binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as oleoyl ethanolamide (OEA), PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* as a result of compensatory up-regulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid-binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. Fatty acid-binding protein-1 (FABP-1) is not detectable in brain but instead is highly expressed in liver. The possibility that FABP1 outside the central nervous system may regulate brain endocannabinoids arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) was examined in wild-type (WT) and FABP-1 null (LKO) male mice. LKO increased brain levels of arachidonic acid-containing endocannabinoids (AEA, 2-AG), correlating with increased free and total arachidonic acid in brain and serum. Read the Editorial Highlight for this article on page 371. © 2016 International Society for Neurochemistry.
Endocannabinoid Signaling, Glucocorticoid-Mediated Negative Feedback and Regulation of the HPA Axis
Hill, M. N.; Tasker, J. G.
2012-01-01
The hypothalamic-pituitary-adrenal (HPA) axis regulates the outflow of glucocorticoid hormones under basal conditions and in response to stress. Within the last decade, a large body of evidence has mounted indicating that the endocannabinoid system is involved in the central regulation of the stress response; however, the specific role endocannabinoid signalling plays in phases of HPA axis regulation, or the neural sites of action mediating this regulation, was not mapped out until recently. This review aims to collapse the current state of knowledge regarding the role of the endocannabinoid system in the regulation of the HPA axis to put together a working model of how and where endocannabinoids act within the brain to regulate outflow of the HPA axis. Specifically, we discuss the role of the endocannabinoid system in the regulation of the HPA axis under basal conditions, activation in response to acute stress and glucocorticoid-mediated negative feedback. Interestingly, there appears to be some anatomical specificity to the role of the endocannabinoid system in each phase of HPA axis regulation, as well as distinct roles of both anandamide and 2-arachidonoylglycerol in these phases. Ultimately, the current level of information indicates that endocannabinoid signalling acts to suppress HPA axis activity through concerted actions within the prefrontal cortex, amygdala and hypothalamus. PMID:22214537
Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture
Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G. M.; Dobrzyn, Agnieszka; Harkany, Tibor
2015-01-01
Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R−/− islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis. PMID:26494286
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keereetaweep, Jantana; Chapman, Kent D.
The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less
Keereetaweep, Jantana; Chapman, Kent D.
2016-01-01
The endocannabinoidsN-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups ofN-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example,N-palmitoylethanolamine (PEA),N-stearoylethanolamine (SEA), andN-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further,more » the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. Lastly, the recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems.« less
Keereetaweep, Jantana; Chapman, Kent D.
2016-01-01
The endocannabinoids N-arachidonoylethanolamide (or anandamide, AEA) and 2-arachidonoylglycerol (2-AG) belong to the larger groups of N-acylethanolamines (NAEs) and monoacylglycerol (MAG) lipid classes, respectively. They are biologically active lipid molecules that activate G-protein-coupled cannabinoid receptors found in various organisms. After AEA and 2-AG were discovered in the 1990s, they have been extensively documented to have a broad range of physiological functions. Along with AEA, several NAEs, for example, N-palmitoylethanolamine (PEA), N-stearoylethanolamine (SEA), and N-oleoylethanolamine (OEA) are also present in tissues, usually at much larger concentrations than AEA. Any perturbation that involves the endocannabinoid pathway may subsequently alter basal level or metabolism of these lipid mediators. Further, the altered levels of these molecules often reflect pathological conditions associated with tissue damage. Robust and sensitive methodologies to analyze these lipid mediators are essential to understanding how they act as endocannabinoids. The recent advances in mass spectrometry allow researchers to develop lipidomics approaches and several methodologies have been proposed to quantify endocannabinoids in various biological systems. PMID:26839710
Metabolism of endocannabinoids.
Biernacki, Michał; Skrzydlewska, Elżbieta
2016-08-11
Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol) located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.
Rhythmic control of endocannabinoids in the rat pineal gland.
Koch, Marco; Ferreirós, Nerea; Geisslinger, Gerd; Dehghani, Faramarz; Korf, Horst-Werner
2015-01-01
Endocannabinoids modulate neuroendocrine networks by directly targeting cannabinoid receptors. The time-hormone melatonin synchronizes these networks with external light condition and guarantees time-sensitive and ecologically well-adapted behaviors. Here, the endocannabinoid arachidonoyl ethanolamide (AEA) showed rhythmic changes in rat pineal glands with higher levels during the light-period and reduced amounts at the onset of darkness. Norepinephrine, the essential stimulus for nocturnal melatonin biosynthesis, acutely down-regulated AEA and other endocannabinoids in cultured pineal glands. These temporal dynamics suggest that AEA exerts time-dependent autocrine and/or paracrine functions within the pineal. Moreover, endocananbinoids may be released from the pineal into the CSF or blood stream.
FABP-1 GENE ABLATION IMPACTS BRAIN ENDOCANNABINOID SYSTEM IN MALE MICE
Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Huang, Huan; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Seeger, Drew R.; Murphy, Eric J.; Golovko, Mikhail Y.; Kier, Ann B.; Schroeder, Friedhelm
2016-01-01
Liver fatty acid binding protein (FABP1, L-FABP) has high affinity for and enhances uptake of arachidonic acid (ARA, C20:4, n-6) which, when esterified to phospholipids, is the requisite precursor for synthesis of endocannabinoids (EC) such as arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG). The brain derives most of its ARA from plasma, taking up ARA and transporting it intracellularly via cytosolic fatty acid binding proteins (FABPs 3,5, and 7) localized within the brain. In contrast, the much more prevalent cytosolic FABP1 is not detectable in the brain but is instead highly expressed in the liver. Therefore, the possibility that FABP1 outside the central nervous system may regulate brain AEA and 2-AG was examined in wild-type (WT) and FABP1 null (LKO) male mice. LKO increased brain levels of AA-containing EC (AEA, 2-AG), correlating with increased free and total ARA in brain and serum. LKO also increased brain levels of non-ARA that contain potentiating endocannabinoids (EC*) such as OEA, PEA, 2-OG, and 2-PG. Concomitantly, LKO decreased serum total ARA-containing EC, but not non-ARA endocannabinoids. LKO did not elicit these changes in the brain EC and EC* due to compensatory upregulation of brain protein levels of enzymes in EC synthesis (NAPEPLD, DAGLα) or cytosolic EC chaperone proteins (FABPs 3, 5, 7, SCP-2, HSP70), or cannabinoid receptors (CB1, TRVP1). These data show for the first time that the non-CNS fatty acid binding protein FABP1 markedly affected brain levels of both ARA-containing endocannabinoids (AEA, 2-AG) as well as their non-ARA potentiating endocannabinoids. PMID:27167970
Wu, Junfang; Gouveia-Figueira, Sandra; Domellöf, Magnus; Zivkovic, Angela M; Nording, Malin L
2016-01-01
The presence of fatty acid derived oxylipins, endocannabinoids and related compounds in human milk may be of importance to the infant. Presently, clinically relevant protocols for storing and handling human milk that minimize error and variability in oxylipin and endocannabinoid concentrations are lacking. In this study, we compared the individual and combined effects of the following storage conditions on the stability of these fatty acid metabolites in human milk: state (fresh or frozen), storage temperature (4 °C, -20 °C or -80 °C), and duration (1 day, 1 week or 3 months). Thirteen endocannabinoids and related compounds, as well as 37 oxylipins were analyzed simultaneously by liquid chromatography coupled to tandem mass spectrometry. Twelve endocannabinoids and related compounds (2-111 nM) and 31 oxylipins (1.2 pM-1242 nM) were detected, with highest levels being found for 2-arachidonoylglycerol and 17(R)hydroxydocosahexaenoic acid, respectively. The concentrations of most endocannabinoid-related compounds and oxylipins were dependent on storage condition, and especially storage at 4 °C introduced significant variability. Our findings suggest that human milk samples should be analyzed immediately after, or within one day of collection (if stored at 4 °C). Storage at -80 °C is required for long-term preservation, and storage at -20 °C is acceptable for no more than one week. These findings provide a protocol for investigating the oxylipin and endocannabinoid metabolome in human milk, useful for future milk-related clinical studies. Copyright © 2015 Elsevier Inc. All rights reserved.
Behavioral alterations in cystic fibrosis mice are prevented by cannabinoid treatment in infancy.
Bregman, Tatiana; Fride, Ester
2011-06-17
Substantial data have been accumulated regarding the molecular basis of cystic fibrosis (CF) pathogenesis, whereas the influence of biochemical impairments on brain processes has been the focus of much less attention. We have studied some behavioral parameters, such as motor activity and anxiety level, in a mice model of CF. We have assumed that functioning of the endocannabinoid system could be impaired in CF (endocannabinoids are fatty acid derivatives, and fatty acid deficiency is considered a major factor in CF etiology). We have suggested that chronic treatment with cannabinoid receptors agonist during infancy would balance cannabinoid levels and prevent CF-related behavioral alterations. Motor activity and anxiety level were studied in naïve adult CF mice (cftr-deficient mice) and compared with wild-type mice and to CF mice treated chronically with Δ9-tetrahydrocannabinol (Δ9-THC; endocannabinoid receptor agonist) during infancy (from days 7 to 28). Motor activity was tested in the tetrad, and level of anxiety in the plus maze, a month after cessation of treatment. Motor activity decrease and elevated anxiety level were found in adult naïve CF mice compared with wild-type mice. CF mice treated with THC in infancy showed normal motor activity and anxiety levels in adulthood. Motor function alteration and elevated anxiety levels in CF can result from lack of CFTR-channel in neurons and disturbed activity of various brain areas, as well as being secondary and mediated by fatty acids deficiency, altered levels of endocannabinoids and their receptors. It can be suggested that chronic treatment during infancy restores endocannabinoid function and thus prevents behavioral alterations.
Rubio, Marina; McHugh, Douglas; Fernández-Ruiz, Javier; Bradshaw, Heather; Walker, J. Michael
2010-01-01
Chronic alcohol exposure leads to significant changes in the levels of endocannabinoids and their receptors in the brains of humans and laboratory animals, as well as in cultured neuronal cells. However, little is known about the effects of short-term periods of alcohol exposure. In the present study, we examined the changes in endocannabinoid levels (anandamide and 2-arachidonoylglycerol), as well as four additional N-acylethanolamines, in four brain regions of rats exposed to alcohol through the liquid diet for a period of 24 hours. The levels of N-acylethanolamines were diminished 24 hours after the onset of alcohol exposure. This was particularly evident for anandamide in the hypothalamus, amygdala and caudate-putamen, for N-palmitoylethanolamine in the caudate-putamen, for N-oleoylethanolamine in the hypothalamus, caudate-putamen and prefrontal cortex, and for N-stearoylethanolamine in the amygdala. The only exception was N-linoleoylethanolamine for which the levels increased in the amygdala after the exposure to alcohol. The levels of the other major endocannabinoid, 2-arachidonoylglycerol, were also reduced with marked effects in the prefrontal cortex. These results support the notion that short-term alcohol exposure reduces endocannabinoid levels in the brain accompanied by a reduction in several related N-acylethanolamines. PMID:17574742
Fatty acid composition of fat depots in wintering Canada geese
Austin, J.E.
1993-01-01
I determined the fatty acid composition of subcutaneous, abdominal, visceral, and leg saddle depots in adult female Canada Geese (Branta canadensis) wintering in north-central Missouri during October 1984-March 1985. Mean levels of C14:0, C16:0, C16:1, C18:0, C18:1, C18:2, and C18:3 generally were highest in the subcutaneous and abdominal depots. The ratio of saturated to unsaturated fats was highest in the leg saddle depot and lowest in the abdominal depot. I also assessed the differences among sexes, seasons, and years in fatty acid composition of abdominal fat depots in adult geese collected during October-March, 1985-1987. Adult females had consistently higher levels of C14:0 in abdominal depots than males. Fatty acid composition of the abdominal depot differed among years but not by season. In the abdominal depot, C14:0, C16:0, C16:1, and C18:1 were higher in 1986-1987 compared with the previous two years, whereas C18:3 was highest in 1984-1985. Differences among years reflected changes in winter diet. Fatty acids of wintering geese were similar to those previously found in breeding Canada Geese.
Endocannabinoids in Body Weight Control.
Horn, Henrike; Böhme, Beatrice; Dietrich, Laura; Koch, Marco
2018-05-30
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
The endocannabinoid system: a general view and latest additions
Petrocellis, Luciano De; Cascio, Maria Grazia; Marzo, Vincenzo Di
2004-01-01
After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana's psychoactive principle Δ9-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest ‘additions' to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids. PMID:14744801
The endocannabinoid system mediates aerobic exercise-induced antinociception in rats.
Galdino, Giovane; Romero, Thiago R L; Silva, José Felipe P; Aguiar, Daniele C; de Paula, Ana Maria; Cruz, Jader S; Parrella, Cosimo; Piscitelli, Fabiana; Duarte, Igor D; Di Marzo, Vincenzo; Perez, Andrea C
2014-02-01
Exercise-induced antinociception is widely described in the literature, but the mechanisms involved in this phenomenon are poorly understood. Systemic (s.c.) and central (i.t., i.c.v.) pretreatment with CB₁ and CB₂ cannabinoid receptor antagonists (AM251 and AM630) blocked the antinociception induced by an aerobic exercise (AE) protocol in both mechanical and thermal nociceptive tests. Western blot analysis revealed an increase and activation of CB₁ receptors in the rat brain, and immunofluorescence analysis demonstrated an increase of activation and expression of CB₁ receptors in neurons of the periaqueductal gray matter (PAG) after exercise. Additionally, pretreatment (s.c., i.t. and i.c.v.) with endocannabinoid metabolizing enzyme inhibitors (MAFP and JZL184) and an anandamide reuptake inhibitor (VDM11) prolonged and intensified this antinociceptive effect. These results indicate that exercise could activate the endocannabinoid system, producing antinociception. Supporting this hypothesis, liquid-chromatography/mass-spectrometry measurements demonstrated that plasma levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and of anandamide-related mediators (palmitoylethanolamide and oleoylethanolamide) were increased after AE. Therefore, these results suggest that the endocannabinoid system mediates aerobic exercise-induced antinociception at peripheral and central levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sciolino, Natale R.; Bortolato, Marco; Eisenstein, Sarah A.; Fu, Jin; Oveisi, Fariba; Hohmann, Andrea G.; Piomelli, Daniele
2010-01-01
Social deprivation in early life disrupts emotionality and attentional processes in humans. Rearing rats in isolation reproduces some of these abnormalities, which are attenuated by daily handling. However, the neurochemical mechanisms underlying these responses remain poorly understood. We hypothesized that post-weaning social isolation alters the endocannabinoid system, a neuromodulatory system that controls emotional responding. We characterized behavioral consequences of social isolation and evaluated whether handling would reverse social isolation-induced alterations in behavioral reactivity to context and the endocannabinoid system. At weaning, pups were single or group housed and concomitantly handled or not handled daily until adulthood. Rats were tested in emotionality- and attentional-sensitive behavioral assays (open field, elevated plus maze, startle and prepulse inhibition). Cannabinoid receptor densities and endocannabinoid levels were quantified in a separate group of rats. Social isolation negatively altered behavioral responding. Socially-isolated rats that were handled showed less deficits in the open field, elevated plus maze, and prepulse inhibition tests. Social isolation produced site-specific alterations (supraoptic nucleus, ventrolateral thalamus, rostral striatum) in cannabinoid receptor densities compared to group rearing. Handling altered the endocannabinoid system in neural circuitry controlling emotional expression. Handling altered endocannabinoid content (prefrontal and piriform cortices, nucleus accumbens) and cannabinoid receptor densities (lateral globus pallidus, cingulate and piriform cortices, hippocampus) in a region-specific manner. Some effects of social isolation on the endocannabinoid system were moderated by handling. Isolates were unresponsive to handling-induced increases in cannabinoid receptor densities (caudal striatum, anterior thalamus), but were sensitive to handling-induced increases in endocannabinoid content (piriform cortex), compared to group-reared rats. Our findings suggest alterations in the endocannabinoid system may contribute to the abnormal isolate phenotype. Handling modifies the endocannabinoid system and behavioral reactivity to context, but surmounts only some effects of social isolation. These data implicate a pivotal role for the endocannabinoid system in stress adaptation and emotionality-related disturbances. PMID:20394803
Kuber, W; Treu, T; Kratzik, C; Girsch, E; Zeillinger, R; Spona, J
1990-11-09
79 patients with locally advanced and/or metastatic prostate cancer were treated by means of a biodegradeable depot formulation of the luteinizing hormone releasing hormone analogue Goserelin (Zoladex). All patients received 3.6 mg depot Goserelin (Zoladex 3.6 mg implantate) subcutaneously into the anterior abdominal wall at 4 weekly intervals. The average time of observation was 24.2 months. The best objective response rate was found in 62%. Serum testosterone levels initially increased after the first depot injection and then decreased ultimately to castrate range (less than 0.6 ng/ml) between day 15 and day 27 (median 21) in the majority of patients. Castrate testosterone levels were still found 48 months after the start of treatment with depot Goserelin. 6 months after institution of treatment in 66.7% of cases evident signs of histological regression were found in the primary tumour tissue. Adenocarcinoma presented with a highly significantly better response pattern than anaplastic carcinoma. In animal experiments a single dose of 1 mg depot Goserelin was administered to adult male rats and the effect on serum testosterone levels and target organs (testes and ventral prostate) were investigated. Mean testosterone levels (mean = 0.31 ng/ml) decreased to castrate range (less than 0.3 ng/ml). 4 weeks after depot injection weight of the testes and prostate weight were significantly reduced. However 8 weeks after administration of 1 mg depot Goserelin there was no significant between the control group and the treated group. We conclude that the depot formulation of Goserelin (Zoladex) is effective, simple, practicable and safe in the treatment of advanced prostatic cancer. Current clinical studies are confirming the importance of reversible medical castration by LHRH agonists before radical prostatectomy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biernacki, Michał; Łuczaj, Wojciech; Gęgotek, Agni
Hypertension is accompanied by perturbations to the endocannabinoid and antioxidant systems. Thus, potential pharmacological treatments for hypertension should be examined as modulators of these two metabolic systems. The aim of this study was to evaluate the effects of chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl)phenyl]N-cyclohexylcarbamate (URB597) on the endocannabinoid system and on the redox balance in the livers of DOCA-salt hypertensive rats. Hypertension caused an increase in the levels of endocannabinoids [anandamide (AEA), 2-arachidonoyl-glycerol (2-AG) and N-arachidonoyl-dopamine (NADA)] and CB{sub 1} receptor and the activities of FAAH and monoacylglycerol lipase (MAGL). These effects were accompanied bymore » an increase in the level of reactive oxygen species (ROS), a decrease in antioxidant activity/level, enhanced expression of transcription factor Nrf2 and changes to Nrf2 activators and inhibitors. Moreover, significant increases in lipid, DNA and protein oxidative modifications, which led to enhanced levels of proapoptotic caspases, were also observed. URB597 administration to the hypertensive rats resulted in additional increases in the levels of AEA, NADA and the CB{sub 1} receptor, as well as decreases in vitamin E and C levels, glutathione peroxidase and glutathione reductase activities and Nrf2 expression. Thus, after URB597 administration, oxidative modifications of cellular components were increased, while the inflammatory response was reduced. This study revealed that chronic treatment of hypertensive rats with URB597 disrupts the endocannabinoid system, which causes an imbalance in redox status. This imbalance increases the levels of electrophilic lipid peroxidation products, which later participate in metabolic disturbances in liver homeostasis. - Highlights: • Chronic administration of URB597 to hypertensive rats reduces liver inflammation. • URB597 enhances the redox imbalance in the liver of hypertensive rats. • URB597 alters lipid metabolism, which results in enhanced lipid peroxidation. • URB597 disrupts crosstalk between antioxidants, including the Nrf2 pathway and endocannabinoid system.« less
Wei, Don; Lee, DaYeon; Li, Dandan; Daglian, Jennifer; Jung, Kwang-Mook; Piomelli, Daniele
2016-05-01
The endocannabinoid system is an important modulator of brain reward signaling. Investigations have focused on cannabinoid (CB1) receptors, because dissection of specific contributions of individual endocannabinoids has been limited by the available toolset. While we recently described an important role for the endocannabinoid anandamide in the regulation of social reward, it remains to be determined whether the other major endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG), serves a similar or different function. To study the role of 2-AG in natural reward, we used a transgenic mouse model (MGL-Tg mice) in which forebrain 2-AG levels are selectively reduced. We complemented behavioral analysis with measurements of brain 2-AG levels. We tested male MGL-Tg mice in conditioned place preference (CPP) tasks for high-fat food, social contact, and cocaine. We measured 2-AG content in the brain regions of interest by liquid chromatography/mass spectrometry. Male MGL-Tg mice are impaired in developing CPP for high-fat food and social interaction, but do develop CPP for cocaine. Furthermore, compared to isolated mice, levels of 2-AG in socially stimulated wild-type mice are higher in the nucleus accumbens and ventral hippocampus (183 and 140 % of controls, respectively), but unchanged in the medial prefrontal cortex. The results suggest that reducing 2-AG-mediated endocannabinoid signaling impairs social and high-fat food reward in male mice, and that social stimulation mobilizes 2-AG in key brain regions implicated in the control of motivated behavior. The time course of this response differentiates 2-AG from anandamide, whose role in mediating social reward was previously documented.
Dyall, S C; Mandhair, H K; Fincham, R E A; Kerr, D M; Roche, M; Molina-Holgado, F
2016-08-01
Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair. Copyright © 2016 Elsevier Ltd. All rights reserved.
Valastro, Carmela; Campanile, Debora; Marinaro, Mariarosaria; Franchini, Delia; Piscitelli, Fabiana; Verde, Roberta; Di Marzo, Vincenzo; Di Bello, Antonio
2017-11-06
Cannabis-based drugs have been shown to be effective in inflammatory diseases. A number of endocannabinoids including N- arachidonoylethanolamide (anandamide, AEA) and 2-arachidonyl glycerol (2-AG) with activity at the cannabinoid receptors (CBR) CBR1 and CBR2, have been identified. Other structurally related endogenous fatty acid compounds such as oleoylethanolamide (OEA) and palmitoyl ethanolamide (PEA) have been identified in biological tissues. These compounds do not bind to CBR but might be involved in facilitating the actions of directly acting endocannabinoids and thus are commonly termed "entourage" compounds due to their ability to modulate the endocannabinoid system. The aim of this study was to evaluate the presence of endocannabinoids and entourage compounds in the synovial fluid of dogs with osteoarthritis subjected to arthrotomy of the knee joint. Cytokines and cytology were studied as well. AEA, 2-AG, OEA and PEA were all present in the synovial fluid of arthritic knees and in the contralateral joints; in addition, a significant increase of OEA and 2AG levels were noted in SF from OA knees when compared to the contralateral joints. The identification and quantification of endocannabinoids and entourage compounds levels in synovial fluids from dogs with OA of the knee is reported for the first time. Our data are instrumental for future studies involving a greater number of dogs. Cannabinoids represent an emerging and innovative pharmacological tool for the treatment of OA and further studies are warranted to evaluate the effectiveness of cannabinoids in veterinary medicine.
Fichna, Jakub; Wood, Jodianne T; Papanastasiou, Malvina; Vadivel, Subramanian K; Oprocha, Piotr; Sałaga, Maciej; Sobczak, Marta; Mokrowiecka, Anna; Cygankiewicz, Adam I; Zakrzewski, Piotr K; Małecka-Panas, Ewa; Krajewska, Wanda M; Kościelniak, Piotr; Makriyannis, Alexandros; Storr, Martin A
2013-01-01
Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients. AEA, 2-AG, OEA and PEA plasma levels were determined in diarrhoea-predominant (IBS-D) and constipation-predominant (IBS-C) patients and were compared to healthy subjects, following the establishment of correlations between biolipid contents and disease symptoms. FAAH mRNA levels were evaluated in colonic biopsies from IBS-D and IBS-C patients and matched controls. Patients with IBS-D had higher levels of 2AG and lower levels of OEA and PEA. In contrast, patients with IBS-C had higher levels of OEA. Multivariate analysis found that lower PEA levels are associated with cramping abdominal pain. FAAH mRNA levels were lower in patients with IBS-C. IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.
Eisenstein, Sarah A.; Clapper, Joson R.; Holmes, Philip V.; Piomelli, Daniele; Hohmann, Andrea G.
2010-01-01
Bilateral olfactory bulbectomy (OBX) in rodents produces behavioral and neurochemical changes associated clinically with depression and schizophrenia. Most notably, OBX induces hyperlocomotion in response to the stress of exposure to a novel environment. We examined the role of the endocannabinoid system in regulating this locomotor response in OBX and sham-operated rats. In our study, OBX-induced hyperactivity was restricted to the first 3 min of the open field test, demonstrating the presence of novelty (0–3 min) and habituation (3–30 min) phases of the open field locomotor response. Levels of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide were decreased in the ventral striatum, a brain region deafferented by OBX, whereas cannabinoid receptor densities were unaltered. In sham-operated rats, 2-AG levels in the ventral striatum were negatively correlated with distance traveled during the novelty phase. Thus, low levels of 2-AG are reflected in a hyperactive open field response. This correlation was not observed in OBX rats. Conversely, 2-AG levels in endocannabinoid-compromised OBX rats correlated with distance traveled during the habituation phase. In OBX rats, pharmacological blockade of cannabinoid CB1 receptors with either AM251 (1 mg kg−1 i.p.) or rimonabant (1 mg kg−1 i.p.) increased distance traveled during the habituation phase. Thus, blockade of endocannabinoid signaling impairs habituation of the hyperlocomotor response in OBX, but not sham-operated, rats. By contrast, in sham-operated rats, effects of CB1 antagonism were restricted to the novelty phase. These findings suggest that dysregulation in the endocannabinoid system, and 2-AG in particular, is implicated in the hyperactive locomotor response induced by OBX. Our studies suggest that drugs that enhance 2-AG signaling, such as 2-AG degradation inhibitors, might be useful in human brain disorders modeled by OBX. PMID:20044005
Association between plasma endocannabinoids and appetite in hemodialysis patients: a pilot study
USDA-ARS?s Scientific Manuscript database
Weight loss is a well-recognized complication in subjects undergoing hemodialysis for impaired kidney function. This pilot study explored whether plasma levels of compounds known to mediate appetite, the endocannabinoids (EC) and EC-like compounds derived from polyunsaturated fatty acids (PUFA), ar...
Truffles contain endocannabinoid metabolic enzymes and anandamide.
Pacioni, Giovanni; Rapino, Cinzia; Zarivi, Osvaldo; Falconi, Anastasia; Leonardi, Marco; Battista, Natalia; Colafarina, Sabrina; Sergi, Manuel; Bonfigli, Antonella; Miranda, Michele; Barsacchi, Daniela; Maccarrone, Mauro
2015-02-01
Truffles are the fruiting body of fungi, members of the Ascomycota phylum endowed with major gastronomic and commercial value. The development and maturation of their reproductive structure are dependent on melanin synthesis. Since anandamide, a prominent member of the endocannabinoid system (ECS), is responsible for melanin synthesis in normal human epidermal melanocytes, we thought that ECS might be present also in truffles. Here, we show the expression, at the transcriptional and translational levels, of most ECS components in the black truffle Tuber melanosporum Vittad. at maturation stage VI. Indeed, by means of molecular biology and immunochemical techniques, we found that truffles contain the major metabolic enzymes of the ECS, while they do not express the most relevant endocannabinoid-binding receptors. In addition, we measured anandamide content in truffles, at different maturation stages (from III to VI), through liquid chromatography-mass spectrometric analysis, whereas the other relevant endocannabinoid 2-arachidonoylglycerol was below the detection limit. Overall, our unprecedented results suggest that anandamide and ECS metabolic enzymes have evolved earlier than endocannabinoid-binding receptors, and that anandamide might be an ancient attractant to truffle eaters, that are well-equipped with endocannabinoid-binding receptors. Copyright © 2014 Elsevier Ltd. All rights reserved.
Abdulnour, Joseph; Yasari, Siham; Rabasa-Lhoret, Rémi; Faraj, May; Petrosino, Stefania; Piscitelli, Fabiana; Prud' Homme, Denis; Di Marzo, Vincenzo
2014-01-01
To measure the circulating levels of endocannabinoids and related molecules at fasting, after acute hyperinsulinemia and after weight loss in insulin sensitive vs. insulin resistant obese postmenopausal women. The sample consisted of 30 obese postmenopausal women (age: 58.9 ± 5.2 yrs; BMI: 32.9 ± 3.6 kg/m(2) ). Subjects underwent a 3-hour hyperinsulinaemic-euglycaemic clamp (HEC) (glucose disposal rate (M-value): 10.7 ± 3.3 mg min(-1) kg(-1) FFM) and 6-month weight loss intervention. Participants were classified as insulin sensitive obese (ISO) or insulin resistant obese (IRO) based on a predefined cutoff. Plasma levels of the endocannabinoids, anandamide (AEA), 2-arachidonoylglycerol (2-AG), and of the AEA-related compounds, palmitoylethanolamide (PEA) and oleoylethanolamide (OEA), were measured by liquid chromatography-mass spectrometry. IRO presented higher levels of 2-AG (P < 0.05) independently of the HEC and weight loss, whereas the HEC had an independent inhibitory effect on AEA, PEA, and OEA levels (P < 0.05) in both groups. Furthermore, there was an independent stimulatory effect of weight loss only on PEA levels in both groups (P < 0.05). This study is the first to show that higher circulating levels of the endocannabinoid 2-AG are found in IRO compared to ISO postmenopausal women, and that weight loss is associated with an increase in PEA, a PPAR-α ligand. © 2013 The Obesity Society.
The evolution and comparative neurobiology of endocannabinoid signalling
Elphick, Maurice R.
2012-01-01
CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids. PMID:23108540
Miles, A.K.; Roster, N.
1999-01-01
Accumulation of polycyclic aromatic hydrocarbons (PAHs) was determined in blue mussels (Mytilus spp.) and shore crabs (Hemigrapsus sp.) at a recently closed military fuel depot in central San Francisco Bay, California. In April 1996, during a period of above average precipitation, specimens were collected at the depot, near the depot, and at sites 10 and 20 km south of the depot. Four weeks after the rains ended, blue mussels were again collected at the depot, and at two additional sites in the central Bay region. In April, total PAHs in mussels from the depot were significantly higher only than that in mussels collected 20 km from the depot; however, seven specific, substituted PAHs were higher at the depot than at all other sites. In June, only two of the 38 PAHs common in mussels in April were detected at the depot; these concentrations were comparable to ambient concentrations in mussels at the Bay. It seemed that bioavailability of PAHs at the depot was enhanced by rainfall, probably due to the mobilization of PAHs via groundwater into the Bay. Concentrations in mussels from chronically contaminated sites were about five times higher than mussels collected from the depot. Low PAH concentrations were detected in shore crabs near the depot, and the highest levels were not associated with the depot. Observed PAH concentrations are discussed in relation to upper trophic organisms.
Antitumorigenic targets of cannabinoids - current status and implications.
Ramer, Robert; Hinz, Burkhard
2016-10-01
Molecular structures of the endocannabinoid system have gained interest as potential pharmacotherapeutical targets for systemic cancer treatment. The present review covers the contribution of the endocannabinoid system to cancer progression. Particular focus will be set on the accumulating preclinical data concerning antimetastatic, anti-invasive and anti-angiogenic mechanisms induced by cannabinoids. The main goal of targeting endocannabinoid structures for systemic anticancer treatment is the comparatively good safety profile of cannabinoid compounds. In addition, antitumorigenic mechanisms of cannabinoids are not restricted to a single molecular cascade but involve multiple effects on various levels of cancer progression such as angiogenesis and metastasis. Particularly the latter effect has gained interest for pharmacological interventions. Thus, drugs aiming at the endocannabinoid system may represent potential 'antimetastatics' for an upgrade of a future armamentarium against cancer diseases.
Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats.
Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W M; Pasterkamp, R Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J M J
2012-10-24
The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4- to 5-week-old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signaling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats.
Russo, Ethan B
2016-01-01
Medicine continues to struggle in its approaches to numerous common subjective pain syndromes that lack objective signs and remain treatment resistant. Foremost among these are migraine, fibromyalgia, and irritable bowel syndrome, disorders that may overlap in their affected populations and whose sufferers have all endured the stigma of a psychosomatic label, as well as the failure of endless pharmacotherapeutic interventions with substandard benefit. The commonality in symptomatology in these conditions displaying hyperalgesia and central sensitization with possible common underlying pathophysiology suggests that a clinical endocannabinoid deficiency might characterize their origin. Its base hypothesis is that all humans have an underlying endocannabinoid tone that is a reflection of levels of the endocannabinoids, anandamide (arachidonylethanolamide), and 2-arachidonoylglycerol, their production, metabolism, and the relative abundance and state of cannabinoid receptors. Its theory is that in certain conditions, whether congenital or acquired, endocannabinoid tone becomes deficient and productive of pathophysiological syndromes. When first proposed in 2001 and subsequently, this theory was based on genetic overlap and comorbidity, patterns of symptomatology that could be mediated by the endocannabinoid system (ECS), and the fact that exogenous cannabinoid treatment frequently provided symptomatic benefit. However, objective proof and formal clinical trial data were lacking. Currently, however, statistically significant differences in cerebrospinal fluid anandamide levels have been documented in migraineurs, and advanced imaging studies have demonstrated ECS hypofunction in post-traumatic stress disorder. Additional studies have provided a firmer foundation for the theory, while clinical data have also produced evidence for decreased pain, improved sleep, and other benefits to cannabinoid treatment and adjunctive lifestyle approaches affecting the ECS.
Triptorelin depot stimulation test for central precocious puberty.
Strich, David; Kvatinsky, Noa; Hirsch, Harry J; Gillis, David
2013-01-01
Acute gonadotropin responses following depot leuprolide acetate injection are useful for monitoring therapeutic efficacy in central precocious puberty. Similar monitoring of therapy in patients treated with another widely used GnRH agonist, depot triptorelin, has not yet been reported. The objective of this study was to test the use of gonadotropin levels after therapeutic injections of depot triptorelin for evaluating efficacy of therapy. Thirty-two patients (29 girls and three boys) were treated with triptorelin depot, 3.75 mg per vial, between 2006 and 2010. Treatment was initiated at 8.27±1.76 years (range, 4.6-11.6 years). Blood was drawn before and at variable times between 30 min and 2 h after injections. Clinical tests were retrospectively collected. After the first injection, the 60-min mean luteinizing hormone (LH) level was 21.6.1±18.0 IU/L and the follicle-stimulating hormone (FSH) was 13.5±3.6 IU/L. After subsequent injections, for those who showed clinical suppression, the standard deviations above the mean were 3.6 IU/L for FSH and 2.1 IU/L for LH. The LH levels of two patients who did not suppress sufficiently were at these limits or higher. Sixty-minute postinjection depot triptorelin levels of LH can be successfully used to evaluate the efficacy of treatment with this agent. Limits for suppressed levels have been determined.
Computerized LCC/ORLA methodology. [Life cycle cost/optimum repair level analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, J.T.
1979-01-01
The effort by Sandia Laboratories in developing CDC6600 computer programs for Optimum Repair Level Analysis (ORLA) and Life Cycle Cost (LCC) analysis is described. Investigation of the three repair-level strategies referenced in AFLCM/AFSCM 800-4 (base discard of subassemblies, base repair of subassemblies, and depot repair of subassemblies) was expanded to include an additional three repair-level strategies (base discard of complete assemblies and, upon shipment of complete assemblies to the depot, depot repair of assemblies by subassembly repair, and depot repair of assemblies by subassembly discard). The expanded ORLA was used directly in an LCC model that was procedurally altered tomore » accommodate the ORLA input data. Available from the LCC computer run was an LCC value corresponding to the strategy chosen from the ORLA. 2 figures.« less
Measurement of ground and nearby building vibration and noise induced by trains in a metro depot.
Zou, Chao; Wang, Yimin; Wang, Peng; Guo, Jixing
2015-12-01
Metro depots are where subway trains are parked and where maintenance is carried out. They usually occupy the largest ground areas in metro projects. Due to land utilization problems, Chinese cities have begun to develop over-track buildings above metro depots for people's life and work. The frequently moving trains, when going into and out of metro depots, can cause excessive vibration and noise to over-track buildings and adversely affect the living quality of the building occupants. Considering the current need of reliable experimental data for the construction of metro depots, field measurements of vibration and noise on the ground and inside a nearby 3-story building subjected to moving subway trains were conducted in a metro depot at Guangzhou, China. The amplitudes and frequency contents of velocity levels were quantified and compared. The composite A-weighted equivalent sound levels and maximum sound levels were captured. The predicted models for vibration and noise of metro depot were proposed based on existing models and verified. It was found that the vertical vibrations were significantly greater than the horizontal vibrations on the ground and inside the building near the testing line. While at the throat area, the horizontal vibrations near the curved track were remarkably greater than the vertical vibrations. The attenuation of the vibrations with frequencies above 50 Hz was larger than the ones below 50 Hz, and the frequencies of vibration transmitting to adjacent buildings were mainly within 10-50 Hz. The largest equivalent sound level generated in the throat area was smaller than the testing line one, but the instantaneous maximum sound level induced by wheels squeal, contact between wheels and rail joints as well as turnout was close to or even greater than the testing line one. The predicted models gave a first estimation for design and assessment of newly built metro depots. Copyright © 2015 Elsevier B.V. All rights reserved.
Rodriguez-Cuenca, S; Monjo, M; Proenza, A M; Roca, P
2005-01-01
Sex hormones play an important role in adipose tissue metabolism by activating specific receptors that alter several steps of the lipolytic and lipogenic signal cascade in depot- and sex-dependent manners. However, studies focusing on steroid receptor status in adipose tissue are scarce. In the present study, we analyzed steroid content [testosterone (T), 17beta-estradiol (17beta-E2), and progesterone (P4)] and steroid receptor mRNA levels in different rat adipose tissue depots. As expected, T levels were higher in males than in females (P = 0.031), whereas the reverse trend was observed for P4 (P < 0.001). It is noteworthy that 17beta-E2 adipose tissue levels were higher in inguinal than in the rest of adipose tissues for both sexes, where no sex differences in 17beta-E2 tissue levels were noted (P = 0.010 for retroperitoneal, P = 0.005 for gonadal, P = 0.018 for mesenteric). Regarding steroid receptor levels, androgen (AR) and estrogen receptor (ER)alpha and ERbeta densities were more clearly dependent on adipose depot location than on sex, with visceral depots showing overall higher mRNA densities than their subcutaneous counterparts. Besides, expression of ERalpha predominated over ERbeta expression, and progesterone receptor (PR-B form and PR-A+B form) mRNAs were identically expressed regardless of anatomic depot and sex. In vitro studies in 3T3-L1 cells showed that 17beta-E2 increased ERalpha (P = 0.001) and AR expression (P = 0.001), indicating that estrogen can alter estrogenic and androgenic signaling in adipose tissue. The results highlighted in this study demonstrate important depot-dependent differences in the sensitivity of adipose tissues to sex hormones between visceral and subcutaneous depots that could be related to metabolic situations observed in response to sex hormones.
Ribeiro, A; Ferraz-de-Paula, V; Pinheiro, M L; Palermo-Neto, J
2009-06-01
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Cristino, Luigia; Imperatore, Roberta; Di Marzo, Vincenzo
2017-01-01
This chapter attempts to piece together knowledge about new advanced microscopy techniques to study the neuroanatomical distribution of endocannabinoid receptors and enzymes at the level of cellular and subcellular structures and organelles in the brain. Techniques ranging from light to electron microscopy up to the new advanced LBM, PALM, and STORM super-resolution microscopy will be discussed in the context of their contribution to define the spatial distribution and organization of receptors and enzymes of the endocannabinoid system (ECS), and to better understand ECS brain functions. © 2017 Elsevier Inc. All rights reserved.
Therapeutic potential of cannabinoids in schizophrenia.
Kucerova, Jana; Tabiova, Katarina; Drago, Filippo; Micale, Vincenzo
2014-04-01
Increasing evidence suggests a close relationship between the endocannabinoid system and schizophrenia. The endocannabinoid system comprises of two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana's psychoactive principle Δ(9)-tetrahydrocannabinol), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and proteins for endocannabinoid biosynthesis and degradation. It has been suggested to be a pro-homeostatic and pleiotropic signalling system activated in a time- and tissue-specific manner during pathophysiological conditions. In the brain, activation of this system impacts the release of numerous neurotransmitters in various systems and cytokines from glial cells. Hence, the endocannabinoid system is strongly involved in neuropsychiatric disorders, such as schizophrenia. Therefore, adolescence use of Cannabis may alter the endocannabinoid signalling and pose a potential environmental risk to develop psychosis. Consistently, preclinical and clinical studies have found a dysregulation in the endocannabinoid system such as changed expression of CB1 and CB2 receptors or altered levels of AEA and 2-AG . Thus, due to the partial efficacy of actual antipsychotics, compounds which modulate this system may provide a novel therapeutic target for the treatment of schizophrenia. The present article reviews current available knowledge on herbal, synthetic and endogenous cannabinoids with respect to the modulation of schizophrenic symptomatology. Furthermore, this review will be highlighting the therapeutic potential of cannabinoid-related compounds and presenting some promising patents targeting potential treatment options for schizophrenia.
Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan
2016-03-01
In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could contribute to the specifically increased GluN1 expression observed in the hippocampus of cocaine-sensitized mice. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Distribution of the Endocannabinoid System in the Central Nervous System.
Hu, Sherry Shu-Jung; Mackie, Ken
2015-01-01
The endocannabinoid system consists of endogenous cannabinoids (endocannabinoids), the enzymes that synthesize and degrade endocannabinoids, and the receptors that transduce the effects of endocannabinoids. Much of what we know about the function of endocannabinoids comes from studies that combine localization of endocannabinoid system components with physiological or behavioral approaches. This review will focus on the localization of the best-known components of the endocannabinoid system for which the strongest anatomical evidence exists.
Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela
2017-01-01
Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. PMID:27903595
Anxiety, Stress, and Fear Response in Mice With Reduced Endocannabinoid Levels.
Jenniches, Imke; Ternes, Svenja; Albayram, Onder; Otte, David M; Bach, Karsten; Bindila, Laura; Michel, Kerstin; Lutz, Beat; Bilkei-Gorzo, Andras; Zimmer, Andreas
2016-05-15
Disruption of the endocannabinoid system through pharmacological or genetic invalidation of cannabinoid CB1 receptors has been linked to depression in humans and depression-like behaviors in mice. The two main endogenous cannabinoids, anandamide and 2-arachidonoyl glycerol (2-AG), are produced on demand from phospholipids. The pathways and enzymes involved in endocannabinoid biosynthesis thus play a major role in regulating the activity of this system. This study investigates the role of the main 2-AG producing enzyme diacylglycerol lipase α (DAGL-α). We generated and used knockout mice lacking DAGL-α (Dagla(-/-)) to assess the behavioral consequences of reduced endocannabinoid levels in the brain. We performed different behavior tests to determine anxiety- and depression-related behavioral changes in Dagla(-/-) mice. We also analyzed expression of genes related to the endocannabinoid system via real-time polymerase chain reaction and used the mitotic marker 5-bromo-2'-deoxyuridine to analyze adult neurogenesis. Dagla(-/-) animals show an 80% reduction of brain 2-AG levels but also a reduction in cortical and amygdalar anandamide. The behavioral changes induced by Dagla deletion include a reduced exploration of the central area of the open field, a maternal neglect behavior, a fear extinction deficit, increased behavioral despair, increased anxiety-related behaviors in the light/dark box, and reduced hippocampal neurogenesis. Some of these behavioral changes resemble those observed in animals lacking the CB1 receptor. Our findings demonstrate that the deletion of Dagla adversely affects the emotional state of animals and results in enhanced anxiety, stress, and fear responses. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
CB1 Cannabinoid Receptors Couple to Focal Adhesion Kinase to Control Insulin Release*
Malenczyk, Katarzyna; Jazurek, Magdalena; Keimpema, Erik; Silvestri, Cristoforo; Janikiewicz, Justyna; Mackie, Ken; Di Marzo, Vincenzo; Redowicz, Maria J.; Harkany, Tibor; Dobrzyn, Agnieszka
2013-01-01
Endocannabinoid signaling has been implicated in modulating insulin release from β cells of the endocrine pancreas. β Cells express CB1 cannabinoid receptors (CB1Rs), and the enzymatic machinery regulating anandamide and 2-arachidonoylglycerol bioavailability. However, the molecular cascade coupling agonist-induced cannabinoid receptor activation to insulin release remains unknown. By combining molecular pharmacology and genetic tools in INS-1E cells and in vivo, we show that CB1R activation by endocannabinoids (anandamide and 2-arachidonoylglycerol) or synthetic agonists acutely or after prolonged exposure induces insulin hypersecretion. In doing so, CB1Rs recruit Akt/PKB and extracellular signal-regulated kinases 1/2 to phosphorylate focal adhesion kinase (FAK). FAK activation induces the formation of focal adhesion plaques, multimolecular platforms for second-phase insulin release. Inhibition of endocannabinoid synthesis or FAK activity precluded insulin release. We conclude that FAK downstream from CB1Rs mediates endocannabinoid-induced insulin release by allowing cytoskeletal reorganization that is required for the exocytosis of secretory vesicles. These findings suggest a mechanistic link between increased circulating and tissue endocannabinoid levels and hyperinsulinemia in type 2 diabetes. PMID:24089517
Mereu, Maddalena; Tronci, Valeria; Chun, Lauren E; Thomas, Alexandra M; Green, Jennifer L; Katz, Jonathan L; Tanda, Gianluigi
2015-01-01
The endocannabinoid system has been implicated in the development of synaptic plasticity induced by several drugs abused by humans, including cocaine. However, there remains some debate about the involvement of cannabinoid receptors/ligands in cocaine-induced plasticity and corresponding behavioral actions. Here, we show that a single cocaine injection in Swiss-Webster mice produces behavioral and neurochemical alterations that are under the control of the endocannabinoid system. This plasticity may be the initial basis for changes in brain processes leading from recreational use of cocaine to its abuse and ultimately to dependence. Locomotor activity was monitored with photobeam cell detectors, and accumbens shell/core microdialysate dopamine levels were monitored by high-performance liquid chromatography with electrochemical detection. Development of single-trial cocaine-induced behavioral sensitization, measured as increased distance traveled in sensitized mice compared to control mice, was paralleled by a larger stimulation of extracellular dopamine levels in the core but not the shell of the nucleus accumbens. Both the behavioral and neurochemical effects were reversed by CB1 receptor blockade produced by rimonabant pre-treatments. Further, both behavioral and neurochemical cocaine sensitization were facilitated by pharmacological blockade of endocannabinoid metabolism, achieved by inhibiting the fatty acid amide hydrolase enzyme. In conclusion, our results suggest that a single unconditioned exposure to cocaine produces sensitization through neuronal alterations that require regionally specific release of endocannabinoids. Further, the present results suggest that endocannabinoids play a primary role from the earliest stage of cocaine use, mediating the inception of long-term brain-adaptive responses, shaping central pathways and likely increasing vulnerability to stimulant abuse disorders. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats
Trezza, Viviana; Damsteegt, Ruth; Manduca, Antonia; Petrosino, Stefania; Van Kerkhof, Linda W.M.; Pasterkamp, R. Jeroen; Zhou, Yeping; Campolongo, Patrizia; Cuomo, Vincenzo; Di Marzo, Vincenzo; Vanderschuren, Louk J.M.J.
2012-01-01
The brain endocannabinoid system plays a crucial role in emotional processes. We have previously identified an important role for endocannabinoids in social play behavior, a highly rewarding form of social interaction in adolescent rats. Here, we tested the hypothesis that endocannabinoid modulation of social play behavior occurs in brain regions implicated in emotion and motivation. Social play increased levels of the endocannabinoid anandamide in the amygdala and nucleus accumbens (NAc), but not in prefrontal cortex or hippocampus of 4–5 week old male Wistar rats. Furthermore, social play increased phosphorylation of CB1 cannabinoid receptors in the amygdala. Systemic administration of the anandamide hydrolysis inhibitor URB597 increased social play behavior, and augmented the associated elevation in anandamide levels in the amygdala, but not the NAc. Infusion of URB597 into the basolateral amygdala (BLA) increased social play behavior, and blockade of BLA CB1 cannabinoid receptors with the antagonist/inverse agonist SR141716A prevented the play-enhancing effects of systemic administration of URB597. Infusion of URB597 into the NAc also increased social play, but blockade of NAc CB1 cannabinoid receptors did not antagonize the play-enhancing effects of systemic URB597 treatment. Last, SR141716A did not affect social play after infusion into the core and shell subregions of the NAc, while it reduced social play when infused into the BLA. These data show that increased anandamide signalling in the amygdala and NAc augments social play, and identify the BLA as a prominent site of action for endocannabinoids to modulate the rewarding properties of social interactions in adolescent rats. PMID:23100412
Alterations in the endocannabinoid system in the rat valproic acid model of autism.
Kerr, D M; Downey, L; Conboy, M; Finn, D P; Roche, M
2013-07-15
The endocannabinoid system plays a crucial role in regulating emotionality and social behaviour, however it is unknown whether this system plays a role in symptoms associated with autism spectrum disorders. The current study evaluated if alterations in the endocannabinoid system accompany behavioural changes in the valproic acid (VPA) rat model of autism. Adolescent rats prenatally exposed to VPA exhibited impaired social investigatory behaviour, hypoalgesia and reduced lococmotor activity on exposure to a novel aversive arena. Levels of the endocananbinoids, anandamide (AEA) and 2-arachidonylglycerol (2-AG) in the hippocampus, frontal cortex or cerebellum were not altered in VPA- versus saline-exposed animals. However, the expression of mRNA for diacylglycerol lipase α, the enzyme primarily responsible for the synthesis of 2-AG, was reduced in the cerebellum of VPA-exposed rats. Furthermore, while the expression of mRNA for the 2-AG-catabolising enzyme monoacylglycerol lipase was reduced, the activity of this enzyme was increased, in the hippocampus of VPA-exposed animals. CB1 or CB2 receptor expression was not altered in any of the regions examined, however VPA-exposed rats exhibited reduced PPARα and GPR55 expression in the frontal cortex and PPARγ and GPR55 expression in the hippocampus, additional receptor targets of the endocannabinoids. Furthermore, tissue levels of the fatty acid amide hydrolase substrates, AEA, oleoylethanolamide and palmitoylethanolamide, were higher in the hippocampus of VPA-exposed rats immediately following social exposure. These data indicate that prenatal VPA exposure is associated with alterations in the brain's endocannabinoid system and support the hypothesis that endocannabinoid dysfunction may underlie behavioural abnormalities observed in autism spectrum disorders. Copyright © 2013 Elsevier B.V. All rights reserved.
The endocannabinoid system as a target for the treatment of cannabis dependence.
Clapper, Jason R; Mangieri, Regina A; Piomelli, Daniele
2009-01-01
The endocannabinoid system modulates neurotransmission at inhibitory and excitatory synapses in brain regions relevant to the regulation of pain, emotion, motivation, and cognition. This signaling system is engaged by the active component of cannabis, Delta9-tetrahydrocannabinol (Delta9-THC), which exerts its pharmacological effects by activation of G protein-coupled type-1 (CB1) and type-2 (CB2) cannabinoid receptors. During frequent cannabis use a series of poorly understood neuroplastic changes occur, which lead to the development of dependence. Abstinence in cannabinoid-dependent individuals elicits withdrawal symptoms that promote relapse into drug use, suggesting that pharmacological strategies aimed at alleviating cannabis withdrawal might prevent relapse and reduce dependence. Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side-effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive down-regulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.
Chen, Li; Lodge, Daniel J
2015-01-01
Background: Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia. Methods: Using in vivo extracellular recordings in chloral hydrate–anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats. Results: Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity. Conclusions: Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. PMID:25539511
USDA-ARS?s Scientific Manuscript database
Postmenopausal women (PMW) report marginal n-3 PUFA intakes and are at risk of chronic diseases associated with the skeletal, muscular, and cardiovascular systems. Our investigation characterized the endocannabinoids (EC), oxylipins (OL), and global metabolites (GM) in white PMW (75 ± 7 y), randomiz...
Monteleone, A M; Di Marzo, V; Monteleone, P; Dalle Grave, R; Aveta, T; Ghoch, M El; Piscitelli, F; Volpe, U; Calugi, S; Maj, M
2016-06-01
Hedonic eating occurs independently from homeostatic needs prompting the ingestion of pleasurable foods that are typically rich in fat, sugar and/or salt content. In normal weight healthy subjects, we found that before hedonic eating, plasma levels of 2-arachidonoylglycerol (2-AG) were higher than before nonhedonic eating, and although they progressively decreased after food ingestion in both eating conditions, they were significantly higher in hedonic eating. Plasma levels of anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), instead, progressively decreased in both eating conditions without significant differences. In this study, we investigated the responses of AEA, 2-AG, OEA and PEA to hedonic eating in obese individuals. Peripheral levels of AEA, 2-AG, OEA and PEA were measured in 14 obese patients after eating favourite (hedonic eating) and non-favourite (nonhedonic eating) foods in conditions of no homeostatic needs. Plasma levels of 2-AG increased after eating the favourite food, whereas they decreased after eating the non-favourite food, with the production of the endocannabinoid being significantly enhanced in hedonic eating. Plasma levels of AEA decreased progressively in nonhedonic eating, whereas they showed a decrease after the exposure to the favourite food followed by a return to baseline values after eating it. No significant differences emerged in plasma OEA and PEA responses to favourite and non-favourite food. Present findings compared with those obtained in our previously studied normal weight healthy subjects suggest deranged responses of endocannabinoids to food-related reward in obesity.
Scherma, Maria; Muntoni, Anna Lisa; Melis, Miriam; Fattore, Liana; Fadda, Paola; Fratta, Walter; Pistis, Marco
2016-05-01
Several lines of evidence suggest that endocannabinoid and nicotinic cholinergic systems are implicated in the regulation of different physiological processes, including reward, and in the neuropathological mechanisms of psychiatric diseases, such as addiction. A crosstalk between these two systems is substantiated by the overlapping distribution of cannabinoid and nicotinic acetylcholine receptors in many brain structures. We will review recent preclinical data showing how the endocannabinoid and nicotinic cholinergic systems interact bidirectionally at the level of the brain reward pathways, and how this interaction plays a key role in modulating nicotine and cannabinoid intake and dependence. Many behavioral and neurochemical effects of nicotine that are related to its addictive potential are reduced by pharmacological blockade or genetic deletion of type-1 cannabinoid receptors, inhibition of endocannabinoid uptake or metabolic degradation, and activation of peroxisome proliferator-activated-receptor-α. On the other hand, cholinergic antagonists at α7 nicotinic acetylcholine receptors as well as endogenous negative allosteric modulators of these receptors are effective in blocking dependence-related effects of cannabinoids. Pharmacological manipulation of the endocannabinoid system and endocannabinoid-like neuromodulators shows promise in the treatment of nicotine dependence and in relapse prevention. Likewise, drugs acting at nicotinic acetylcholine receptors might prove useful in the therapy of cannabinoid dependence. Research by Steven R. Goldberg has significantly contributed to the progress in this research field.
A role for endocannabinoids in viral-induced dyskinetic and convulsive phenomena.
Solbrig, Marylou V; Adrian, Russell; Baratta, Janie; Piomelli, Daniele; Giuffrida, Andrea
2005-08-01
Dyskinesias and seizures are both medically refractory disorders for which cannabinoid-based treatments have shown early promise as primary or adjunctive therapy. Using the Borna disease (BD) virus rat, an animal model of viral encephalopathy with spontaneous hyperkinetic movements and seizure susceptibility, we identified a key role for endocannabinoids in the maintenance of a balanced tone of activity in extrapyramidal and limbic circuits. BD rats showed significant elevations of the endocannabinoid anandamide in subthalamic nucleus, a relay nucleus compromised in hyperkinetic disorders. While direct and indirect cannabinoid agonists had limited motor effects in BD rats, abrupt reductions of endocannabinoid tone by the CB1 antagonist SR141716A (0.3 mg/kg, i.p.) caused seizures characterized by myoclonic jerks time-locked to periodic spike/sharp wave discharges on hippocampal electroencephalography. The general opiate antagonist naloxone (NLX) (1 mg/kg, s.c.), another pharmacologic treatment with potential efficacy in dyskinesias or L-DOPA motor complications, produced similar seizures. No changes in anandamide levels in hippocampus and amygdala were found in convulsing NLX-treated BD rats. In contrast, NLX significantly increased anandamide levels in the same areas of normal uninfected animals, possibly protecting against seizures. Pretreatment with the anandamide transport blocker AM404 (20 mg/kg, i.p.) prevented NLX-induced seizures. These findings are consistent with an anticonvulsant role for endocannabinoids, counteracting aberrant firing produced by convulsive agents, and with a functional or reciprocal relation between opioid and cannabinoid tone with respect to limbic convulsive phenomena.
Zamberletti, Erica; Piscitelli, Fabiana; De Castro, Valentina; Murru, Elisabetta; Gabaglio, Marina; Colucci, Paola; Fanali, Chiara; Prini, Pamela; Bisogno, Tiziana; Maccarrone, Mauro; Campolongo, Patrizia; Banni, Sebastiano; Rubino, Tiziana; Parolaro, Daniela
2017-02-01
Imbalanced dietary n-3 and n-6 PUFA content has been associated with a number of neurological conditions. Endocannabinoids are n-6 PUFA derivatives, whose brain concentrations are sensitive to modifications of fatty acid composition of the diet and play a central role in the regulation of mood and cognition. As such, the endocannabinoid system appears to be an ideal candidate for mediating the effects of dietary fatty acids on mood and cognition. Lifelong administration of isocaloric α-linolenic acid (ALA)-deficient and -enriched diets induced short-term memory deficits, whereas only dietary ALA enrichment altered emotional reactivity in adult male rats compared with animals fed a standard diet that was balanced in ALA/linoleic acid (LA) ratio. In the prefrontal cortex, both diets reduced 2-AG levels and increased MAG lipase expression, whereas only the enriched diet reduced AEA levels, simultaneously increasing FAAH expression. In the hippocampus, an ALA-enriched diet decreased AEA content and NAPE-PLD expression, and reduced 2-AG content while increasing MAG lipase expression. These findings highlight the importance of a diet balanced in fatty acid content for normal brain functions and to support a link between dietary ALA, the brain endocannabinoid system, and behavior, which indicates that dietary ALA intake is a sufficient condition for altering the endocannabinoid system in brain regions modulating mood and cognition. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
The endocannabinoids (eCBs) are endogenous arachidonoyl-containing lipid mediators with important roles in host defense. Macrophages are first-line defenders of the innate immune system and biosynthesize large amounts of eCBs when activated. The cellular levels of eCBs are controlled by the activiti...
Endocannabinoids Acting at Cannabinoid-1 Receptors Regulate Cardiovascular Function in Hypertension
Bátkai, Sándor; Pacher, Pál; Osei-Hyiaman, Douglas; Radaeva, Svetlana; Liu, Jie; Harvey-White, Judith; Offertáler, László; Mackie, Ken; Audrey Rudd, M.; Bukoski, Richard D.; Kunos, George
2009-01-01
Background Endocannabinoids are novel lipid mediators with hypotensive and cardiodepressor activity. Here, we examined the possible role of the endocannabinergic system in cardiovascular regulation in hypertension. Methods and Results In spontaneously hypertensive rats (SHR), cannabinoid-1 receptor (CB1) antagonists increase blood pressure and left ventricular contractile performance. Conversely, preventing the degradation of the endocannabinoid anandamide by an inhibitor of fatty acid amidohydrolase reduces blood pressure, cardiac contractility, and vascular resistance to levels in normotensive rats, and these effects are prevented by CB1 antagonists. Similar changes are observed in 2 additional models of hypertension, whereas in normotensive control rats, the same parameters remain unaffected by any of these treatments. CB1 agonists lower blood pressure much more in SHR than in normotensive Wistar-Kyoto rats, and the expression of CB1 is increased in heart and aortic endothelium of SHR compared with Wistar-Kyoto rats. Conclusions We conclude that endocannabinoids tonically suppress cardiac contractility in hypertension and that enhancing the CB1-mediated cardiodepressor and vasodilator effects of endogenous anandamide by blocking its hydrolysis can normalize blood pressure. Targeting the endocannabinoid system offers novel therapeutic strategies in the treatment of hypertension. PMID:15451779
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1995-09-01
The project is a significant part of Hawthorne Army Ammunition Depot`s effort to achieve a 20-percent reduction in energy consumption by FY2000 versus FY1985 baseline levels. The project will also assure that heating services are provided to Industrial Area facilities on a continuing basis, supporting mission requirements.
Rodríguez-Cueto, Carmen; Hernández-Gálvez, Mariluz; Hillard, Cecilia J; Maciel, Patricia; García-García, Luis; Valdeolivas, Sara; Pozo, Miguel A; Ramos, José A; Gómez-Ruiz, María; Fernández-Ruiz, Javier
2016-12-17
Spinocerebellar ataxia type-3 (SCA-3) is a rare disease but it is the most frequent type within the autosomal dominant inherited ataxias. The disease lacks an effective treatment to alleviate major symptoms and to modify disease progression. Our recent findings that endocannabinoid receptors and enzymes are significantly altered in the post-mortem cerebellum of patients affected by autosomal-dominant hereditary ataxias suggest that targeting the endocannabinoid signaling system may be a promising therapeutic option. Our goal was to investigate the status of the endocannabinoid signaling system in a transgenic mouse model of SCA-3, in the two CNS structures most affected in this disease - cerebellum and brainstem. These animals exhibited progressive motor incoordination, imbalance, abnormal gait, muscle weakness, and dystonia, in parallel to reduced in vivo brain glucose metabolism, deterioration of specific neuron subsets located in the dentate nucleus and pontine nuclei, small changes in microglial morphology, and reduction in glial glutamate transporters. Concerning the endocannabinoid signaling, our data indicated no changes in CB 2 receptors. By contrast, CB 1 receptors increased in the Purkinje cell layer, in particular in terminals of basket cells, but they were reduced in the dentate nucleus. We also measured the levels of endocannabinoid lipids and found reductions in anandamide and oleoylethanolamide in the brainstem. These changes correlated with an increase in the FAAH enzyme in the brainstem, which also occurred in some cerebellar areas, whereas other endocannabinoid-related enzymes were not altered. Collectively, our results in SCA-3 mutant mice confirm a possible dysregulation in the endocannabinoid system in the most important brain structures affected in this type of ataxia, suggesting that a pharmacological manipulation addressed to correct these changes could be a promising option in SCA-3. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Gee, Dylan G; Fetcho, Robert N; Jing, Deqiang; Li, Anfei; Glatt, Charles E; Drysdale, Andrew T; Cohen, Alexandra O; Dellarco, Danielle V; Yang, Rui R; Dale, Anders M; Jernigan, Terry L; Lee, Francis S; Casey, B J
2016-04-19
Anxiety disorders peak in incidence during adolescence, a developmental window that is marked by dynamic changes in gene expression, endocannabinoid signaling, and frontolimbic circuitry. We tested whether genetic alterations in endocannabinoid signaling related to a common polymorphism in fatty acid amide hydrolase (FAAH), which alters endocannabinoid anandamide (AEA) levels, would impact the development of frontolimbic circuitry implicated in anxiety disorders. In a pediatric imaging sample of over 1,000 3- to 21-y-olds, we show effects of the FAAH genotype specific to frontolimbic connectivity that emerge by ∼12 y of age and are paralleled by changes in anxiety-related behavior. Using a knock-in mouse model of the FAAH polymorphism that controls for genetic and environmental backgrounds, we confirm phenotypic differences in frontoamygdala circuitry and anxiety-related behavior by postnatal day 45 (P45), when AEA levels begin to decrease, and also, at P75 but not before. These results, which converge across species and level of analysis, highlight the importance of underlying developmental neurobiology in the emergence of genetic effects on brain circuitry and function. Moreover, the results have important implications for the identification of risk for disease and precise targeting of treatments to the biological state of the developing brain as a function of developmental changes in gene expression and neural circuit maturation.
Regulation of GPR119 receptor activity with endocannabinoid-like lipids.
Syed, Samreen K; Bui, Hai Hoang; Beavers, Lisa S; Farb, Thomas B; Ficorilli, James; Chesterfield, Amy K; Kuo, Ming-Shang; Bokvist, Krister; Barrett, David G; Efanov, Alexander M
2012-12-15
The GPR119 receptor plays an important role in the secretion of incretin hormones in response to nutrient consumption. We have studied the ability of an array of naturally occurring endocannabinoid-like lipids to activate GPR119 and have identified several lipid receptor agonists. The most potent receptor agonists identified were three N-acylethanolamines: oleoylethanolamine (OEA), palmitoleoylethanolamine, and linoleylethanolamine (LEA), all of which displayed similar potency in activating GPR119. Another lipid, 2-oleoylglycerol (2-OG), also activated GPR119 receptor but with significantly lower potency. Endogenous levels of endocannabinoid-like lipids were measured in intestine in fasted and refed mice. Of the lipid GPR119 agonists studied, the intestinal levels of only OEA, LEA, and 2-OG increased significantly upon refeeding. Intestinal levels of OEA and LEA in the fasted mice were low. In the fed state, OEA levels only moderately increased, whereas LEA levels rose drastically. 2-OG was the most abundant of the three GPR119 agonists in intestine, and its levels were radically elevated in fed mice. Our data suggest that, in lean mice, 2-OG and LEA may serve as physiologically relevant endogenous GPR119 agonists that mediate receptor activation upon nutrient uptake.
Role of Endocannabinoids and Cannabinoid-1 Receptors in Cerebrocortical Blood Flow Regulation
Horváth, Béla; Benkő, Rita; Lacza, Zsombor; Járai, Zoltán; Sándor, Péter; Di Marzo, Vincenzo; Pacher, Pál; Benyó, Zoltán
2013-01-01
Background Endocannabinoids are among the most intensively studied lipid mediators of cardiovascular functions. In the present study the effects of decreased and increased activity of the endocannabinoid system (achieved by cannabinoid-1 (CB1) receptor blockade and inhibition of cannabinoid reuptake, respectively) on the systemic and cerebral circulation were analyzed under steady-state physiological conditions and during hypoxia and hypercapnia (H/H). Methodology/Principal Findings In anesthetized spontaneously ventilating rats the CB1-receptor antagonist/inverse agonist AM-251 (10 mg/kg, i.v.) failed to influence blood pressure (BP), cerebrocortical blood flow (CoBF, measured by laser-Doppler flowmetry) or arterial blood gas levels. In contrast, the putative cannabinoid reuptake inhibitor AM-404 (10 mg/kg, i.v.) induced triphasic responses, some of which could be blocked by AM-251. Hypertension during phase I was resistant to AM-251, whereas the concomitant CoBF-increase was attenuated. In contrast, hypotension during phase III was sensitive to AM-251, whereas the concomitant CoBF-decrease was not. Therefore, CoBF autoregulation appeared to shift towards higher BP levels after CB1-blockade. During phase II H/H developed due to respiratory depression, which could be inhibited by AM-251. Interestingly, however, the concomitant rise in CoBF remained unchanged after AM-251, indicating that CB1-blockade potentially enhanced the reactivity of the CoBF to H/H. In accordance with this hypothesis, AM-251 induced a significant enhancement of the CoBF responses during controlled stepwise H/H. Conclusion/Significance Under resting physiological conditions CB1-receptor mediated mechanisms appear to have limited influence on systemic or cerebral circulation. Enhancement of endocannabinoid levels, however, induces transient CB1-independent hypertension and sustained CB1-mediated hypotension. Furthermore, enhanced endocannabinoid activity results in respiratory depression in a CB1-dependent manner. Finally, our data indicate for the first time the involvement of the endocannabinoid system and CB1-receptors in the regulation of the cerebral circulation during H/H and also raise the possibility of their contribution to the autoregulation of CoBF. PMID:23308211
Olango, WM; Roche, M; Ford, GK; Harhen, B; Finn, DP
2012-01-01
BACKGROUND AND PURPOSE Endocannabinoids in the midbrain periaqueductal grey (PAG) modulate nociception and unconditioned stress-induced analgesia; however, their role in fear-conditioned analgesia (FCA) has not been examined. The present study examined the role of the endocannabinoid system in the dorsolateral (dl) PAG in formalin-evoked nociceptive behaviour, conditioned fear and FCA in rats. EXPERIMENTAL APPROACH Rats received intra-dlPAG administration of the CB1 receptor antagonist/inverse agonist rimonabant, or vehicle, before re-exposure to a context paired 24 h previously with foot shock. Formalin-evoked nociceptive behaviour and fear-related behaviours (freezing and 22 kHz ultrasonic vocalization) were assessed. In a separate cohort, levels of endocannabinoids [2-arachidonoyl glycerol (2-AG) and N-arachidonoyl ethanolamide (anandamide; AEA)] and the related N-acylethanolamines (NAEs) [N-palmitoyl ethanolamide (PEA) and N-oleoyl ethanolamide (OEA)] were measured in dlPAG tissue following re-exposure to conditioned context in the presence or absence of formalin-evoked nociceptive tone. KEY RESULTS Re-exposure of rats to the context previously associated with foot shock resulted in FCA. Intra-dlPAG administration of rimonabant significantly attenuated FCA and fear-related behaviours expressed in the presence of nociceptive tone. Conditioned fear without formalin-evoked nociceptive tone was associated with increased levels of 2-AG, AEA, PEA and OEA in the dlPAG. FCA was specifically associated with an increase in AEA levels in the dlPAG. CONCLUSIONS AND IMPLICATIONS Conditioned fear to context mobilises endocannabinoids and NAEs in the dlPAG. These data support a role for endocannabinoids in the dlPAG in mediating the potent suppression of pain responding which occurs during exposure to conditioned aversive contexts. LINKED ARTICLES This article is part of a themed section on Cannabinoids in Biology and Medicine. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.165.issue-8. To view Part I of Cannabinoids in Biology and Medicine visit http://dx.doi.org/10.1111/bph.2011.163.issue-7 PMID:21564082
The endocannabinoid system in brain reward processes.
Solinas, M; Goldberg, S R; Piomelli, D
2008-05-01
Food, drugs and brain stimulation can serve as strong rewarding stimuli and are all believed to activate common brain circuits that evolved in mammals to favour fitness and survival. For decades, endogenous dopaminergic and opioid systems have been considered the most important systems in mediating brain reward processes. Recent evidence suggests that the endogenous cannabinoid (endocannabinoid) system also has an important role in signalling of rewarding events. First, CB(1) receptors are found in brain areas involved in reward processes, such as the dopaminergic mesolimbic system. Second, activation of CB(1) receptors by plant-derived, synthetic or endogenous CB(1) receptor agonists stimulates dopaminergic neurotransmission, produces rewarding effects and increases rewarding effects of abused drugs and food. Third, pharmacological or genetic blockade of CB(1) receptors prevents activation of dopaminergic neurotransmission by several addictive drugs and reduces rewarding effects of food and these drugs. Fourth, brain levels of the endocannabinoids anandamide and 2-arachidonoylglycerol are altered by activation of reward processes. However, the intrinsic activity of the endocannabinoid system does not appear to play a facilitatory role in brain stimulation reward and some evidence suggests it may even oppose it. The influence of the endocannabinoid system on brain reward processes may depend on the degree of activation of the different brain areas involved and might represent a mechanism for fine-tuning dopaminergic activity. Although involvement of the various components of the endocannabinoid system may differ depending on the type of rewarding event investigated, this system appears to play a major role in modulating reward processes.
Abnormalities in neuroendocrine stress response in psychosis: the role of endocannabinoids.
Appiah-Kusi, E; Leyden, E; Parmar, S; Mondelli, V; McGuire, P; Bhattacharyya, S
2016-01-01
The aim of this article is to summarize current evidence regarding alterations in the neuroendocrine stress response system and endocannabinoid system and their relationship in psychotic disorders such as schizophrenia. Exposure to stress is linked to the development of a number of psychiatric disorders including psychosis. However, the precise role of stress in the development of psychosis and the possible mechanisms that might underlie this are not well understood. Recently the cannabinoid hypothesis of schizophrenia has emerged as a potential line of enquiry. Endocannabinoid levels are increased in patients with psychosis compared with healthy volunteers; furthermore, they increase in response to stress, which suggests another potential mechanism for how stress might be a causal factor in the development of psychosis. However, research regarding the links between stress and the endocannabinoid system is in its infancy. Evidence summarized here points to an alteration in the baseline tone and reactivity of the hypothalamic-pituitary-adrenal (HPA) axis as well as in various components of the endocannabinoid system in patients with psychosis. Moreover, the precise nature of the inter-relationship between these two systems is unclear in man, especially their biological relevance in the context of psychosis. Future studies need to simultaneously investigate HPA axis and endocannabinoid alterations both at baseline and following experimental perturbation in healthy individuals and those with psychosis to understand how they interact with each other in health and disease and obtain mechanistic insight as to their relevance to the pathophysiology of schizophrenia.
2010-01-01
Background The endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB). Design and Methods The levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp. Results As compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects. Conclusions The observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes. PMID:20426869
Injectable SN-38-loaded Polymeric Depots for Cancer Chemotherapy of Glioblastoma Multiforme.
Manaspon, Chawan; Nasongkla, Norased; Chaimongkolnukul, Khuanjit; Nittayacharn, Pinunta; Vejjasilpa, Ketpat; Kengkoom, Kanchana; Boongird, Atthaporn; Hongeng, Suradej
2016-12-01
SN-38, a potent chemotherapeutic drug, has not been used clinically because of its severe side effects and poor solubility. In this work, we aimed to evaluate the effect of dose and multiple injections of SN-38-loaded polymeric depots on antitumor efficacy and toxicity in vivo. Preparation and characterization of SN-38-loaded depots were performed and evaluated in vitro using human glioblastoma cell line, U-87MG. Antitumor efficacy with different depot administrations including dose, position of depot injection and number of injections were evaluated in tumor model in nude mice. Depots encapsulated SN-38 with high encapsulation efficiency (~98.3%). High amount of SN-38 (3.0 ± 0.1 mg) was prolonged and controlled release over time and showed anticancer activity against U-87MG cell line in vitro. For one course administration, depots exhibited better antitumor efficacy and reduced toxicity compared to free SN-38. Elevated doses and multiple injections of SN-38-loaded depots and free SN-38 provided greater tumor growth inhibition and animal survival. All animals received SN-38-loaded depots were well tolerated and survived while most of those received free SN-38 died at day 30. Free SN-38 showed severe toxic effect compared to minimal toxicity from SN-38-loaded depots which was due to lower SN-38 level in systemic circulation. Fluorescence imaging and histopathology confirmed that SN-38 released from depots was detected throughout tumors 35 days post administration. SN-38-loaded depots were proved as a promising new treatment for highly invasive glioblastoma multiforme with low acute toxicity due to controlled release of SN-38.
Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea
2013-08-01
The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission.
Is lipid signaling through cannabinoid 2 receptors part of a protective system?
Pacher, P.; Mechoulam, R.
2011-01-01
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB2) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB2 receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, auto-immune, lung disorders to pain and cancer, and modulating CB2 receptor activity holds tremendous therapeutic potential in these pathologies. While CB2 receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB2 receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB2 receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects. PMID:21295074
Is lipid signaling through cannabinoid 2 receptors part of a protective system?
Pacher, P; Mechoulam, R
2011-04-01
The mammalian body has a highly developed immune system which guards against continuous invading protein attacks and aims at preventing, attenuating or repairing the inflicted damage. It is conceivable that through evolution analogous biological protective systems have been evolved against non-protein attacks. There is emerging evidence that lipid endocannabinoid signaling through cannabinoid 2 (CB₂) receptors may represent an example/part of such a protective system/armamentarium. Inflammation/tissue injury triggers rapid elevations in local endocannabinoid levels, which in turn regulate signaling responses in immune and other cells modulating their critical functions. Changes in endocannabinoid levels and/or CB₂ receptor expressions have been reported in almost all diseases affecting humans, ranging from cardiovascular, gastrointestinal, liver, kidney, neurodegenerative, psychiatric, bone, skin, autoimmune, lung disorders to pain and cancer, and modulating CB₂ receptor activity holds tremendous therapeutic potential in these pathologies. While CB₂ receptor activation in general mediates immunosuppressive effects, which limit inflammation and associated tissue injury in large number of pathological conditions, in some disease states activation of the CB₂ receptor may enhance or even trigger tissue damage, which will also be discussed alongside the protective actions of the CB₂ receptor stimulation with endocannabinoids or synthetic agonists, and the possible biological mechanisms involved in these effects. Published by Elsevier Ltd.
Supply and demand for endocannabinoids
Alger, Bradley E.; Kim, Jimok
2011-01-01
The endocannabinoid system consists of G-protein coupled cannabinoid receptors that can be activated by cannabis-derived drugs and small lipids called endocannabinoids, plus associated biochemical machinery (precursors, synthetic and degradative enzymes, transporters). The endocannabinoid system in the brain primarily influences neuronal synaptic communication, and affects biological – functions including eating, anxiety, learning and memory, growth and development – via an array of actions throughout the nervous system. While many aspects of synaptic regulation by endocannabinoids are becoming clear, details of the subcellular organization and regulation of the endocannabinoid system are less well understood. This review focuses on recent investigations that illuminate fundamental issues of endocannabinoid storage, release, and functional roles. PMID:21507493
2015-05-30
scalable application of cutting edge technologies. 20 4. Responding to changing resources—With likely significant resource reductions the depot...deal with underutilized organic capability while continuing to increase outsourcing of depot workload. In addition the study states that a...the unique organic skills that TYAD could 40 bring to the software sustainment mission could be valuable based on the specific type of software
Endocannabinoid signaling and synaptic function.
Castillo, Pablo E; Younts, Thomas J; Chávez, Andrés E; Hashimotodani, Yuki
2012-10-04
Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a nonretrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. In this Review, we focus on new advances in synaptic endocannabinoid signaling in the mammalian brain. The emerging picture not only reinforces endocannabinoids as potent regulators of synaptic function but also reveals that endocannabinoid signaling is mechanistically more complex and diverse than originally thought. Copyright © 2012 Elsevier Inc. All rights reserved.
Sugaya, Yuki; Kano, Masanobu
2018-05-08
Progress in research on endocannabinoid signaling has greatly advanced our understanding of how it controls neural circuit excitability in health and disease. In general, endocannabinoid signaling at excitatory synapses suppresses seizures by inhibiting glutamate release. In contrast, endocannabinoid signaling promotes seizures by inhibiting GABA release at inhibitory synapses. The physiological distribution of endocannabinoid signaling molecules becomes disrupted with the development of epileptic focus in patients with mesial temporal lobe epilepsy and in animal models of experimentally induced epilepsy. Augmentation of endocannabinoid signaling can promote the development of epileptic focus at initial stages. However, at later stages, increased endocannabinoid signaling delays it and suppresses spontaneous seizures. Thus, the regulation of endocannabinoid signaling at specific synapses that cause hyperexcitability during particular stages of disease development may be effective for treating epilepsy and epileptogenesis.
Rigamonti, Antonello E; Piscitelli, Fabiana; Aveta, Teresa; Agosti, Fiorenza; De Col, Alessandra; Bini, Silvia; Cella, Silvano G; Di Marzo, Vincenzo; Sartorio, Alessandro
2015-01-01
Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity.
Rigamonti, Antonello E.; Piscitelli, Fabiana; Aveta, Teresa; Agosti, Fiorenza; De Col, Alessandra; Bini, Silvia; Cella, Silvano G.; Di Marzo, Vincenzo; Sartorio, Alessandro
2015-01-01
Background Hedonic hunger refers to consumption of food just for pleasure and not to maintain energy homeostasis. Recently, consumption of food for pleasure was reported to be associated with increased circulating levels of both the orexigenic peptide ghrelin and the endocannabinoid 2-arachidonoyl-glycerol (2-AG) in normal-weight subjects. To date, the effects of hedonic hunger, and in particular of chocolate craving, on these mediators in obese subjects are still unknown. Methods To explore the role of some gastrointestinal orexigenic and anorexigenic peptides and endocannabinoids (and some related congeners) in chocolate consumption, we measured changes in circulating levels of ghrelin, glucagon-like peptide 1 (GLP-1), peptide YY (PYY), anandamide (AEA), 2-AG, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) in 10 satiated severely obese subjects after consumption of chocolate and, on a separate day, of a non-palatable isocaloric food with the same bromatologic composition. Evaluation of hunger and satiety was also performed by visual analogic scale. Results The anticipatory phase and the consumption of food for pleasure were associated with increased circulating levels of ghrelin, AEA, 2-AG, and OEA. In contrast, the levels of GLP-1, PYY, and PEA did not differ before and after the exposure/ingestion of either chocolate or non-palatable foods. Hunger and satiety were higher and lower, respectively, in the hedonic session than in the non-palatable one. Conclusions When motivation to eat is generated by exposure to, and consumption of, chocolate a peripheral activation of specific endogenous rewarding chemical signals, including ghrelin, AEA, and 2-AG, is observed in obese subjects. Although preliminary, these findings predict the effectiveness of ghrelin and endocannabinoid antagonists in the treatment of obesity. PMID:26546790
Hjortebjerg, Rikke; Berryman, Darlene E; Comisford, Ross; Frank, Stuart J; List, Edward O; Bjerre, Mette; Frystyk, Jan; Kopchick, John J
2017-05-01
Growth hormone (GH) is a determinant of glucose homeostasis and adipose tissue (AT) function. Using 7-month-old transgenic mice expressing the bovine growth hormone (bGH) gene and growth hormone receptor knockout (GHR-/-) mice, we examined whether changes in GH action affect glucose, insulin, and pyruvate tolerance and AT expression of proteins involved in the interrelated signaling pathways of GH, insulinlike growth factor 1 (IGF-1), and insulin. Furthermore, we searched for AT depot-specific differences in control mice. Glycated hemoglobin levels were reduced in bGH and GHR-/- mice, and bGH mice displayed impaired gluconeogenesis as judged by pyruvate tolerance testing. Serum IGF-1 was elevated by 90% in bGH mice, whereas IGF-1 and insulin were reduced by 97% and 61% in GHR-/- mice, respectively. Igf1 RNA was increased in subcutaneous, epididymal, retroperitoneal, and brown adipose tissue (BAT) depots in bGH mice (mean increase ± standard error of the mean in all five depots, 153% ± 27%) and decreased in all depots in GHR-/- mice (mean decrease, 62% ± 4%). IGF-1 receptor expression was decreased in all AT depots of bGH mice (mean decrease, 49% ± 6%) and increased in all AT depots of GHR-/- mice (mean increase, 94% ± 8%). Insulin receptor expression was reduced in retroperitoneal, mesenteric, and BAT depots in bGH mice (mean decrease in all depots, 56% ± 4%) and augmented in subcutaneous, retroperitoneal, mesenteric, and BAT depots in GHR-/- mice (mean increase: 51% ± 1%). Collectively, our findings indicate a role for GH in influencing hormone signaling in AT in a depot-dependent manner. Copyright © 2017 Endocrine Society.
Endocannabinoid signaling in reward and addiction
Parsons, Loren H.; Hurd, Yasmin L.
2015-01-01
Brain endocannabinoid signaling influences the motivation for natural rewards (such as palatable food, sexual activity and social interaction) and modulates the rewarding effects of addictive drugs. Pathological forms of natural and drug-induced reward are associated with dysregulated endocannabinoid signaling that may derive from pre-existing genetic factors or from prolonged drug exposure. Impaired endocannabinoid signaling contributes to dysregulated synaptic plasticity, increased stress responsivity, negative emotional states, and craving that propel addiction. Understanding the contributions of endocannabinoid disruptions to behavioral and physiological traits provides insight into the endocannabinoid influence on addiction vulnerability. PMID:26373473
Mustard vesicants alter expression of the endocannabinoid system in mouse skin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wohlman, Irene M.; Composto, Gabriella M.
Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis andmore » dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants. - Highlights: • Sulfur mustard and nitrogen mustard are potent skin vesicants. • The endocannabinoid system regulates keratinocyte growth and differentiation. • Vesicants are potent inducers of the endocannabinoid system in mouse skin. • Endocannabinoid proteins upregulated are FAAH, CB1, CB2 and PPARα. • FAAH inhibitors suppress vesicant-induced inflammation in mouse skin.« less
Fried, S K; Russell, C D; Grauso, N L; Brolin, R E
1993-01-01
There are marked variations in the activity of lipoprotein lipase (LPL) among adipose depots, particularly in women. Consistent with data on LPL activity, the level of expression of LPL mRNA was lower in omental (OM) than subcutaneous (SQ) adipose tissue of women. To investigate the cellular basis of these differences, OM and SQ adipose tissues obtained at surgery from obese men and women were placed in organ culture for 7 d with varying concentrations of insulin and dexamethasone. Insulin increased levels of LPL mRNA and LPL activity in abdominal SQ but not OM adipose tissue. Dexamethasone also increased LPL mRNA and LPL activity, and these effects were more marked in the OM adipose tissue, particularly in men. When insulin and dexamethasone were added together, synergistic increases in LPL activity were seen in both depots, and this was in part explained at the level of LPL mRNA. The SQ depot was more sensitive to the effects of submaximal doses of dexamethasone in the presence of insulin. The maximum activity of LPL induced by insulin or insulin plus dexamethasone was higher in the SQ than in the OM depot of women, and this was associated with higher levels of LPL mRNA. Rates of LPL synthesis paralleled LPL mRNA levels. These data show that insulin and glucocorticoids influence human adipose tissue LPL activity at the level of LPL gene expression, as well as posttranslationally, and that responsiveness to these hormonal effects is dependent on adipose depot and gender. Images PMID:8227334
FEMALE MICE ARE RESISTANT TO Fabp1 GENE ABLATION-INDUCED ALTERATIONS IN BRAIN ENDOCANNABINOID LEVELS
Martin, Gregory G.; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K.; Dangott, Lawrence J.; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J.; Kier, Ann B.; Schroeder, Friedhelm
2017-01-01
Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing ECs, i.e arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: i) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; ii) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or iii) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO). PMID:27450559
Martin, Gregory G; Chung, Sarah; Landrock, Danilo; Landrock, Kerstin K; Dangott, Lawrence J; Peng, Xiaoxue; Kaczocha, Martin; Murphy, Eric J; Kier, Ann B; Schroeder, Friedhelm
2016-09-01
Although liver fatty acid binding protein (FABP1, L-FABP) is not detectable in the brain, Fabp1 gene ablation (LKO) markedly increases endocannabinoids (EC) in brains of male mice. Since the brain EC system of females differs significantly from that of males, it was important to determine if LKO differently impacted the brain EC system. LKO did not alter brain levels of arachidonic acid (ARA)-containing EC, i.e. arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), but decreased non-ARA-containing N-acylethanolamides (OEA, PEA) and 2-oleoylglycerol (2-OG) that potentiate the actions of AEA and 2-AG. These changes in brain potentiating EC levels were not associated with: (1) a net decrease in levels of brain membrane proteins associated with fatty acid uptake and EC synthesis; (2) a net increase in brain protein levels of cytosolic EC chaperones and enzymes in EC degradation; or (3) increased brain protein levels of EC receptors (CB1, TRVP1). Instead, the reduced or opposite responsiveness of female brain EC levels to loss of FABP1 (LKO) correlated with intrinsically lower FABP1 level in livers of WT females than males. These data show that female mouse brain endocannabinoid levels were unchanged (AEA, 2-AG) or decreased (OEA, PEA, 2-OG) by complete loss of FABP1 (LKO).
Endocannabinoids as endometrial inflammatory markers in lactating Holstein cows.
Bonsale, R; Seyed Sharifi, R; Dirandeh, E; Hedayat, N; Mojtahedin, A; Ghorbanalinia, M; Abolghasemi, A
2018-06-01
The objective of this study was to consider endocannabinoid system as inflammatory markers in bovine endometrium to better understand the role of this system in regulating many of the functions that are related to inflammatory condition. At day 26 post-partum, fourteen cows were divided into two groups depending on the inflammatory condition: 1- subclinical endometritis (n = 7, with purulent or mucopurulent uterine discharge detectable in the vagina) and 2- healthy (n = 7, No (muco)) purulent discharge. Blood samples were collected at 26 and 30 days relative to calving to determine plasma tumour necrosis factor (TNF) and lipopolysaccharide-binding protein (LBP) concentrations; moreover, uterine biopsy was carried out on day 26 post-partum to measure mRNA abundance of TNF, interleukin-1B (IL1B), interleukin-6 (IL-6), C-X-C motif chemokine ligand 8 (CXCL8), endocannabinoid receptor (CNR2), N-acyl phosphatidylethanolamine phospholipase D (NAPEPLD), fatty acid amide hydrolase (FAAH), N-acylethanolamine acid amidase (NAAA) and monoglyceride lipase (MGLL) by real-time PCR. Results showed mean plasma concentrations of TNF and LBP were lower in healthy cows compared to subclinical endometritis cows (p < .05). Relative mRNA expression for NAAA and FAAH was decreased (p < .05), and relative mRNA expression for CNR2 and NAPEPLD increased in cows with subclinical endometritis compared to healthy cows. In conclusion, relative mRNA expression of TNF, IL1B and CXCL8 and plasma concentration of LBP increased during inflammatory condition along with decreased endocannabinoids hydrolyzing enzyme (NAAA and FAAH), increased enzymes that synthesize endocannabinoids (NAPEPLD) and relative gene expression of the endocannabinoid receptor; together, these contribute to increased endocannabinoids levels during inflammation. Overall, we provide evidence that endocannabinoid system is altered in endometrium tissue during inflammation through increased mRNA expression of CNR2 and synthesis enzyme and decreased mRNA expression of hydrolyzing enzymes interfere with pro-cytokine production and signalling, which may interfere with the onset and progression of inflammation. © 2018 Blackwell Verlag GmbH.
Endocannabinoid signaling and synaptic function
Castillo, Pablo E.; Younts, Thomas J.; Chávez, Andrés E.; Hashimotodani, Yuki
2012-01-01
Endocannabinoids are key modulators of synaptic function. By activating cannabinoid receptors expressed in the central nervous system, these lipid messengers can regulate several neural functions and behaviors. As experimental tools advance, the repertoire of known endocannabinoid-mediated effects at the synapse, and their underlying mechanism, continues to expand. Retrograde signaling is the principal mode by which endocannabinoids mediate short- and long-term forms of plasticity at both excitatory and inhibitory synapses. However, growing evidence suggests that endocannabinoids can also signal in a non-retrograde manner. In addition to mediating synaptic plasticity, the endocannabinoid system is itself subject to plastic changes. Multiple points of interaction with other neuromodulatory and signaling systems have now been identified. Synaptic endocannabinoid signaling is thus mechanistically more complex and diverse than originally thought. In this review, we focus on new advances in endocannabinoid signaling and highlight their role as potent regulators of synaptic function in the mammalian brain. PMID:23040807
Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosario Noemí; Alén, Francisco; Antón, María; Decara, Juan; Ouro, Daniel; Orio, Laura; Suarez, Juan; Lutz, Beat; Rodríguez de Fonseca, Fernando; Gómez de Heras, Raquel
2016-01-01
Exposure to unbalanced diets during pre-gestational and gestational periods may result in long-term alterations in metabolism and behavior. The contribution of the endocannabinoid system to these long-term adaptive responses is unknown. In the present study, we investigated the impact of female rat exposure to a hypercaloric-hypoproteic palatable diet during pre-gestational, gestational and lactational periods on the development of male offspring. In addition, the hypothalamic and hippocampal endocannabinoid contents at birth and the behavioral performance in adulthood were investigated. Exposure to a palatable diet resulted in low weight offspring who exhibited low hypothalamic contents of arachidonic acid and the two major endocannabinoids (anandamide and 2-arachidonoylglycerol) at birth. Palmitoylethanolamide, but not oleoylethanolamide, also decreased. Additionally, pups from palatable diet-fed dams displayed lower levels of anandamide and palmitoylethanolamide in the hippocampus. The low-weight male offspring, born from palatable diet exposed mothers, gained less weight during lactation and although they recovered weight during the post-weaning period, they developed abdominal adiposity in adulthood. These animals exhibited anxiety-like behavior in the elevated plus-maze and open field test and a low preference for a chocolate diet in a food preference test, indicating that maternal exposure to a hypercaloric diet induces long-term behavioral alterations in male offspring. These results suggest that maternal diet alterations in the function of the endogenous cannabinoid system can mediate the observed phenotype of the offspring, since both hypothalamic and hippocampal endocannabinoids regulate feeding, metabolic adaptions to caloric diets, learning, memory, and emotions. PMID:26778987
Seillier, Alexandre; Martinez, Alex A; Giuffrida, Andrea
2013-01-01
The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB1-dependent manner, whereas pharmacological blockade of CB1 receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB1 receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB1-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB1 receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. PMID:23563893
Obesity is a concern for bone health with aging.
Shapses, Sue A; Pop, L Claudia; Wang, Yang
2017-03-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. Copyright © 2017 Elsevier Inc. All rights reserved.
Obesity is a concern for bone health with aging
Shapses, Sue A.; Pop, L. Claudia; Wang, Yang
2017-01-01
Accumulating evidence supports a complex relationship between adiposity and osteoporosis in overweight/obese individuals, with local interactions and endocrine regulation by adipose tissue on bone metabolism and fracture risk in elderly populations. This review was conducted to summarize existing evidence to test the hypothesis that obesity is a risk factor for bone health in aging individuals. Mechanisms by which obesity adversely affects bone health are believed to be multiple, such as an alteration of bone-regulating hormones, inflammation, oxidative stress, the endocannabinoid system, that affect bone cell metabolism are discussed. In addition, evidence on the effect of fat mass and distribution on bone mass and quality is reviewed together with findings relating energy and fat intake with bone health. In summary, studies indicate that the positive effects of body weight on bone mineral density cannot counteract the detrimental effects of obesity on bone quality. However, the exact mechanism underlying bone deterioration in the obese is not clear yet and further research is required to elucidate the effect of adipose depots on bone and fracture risk in the obese population. PMID:28385284
Endocannabinoids and the Immune System in Health and Disease.
Cabral, Guy A; Ferreira, Gabriela A; Jamerson, Melissa J
2015-01-01
Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall "fine-tuning" of the immune homeostatic balance within the host.
The Endocannabinoid System and Spermatogenesis
Grimaldi, Paola; Di Giacomo, Daniele; Geremia, Raffaele
2013-01-01
Spermatogenesis is a complex process in which male germ cells undergo a mitotic phase followed by meiosis and by a morphogenetic process to form mature spermatozoa. Spermatogenesis is under the control of gonadotropins, steroid hormones and it is modulated by a complex network of autocrine and paracrine factors. These modulators ensure the correct progression of germ cell differentiation to form mature spermatozoa. Recently, it has been pointed out the relevance of endocannabinoids as critical modulators of male reproduction. Endocannabinoids are natural lipids able to bind to cannabinoid receptors and whose levels are regulated by specific biosynthetic and degradative enzymes. Together with their receptors and metabolic enzymes, they form the “endocannabinoid system” (ECS). In male reproductive tracts, they affect Sertoli cell activities, Leydig cell proliferation, germ cell differentiation, sperm motility, capacitation, and acrosome reaction. The ECS interferes with the pituitary-gonadal axis, and an intricate crosstalk between ECS and steroid hormones has been highlighted. This mini-review will focus on the involvement of the ECS in the control of spermatogenesis and on the interaction between ECS and steroid hormones. PMID:24379805
Enabling Early Sustainment Decisions: Application to F-35 Depot-Level Maintenance
2013-01-01
Level Maintenance John G. Drew, Ronald G. McGarvey, Peter Buryk Research Report Enabling Early Sustainment Decisions Application to F-35 Depot-Level...Maintenance John G. Drew, Ronald G. McGarvey, Peter Buryk RAND Project AIR FORCE Prepared for the United States Air Force Approved for public...Related publications include the following: John Drew, Russell D. Shaver, Kristin F. Lynch, Mahyar A. Amouzegar, and Don Snyder, Unmanned Aerial
Peripheral Endocannabinoid Responses to Hedonic Eating in Binge-Eating Disorder
Monteleone, Alessio Maria; Piscitelli, Fabiana; Dalle Grave, Riccardo; El Ghoch, Marwan; Maj, Mario
2017-01-01
Reward mechanisms are likely implicated in the pathophysiology of binge-eating behaviour, which is a key symptom of binge-eating disorder (BED). Since endocannabinoids modulate food-related reward, we aimed to investigate the responses of anandamide (AEA) and 2-arachidonoylglycerol (2-AG) to hedonic eating in patients with BED. Peripheral levels of AEA and 2-AG were measured in 7 obese BED patients before and after eating favorite (hedonic eating) and non-favorite (non-hedonic eating) foods. We found that plasma levels of AEA progressively decreased after eating the non-favorite food and significantly increased after eating the favorite food, whereas plasma levels of 2-AG did not differ significantly between the two test conditions, although they showed a trend toward significantly different time patterns. The changes in peripheral AEA levels were positively correlated to the subjects’ sensations of the urge to eat and the pleasantness while eating the presented food, while changes in peripheral 2-AG levels were positively correlated to the subjects’ sensation of the pleasantness while eating the presented food and to the amount of food they would eat. These results suggest the occurrence of distinctive responses of endocannabinoids to food-related reward in BED. The relevance of such findings to the pathophysiology of BED remains to be elucidated. PMID:29261146
2015-09-30
example, Liu et al. (2013) measured the effect of chlorpyrifos (280 mg/kg via subcutaneous (sc) injection) and parathion (27 mg/kg sc) in rats on 2...rats to the organophosphates (OPs) chlorpyrifos (280 mg/kg, sc) and parathion (27 mg/kg, sc), and correspond to 53 and 20 percent predicted inhibition...Effects of Parathion and Chlorpyrifos on Extracellular Endocannabinoid Levels in Rat Hippocampus: Influence on Cholinergic Toxicity. Toxicol Appl
Roles for the endocannabinoid system in ethanol-motivated behavior
Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J
2015-01-01
Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. PMID:26123153
Cannabinoids as Anticancer Drugs.
Ramer, Robert; Hinz, Burkhard
2017-01-01
The endocannabinoid system encompassing cannabinoid receptors, endogenous receptor ligands (endocannabinoids), as well as enzymes conferring the synthesis and degradation of endocannabinoids has emerged as a considerable target for pharmacotherapeutical approaches of numerous diseases. Besides palliative effects of cannabinoids used in cancer treatment, phytocannabinoids, synthetic agonists, as well as substances that increase endogenous endocannabinoid levels have gained interest as potential agents for systemic cancer treatment. Accordingly, cannabinoid compounds have been reported to inhibit tumor growth and spreading in numerous rodent models. The underlying mechanisms include induction of apoptosis, autophagy, and cell cycle arrest in tumor cells as well as inhibition of tumor cell invasion and angiogenic features of endothelial cells. In addition, cannabinoids have been shown to suppress epithelial-to-mesenchymal transition, to enhance tumor immune surveillance, and to support chemotherapeutics' effects on drug-resistant cancer cells. However, unwanted side effects include psychoactivity and possibly pathogenic effects on liver health. Other cannabinoids such as the nonpsychoactive cannabidiol exert a comparatively good safety profile while exhibiting considerable anticancer properties. So far experience with anticarcinogenic effects of cannabinoids is confined to in vitro studies and animal models. Although a bench-to-bedside conversion remains to be established, the current knowledge suggests cannabinoid compounds to serve as a group of drugs that may offer significant advantages for patients suffering from cancer diseases. The present review summarizes the role of the endocannabinoid system and cannabinoid compounds in tumor progression. © 2017 Elsevier Inc. All rights reserved.
Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain.
La Porta, Carmen; Bura, S Andreea; Llorente-Onaindia, Jone; Pastor, Antoni; Navarrete, Francisco; García-Gutiérrez, María Salud; De la Torre, Rafael; Manzanares, Jorge; Monfort, Jordi; Maldonado, Rafael
2015-10-01
In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease.
Role of the endocannabinoid system in the emotional manifestations of osteoarthritis pain
La Porta, Carmen; Bura, S. Andreea; Llorente-Onaindia, Jone; Pastor, Antoni; Navarrete, Francisco; García-Gutiérrez, María Salud; De la Torre, Rafael; Manzanares, Jorge; Monfort, Jordi; Maldonado, Rafael
2015-01-01
Abstract In this study, we investigated the role of the endocannabinoid system (ECS) in the emotional and cognitive alterations associated with osteoarthritis pain. The monosodium iodoacetate model was used to evaluate the affective and cognitive manifestations of osteoarthritis pain in type 1 (CB1R) and type 2 (CB2R) cannabinoid receptor knockout and wild-type mice and the ability of CB1R (ACEA) and CB2R (JWH133) selective agonists to improve these manifestations during a 3-week time period. The levels of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) were measured in plasma and brain areas involved in the control of these manifestations. Patients with knee osteoarthritis and healthy controls were recruited to evaluate pain, affective, and cognitive symptoms, as well as plasma endocannabinoid levels and cannabinoid receptor gene expression in peripheral blood lymphocytes. The affective manifestations of osteoarthritis were enhanced in CB1R knockout mice and absent in CB2R knockouts. Interestingly, both ACEA and JWH133 ameliorated the nociceptive and affective alterations, whereas ACEA also improved the associated memory impairment. An increase of 2-AG levels in prefrontal cortex and plasma was observed in this mouse model of osteoarthritis. In agreement, an increase of 2-AG plasmatic levels and an upregulation of CB1R and CB2R gene expression in peripheral blood lymphocytes were observed in patients with osteoarthritis compared with healthy subjects. Changes found in these biomarkers of the ECS correlated with pain, affective, and cognitive symptoms in these patients. The ECS plays a crucial role in osteoarthritis and represents an interesting pharmacological target and biomarker of this disease. PMID:26067584
Development of a Lunar Consumables Storage and Distribution Depot
NASA Technical Reports Server (NTRS)
Mueller, Robert P.; Notardonato, William
2004-01-01
NASA is in the preliminary planning stages for a future lunar base as a response to President George W. Bush's recent announcement of a new sustained exploration program beyond low earth orbit. Kennedy Space Center engineers are supporting this program by utilizing experience in Spaceport system design and operations to help develop a Lunar Consumables Depot. This depot will store propellants, life support fluids, and other consumables either transported from Earth or manufactured from In Situ resources. The depot will distribute these consumables in an energy efficient manner to end users including spacecraft, habitation modules, and rovers. This paper addresses some of the changes to lunar base architecture design as a result of advances in knowledge of lunar resources over the past 35 years, as well as technology advances in the area of In Situ Resource Utilization and consumable storage and distribution. A general system level description of the depot will be presented, including overall design philosophy and high level requirements. Finally, specific subsystem technologies that have been or will be developed by KSC will be addressed. Examples of these technologies are automated umbilicals, cryogenic refrigerators, novel storage vessels, advanced heat switches and heat exchangers, and self healing gaskets and wires.
Seillier, Alexandre; Giuffrida, Andrea
2018-03-01
Experimental evidence suggests that the transport of endocannabinoids might work bi-directionally. Accordingly, it is possible that pharmacological blockade of the latter affects not only the re-uptake, but also the release of endocannabinoids, thus preventing them from stimulating CB 1 receptors. We used biochemical, pharmacological, and behavioral approaches to investigate the effects of the transporter inhibitor OMDM-2 on social interaction, a behavioral assay that requires activation of CB 1 receptors. The underlying mechanisms of OMDM-2 were compared with those of the Fatty Acid Amide Hydrolase (FAAH) inhibitor URB597. Systemic administration of OMDM-2 reduced social interaction, but in contrast to URB597-induced social deficit, this effect was not reversed by the TRPV1 antagonist capsazepine. The CB 1 antagonist AM251, which did not affect URB597-induced social withdrawal, exacerbated OMDM-2 effect. In addition, the potent CB 1 agonist CP55,940 reversed OMDM-2-, but not URB597-, induced social withdrawal. Blockade of CB 1 receptor by AM251 reduced social interaction and the cholecystokinin CCK2 antagonist LY225910 reversed this effect. Similarly, OMDM-2-induced social withdrawal was reversed by LY225910, whereas URB597 effect was not. Elevation of endocannabinoid levels by URB597 or JZL184, an inhibitor of 2-AG degradation, failed to reverse OMDM-2-induced social withdrawal, and did not show additive effects on cannabinoid measurements when co-administered with OMDM-2. Taken together, these findings indicate that OMDM-2 impaired social interaction in a manner that is consistent with reduced activation of presynaptic CB 1 receptors. As cannabinoid reuptake inhibitors may impair endocannabinoid release, caution should be taken when using these drugs to enhance endocannabinoid tone in vivo. Copyright © 2017 Elsevier Ltd. All rights reserved.
Murillo-Rodríguez, Eric; Machado, Sergio; Rocha, Nuno Barbosa; Budde, Henning; Yuan, Ti-Fei; Arias-Carrión, Oscar
2016-12-17
The endocannabinoid system comprises receptors (CB 1 and CB 2 cannabinoid receptors), enzymes (Fatty Acid Amide Hydrolase [FAAH], which synthesizes the endocannabinoid anandamide), as well as the anandamide membrane transporter (AMT). Importantly, previous experiments have demonstrated that the endocannabinoid system modulates multiple neurobiological functions, including sleep. For instance, SR141716A (the CB 1 cannabinoid receptor antagonist) as well as URB597 (the FAAH inhibitor) increase waking in rats whereas VDM-11 (the blocker of the AMT) enhances sleep in rodents. However, no further evidence is available regarding the neurobiological role of the endocannabinoid system in the homeostatic control of sleep. Therefore, the aim of the current experiment was to test if SR141716A, URB597 or VDM-11 would modulate the sleep rebound after sleep deprivation. Thus, these compounds were systemically injected (5, 10, 20mg/kg; ip; separately each one) into rats after prolonged waking. We found that SR141716A and URB597 blocked in dose-dependent fashion the sleep rebound whereas animals treated with VDM-11 displayed sleep rebound during the recovery period. Complementary, injection after sleep deprivation of either SR141716A or URB597 enhanced dose-dependently the extracellular levels of dopamine (DA), norepinephrine (NE), epinephrine (EP), serotonin (5-HT), as well as adenosine (AD) while VDM-11 caused a decline in contents of these molecules. These findings suggest that SR141716A or URB597 behave as a potent stimulants since they suppressed the sleep recovery period after prolonged waking. It can be concluded that elements of the endocannabinoid system, such as the CB 1 cannabinoid receptor, FAAH and AMT, modulate the sleep homeostasis after prolonged waking. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Phytocannabinoids for Cancer Therapeutics: Recent Updates and Future Prospects.
Patil, K R; Goyal, S N; Sharma, C; Patil, C R; Ojha, S
2015-01-01
Phytocannabinoids (pCBs) are lipid-soluble phytochemicals present in the plant, Cannabis sativa L. and non-cannabis plants which have a long history in recreation and traditional medicine. The plant and the constituents isolated were central in the discovery of the endocannabinoid system (ECS), the most new target for drug discovery. The ECS includes two G-protein-coupled receptors; the cannabinoid receptors-1 and -2 (CB1 and CB2) for marijuana's psychoactive principle Δ(9)-tetrahydrocannabinol (Δ(9)-THC), their endogenous small lipid ligands; namely anandamide (AEA) and 2-arachidonoylglycerol (2-AG), also known as endocannabinoids and the enzymes for endocannabinoid biosynthesis and degradation such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The ECS has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during pathological conditions including cancer. Targeting the CB1 receptors becomes a concern because of adverse psychotropic reactions. Hence, targeting the CB2 receptors or the endocannabinoid metabolizing enzymes by pCBs obtained from plants lacking psychotropic adverse reactions has garnered interest in drug discovery. These pCBs derived from plants appear safe and effective with a wider access and availability. In the recent years, several pCBs derived other than non-cannabinoid plants have been reported to bind to and functionally interact with cannabinoid receptors and appear promising candidate for drug development including cancer therapeutics. Several of them also targets the endocannabinoid metabolizing enzymes that control endocannabinoid levels. In this article, we summarize and critically discuss the updates and future prospects of the pCBs as novel and promising candidates for cancer therapeutics.
Review article: the endocannabinoid system in liver disease, a potential therapeutic target.
Basu, P P; Aloysius, M M; Shah, N J; Brown, R S
2014-04-01
Endocannabinoids are a family of potent lipid-soluble molecules, acting on the cannabinoid (CB) receptors that mediate the effects of marijuana. The CB receptors, endocannabinoids and the enzymes involved in their synthesis and degradation are located in the brain and peripheral tissues, including the liver. To review the current understanding of the role of the endocannabinoid system in liver disease-associated pathophysiological conditions, and drugs targeting the endocannabinoid system as therapy for liver disease. Original articles and reviews were used to summarise the relevant pre-clinical and clinical research findings relating to this topic. The endocannabinoid system as a whole plays an important role in liver diseases (i.e. non-alcoholic liver disease, alcoholic liver disease, hepatic encephalopathy and autoimmune hepatitis) and related pathophysiological conditions (i.e. altered hepatic haemodynamics, cirrhotic cardiomyopathy, metabolic syndrome and ischaemia/reperfusion disease). Pharmacological targeting of the endocannabinoid system has had success as treatment for patients with liver disease, but adverse events led to withdrawal of marketing approval. However, there is optimism over novel therapeutics targeting the endocannabinoid system currently in the pre-clinical stage of development. The endocannabinoid system plays an important role in the pathophysiology of liver disease and its associated conditions. While some drugs targeting the endocannabinoid system have deleterious neurological adverse events, there is promise for a newer generation of therapies that do not cross the blood-brain barrier. © 2014 John Wiley & Sons Ltd.
Izzo, Angelo A; Capasso, Raffaele; Aviello, Gabriella; Borrelli, Francesca; Romano, Barbara; Piscitelli, Fabiana; Gallo, Laura; Capasso, Francesco; Orlando, Pierangelo; Di Marzo, Vincenzo
2012-01-01
BACKGROUND AND PURPOSE Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. EXPERIMENTAL APPROACH Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). KEY RESULTS Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB1 receptors and down-regulation of CB2 receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CONCLUSION AND IMPLICATIONS CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1. PMID:22300105
Ramírez-López, María Teresa; Vázquez, Mariam; Bindila, Laura; Lomazzo, Ermelinda; Hofmann, Clementine; Blanco, Rosarío Noemí; Alén, Francisco; Antón, María; Decara, Juan; Arco, Rocío; Ouro, Daniel; Orio, Laura; Suárez, Juan; Lutz, Beat; Gómez de Heras, Raquel; Rodríguez de Fonseca, Fernando
2016-01-01
Exposure to inadequate nutritional conditions in critical windows of development has been associated to disturbances on metabolism and behavior in the offspring later in life. The role of the endocannabinoid system, a known regulator of energy expenditure and adaptive behaviors, in the modulation of these processes is unknown. In the present study, we investigated the impact of exposing rat dams to diet restriction (20% less calories than standard diet) during pre-gestational and gestational periods on: (a) neonatal outcomes; (b) endocannabinoid content in hypothalamus, hippocampus and olfactory bulb at birth; (c) metabolism-related parameters; and (d) behavior in adult male offspring. We found that calorie-restricted dams tended to have a reduced litter size, although the offspring showed normal weight at birth. Pups from calorie-restricted dams also exhibited a strong decrease in the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), arachidonic acid (AA) and palmitoylethanolamide (PEA) in the hypothalamus at birth. Additionally, pups from diet-restricted dams displayed reduced levels of AEA in the hippocampus without significant differences in the olfactory bulb. Moreover, offspring exhibited increased weight gain, body weight and adiposity in adulthood as well as increased anxiety-related responses. We propose that endocannabinoid signaling is altered by a maternal caloric restriction implemented during the preconceptional and pregnancy periods, which might lead to modifications of the hypothalamic and hippocampal circuits, potentially contributing to the long-term effects found in the adult offspring. PMID:27847471
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-01-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30 minutes before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. PMID:28017680
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-03-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. Copyright © 2016 Elsevier Inc. All rights reserved.
Morena, Maria; De Castro, Valentina; Gray, J Megan; Palmery, Maura; Trezza, Viviana; Roozendaal, Benno; Hill, Matthew N; Campolongo, Patrizia
2015-10-14
Variations in environmental aversiveness influence emotional memory processes in rats. We have previously shown that cannabinoid effects on memory are dependent on the stress level at the time of training as well as on the aversiveness of the environmental context. Here, we investigated whether the hippocampal endocannabinoid system modulates memory retrieval depending on the training-associated arousal level. Male adult Sprague Dawley rats were trained on a water maze spatial task at two different water temperatures (19°C and 25°C) to elicit either higher or lower stress levels, respectively. Rats trained under the higher stress condition had better memory and higher corticosterone concentrations than rats trained at the lower stress condition. The cannabinoid receptor agonist WIN55212-2 (10-30 ng/side), the 2-arachidonoyl glycerol (2-AG) hydrolysis inhibitor JZL184 (0.1-1 μg/side), and the anandamide (AEA) hydrolysis inhibitor URB597 (10-30 ng/side) were administered bilaterally into the hippocampus 60 min before probe-trial retention testing. WIN55212-2 or JZL184, but not URB597, impaired probe-trial performances only of rats trained at the higher stressful condition. Furthermore, rats trained under higher stress levels displayed an increase in hippocampal 2-AG, but not AEA, levels at the time of retention testing and a decreased affinity of the main 2-AG-degrading enzyme for its substrate. The present findings indicate that the endocannabinoid 2-AG in the hippocampus plays a key role in the selective regulation of spatial memory retrieval of stressful experience, shedding light on the neurobiological mechanisms involved in the impact of stress effects on memory processing. Endogenous cannabinoids play a central role in the modulation of memory for emotional events. Here we demonstrate that the endocannabinoid 2-arachidonoylglycerol in the hippocampus, a brain region crucially involved in the regulation of memory processes, selectively modulates spatial memory recall of stressful experiences. Thus, our findings provide evidence that the endocannabinoid 2-arachidonoylglycerol is a key player in mediating the impact of stress on memory retrieval. These findings can pave the way to new potential therapeutic intervention for the treatment of neuropsychiatric disorders, such as post-traumatic stress disorder, where a previous exposure to traumatic events could alter the response to traumatic memory recall leading to mental illness. Copyright © 2015 the authors 0270-6474/15/3513963-13$15.00/0.
ENDOCANNABINOID INFLUENCE IN DRUG REINFORCEMENT, DEPENDENCE AND ADDICTION-RELATED BEHAVIORS
Serrano, Antonia; Parsons, Loren H.
2011-01-01
The endogenous cannabinoid system is an important regulatory system involved in physiological homeostasis. Endocannabinoid signaling is known to modulate neural development, immune function, metabolism, synaptic plasticity and emotional state. Accumulating evidence also implicates brain endocannabinoid signaling in the etiology of drug addiction which is characterized by compulsive drug seeking, loss of control in limiting drug intake, emergence of a negative emotional state in the absence of drug use and a persistent vulnerability toward relapse to drug use during protracted abstinence. In this review we discuss the effects of drug intake on brain endocannabinoid signaling, evidence implicating the endocannabinoid system in the motivation for drug consumption, and drug-induced alterations in endocannabinoid function that may contribute to various aspects of addiction including dysregulated synaptic plasticity, increased stress responsivity, negative affective states, drug craving and relapse to drug taking. Current knowledge of genetic variants in endocannabinoid signaling associated with addiction is also discussed. PMID:21798285
Control of synaptic function by endocannabinoid-mediated retrograde signaling.
Kano, Masanobu
2014-01-01
Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca(2+) elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation.
Control of synaptic function by endocannabinoid-mediated retrograde signaling
KANO, Masanobu
2014-01-01
Since the first reports in 2001, great advances have been made towards the understanding of endocannabinoid-mediated synaptic modulation. Electrophysiological studies have revealed that one of the two major endocannabinoids, 2-arachidonoylglycerol (2-AG), is produced from membrane lipids upon postsynaptic Ca2+ elevation and/or activation of Gq/11-coupled receptors, and released from postsynaptic neurons. The released 2-AG then acts retrogradely onto presynaptic cannabinoid CB1 receptors and induces suppression of neurotransmitter release either transiently or persistently. These forms of 2-AG-mediated retrograde synaptic modulation are functional throughout the brain. The other major endocannabinoid, anandamide, mediates a certain form of endocannabinoid-mediated long-term depression (LTD). Anandamide also functions as an agonist for transient receptor potential vanilloid receptor type 1 (TRPV1) and mediates endocannabinoid-independent and TRPV1-dependent forms of LTD. It has also been demonstrated that the endocannabinoid system itself is plastic, which can be either up- or down-regulated by experimental or environmental conditions. In this review, I will make an overview of the mechanisms underlying endocannabinoid-mediated synaptic modulation. PMID:25169670
Risperidone (depot) for schizophrenia.
Sampson, Stephanie; Hosalli, Prakash; Furtado, Vivek A; Davis, John M
2016-04-14
Risperidone is the first new generation antipsychotic drug made available in a long-acting injection formulation. To examine the effects of depot risperidone for treatment of schizophrenia or related psychoses in comparison with placebo, no treatment or other antipsychotic medication.To critically appraise and summarise current evidence on the resource use, cost and cost-effectiveness of risperidone (depot) for schizophrenia. We searched the Cochrane Schizophrenia Group's Register (December 2002, 2012, and October 28, 2015). We also checked the references of all included studies, and contacted industry and authors of included studies. Randomised clinical trials comparing depot risperidone with other treatments for people with schizophrenia and/or schizophrenia-like psychoses. Two review authors independently selected trials, assessed trial quality and extracted data. For dichotomous data, we calculated the risk ratio (RR), with 95% confidence interval (CI). For continuous data, we calculated mean differences (MD). We assessed risk of bias for included studies and created 'Summary of findings' tables using GRADE. Twelve studies, with a total of 5723 participants were randomised to the following comparison treatments: Risperidone depot versus placebo Outcomes of relapse and improvement in mental state were neither measured or reported. In terms of other primary outcomes, more people receiving placebo left the study early by 12 weeks (1 RCT, n=400, RR 0.74 95% CI 0.63 to 0.88, very low quality evidence), experienced severe adverse events in short term (1 RCT, n=400, RR 0.59 95% CI 0.38 to 0.93, very low quality evidence). There was however, no difference in levels of weight gain between groups (1 RCT, n=400, RR 2.11 95% CI 0.48 to 9.18, very low quality evidence). Risperidone depot versus general oral antipsychotics The outcome of improvement in mental state was not presented due to high levels of attrition, nor were levels of severe adverse events explicitly reported. Most primary outcomes of interest showed no difference between treatment groups. However, more people receiving depot risperidone experienced nervous system disorders (long-term:1 RCT, n=369, RR 1.34 95% CI 1.13 to 1.58, very-low quality evidence). Risperidone depot versus oral risperidoneData for relapse and severe adverse events were not reported. All outcomes of interest were rated as moderate quality evidence. Main results showed no differences between treatment groups with equivocal data for change in mental state, numbers leaving the study early, any extrapyramidal symptoms, weight increase and prolactin-related adverse events. Risperidone depot versus oral quetiapine Relapse rates and improvement in mental state were not reported. Fewer people receiving risperidone depot left the study early (long-term: 1 RCT, n=666, RR 0.84 95% CI 0.74 to 0.95, moderate quality evidence). Experience of serious adverse events was similar between groups (low quality evidence), but more people receiving depot risperidone experienced EPS (1 RCT, n=666, RR 1.83 95% CI 1.07 to 3.15, low quality evidence), had greater weight gain (1 RCT, n=666, RR 1.25 95% CI 0.25 to 2.25, low quality evidence) and more prolactin-related adverse events (1 RCT, n=666, RR 3.07 95% CI 1.13 to 8.36, very low quality evidence). Risperidone depot versus oral aripiprazoleRelapse rates, mental state using PANSS, leaving the study early, serious adverse events and weight increase were similar between groups. However more people receiving depot risperidone experienced prolactin-related adverse events compared to those receiving oral aripiprazole (2 RCTs, n=729, RR 9.91 95% CI 2.78 to 35.29, very low quality of evidence). Risperidone depot versus oral olanzapineRelapse rates were not reported in any of the included studies for this comparison. Improvement in mental state using PANSS and instances of severe adverse events were similar between groups. More people receiving depot risperidone left the study early than those receiving oral olanzapine (1 RCT, n=618, RR 1.32 95% CI 1.10 to 1.58, low quality evidence) with those receiving risperidone depot also experiencing more extrapyramidal symptoms (1 RCT, n=547, RR 1.67 95% CI 1.19 to 2.36, low quality evidence). However, more people receiving oral olanzapine experienced weight increase (1 RCT, n=547, RR 0.56 95% CI 0.42 to 0.75, low quality evidence). Risperidone depot versus atypical depot antipsychotics (specifically paliperidone palmitate)Relapse rates were not reported and rates of response using PANSS, weight increase, prolactin-related adverse events and glucose-related adverse events were similar between groups. Fewer people left the study early due to lack of efficacy from the risperidone depot group (long term: 1 RCT, n=749, RR 0.60 95% CI 0.45 to 0.81, low quality evidence), but more people receiving depot risperidone required use of EPS-medication (2 RCTs, n=1666, RR 1.46 95% CI 1.18 to 1.8, moderate quality evidence). Risperidone depot versus typical depot antipsychoticsOutcomes of relapse, severe adverse events or movement disorders were not reported. Outcomes relating to improvement in mental state demonstrated no difference between groups (low quality evidence). However, more people receiving depot risperidone compared to other typical depots left the study early (long-term:1 RCT, n=62, RR 3.05 95% CI 1.12 to 8.31, low quality evidence). Depot risperidone may be more acceptable than placebo injection but it is hard to know if it is any more effective in controlling the symptoms of schizophrenia. The active drug, especially higher doses, may be associated with more movement disorders than placebo. People already stabilised on oral risperidone may continue to maintain benefit if treated with depot risperidone and avoid the need to take tablets, at least in the short term. In people who are happy to take oral medication the depot risperidone is approximately equal to oral risperidone. It is possible that the depot formulation, however, can bring a second-generation antipsychotic to people who do not reliably adhere to treatment. People with schizophrenia who have difficulty adhering to treatment, however, are unlikely to volunteer for a clinical trial. Such people may gain benefit from the depot risperidone with no increased risk of extrapyramidal side effects.
Wang, Yanqing; Burrell, Brian D
2016-08-01
Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl(-) gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl(-) export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl(-) equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl(-) import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl(-) import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl(-) gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions. Copyright © 2016 the American Physiological Society.
Wang, Yanqing
2016-01-01
Endocannabinoids can elicit persistent depression of excitatory and inhibitory synapses, reducing or enhancing (disinhibiting) neural circuit output, respectively. In this study, we examined whether differences in Cl− gradients can regulate which synapses undergo endocannabinoid-mediated synaptic depression vs. disinhibition using the well-characterized central nervous system (CNS) of the medicinal leech, Hirudo verbana. Exogenous application of endocannabinoids or capsaicin elicits potentiation of pressure (P) cell synapses and depression of both polymodal (Npoly) and mechanical (Nmech) nociceptive synapses. In P synapses, blocking Cl− export prevented endocannabinoid-mediated potentiation, consistent with a disinhibition process that has been indicated by previous experiments. In Nmech neurons, which are depolarized by GABA due to an elevated Cl− equilibrium potentials (ECl), endocannabinoid-mediated depression was prevented by blocking Cl− import, indicating that this decrease in synaptic signaling was due to depression of excitatory GABAergic input (disexcitation). Npoly neurons are also depolarized by GABA, but endocannabinoids elicit depression in these synapses directly and were only weakly affected by disruption of Cl− import. Consequently, the primary role of elevated ECl may be to protect Npoly synapses from disinhibition. All forms of endocannabinoid-mediated plasticity required activation of transient potential receptor vanilloid (TRPV) channels. Endocannabinoid/TRPV-dependent synaptic plasticity could also be elicited by distinct patterns of afferent stimulation with low-frequency stimulation (LFS) eliciting endocannabinoid-mediated depression of Npoly synapses and high-frequency stimulus (HFS) eliciting endocannabinoid-mediated potentiation of P synapses and depression of Nmech synapses. These findings demonstrate a critical role of differences in Cl− gradients between neurons in determining the sign, potentiation vs. depression, of synaptic modulation under normal physiological conditions. PMID:27226449
Epigenetic regulation of depot-specific gene expression in adipose tissue.
Gehrke, Sandra; Brueckner, Bodo; Schepky, Andreas; Klein, Johannes; Iwen, Alexander; Bosch, Thomas C G; Wenck, Horst; Winnefeld, Marc; Hagemann, Sabine
2013-01-01
In humans, adipose tissue is distributed in subcutaneous abdominal and subcutaneous gluteal depots that comprise a variety of functional differences. Whereas energy storage in gluteal adipose tissue has been shown to mediate a protective effect, an increase of abdominal adipose tissue is associated with metabolic disorders. However, the molecular basis of depot-specific characteristics is not completely understood yet. Using array-based analyses of transcription profiles, we identified a specific set of genes that was differentially expressed between subcutaneous abdominal and gluteal adipose tissue. To investigate the role of epigenetic regulation in depot-specific gene expression, we additionally analyzed genome-wide DNA methylation patterns in abdominal and gluteal depots. By combining both data sets, we identified a highly significant set of depot-specifically expressed genes that appear to be epigenetically regulated. Interestingly, the majority of these genes form part of the homeobox gene family. Moreover, genes involved in fatty acid metabolism were also differentially expressed. Therefore we suppose that changes in gene expression profiles might account for depot-specific differences in lipid composition. Indeed, triglycerides and fatty acids of abdominal adipose tissue were more saturated compared to triglycerides and fatty acids in gluteal adipose tissue. Taken together, our results uncover clear differences between abdominal and gluteal adipose tissue on the gene expression and DNA methylation level as well as in fatty acid composition. Therefore, a detailed molecular characterization of adipose tissue depots will be essential to develop new treatment strategies for metabolic syndrome associated complications.
Miraucourt, Loïs S; Tsui, Jennifer; Gobert, Delphine; Desjardins, Jean-François; Schohl, Anne; Sild, Mari; Spratt, Perry; Castonguay, Annie; De Koninck, Yves; Marsh-Armstrong, Nicholas; Wiseman, Paul W; Ruthazer, Edward S
2016-01-01
Type 1 cannabinoid receptors (CB1Rs) are widely expressed in the vertebrate retina, but the role of endocannabinoids in vision is not fully understood. Here, we identified a novel mechanism underlying a CB1R-mediated increase in retinal ganglion cell (RGC) intrinsic excitability acting through AMPK-dependent inhibition of NKCC1 activity. Clomeleon imaging and patch clamp recordings revealed that inhibition of NKCC1 downstream of CB1R activation reduces intracellular Cl− levels in RGCs, hyperpolarizing the resting membrane potential. We confirmed that such hyperpolarization enhances RGC action potential firing in response to subsequent depolarization, consistent with the increased intrinsic excitability of RGCs observed with CB1R activation. Using a dot avoidance assay in freely swimming Xenopus tadpoles, we demonstrate that CB1R activation markedly improves visual contrast sensitivity under low-light conditions. These results highlight a role for endocannabinoids in vision and present a novel mechanism for cannabinoid modulation of neuronal activity through Cl− regulation. DOI: http://dx.doi.org/10.7554/eLife.15932.001 PMID:27501334
Cristino, Luigia; Luongo, Livio; Imperatore, Roberta; Boccella, Serena; Becker, Thorsten; Morello, Giovanna; Piscitelli, Fabiana; Busetto, Giuseppe; Maione, Sabatino; Di Marzo, Vincenzo
2016-01-01
Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.
Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury
2013-11-01
COVERED 4 October 201 - 3 October 201 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT...injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids Table of Contents Introduction...promote neuroinflammation and potentially lead to neurodegeneration. We have previously demonstrated that treatments to the endocannabinoid system 2
The Endocannabinoid System Modulating Levels of Consciousness, Emotions and Likely Dream Contents.
Murillo-Rodriguez, Eric; Pastrana-Trejo, Jose Carlos; Salas-Crisóstomo, Mireille; de-la-Cruz, Miriel
2017-01-01
Cannabinoids are derivatives that are either compounds occurring naturally in the plant, Cannabis sativa or synthetic analogs of these molecules. The first and most widely investigated of the cannabinoids is Δ9-tetrahydrocannabinol (Δ9-THC), which is the main psychotropic constituent of cannabis and undergoes significant binding to cannabinoid receptors. These cannabinoid receptors are seven-transmembrane receptors that received their name from the fact that they respond to cannabinoid compounds, including Δ9-THC. The cannabinoid receptors have been described in rat, human and mouse brains and they have been named the CB1 and CB2 cannabinoid receptors. Later, an endogenous molecule that exerts pharmacological effects similar to those described by Δ9-THC and binds to the cannabinoid receptors was discovered. This molecule, named anandamide, was the first of five endogenous cannabinoid receptor agonists described to date in the mammalian brain and other tissues. Of these endogenous cannabinoids or endocannabinoids, the most thoroughly investigated to date have been anandamide and 2-arachidonoylglycerol (2-AG). Over the years, a significant number of articles have been published in the field of endogenous cannabinoids, suggesting a modulatory profile in multiple neurobiological roles of endocannabinoids. The general consensus accepts that the endogenous cannabinoid system includes natural ligands (such as anandamide and 2- AG), receptors (CB1 and CB2), and the main enzymes responsible for the hydrolysis of anandamide and 2-AG (fatty acid amide hydrolase [FAAH] and monoacylglycerol lipase [MAGL], respectively) as well as the anandamide membrane transporter (AMT). To date, diverse pieces of evidence have shown that the endocannabinoid system controls multiple functions such as feeding, pain, learning and memory and has been linked with various disturbances, such as Parkinson´s disease. Among the modulatory properties of the endocannabinoid system, current data indicate that the sleep-wake cycle is under the influence of endocannabinoids since the blocking of the CB1 cannabinoid receptor or the pharmacological inhibition of FAAH activity promotes wakefulness, whereas the obstruction of AMT function enhances sleep. However, no solid evidence is available regarding the role of the endocannabinoid system in an unquestionable emotional component of the sleep: Dream activity. Since dreaming is a mental activity that occurs during sleep (characterized by emotions, sensory perceptions, and bizarre components) and the endocannabinoid system modulates neurobiological processes involving consciousness, such as learning and memory, attention, pain perception, emotions and sleep, it is acceptable to hypothesize that the endocannabinoid system might be modulating dream activity. In this regard, an accumulative body of evidence in human and animal models has been reported regarding the role of the endocannabinoid system in the control of emotional states and dreams. Moreover, preliminary studies in humans have indicated that treatment with cannabinoids may decrease post-traumatic stress disorder symptoms, including nightmares. Thus, based on a review of the literature available in PubMed, this article hypothesizes a conceptual framework within which the endocannabinoid system might influence the generation of dream experiences. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The endocannabinoid system and multiple sclerosis.
Baker, David; Pryce, Gareth
2008-01-01
Multiple sclerosis (MS) is a neurodegenerative disease that is characterised by repeated inflammatory/demyelinating events within the central nervous system (CNS). In addition to relapsing-remitting neurological insults, leading to loss of function, patients are often left with residual, troublesome symptoms such as spasticity and pain. These greatly diminish "quality of life" and have prompted some patients to self-medicate with and perceive benefit from cannabis. Recent advances in cannabinoid biology are beginning to support these anecdotal observations, notably the demonstration that spasticity is tonically regulated by the endogenous cannabinoid system. Recent clinical trials may indeed suggest that cannabis has some potential to relieve, pain, spasms and spasticity in MS. However, because the CB(1) cannabinoid receptor mediates both the positive and adverse effects of cannabis, therapy will invariably be associated with some unwanted, psychoactive effects. In an experimental model of MS, and in MS tissue, there are local perturbations of the endocannabinoid system in lesional areas. Stimulation of endocannabinoid activity in these areas either through increase of synthesis or inhibition of endocannabinoid degradation offers the positive therapeutic potential of the cannabinoid system whilst limiting adverse events by locally targeting the lesion. In addition, CB(1) and CB(2) cannabinoid receptor stimulation may also have anti-inflammatory and neuroprotective potential as the endocannabinoid system controls the level of neurodegeneration that occurs as a result of the inflammatory insults. Therefore cannabinoids may not only offer symptom control but may also slow the neurodegenerative disease progression that ultimately leads to the accumulation of disability.
Bystrowska, Beata; Smaga, Irena; Tyszka-Czochara, Małgorzata; Filip, Małgorzata
2014-05-01
In recent years, a potential participation of endocannabinoids (eCBs) and related endocannabinoid-like molecules, including N-acylethanolamines (NAEs), in the physiological and pathophysiological processes has been highlighted, whereas measurement of their levels still remains difficult. The aim of this study was to develop a bioanalytical method that would enable researchers to simultaneously determine quantitatively eCBs (anandamide - AEA and 2-arachidonoylglycerol - 2-AG) and NAEs (oleoylethanolamide or oleoylethanolamine - OEA, palmitoylethanolamide or palmitoylethanolamine - PEA and linoleoylethanolamide or linoleoylethanolamine - LEA) in the rat brain. The analytical problems with analysis and possible solutions have been also shown. The methodology for quantifying eCBs/NAEs by means of a sensitive and selective liquid chromatography tandem mass spectrometry (LC-MS/MS) with electrospray positive ionization and multiple reaction monitoring (MRM) mode was developed and validated. Analytical problems with analyzed compounds were estimated. Reasonably high precision and accuracy of the method were demonstrated in the validation process. The method is linear up to 200 ng/g for AEA, OEA, PEA and LEA and up to 100 μg/g for 2-AG, while the quantification limit reaches 0.2 ng/g and 0.8 μg/g, respectively. Simplicity and rapidity of the assay allows analyzing many samples on a routine basis. This article presents the new procedure applied to the analysis of brain tissues.
Roles for the endocannabinoid system in ethanol-motivated behavior.
Henderson-Redmond, Angela N; Guindon, Josée; Morgan, Daniel J
2016-02-04
Alcohol use disorder represents a significant human health problem that leads to substantial loss of human life and financial cost to society. Currently available treatment options do not adequately address this human health problem, and thus, additional therapies are desperately needed. The endocannabinoid system has been shown, using animal models, to modulate ethanol-motivated behavior, and it has also been demonstrated that chronic ethanol exposure can have potentially long-lasting effects on the endocannabinoid system. For example, chronic exposure to ethanol, in either cell culture or preclinical rodent models, causes an increase in endocannabinoid levels that results in down-regulation of the cannabinoid receptor 1 (CB1) and uncoupling of this receptor from downstream G protein signaling pathways. Using positron emission tomography (PET), similar down-regulation of CB1 has been noted in multiple regions of the brain in human alcoholic patients. In rodents, treatment with the CB1 inverse agonist SR141716A (Rimonabant), or genetic deletion of CB1 leads to a reduction in voluntary ethanol drinking, ethanol-stimulated dopamine release in the nucleus accumbens, operant self-administration of ethanol, sensitization to the locomotor effects of ethanol, and reinstatement/relapse of ethanol-motivated behavior. Although the clinical utility of Rimonabant or other antagonists/inverse agonists for CB1 is limited due to negative neuropsychiatric side effects, negative allosteric modulators of CB1 and inhibitors of endocannabinoid catabolism represent therapeutic targets worthy of additional examination. Copyright © 2015 Elsevier Inc. All rights reserved.
Luque-Córdoba, D; Calderón-Santiago, M; Luque de Castro, M D; Priego-Capote, F
2018-08-01
Endocannabinoids are lipids with a key role in physiological processes such as the immune response or the metabolism. This involvement explains their association to pathologies such as cancer, obesity or multiple sclerosis. The determination of endocannabinoids constitutes a challenge for clinical laboratories due to the variety of biological matrices and the wide range of concentrations at which they can be found. This research deals with the comparison of three sample preparation strategies (viz., on-line SPE, off-line SPE for interferents removal, and protein precipitation) for subsequent LC-MS/MS analysis of 14 endocannabinoids and analogous compounds in serum. As a result, the on-line coupling between SPE and LC-MS/MS is proposed as the best approach for this determination. The proposed method allows full automation of the overall process, shortening of the analysis time, and avoidance of errors associated with sample preparation steps. The improvement in sensitivity and selectivity thus achieved allows obtaining quantification limits at the pg mL -1 level, which makes possible the application of the method for clinical studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Endocannabinoids as physiological regulators of colonic propulsion in mice.
Pinto, Luisa; Izzo, Angelo A; Cascio, Maria Grazia; Bisogno, Tiziana; Hospodar-Scott, Karen; Brown, David R; Mascolo, Nicola; Di Marzo, Vincenzo; Capasso, Francesco
2002-07-01
Activation of enteric cannabinoid CB1 receptors inhibits motility in the small intestine; however, it is not known whether endogenous cannabinoids (anandamide and 2-arachidonylglycerol) play a physiologic role in regulating intestinal motility. In the present study, we investigated the possible involvement of endocannabinoids in regulating intestinal propulsion in the mouse colon in vivo. Intestinal motility was studied measuring the expulsion of a glass bead inserted into the distal colon; endocannabinoid levels were measured by isotope-dilution gas chromatography-mass spectrometry; anandamide amidohydrolase activity was measured by specific enzyme assays. CB1 receptors were localized by immunohistochemistry. Anandamide, WIN 55,212-2, cannabinol (nonselective cannabinoid agonists), and ACEA (a selective CB1 agonist) inhibited colonic propulsion; this effect was counteracted by SR141716A, a CB1 receptor antagonist. Administered alone, SR141716A increased motility, whereas the inhibitor of anandamide cellular reuptake, VDM11, decreased motility. High amounts of 2-arachidonylglycerol and particularly anandamide were found in the colon, together with a high activity of anandamide amidohydrolase. CB1 receptor immunoreactivity was colocalized to a subpopulation of choline acetyltransferase-immunoreactive neurons and fiber bundles in the myenteric plexus. We conclude that endocannabinoids acting on myenteric CB1 receptors tonically inhibit colonic propulsion in mice.
Sampaio, Luzia S; Iannotti, Fabio A; Veneziani, Luciana; Borelli-Tôrres, Rosa T; De Maio, Fabrizia; Piscitelli, Fabiana; Reis, Ricardo A M; Di Marzo, Vincenzo; Einicker-Lamas, Marcelo
2018-06-08
LLC-PK1 cells, an immortalized epithelial cell line derived from pig renal proximal tubules, express all the major players of the endocannabinoid system (ECS) such as CB1, CB2 and TRPV1 receptor, as well as the main enzymes involved in the biosynthesis and degradation of the major endocannabinoids named 2-arachidonoylglycerol, 2-AG and anandamide, AEA. Here we investigated whether the damages caused by ischemic insult either in vitro using LLC-PK1 cells exposed to antimycin A (an inductor of ATP-depletion) or in vivo using Wistar rats in a classic renal ischemia and reperfusion (IR) protocol, lead to changes in AEA and 2-AG levels, as well as altered expression of genes from the main enzymes involved in the regulation of the ECS. Our data show that the mRNA levels of CB1 receptor gene were downregulated, while the transcript levels of monoacylglycerol lipase (MAGL), the main 2-AG degradative enzyme, are upregulated in LLC-PK1 cells after IR model. Accordingly, IR was accompanied by a significant reduction in the levels of 2-AG and AEA, as well as of the two endocannabinoid related molecules, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in LLC-PK1 cells. In kidney cortex homogenates, the AEA levels were selectively significantly decreased. In addition, we found that both the in vitro and in vivo model of IR caused a reduction in the expression and activity of the Na + /K + ATPase. These changes were reversed by the CB1/CB2 agonist WIN55,212, in a CB1-receptor dependent manner on LLC-PK1 IR model. In conclusion, the ECS and Na + /K + ATPase are down-regulated following IR model in LLC-PK1 cells and rat kidney. We suggest that CB1 agonists might represent a potential strategy to reverse the consequences of IR injury in kidney tissues. Copyright © 2018 Elsevier Inc. All rights reserved.
Popescu, Ion R.
2013-01-01
Cannabinoid receptors are functionally operant at both glutamate and GABA synapses on hypothalamic magnocellular neuroendocrine cells; however, retrograde endocannabinoid actions are evoked at only glutamate synapses. We tested whether the functional targeting of evoked retrograde endocannabinoid actions to glutamate, and not GABA, synapses on magnocellular neurons is the result of the spatial restriction of extracellular endocannabinoids by astrocytes. Whole-cell GABA synaptic currents were recorded in magnocellular neurons in rat hypothalamic slices following manipulations to reduce glial buffering of extracellular signals. Depolarization- and glucocorticoid-evoked retrograde endocannabinoid suppression of synaptic GABA release was not detected under normal conditions, but occurred in both oxytocin and vasopressin neurons under conditions of attenuated glial coverage and depressed glial metabolic function, suggesting an emergent endocannabinoid modulation of GABA synapses with the loss of astrocyte function. Tonic endocannabinoid suppression of GABA release was insensitive to glial manipulation. Blocking cannabinoid transport mimicked, and increasing the extracellular viscosity reversed, the effect of suppressed glial buffering on the endocannabinoid modulation of GABA release. Evoked, but not tonic, endocannabinoid modulation of GABA synapses was mediated by 2-arachidonoylglycerol. Therefore, depolarization- and glucocorticoid-evoked 2-arachidonoylglycerol release from magnocellular neurons is spatially restricted to glutamate synapses by astrocytes, but spills over onto GABA synapses under conditions of reduced astrocyte buffering; tonic endocannabinoid modulation of GABA release, in contrast, is likely mediated by anandamide and is insensitive to astrocytic buffering. Astrocytes, therefore, provide dynamic control of stimulus-evoked 2-arachidonoylglycerol, but not tonic anandamide, regulation of GABA synaptic inputs to magnocellular neuroendocrine cells under different physiological conditions. PMID:24227742
Developmental regulation of fear learning and anxiety behavior by endocannabinoids
Lee, Tiffany T.-Y.; Hill, Matthew N.; Lee, Francis S.
2015-01-01
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress- and anxiety-related disorders. During early life and adolescence, corticolimbic endocannabinoid signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that endocannabinoid signaling underlies age-specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic endocannabinoid signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the endocannabinoid system and discuss clinical and rodent models demonstrating endocannabinoid regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the endocannabinoid system in the central nervous system, and models of pharmacological augmentation of endocannabinoid signaling during development in the context of fear learning and anxiety. PMID:26419643
Immunomodulatory lipids in plants: plant fatty acid amides and the human endocannabinoid system.
Gertsch, Jürg
2008-05-01
Since the discovery that endogenous lipid mediators show similar cannabimimetic effects as phytocannabinoids from CANNABIS SATIVA, our knowledge about the endocannabinoid system has rapidly expanded. Today, endocannabinoid action is known to be involved in various diseases, including inflammation and pain. As a consequence, the G-protein coupled cannabinoid receptors, endocannabinoid transport, as well as endocannabinoid metabolizing enzymes represent targets to block or enhance cannabinoid receptor-mediated signalling for therapeutic intervention. Based on the finding that certain endocannabinoid-like fatty acid N-alkylamides from purple coneflower ( ECHINACEA spp.) potently activate CB2 cannabinoid receptors we have focused our interest on plant fatty acid amides (FAAs) and their overall cannabinomodulatory effects. Certain FAAs are also able to partially inhibit the action of fatty acid amide hydrolase (FAAH), which controls the breakdown of endocannabinoids. Intriguingly, plants lack CB receptors and do not synthesize endocannabinoids, but express FAAH homologues capable of metabolizing plant endogenous N-acylethanolamines (NAEs). While the site of action of these NAEs in plants is unknown, endogenous NAEs and arachidonic acid glycerols in animals interact with distinct physiological lipid receptors, including cannabinoid receptors. There is increasing evidence that also plant FAAs other than NAEs can pharmacologically modulate the action of these endogenous lipid signals. The interference of plant FAAs with the animal endocannabinoid system could thus be a fortunate evolutionary cross point with yet unexplored therapeutic potential.
Endocannabinoids and the Cardiovascular System in Health and Disease.
O'Sullivan, Saoirse Elizabeth
2015-01-01
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
Endocannabinoid system: potential novel targets for treatment of schizophrenia.
Saito, Atsushi; Ballinger, Michael D L; Pletnikov, Mikhail V; Wong, Dean F; Kamiya, Atsushi
2013-05-01
Accumulating epidemiological evidences suggest that cannabis use during adolescence is a potential environmental risk for the development of psychosis, including schizophrenia. Consistently, clinical and preclinical studies, using pharmacological approaches and genetically engineered animals to target endocannabinoid signaling, reveal the multiple varieties of endocannabinoid system-mediated human and animal behaviors, including cognition and emotion. Recently, there has been substantial progress in understanding the molecular mechanisms of the endocannabinoid system for synaptic communications in the central nervous system. Furthermore, the impact of endocannabinoid signaling on diverse cellular processes during brain development has emerged. Thus, although schizophrenia has etiological complexities, including genetic heterogeneities and multiple environmental factors, it now becomes crucial to explore molecular pathways of convergence of genetic risk factors and endocannabinoid signaling, which may provide us with clues to find novel targets for therapeutic intervention. In this review, epidemiological, clinical, and pathological evidences on the role of the endocannabinoid system in the pathophysiologies of schizophrenia will be presented. We will also make a brief overview of the recent progress in understanding molecular mechanisms of the endocannabinoid system for brain development and function, with particular focus on cannabinoid receptor type 1 (CB1R)-mediated cascade, the most well-characterized cannabinoid receptor. Lastly, we will discuss the potential of the endocannabinoid system in finding novel therapeutic targets for prevention and treatment of schizophrenia. Copyright © 2012 Elsevier Inc. All rights reserved.
“Redundancy” of Endocannabinoid Inactivation: New Challenges and Opportunities for Pain Control
2012-01-01
Redundancy of metabolic pathways and molecular targets is a typical feature of all lipid mediators, and endocannabinoids, which were originally defined as endogenous agonists at cannabinoid CB1 and CB2 receptors, are no exception. In particular, the two most studied endocannabinoids, anandamide and 2-arachidonoylglycerol, are inactivated through alternative biochemical routes, including hydrolysis and oxidation, and more than one enzyme might be used even for the same type of inactivating reaction. These enzymes also recognize as substrates other concurrent lipid mediators, whereas, in turn, endocannabinoids might interact with noncannabinoid receptors with subcellular distribution and ultimate biological actions either similar to or completely different from those of cannabinoid receptors. Even splicing variants of endocannabinoid hydrolyzing enzymes, such as FAAH-1, might play distinct roles in endocannabinoid inactivation. Finally, the products of endocannabinoid catabolism may have their own targets, with biological roles different from those of cannabinoid receptors. These peculiarities of endocannabinoid signaling have complicated the use of inhibitors of its inactivation mechanisms as a safer and more efficacious alternative to the direct targeting of cannabinoid receptors for the treatment of several pathological conditions, including pain. However, new strategies, including the rediscovery of “dirty drugs”, and the use of certain natural products (including non-THC cannabis constituents), are emerging that might allow us to make a virtue of necessity and exploit endocannabinoid redundancy to develop new analgesics. PMID:22860203
Analysis Of The Effects Of Marine Corps M1A1 Abram’s Tank Age On Operational Availability
2014-06-01
effects of age, as measured by the time since the last depot- level rebuild, on equipment operational availability for the M1A1 MBT in the Marine Corps...prior M1A1 reliability studies. We reviewed depot- and unit- level maintenance records within the USMC’s System Operational Effectiveness database to... Level Maintenance 15. NUMBER OF PAGES 67 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY CLASSIFICATION OF
Toward Improved Initial Provisioning Strategies: The F-16 Case
1982-04-01
0179 14000 .0973 .0000 .0406 .0233 .0327 .0265 23000 . 0786 .0000 .0708 .0764 .0384 .0273 24000 .0765 .0000 .0291 .0400 .0339 .0238 41000 .0634...condemnation on recoverable split repair will be considered at depot level. Excerpt II Depot Repair Cycle: Organic ■;Hr ERRC "C" 52 days ERRC "T...34 55 days ERRC "L" 52 days Base Stock Level: Base OST BRC 5 days 2 days 12 days 5 days 12 days 2 days Overhaul Stock Level 12 days 12 days
Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury
2012-11-01
DATES COVERED 4 October 2011- 3 October 2012 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a...interventions aimed at modulation of the endocannabinoid (EC) system targeting degradation of 20arachidonoyl glycerlol (2- AG) and N-arachidonoyl...percussion, traumatic brain injury, blood brain barrier, neuroinflammination, neurological dysfunction, endocannabinoids . 16. SECURITY CLASSIFICATION
Palomba, Letizia; Silvestri, Cristoforo; Imperatore, Roberta; Morello, Giovanna; Piscitelli, Fabiana; Martella, Andrea; Cristino, Luigia; Di Marzo, Vincenzo
2015-05-29
The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2'-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL(-/-) mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
The Role of the Brain's Endocannabinoid System in Pain and Its Modulation by Stress.
Corcoran, Louise; Roche, Michelle; Finn, David P
2015-01-01
Stress has a complex, bidirectional modulatory influence on pain. Stress may either reduce (stress-induced analgesia) or exacerbate (stress-induced hyperalgesia) pain depending on the nature, duration, and intensity of the stressor. The endogenous cannabinoid (endocannabinoid) system is present throughout the neuroanatomical pathways that mediate and modulate responses to painful stimuli. The specific role of the endocannabinoid system in the brain in pain and the modulation of pain by stress is reviewed herein. We first provide a brief overview of the endocannabinoid system, followed by a review of the evidence that the brain's endocannabinoid system modulates pain. We provide a comprehensive evaluation of the role of the endocannabinoid system supraspinally, and particularly in the rostral ventromedial medulla, periaqueductal gray, amygdala, and prefrontal cortex, in pain, stress-induced analgesia, and stress-induced hyperalgesia. Increased understanding of endocannabinoid-mediated regulation of pain and its modulation by stress will inform the development of novel therapeutic approaches for pain and its comorbidity with stress-related disorders. © 2015 Elsevier Inc. All rights reserved.
Endocannabinoids modulate apoptosis in endometriosis and adenomyosis.
Bilgic, Elif; Guzel, Elif; Kose, Sevil; Aydin, Makbule Cisel; Karaismailoglu, Eda; Akar, Irem; Usubutun, Alp; Korkusuz, Petek
2017-06-01
Adenomyosis that is a form of endometriosis is the growth of ectopic endometrial tissue within the muscular wall of the uterus (myometrium), which may cause dysmenorrhea and infertility. Endocannabinoid mediated apoptotic mechanisms of endometriosis and adenomyosis are not known. We hypothesized that the down regulation of endocannabinoid receptors and/or alteration in their regulatory enzymes may have a direct role in the pathogenesis of endometriosis and adenomyosis through apoptosis. Endocannabinoid receptors CB1 and CB2, their synthesizing and catabolizing enzymes (FAAH, NAPE-PLD, DAGL, MAGL) and the apoptotic indexes were immunohistochemically assessed in endometriotic and adenomyotic tissues. Findings were compared to normal endometrium and myometrium. Endometrial adenocarcinoma (Ishikawa) and ovarian endometriosis cyst wall stromal (CRL-7566) cell lines were furthermore cultured with or without cannabinoid receptor agonists. The IC50 value for CB1 and CB2 receptor agonists was quantified. Cannabinoid agonists on cell death were investigated by Annexin-V/Propidium iodide labeling with flow cytometry. CB1 and CB2 receptor levels decreased in endometriotic and adenomyotic tissues compared to the control group (p=0,001 and p=0,001). FAAH, NAPE-PLD, MAGL and DAGL enzyme levels decreased in endometriotic and adenomyotic tissues compared to control (p=0,001, p=0,001, p=0,001 and p=0,002 respectively). Apoptotic cell indexes both in endometriotic and adenomyotic tissues also decreased significantly, compared to the control group (p=0,001 and p=0,001). CB1 and CB2 receptor agonist mediated dose dependent fast anti-proliferative and pro-apoptotic effects were detected in Ishikawa and ovarian endometriosis cyst wall stromal cell lines (CRL-7566). Endocannabinoids are suggested to increase apoptosis mechanisms in endometriosis and adenomyosis. CB1 and CB2 antagonists can be considered as potential medical therapeutic agents for endometriosis and adenomyosis. Copyright © 2017 Elsevier GmbH. All rights reserved.
DEPOT: A Database of Environmental Parameters, Organizations and Tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARSON,SUSAN D.; HUNTER,REGINA LEE; MALCZYNSKI,LEONARD A.
2000-12-19
The Database of Environmental Parameters, Organizations, and Tools (DEPOT) has been developed by the Department of Energy (DOE) as a central warehouse for access to data essential for environmental risk assessment analyses. Initial efforts have concentrated on groundwater and vadose zone transport data and bioaccumulation factors. DEPOT seeks to provide a source of referenced data that, wherever possible, includes the level of uncertainty associated with these parameters. Based on the amount of data available for a particular parameter, uncertainty is expressed as a standard deviation or a distribution function. DEPOT also provides DOE site-specific performance assessment data, pathway-specific transport data,more » and links to environmental regulations, disposal site waste acceptance criteria, other environmental parameter databases, and environmental risk assessment models.« less
Kadiri, Sarah; Auclair, Martine; Capeau, Jacqueline; Antoine, Bénédicte
2017-11-01
Epididymal adipose tissue (EAT), a visceral fat depot, is more closely associated with metabolic dysfunction than inguinal adipose tissue (IAT), a subcutaneous depot. This study evaluated whether the nuclear receptor RORα, which controls inflammatory processes, could be implicated. EAT and IAT were compared in a RORα loss-of-function mouse (sg/sg) and in wild-type (WT) littermates, fed a standard diet (SD) or a Western diet (WD), to evaluate the impact of RORα expression on inflammatory status and on insulin sensitivity (IS) of each fat depot according to the diet. Sg/sg mice fed the SD exhibited a decreased inflammatory status and a higher IS in their fat depots than WT mice. WD-induced obesity had distinct effects on the two fat depots. In WT mice, EAT exhibited increased inflammation and insulin resistance while IAT showed reduced inflammation and improved IS, together with a depot-specific increase of RORα, and its target gene IκBα, in the stroma vascular fraction (SVF). Conversely, in sg/sg mice, WD increased inflammation and lowered IS of IAT but not of EAT. These findings suggest an anti-inflammatory role for RORα in response to WD, which occurs at the level of SVF of IAT, thus possibly contributing to the "healthy" expansion of IAT. © 2017 The Obesity Society.
Western Blotting of the Endocannabinoid System.
Wager-Miller, Jim; Mackie, Ken
2016-01-01
Measuring expression levels of G protein-coupled receptors (GPCRs) is an important step for understanding the distribution, function, and regulation of these receptors. A common approach for detecting proteins from complex biological systems is Western blotting. In this chapter, we describe a general approach to Western blotting protein components of the endocannabinoid system using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and nitrocellulose membranes, with a focus on detecting type 1 cannabinoid (CB1) receptors. When this technique is carefully used, specifically with validation of the primary antibodies, it can provide quantitative information on protein expression levels. Additional information can also be inferred from Western blotting such as potential posttranslational modifications that can be further evaluated by specific analytical techniques.
NASA Astrophysics Data System (ADS)
Kaplan, Herbert
1988-01-01
Based on encouraging results on the Army's programs for infrared mass screening of printed circuit boards at the depot level, the US Army CECOM (Communication-Electronics Command) undertook a one-year investigation of the applicability of similar techniques to screening and diagnostics of mechanical assemblies. These included tanks, helicopters, transport vehicles and their major subassemblies (transmissions, engines, axles, etc.) at field and depot levels. Honeyhill Technical Company was tasked to classify candidate assemblies and perform preliminary measurements using Army-owned general-purpose thermal imaging equipment. The investigations yielded positive results, and it was decided to pursue a comprehensive measurements program using field-mobile equipment specifically procured for the program. This paper summarizes the results of the investigations, outlines the measurements techniques utilized, describes the classification and selection of candidate assemblies, and reports on progress toward the goals of the program.
Endocannabinoid modulation of homeostatic and non-homeostatic feeding circuits.
Lau, Benjamin K; Cota, Daniela; Cristino, Luigia; Borgland, Stephanie L
2017-09-15
The endocannabinoid system has emerged as a key player in the control of eating. Endocannabinoids, including 2-arachidonoylglycerol (2-AG) and anandamide (AEA), modulate neuronal activity via cannabinoid 1 receptors (CB1Rs) in multiple nuclei of the hypothalamus to induce or inhibit food intake depending on nutritional and hormonal status, suggesting that endocannabinoids may act in the hypothalamus to integrate different types of signals informing about the animal's energy needs. In the mesocorticolimbic system, (endo)cannabinoids modulate synaptic transmission to promote dopamine release in response to palatable food. In addition, (endo)cannabinoids act within the nucleus accumbens to increase food's hedonic impact; although this effect depends on activation of CB1Rs at excitatory, but not inhibitory inputs in the nucleus accumbens. While hyperactivation of the endocannabinoid system is typically associated with overeating and obesity, much evidence has emerged in recent years suggesting a more complicated system than first thought - endocannabinoids promote or suppress feeding depending on cell and input type, or modulation by various neuronal or hormonal signals. This review presents our latest knowledge of the endocannabinoid system in non-homeostatic and homeostatic feeding circuits. In particular, we discuss the functional role and cellular mechanism of action by endocannabinoids within the hypothalamus and mesocorticolimbic system, and how these are modulated by neuropeptide signals related to feeding. In light of recent advances and complexity in the field, we review cannabinoid-based therapeutic strategies for the treatment of obesity and how peripheral restriction of CB1R antagonists may provide a different mechanism of weight loss without the central adverse effects. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology". Copyright © 2017 Elsevier Ltd. All rights reserved.
Endocannabinoid mechanism in amphetamine-type stimulant use disorders: A short review.
Su, Hang; Zhao, Min
2017-12-01
Recent evidence shows that the endocannabinoid system is involved in amphetamine-type stimulants (ATS) use disorders. To elucidate the role of the endocannabinoid system in ATS addiction, we reviewed results of studies using cannabinoid receptor agonists, antagonists as well as knockout model. The endocannabinoid system seems to play a role in reinstatement and relapse of ATS addiction and ATS-induced psychiatric symptoms. The molecular mechanisms of this system remains unclear, the association with dopamine system in nucleus accumbens is most likely involved. However, the function of the endocannabinoid system in anxiety and anti-anxiety effects induced by ATS is more complicated. These findings suggest that the endocannabinoid system may play an important role in the mechanism of ATS addiction and provide new idea for treating ATS addiction. Copyright © 2017 Elsevier Ltd. All rights reserved.
The brain endocannabinoid system in the regulation of energy balance.
Richard, Denis; Guesdon, Benjamin; Timofeeva, Elena
2009-02-01
The role played by the endocannabinoid system in the regulation of energy balance is currently generating a great amount of interest among several groups of investigators. This interest in large part comes from the urgent need to develop anti-obesity and anti-cachexia drugs around target systems (such as the endocannabinoid system), which appears to be genuinely involved in energy balance regulation. When activated, the endocannabinoid system favors energy deposition through increasing energy intake and reducing energy expenditure. This system is activated in obesity and following food deprivation, which further supports its authentic function in energy balance regulation. The cannabinoid receptor type 1 (CB1), one of the two identified cannabinoid receptors, is expressed in energy-balance brain structures that are also able to readily produce or inactivate N-arachidonoyl ethanolamine (anandamide) and 2-arachidonoylglycerol (2AG), the most abundantly formed and released endocannabinoids. The brain action of endocannabinoid system on energy balance seems crucial and needs to be delineated in the context of the homeostatic and hedonic controls of food intake and energy expenditure. These controls require the coordinated interaction of the hypothalamus, brainstem and limbic system and it appears imperative to unravel those interplays. It is also critical to investigate the metabolic endocannabinoid system while considering the panoply of functions that the endocannabinoid system fulfills in the brain and other tissues. This article aims at reviewing the potential mechanisms whereby the brain endocannabinoid system influences the regulation energy balance.
Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury
2014-11-01
Award Number: W81XWH-11-2-0011 TITLE: Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury PRINCIPAL INVESTIGATOR...Oct 2014 4. TITLE AND SUBTITLE Endocannabinoids as a Target for the Treatment of Traumatic Brain Injury 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH...fluid percussion, traumatic brain injury, blood brain barrier, neuroinflammation, neurological dysfunction, endocannabinoids , microglia and 16
Endocannabinoid signaling in neurotoxicity and neuroprotection.
Pope, C; Mechoulam, R; Parsons, L
2010-09-01
The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Delta(9)-tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. Copyright © 2009 Elsevier Inc. All rights reserved.
Wood, JodiAnne T.; Williams, John S.; Pandarinathan, Lakshmipathi; Janero, David R.; Lammi-Keefe, Carol J.; Makriyannis, Alexandros
2010-01-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications. PMID:20071693
ENDOCANNABINOID SIGNALING IN NEUROTOXICITY AND NEUROPROTECTION
Pope, C.; Mechoulam, R.; Parsons, L.
2010-01-01
The cannabis plant and products produced from it, such as marijuana and hashish, have been used for centuries for their psychoactive properties. The mechanism for how Δ9 -tetrahydrocannabinol (THC), the active constituent of cannabis, elicits these neurological effects remained elusive until relatively recently, when specific G-protein coupled receptors were discovered that appeared to mediate cellular actions of THC. Shortly after discovery of these specific receptors, endogenous ligands (endocannabinoids) were identified. Since that time, an extensive number of papers have been published on the endocannabinoid signaling system, a widespread neuromodulatory mechanism that influences neurotransmission throughout the nervous system. This paper summarizes presentations given at the 12th International Neurotoxicology Association meeting that described the potential role of endocannabinoids in the expression of neurotoxicity. Dr. Raphael Mechoulam first gave an overview of the discovery of exogenous and endogenous cannabinoids and their potential for neuroprotection in a variety of conditions. Dr. Larry Parsons then described studies suggesting that endocannabinoid signaling may play a selective role in drug reinforcement. Dr. Carey Pope presented information on the role that endocannabinoid signaling may have in the expression of cholinergic toxicity following anticholinesterase exposures. Together, these presentations highlighted the diverse types of neurological insults that may be modulated by endocannabinoids and drugs/toxicants which might influence endocannabinoid signaling pathways. PMID:19969019
Wood, Jodianne T; Williams, John S; Pandarinathan, Lakshmipathi; Janero, David R; Lammi-Keefe, Carol J; Makriyannis, Alexandros
2010-06-01
The endocannabinoid metabolome consists of a growing, (patho)physiologically important family of fatty-acid derived signaling lipids. Diet is a major source of fatty acid substrate for mammalian endocannabinoid biosynthesis. The principal long-chain PUFA found in mammalian brain, docosahexaenoic acid (DHA), supports neurological function, retinal development, and overall health. The extent to which dietary DHA supplementation influences endocannabinoid-related metabolites in brain, within the context of the circulating endocannabinoid profile, is currently unknown. We report the first lipidomic analysis of acute 2-week DHA dietary supplementation effects on the physiological state of 15 fatty-acid, N-acylethanolamine, and glycerol-ester endocannabinoid metabolome constituents in murine plasma and brain. The DHA-rich diet markedly elevated DHA, eicosapentaenoic acid, 2-eicosapentanoylglycerol (EPG), and docosahexanoylethanolamine in both compartments. Dietary DHA enhancement generally affected the synthesis of the N-acyl-ethanolamine and glycerol-ester metabolites to favor the docosahexaenoic and eicosapentaenoic vs. arachidonoyl and oleoyl homologs in both brain and plasma. The greater overall responsiveness of the endocannabinoid metabolome in plasma versus brain may reflect a more circumscribed homeostatic response range of brain lipids to dietary DHA supplementation. The ability of short-term DHA enhancement to modulate select constituents of the physiological brain and plasma endocannabinoid metabolomes carries metabolic and therapeutic implications.
The skeletal endocannabinoid system: clinical and experimental insights.
Raphael, Bitya; Gabet, Yankel
2016-05-01
Recently, there has been a rapidly growing interest in the role of cannabinoids in the regulation of skeletal remodeling and bone mass, addressed in basic, translational and clinical research. Since the first publications in 2005, there are more than 1000 publications addressing the skeletal endocannabinoid system. This review focuses on the roles of the endocannabinoid system in skeletal biology via the cannabinoid receptors CB1, CB2 and others. Endocannabinoids play important roles in bone formation, bone resorption and skeletal growth, and are sometimes age, gender, species and strain dependent. Controversies in the literature and potential therapeutic approaches targeting the endocannabinoid system in skeletal disorders are also discussed.
Role of PUFAs, the precursors of endocannabinoids, in human obesity and type 2 diabetes.
Dain, Alejandro; Repossi, Gaston; Das, Undurti N; Eynard, Aldo Renato
2010-06-01
Polyunsaturated fatty acids (PUFAs) serve as precursors of the endocannabinoids (ECs) that are bioactive lipids molecules. Recent studies revealed that ECs participate in several physiological and pathological processes including obesity and type 2 diabetes mellitus. Here we review the experimental and clinical aspects of the role of endocannabinoids in obesity and type 2 diabetes mellitus and the modification of the endocannabinoids by exogenously administered PUFAs. Based on these evidences, we propose that the endocannabinoid system (ECS) can be modulated by exogenous manipulation of PUFAs that could help in the prevention and management of human diseases such as obesity, metabolic syndrome and type 2 diabetes mellitus.
Liu, Jing; Parsons, Loren; Pope, Carey
2015-01-01
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. PMID:26215119
Liu, Jing; Parsons, Loren; Pope, Carey
2015-09-01
Parathion and chlorpyrifos are organophosphorus insecticides (OPs) that elicit acute toxicity by inhibiting acetylcholinesterase (AChE). The endocannabinoids (eCBs, N-arachidonoylethanolamine, AEA; 2-arachidonoylglycerol, 2AG) are endogenous neuromodulators that regulate presynaptic neurotransmitter release in neurons throughout the central and peripheral nervous systems. While substantial information is known about the eCBs, less is known about a number of endocannabinoid-like metabolites (eCBLs, e.g., N-palmitoylethanolamine, PEA; N-oleoylethanolamine, OEA). We report the comparative effects of parathion and chlorpyrifos on AChE and enzymes responsible for inactivation of the eCBs, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), and changes in the eCBs AEA and 2AG and eCBLs PEA and OEA, in rat striatum. Adult, male rats were treated with vehicle (peanut oil, 2 ml/kg, sc), parathion (27 mg/kg) or chlorpyrifos (280 mg/kg) 6-7 days after surgical implantation of microdialysis cannulae into the right striatum, followed by microdialysis two or four days later. Additional rats were similarly treated and sacrificed for evaluation of tissue levels of eCBs and eCBLs. Dialysates and tissue extracts were analyzed by LC-MS/MS. AChE and FAAH were extensively inhibited at both time-points (85-96%), while MAGL activity was significantly but lesser affected (37-62% inhibition) by parathion and chlorpyrifos. Signs of toxicity were noted only in parathion-treated rats. In general, chlorpyrifos increased eCB levels while parathion had no or lesser effects. Early changes in extracellular AEA, 2AG and PEA levels were significantly different between parathion and chlorpyrifos exposures. Differential changes in extracellular and/or tissue levels of eCBs and eCBLs could potentially influence a number of signaling pathways and contribute to selective neurological changes following acute OP intoxications. Copyright © 2015 Elsevier Inc. All rights reserved.
Achterberg, E J Marijke; van Swieten, Maaike M H; Driel, Nina V; Trezza, Viviana; Vanderschuren, Louk J M J
2016-08-01
Social play behaviour is a vigorous form of social interaction, abundant during the juvenile and adolescent phases of life in many mammalian species, including humans. Social play is highly rewarding and it is important for social and cognitive development. Being a rewarding activity, social play can be dissociated in its pleasurable and motivational components. We have previously shown that endocannabinoids modulate the expression of social play behaviour in rats. In the present study, we investigated whether endocannabinoids modulate the motivational and pleasurable properties of social play behaviour, using operant and place conditioning paradigms, respectively. Treatment with the anandamide hydrolysis inhibitor URB597 did not affect operant responding or social play-induced conditioned place preference (CPP) when administered at a dose (0.1mg/kg) known to increase the expression of social play behaviour, while it modestly reduced operant responding at a higher dose (0.2mg/kg). The cannabinoid-1 (CB1) receptor antagonist rimonabant reduced operant responding when administered at a dose (1mg/kg) known to decrease the expression of social play behaviour, although this effect may be secondary to concurrent drug-induced stereotypic behaviours (i.e., grooming and scratching). These data demonstrate that enhancing endocannabinoid levels does not differentially affect the motivational and pleasurable aspects of social play behaviour, whereas CB1 receptor blockade reduces the motivational aspects of social play behaviour, possibly due to response competition. Thus, endocannabinoids likely drive the expression of social play behaviour as a whole, without differentially affecting its motivational or pleasurable properties. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neumeister, Alexander; Seidel, Jordan; Ragen, Benjamin J.; Pietrzak, Robert H.
2014-01-01
Introduction Posttraumatic stress disorder (PTSD) is a prevalent, chronic, and disabling anxiety disorder that may develop following exposure to a traumatic event. Despite the public health significance of PTSD, relatively little is known about the etiology or pathophysiology of this disorder, and pharmacotherapy development to date has been largely opportunistic instead of mechanism-based. Recently, an accumulating body of evidence has implicated the endocannabinoid system in the etiology of PTSD, and targets within this system are believed to be suitable for treatment development. Methods Herein, we describe evidence from translational studies arguing for the relevance of the endocannabinoid system in the etiology of PTSD. We also show mechanisms relevant for treatment development. Results There is convincing evidence from multiple studies for reduced endocannabinoid availability in PTSD. Brain imaging studies show molecular adaptations with elevated cannabinoid type 1 (CB1) receptor availability in PTSD which is linked to abnormal threat processing and anxious arousal symptoms. Conclusion Of particular relevance is evidence showing reduced levels of the endocannabinoid anandamide and compensatory increase of CB1 receptor availability in PTSD, and an association between increased CB1 receptor availability in the amygdala and abnormal threat processing, as well as increased severity of hyperarousal, but not dysphoric symptomatology, in trauma survivors. Given that hyperarousal symptoms are the key drivers of more disabling aspects of PTSD such as emotional numbing or suicidality, novel, mechanism-based pharmacotherapies that target this particular symptom cluster in patients with PTSD may have utility in mitigating the chronicity and morbidity of the disorder. PMID:25456347
Fenitrothion action at the endocannabinoid system leading to spermatotoxicity in Wistar rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ito, Yuki, E-mail: yukey@med.nagoya-cu.ac.jp; Tomizawa, Motohiro; Faculty of Applied Bioscience, Tokyo University of Agriculture, Tokyo 156-8502
Organophosphate (OP) compounds as anticholinesterase agents may secondarily act on diverse serine hydrolase targets, revealing unfavorable physiological effects including male reproductive toxicity. The present investigation proposes that fenitrothion (FNT, a major OP compound) acts on the endocannabinoid signaling system in male reproductive organs, thereby leading to spermatotoxicity (sperm deformity, underdevelopment, and reduced motility) in rats. FNT oxon (bioactive metabolite of FNT) preferentially inhibited the fatty acid amide hydrolase (FAAH), an endocannabinoid anandamide (AEA) hydrolase, in the rat cellular membrane preparation from the testis in vitro. Subsequently, male Wistar rats were treated orally with 5 or 10 mg/kg FNT for 9more » weeks and the subchronic exposure unambiguously deteriorated sperm motility and morphology. The activity-based protein profiling analysis with a phosphonofluoridate fluorescent probe revealed that FAAH was selectively inhibited among the FNT-treated cellular membrane proteome in testis. Intriguingly, testicular AEA (endogenous substrate of FAAH) levels were elevated along with the FAAH inhibition caused by the subchronic exposure. More importantly, linear regression analyses for the FNT-elicited spermatotoxicity reveal a good correlation between the testicular FAAH activity and morphological indices or sperm motility. Accordingly, the present study proposes that the FNT-elicited spermatotoxicity appears to be related to inhibition of FAAH leading to overstimulation of the endocannabinoid signaling system, which plays crucial roles in spermatogenesis and sperm motility acquirement. - Highlights: • Subchronic exposure to fenitrothion induces spermatotoxicity in rats. • The fatty acid amide hydrolase is a potential target for the spermatotoxicity. • Overstimulation of the endocannabinoid signal possibly leads to the spermatotoxicity.« less
Neumeister, Alexander; Seidel, Jordan; Ragen, Benjamin J; Pietrzak, Robert H
2015-01-01
Posttraumatic stress disorder (PTSD) is a prevalent, chronic, and disabling anxiety disorder that may develop following exposure to a traumatic event. Despite the public health significance of PTSD, relatively little is known about the etiology or pathophysiology of this disorder, and pharmacotherapy development to date has been largely opportunistic instead of mechanism-based. Recently, an accumulating body of evidence has implicated the endocannabinoid system in the etiology of PTSD, and targets within this system are believed to be suitable for treatment development. Herein, we describe evidence from translational studies arguing for the relevance of the endocannabinoid system in the etiology of PTSD. We also show mechanisms relevant for treatment development. There is convincing evidence from multiple studies for reduced endocannabinoid availability in PTSD. Brain imaging studies show molecular adaptations with elevated cannabinoid type 1 (CB1) receptor availability in PTSD which is linked to abnormal threat processing and anxious arousal symptoms. Of particular relevance is evidence showing reduced levels of the endocannabinoid anandamide and compensatory increase of CB1 receptor availability in PTSD, and an association between increased CB1 receptor availability in the amygdala and abnormal threat processing, as well as increased severity of hyperarousal, but not dysphoric symptomatology, in trauma survivors. Given that hyperarousal symptoms are the key drivers of more disabling aspects of PTSD such as emotional numbing or suicidality, novel, mechanism-based pharmacotherapies that target this particular symptom cluster in patients with PTSD may have utility in mitigating the chronicity and morbidity of the disorder. Copyright © 2014 Elsevier Ltd. All rights reserved.
Harkins, G J; Davis, G D; Dettori, J; Hibbert, M L; Hoyt, R A
1999-03-01
Depot medroxyprogesterone acetate is a popular contraceptive among young, physically active women. However, its administration has been linked to a relative decrease in estrogen levels. Since bone resorption is accelerated during hypoestrogenic states, there has been growing concern about the potential development of osteoporosis and fractures with the use of this contraceptive method. A physically active, 33-year-old woman demonstrated a 12.4% drop in femoral neck bone mineral density (BMD), 6.4% drop in lumbar BMD and 0.8% drop in total BMD with the subsequent development of a tibial stress fracture while on depot medroxyprogesterone acetate. Bone mineralization rapidly improved, and the stress fracture resolved with discontinuation of the medication. The long-term effects of depot medroxyprogesterone acetate on bone mineralization in physically active women should be evaluated more thoroughly.
Garcia-Arencibia, Moises; Molina-Holgado, Eduardo; Molina-Holgado, Francisco
2018-05-24
Cell fate events are regulated by different endogenous developmental factors such as the cell micro-environment, external or remote signals and epigenetic factors. Among the many regulatory factors, endocannabinoid-associated signalling pathways are known to conduct several of these events in the developing nervous system and in the adult brain. Interestingly, endocannabinoids exert modulatory actions in both physiological and pathological conditions. Endocannabinoid signalling can promote cell survival by acting on non-transformed brain cells (neurons, astrocytes or oligodendrocytes) and can have either a protumoural or antitumoural effect on transformed cells. Moreover, endocannabinoids are able to attenuate the detrimental effects on neurogenesis and neuroinflammation associated with ageing. Thus, the endocannabinoid system emerges as an important regulator of cell fate, controlling cell survival/cell death decisions depending on the cell type and its environment. © 2018 The British Pharmacological Society.
Multiple Functions of Endocannabinoid Signaling in the Brain
Katona, István; Freund, Tamás F.
2014-01-01
Despite being regarded as a hippie science for decades, cannabinoid research has finally found its well-deserved position in mainstream neuroscience. A series of groundbreaking discoveries revealed that endocannabinoid molecules are as widespread and important as conventional neurotransmitters like glutamate or GABA, yet act in profoundly unconventional ways. We aim to illustrate how uncovering the molecular, anatomical and physiological characteristics of endocannabinoid signaling revealed new mechanistic insights into several fundamental phenomena in synaptic physiology. First, we summarize unexpected advances in the molecular complexity of biogenesis and inactivation of the two endocannabinoids, anandamide and 2-arachidonoylglycerol. Then we show how these new metabolic routes are integrated into well-known intracellular signaling pathways. These endocannabinoid-producing signalosomes operate in phasic and tonic modes thereby differentially governing homeostatic, short-term and long-term synaptic plasticity throughout the brain. Finally, we discuss how cell type- and synapse-specific refinement of endocannabinoid signaling may explain the characteristic behavioral effects of cannabinoids. PMID:22524785
Elmes, Matthew W.; Kaczocha, Martin; Berger, William T.; Leung, KwanNok; Ralph, Brian P.; Wang, Liqun; Sweeney, Joseph M.; Miyauchi, Jeremy T.; Tsirka, Stella E.; Ojima, Iwao; Deutsch, Dale G.
2015-01-01
Δ9-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. PMID:25666611
Carr, Russell L.; Graves, Casey A.; Mangum, Lee C.; Nail, Carole A.; Ross, Matthew K.
2014-01-01
The prevailing dogma is that chlorpyrifos (CPF) mediates its toxicity through inhibition of cholinesterase (ChE). However, in recent years, the toxicological effects of developmental CPF exposure have been attributed to an unknown non-cholinergic mechanism of action. We hypothesize that the endocannabinoid system may be an important target because of its vital role in nervous system development. We have previously reported that repeated exposure to CPF results in greater inhibition of fatty acid amide hydrolase (FAAH), the enzyme that metabolizes the endocannabinoid anandamide (AEA), than inhibition of either forebrain ChE or monoacylglycerol lipase (MAGL), the enzyme that metabolizes the endocannabinoid 2-arachidonylglycerol (2-AG). This exposure resulted in the accumulation of 2-AG and AEA in the forebrain of juvenile rats; however, even at the lowest dosage level used (1.0 mg/kg), forebrain ChE inhibition was still present. Thus, it is not clear if FAAH activity would be inhibited at dosage levels that do not inhibit ChE. To determine this, 10 day old rat pups were exposed daily for 7 days to either corn oil or 0.5 mg/kg CPF by oral gavage. At 4 and 12 h post-exposure on the last day of administration, the activities of serum ChE and carboxylesterase (CES) and forebrain ChE, MAGL, and FAAH were determined as well as the forebrain AEA and 2-AG levels. Significant inhibition of serum ChE and CES was present at both 4 and 12 h. There was no significant inhibition of the activities of forebrain ChE or MAGL and no significant change in the amount of 2-AG at either time point. On the other hand, while no statistically significant effects were observed at 4 h, FAAH activity was significantly inhibited at 12 h resulting in a significant accumulation of AEA. Although it is not clear if this level of accumulation impacts brain maturation, this study demonstrates that developmental CPF exposure at a level that does not inhibit brain ChE can alter components of endocannabinoid signaling. PMID:24373905
Involvement of the endocannabinoid system in periodontal healing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozono, Sayaka; Matsuyama, Takashi, E-mail: takashi@dent.kagoshima-u.ac.jp; Biwasa, Kamal Krishna
2010-04-16
Endocannabinoids including anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are important lipid mediators for immunosuppressive effects and for appropriate homeostasis via their G-protein-coupled cannabinoid (CB) receptors in mammalian organs and tissues, and may be involved in wound healing in some organs. The physiological roles of endocannabinoids in periodontal healing remain unknown. We observed upregulation of the expression of CB1/CB2 receptors localized on fibroblasts and macrophage-like cells in granulation tissue during wound healing in a wound-healing model in rats, as well as an increase in AEA levels in gingival crevicular fluid after periodontal surgery in human patients with periodontitis. In-vitro, the proliferation ofmore » human gingival fibroblasts (HGFs) by AEA was significantly attenuated by AM251 and AM630, which are selective antagonists of CB1 and CB2, respectively. CP55940 (CB1/CB2 agonist) induced phosphorylation of the extracellular-regulated kinases (ERK) 1/2, p38 mitogen-activated protein kinase (p38MAPK), and Akt in HGFs. Wound closure by CP55940 in an in-vitro scratch assay was significantly suppressed by inhibitors of MAP kinase kinase (MEK), p38MAPK, and phosphoinositol 3-kinase (PI3-K). These findings suggest that endocannabinoid system may have an important role in periodontal healing.« less
Cannabis use by individuals with multiple sclerosis: effects on specific immune parameters.
Sexton, Michelle; Cudaback, Eiron; Abdullah, Rehab A; Finnell, John; Mischley, Laurie K; Rozga, Mary; Lichtman, Aron H; Stella, Nephi
2014-10-01
Cannabinoids affect immune responses in ways that may be beneficial for autoimmune diseases. We sought to determine whether chronic Cannabis use differentially modulates a select number of immune parameters in healthy controls and individuals with multiple sclerosis (MS cases). Subjects were enrolled and consented to a single blood draw, matched for age and BMI. We measured monocyte migration isolated from each subject, as well as plasma levels of endocannabinoids and cytokines. Cases met definition of MS by international diagnostic criteria. Monocyte cell migration measured in control subjects and individuals with MS was similarly inhibited by a set ratio of phytocannabinoids. The plasma levels of CCL2 and IL17 were reduced in non-naïve cannabis users irrespective of the cohorts. We detected a significant increase in the endocannabinoid arachidonoylethanolamine (AEA) in serum from individuals with MS compared to control subjects, and no significant difference in levels of other endocannabinoids and signaling lipids irrespective of Cannabis use. Chronic Cannabis use may affect the immune response to similar extent in individuals with MS and control subjects through the ability of phytocannabinoids to reduce both monocyte migration and cytokine levels in serum. From a panel of signaling lipids, only the levels of AEA are increased in individuals with MS, irrespective of Cannabis use or not. Our results suggest that both MS cases and controls respond similarly to chronic Cannabis use with respect to the immune parameters measured in this study.
CANNABIS USE BY INDIVIDUALS WITH MULTIPLE SCLEROSIS: EFFECTS ON SPECIFIC IMMUNE PARAMETERS
Sexton, Michelle; Cudaback, Eiron; Abdullah, Rehab A.; Finnell, John; Mischley, Laurie K; Rozga, Mary; Lichtman, Aron H.; Stella, Nephi
2014-01-01
Cannabinoids affect immune responses in ways that may be beneficial for autoimmune diseases. We sought to determine whether chronic Cannabis use differentially modulates a select number of immune parameters in healthy controls and individuals with multiple sclerosis (MS cases). Subjects were enrolled and consented to a single blood draw, matched for age and BMI. We measured monocyte migration isolated from each subject, as well as plasma levels of endocannabinoids and cytokines. Cases met definition of MS by international diagnostic criteria. Monocyte cell migration measured in control subjects and individuals with MS were similarly inhibited by a set ratio of phytocannabinoids. The plasma levels of CCL2 and IL17 were reduced in non-naïve cannabis users irrespective of the cohorts. We detected a significant increase in the endocannabinoid arachidonoylethanolamine (AEA) in serum from individuals with MS compared to control subjects, and no significant difference in levels of other endocannabinoids and signaling lipids irrespective of Cannabis use. Chronic Cannabis use may affect the immune response to similar extent in individuals with MS and control subjects through the ability of phytocannabinoids to reduce both monocyte migration and cytokine levels in serum. From a panel of signaling lipids, only the levels of AEA are increased in individuals with MS, irrespective from Cannabis use or not. Our results suggest that both MS cases and controls respond similarly to chronic Cannabis use with respect to the immune parameters measured in this study. PMID:25135301
Down-regulation of anandamide hydrolase in mouse uterus by sex hormones.
MacCarrone, M; De Felici, M; Bari, M; Klinger, F; Siracusa, G; Finazzi-Agrò, A
2000-05-01
Endocannabinoids are an emerging class of lipid mediators, which mimic several effects of cannabinoids. Anandamide (arachidonoylethanolamide) is a major endocannabinoid, which has been shown to impair pregnancy and embryo development. The activity of anandamide is controlled by cellular uptake through a specific transporter and intracellular degradation by the enzyme anandamide hydrolase (fatty acid amide hydrolase, FAAH). We characterized FAAH in mouse uterus by radiochromatographic and immunochemical techniques, showing that the enzyme is confined to the epithelium and its activity decreases appreciably during pregnancy or pseudopregnancy because of lower gene expression at the translational level. Ovariectomy prevented the decrease in FAAH, and both progesterone and estrogen further reduced its basal levels, suggesting hormonal control of the enzyme. Anandamide was shown to induce programmed cell death in mouse blastocysts, through a pathway independent of type-1 cannabinoid receptor. Blastocysts, however, have a specific anandamide transporter and FAAH, which scavenge this lipid. Taken together, these results provide evidence of an interplay between endocannabinoids and sex hormones in pregnancy. These findings may also be relevant for human fertility, as epithelial cells from healthy human uterus showed FAAH activity and expression, which in adenocarcinoma cells was increased fivefold.
The Endocannabinoid Signaling System in the CNS: A Primer.
Hillard, Cecilia J
2015-01-01
The purpose of this chapter is to provide an introduction to the mechanisms for the regulation of endocannabinoid signaling through CB1 cannabinoid receptors in the central nervous system. The processes involved in the synthesis and degradation of the two most well-studied endocannabinoids, 2-arachidonoylglycerol and N-arachidonylethanolamine are outlined along with information regarding the regulation of the proteins involved. Signaling mechanisms and pharmacology of the CB1 cannabinoid receptor are outlined, as is the paradigm of endocannabinoid/CB1 receptor regulation of neurotransmitter release. The reader is encouraged to appreciate the importance of the endocannabinoid/CB1 receptor signaling system in the regulation of synaptic activity in the brain. © 2015 Elsevier Inc. All rights reserved.
Depot-specific Regulation of the Conversion of Cortisone to Cortisol in Human Adipose Tissue
Lee, Mi-Jeong; Fried, Susan K.; Mundt, Steven S.; Wang, Yanxin; Sullivan, Sean; Stefanni, Alice; Daugherty, Bruce L.; Hermanowski-Vosatka, Anne
2015-01-01
Objective Our main objective was to compare the regulation of cortisol production within omental (Om) and abdominal subcutaneous (Abd sc) human adipose tissue. Methods and Procedures Om and Abd sc adipose tissue were obtained at surgery from subjects with a wide range of BMI. Hydroxysteroid dehydrogenase (HSD) activity (3H-cortisone and 3H-cortisol interconversion) and expression were measured before and after organ culture with insulin and/or dexamethasone. Results Type 1 HSD (HSD1) mRNA and reductase activity were mainly expressed within adipocytes and tightly correlated with adipocyte size within both depots. There was no depot difference in HSD1 expression or reductase activity, while cortisol inactivation and HSD2 mRNA expression (expressed in stromal cells) were higher in Om suggesting higher cortisol turnover in this depot. Culture with insulin decreased HSD reductase activity in both depots. Culture with dexamethasone plus insulin compared to insulin alone increased HSD reductase activity only in the Om depot. This depot-specific increase in reductase activity could not be explained by an alteration in HSD1 mRNA or protein, which was paradoxically decreased. However, in Om only, hexose-6-phosphate dehydrogenase (H6PDH) mRNA levels were increased by culture with dexamethasone plus insulin compared to insulin alone, suggesting that higher nicotinamide adenine dinucleotide phosphate-oxidase (NADPH) production within the endoplasmic reticulum (ER) contributed to the higher HSD reductase activity. Discussion We conclude that in the presence of insulin, glucocorticoids cause a depot-specific increase in the activation of cortisone within Om adipose tissue, and that this mechanism may contribute to adipocyte hypertrophy and visceral obesity. PMID:18388900
Role of the endocannabinoid system in the neuroendocrine responses to inflammation.
De Laurentiis, Andrea; Araujo, Hugo A; Rettori, Valeria
2014-01-01
A few years ago the endocannabinoid system has been recognized as a major neuromodulatory system whose main functions are to exert and maintain the body homeostasis. Several different endocannabinoids are synthesized in a broad class of cell types, including those in the brain and the immune system; they bind to cannabinoid G-protein-coupled receptors, having profound effects on a variety of behavioral, neuroendocrine and autonomic functions. The coordinated neural, immune, behavioral and endocrine responses to inflammation are orchestrated to provide an important defense against infections and help homeostasis restoration in the body. These responses are executed and controlled mainly by the hypothalamic-pituitary adrenal axis. Also, the hypothalamic-neurohypophyseal system is essential for survival and plays a role recovering the homeostasis under a variety of stress conditions, including inflammation and infection. Since the endocannabinoid system components are present at sites involved in the hypothalamic-pituitary axis regulation, several studies were performed in order to investigate the endocannabinoid-mediated neurotransmitters and hormones secretion under physiological and pathological conditions. In the present review we focused on the endocannabinoids actions on the neuroendocrine response to inflammation and infection. We provide a detailed overview of the current understanding of the role of the endocannabinoid system in the recovering of homeostasis as well as potential pharmacological therapies based on the manipulation of endocannabinoid system components that could provide novel treatments for a wide range of disorders.
Impairment of nutritional regulation of adipose triglyceride lipase expression with age.
Caimari, A; Oliver, P; Palou, A
2008-08-01
Fasting-induced lipolysis becomes less effective with age. We have studied whether nutritional regulation of adipose triglyceride lipase (ATGL)--with an important role in lipolysis in low energy states--is affected by age. Wistar rats of different ages (from 1 to 13 months) were distributed in control and fasted groups (14 h-food deprivation). ATGL mRNA expression was measured in different adipose depots at different ages and in only one depot at 13 months by reverse transcription (RT)-PCR. ATGL protein levels were determined at 3 and 7 months (not at 13 months) by western blot. Nonesterified fatty acid (NEFA), insulin and leptin levels were assessed in serum by enzymatic assays. ATGL expression was dependent on regional fat distribution, with higher levels in brown than in white adipose tissue depots; and was affected by age: ATGL mRNA was increased with age in the brown adipose tissue and was decreased in two of the studied white depots, the inguinal and retroperitoneal, not being affected in the epididymal and mesenteric. Age also affected ATGL nutritional regulation: fasting increased ATGL gene expression and protein levels in the different white adipose depots of the youngest rats (up to the age of 5 months), whereas there was no change in the oldest rats studied (7 and 13-months old). This was in agreement with the pattern of NEFA levels, which did not increase in serum of fasted rats in the oldest animals, whereas other homeostatic parameters, such as insulin and leptin, responded to fasting independently of age. ATGL expressed by brown adipose tissue was not affected by feeding conditions at any age. Nutritional regulation of ATGL expression in white adipose tissue is impaired with age, which could contribute to the increased difficulty for mobilizing lipids when animals are exposed to nutritional stress such as fasting.
Cannabinoids and endocannabinoids in metabolic disorders with focus on diabetes.
Di Marzo, Vincenzo; Piscitelli, Fabiana; Mechoulam, Raphael
2011-01-01
The cannabinoid receptors for Δ(9)-THC, and particularly, the CB(1) receptor, as well as its endogenous ligands, the endocannabinoids anandamide and 2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy balance in mammals. While initially it was believed that this endocannabinoid signaling system would only facilitate energy intake, we now know that perhaps even more important functions of endocannabinoids and CB(1) receptors in this context are to enhance energy storage into the adipose tissue and reduce energy expenditure by influencing both lipid and glucose metabolism. Although normally well controlled by hormones and neuropeptides, both central and peripheral aspects of endocannabinoid regulation of energy balance can become dysregulated and contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility that CB(1) antagonists might be used for the treatment of these metabolic disorders. On the other hand, evidence is emerging that some nonpsychotropic plant cannabinoids, such as cannabidiol, can be employed to retard β-cell damage in type 1 diabetes. These novel aspects of endocannabinoid research are reviewed in this chapter, with emphasis on the biological effects of plant cannabinoids and endocannabinoid receptor antagonists in diabetes.
1984-12-01
34MISCELLANEOUS" ACCOUNT CATEGORY WITHIN THE DOD INSTRUCTION 7220.29-H DEPOT LEVEL MAINTENANCE COST ACCOUNTING SYSTEM by a. Steven Eugene Lehr CDecember 1984...PERFORMING ONG. REPORT NUMBER Maintenance Cost Accounting System 7. AUTHOR(&) S. CONTRACT OR GRANT NUMBER(@) Steven Eugene Lehr 9. PERFORMING ORGANIZATION...Availability Codes IS. KEY WORDS (Continue on reverse *ids It necessary and Identify by block number) Dvi Special Uniform Cost Accounting System DoD
Implementation of Improved Management Control of Aviation Depot Level Repairable Funds
1986-12-01
for comparing and testing. Pf ter Drucker states that ". . . control is an ambiguous word. It means the abiliti to direct oneself and one’s work. It...Frequency 50 LIST OF REFERENCES 1. Drucker , Peter F., The Practice of Management , Harper and Brothers Publishers, 1954. 2. Terry, George R., Principles of...NAVAL POSTGRADUATE SCHOOLMonterey, California 0- 6~~VI E1B9 87THESIS I IMPLEMENTATION OF IMPROVED MANAGEMENT CONTROL OF AVIATION DEPOT LEVEL
2014-01-01
Memorandum QBO quantity by owner RAPS Rotables Allocation and Planning System RBOM repair bill of materials RC Recoverability Code RI Rock Island RMC...Service-owned inventory on hand in DLA distribution centers was determined using the DLA Quantity by Owner ( QBO ) file, which records the amount of...on analysis of DLA QBO file data). 4 DoD Depot-Level Reparable Supply Chain Management Budget (OMB) guidance is also very low4 and some argue
Endocannabinoid system and mood disorders: priming a target for new therapies.
Micale, Vincenzo; Di Marzo, Vincenzo; Sulcova, Alexandra; Wotjak, Carsten T; Drago, Filippo
2013-04-01
The endocannabinoid system (ECS), comprising two G protein-coupled receptors (the cannabinoid receptors 1 and 2 [CB1 and CB2] for marijuana's psychoactive principle ∆(9)-tetrahydrocannabinol [∆(9)-THC]), their endogenous small lipid ligands (namely anandamide [AEA] and 2-arachidonoylglycerol [2-AG], also known as endocannabinoids), and the proteins for endocannabinoid biosynthesis and degradation, has been suggested as a pro-homeostatic and pleiotropic signaling system activated in a time- and tissue-specific way during physiopathological conditions. In the brain activation of this system modulates the release of excitatory and inhibitory neurotransmitters and of cytokines from glial cells. As such, the ECS is strongly involved in neuropsychiatric disorders, particularly in affective disturbances such as anxiety and depression. It has been proposed that synthetic molecules that inhibit endocannabinoid degradation can exploit the selectivity of endocannabinoid action, thus activating cannabinoid receptors only in those tissues where there is perturbed endocannabinoid turnover due to the disorder, and avoiding the potential side effects of direct CB1 and CB2 activation. However, the realization that endocannabinoids, and AEA in particular, also act at other molecular targets, and that these mediators can be deactivated by redundant pathways, has recently led to question the efficacy of such approach, thus opening the way to new multi-target therapeutic strategies, and to the use of non-psychotropic cannabinoids, such as cannabidiol (CBD), which act via several parallel mechanisms, including indirect interactions with the ECS. The state of the art of the possible therapeutic use of endocannabinoid deactivation inhibitors and phytocannabinoids in mood disorders is discussed in this review article. Copyright © 2012 Elsevier Inc. All rights reserved.
Endocannabinoid Signaling and the Hypothalamic-Pituitary-Adrenal Axis.
Hillard, Cecilia J; Beatka, Margaret; Sarvaideo, Jenna
2016-12-06
The elucidation of Δ9-tetrahydrocannabinol as the active principal of Cannabis sativa in 1963 initiated a fruitful half-century of scientific discovery, culminating in the identification of the endocannabinoid signaling system, a previously unknown neuromodulatory system. A primary function of the endocannabinoid signaling system is to maintain or recover homeostasis following psychological and physiological threats. We provide a brief introduction to the endocannabinoid signaling system and its role in synaptic plasticity. The majority of the article is devoted to a summary of current knowledge regarding the role of endocannabinoid signaling as both a regulator of endocrine responses to stress and as an effector of glucocorticoid and corticotrophin-releasing hormone signaling in the brain. We summarize data demonstrating that cannabinoid receptor 1 (CB1R) signaling can both inhibit and potentiate the activation of the hypothalamic-pituitary-adrenal axis by stress. We present a hypothesis that the inhibitory arm has high endocannabinoid tone and also serves to enhance recovery to baseline following stress, while the potentiating arm is not tonically active but can be activated by exogenous agonists. We discuss recent findings that corticotropin-releasing hormone in the amygdala enables hypothalamic-pituitary-adrenal axis activation via an increase in the catabolism of the endocannabinoid N-arachidonylethanolamine. We review data supporting the hypotheses that CB1R activation is required for many glucocorticoid effects, particularly feedback inhibition of hypothalamic-pituitary-adrenal axis activation, and that glucocorticoids mobilize the endocannabinoid 2-arachidonoylglycerol. These features of endocannabinoid signaling make it a tantalizing therapeutic target for treatment of stress-related disorders but to date, this promise is largely unrealized. © 2017 American Physiological Society. Compr Physiol 7:1-15, 2017. Copyright © 2017 John Wiley & Sons, Inc.
Clarke, David J; Stuart, Jordyn; McGregor, Iain S; Arnold, Jonathon C
2017-01-04
The endocannabinoid system is dysregulated in schizophrenia. Mice with heterozygous deletion of neuregulin 1 (Nrg1 HET mice) provide a well-characterised animal model of schizophrenia, and display enhanced sensitivity to stress and cannabinoids during adolescence. However, no study has yet determined whether these mice have altered brain endocannabinoid concentrations. Nrg1 application to hippocampal slices decreased 2-arachidonoylglycerol (2-AG) signalling and disrupted long-term depression, a form of synaptic plasticity critical to spatial learning. Therefore we specifically aimed to examine whether Nrg1 HET mice exhibit increased 2-AG concentrations and disruption of spatial learning. As chronic stress influences brain endocannabinoids, we also sought to examine whether Nrg1 deficiency moderates adolescent stress-induced alterations in brain endocannabinoids. Adolescent Nrg1 HET and wild-type (WT) mice were submitted to chronic restraint stress and brain endocannabinoid concentrations were analysed. A separate cohort of WT and Nrg1 HET mice was also assessed for spatial learning performance in the Morris Water Maze. Partial genetic deletion of Nrg1 increased anandamide concentrations in the amygdala and decreased 2-AG concentrations in the hypothalamus. Further, Nrg1 HET mice exhibited increased 2-AG concentrations in the hippocampus and impaired spatial learning performance. Chronic adolescent stress increased anandamide concentrations in the amygdala, however, Nrg1 disruption did not influence this stress-induced change. These results demonstrate for the first time in vivo interplay between Nrg1 and endocannabinoids in the brain. Our results demonstrate that aberrant Nrg1 and endocannabinoid signalling may cooperate in the hippocampus to impair cognition, and that Nrg1 deficiency alters endocannabinoid signalling in brain stress circuitry. Copyright © 2016 Elsevier Inc. All rights reserved.
Biernacki, Michał; Ambrożewicz, Ewa; Gęgotek, Agnieszka; Toczek, Marek; Bielawska, Katarzyna; Skrzydlewska, Elżbieta
2018-05-01
Primary and secondary hypertension is associated with kidney redox imbalance resulting in enhanced reactive oxygen species (ROS) and enzymes dependent phospholipid metabolism. The fatty acid amide hydrolase inhibitor, URB597, modulates the levels of endocannabinoids, particularly of anandamide, which is responsible for controlling blood pressure and regulating redox balance. Therefore, this study aimed to compare the effects of chronic URB597 administration to spontaneously hypertensive rats (SHR) and rats with secondary hypertension (DOCA-salt rats) on the kidney metabolism associated with the redox and endocannabinoid systems. It was shown fatty acid amide hydrolase (FAAH) inhibitor decreased the activity of ROS-generated enzymes what resulted in a reduction of ROS level. Moreover varied changes in antioxidant parameters were observed with tendency to improve antioxidant defense in SHR kidney. Moreover, URB597 administration to hypertensive rats decreased pro-inflammatory response, particularly in the kidneys of DOCA-salt hypertensive rats. URB597 had tendency to enhance ROS-dependent phospholipid oxidation, estimated by changes in neuroprostanes in the kidney of SHR and reactive aldehydes (4-hydroxynonenal and malondialdehyde) in DOCA-salt rats, in particular. The administration of FAAH inhibitor resulted in increased level of endocannabinoids in kidney of both groups of hypertensive rats led to enhanced expression of the cannabinoid receptors type 1 and 2 in SHR as well as vanilloid receptor 1 receptors in DOCA-salt rats. URB597 given to normotensive rats also affected kidney oxidative metabolism, resulting in enhanced level of neuroprostanes in Wistar Kyoto rats and reactive aldehydes in Wistar rats. Moreover, the level of endocannabinoids and cannabinoid receptors were significantly higher in both control groups of rats after URB597 administration. In conclusion, because URB597 disturbed the kidney redox system and phospholipid ROS-dependent and enzymatic-dependent metabolism, the administration of this inhibitor may enhance kidney disorders depending on model of hypertension, but may also cause kidney disturbances in control rats. Therefore, further studies are warranted. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Lovelace, Jonathan W; Corches, Alex; Vieira, Philip A; Hiroto, Alex S; Mackie, Ken; Korzus, Edward
2015-12-01
Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL 184 ameliorates eCB-LTD deficits. The observed deficit in cortical presynaptic signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain's intrinsic ability to appropriately adapt to external influences. Published by Elsevier Ltd.
Rossi, Silvia; Motta, Caterina; Musella, Alessandra; Centonze, Diego
2015-09-01
Excessive glutamate-mediated synaptic transmission and secondary excitotoxicity have been proposed as key determinants of neurodegeneration in many neurological diseases. Soluble mediators of inflammation have recently gained attention owing to their ability to enhance glutamate transmission and affect synaptic sensitivity to neurotransmitters. In the complex crosstalk between soluble immunoactive molecules and synapses, the endocannabinoid system (ECS) plays a central role, exerting an indirect neuroprotective action by inhibiting cytokine-dependent synaptic alterations, and a direct neuroprotective effect by limiting glutamate transmission and excitotoxic damage. On the other hand, the endocannabinoid (eCB)-mediated control of synaptic transmission is altered by proinflammatory cytokines with consequent effects in central nervous system (CNS) disorders. In this review, we summarize the interactions, at the pre- and postsynaptic level, between major inflammatory cytokines and the ECS. In addition, the behavioral and clinical consequences of the modulation of synaptic transmission during neuroinflammation are discussed. This article is part of a Special Issue entitled 'Neuroimmunology and Synaptic Function'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lovelace, Jonathan W.; Corches, Alex; Vieira, Philip A.; Mackie, Ken; Korzus, Edward
2015-01-01
Cannabis continues to be the most accessible and popular illicit recreational drug. Whereas current data link adolescence cannabinoid exposure to increased risk for dependence on other drugs, depression, anxiety disorders and psychosis, the mechanism(s) underlying these adverse effects remains controversial. Here we show in a mouse model of female adolescent cannabinoid exposure a deficient endocannabinoid (eCB)-mediated signaling and presynaptic forms of long-term depression at adult central glutamatergic synapses in the prefrontal cortex. Increasing endocannabinoid levels by blockade of monoacylglycerol lipase, the primary enzyme responsible for degrading the endocannabinoid 2-arachidonoylglycerol (2-AG), with the specific inhibitor JZL184 ameliorates these deficits. The observed deficit in cortical eCB-dependent signaling may represent a neural maladaptation underlying network instability and abnormal cognitive functioning. Our study suggests that adolescent cannabinoid exposure may permanently impair brain functions, including the brain’s intrinsic ability to appropriately adapt to external influences. PMID:25979486
Cedernaes, Jonathan; Fanelli, Flaminia; Fazzini, Alessia; Pagotto, Uberto; Broman, Jan-Erik; Vogel, Heike; Dickson, Suzanne L; Schiöth, Helgi B; Benedict, Christian
2016-12-01
Following binding to cannabinoid receptors, endocannabinoids regulate a variety of central nervous system processes including appetite and mood. Recent evidence suggests that the systemic release of these lipid metabolites can be altered by acute exercise and that their levels also vary across the 24-h sleep-wake cycle. The present study utilized a within-subject design (involving 16 normal-weight men) to determine whether daytime circulating endocannabinoid concentrations differ following three nights of partial sleep deprivation (4.25-h sleep opportunity, 2:45-7a.m. each night) vs. normal sleep (8.5-h sleep opportunity, 10:30p.m.-7a.m. each night), before and after an acute bout of ergometer cycling in the morning. In addition, subjective hunger and stress were measured. Pre-exercise plasma concentrations of 2-arachidonoylglycerol (2AG) were 80% higher 1.5h after awakening (vs. normal sleep, p<0.05) when participants were sleep-deprived. This coincided with increased hunger ratings (+25% vs. normal sleep, p<0.05). Moreover, plasma 2AG was elevated 15min post-exercise (+44%, p<0.05). Sleep duration did not however modulate this exercise-induced rise. Finally, subjective stress was generally lower on the day after three nights of short sleep vs. normal sleep, especially after exercise (p<0.05). Given that activation of the endocannabinoid system has been previously shown to acutely increase appetite and mood, our results could suggest that behavioral effects of acute sleep loss, such as increased hunger and transiently improved psychological state, may partially result from activation of this signaling pathway. In contrast, more pronounced exercise-induced elevations of endocannabinoids appear to be less affected by short sleep duration. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Jucker, Beat M; Alsaid, Hasan; Rambo, Mary; Lenhard, Stephen C; Hoang, Bao; Xie, Fang; Groseclose, M Reid; Castellino, Stephen; Damian, Valeriu; Bowers, Gary; Gupta, Manish
2017-12-28
Long-Acting Parenterals (LAPs) have been used in the clinic to provide sustained therapeutic drug levels at a target site, and thereby reducing the frequency of dosing required. In an effort to understand the factors associated with long-acting cabotegravir (GSK1265744 LAP) pharmacokinetic variability, the current study was designed to investigate the temporal relationship between intramuscular (IM) or subcutaneous (SC) drug depot morphology and distribution kinetics with plasma pharmacokinetics. Therefore, a multi-modal molecular imaging (MRI & MALDI IMS) approach was employed to examine the temporal GSK1265744 LAP biodistribution in rat following either IM or SC administration. Serial MRI was performed immediately post drug administration, and then at day 1 (24h post), 2, 3, 4, 7, and 14. In a separate cohort of rats, an MRI contrast agent, Feraheme® (USPIO), was administered 2days post IM drug injection in order to investigate the potential involvement of macrophages trafficking to the GSK1265744 LAP and Vehicle depot sites. The GSK1265744 LAP depot volume increased rapidly by day 2 in the IM injected rats (~3-7 fold) compared with a ~1 fold increase in the SC injected rats. In addition, the USPIO contrast agent labeled macrophages were shown to be present in the depot region of the GSK1265744 LAP injected gastrocnemius while the Vehicle injected gastrocnemius appeared to show reduced uptake. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) of muscle and abdominal tissue sections identified the drug content primarily within the depot. Co-registration of the GSK1265744 ion images with immunohistochemical images established that the drug was taken up by macrophages associated with the depot. Linear regression analysis demonstrated that the drug depot characteristics including volume, surface area, and perimeter assessed by MRI at day 2 correlated with early time point plasma drug concentrations. In summary, a multimodal molecular imaging approach was used to identify the drug depot location and volumetric/physiologic changes in both IM and SC locations following GSK1265744 LAP administration. The IM depot volume increased rapidly to a maximum volume at 2days post-GSK1265744 LAP administration, while the Vehicle depot did not suggesting that the active drug substance and/or related particle was a key driver for drug depot evolution. The depot expansion was associated with an increase in macrophage infiltration and edema in and around the depot region and was correlated to plasma drug concentration at early time points (0-4days). Consequently, molecular imaging approaches may be used in patients to help understand the biodistribution of GSK1265744 LAP and its associated pharmacokinetics. Copyright © 2017 Elsevier B.V. All rights reserved.
Costa, Roberto G; Almeida, Michelly DA; Cruz, George Rodrigo B; Beltrão Filho, Edvaldo M; Ribeiro, Neila L; Madruga, Marta S; Queiroga, Rita de Cássia Re
2017-10-01
Fat is the tissue that varies most in animals from both a quantitative and distribution perspective. It plays a fundamental biological role as energy storage during food scarcity. Renal, pelvic and internal fat are deposited first. These fats are used to identify fatty acid profiles that may be considered beneficial or unhealthy. The aim of this study is to evaluate the fatty acid profile of fat depots in Santa Inês sheep finished in confinement with spineless cactus in their diets. The treatments included increasing levels of spineless cactus (Opuntia fícus-indica Mill.): T1 = 0%, T2 = 30%, T3 = 50%, and T4 = 70%. The diets significantly affected the adipose depots. The orthogonal contrast between the diet with no cactus (control) and the other diets indicates that the quantity of saturated fatty acids decreased and that the levels of mono-unsaturated and polyunsaturated fatty acids increased in animals fed spineless cactus. The use of spineless cactus in the diets of Santa Inês sheep affects the lipid profile of their fat depots, reducing the quantity of saturated fatty acids and increasing the quantity of mono-unsaturated and polyunsaturated fatty acids. The fatty acid profile of the fat depots indicates that these fats can be used to formulate meat products and add economic and nutritional value to such products, which increases sheep farmers' incomes. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
The endocannabinoid system in normal and pathological brain ageing
Bilkei-Gorzo, Andras
2012-01-01
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing. PMID:23108550
The endocannabinoid system in normal and pathological brain ageing.
Bilkei-Gorzo, Andras
2012-12-05
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Forner-Piquer, Isabel; Maradonna, Francesca; Gioacchini, Giorgia; Santangeli, Stefania; Allarà, Marco; Piscitelli, Fabiana; Habibi, Hamid R; Di Marzo, Vincenzo; Carnevali, Oliana
2017-10-01
Phthalates, used as plasticizers, have become a ubiquitous contaminant and have been reported for their potential to induce toxicity in living organisms. Among them, di-isononyl phthalate (DiNP) has been recently used to replace di(2-ethylhexyl) phthalate (DEHP). Nowadays, there is evidence that DiNP is an endocrine-disrupting chemical; however, little is known about its effects on the endocannabinoid system (ECS) and lipid metabolism. Hence, the aim of our study was to investigate the effects of DiNP on the ECS in zebrafish liver and brain and on hepatic lipid storage. To do so, adult female zebrafish were exposed to three concentrations (0.42 µg/L, 4.2 µg/L, and 42 µg/L) of DiNP via water for 3 weeks. Afterwards, we investigated transcript levels for genes involved in the ECS of the brain and liver as well as liver histology and image analysis, Fourier-transform infrared spectroscopy imaging, and measurement of endocannabinoid levels. Our results demonstrate that DiNP upregulates orexigenic signals and causes hepatosteatosis together with deregulation of the peripheral ECS and lipid metabolism. A decrease in the levels of ECS components at the central level was observed after exposure to the highest DiNP concentration tested. These findings suggest that replacement of DEHP with DiNP should be considered with caution because of observed adverse DiNP effects on aquatic organisms. Copyright © 2017 Endocrine Society.
Vergnes, Laurent; Davies, Graeme R; Lin, Jason Y; Yeh, Michael W; Livhits, Masha J; Harari, Avital; Symonds, Michael E; Sacks, Harold S; Reue, Karen
2016-11-01
Patients with pheochromocytoma (pheo) show presence of multilocular adipocytes that express uncoupling protein 1 within periadrenal (pADR) and omental (OME) fat depots. It has been hypothesized that this is due to adrenergic stimulation by catecholamines produced by the pheo tumors. To characterize the prevalence and respiratory activity of brown-like adipocytes within pADR, OME, and SC fat depots in human adult pheo patients. This was an observational cohort study. The study took place in a university hospital. We studied 46 patients who underwent surgery for benign adrenal tumors (21 pheos and 25 controls with adrenocortical adenomas). We characterized adipocyte browning in pADR, SC, and OME fat depots for histological and immunohistological features, mitochondrial respiration rate, and gene expression. We also determined circulating levels of catecholamines and other browning-related hormones. Eleven of 21 pheo pADR adipose samples, but only one of 25 pADR samples from control patients exhibited multilocular adipocytes. The pADR browning phenotype was associated with higher plasma catecholamines and raised uncoupling protein 1. Mitochondria from multilocular pADR fat of pheo patients exhibited increased rates of coupled and uncoupled respiration. Global gene expression analysis in pADR fat revealed enrichment in β-oxidation genes in pheo patients with multilocular adipocytes. No SC or OME fat depots exhibited aspects of browning. Browning of the pADR depot occurred in half of pheo patients and was associated with increased catecholamines and mitochondrial activity. No browning was detected in other fat depots, suggesting that other factors are required to promote browning in these depots.
Asha, G V; Raja Gopal Reddy, M; Mahesh, M; Vajreswari, A; Jeyakumar, S M
2016-01-01
Vitamin A and its metabolites are known to modulate adipose tissue development and its associated complications. Here, we assessed the vitamin A status and its metabolic pathway gene expression in relation to sexual dimorphism by employing 35 days old C57BL/6J male and female mice, which were fed either stock or high fat (HF) diet for 26 weeks. HF diet feeding increased body weight/weight gain and white adipose tissue (WAT) of visceral and subcutaneous regions, however, increase in vitamin A levels observed only in subcutaneous WAT. Further, the expression of most of the vitamin A metabolic pathway genes showed no sexual dimorphism. The observed HF diet-induced hyperglycaemia in male corroborates with increased retinol binding protein 4 (RBP4) levels in plasma and its expression in visceral adipose depots. In conclusion, the male mice are susceptible to high fat diet-induced hyperglycaemia and display higher plasma RBP4 levels, possibly due to its over-expression in visceral adipose depots.
Elmes, Matthew W; Kaczocha, Martin; Berger, William T; Leung, KwanNok; Ralph, Brian P; Wang, Liqun; Sweeney, Joseph M; Miyauchi, Jeremy T; Tsirka, Stella E; Ojima, Iwao; Deutsch, Dale G
2015-04-03
Δ(9)-Tetrahydrocannabinol (THC) and cannabidiol (CBD) occur naturally in marijuana (Cannabis) and may be formulated, individually or in combination in pharmaceuticals such as Marinol or Sativex. Although it is known that these hydrophobic compounds can be transported in blood by albumin or lipoproteins, the intracellular carrier has not been identified. Recent reports suggest that CBD and THC elevate the levels of the endocannabinoid anandamide (AEA) when administered to humans, suggesting that phytocannabinoids target cellular proteins involved in endocannabinoid clearance. Fatty acid-binding proteins (FABPs) are intracellular proteins that mediate AEA transport to its catabolic enzyme fatty acid amide hydrolase (FAAH). By computational analysis and ligand displacement assays, we show that at least three human FABPs bind THC and CBD and demonstrate that THC and CBD inhibit the cellular uptake and catabolism of AEA by targeting FABPs. Furthermore, we show that in contrast to rodent FAAH, CBD does not inhibit the enzymatic actions of human FAAH, and thus FAAH inhibition cannot account for the observed increase in circulating AEA in humans following CBD consumption. Using computational molecular docking and site-directed mutagenesis we identify key residues within the active site of FAAH that confer the species-specific sensitivity to inhibition by CBD. Competition for FABPs may in part or wholly explain the increased circulating levels of endocannabinoids reported after consumption of cannabinoids. These data shed light on the mechanism of action of CBD in modulating the endocannabinoid tone in vivo and may explain, in part, its reported efficacy toward epilepsy and other neurological disorders. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Hamtiaux, Laurie; Hansoulle, Laurie; Dauguet, Nicolas; Muccioli, Giulio G.; Gallez, Bernard; Lambert, Didier M.
2011-01-01
The antitumoral properties of endocannabinoids received a particular attention these last few years. Indeed, these endogenous molecules have been reported to exert cytostatic, apoptotic and antiangiogenic effects in different tumor cell lines and tumor xenografts. Therefore, we investigated the cytotoxicity of three N-acylethanolamines – N-arachidonoylethanolamine (anandamide, AEA), N-palmitoylethanolamine (PEA) and N-oleoylethanolamine (OEA) - which were all able to time- and dose-dependently reduce the viability of murine N1E-115 neuroblastoma cells. Moreover, several inhibitors of FAAH and NAAA, whose presence was confirmed by RT-PCR in the cell line, induced cell cytotoxicity and favored the decrease in cell viability caused by N-acylethanolamines. The most cytotoxic treatment was achieved by the co-incubation of AEA with the selective FAAH inhibitor URB597, which drastically reduced cell viability partly by inhibiting AEA hydrolysis and consequently increasing AEA levels. This combination of molecules synergistically decreased cell proliferation without inducing cell apoptosis or necrosis. We found that these effects are independent of cannabinoid, TRPV1, PPARα, PPARγ or GPR55 receptors activation but seem to occur through a lipid raft-dependent mechanism. These findings further highlight the interest of targeting the endocannabinoid system to treat cancer. More particularly, this emphasizes the great potential benefit of designing novel anti-cancerous therapies based on the association of endocannabinoids and inhibitors of their hydrolysis. PMID:22046372
Sun, Xiaofei; Deng, Wenbo; Li, Yingju; Tang, Shuang; Leishman, Emma; Bradshaw, Heather B; Dey, Sudhansu K
2016-04-08
Recent studies provide evidence that premature maternal decidual senescence resulting from heightened mTORC1 signaling is a cause of preterm birth (PTB). We show here that mice devoid of fatty acid amide hydrolase (FAAH) with elevated levels ofN-arachidonyl ethanolamide (anandamide), a major endocannabinoid lipid mediator, were more susceptible to PTB upon lipopolysaccharide (LPS) challenge. Anandamide is degraded by FAAH and primarily works by activating two G-protein-coupled receptors CB1 and CB2, encoded by Cnr1 and Cnr2, respectively. We found thatFaah(-/-)decidual cells progressively underwent premature senescence as marked by increased senescence-associated β-galactosidase (SA-β-Gal) staining and γH2AX-positive decidual cells. Interestingly, increased endocannabinoid signaling activated MAPK p38, but not p42/44 or mTORC1 signaling, inFaah(-/-)deciduae, and inhibition of p38 halted premature decidual senescence. We further showed that treatment of a long-acting anandamide in wild-type mice at midgestation triggered premature decidual senescence utilizing CB1, since administration of a CB1 antagonist greatly reduced the rate of PTB inFaah(-/-)females exposed to LPS. These results provide evidence that endocannabinoid signaling is critical in regulating decidual senescence and parturition timing. This study identifies a previously unidentified pathway in decidual senescence, which is independent of mTORC1 signaling. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Atsak, Piray; Hauer, Daniela; Campolongo, Patrizia; Schelling, Gustav; McGaugh, James L.; Roozendaal, Benno
2012-01-01
There is extensive evidence that glucocorticoid hormones impair the retrieval of memory of emotionally arousing experiences. Although it is known that glucocorticoid effects on memory retrieval impairment depend on rapid interactions with arousal-induced noradrenergic activity, the exact mechanism underlying this presumably nongenomically mediated glucocorticoid action remains to be elucidated. Here, we show that the hippocampal endocannabinoid system, a rapidly activated retrograde messenger system, is involved in mediating glucocorticoid effects on retrieval of contextual fear memory. Systemic administration of corticosterone (0.3–3 mg/kg) to male Sprague–Dawley rats 1 h before retention testing impaired the retrieval of contextual fear memory without impairing the retrieval of auditory fear memory or directly affecting the expression of freezing behavior. Importantly, a blockade of hippocampal CB1 receptors with AM251 prevented the impairing effect of corticosterone on retrieval of contextual fear memory, whereas the same impairing dose of corticosterone increased hippocampal levels of the endocannabinoid 2-arachidonoylglycerol. We also found that antagonism of hippocampal β-adrenoceptor activity with local infusions of propranolol blocked the memory retrieval impairment induced by the CB receptor agonist WIN55,212–2. Thus, these findings strongly suggest that the endocannabinoid system plays an intermediary role in regulating rapid glucocorticoid effects on noradrenergic activity in impairing memory retrieval of emotionally arousing experiences. PMID:22331883
Wong, Janice Siu Chong; Chu, Wai Kit; Li, Benjamin Fuk-Loi; Pang, Chi-Pui; Chong, Kelvin Kam-Lung
2018-04-17
Thyroid-associated orbitopathy (TAO) causes inflammatory fibroproliferation of periocular connective tissues. We compared adipose tissue-derived stem/stromal cells (ADSCs) from three adipose depots of each patient with TAO on mesenchymal, myofibrogenic, adipogenic properties and associated hyaluronan (HA) synthesis. ADSCs were generated from periocular (eyelid, orbital) and subcutaneous (abdominal) adipose tissues of three patients with TAO. Mesenchymal markers were characterised by reverse transcription-PCR and immunofluorescent staining. A 3-week adipogenic induction was evaluated by Nile red staining and quantitative PCR (qPCR) of peroxisome proliferator-activated receptor (PPARγ), adiponectin and hyaluronan synthase (HAS)-2. A 7-day myofibrogenic induction was assayed by immunofluorescent staining and qPCR of α-smooth muscle actin (α-SMA). ADSCs from all depots expressed similar levels of mesenchymal markers CD44, CD90 and CD105 (p=0.288, p=0.43 and p=0.837, respectively). After adipogenic induction, intracellular lipid increased for more than 32% and PPARγ mRNA showed more than twofold increase from all three depots. However, adiponectin and HAS-2 mRNA levels were significantly higher in the eyelid and orbital ADSCs than those from the subcutaneous ADSCs after induction (2.4×10 7 , 3.9×10 6 folds vs below detection limit; 63.3-fold, 26.1-fold, vs 33% reduction, respectively; all p=0.002). Significantly more myofibroblasts and higher mRNA level of α-SMA were obtained from the orbital and eyelid compared with the subcutaneous ADSCs during myofibrogenic induction (80.2%, 70.6% vs 29.3%; 30.2-fold, 24.2-fold vs 1.7-fold, respectively; all p=0.002). ADSCs from different adipose depots of the same donors exhibited similar mesenchymal phenotypes but differed significantly in adipogenic, myofibrogenic potentials and associated HA synthesis. These depot-specific characteristics of ADSCs may contribute to site-specific adipose tissue involvement in TAO. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
2009-09-01
System, and Sidewinder, as well as mobile electric power generation equipment Red River Texarkana , Texas Bradley Fighting Vehicle, tactical wheeled...Depot, Corpus Christi, Texas; Letterkenny Army Depot, Chambersburg, Pennsylvania; Red River Army Depot, Texarkana , Texas; and Tobyhanna Army Depot
Hao, Ming-xiu; Jiang, Li-sheng; Fang, Ning-yuan; Pu, Jun; Hu, Liu-hua; Shen, Ling-Hong; Song, Wei; He, Ben
2010-01-01
The endocannabinoid system has recently been attracted interest for its anti-inflammatory and anti-oxidative properties. In this study, we investigated the role of the endocannabinoid system in regulating the oxidized low-density lipoprotein (oxLDL)-induced inflammatory response in macrophages. RAW264.7 mouse macrophages and peritoneal macrophages isolated from Sprague-Dawley (SD) rats were exposed to oxLDL with or without the synthetic cannabinoid WIN55,212-2. To assess the inflammatory response, reactive oxygen species (ROS) and tumor necrosis factor alpha (TNF- α) levels were determined, and activation of the mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-kappa B signaling pathways were assessed. We observed that: i) oxLDL strongly induced ROS generation and TNF- α secretion in murine macrophages; ii) oxLDL-induced TNF- α and ROS levels could be lowered considerably by WIN55,212-2 via inhibition of MAPK (ERK1/2) signaling and NF-kappa B activity; and iii) the effects of WIN55212-2 were attenuated by the selective CB2 receptor antagonist AM630. These results demonstrate the involvement of the endocannabinoid system in regulating the oxLDL-induced inflammatory response in macrophages, and indicate that the CB2 receptor may offer a novel pharmaceutical target for treating atherosclerosis. PMID:20305287
Endocannabinoid System in Neurological Disorders.
Ranieri, Roberta; Laezza, Chiara; Bifulco, Maurizio; Marasco, Daniela; Malfitano, Anna M
2016-01-01
Several studies support the evidence that the endocannabinoid system and cannabimimetic drugs might have therapeutic potential in numerous pathologies. These pathologies range from neurological disorders, atherosclerosis, stroke, cancer to obesity/metabolic syndrome and others. In this paper we review the endocannabinoid system signaling and its alteration in neurodegenerative disorders like multiple sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease and discuss the main findings about the use of cannabinoids in the therapy of these pathologies. Despite different etiologies, neurodegenerative disorders exhibit similar mechanisms like neuro-inflammation, excitotoxicity, deregulation of intercellular communication, mitochondrial dysfunction and disruption of brain tissue homeostasis. Current treatments ameliorate the symptoms but are not curative. Interfering with the endocannabinoid signaling might be a valid therapeutic option in neuro-degeneration. To this aim, pharmacological intervention to modulate the endocannabinoid system and the use of natural and synthetic cannabimimetic drugs have been assessed. CB1 and CB2 receptor signaling contributes to the control of Ca2+ homeostasis, trophic support, mitochondrial activity, and inflammatory conditions. Several studies and patents suggest that the endocannabinoid system has neuro-protective properties and might be a target in neurodegenerative diseases.
Expression and Function of the Endocannabinoid System in the Retina and the Visual Brain.
Bouchard, Jean-François; Casanova, Christian; Cécyre, Bruno; Redmond, William John
2016-01-01
Endocannabinoids are important retrograde modulators of synaptic transmission throughout the nervous system. Cannabinoid receptors are seven transmembrane G-protein coupled receptors favoring Gi/o protein. They are known to play an important role in various processes, including metabolic regulation, craving, pain, anxiety, and immune function. In the last decade, there has been a growing interest for endocannabinoids in the retina and their role in visual processing. The purpose of this review is to characterize the expression and physiological functions of the endocannabinoid system in the visual system, from the retina to the primary visual cortex, with a main interest regarding the retina, which is the best-described area in this system so far. It will show that the endocannabinoid system is widely present in the retina, mostly in the through pathway where it can modulate neurotransmitter release and ion channel activity, although some evidence also indicates possible mechanisms via amacrine, horizontal, and Müller cells. The presence of multiple endocannabinoid ligands, synthesizing and catabolizing enzymes, and receptors highlights various pharmacological targets for novel therapeutic application to retinal diseases.
Cannabinoids in the Cardiovascular System.
Ho, Wing S V; Kelly, Melanie E M
2017-01-01
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB 1 and CB 2 receptors or non-CB 1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation. © 2017 Elsevier Inc. All rights reserved.
The sexual dimorphism of obesity
Palmer, Biff F.; Clegg, Deborah J.
2015-01-01
The NIH has recently highlighted the importance of sexual dimorphisms and has mandated inclusion of both sexes in clinical trials and basic research. In this review we highlight new and novel ways sex hormones influence body adiposity and the metabolic syndrome. Understanding how and why metabolic processes differ by sex will enable clinicians to target and personalize therapies based on gender. Adipose tissue function and deposition differ by sex. Females differ with respect to distribution of adipose tissues, males tend to accrue more visceral fat, leading to the classic android body shape which has been highly correlated to increased cardiovascular risk; whereas females accrue more fat in the subcutaneous depot prior to menopause, a feature which affords protection from the negative consequences associated with obesity and the metabolic syndrome. After menopause, fat deposition and accrual shift to favor the visceral depot. This shift is accompanied by a parallel increase in metabolic risk reminiscent to that seen in men. A full understanding of the physiology behind why, and by what mechanisms, adipose tissues accumulate in specific depots and how these depots differ metabolically by sex is important in efforts of prevention of obesity and chronic disease. Estrogens, directly or through activation of their receptors on adipocytes and in adipose tissues, facilitate adipose tissue deposition and function. Evidence suggests that estrogens augment the sympathetic tone differentially to the adipose tissue depots favoring lipid accumulation in the subcutaneous depot in women and visceral fat deposition in men. At the level of adipocyte function, estrogens and their receptors influence the expandability of fat cells enhancing the expandability in the subcutaneous depot and inhibiting it in the visceral depot. Sex hormones clearly influence adipose tissue function and deposition, determining how to capture and utilize their function in a time of caloric surfeit, requires more information. The key will be harnessing the beneficial effects of sex hormones in such a way as to provide ‘healthy’ adiposity. PMID:25578600
Gomes, Felipe V.; Silva, Andréia L.; Uliana, Daniela L.; Camargo, Laura H. A.; Guimarães, Francisco S.; Cunha, Fernando Q.; Joca, Sâmia R. L.; Resstel, Leonardo B. M.
2015-01-01
Background: Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. Methods: We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Results: Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. Conclusion: These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. PMID:25618404
Lisboa, Sabrina F; Gomes, Felipe V; Silva, Andréia L; Uliana, Daniela L; Camargo, Laura H A; Guimarães, Francisco S; Cunha, Fernando Q; Joca, Sâmia R L; Resstel, Leonardo B M
2015-01-24
Inducible or neuronal nitric oxide synthase gene deletion increases or decreases anxiety-like behavior in mice, respectively. Since nitric oxide and endocannabinoids interact to modulate defensive behavior, the former effect could involve a compensatory increase in basal brain nitric oxide synthase activity and/or changes in the endocannabinoid system. Thus, we investigated the expression and extinction of contextual fear conditioning of inducible nitric oxide knockout mice and possible involvement of endocannabinoids in these responses. We evaluated the effects of a preferential neuronal nitric oxide synthase inhibitor, 7-nitroindazol, nitric oxide synthase activity, and mRNA changes of nitrergic and endocannabinoid systems components in the medial prefrontal cortex and hippocampus of wild-type and knockout mice. The effects of URB597, an inhibitor of the fatty acid amide hydrolase enzyme, which metabolizes the endocannabinoid anandamide, WIN55,212-2, a nonselective cannabinoid agonist, and AM281, a selective CB1 antagonist, on contextual fear conditioning were also evaluated. Contextual fear conditioning expression was similar in wild-type and knockout mice, but the latter presented extinction deficits and increased basal nitric oxide synthase activity in the medial prefrontal cortex. 7-Nitroindazol decreased fear expression and facilitated extinction in wild-type and knockout mice. URB597 decreased fear expression in wild-type and facilitated extinction in knockout mice, whereas WIN55,212-2 and AM281 increased it in wild-type mice. Nonconditioned knockout mice showed changes in the mRNA expression of nitrergic and endocannabinoid system components in the medial prefrontal cortex and hippocampus that were modified by fear conditioning. These data reinforce the involvement of the nitric oxide and endocannabinoids (anandamide) in stress-related disorders and point to a deregulation of the endocannabinoid system in situations where nitric oxide signaling is increased. © The Author 2015. Published by Oxford University Press on behalf of CINP.
The endocannabinoid system expression in the female reproductive tract is modulated by estrogen.
Maia, J; Almada, M; Silva, A; Correia-da-Silva, G; Teixeira, N; Sá, S I; Fonseca, B M
2017-11-01
The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen. Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry. Moreover, the plasmatic and uterine levels of AEA and of prostaglandin E 2 (PGE 2 ) and prostaglandin F 2 α (PGF 2α ), the major cyclooxygenase-2 (COX-2) products, were determined by UPLC-MS/MS. The immunohistochemistry showed that cannabinoid receptors, as well as AEA-metabolic enzymes are mainly located in the epithelial cells of both lumen and glands and, to a lesser extent, in the muscle cells. Moreover, EB administration to OVX rats significantly increased CB1, CB2, NAPE-PLD, FAAH and COX-2 expression and transcription. These effects were absent in TAM and TAM+EB treatments showing that this response is estrogen receptor dependent. Additionally, although uterine levels of AEA remained unchanged in EB or TAM treated animals, they showed a rise with EB treatment in plasma. The latter also produced a decrease in uterine PGE 2 levels. In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE 2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues. Copyright © 2017 Elsevier Ltd. All rights reserved.
Evolutionary origins of the endocannabinoid system.
McPartland, John M; Matias, Isabel; Di Marzo, Vincenzo; Glass, Michelle
2006-03-29
Endocannabinoid system evolution was estimated by searching for functional orthologs in the genomes of twelve phylogenetically diverse organisms: Homo sapiens, Mus musculus, Takifugu rubripes, Ciona intestinalis, Caenorhabditis elegans, Drosophila melanogaster, Saccharomyces cerevisiae, Arabidopsis thaliana, Plasmodium falciparum, Tetrahymena thermophila, Archaeoglobus fulgidus, and Mycobacterium tuberculosis. Sequences similar to human endocannabinoid exon sequences were derived from filtered BLAST searches, and subjected to phylogenetic testing with ClustalX and tree building programs. Monophyletic clades that agreed with broader phylogenetic evidence (i.e., gene trees displaying topographical congruence with species trees) were considered orthologs. The capacity of orthologs to function as endocannabinoid proteins was predicted with pattern profilers (Pfam, Prosite, TMHMM, and pSORT), and by examining queried sequences for amino acid motifs known to serve critical roles in endocannabinoid protein function (obtained from a database of site-directed mutagenesis studies). This novel transfer of functional information onto gene trees enabled us to better predict the functional origins of the endocannabinoid system. Within this limited number of twelve organisms, the endocannabinoid genes exhibited heterogeneous evolutionary trajectories, with functional orthologs limited to mammals (TRPV1 and GPR55), or vertebrates (CB2 and DAGLbeta), or chordates (MAGL and COX2), or animals (DAGLalpha and CB1-like receptors), or opisthokonta (animals and fungi, NAPE-PLD), or eukaryotes (FAAH). Our methods identified fewer orthologs than did automated annotation systems, such as HomoloGene. Phylogenetic profiles, nonorthologous gene displacement, functional convergence, and coevolution are discussed.
Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue1-3
Gallagher, Dympna; Kuznia, Patrick; Heshka, Stanley; Albu, Jeanine; Heymsfield, Steven B; Goodpaster, Bret; Visser, Marjolein; Harris, Tamara B
2006-01-01
Background The manner in which fat depot volumes and distributions, particularly the adipose tissue (AT) between the muscles, vary by race is unknown. Objective The objective was to quantify a previously unstudied and novel intermuscular AT (IMAT) depot and subcutaneous AT, visceral AT (VAT), and total-body skeletal muscle mass in healthy sedentary African American (AA), Asian, and white adults by whole-body magnetic resonance imaging. IMAT is the AT between muscles and within the boundary of the muscle fascia. Design Analyses were conducted on 227 women [AA (n = 79): body mass index (BMI; in kg/m2), 29.0 ± 5.5; age, 45.7 ± 16.9 y; Asian (n = 38): BMI, 21.7 ± 2.9; age, 47.2 ± 19.9 y; whites (n = 110): BMI, 24.9 ± 5.4; age, 43.7 ± 16.2 y]) and 111 men [AA (n = 39): BMI, 25.6 ± 3.2; age, 45.5 ± 18.8 y; Asian (n = 13): BMI, 24.9 ± 2.5; age, 45.6 ± 25.0 y; white (n = 59): BMI, 25.8 ± 3.8; age 44.5 ± 16.3 y]. Results IMAT depots were not significantly different in size between race groups at low levels of adiposity; however, with increasing adiposity, AAs had a significantly greater increment in the proportion of total AT (TAT) than did the whites and Asians (58, 46, and 44 g IMAT/kg TAT, respectively; P = 0.001). VAT depots were not significantly different in size at low levels of adiposity but, with increasing adiposity, VAT accumulation was greater than IMAT accumulation in the Asians and whites; no significant differences were observed in AAs. Conclusion Race differences in AT distribution extend to IMAT, a depot that may influence race-ethnicity differences in dysglycemia. PMID:15817870
Zuriaga, Maria A; Fuster, Jose J; Gokce, Noyan; Walsh, Kenneth
2017-01-01
Visceral adiposity is much more strongly associated with cardiometabolic disease in humans than subcutaneous adiposity. Browning, the appearance of brown-like adipocytes in the white adipose tissue (WAT), has been shown to protect mice against metabolic dysfunction, suggesting the possibility of new therapeutic approaches to treat obesity and type 2 diabetes. In mice, subcutaneous WAT depots express higher levels of browning genes when compared with visceral WAT, further suggesting that differences in WAT browning could contribute to the differences in the pathogenicity of the two depots. However, the expression of browning genes in different WAT depots of human has not been characterized. Here, it is shown that the expression of browning genes is higher in visceral than in subcutaneous WAT in humans, a pattern that is opposite to what is observed in mice. These results suggest that caution should be applied in extrapolating the results of murine browning gene expression studies to human pathophysiology.
Campos Moreno, Eduardo; Merino Sanjuán, Matilde; Merino, Virginia; Nácher, Amparo; Martín Algarra, Rafael V; Casabó, Vicente G
2007-02-01
The objective of this paper was to characterize the disposition phase of AM in rats, after different high doses and modalities of i.v. administration. Three fitting programs, WINNONLIN, ADAPT II and NONMEM were employed. The two-stage fitting methods led to different results, none of which can adequately explain amiodarone's behaviour, although a great amount of data per subject is available. The non-linear mixed effect modelling approach allows satisfactory estimation of population pharmacokinetic parameters, and their respective variability. The best model to define the AM pharmacokinetic profile is a two-compartment model, with saturable and dynamic plasma protein binding and linear tissular depot dynamic binding. These results indicate that peripheral tissues act as depots, causing an important fall in AM plasma levels in the first moment after dosing. Later, the return of the drug from these depots causes a slow increase in serum concentration whenever the dose is reduced.
Department of Defense Logistics Roadmap 2008. Volume 2
2008-07-01
endeavors to better synchronize field and depot maintenance data systems resulting in faster Programmed Depot Maintenance (PDM) completion. The...mechanic-centric”. This will put the mechanic actually on the aircraft more often, with the tools and resources to complete their tasks, resulting in...MAJCOM’s: 1. Status to target 2. Initiatives 3. Results FY07 Level: FY10 Target: Goal: The five desired effects of AFSO21 are to: 1. Increased
Endocannabinoid signalling: has it got rhythm?
Vaughn, Linda K; Denning, Gerene; Stuhr, Kara L; de Wit, Harriet; Hill, Matthew N; Hillard, Cecilia J
2010-01-01
Endogenous cannabinoid signalling is widespread throughout the body, and considerable evidence supports its modulatory role in many fundamental physiological processes. The daily and seasonal cycles of the relationship of the earth and sun profoundly affect the terrestrial environment. Terrestrial species have adapted to these cycles in many ways, most well studied are circadian rhythms and hibernation. The purpose of this review was to examine literature support for three hypotheses: (i) endocannabinoid signalling exhibits brain region-specific circadian rhythms; (ii) endocannabinoid signalling modulates the rhythm of circadian processes in mammals; and (iii) changes in endocannabinoid signalling contribute to the state of hibernation. The results of two novel studies are presented. First, we report the results of a study of healthy humans demonstrating that plasma concentrations of the endocannabinoid, N-arachidonylethanolamine (anandamide), exhibit a circadian rhythm. Concentrations of anandamide are threefold higher at wakening than immediately before sleep, a relationship that is dysregulated by sleep deprivation. Second, we investigated differences in endocannabinoids and congeners in plasma from Marmota monax obtained in the summer and during the torpor state of hibernation. We report that 2-arachidonoylglycerol is below detection in M. monax plasma and that concentrations of anandamide are not different. However, plasma concentrations of the anorexigenic lipid oleoylethanolamide were significantly lower in hibernation, while the concentrations of palmitoylethanolamide and 2-oleoylglycerol were significantly greater in hibernation. We conclude that available data support a bidirectional relationship between endocannabinoid signalling and circadian processes, and investigation of the contribution of endocannabinoid signalling to the dramatic physiological changes that occur during hibernation is warranted. This article is part of a themed issue on Cannabinoids. To view the editorial for this themed issue visit http://dx.doi.org/10.1111/j.1476-5381.2010.00831.x PMID:20590563
Endocannabinoids: Effectors of glucocorticoid signaling.
Balsevich, Georgia; Petrie, Gavin N; Hill, Matthew N
2017-10-01
For decades, there has been speculation regarding the interaction of cannabinoids with glucocorticoid systems. Given the functional redundancy between many of the physiological effects of glucocorticoids and cannabinoids, it was originally speculated that the biological mechanisms of cannabinoids were mediated by direct interactions with glucocorticoid systems. With the discovery of the endocannabinoid system, additional research demonstrated that it was actually the opposite; glucocorticoids recruit endocannabinoid signaling, and that the engagement of endocannabinoid signaling mediated many of the neurobiological and physiological effects of glucocorticoids. With the development of advances in pharmacology and genetics, significant advances in this area have been made, and it is now clear that functional interactions between these systems are critical for a wide array of physiological processes. The current review acts a comprehensive summary of the contemporary state of knowledge regarding the biological interactions between glucocorticoids and endocannabinoids, and their potential role in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.
α/β-Hydrolase Domain 6 in the Ventromedial Hypothalamus Controls Energy Metabolism Flexibility.
Fisette, Alexandre; Tobin, Stephanie; Décarie-Spain, Léa; Bouyakdan, Khalil; Peyot, Marie-Line; Madiraju, S R Murthy; Prentki, Marc; Fulton, Stephanie; Alquier, Thierry
2016-10-25
α/β-Hydrolase domain 6 (ABHD6) is a monoacylglycerol hydrolase that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Although complete or peripheral ABHD6 loss of function is protective against diet-induced obesity and insulin resistance, the role of ABHD6 in the central control of energy balance is unknown. Using a viral-mediated knockout approach, targeted endocannabinoid measures, and pharmacology, we discovered that mice lacking ABHD6 from neurons of the ventromedial hypothalamus (VMH KO ) have higher VMH 2-AG levels in conditions of endocannabinoid recruitment and fail to physiologically adapt to key metabolic challenges. VMH KO mice exhibited blunted fasting-induced feeding and reduced food intake, energy expenditure, and adaptive thermogenesis in response to cold exposure, high-fat feeding, and dieting (transition to a low-fat diet). Our findings identify ABHD6 as a regulator of the counter-regulatory responses to major metabolic shifts, including fasting, nutrient excess, cold, and dieting, thereby highlighting the importance of ABHD6 in the VMH in mediating energy metabolism flexibility. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Objective: Endocannabinoid system (ECS) overactivation is associated with increased adiposity and likely contributes to type II diabetes risk. Elevated tissue cannabinoid receptor 1 (CB1) and circulating endocannabinoids derived from the n-6 polyunsaturated acid (PUFA) arachidonic acid occur in obes...
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review.
Fowler, Christopher J
2015-01-01
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Targeting the endocannabinoid system to treat anxiety-related disorders.
Korem, Nachshon; Zer-Aviv, Tomer Mizrachi; Ganon-Elazar, Eti; Abush, Hila; Akirav, Irit
2016-05-01
The endocannabinoid system plays an important role in the control of emotions, and its dysregulation has been implicated in several psychiatric disorders. The most common self-reported reason for using cannabis is rooted in its ability to reduce feelings of stress, tension, and anxiety. Nevertheless, there are only few studies in controlled clinical settings that confirm that administration of cannabinoids can benefit patients with a post-traumatic stress disorder (PTSD). There are considerable encouraging preclinical data to suggest that endocannabinoid-targeted therapeutics for anxiety disorders should continue. In this review, we will describe data supporting a role for the endocannabinoid system in preventing and treating anxiety-like behavior in animal models and PTSD patients. Cannabinoids have shown beneficial outcomes in rat and mouse models of anxiety and PTSD, but they also may have untoward effects that discourage their chronic usage, including anxiogenic effects. Hence, clinical and preclinical research on the endocannabinoid system should further study the effects of cannabinoids on anxiety and help determine whether the benefits of using exogenous cannabinoids outweigh the risks. In general, this review suggests that targeting the endocannabinoid system represents an attractive and novel approach to the treatment of anxiety-related disorders and, in particular, PTSD.
Alteration of the endocannabinoid system in mouse brain during prion disease.
Petrosino, S; Ménard, B; Zsürger, N; Di Marzo, V; Chabry, J
2011-03-17
Prion diseases are neurodegenerative disorders characterized by deposition of the pathological prion protein (PrPsc) within the brain of affected humans and animals. Microglial cell activation is a common feature of prion diseases; alterations of various neurotransmitter systems and neurotransmission have been also reported. Owing to its ability to modulate both neuroimmune responses and neurotransmission, it was of interest to study the brain endocannabinoid system in a prion-infected mouse model. The production of the endocannabinoid, 2-arachidonoyglycerol (2-AG), was enhanced 10 weeks post-infection, without alteration of the other endocannabinoid, anandamide. The CB2 receptor expression was up-regulated in brains of prion-infected mice as early as 10 weeks and up to 32 weeks post-infection whereas the mRNAs of other cannabinoid receptors (CBRs) remain unchanged. The observed alterations of the endocannabinoid system were specific for prion infection since no significant changes were observed in the brain of prion-resistant mice, that is, mice devoid of the Prnp gene. Our study highlights important alterations of the endocannabinoid system during early stages of the disease long before the clinical signs of the disease. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
Justinova, Zuzana; Mangieri, Regina A.; Bortolato, Marco; Chefer, Svetlana I.; Mukhin, Alexey G.; Clapper, Jason R.; King, Alvin R.; Redhi, Godfrey H.; Yasar, Sevil; Piomelli, Daniele; Goldberg, Steven R.
2008-01-01
Background CB1 cannabinoid receptors in the brain are known to participate in the regulation of reward-based behaviors, however, the contribution of each of the endocannabinoid transmitters, anandamide and 2-arachidonoylglycerol (2-AG), to these behaviors remains undefined. To address this question, we assessed the effects of URB597, a selective anandamide deactivation inhibitor, as a reinforcer of drug-seeking and drug-taking behavior in squirrel monkeys. Methods We investigated the reinforcing effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 in monkeys trained to intravenously self-administer Δ9-tetrahydrocannabinol (THC), anandamide or cocaine, and quantified brain endocannabinoid levels using liquid chromatography/mass spectrometry. We measured brain FAAH activity using an ex vivo enzyme assay. Results URB597 (0.3 mg/kg, intravenous) blocked FAAH activity and increased anandamide levels throughout the monkey brain. This effect was accompanied by a marked compensatory decrease in 2-AG levels. Monkeys did not self-administer URB597 and the drug did not promote reinstatement of extinguished drug-seeking behavior previously maintained by THC, anandamide, or cocaine. Pretreatment with URB597 did not modify self-administration of THC or cocaine even though, as expected, it significantly potentiated anandamide self-administration. Conclusions In the monkey brain, the FAAH inhibitor URB597 increases anandamide levels while causing a compensatory down-regulation in 2-AG levels. These effects are accompanied by a striking lack of reinforcing properties, which distinguishes URB597 from direct-acting cannabinoid agonists such as THC. Our results reveal an unexpected functional heterogeneity within the endocannabinoid signaling system, and suggest that FAAH inhibitors might be used therapeutically without risk of abuse or triggering of relapse to drug abuse. PMID:18814866
Nittayacharn, Pinunta; Nasongkla, Norased
2017-07-01
The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots. (c) Dox-loaded depots showed bulk erosion with hollow core at day 60.
Woolcott, Orison O; Richey, Joyce M; Kabir, Morvarid; Chow, Robert H; Iyer, Malini S; Kirkman, Erlinda L; Stefanovski, Darko; Lottati, Maya; Kim, Stella P; Harrison, L Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R; Catalano, Karyn J; Chiu, Jenny D; Bradshaw, Heather; Wu, Qiang; Kolka, Cathryn M; Bergman, Richard N
2015-01-01
Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01). In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05), concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L) but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg), islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control) did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705). No differences in gene expression of CB1R or CB2R between groups were found. In canines, high-fat diet-induced insulin resistance does not alter plasma anandamide levels or further potentiate the insulinotropic effect of anandamide in vitro.
Peripheral endocannabinoid system dysregulation in first-episode psychosis.
Bioque, Miquel; García-Bueno, Borja; Macdowell, Karina S; Meseguer, Ana; Saiz, Pilar A; Parellada, Mara; Gonzalez-Pinto, Ana; Rodriguez-Jimenez, Roberto; Lobo, Antonio; Leza, Juan C; Bernardo, Miguel
2013-12-01
Several hypotheses involving alterations of the immune system have been proposed among etiological explanations for psychotic disorders. The endocannabinoid system (ECS) has a homeostatic role as an endogenous neuroprotective and anti-inflammatory system. Alterations of this system have been associated with psychosis. Cannabis use is a robust risk factor for these disorders that could alter the ECS signalling. In this study, 95 patients with a first episode of psychosis (FEP) and 90 healthy controls were recruited. Protein expression of cannabinoid receptor 2 (CB2), the protein levels of the main endocannabinoid synthesizing enzymes N-acyl phosphatidylethanolamine phospholipase (NAPE) and diacylglycerol lipase (DAGL), and of degradation enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) were determined by western blot analysis in peripheral blood mononuclear cells (PBMCs). Patients with a FEP showed a decreased expression of CB2 and of both endocannabinoids synthesizing enzymes (NAPE and DAGL) in comparison to healthy controls. After controlling for age, gender, body mass index, and cannabis use, NAPE and DAGL expression remained significantly decreased, whereas FAAH and MAGL expression were increased. On the other hand, FEP subjects with history of severe cannabis use showed a larger ECS dysregulation compared with healthy controls. These results indicate an ECS dysregulation in PBMC of FEP patients. The alteration of the ECS presented at the initial phases of psychosis could be contributing to the pathophysiology of the disease and constitutes a possible biomarker of psychotic disorders and an interesting pharmacological target to take into account for therapeutic purposes.
The evolution of Orbiter depot support, with applications to future space vehicles
NASA Technical Reports Server (NTRS)
Mcclain, Michael L.
1990-01-01
The reasons for depot consolidation and the processes established to implement the Orbiter depot are presented. The Space Shuttle Orbiter depot support is presently being consolidated due to equipment suppliers leaving the program, escalating depot support costs, and increasing repair turnaround times. Details of the depot support program for orbiter hardware and selected pieces of support equipment are discussed. The benefits gained from this consolidation and the lessons learned are then applied to future reuseable space vehicles to provide program managers a forward look at the need for efficient depot support.
Current trend in drug delivery considerations for subcutaneous insulin depots to treat diabetes.
P V, Jayakrishnapillai; Nair, Shantikumar V; Kamalasanan, Kaladhar
2017-05-01
Diabetes mellitus (DM) is a metabolic disorder due to irregularities in glucose metabolism, as a result of insulin disregulation. Chronic DM (Type 1) is treated by daily insulin injections by subcutaneous route. Daily injections cause serious patient non-compliance and medication non-adherence. Insulin Depots (ID) are parenteral formulations designed to release the insulin over a specified period of time, to control the plasma blood glucose level for intended duration. Physiologically, pancreas produces and secretes insulin in basal and pulsatile mode into the blood. Delivery systems mimicking basal release profiles are known as open-loop systems and current marketed products are open-loop systems. Future trend in open-loop systems is to reduce the number of injections per week by enhancing duration of action, by modifying the depot properties. The next generation technologies are closed-loop systems that mimic the pulsatile mode of delivery by pancreas. In closed-loop systems insulin will be released in response to plasma glucose. This review focuses on future trend in open-loop systems; by understanding (a) the secretion of insulin from pancreas, (b) the insulin regulation normal and in DM, (c) insulin depots and (d) the recent progress in open-loop depot technology particularly with respect to nanosystems. Copyright © 2017 Elsevier B.V. All rights reserved.
Mendonça, Anne M; Cayer, Lucien G J; Pauls, Samantha D; Winter, Tanja; Leng, Shan; Taylor, Carla G; Zahradka, Peter; Aukema, Harold M
2018-02-01
Dietary EPA and DHA given together alter oxylipins in adipose tissue. To compare the separate effects of individual dietary n-3 PUFA on oxylipins in different adipose depots (gonadal, mesenteric, perirenal, subcutaneous) in males and females, rats were provided diets containing higher levels of α-linolenic acid (ALA), EPA or DHA. Each n-3 PUFA enhanced its respective oxylipins the most, while effects on other n-3 oxylipins varied. For example: in perirenal and subcutaneous depots, more DHA oxylipins were higher with dietary ALA than with EPA; dietary EPA uniquely decreased 14-hydroxy-docosahexaenoic acid, in contrast to increasing many other DHA oxylipins. The n-3 PUFAs also reduced oxylipins from n-6 PUFAs in order of effectiveness: DHA > EPA > ALA. Diet by sex interactions in all depots except the perirenal depot resulted in higher oxylipins in males given DHA, and higher oxylipins in females given the other diets. Diet and sex effects on oxylipins did not necessarily reflect effects on either their tissue phospholipid or neutral lipid PUFA precursors. These varying diet and sex effects on oxylipins in the different adipose sites indicate that they may have distinct effects on adipose function. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chen, Yao; Liu, Xiaojie; Vickstrom, Casey R; Liu, Michelle J; Zhao, Li; Viader, Andreu; Cravatt, Benjamin F; Liu, Qing-Song
2016-01-01
Endocannabinoids are diffusible lipophilic molecules that may spread to neighboring synapses. Monoacylglycerol lipase (MAGL) is the principal enzyme that degrades the endocannabinoid 2-arachidonoylglycerol (2-AG). Using knock-out mice in which MAGL is deleted globally or selectively in neurons and astrocytes, we investigated the extent to which neuronal and astrocytic MAGL limit the spread of 2-AG-mediated retrograde synaptic depression in cerebellar slices. A brief tetanic stimulation of parallel fibers in the molecular layer induced synaptically evoked suppression of excitation (SSE) in Purkinje cells, and both neuronal and astrocytic MAGL contribute to the termination of this form of endocannabinoid-mediated synaptic depression. The spread of SSE among Purkinje cells occurred only after global knock-out of MAGL or pharmacological blockade of either MAGL or glutamate uptake, but no spread was detected following neuron- or astrocyte-specific deletion of MAGL. The spread of endocannabinoid signaling was also influenced by the spatial pattern of synaptic stimulation, because it did not occur at spatially dispersed parallel fiber synapses induced by stimulating the granular layer. The tetanic stimulation of parallel fibers did not induce endocannabinoid-mediated synaptic suppression in Golgi cells even after disruption of MAGL and glutamate uptake, suggesting that heightened release of 2-AG by Purkinje cells does not spread the retrograde signal to parallel fibers that innervate Golgi cells. These results suggest that both neuronal and astrocytic MAGL limit the spatial diffusion of 2-AG and confer synapse-specificity of endocannabinoid signaling.
Klein, Karen O; Dragnic, Sanja; Soliman, Ahmed M; Bacher, Peter
2018-05-11
Children with central precocious puberty (CPP) are treated with gonadotropin-releasing hormone agonists (GnRHa) to suppress puberty. Optimizing treatment outcomes continues to be studied. The relationships between growth, rate of bone maturation (bone age/chronological age [ΔBA/ΔCA]), luteinizing hormone (LH), predicted adult stature (PAS), as well as variables influencing these outcomes, were studied in children treated with depot leuprolide (LA Depot) Methods: Subjects (64 girls, seven boys) with CPP received LA Depot every 3 months for up to 42 months. Multivariate regression analyses were conducted to examine the predictors affecting ΔBA/ΔCA, PAS and growth rate. Ninety percent of subjects (18 of 20) were suppressed (LH levels <4 IU/L) at 42 months. Over 42 months, the mean growth rate declined 2 cm/year, the mean BA/CA ratio decreased 0.21 and PAS increased 8.90 cm for girls (n=64). PAS improved to mid-parental height (MPH) in 46.2% of children by 30 months of treatment. Regression analysis showed that only the Body Mass Index Standardized Score (BMI SDS) was significantly associated (β+0.378 and +0.367, p≤0.05) with growth rate. For PAS, significant correlations were with MPH (β+0.808 and +0.791, p<0.001) and ΔBA/ΔCA (β+0.808 and +0.791, p<0.001). For ΔBA/ΔCA, a significant association was found only with BA at onset of treatment (β-0.098 and -0.103, p≤0.05). Peak-stimulated or basal LH showed no significant influence on growth rate, ΔBA/ΔCA or PAS. Growth rate and bone maturation rate normalized on treatment with LA Depot. LH levels were not significantly correlated with growth rate, ΔBA/ΔCA or PAS, suggesting that suppression was adequate and variations in gonadotropin levels were below the threshold affecting outcomes.
2014-06-01
unacceptable levels of the toxic metal(loid)s arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). With the exception of Pb contaminated soils, human...remediation and closure. Lead (Pb), arsenic (As), chromium (Cr), and cadmium (Cd) are toxic (i.e., capable of producing an unwanted, deleterious effect...lagoon are contaminated with high concentrations of lead , chromium, and cadmium . 14 Deseret Chemical Depot: The Deseret Chemical Depot is
Flow cytometric single cell analysis reveals heterogeneity between adipose depots
Boumelhem, Badwi B.; Assinder, Stephen J.; Bell-Anderson, Kim S.; Fraser, Stuart T.
2017-01-01
ABSTRACT Understanding adipose tissue heterogeneity is hindered by the paucity of methods to analyze mature adipocytes at the single cell level. Here, we report a system for analyzing live adipocytes from different adipose depots in the adult mouse. Single cell suspensions of buoyant adipocytes were separated from the stromal vascular fraction and analyzed by flow cytometry. Compared to other lipophilic dyes, Nile Red uptake effectively distinguished adipocyte populations. Nile Red fluorescence increased with adipocyte size and granularity and could be combined with MitoTracker® Deep Red or fluorescent antibody labeling to further dissect adipose populations. Epicardial adipocytes exhibited the least mitochondrial membrane depolarization and highest fatty-acid translocase CD36 surface expression. In contrast, brown adipocytes showed low surface CD36 expression. Pregnancy resulted in reduced mitochondrial membrane depolarisation and increased CD36 surface expression in brown and epicardial adipocyte populations respectively. Our protocol revealed unreported heterogeneity between adipose depots and highlights the utility of flow cytometry for screening adipocytes at the single cell level. PMID:28453382
The Endocannabinoid System as an Emerging Target of Pharmacotherapy
PACHER, PÁL; BÁTKAI, SÁNDOR; KUNOS, GEORGE
2008-01-01
The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB1 receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB1 receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB2 receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients’ need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy. PMID:16968947
Occupational exposure of petroleum depot workers to BTEX compounds.
Rezazadeh Azari, M; Naghavi Konjin, Z; Zayeri, F; Salehpour, S; Seyedi, M D
2012-01-01
Benzene, toluene, ethylbenzene and xylene (BTEX) are the most important toxic volatile compounds in the air and could be easily absorbed through the respiratory tract. In recent years, the risk of exposure to BTEX compounds, especially benzene as a carcinogen, has been considered in petroleum depot stations. To assess the occupational exposure of petroleum depot workers in Iran to BTEX compounds. After completing a questionnaire and assessing occupational exposure to BTEX compounds, 78 (46 exposed and 32 non-exposed) depot workers were randomly selected to participate in this study. Air sampling and analysis of BTEX was conducted according to the NIOSH method No. 1501. Analysis of urinary hippuric acid, as an indicator of toluene exposure, was carried out according to NIOSH method No. 8300. Personal monitoring of the high exposure group to BTEX compounds was repeated to verify the results obtained in the first phase of the monitoring. Among the 9 operating groups studied, occupational exposure to benzene and toluene was higher in quality control and gasoline loading operators-the median exposure ranged from 0.16 to 1.63 ppm for benzene and 0.2 to 2.72 ppm for toluene. Median exposure of other group members to BTEX compounds was below the detection limit of analytical method (0.07, 0.06, 0.05, and 0.05 ppm, respectively). The level of toluene exposure measured showed correlation with neither post-shift urinary hippuric acid (Spearman's rho = 0.128, p = 0.982) nor with the difference between post- and pre-shift urinary hippuric acid (Spearman's rho = 0.089, p = 0.847) in depot operational workers. Gasoline loading operators are exposed to a relatively high level of benzene.
Three-month sustained-release triptorelin (11.25 mg) in the treatment of central precocious puberty.
Carel, Jean-Claude; Blumberg, Joëlle; Seymour, Christine; Adamsbaum, Catherine; Lahlou, Najiba
2006-01-01
Depot GnRH agonists are commonly used in the treatment of central precocious puberty (CPP). The triptorelin 11.25 mg 3-month depot, currently used in adult indications, had not previously been evaluated in CPP. This was a multicenter, open-label, 12 month trial conducted in 64 CPP children (54 girls and 10 boys), treated quarterly. Children with a clinical onset of pubertal development before the age of 8 years (girls) or 9 years (boys), pubertal response of LH to GnRH > or = 7 IU/l, advanced bone age > 1 year, enlarged uterus (> or = 36 mm) and testosterone level > or = 0.5 ng/ml (boys), were included. Suppression of gonadotropic activation, as determined from serum LH, FSH, estradiol or testosterone, and pubertal signs were assessed at Months 3, 6 and 12. GnRH-stimulated peak LH < or = 3 IU/l, the main efficacy criterion, was met in 53 out of 62 (85%), 60 out of 62 (97%) and 56 out of 59 (95%) of the children at Months 3, 6 and 12 respectively. Serum FSH and sex steroids were also significantly reduced, while pubertal development regressed in most patients. Mean residual triptorelin levels were stable from Month 3 through to Month 12. The triptorelin 3-month depot was well tolerated. Severe injection pain was experienced in only one instance. Five girls experienced mild-to-moderate or severe (one girl) withdrawal bleeding. The triptorelin 3-month depot efficiently suppresses the pituitary-gonadal axis and pubertal development in children with CPP. This formulation allows a 3-fold reduction, over the once-a-month depot, in the number of i.m. injections required each year.
Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A
2017-11-01
Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.
Endocannabinoids in Liver Disease
Tam, Joseph; Liu, Jie; Mukhopadhyay, Bani; Cinar, Resat; Godlewski, Grzegorz; Kunos, George
2010-01-01
Endocannabinoids are lipid mediators of the same cannabinoid (CB) receptors that mediate the effects of marijuana. The endocannabinoid system (ECS) consists of CB receptors, endocannabinoids, and the enzymes involved in their biosynthesis and degradation, and is present both in brain and peripheral tissues, including the liver. The hepatic ECS is activated in various liver diseases, which contributes to the underlying pathologies. In cirrhosis of various etiologies, activation of vascular and cardiac CB1 receptors by macrophage- and platelet-derived endocannabinoids contribute to the vasodilated state and cardiomyopathy, which can be reversed by CB1 blockade. In mouse models of liver fibrosis, activation of CB1 receptors on hepatic stellate cells is fibrogenic, and CB1 blockade slows the progression of fibrosis. Fatty liver induced by high-fat diets or chronic alcohol feeding depend on activation of peripheral, including hepatic CB1 receptors, which also contribute to insulin resistance and dyslipidemias. Although the documented therapeutic potential of CB1 blockade is limited by neuropsychiatric side effects, these may be mitigated by using novel, peripherally restricted CB1 antagonists. PMID:21254182
Eradicating hepatitis C virus ameliorates insulin resistance without change in adipose depots.
Milner, K-L; Jenkins, A B; Trenell, M; Tid-Ang, J; Samocha-Bonet, D; Weltman, M; Xu, A; George, J; Chisholm, D J
2014-05-01
Chronic hepatitis C (CHC) is associated with lipid-related changes and insulin resistance; the latter predicts response to antiviral therapy, liver disease progression and the risk of diabetes. We sought to determine whether insulin sensitivity improves following CHC viral eradication after antiviral therapy and whether this is accompanied by changes in fat depots or adipokine levels. We compared 8 normoglycaemic men with CHC (genotype 1 or 3) before and at least 6 months post viral eradication and 15 hepatitis C antibody negative controls using an intravenous glucose tolerance test and two-step hyperinsulinaemic-euglycaemic clamp with [6,6-(2) H2 ] glucose to assess peripheral and hepatic insulin sensitivity. Magnetic resonance imaging and spectroscopy quantified abdominal fat compartments, liver and intramyocellular lipid. Peripheral insulin sensitivity improved (glucose infusion rate during high-dose insulin increased from 10.1 ± 1.6 to 12 ± 2.1 mg/kg/min/, P = 0.025), with no change in hepatic insulin response following successful viral eradication, without any accompanying change in muscle, liver or abdominal fat depots. There was corresponding improvement in incremental glycaemic response to intravenous glucose (pretreatment: 62.1 ± 8.3 vs post-treatment: 56.1 ± 8.5 mm, P = 0.008). Insulin sensitivity after viral clearance was comparable to matched controls without CHC. Post therapy, liver enzyme levels decreased but, interestingly, levels of glucagon, fatty acid-binding protein and lipocalin-2 remained elevated. Eradication of the hepatitis C virus improves insulin sensitivity without alteration in fat depots, adipokine or glucagon levels, consistent with a direct link of the virus with insulin resistance. © 2013 John Wiley & Sons Ltd.
Wu, Ning
2017-01-01
Glucocorticoids rapidly stimulate endocannabinoid synthesis and modulation of synaptic transmission in hypothalamic neuroendocrine cells via a nongenomic signaling mechanism. The endocannabinoid actions are synapse-constrained by astrocyte restriction of extracellular spatial domains. Exogenous cannabinoids have been shown to modulate postsynaptic potassium currents, including the A-type potassium current (IA), in different cell types. The activity of magnocellular neuroendocrine cells is shaped by a prominent IA. We tested for a rapid glucocorticoid modulation of the postsynaptic IK and IA in magnocellular neuroendocrine cells of the hypothalamic paraventricular nucleus (PVN) using whole-cell recordings in rat brain slices. Application of the synthetic glucocorticoid dexamethasone (Dex) had no rapid effect on the IK or IA amplitude, voltage dependence, or kinetics in magnocellular neurons in slices from untreated rats. In magnocellular neurons from salt-loaded rats, however, Dex application caused a rapid suppression of the IA and a depolarizing shift in IA voltage dependence. Exogenously applied endocannabinoids mimicked the rapid Dex modulation of the IA, and CB1 receptor antagonists and agonists blocked and occluded the Dex-induced changes in the IA, respectively, suggesting an endocannabinoid dependence of the rapid glucocorticoid effect. Preincubation of control slices in a gliotoxin resulted in the partial recapitulation of the glucocorticoid-induced rapid suppression of the IA. These findings demonstrate a glucocorticoid suppression of the postsynaptic IA in PVN magnocellular neurons via an autocrine endocannabinoid-dependent mechanism following chronic dehydration, and suggest a possible role for astrocytes in the control of the autocrine endocannabinoid actions. PMID:28966975
Circulating Endocannabinoid Concentrations and Sexual Arousal in Women
Klein, Carolin; Hill, Matthew N.; Chang, Sabrina C.H.; Hillard, Cecilia J.; Gorzalka, Boris B.
2013-01-01
Introduction Several lines of evidence point to the potential role of the endocannabinoid system in female sexual functioning. These include results from studies describing the subjective effects of exogenous cannabinoids on sexual functioning in humans and the observable effects of exogenous cannabinoids on sexual functioning in other species, as well as results from studies investigating the location of cannabinoid receptors in the brain and periphery, and the effects of cannabinoid receptor activation on neurotransmitters implicated in sexual functioning. While these lines of research suggest a role for the endocannabinoid system in female sexual functioning, no studies investigating the relationship between concentrations of endogenous cannabinoids (i.e., arachidonoylethanolamide [AEA] and 2-arachidonoylglycerol [2-AG]) and sexual functioning have been conducted in any species. Aim To measure circulating endocannabinoid concentrations in relation to subjective and physiological indices of sexual arousal in women (n = 21). Methods Serum endocannabinoid (AEA and 2-AG) concentrations were measured immediately prior to, and immediately following, viewing of neutral (control) and erotic (experimental) film stimuli in a repeated measures design. Physiological sexual arousal was measured via vaginal photoplethysmography. Subjective sexual arousal was measured both continuously and non-continuously. Pearson’s correlations were used to investigate the relationships between endocannabinoid concentrations and sexual arousal. Main Outcome Measures Changes in AEA and 2-AG concentrations from pre- to post-film and in relation to physiological and subjective indices of sexual arousal. Results Results revealed a significant relationship between endocannabinoid concentrations and female sexual arousal, whereby increases in both physiological and subjective indices of sexual arousal were significantly associated with decreases in AEA, and increases in subjective indices of sexual arousal were significantly associated with decreases in 2-AG. Conclusions These findings support the hypothesis that the endocannabinoid system is involved in female sexual functioning, with implications for furthering understanding of the biological mechanisms underlying female sexual functioning. PMID:22462722
Hanlon, Erin C.; Tasali, Esra; Leproult, Rachel; Stuhr, Kara L.; Doncheck, Elizabeth; de Wit, Harriet; Hillard, Cecilia J.; Van Cauter, Eve
2016-01-01
Study Objectives: Increasing evidence from laboratory and epidemiologic studies indicates that insufficient sleep may be a risk factor for obesity. Sleep curtailment results in stimulation of hunger and food intake that exceeds the energy cost of extended wakefulness, suggesting the involvement of reward mechanisms. The current study tested the hypothesis that sleep restriction is associated with activation of the endocannabinoid (eCB) system, a key component of hedonic pathways involved in modulating appetite and food intake. Methods: In a randomized crossover study comparing 4 nights of normal (8.5 h) versus restricted sleep (4.5 h) in healthy young adults, we examined the 24-h profiles of circulating concentrations of the endocannabinoid 2-arachidonoylglycerol (2-AG) and its structural analog 2-oleoylglycerol (2-OG). We concomitantly assessed hunger, appetite, and food intake under controlled conditions. Results: A robust daily variation of 2-AG concentrations with a nadir around the middle of the sleep/overnight fast, followed by a continuous increase culminating in the early afternoon, was evident under both sleep conditions but sleep restriction resulted in an amplification of this rhythm with delayed and extended maximum values. Concentrations of 2-OG followed a similar pattern, but with a lesser amplitude. When sleep deprived, participants reported increases in hunger and appetite concomitant with the afternoon elevation of 2-AG concentrations, and were less able to inhibit intake of palatable snacks. Conclusions: Our findings suggest that activation of the eCB system may be involved in excessive food intake in a state of sleep debt and contribute to the increased risk of obesity associated with insufficient sleep. Commentary: A commentary on this article appears in this issue on page 495. Citation: Hanlon EC, Tasali E, Leproult R, Stuhr KL, Doncheck E, de Wit H, Hillard CJ, Van Cauter E. Sleep restriction enhances the daily rhythm of circulating levels of endocannabinoid 2-arachidonoylglycerol. SLEEP 2016;39(3):653–664. PMID:26612385
Korem, Nachshon; Lange, Rachel; Hillard, Cecilia J; Akirav, Irit
2017-08-15
The response to a traumatic experience may be rapid recovery or development of psychopathology such as post-traumatic stress disorder (PTSD). Impaired extinction of fear memories is thought to contribute to the development of the persistent trauma memories and avoidance. The Wnt/β-catenin pathway and the endocannabinoid system appear to play significant roles in anxiety and depressive symptoms. Here we examined the involvement of β-catenin in the nucleus accumbens (NAc) in extinction in rats exposed to the shock and reminders model of PTSD. We found that increased β-catenin levels in the NAc were correlated with facilitated extinction kinetics in rats exposed to shock and reminders, suggesting that increased levels of NAc β-catenin are associated with a resilient response to the stressor. Furthermore, downregulating β-catenin expression in the NAc in shocked rats using sulindac (0.0178, 0.178mg/side) impaired extinction whereas upregulating the Wnt/β-catenin pathway using LiCl (2µg/side) facilitated extinction. Exposure to shock and reminders resulted in attenuated levels of the endocannabinoid N-arachidonylethanolamine (AEA) in the NAc; the cannabinoid CB1/2 receptor agonist WIN55,212-2 (5µg/side) microinjected into the NAc facilitated extinction in shocked rats. Importantly, the facilitating effect of WIN55,212-2 on extinction was blocked by co-administration of sulindac in doses that downregulated β-catenin levels. Taken together, the results suggest that β-catenin in the NAc may serve as a protective buffer against the effects of severe stress, and that inhibiting this system in the NAc may prevent the therapeutic effects of cannabinoids against stress-related disorders. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Techno-economic analysis of decentralized biomass processing depots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamers, Patrick; Roni, Mohammad S.; Tumuluru, Jaya S.
Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess three distinct depot configurations for technical difference and economic performance. The depot designs were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that depot processing costs are likely to range from ~US$30 to US$63 per dry metric tonne (Mg), depending upon the specific technology implemented and the energy consumption for processing equipmentmore » such as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass feedstock supply chain will outweigh depot processing costs and that incorporation of this technology should be aggressively pursued.« less
Techno-economic analysis of decentralized biomass processing depots
Lamers, Patrick; Roni, Mohammad S.; Tumuluru, Jaya S.; ...
2015-07-08
Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess three distinct depot configurations for technical difference and economic performance. The depot designs were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that depot processing costs are likely to range from ~US$30 to US$63 per dry metric tonne (Mg), depending upon the specific technology implemented and the energy consumption for processing equipmentmore » such as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass feedstock supply chain will outweigh depot processing costs and that incorporation of this technology should be aggressively pursued.« less
Endocannabinoid system and drug addiction: new insights from mutant mice approaches.
Maldonado, Rafael; Robledo, Patricia; Berrendero, Fernando
2013-08-01
The involvement of the endocannabinoid system in drug addiction was initially studied by the use of compounds with different affinities for each cannabinoid receptor or for the proteins involved in endocannabinoids inactivation. The generation of genetically modified mice with selective mutations in these endocannabinoid system components has now provided important advances in establishing their specific contribution to drug addiction. These genetic tools have identified the particular interest of CB1 cannabinoid receptor and endogenous anandamide as potential targets for drug addiction treatment. Novel genetic tools will allow determining if the modulation of CB2 cannabinoid receptor activity and 2-arachidonoylglycerol tone can also have an important therapeutic relevance for drug addiction. Copyright © 2013 Elsevier Ltd. All rights reserved.
Freire, Analía Verónica; Gryngarten, Mirta Graciela; Ballerini, María Gabriela; Arcari, Andrea Josefina; Escobar, María Eugenia; Bergadá, Ignacio; Ropelato, María Gabriela
2016-01-01
Estradiol at baseline or after a classical gonadotropin-releasing hormone test did not reflect ovarian steroidogenesis in central precocious puberty (CPP) girls. To evaluate estradiol response to depot triptorelin, both at start and during therapy to determine how active ovarian steroidogenesis is at pubertal stage and under therapy. A prospective study was performed in 43 CPP girls. Serum luteinizing hormone and follicle-stimulating hormone at 3 h (LH-3h, FSH-3h) and estradiol at 24 h (E2-24h) after injection of depot triptorelin 3.75 mg were measured, at first dose and at 3, 6, 12, 18 and 24 months of treatment. E2-24h after depot triptorelin was >100 pg/ml after the first dose. Estradiol response (E2-24h) fell to levels <14 pg/ml in 78 out of 82 follow-up visits along 2 years of therapy. Concomitantly, LH-3h and FSH-3h were <4.0 and <6.3 IU/l, respectively. In 4 patients with inadequate treatment, E2-24h, LH-3h and FSH-3h rose to pubertal values similar to those observed at first dose. Estradiol (<14 pg/ml) assessment 24 h after depot triptorelin administration is a reliable and simple manner to confirm ovarian suppression in CPP girls during treatment. © 2015 S. Karger AG, Basel.
Role of Cannabinoids in Gastrointestinal Mucosal Defense and Inflammation
Gyires, Klára; Zádori, Zoltán S.
2016-01-01
Modulating the activity of the endocannabinoid system influences various gastrointestinal physiological and pathophysiological processes, and cannabinoid receptors as well as regulatory enzymes responsible for the synthesis or degradation of endocannabinoids representing potential targets to reduce the development of gastrointestinal mucosal lesions, hemorrhage and inflammation. Direct activation of CB1 receptors by plant-derived, endogenous or synthetic cannabinoids effectively reduces both gastric acid secretion and gastric motor activity, and decreases the formation of gastric mucosal lesions induced by stress, pylorus ligation, nonsteroidal anti-inflammatory drugs (NSAIDs) or alcohol, partly by peripheral, partly by central mechanisms. Similarly, indirect activation of cannabinoid receptors through elevation of endocannabinoid levels by globally acting or peripherally restricted inhibitors of their metabolizing enzymes (FAAH, MAGL) or by inhibitors of their cellular uptake reduces the gastric mucosal lesions induced by NSAIDs in a CB1 receptor-dependent fashion. Dual inhibition of FAAH and cyclooxygenase enzymes induces protection against both NSAID-induced gastrointestinal damage and intestinal inflammation. Moreover, in intestinal inflammation direct or indirect activation of CB1 and CB2 receptors exerts also multiple beneficial effects. Namely, activation of both CB receptors was shown to ameliorate intestinal inflammation in various murine colitis models, to decrease visceral hypersensitivity and abdominal pain, as well as to reduce colitis-associated hypermotility and diarrhea. In addition, CB1 receptors suppress secretory processes and also modulate intestinal epithelial barrier functions. Thus, experimental data suggest that the endocannabinoid system represents a promising target in the treatment of inflammatory bowel diseases, and this assumption is also confirmed by preliminary clinical studies. PMID:26935536
Cannabinoids as therapeutic agents in cardiovascular disease: a tale of passions and illusions
Mendizábal, V E; Adler-Graschinsky, E
2007-01-01
In addition to their classical known effects, such as analgesia, impairment of cognition and learning and appetite enhancement, cannabinoids have also been related to the regulation of cardiovascular responses and implicated in cardiovascular pathology. Elevated levels of endocannabinoids have been related to the extreme hypotension associated with various forms of shock as well as to the cardiovascular abnormalities that accompany cirrhosis. In contrast, cannabinoids have also been associated with beneficial effects on the cardiovascular system, such as a protective role in atherosclerosis progression and in cerebral and myocardial ischaemia. In addition, it has also been suggested that the pharmacological manipulation of the endocannabinoid system may offer a novel approach to antihypertensive therapy. During the last decades, the tremendous increase in the understanding of the molecular basis of cannabinoid activity has encouraged many pharmaceutical companies to develop more potent synthetic cannabinoid analogues and antagonists, leading to an explosion of basic research and clinical trials. Consequently. not only the synthetic THC dronabinol (Marinol) and the synthetic THC analogue nabilone (Cesamet) have been approved in the United States, but also the standardized cannabis extract (Sativex) in Canada. At least three strategies can be foreseen in the future clinical use of cannabinoid-based drugs: (a) the use of CB1 receptor antagonists, such as the recently approved rimonabant (b) the use of CB2-selective agonists, and (c) the use of inhibitors of endocannabinoid degradation. In this context, the present review examines the effects of cannabinoids and of the pharmacological manipulation of the endocannabinoid system, in cardiovascular pathophysiology. PMID:17450170
Lutz, Beat
2004-11-01
Neurons intensively exchange information among each other using both inhibitory and excitatory neurotransmitters. However, if the balance of excitation and inhibition is perturbed, the intensity of excitatory transmission may exceed a certain threshold and epileptic seizures can occur. As the occurrence of epilepsy in the human population is about 1%, the search for therapeutic targets to alleviate seizures is warranted. Extracts of Cannabis sativa have a long history in the treatment of various neurological diseases, including epilepsy. However, cannabinoids have been reported to exert both pro- and anti-convulsive activities. The recent progress in understanding the endogenous cannabinoid system has allowed new insights into these opposing effects of cannabinoids. When excessive neuronal activity occurs, endocannabinoids are generated on demand and activate cannabinoid type 1 (CB1) receptors. Using mice lacking CB1 receptors in principal forebrain neurons in a model of epileptiform seizures, it was shown that CB1 receptors expressed on excitatory glutamatergic neurons mediate the anti-convulsive activity of endocannabinoids. Systemic activation of CB1 receptors by exogenous cannabinoids, however, are anti- or pro-convulsive, depending on the seizure model used. The pro-convulsive activity of exogenous cannabinoids might be explained by the notion that CB1 receptors expressed on inhibitory GABAergic neurons are also activated, leading to a decreased release of GABA, and to a concomitant increase in seizure susceptibility. The concept that the endogenous cannabinoid system is activated on demand suggests that a promising strategy to alleviate seizure frequency is the enhancement of endocannabinoid levels by inhibiting the cellular uptake and the degradation of these endogenous compounds.
State-dependent, bidirectional modulation of neural network activity by endocannabinoids.
Piet, Richard; Garenne, André; Farrugia, Fanny; Le Masson, Gwendal; Marsicano, Giovanni; Chavis, Pascale; Manzoni, Olivier J
2011-11-16
The endocannabinoid (eCB) system and the cannabinoid CB1 receptor (CB1R) play key roles in the modulation of brain functions. Although actions of eCBs and CB1Rs are well described at the synaptic level, little is known of their modulation of neural activity at the network level. Using microelectrode arrays, we have examined the role of CB1R activation in the modulation of the electrical activity of rat and mice cortical neural networks in vitro. We find that exogenous activation of CB1Rs expressed on glutamatergic neurons decreases the spontaneous activity of cortical neural networks. Moreover, we observe that the net effect of the CB1R antagonist AM251 inversely correlates with the initial level of activity in the network: blocking CB1Rs increases network activity when basal network activity is low, whereas it depresses spontaneous activity when its initial level is high. Our results reveal a complex role of CB1Rs in shaping spontaneous network activity, and suggest that the outcome of endogenous neuromodulation on network function might be state dependent.
Computer-aided acquisition and logistics support (CALS): Concept of Operations for Depot Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourgeois, N.C.; Greer, D.K.
1993-04-01
This CALS Concept of Operations for Depot Maintenance provides the foundation strategy and the near term tactical plan for CALS implementation in the depot maintenance environment. The user requirements enumerated and the overarching architecture outlined serve as the primary framework for implementation planning. The seamless integration of depot maintenance business processes and supporting information systems with the emerging global CALS environment will be critical to the efficient realization of depot user's information requirements, and as, such will be a fundamental theme in depot implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carnes, S.A.; Breck, J.E.; Copenhaver, E.D.
1986-03-01
This assessment discusses the potential health and environmental impacts of transporting M55 rockets filled with nerve agent GB or VX from various existing Army storage depots to alternative Army depots for disposal. The origin depots include Anniston Army Depot in Alabama, Lexington-Blue Grass Depot Activity in Kentucky, and Umatilla Depot Activity in Oregon. The destination depots include Pine Bluff Arsenal in Arkansas, Tooele Army Depot in Utah, and the facility on Johnston Island in the central Pacific Ocean. This assessment considers the possible impacts of normal transport operations and of two postulated accident scenarios on the air quality, ground andmore » surface water, aquatic ecology, terrestrial ecology, human health, and cultural and socioeconomic resources of the various transport corridors involved. The impacts of these scenarios are assessed for truck, train, and air transport for each orgin-destination pair. The analysis considers three basic scenario during transport: (1) normal operations with no atmospheric release of nerve agent; (2) a minor agent spill (the contents of one rocket being released to the biosphere); and (3) a worst-case accident involving the release of a large, specified quantity of nerve agent to the biosphere. The extremely low probabilities of such accidents, which are reported elsewhere, are noted.« less
Itoga, Christy A.; Fisher, Marc O.; Solomonow, Jonathan; Roltsch, Emily A.; Gilpin, Nicholas W.
2016-01-01
Stress and glucocorticoids stimulate the rapid mobilization of endocannabinoids in the basolateral amygdala (BLA). Cannabinoid receptors in the BLA contribute to anxiogenesis and fear-memory formation. We tested for rapid glucocorticoid-induced endocannabinoid regulation of synaptic inhibition in the rat BLA. Glucocorticoid application to amygdala slices elicited a rapid, nonreversible suppression of spontaneous, but not evoked, GABAergic synaptic currents in BLA principal neurons; the effect was also seen with a membrane-impermeant glucocorticoid, but not with intracellular glucocorticoid application, implicating a membrane-associated glucocorticoid receptor. The glucocorticoid suppression of GABA currents was not blocked by antagonists of nuclear corticosteroid receptors, or by inhibitors of gene transcription or protein synthesis, but was blocked by inhibiting postsynaptic G-protein activity, suggesting a postsynaptic nongenomic steroid signaling mechanism that stimulates the release of a retrograde messenger. The rapid glucocorticoid-induced suppression of inhibition was prevented by blocking CB1 receptors and 2-arachidonoylglycerol (2-AG) synthesis, and it was mimicked and occluded by CB1 receptor agonists, indicating it was mediated by the retrograde release of the endocannabinoid 2-AG. The rapid glucocorticoid effect in BLA neurons in vitro was occluded by prior in vivo acute stress-induced, or prior in vitro glucocorticoid-induced, release of endocannabinoid. Acute stress also caused an increase in anxiety-like behavior that was attenuated by blocking CB1 receptor activation and inhibiting 2-AG synthesis in the BLA. Together, these findings suggest that acute stress causes a long-lasting suppression of synaptic inhibition in BLA neurons via a membrane glucocorticoid receptor-induced release of 2-AG at GABA synapses, which contributes to stress-induced anxiogenesis. SIGNIFICANCE STATEMENT We provide a cellular mechanism in the basolateral amygdala (BLA) for the rapid stress regulation of anxiogenesis in rats. We demonstrate a nongenomic glucocorticoid induction of long-lasting suppression of synaptic inhibition that is mediated by retrograde endocannabinoid release at GABA synapses. The rapid glucocorticoid-induced endocannabinoid suppression of synaptic inhibition is initiated by a membrane-associated glucocorticoid receptor in BLA principal neurons. We show that acute stress increases anxiety-like behavior via an endocannabinoid-dependent mechanism centered in the BLA. The stress-induced endocannabinoid modulation of synaptic transmission in the BLA contributes, therefore, to the stress regulation of anxiety, and may play a role in anxiety disorders of the amygdala. PMID:27511017
Endocannabinoids control vesicle release mode at midbrain periaqueductal grey inhibitory synapses.
Aubrey, Karin R; Drew, Geoffrey M; Jeong, Hyo-Jin; Lau, Benjamin K; Vaughan, Christopher W
2017-01-01
The midbrain periaqueductal grey (PAG) forms part of an endogenous analgesic system which is tightly regulated by the neurotransmitter GABA. The role of endocannabinoids in regulating GABAergic control of this system was examined in rat PAG slices. Under basal conditions GABAergic neurotransmission onto PAG output neurons was multivesicular. Activation of the endocannabinoid system reduced GABAergic inhibition by reducing the probability of release and by shifting release to a univesicular mode. Blockade of endocannabinoid system unmasked a tonic control over the probability and mode of GABA release. These findings provides a mechanistic foundation for the control of the PAG analgesic system by disinhibition. The midbrain periaqueductal grey (PAG) has a crucial role in coordinating endogenous analgesic responses to physiological and psychological stressors. Endocannabinoids are thought to mediate a form of stress-induced analgesia within the PAG by relieving GABAergic inhibition of output neurons, a process known as disinhibition. This disinhibition is thought to be achieved by a presynaptic reduction in GABA release probability. We examined whether other mechanisms have a role in endocannabinoid modulation of GABAergic synaptic transmission within the rat PAG. The group I mGluR agonist DHPG ((R,S)-3,5-dihydroxyphenylglycine) inhibited evoked IPSCs and increased their paired pulse ratio in normal external Ca 2+ , and when release probability was reduced by lowering Ca 2+ . However, the effect of DHPG on the coefficient of variation and kinetics of evoked IPSCs differed between normal and low Ca 2+ . Lowering external Ca 2+ had a similar effect on evoked IPSCs to that observed for DHPG in normal external Ca 2+ . The low affinity GABA A receptor antagonist TPMPA ((1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid) inhibited evoked IPSCs to a greater extent in low than in normal Ca 2+ . Together these findings indicate that the normal mode of GABA release is multivesicular within the PAG, and that DHPG and lowering external Ca 2+ switch this to a univesicular mode. The effects of DHPG were mediated by mGlu5 receptor engagement of the retrograde endocannabinoid system. Blockade of endocannabinoid breakdown produced a similar shift in the mode of release. We conclude that endocannabinoids control both the mode and the probability of GABA release within the PAG. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Techno-economic analysis of decentralized biomass processing depots.
Lamers, Patrick; Roni, Mohammad S; Tumuluru, Jaya S; Jacobson, Jacob J; Cafferty, Kara G; Hansen, Jason K; Kenney, Kevin; Teymouri, Farzaneh; Bals, Bryan
2015-10-01
Decentralized biomass processing facilities, known as biomass depots, may be necessary to achieve feedstock cost, quantity, and quality required to grow the future U.S. bioeconomy. In this paper, we assess three distinct depot configurations for technical difference and economic performance. The depot designs were chosen to compare and contrast a suite of capabilities that a depot could perform ranging from conventional pelleting to sophisticated pretreatment technologies. Our economic analyses indicate that depot processing costs are likely to range from ∼US$30 to US$63 per dry metric tonne (Mg), depending upon the specific technology implemented and the energy consumption for processing equipment such as grinders and dryers. We conclude that the benefits of integrating depots into the overall biomass feedstock supply chain will outweigh depot processing costs and that incorporation of this technology should be aggressively pursued. Copyright © 2015. Published by Elsevier Ltd.
2008-06-01
executes the avionics test) can run on the new ATS thus creating the common ATS framework . The system will also enable numerous new functional...Enterprise-level architecture that reflects corporate DoD priorities and requirements for business systems, and provides a common framework to ensure that...entire Business Mission Area (BMA) of the DoD. The BEA also contains a set of integrated Department of Defense Architecture Framework (DoDAF
Ramsden, Christopher E; Zamora, Daisy; Makriyannis, Alexandros; Wood, JodiAnne T; Mann, J Douglas; Faurot, Keturah R; MacIntosh, Beth A; Majchrzak-Hong, Sharon F; Gross, Jacklyn R; Courville, Amber B; Davis, John M; Hibbeln, Joseph R
2015-08-01
Omega-3 and omega-6 fatty acids are biosynthetic precursors of endocannabinoids with antinociceptive, anxiolytic, and neurogenic properties. We recently reported that targeted dietary manipulation-increasing omega-3 fatty acids while reducing omega-6 linoleic acid (the H3-L6 intervention)-reduced headache pain and psychological distress among chronic headache patients. It is not yet known whether these clinical improvements were due to changes in endocannabinoids and related mediators derived from omega-3 and omega-6 fatty acids. We therefore used data from this trial (N = 55) to investigate 1) whether the H3-L6 intervention altered omega-3- and omega-6-derived endocannabinoids in plasma and 2) whether diet-induced changes in these bioactive lipids were associated with clinical improvements. The H3-L6 intervention significantly increased the omega-3 docosahexaenoic acid derivatives 2-docosahexaenoylglycerol (+65%, P < .001) and docosahexaenoylethanolamine (+99%, P < .001) and reduced the omega-6 arachidonic acid derivative 2-arachidonoylglycerol (-25%, P = .001). Diet-induced changes in these endocannabinoid derivatives of omega-3 docosahexaenoic acid, but not omega-6 arachidonic acid, correlated with reductions in physical pain and psychological distress. These findings demonstrate that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids in humans and suggest that 2-docosahexaenoylglycerol and docosahexaenoylethanolamine could have physical and/or psychological pain modulating properties. ClinicalTrials.gov (NCT01157208) PERSPECTIVE: This article demonstrates that targeted dietary manipulation can alter endocannabinoids derived from omega-3 and omega-6 fatty acids and that these changes are related to reductions in headache pain and psychological distress. These findings suggest that dietary interventions could provide an effective, complementary approach for managing chronic pain and related conditions. Published by Elsevier Inc.
McLaughlin, Ryan J; Hill, Matthew N; Gorzalka, Boris B
2014-05-01
The prefrontal cortex (PFC) provides executive control of the brain in humans and rodents, coordinating cognitive, emotional, and behavioral responses to threatening stimuli and subsequent feedback inhibition of the hypothalamic-pituitary-adrenal (HPA) axis. The endocannabinoid system has emerged as a fundamental regulator of HPA axis feedback inhibition and an important modulator of emotional behavior. However, the precise role of endocannabinoid signaling within the PFC with respect to stress coping and emotionality has only recently been investigated. This review discusses the current state of knowledge regarding the localization and function of the endocannabinoid system in the PFC, its sensitivity to stress and its role in modulating the neuroendocrine and behavioral responses to aversive stimuli. We propose a model whereby steady-state endocannabinoid signaling in the medial PFC indirectly regulates the outflow of pyramidal neurons by fine-tuning GABAergic inhibition. Local activation of this population of CB1 receptors increases the downstream targets of medial PFC activation, which include inhibitory interneurons in the basolateral amygdala, inhibitory relay neurons in the bed nucleus of the stria terminalis and monoamine cell bodies such as the dorsal raphe nucleus. This ultimately produces beneficial effects on emotionality (active coping responses to stress and reduced anxiety) and assists in constraining activation of the HPA axis. Under conditions of chronic stress, or in individuals suffering from mood disorders, this system may be uniquely recruited to help maintain appropriate function in the face of adversity, while breakdown of the endocannabinoid system in the medial PFC may be, in and of itself, sufficient to produce neuropsychiatric illness. Thus, we suggest that endocannabinoid signaling in the medial PFC may represent an attractive target for the treatment of stress-related disorders. Copyright © 2014 Elsevier Ltd. All rights reserved.
Endocannabinoid antagonism: blocking the excess in the treatment of high-risk abdominal obesity.
Duffy, Danielle; Rader, Daniel
2007-02-01
Abdominal obesity is a prevalent, worldwide problem linked to cardiometabolic comorbidities and an increased risk of coronary heart disease. First-line therapy to reduce such risk revolves around diet and exercise; however, such changes are often difficult to implement and unsuccessful. Understanding the underlying pathophysiology of underlying metabolic derangements could provide new targets for pharmacologic therapy. One system that has gained recent attention is the endocannabinoid system. The endocannabinoid system has a significant role in central appetite control and peripheral lipogenesis and is up-regulated in diet-induced obesity. Rimonabant is a selective cannabinoid-1 receptor antagonist and is the first compound of its type to test the hypothesis that down-regulating an overactive endocannabinoid system could have therapeutic benefit not only for weight loss but also for the atherogenic dyslipidemia and insulin resistance that cluster with abdominal obesity in particular. Animal models have been critical for elucidating the role of the endocannabinoid system in obesity and in demonstrating that antagonism with rimonabant can induce loss of visceral fat and improve insulin sensitivity. Early human trials with rimonabant have confirmed significant reductions in weight, as well as favorable changes in atherogenic dyslipidemia, insulin resistance, and markers of inflammation. Interestingly, some of these beneficial metabolic effects are partially weight-loss-independent, confirming the importance of peripheral endocannabinoid system effects in addition to central effects.
Endocannabinoids and striatal function: implications for addiction-related behaviours
Moreira, Fabricio A.; Jupp, Bianca; Belin, David
2015-01-01
Since the identification and cloning of the major cannabinoid receptor expressed in the brain almost 25 years ago research has highlighted the potential of drugs that target the endocannabinoid system for treating addiction. The endocannabinoids, anandamide and 2-arachidonoyl glycerol, are lipid-derived metabolites found in abundance in the basal ganglia and other brain areas innervated by the mesocorticolimbic dopamine systems. Cannabinoid CB1 receptor antagonists/inverse agonists reduce reinstatement of responding for cocaine, alcohol and opiates in rodents. However, compounds acting on the endocannabinoid system may have broader application in treating drug addiction by ameliorating associated traits and symptoms such as impulsivity and anxiety that perpetuate drug use and interfere with rehabilitation. As a trait, impulsivity is known to predispose to addiction and facilitate the emergence of addiction to stimulant drugs. In contrast, anxiety and elevated stress responses accompany extended drug use and may underlie the persistence of drug intake in dependent individuals. In this article we integrate and discuss recent findings in rodents showing selective pharmacological modulation of impulsivity and anxiety by cannabinoid agents. We highlight the potential of selective inhibitors of endocannabinoid metabolism, directed at fatty acid amide hydrolase and monoacylglycerol lipase, to reduce anxiety and stress responses, and discuss novel mechanisms underlying the modulation of the endocannabinoid system, including the attenuation of impulsivity, anxiety, and drug reward by selective CB2 receptor agonists. PMID:25369747
Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes.
Jourdan, T; Godlewski, G; Kunos, G
2016-06-01
Visceral obesity is a major risk factor for the development of insulin resistance which can progress to overt type 2 diabetes (T2D) with loss of β-cell function and, ultimately, loss of β-cells. Insulin secretion by β-cells of the pancreatic islets is tightly coupled to blood glucose concentration and modulated by a large number of blood-borne or locally released mediators, including endocannabinoids. Obesity and its complications, including T2D, are associated with increased activity of the endocannabinoid/CB1 receptor (CB1 R) system, as indicated by the therapeutic effects of CB1 R antagonists. Similar beneficial effects of CB1 R antagonists with limited brain penetrance indicate the important role of CB1 R in peripheral tissues, including the endocrine pancreas. Pancreatic β-cells express all of the components of the endocannabinoid system, and endocannabinoids modulate their function via both autocrine and paracrine mechanisms, which influence basal and glucose-induced insulin secretion and also affect β-cell proliferation and survival. The present brief review will survey available information on the modulation of these processes by endocannabinoids and their receptors, with an attempt to assess the contribution of such effects to glycaemic control in T2D and insulin resistance. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Space Transportation Infrastructure Supported By Propellant Depots
NASA Technical Reports Server (NTRS)
Smitherman, David; Woodcock, Gordon
2011-01-01
A space transportation infrastructure is described that utilizes propellant depots to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicles such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to a Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing, and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. A Mars Orbital Depot is also described to support ongoing Mars missions. New concepts for vehicle designs are presented that can be launched on current 5-meter diameter expendable launch vehicles. These new reusable vehicle concepts include a LEO Depot, L1 Depot, and Mars Orbital Depot based on International Space Station (ISS) heritage hardware. The high-energy depots at L1 and Mars orbit are compatible with, but do not require, electric propulsion tug use for propellant and/or cargo delivery. New reusable in-space crew transportation vehicles include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot and the L1 Depot, a new reusable Lunar Lander for crew transportation between the L1 Depot and the lunar surface, and a Deep Space Habitat (DSH) to support crew missions from the L1 Depot to ESL2, Asteroid, and Mars destinations. A 6 meter diameter Mars lander concept is presented that can be launched without a fairing based on the Delta IV heavy Payload Planners Guide, which indicates feasibility of a 6.5 meter fairing. This lander would evolve to re-usable operations when propellant production is established on Mars. Figure 1 provides a summary of the possible missions this infrastructure can support. Summary mission profiles are presented for each primary mission capability. These profiles are the basis for propellant loads, numbers of vehicles/stages and launches for each mission capability. Data includes the number of launches required for each mission utilizing current expendable launch vehicle systems, and concluding remarks include ideas for reducing the number of launches through incorporation of heavy-lift launch vehicles, solar electric propulsion, and other transportation support concepts.
Architecture Study for a Fuel Depot Supplied from Lunar Resources
NASA Technical Reports Server (NTRS)
Perrin, Thomas M.
2016-01-01
Heretofore, discussions of space fuel depots assumed the depots would be supplied from Earth. However, the confirmation of deposits of water ice at the lunar poles in 2009 suggests the possibility of supplying a space depot with liquid hydrogen/liquid oxygen produced from lunar ice. This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar resources. Four factors - the location of propellant processing (on the Moon or on the depot), the location of the depot (on the Moon or in cislunar space), and if in cislunar space, where (LEO, GEO, or Earth-Moon L1), and the method of propellant transfer (bulk fuel or canister exchange) were combined to identify 18 potential architectures. Two design reference missions (DRMs) - a satellite servicing mission and a cargo mission to Mars - were used to create demand for propellants, while a third DRM - a propellant delivery mission - was used to examine supply issues. The architectures were depicted graphically in a network diagram with individual segments representing the movement of propellant from the Moon to the depot, and from the depot to the customer
Architecture Study for a Fuel Depot Supplied from Lunar Resources
NASA Technical Reports Server (NTRS)
Perrin, Thomas M.
2016-01-01
Heretofore, discussions of space fuel depots assumed the depots would be supplied from Earth. However, the confirmation of deposits of water ice at the lunar poles in 2009 suggests the possibility of supplying a space depot with liquid hydrogen/liquid oxygen produced from lunar ice. This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar resources. Four factors - the location of propellant processing (on the Moon or on the depot), the location of the depot (on the Moon, or at L1, GEO, or LEO), the location of propellant transfer (L1, GEO, or LEO), and the method of propellant transfer (bulk fuel or canister exchange) were combined to identify 18 potential architectures. Two design reference missions (DRMs) - a satellite servicing mission and a cargo mission to Mars - were used to create demand for propellants, while a third DRM - a propellant delivery mission - was used to examine supply issues. The architectures were depicted graphically in a network diagram with individual segments representing the movement of propellant from the Moon to the depot, and from the depot to the customer.
Cannabinoids and glucocorticoids modulate emotional memory after stress.
Akirav, Irit
2013-12-01
Bidirectional and functional relationships between glucocorticoids and the endocannabinoid system have been demonstrated. Here, I review the interaction between the endocannabinoid and glucocorticoid/stress systems. Specifically, stress is known to produce rapid changes in endocannabinoid signaling in stress-responsive brain regions. In turn, the endocannabinoid system plays an important role in the downregulation and habituation of hypothalamic-pituitary-adrenocortical (HPA) axis activity in response to stress. Glucocorticoids also recruit the endocannabinoid system to exert rapid negative feedback control of the HPA axis during stress. It became increasingly clear, however, that cannabinoid CB1 receptors are also abundantly expressed in the basolateral amygdala (BLA) and other limbic regions where they modulate emotional arousal effects on memory. Enhancing cannabinoids signaling using exogenous CB1 receptor agonists prevent the effects of acute stress on emotional memory. I propose a model suggesting that the ameliorating effects of exogenously administered cannabinoids on emotional learning after acute stress are mediated by the decrease in the activity of the HPA axis via GABAergic mechanisms in the amygdala. Copyright © 2013 Elsevier Ltd. All rights reserved.
An endocannabinoid hypothesis of drug reward and drug addiction.
Onaivi, Emmanuel S
2008-10-01
Pharmacologic treatment of drug and alcohol dependency has largely been disappointing, and new therapeutic targets and hypotheses are needed. There is accumulating evidence indicating a central role for the previously unknown but ubiquitous endocannabinoid physiological control system (EPCS) in the regulation of the rewarding effects of abused substances. Thus an endocannabinoid hypothesis of drug reward is postulated. Endocannabinoids mediate retrograde signaling in neuronal tissues and are involved in the regulation of synaptic transmission to suppress neurotransmitter release by the presynaptic cannabinoid receptors (CB-Rs). This powerful modulatory action on synaptic transmission has significant functional implications and interactions with the effects of abused substances. Our data, along with those from other investigators, provide strong new evidence for a role for EPCS modulation in the effects of drugs of abuse, and specifically for involvement of cannabinoid receptors in the neural basis of addiction. Cannabinoids and endocannabinoids appear to be involved in adding to the rewarding effects of addictive substances, including, nicotine, opiates, alcohol, cocaine, and BDZs. The results suggest that the EPCS may be an important natural regulatory mechanism for drug reward and a target for the treatment of addictive disorders.
The Endocannabinoid System and Plant-Derived Cannabinoids in Diabetes and Diabetic Complications
Horváth, Béla; Mukhopadhyay, Partha; Haskó, György; Pacher, Pál
2012-01-01
Oxidative stress and inflammation play critical roles in the development of diabetes and its complications. Recent studies provided compelling evidence that the newly discovered lipid signaling system (ie, the endocannabinoid system) may significantly influence reactive oxygen species production, inflammation, and subsequent tissue injury, in addition to its well-known metabolic effects and functions. The modulation of the activity of this system holds tremendous therapeutic potential in a wide range of diseases, ranging from cancer, pain, neurodegenerative, and cardiovascular diseases to obesity and metabolic syndrome, diabetes, and diabetic complications. This review focuses on the role of the endocannabinoid system in primary diabetes and its effects on various diabetic complications, such as diabetic cardiovascular dysfunction, nephropathy, retinopathy, and neuropathy, particularly highlighting the mechanisms beyond the metabolic consequences of the activation of the endocannabinoid system. The therapeutic potential of targeting the endocannabinoid system and certain plant-derived cannabinoids, such as cannabidiol and Δ9-tetrahydrocannabivarin, which are devoid of psychotropic effects and possess potent anti-inflammatory and/or antioxidant properties, in diabetes and diabetic complications is also discussed. PMID:22155112
Depot Maintenance: Executed Workload and Maintenance Operations at DOD Depots
2017-02-03
Page 1 GAO-17-82R Depot Maintenance 441 G St. N.W. Washington, DC 20548 February 3, 2017 The Honorable John McCain Chairman The...Smith Ranking Member Committee on Armed Services House of Representatives Depot Maintenance : Executed Workload and Maintenance Operations at DOD...Depots The Department of Defense (DOD) uses its maintenance capabilities to maintain, overhaul, and repair its military weapon systems (such as
Endocannabinoid system in neurodegenerative disorders.
Basavarajappa, Balapal S; Shivakumar, Madhu; Joshi, Vikram; Subbanna, Shivakumar
2017-09-01
Most neurodegenerative disorders (NDDs) are characterized by cognitive impairment and other neurological defects. The definite cause of and pathways underlying the progression of these NDDs are not well-defined. Several mechanisms have been proposed to contribute to the development of NDDs. These mechanisms may proceed concurrently or successively, and they differ among cell types at different developmental stages in distinct brain regions. The endocannabinoid system, which involves cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), endogenous cannabinoids and the enzymes that catabolize these compounds, has been shown to contribute to the development of NDDs in several animal models and human studies. In this review, we discuss the functions of the endocannabinoid system in NDDs and converse the therapeutic efficacy of targeting the endocannabinoid system to rescue NDDs. © 2017 International Society for Neurochemistry.
Filis, Panayiotis; Kind, Peter C.; Spears, Norah
2013-01-01
Phospholipase C beta 1 (PLCβ1) is a downstream effector of G-protein-coupled receptor signalling and holds central roles in reproductive physiology. Mice with a disruption in the Plcβ1 gene are infertile with pleiotropic reproductive defects, the major reproductive block in females being implantation failure. Here, PLCβ1 was demonstrated at the luminal and glandular epithelia throughout the pre- and peri-implantation period, with transient stromal expression during 0.5–1.5 days post coitum (dpc). Examination of implantation sites at 4.5 dpc showed that in females lacking functional PLCβ1 (knock-out (KO) females), embryos failed to establish proper contact with the uterine epithelium. Proliferating luminal epithelial cells were evident in KO implantation sites, indicating failure to establish a receptive uterus. Real-time PCR demonstrated that KO implantation sites had aberrant ovarian steroid signalling, with high levels of estrogen receptor α, lactoferrin and amphiregulin mRNA, while immunohistochemistry revealed very low levels of estrogen receptor α protein, possibly due to rapid receptor turnover. KO implantation sites expressed markedly less fatty acid amide hydrolase and monoacylglycerol lipase, indicating that endocannabinoid metabolism was also affected. Collectively, our results show that PLCβ1 is essential for uterine preparation for implantation, and that defective PLCβ1-mediated signalling during implantation is associated with aberrant ovarian steroid signalling and endocannabinoid metabolism. PMID:23295235
A Critique of the DoD Materiel Distribution Study,
1979-03-01
are generated on order cycle times by their components: communication times, depot order processing times, depot capacity delay times, and transit...exceeded, the order was placed in one of three priority queues. The order processing time was determined by priority group by depot. A 20-point probability...time was defined to be the sum of communication, depot order processing , depot capacity delay, and transit times. As has been argued, the first three of
Army Industrial Operations: Budgeting and Management of Carryover Could Be Improved
2013-06-01
Pine Bluff Arsenal, Pine Bluff, Arkansas; the Red River Army Depot, Texarkana , Texas; the Rock Island Arsenal-Joint Manufacturing and Technology Center...the Corpus Christi Army Depot, Corpus Christi, Texas; the Letterkenny Army Depot, Chambersburg, Pennsylvania; the Red River Army Depot, Texarkana
Analysis of the "endocannabinoidome" in peripheral tissues of obese Zucker rats.
Iannotti, F A; Piscitelli, F; Martella, A; Mazzarella, E; Allarà, M; Palmieri, V; Parrella, C; Capasso, R; Di Marzo, V
2013-08-01
The endocannabinoid system (ECS) represents one of the major determinants of metabolic disorders. We investigated potential changes in the endogenous levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), N-oleoylethanolamine (OEA) and N-palmitoylethanolamine (PEA) in some peripheral organs and tissues of obese Zucker(fa/fa) and lean Zucker(fa/+) rats by qPCR, liquid chromatography mass spectrometry, western blot and enzymatic activity assays. At 10-12 weeks of age AEA levels were significantly lower in BAT, small intestine and heart and higher in soleus of Zucker(fa/fa) rats. In this tissue, also the expression of CB1 receptors was higher. By contrast in Zucker(fa/fa) rats, 2-AG levels were changed (and lower) solely in the small and large intestine. Finally, in Zucker(fa/fa), PEA levels were unchanged, whereas OEA was slightly lower in BAT, and higher in the large intestine. Interestingly, these differences were accompanied by differential alterations of the genes regulating ECS tone. In conclusion, the levels of endocannabinoids are altered during obesity in a way partly correlating with changes of the genes related to their metabolism and activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Technology requirements for an orbiting fuel depot - A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect of criticality ratings. Over 70 depot-related technology areas are addressed.
Technology requirements for an orbiting fuel depot: A necessary element of a space infrastructure
NASA Technical Reports Server (NTRS)
Stubbs, R. M.; Corban, R. R.; Willoughby, A. J.
1988-01-01
Advanced planning within NASA has identified several bold space exploration initiatives. The successful implementation of these missions will require a supporting space infrastructure which would include a fuel depot, an orbiting facility to store, transfer and process large quantities of cryogenic fluids. In order to adequately plan the technology development programs required to enable the construction and operation of a fuel depot, a multidisciplinary workshop was convened to assess critical technologies and their state of maturity. Since technology requirements depend strongly on the depot design assumptions, several depot concepts are presented with their effect on criticality ratings. Over 70 depot-related technology areas are addressed.
In-Space Cryogenic Propellant Depot (ISCPD) Architecture Definitions and Systems Studies
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark
2006-01-01
The objectives of the ISCPD Architecture Definitions and Systems Studies were to determine high leverage propellant depot architecture concepts, system configuration trades, and related technologies to enable more ambitious and affordable human and robotic exploration of the Earth Neighborhood and beyond. This activity identified architectures and concepts that preposition and store propellants in space for exploration and commercial space activities, consistent with Exploration Systems Research and Technology (ESR&T) objectives. Commonalities across mission scenarios for these architecture definitions, depot concepts, technologies, and operations were identified that also best satisfy the Vision of Space Exploration. Trade studies were conducted, technology development needs identified and assessments performed to drive out the roadmap for obtaining an in-space cryogenic propellant depot capability. The Boeing Company supported the NASA Marshall Space Flight Center (MSFC) by conducting this Depot System Architecture Development Study. The primary objectives of this depot architecture study were: (1) determine high leverage propellant depot concepts and related technologies; (2) identify commonalities across mission scenarios of depot concepts, technologies, and operations; (3) determine the best depot concepts and key technology requirements and (4) identify technology development needs including definition of ground and space test article requirements.
Manaspon, Chawan; Hongeng, Suradej; Boongird, Atthaporn; Nasongkla, Norased
2012-10-01
This work describes the preparation and characterization of anticancer-loaded injectable polymeric depots that consisted of D,L-lactide (LA), ε-caprolactone (CL), and poly(ethylene glycol) (PEG) or [poly(ε-caprolactone)-random-poly(D,L-lactide)]-block-poly(ethylene glycol)-block-[poly(ε-caprolactone)-random-poly(D,L-lactide)] (PLEC) copolymers for malignant gliomas treatment. PLECs were polymerized with different percentages of LA to deliver 7-ethyl-10-hydroxycamptothecin (SN-38), a highly potent anticancer drug. SN-38-loaded depots could form directly in phosphate buffer saline with more than 98% encapsulation efficiency. The release rate of SN-38 from depots was found to depend on the amount of LA in PLECs, loading content of SN-38 in the depots, and depot weight. Encapsulation of SN-38 inside depots could enhance the stability of SN-38 where all of SN-38 released after 60 days was in an active form. Depots without SN-38 were evaluated as noncytotoxic against U-87MG, whereas SN-38-loaded depots showed cytotoxic effect as a function of concentration. Copyright © 2012 Wiley Periodicals, Inc.
2016-11-01
information, contact Zina Merritt at (202) 512-5257 or merrittz@gao.gov Why GAO Did This Study DOD uses both military depots and contractors to maintain...many complex weapon systems and equipment. Recognizing the key role of the depots and the risk of overreliance on contractors , Section 2464 of...military depots2—public-sector facilities that are government-owned and government-operated—and private-sector contractors . Depots have a key role
Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R.; List, Edward O.; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J.
2015-01-01
White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner. PMID:25521584
Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R; List, Edward O; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J; Berryman, Darlene E
2015-05-01
White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.
Molecular model of cannabis sensitivity in developing neuronal circuits
Keimpema, Erik; Mackie, Ken; Harkany, Tibor
2011-01-01
Prenatal cannabis exposure can complicate in utero development of the nervous system. Cannabis impacts the formation and functions of neuronal circuitries by targeting cannabinoid receptors. Endocannabinoid signaling emerges as a signaling cassette to orchestrate neuronal differentiation programs through the precisely timed interaction of endocannabinoid ligands with their cognate cannabinoid receptors. By indiscriminately prolonging the ‘switched-on’ period of cannabinoid receptors, cannabis can hijack endocannabinoid signals to evoke molecular rearrangements, leading to the erroneous wiring of neuronal networks. Here, we formulate a hierarchical network design necessary and sufficient to describe molecular underpinnings of cannabis-induced neural growth defects. We integrate signalosome components deduced from genome- and proteome-wide arrays and candidate analyses to propose a mechanistic hypothesis on how cannabis-induced ectopic cannabinoid receptor activity overrides physiological neurodevelopmental endocannabinoid signals, affecting the timely formation of synapses. PMID:21757242
Siniscalco, Dario; Bradstreet, James Jeffrey; Cirillo, Alessandra; Antonucci, Nicola
2014-04-17
Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism.
2014-01-01
Background Immune system dysregulation is well-recognized in autism and thought to be part of the etiology of this disorder. The endocannabinoid system is a key regulator of the immune system via the cannabinoid receptor type 2 (CB2R) which is highly expressed on macrophages and microglial cells. We have previously published significant differences in peripheral blood mononuclear cell CB2R gene expression in the autism population. The use of the Gc protein-derived Macrophage Activating Factor (GcMAF), an endogenous glycosylated vitamin D binding protein responsible for macrophage cell activation has demonstrated positive effects in the treatment of autistic children. In this current study, we investigated the in vitro effects of GcMAF treatment on the endocannabinoid system gene expression, as well as cellular activation in blood monocyte-derived macrophages (BMDMs) from autistic patients compared to age-matched healthy developing controls. Methods To achieve these goals, we used biomolecular, biochemical and immunocytochemical methods. Results GcMAF treatment was able to normalize the observed differences in dysregulated gene expression of the endocannabinoid system of the autism group. GcMAF also down-regulated the over-activation of BMDMs from autistic children. Conclusions This study presents the first observations of GcMAF effects on the transcriptionomics of the endocannabinoid system and expression of CB2R protein. These data point to a potential nexus between endocannabinoids, vitamin D and its transporter proteins, and the immune dysregulations observed with autism. PMID:24739187
A collaboration investigating endocannabinoid signalling in brain and bone.
Zimmer, Andreas
2016-05-01
Investigations into the cellular and molecular mechanisms underlying the psychoactive effects of cannabis preparations have led to the discovery of the endocannabinoid system. Interest in the central nervous system effects was initially the main focus of the research, but it soon became evident that the endocannabinoid system affects virtually every organ. The research field has therefore experienced a tremendous growth over the last decade and is now truly interdisciplinary. This short review provides a personal account of an interdisciplinary collaboration between Itai Bab from the Hebrew University of Jerusalem and the author. It describes the discovery of the endocannabinoid system in bone and the analysis of its functions. I am summarising the role of CB1 signalling as a modulator of sympathetic inhibition of bone formation. Thus, activation of CB1 receptors on sympathetic nerve terminals in bone, presumably from endocannabinoids released from apposing osteoblasts, reduces the inhibition of bone formation of sympathetic norepinephrine. CB2 receptors on osteoblasts and osteoclasts also modulate the proliferation and functions of these cells. Thus, activation of CB2 stimulates bone formation and represses bone resorption, whereas the genetic disruption of CB2 results in an osteoporosis-like phenotype. This signalling mechanism is clinically relevant, as shown by the association of polymorphisms in the CB2 receptor gene, CNR2, with bone density and osteoporosis. Finally, the review provides a summary of the recently discovered role of endocannabinoid signalling in one elongation. This review will also discuss the benefits of interdisciplinary and international collaborations.
Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie
2014-12-01
Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ(9)-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of methamphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled 'CNS Stimulants'. Copyright © 2014 Elsevier Ltd. All rights reserved.
Nader, Joëlle; Rapino, Cinzia; Gennequin, Benjamin; Chavant, Francois; Francheteau, Maureen; Makriyannis, Alexandros; Duranti, Andrea; Maccarrone, Mauro; Solinas, Marcello; Thiriet, Nathalie
2016-01-01
Methamphetamine toxicity is associated with cell death and loss of dopamine neuron terminals in the striatum similar to what is found in some neurodegenerative diseases. Conversely, the endocannabinoid system (ECS) has been suggested to be neuroprotective in the brain, and new pharmacological tools have been developed to increase their endogenous tone. In this study, we evaluated whether ECS stimulation could reduce the neurotoxicity of high doses of methamphetamine on the dopamine system. We found that methamphetamine alters the levels of the major endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG) in the striatum, suggesting that the ECS participates in the brain responses to methamphetamine. Δ9-tetrahydrocannabinol (THC), a cannabis-derived agonist of both CB1 and CB2 cannabinoid receptors, or inhibitors of the main enzymes responsible for the degradation of AEA and 2-AG (URB597 and JZL184, respectively), blunted the decrease in striatal protein levels of tyrosine hydroxylase induced by methamphetamine. In addition, antagonists of CB2, but not of CB1, blocked the preventive effects of URB597 and JZL184, suggesting that only the former receptor subtype is engaged in neuroprotection exerted by ECS stimulation. Finally, we found that methamphetamine increases striatal levels of the cytokine tumor necrosis factor alpha, an effect that was blocked by ECS stimulation. Altogether, our results indicate that stimulation of ECS prior to the administration of an overdose of meth-amphetamine considerably reduces the neurotoxicity of the drug through CB2 receptor activation and highlight a protective function for the ECS against the toxicity induced by drugs and other external insults to the brain. This article is part of the Special Issue entitled ‘CNS Stimulants’. PMID:24709540
Schechter, M; Weller, A; Pittel, Z; Gross, M; Zimmer, A; Pinhasov, A
2013-10-01
Maternal care is the newborn's first experience of social interaction, and this influences infant survival, development and social competences throughout life. We recently found that postpartum blocking of the endocannabinoid receptor-1 (CB1R) altered maternal behaviour. In the present study, maternal care was assessed by the time taken to retrieve pups, pups' ultrasonic vocalisations (USVs) and pup body weight, comparing CB1R deleted (CB1R KO) versus wild-type (WT) mice. After culling on postpartum day 8, hippocampal expression of oxytocin receptor (OXTR), brain-derived neurotrophic factor (BDNF) and stress-mediating factors were evaluated in CB1R KO and WT dams. Comparisons were also performed with nulliparous (NP) CB1R KO and WT mice. Compared to WT, CB1R KO dams were slower to retrieve their pups. Although the body weight of the KO pups did not differ from the weight of WT pups, they emitted fewer USVs. This impairment of the dam-pup relationship correlated with a significant reduction of OXTR mRNA and protein levels among CB1R KO dams compared to WT dams. Furthermore, WT dams exhibited elevated OXTR mRNA expression, as well as increased levels of mineralocorticoid and glucocorticoid receptors, compared to WT NP mice. By contrast, CB1R KO dams showed no such elevation of OXTR expression, alongside lower BDNF and mineralocorticoid receptors, as well as elevated corticotrophin-releasing hormone mRNA levels, when compared to CB1R KO NP. Thus, it appears that the disruption of endocannabinoid signalling by CB1R deletion alters expression of the OXTR, apparently leading to deleterious effects upon maternal behaviour. © 2013 British Society for Neuroendocrinology.
Manduca, Antonia; Morena, Maria; Campolongo, Patrizia; Servadio, Michela; Palmery, Maura; Trabace, Luigia; Hill, Matthew N; Vanderschuren, Louk J M J; Cuomo, Vincenzo; Trezza, Viviana
2015-08-01
To date, our understanding of the relative contribution and potential overlapping roles of the endocannabinoids anandamide (AEA) and 2-arachidonoylglycerol (2-AG) in the regulation of brain function and behavior is still limited. To address this issue, we investigated the effects of systemic administration of JZL195, that simultaneously increases AEA and 2-AG signaling by inhibiting their hydrolysis, in the regulation of socio-emotional behavior in adolescent and adult rats. JZL195, administered at the dose of 0.01mg/kg, increased social play behavior, that is the most characteristic social activity displayed by adolescent rats, and increased social interaction in adult animals. At both ages, these behavioral effects were antagonized by the CB1 cannabinoid receptor antagonist SR141716A and were associated with increased brain levels of 2-AG, but not AEA. Conversely, at the dose of 1mg/kg, JZL195 decreased general social exploration in adolescent rats without affecting social play behavior, and induced anxiogenic-like effects in the elevated plus-maze test both in adolescent and adult animals. These effects, mediated by activation of CB1 cannabinoid receptors, were paralleled by simultaneous increase in AEA and 2-AG levels in adolescent rats, and by an increase of only 2-AG levels in adult animals. These findings provide the first evidence for a role of 2-AG in social behavior, highlight the different contributions of AEA and 2-AG in the modulation of emotionality at different developmental ages and suggest that pharmacological inhibition of AEA and 2-AG hydrolysis is a useful approach to investigate the role of these endocannabinoids in neurobehavioral processes. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Presence and regulation of the endocannabinoid system in human dendritic cells.
Matias, Isabel; Pochard, Pierre; Orlando, Pierangelo; Salzet, Michel; Pestel, Joel; Di Marzo, Vincenzo
2002-08-01
Cannabinoid receptors and their endogenous ligands, the endocannabinoids, have been detected in several blood immune cells, including monocytes/macrophages, basophils and lymphocytes. However, their presence in dendritic cells, which play a key role in the initiation and development of the immune response, has never been investigated. Here we have analyzed human dendritic cells for the presence of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), the cannabinoid CB1 and CB2 receptors, and one of the enzymes mostly responsible for endocannabinoid hydrolysis, the fatty acid amide hydrolase (FAAH). By using a very sensitive liquid chromatography-atmospheric pressure chemical ionization-mass spectrometric (LC-APCI-MS) method, lipids extracted from immature dendritic cells were shown to contain 2-AG, anandamide and the anti-inflammatory anandamide congener, N-palmitoylethanolamine (PalEtn) (2.1 +/- 1.0, 0.14 +/- 0.02 and 8.2 +/- 3.9 pmol x 10(-7) cells, respectively). The amounts of 2-AG, but not anandamide or PalEtn, were significantly increased following cell maturation induced by bacterial lipopolysaccharide (LPS) or the allergen Der p 1 (2.8- and 1.9-fold, respectively). By using both RT-PCR and Western immunoblotting, dendritic cells were also found to express measurable amounts of CB1 and CB2 receptors and of FAAH. Cell maturation did not consistently modify the expression of these proteins, although in some cell preparations a decrease of the levels of both CB1 and CB2 mRNA transcripts was observed after LPS stimulation. These findings demonstrate for the first time that the endogenous cannabinoid system is present in human dendritic cells and can be regulated by cell activation.
Häggström, Jenny; Cipriano, Mariateresa; Forshell, Linus Plym; Persson, Emma; Hammarsten, Peter; Stella, Nephi; Fowler, Christopher J
2014-08-01
The endocannabinoid system regulates cancer cell proliferation, and in prostate cancer a high cannabinoid CB1 receptor expression is associated with a poor prognosis. Down-stream mediators of CB1 receptor signaling in prostate cancer are known, but information on potential upstream regulators is lacking. Data from a well-characterized tumor tissue microarray were used for a Bayesian network analysis using the max-min hill-climbing method. In non-malignant tissue samples, a directionality of pEGFR (the phosphorylated form of the epidermal growth factor receptor) → CB1 receptors were found regardless as to whether the endocannabinoid metabolizing enzyme fatty acid amide hydrolase (FAAH) was included as a parameter. A similar result was found in the tumor tissue, but only when FAAH was included in the analysis. A second regulatory pathway, from the growth factor receptor ErbB2 → FAAH was also identified in the tumor samples. Transfection of AT1 prostate cancer cells with CB1 receptors induced a sensitivity to the growth-inhibiting effects of the CB receptor agonist CP55,940. The sensitivity was not dependent upon the level of receptor expression. Thus a high CB1 receptor expression alone does not drive the cells towards a survival phenotype in the presence of a CB receptor agonist. The data identify two potential regulators of the endocannabinoid system in prostate cancer and allow the construction of a model of a dysregulated endocannabinoid signaling network in this tumor. Further studies should be designed to test the veracity of the predictions of the network analysis in prostate cancer and other solid tumors. © 2014 The Authors. The Prostate published by Wiley Periodicals, Inc.
Endocannabinoid system acts as a regulator of immune homeostasis in the gut.
Acharya, Nandini; Penukonda, Sasi; Shcheglova, Tatiana; Hagymasi, Adam T; Basu, Sreyashi; Srivastava, Pramod K
2017-05-09
Endogenous cannabinoids (endocannabinoids) are small molecules biosynthesized from membrane glycerophospholipid. Anandamide (AEA) is an endogenous intestinal cannabinoid that controls appetite and energy balance by engagement of the enteric nervous system through cannabinoid receptors. Here, we uncover a role for AEA and its receptor, cannabinoid receptor 2 (CB2), in the regulation of immune tolerance in the gut and the pancreas. This work demonstrates a major immunological role for an endocannabinoid. The pungent molecule capsaicin (CP) has a similar effect as AEA; however, CP acts by engagement of the vanilloid receptor TRPV1, causing local production of AEA, which acts through CB2. We show that the engagement of the cannabinoid/vanilloid receptors augments the number and immune suppressive function of the regulatory CX3CR1 hi macrophages (Mϕ), which express the highest levels of such receptors among the gut immune cells. Additionally, TRPV1 -/- or CB2 -/- mice have fewer CX3CR1 hi Mϕ in the gut. Treatment of mice with CP also leads to differentiation of a regulatory subset of CD4 + cells, the Tr1 cells, in an IL-27-dependent manner in vitro and in vivo. In a functional demonstration, tolerance elicited by engagement of TRPV1 can be transferred to naïve nonobese diabetic (NOD) mice [model of type 1 diabetes (T1D)] by transfer of CD4 + T cells. Further, oral administration of AEA to NOD mice provides protection from T1D. Our study unveils a role for the endocannabinoid system in maintaining immune homeostasis in the gut/pancreas and reveals a conversation between the nervous and immune systems using distinct receptors.
Marco, Eva M; Echeverry-Alzate, Victor; López-Moreno, Jose Antonio; Giné, Elena; Peñasco, Sara; Viveros, Maria Paz
2014-09-01
The endocannabinoid system is involved in several physiological and pathological states including anxiety, depression, addiction and other neuropsychiatric disorders. Evidence from human and rodent studies suggests that exposure to early life stress may increase the risk of psychopathology later in life. Indeed, maternal deprivation (MD) (24 h at postnatal day 9) in rats induces behavioural alterations associated with depressive-like and psychotic-like symptoms, as well as important changes in the endocannabinoid system. As most neuropsychiatric disorders first appear at adolescence, and show remarkable sexual dimorphisms in their prevalence and severity, in the present study, we analysed the gene expression of the main components of the brain cannabinoid system in adolescent (postnatal day 46) Wistar male and female rats reared under standard conditions or exposed to MD. For this, we analysed, by real-time quantitative PCR, the expression of genes encoding for CB1 and CB2 receptors, TRPV1 and GPR55 (Cnr1, Cnr2a, Cnr2b, Trpv1, and Gpr55), for the major enzymes of synthesis, N-acyl phosphatidyl-ethanolamine phospholipase D (NAPE-PLD) and diacylglycerol lipase (DAGL) (Nape-pld, Dagla and Daglb), and degradation, fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) (Faah, Magl and Cox-2), in specific brain regions, that is, the frontal cortex, ventral and dorsal striatum, dorsal hippocampus and amygdala. In males, MD increased the genetic expression of all the genes studied within the frontal cortex, whereas in females such an increase was observed only in the hippocampus. In conclusion, the endocannabinoid system is sensitive to early life stress at the gene expression level in a sex-dependent and region-dependent manner, and these changes are already evident in the adolescent brain.
Bossong, Matthijs G; Jansma, J Martijn; Bhattacharyya, Sagnik; Ramsey, Nick F
2014-07-03
Accumulating evidence suggests involvement of the endocannabinoid system in the pathophysiology of schizophrenia, which signifies a potential application for this system in the treatment of this disorder. However, before new research can focus on potential treatments that work by manipulating the endocannabinoid system, it needs to be elucidated how this system is involved in symptoms of schizophrenia. Here we review human studies that investigated acute effects of cannabis or ∆9-tetrahydrocannabinol (THC) on brain functions that are implicated in schizophrenia. Results suggest that the impact of THC administration depends on the difficulty of the task performed. Impaired performance of cognitive paradigms is reported on more challenging tasks, which is associated with both activity deficits in temporal and prefrontal areas and a failure to deactivate regions of the default mode network. Comparable reductions in prefrontal activity and impairments in deactivation of the default mode network are seen in patients during performance of cognitive paradigms. Normal performance levels after THC administration demonstrated for less demanding tasks are shown to be related to either increased neural effort in task-specific regions ('neurophysiological inefficiency'), or recruitment of alternative brain areas, which suggests a change in strategy to meet cognitive demands. Particularly a pattern of performance and brain activity corresponding with an inefficient working memory system is consistently demonstrated in patients. These similarities in brain function between intoxicated healthy volunteers and schizophrenia patients provide an argument for a role of the endocannabinoid system in symptoms of schizophrenia, and further emphasize this system as a potential novel target for treatment of these symptoms. Copyright © 2014 Elsevier Inc. All rights reserved.
Endocannabinoid contribution to Δ9-tetrahydrocannabinol discrimination in rodents
Wiley, Jenny L.; Walentiny, D. Matthew; Wright, M. Jerry; Beardsley, Patrick M.; Burston, James J.; Poklis, Justin L.; Lichtman, Aron H.; Vann, Robert E.
2014-01-01
The mechanism through which marijuana produces its psychoactive effects is Δ9- tetrahydrocannabinol (THC)-induced activation of cannabinoid CB1 receptors. These receptors are normally activated by endogenous lipids, including anandamide and 2-arachidonoyl glycerol (2-AG). A logical “first step” in determination of the role of these endocannabinoids in THC’s psychoactive effects is to investigate the degree to which pharmacologically induced increases in anandamide and/or 2-AG concentrations through exogenous administration and/or systemic administration of inhibitors of their metabolism, fatty acid amide hydrolase (FAAH) or monoacylglycerol lipase (MAGL), respectively, share THC’s discriminative stimulus effects. To this end, adult male mice and rats were trained to discriminate THC (5.6 and 3 mg/kg, respectively). In Experiment 1, exogenous administration of anandamide or 2-AG did not substitute for THC in mice nor was substitution enhanced by co-administration of the FAAH or MAGL inhibitors, URB597 and N-arachidonyl maleimide (NAM), respectively. Significant decreases in responding may have prevented assessment of adequate endocannabinoid doses. In mice trained at higher baseline response rates (Experiment 2), the FAAH inhibitor PF3845 (10 mg/kg) enhanced anandamide substitution for THC without producing effects of its own. The MAGL inhibitor JZL184 increased brain levels of 2-AG in vitro and in vivo, increased THC-like responding without co-administration of 2-AG. In rats, neither URB597 nor JZL184 engendered significant THC-appropriate responding, but co-administration of these two enzyme inhibitors approached full substitution. The present results highlight the complex interplay between anandamide and 2-AG and suggest that endogenous increases of both endocannabinoids are most effective in elicitation of THC-like discriminative stimulus effects. PMID:24858366
Blanco, Eduardo; Pavón, Francisco J.; Palomino, Ana; Luque-Rojas, María Jesús; Serrano, Antonia; Rivera, Patricia; Bilbao, Ainhoa; Alen, Francisco; Vida, Margarita; Suárez, Juan
2015-01-01
Background: Endocannabinoids modulate the glutamatergic excitatory transmission by acting as retrograde messengers. A growing body of studies has reported that both signaling systems in the mesocorticolimbic neural circuitry are involved in the neurobiological mechanisms underlying drug addiction. Methods: We investigated whether the expression of both endocannabinoid and glutamatergic systems in the prefrontal cortex (PFC) were altered by an acute and/or repeated cocaine administration schedule that resulted in behavioral sensitization. We measured the protein and mRNA expression of the main endocannabinoid metabolic enzymes and the cannabinoid receptor type 1 (CB1). We also analyzed the mRNA expression of relevant components of the glutamate-signaling system, including glutamate-synthesizing enzymes, metabotropic receptors, and ionotropic receptors. Results: Although acute cocaine (10mg/kg) produced no significant changes in the endocannabinoid-related proteins, repeated cocaine administration (20mg/kg daily) induced a pronounced increase in the CB1 receptor expression. In addition, acute cocaine administration (10mg/kg) in cocaine-sensitized mice (referred to as cocaine priming) induced a selective increase in the endocannabinoid-degrading enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). These protein changes were accompanied by an overall decrease in the ratios of endocannabinoid synthesis/degradation, especially the N-acyl phosphatidylethanolamine phospholipase D/FAAH and diacylglycerol lipase alpha/MAGL ratios. Regarding mRNA expression, while acute cocaine administration produced a decrease in CB1 receptors and N-acyl phosphatidylethanolamine phospholipase D, repeated cocaine treatment enhanced CB1 receptor expression. Cocaine-sensitized mice that were administered priming injections of cocaine mainly displayed an increased FAAH expression. These endocannabinoid changes were associated with modifications in glutamatergic transmission-related genes. An overall decrease was observed in the mRNA expression of the glutamate-synthesizing gene kidney-type glutaminase (KGA), the metabotropic glutamate receptors (mGluR3 and GluR), and subunits of NMDA ionotropic receptors (NR1, NR2A, NR2B and NR2C) after acute cocaine administration, while mice repeatedly exposed to cocaine only displayed an increase in NR2C. However, in cocaine-sensitized mice primed with cocaine, this inhibition was reversed and a strong increase was detected in the mGluR5, NR2 subunits, and both GluR1 and GluR3. Conclusions: These findings indicate that cocaine sensitization is associated with an endocannabinoid downregulation and a hyperglutamatergic state in the PFC that, overall, contribute to an enhanced glutamatergic input into PFC-projecting areas. PMID:25539508
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-09-12
Marine Corps Recruit Depot, (MCRD) Parris Island was proposed for listing on U.S. Environmental Protection Agency`s National Priorities List in August 1994. We identified two areas where chemical contaminants in soil entered the surface water wetland areas and bioaccumulated in edible fish and shellfish species: (1) contaminated fish and shellfish at the Causeway Landfill (Site 3) and (2) contaminated shellfish near the Rifle Range. These exposure situations pose no apparent public health hazard due to the low levels of contaminants detected in fish and shellfish. However, because the landfill has no impermeable cap nor leachate collection system, it is notmore » known whether contaminants in fish and shellfish will increase over time. The remaining 57 contaminated areas pose no public health hazard because people are not coming in contact with contaminants.« less
Khan, Mohammed I; Sobocińska, Anna A; Czarnecka, Anna M; Król, Magdalena; Botta, Bruno; Szczylik, Cezary
2016-01-01
The endocannabinoid system (ECS) is a group of neuromodulatory lipids and their receptors, which are widely distributed in mammalian tissues. ECS regulates various cardiovascular, nervous, and immune system functions inside cells. In recent years, there has been a growing body of evidence for the use of synthetic and natural cannabinoids as potential anticancer agents. For instance, the CB1 and CB2 receptors are assumed to play an important role inside the endocannabinoid system. These receptors are abundantly expressed in the brain and fatty tissue of the human body. Despite recent developments in molecular biology, there is still a lack of knowledge about the distribution of CB1 and CB2 receptors in the human kidney and their role in kidney cancer. To address this gap, we explore and demonstrate the role of the endocannabinoid system in renal cell carcinoma (RCC). In this brief overview, we elucidate the therapeutic aspects of the endocannabinoid system for various cancers and explain how this system can be used for treating kidney cancer. Overall, this review provides new insights into cannabinoids' mechanisms of action in both in vivo and in vitro models, and focuses on recent discoveries in the field.
2011-02-11
on TF39 engines, which are typically used for C-5 Galaxy aircraft; T56 engines, which are typically used for C-130 aircraft; and fuel accessories on...conducting separate cost-benefit analyses for the TF39 and T56 engine maintenance work. Under Air Force guidance for depot-level source-of-repair selection...Force has not developed specific risk mitigation plans for the TF39 or T56 engines because it is still assessing how the work will be performed
Depot Maintenance: Issues and Options for Reporting on Military Depots
2008-05-15
for assessing the balance of public and private sector depot maintenance workload? (3) What issues might Congress wish to consider to enhance reporting...on military depots capabilities or funding allocations of the public sector versus private sector ? This briefing is intended to satisfy the mandate that GAO review 50/50 reporting requirements.
Early phytocannabinoid chemistry to endocannabinoids and beyond.
Mechoulam, Raphael; Hanuš, Lumír O; Pertwee, Roger; Howlett, Allyn C
2014-11-01
Isolation and structure elucidation of most of the major cannabinoid constituents--including Δ(9)-tetrahydrocannabinol (Δ(9)-THC), which is the principal psychoactive molecule in Cannabis sativa--was achieved in the 1960s and 1970s. It was followed by the identification of two cannabinoid receptors in the 1980s and the early 1990s and by the identification of the endocannabinoids shortly thereafter. There have since been considerable advances in our understanding of the endocannabinoid system and its function in the brain, which reveal potential therapeutic targets for a wide range of brain disorders.
Space Transportation Infrastructure Supported By Propellant Depots
NASA Technical Reports Server (NTRS)
Smitherman, David; Woodcock, Gordon
2012-01-01
A space transportation infrastructure is described that utilizes propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for all crew, cargo, and propellant launches to orbit. Propellant launches are made to Low-Earth-Orbit (LEO) Depot and an Earth-Moon Lagrange Point 1 (L1) Depot to support a new reusable in-space transportation vehicles. The LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to L1 for L1 Depot missions. The L1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid and Mars Missions. New vehicle design concepts are presented that can be launched on current 5 meter diameter ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) for crew transportation between the LEO Depot, L1 Depot and missions beyond L1; a new reusable lunar lander for crew transportation between the L1 Depot and the lunar surface; and Mars orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure include competitive bidding for ELV flights and propellant services, developments of new reusable in-space vehicles and development of a multiuse infrastructure that can support many government and commercial missions simultaneously.
Monteleone, Alessio Maria; Di Marzo, Vincenzo; Aveta, Teresa; Piscitelli, Fabiana; Dalle Grave, Riccardo; Scognamiglio, Pasquale; El Ghoch, Marwan; Calugi, Simona; Monteleone, Palmiero; Maj, Mario
2015-02-01
A dysregulation of reward mechanisms was suggested in the pathophysiology of anorexia nervosa (AN), but the role of the endogenous mediators of reward has been poorly investigated. Endocannabinoids, including anandamide and 2-arachidonoylglycerol, and the endocannabinoid-related compounds oleoylethanolamide and palmitoylethanolamide modulate food-related and unrelated reward. Hedonic eating, which is the consumption of food just for pleasure and not homeostatic need, is a suitable paradigm to explore food-related reward. We investigated responses of endocannabinoids and endocannabinoid-related compounds to hedonic eating in AN. Peripheral concentrations of anandamide, 2-arachidonoylglycerol, oleoylethanolamide, and palmitoylethanolamide were measured in 7 underweight and 7 weight-restored AN patients after eating favorite and nonfavorite foods in the condition of no homeostatic needs, and these measurements were compared with those of previously studied healthy control subjects. 1) In healthy controls, plasma 2-arachidonoylglycerol concentrations decreased after both types of meals but were significantly higher in hedonic eating; in underweight AN patients, 2-arachidonoylglycerol concentrations did not show specific time patterns after eating either favorite or nonfavorite foods, whereas in weight-restored patients, 2-arachidonoylglycerol concentrations showed similar increases with both types of meals. 2) Anandamide plasma concentrations exhibited no differences in their response patterns to hedonic eating in the groups. 3) Compared with 2-arachidonoylglycerol, palmitoylethanolamide concentrations exhibited an opposite response pattern to hedonic eating in healthy controls; this pattern was partially preserved in underweight AN patients but not in weight-restored ones. 4) Like palmitoylethanolamide, oleoylethanolamide plasma concentrations tended to be higher in nonhedonic eating than in hedonic eating in healthy controls; moreover, no difference between healthy subjects and AN patients was observed for food-intake-induced changes in oleoylethanolamide concentrations. These data confirm that endocannabinoids and endocannabinoid-related compounds are involved in food-related reward and suggest a dysregulation of their physiology in AN. This trial was registered at ISRCTN.org as ISRCTN64683774. © 2015 American Society for Nutrition.
NASA Technical Reports Server (NTRS)
Smitherman, David; Woodcock, Gordon
2012-01-01
A space transportation infrastructure is described that utilizes the Space Launch System (SLS), the Mulit-Purpose Crew Vehicle (MPCV), the International Space Station (ISS), and propellant depot servicing platforms to support all foreseeable missions in the Earth-Moon vicinity and deep space out to Mars. The infrastructure utilizes current expendable launch vehicle (ELV) systems such as the Delta IV Heavy, Atlas V, and Falcon 9, for commercial crew, cargo, and propellant launches to a Low-Earth-Orbit (LEO) Depot and/or the ISS. The SLS provides all payload and propellant launches to the Earth-Moon Langrange Point 1 (EML1) Depot to support new reusable in-space transportation vehicles. The ISS or follow-on LEO Depot supports missions to Geosynchronous Earth Orbit (GEO) for satellite servicing and to Earth-Moon L1 for EML1 Depot missions. The EML1 Depot supports Lunar, Earth-Sun L2 (ESL2), Asteroid, and Mars missions. New vehicle design concepts are presented that can be launched utilizing the SLS and current ELV systems. These new reusable vehicle concepts include a Crew Transfer Vehicle (CTV) derived from the MPCV and a reusable Cryogenic Propulsion Stage (CPS) for crew transportation between the LEO Depot, EML1 Depot and missions beyond the Earth-Moon vicinity; a new reusable Lunar Lander for crew transportation between the EML1 Depot and the lunar surface; and a new reusable Deep Space Habitat (DSH) with a CTV to support crew missions from the EML1 Depot to ESL2, Asteroids, and a Mars Orbital Depot. The LEO Depot, EML1 Depot, and Mars Orbital Depot are based on International Space Station (ISS) heritage hardware. Data provided includes the number of launches required for each mission utilizing SLS and current ELV systems (Delta IV Heavy or equivalent) and the approximate vehicle masses and propellant requirements. Also included is a discussion on affordability with ideas on technologies that could reduce the number of launches required and thoughts on how this infrastructure might be implemented incrementally over the next few decades. The potential benefits of this infrastructure include competitive bidding for ELV flights and propellant services, development of new reusable in-space vehicles, and development of a robust multiuse infrastructure that can support many government and commercial missions simultaneously.
[The role of endocannabinoid system in physiological and pathological processes in the eye].
Nadolska, Krystyna; Goś, Roman
2008-01-01
Plant of Cannabis sativa/ marihuana except for its psychotropic effects possesses a range of pharmacological properties, that has been utilized for medical purposes over a period of millenia. Investigations concerning biochemical mechanism of action of the main and most active pharmacological compound of Cannabis sativa, cannabinoid 9-THC, contributed to the discovery of cannabinoid receptors both in the central nervous system (CNS) and peripheral tissues, that mediated actions of this substance. The discovery made possible identification of a new, endogenous signaling system reffered to as the endocannabinoid system. Besides cannabinoid receptors CB1 and CB2, the system includes it's endogenic ligands (endocannabinoids) and compounds that participate in their biosynthesis and inactivation. Structure and functioning of the endocannabinoid system is conservative in all vertebrates. It's activation with plant, synthetic and endogenous cannabinoids has an influence on multiple physiological and pathological processes within the eye.
Molecular model of cannabis sensitivity in developing neuronal circuits.
Keimpema, Erik; Mackie, Ken; Harkany, Tibor
2011-09-01
Prenatal cannabis exposure can complicate in utero development of the nervous system. Cannabis impacts the formation and functions of neuronal circuitries by targeting cannabinoid receptors. Endocannabinoid signaling emerges as a signaling cassette that orchestrates neuronal differentiation programs through the precisely timed interaction of endocannabinoid ligands with their cognate cannabinoid receptors. By indiscriminately prolonging the 'switched-on' period of cannabinoid receptors, cannabis can hijack endocannabinoid signals to evoke molecular rearrangements, leading to the erroneous wiring of neuronal networks. Here, we formulate a hierarchical network design necessary and sufficient to describe the molecular underpinnings of cannabis-induced neural growth defects. We integrate signalosome components, deduced from genome- and proteome-wide arrays and candidate analyses, to propose a mechanistic hypothesis of how cannabis-induced ectopic cannabinoid receptor activity overrides physiological neurodevelopmental endocannabinoid signals, affecting the timely formation of synapses. Copyright © 2011 Elsevier Ltd. All rights reserved.
Utilizing Solar Power Technologies for On-Orbit Propellant Production
NASA Technical Reports Server (NTRS)
Fikes, John C.; Howell, Joe T.; Henley, Mark W.
2006-01-01
The cost of access to space beyond low Earth orbit may be reduced if vehicles can refuel in orbit. The cost of access to low Earth orbit may also be reduced by launching oxygen and hydrogen propellants in the form of water. To achieve this reduction in costs of access to low Earth orbit and beyond, a propellant depot is considered that electrolyzes water in orbit, then condenses and stores cryogenic oxygen and hydrogen. Power requirements for such a depot require Solar Power Satellite technologies. A propellant depot utilizing solar power technologies is discussed in this paper. The depot will be deployed in a 400 km circular equatorial orbit. It receives tanks of water launched into a lower orbit from Earth, converts the water to liquid hydrogen and oxygen, and stores up to 500 metric tons of cryogenic propellants. This requires a power system that is comparable to a large Solar Power Satellite capable of several 100 kW of energy. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotates once per orbit to track the Sun. The majority of the power is used to run the electrolysis system. Thermal control is maintained by body-mounted radiators; these also provide some shielding against orbital debris. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. Emphasis is placed on the Water-Ice to Cryogen propellant production facility. A very high power system is required for cracking (electrolyzing) the water and condensing and refrigerating the resulting oxygen and hydrogen. For a propellant production rate of 500 metric tons (1,100,000 pounds) per year, an average electrical power supply of 100 s of kW is required. To make the most efficient use of space solar power, electrolysis is performed only during the portion of the orbit that the Depot is in sunlight, so roughly twice this power level is needed for operations in sunlight (slightly over half of the time). This power level mandates large solar arrays, using advanced Space Solar Power technology. A significant amount of the power has to be dissipated as heat, through large radiators. This paper briefly describes the propellant production facility and the requirements for a high power system capability. The Solar Power technologies required for such an endeavor are discussed.
A chronic low dose of Δ9-tetrahydrocannabinol (THC) restores cognitive function in old mice.
Bilkei-Gorzo, Andras; Albayram, Onder; Draffehn, Astrid; Michel, Kerstin; Piyanova, Anastasia; Oppenheimer, Hannah; Dvir-Ginzberg, Mona; Rácz, Ildiko; Ulas, Thomas; Imbeault, Sophie; Bab, Itai; Schultze, Joachim L; Zimmer, Andreas
2017-06-01
The balance between detrimental, pro-aging, often stochastic processes and counteracting homeostatic mechanisms largely determines the progression of aging. There is substantial evidence suggesting that the endocannabinoid system (ECS) is part of the latter system because it modulates the physiological processes underlying aging. The activity of the ECS declines during aging, as CB1 receptor expression and coupling to G proteins are reduced in the brain tissues of older animals and the levels of the major endocannabinoid 2-arachidonoylglycerol (2-AG) are lower. However, a direct link between endocannabinoid tone and aging symptoms has not been demonstrated. Here we show that a low dose of Δ 9 -tetrahydrocannabinol (THC) reversed the age-related decline in cognitive performance of mice aged 12 and 18 months. This behavioral effect was accompanied by enhanced expression of synaptic marker proteins and increased hippocampal spine density. THC treatment restored hippocampal gene transcription patterns such that the expression profiles of THC-treated mice aged 12 months closely resembled those of THC-free animals aged 2 months. The transcriptional effects of THC were critically dependent on glutamatergic CB1 receptors and histone acetylation, as their inhibition blocked the beneficial effects of THC. Thus, restoration of CB1 signaling in old individuals could be an effective strategy to treat age-related cognitive impairments.
Ogawa, Shintaro; Kunugi, Hiroshi
2015-01-01
Cannabis and analogs of Δ<sup>9</sup>-tetrahydrocannabinol have been used for therapeutic purposes, but their therapeutic use remains limited because of various adverse effects. Endogenous cannabinoids have been discovered, and dysregulation of endocannabinoid signaling is implicated in the pathophysiology of major depressive disorder (MDD). Recently, endocannabinoid hydrolytic enzymes such as fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) have become new therapeutic targets in the treatment of MDD. Several FAAH or MAGL inhibitors are reported to have no cannabimimetic side effects and, therefore, are new potential therapeutic options for patients with MDD who are resistant to first-line antidepressants (selective serotonin and serotonin-norepinephrine reuptake inhibitors). In this review, we focus on the possible relationships between MDD and the endocannabinoid system as well as the inhibitors' therapeutic potential. MAGL inhibitors may reduce inflammatory responses through activation of cannabinoid receptor type 2. In the hypothalamic-pituitary-adrenal axis, repeated FAAH inhibitor administration may be beneficial for reducing circulating glucocorticoid levels. Both FAAH and MAGL inhibitors may contribute to dopaminergic system regulation. Recently, several new inhibitors have been developed with strong potency and selectivity. FAAH inhibitor, MAGL inhibitor, or dual blocker use would be promising new treatments for MDD. Further pre-clinical studies and clinical trials using these inhibitors are warranted.
Endocannabinoid system: Role in depression, reward and pain control (Review).
Huang, Wen-Juan; Chen, Wei-Wei; Zhang, Xia
2016-10-01
Depression and pain co-exist in almost 80% of patients and are associated with impaired health-related quality of life, often contributing to high mortality. However, the majority of patients who suffer from the comorbid depression and pain are not responsive to pharmacological treatments that address either pain or depression, making this comorbidity disorder a heavy burden on patients and society. In ancient times, this depression-pain comorbidity was treated using extracts of the Cannabis sativa plant, known now as marijuana and the mode of action of Δ9‑tetrahydrocannabinol, the active cannabinoid ingredient of marijuana, has only recently become known, with the identification of cannabinoid receptor type 1 (CB1) and CB2. Subsequent investigations led to the identification of endocannabinoids, anandamide and 2-arachidonoylglycerol, which exert cannabinomimetic effects through the CB1 and CB2 receptors, which are located on presynaptic membranes in the central nervous system and in peripheral tissues, respectively. These endocannabinoids are produced from membrane lipids and are lipohilic molecules that are synthesized on demand and are eliminated rapidly after their usage by hydrolyzing enzymes. Clinical studies revealed altered endocannabinoid signaling in patients with chronic pain. Considerable evidence suggested the involvement of the endocannabinoid system in eliciting potent effects on neurotransmission, neuroendocrine, and inflammatory processes, which are known to be deranged in depression and chronic pain. Several synthetic cannabinomimetic drugs are being developed to treat pain and depression. However, the precise mode of action of endocannabinoids on different targets in the body and whether their effects on pain and depression follow the same or different pathways, remains to be determined.
Bossong, Matthijs G; van Hell, Hendrika H; Jager, Gerry; Kahn, René S; Ramsey, Nick F; Jansma, J Martijn
2013-12-01
Various psychiatric disorders such as major depression are associated with abnormalities in emotional processing. Evidence indicating involvement of the endocannabinoid system in emotional processing, and thus potentially in related abnormalities, is increasing. In the present study, we examined the role of the endocannabinoid system in processing of stimuli with a positive and negative emotional content in healthy volunteers. A pharmacological functional magnetic resonance imaging (fMRI) study was conducted with a placebo-controlled, cross-over design, investigating effects of the endocannabinoid agonist ∆9-tetrahydrocannabinol (THC) on brain function related to emotional processing in 11 healthy subjects. Performance and brain activity during matching of stimuli with a negative ('fearful faces') or a positive content ('happy faces') were assessed after placebo and THC administration. After THC administration, performance accuracy was decreased for stimuli with a negative but not for stimuli with a positive emotional content. Our task activated a network of brain regions including amygdala, orbital frontal gyrus, hippocampus, parietal gyrus, prefrontal cortex, and regions in the occipital cortex. THC interacted with emotional content, as activity in this network was reduced for negative content, while activity for positive content was increased. These results indicate that THC administration reduces the negative bias in emotional processing. This adds human evidence to support the hypothesis that the endocannabinoid system is involved in modulation of emotional processing. Our findings also suggest a possible role for the endocannabinoid system in abnormal emotional processing, and may thus be relevant for psychiatric disorders such as major depression. Copyright © 2013 Elsevier B.V. and ECNP. All rights reserved.
Vlachou, S; Panagis, G
2014-01-01
The endocannabinoid system has been implicated in the regulation of a variety of physiological processes, including a crucial involvement in brain reward systems and the regulation of motivational processes. Behavioral studies have shown that cannabinoid reward may involve the same brain circuits and similar brain mechanisms with other drugs of abuse, such as nicotine, cocaine, alcohol and heroin, as well as natural rewards, such as food, water and sucrose, although the conditions under which cannabinoids exert their rewarding effects may be more limited. The purpose of the present review is to briefly describe and evaluate the behavioral and pharmacological research concerning the major components of the endocannabinoid system and reward processes. Special emphasis is placed on data received from four procedures used to test the effects of the endocannabinoid system on brain reward in animals; namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure and the drug-discrimination procedure. The effects of cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor agonists, antagonists and endocannabinoid modulators in these procedures are examined. Further, the involvement of CB1 and CB2 receptors, as well the fatty acid amid hydrolase (FAAH) enzyme in reward processes is investigated through presentation of respective genetic ablation studies in mice. We suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. Further research will provide us with a better understanding of these processes and, thus, could lead to the development of potential therapeutic compounds for the treatment of reward-related disorders.
Carel, Jean-Claude; Lahlou, Najiba; Jaramillo, Orlando; Montauban, Vincent; Teinturier, Cécile; Colle, Michel; Lucas, Christel; Chaussain, Jean Louis
2002-09-01
Depot GnRH agonists are widely used for the treatment of precocious puberty. Leuprorelin 3-month depot is currently used in adults but has not been evaluated in children. We evaluated the efficacy of this new formulation (11.25 mg every 3 months), for the suppression of gonadotropic activation and pubertal signs in children with central precocious puberty. We included 44 children (40 girls) with early-onset pubertal development in a 6-month open trial. The inclusion criteria were clinical pubertal development before the age of 8 (girls) or 10 (boys), advanced bone age, enlarged uterus (>36 mm), testosterone more than 1.7 nmol/liter (boys), and pubertal response of LH to GnRH (peak >5 IU/liter). The principal criterion for efficacy assessment, GnRH-stimulated LH peak less than 3 IU/liter, was met in 81 of 85 (95%) of the tests performed at months 3 and 6. The remaining four values were slightly above the threshold. The levels of sex steroids were also significantly reduced and clinical pubertal development was arrested. Plasma leuprorelin levels, measured every 30 d, were essentially stable after d 60. Local intolerance was noted after 10 of 86 injections (12%), and was mild in four cases, moderate in five cases, and severe in one. Among these 10 events, 4 consisted in local pain at injection's site. In conclusion, leuprorelin 3-month depot efficiently inhibits the gonadotropic axis in 95% of children with central precocious puberty studied for a 6-month period. This regimen allows the reduction of the number of yearly injections from 12 to 4.
Maple, Kristin E.; McDaniel, Kymberly A.; Shollenbarger, Skyler G.; Lisdahl, Krista M.
2017-01-01
Background Cannabis has been shown to affect sleep in humans. Findings from animal studies indicate that higher endocannabinoid levels promote sleep, suggesting that chronic use of cannabis, which downregulates endocannabinoid activity, may disrupt sleep. Objectives This study sought to determine if past year cannabis use and genes that regulate endocannabinoid signaling, FAAH rs324420 and CNR1 rs2180619, predicted sleep quality. As depression has been previously associated with both cannabis and sleep, the secondary aim was to determine if depressive symptoms moderated or mediated these relationships. Methods Data were collected from 41 emerging adult (ages 18–25) cannabis users. Exclusion criteria included Axis I disorders (besides SUD) and medical and neurologic disorders. Relationships were tested using multiple regressions, controlling for demographic variables, past year substance use, and length of cannabis abstinence. Results Greater past year cannabis use and FAAH C/C genotype were associated with poorer sleep quality. CNR1 genotype did not significantly predict sleep quality. Depressive symptoms moderated the relationship between cannabis use and sleep at a non-significant trend level, such that participants with the greatest cannabis use and most depressive symptoms reported the most impaired sleep. Depressive symptoms mediated the relationship between FAAH genotype and sleep quality. Conclusions This study demonstrates a dose-dependent relationship between chronic cannabis use and reported sleep quality, independent of abstinence length. Furthermore, it provides novel evidence that depressive symptoms mediate the relationship between FAAH genotype and sleep quality in humans. These findings suggest potential targets to impact sleep disruptions in cannabis users. PMID:27074158
Kwok, Charlie H-T; Devonshire, Ian M; Imraish, Amer; Greenspon, Charles M; Lockwood, Stevie; Fielden, Catherine; Cooper, Andrew; Woodhams, Stephen; Sarmad, Sarir; Ortori, Catherine A; Barrett, David A; Kendall, David; Bennett, Andrew J; Chapman, Victoria; Hathway, Gareth J
2017-11-01
Significant age- and experience-dependent remodelling of spinal and supraspinal neural networks occur, resulting in altered pain responses in early life. In adults, endogenous opioid peptide and endocannabinoid (ECs) pain control systems exist which modify pain responses, but the role they play in acute responses to pain and postnatal neurodevelopment is unknown. Here, we have studied the changing role of the ECs in the brainstem nuclei essential for the control of nociception from birth to adulthood in both rats and humans. Using in vivo electrophysiology, we show that substantial functional changes occur in the effect of microinjection of ECs receptor agonists and antagonists in the periaqueductal grey (PAG) and rostroventral medulla (RVM), both of which play central roles in the supraspinal control of pain and the maintenance of chronic pain states in adulthood. We show that in immature PAG and RVM, the orphan receptor, GPR55, is able to mediate profound analgesia which is absent in adults. We show that tissue levels of endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol, within the PAG and RVM are developmentally regulated (using mass spectrometry). The expression patterns and levels of ECs enzymes and receptors were assessed using quantitative PCR and immunohistochemistry. In human brainstem, we show age-related alterations in the expression of key enzymes and receptors involved in ECs function using PCR and in situ hybridisation. These data reveal that significant changes on ECs that to this point have been unknown and which shed new light into the complex neurochemical changes that permit normal, mature responses to pain.
Pharmacokinetic Studies of Sustained-Release Depot of Dexamethasone in Beagle Dogs.
Blizzard, Charles; Desai, Ankita; Driscoll, Arthur
2016-11-01
To examine the pharmacokinetic characteristics of sustained-release dexamethasone depots in two separate canine studies. Dexamethasone depots loaded with a clinically representative (0.4 mg) dose (DEXTENZA™; Ocular Therapeutix) or an elevated (0.7 mg) dose were inserted into the canaliculi of beagle eyes (n = 37 and n = 34, respectively). Tear fluid was collected for pharmacokinetic analysis of dexamethasone in both studies at predetermined time points. Explanted 0.4 mg depots were collected weekly to measure remaining drug level. Clinical observations and ophthalmic examinations were performed in both studies at each visit. The 0.4 mg depots released a median 308 μg by day 15 and tapered to complete drug release by day 28. Median dexamethasone tear fluid concentrations in the 0.4 mg study group decreased from 2,805 ng/mL at day 7 to 0 ng/mL on day 28. Median dexamethasone tear fluid concentrations in the 0.7 mg study group decreased from 4,370 ng/mL at 6 h post insertion to 830 ng/mL on day 35. Mean ± standard deviation intraocular pressures in the 0.4 and 0.7 mg study groups were 20.7 ± 2.8 and 19.0 ± 4.1 mmHg at baseline, respectively, and demonstrated no meaningful change (20.5 ± 3.0 and 20.6 ± 2.9 mmHg, respectively) over the studies' durations. No ocular toxicities were attributed to the dexamethasone depot. Sustained-release dexamethasone produced no identifiable ocular toxicity in this animal model, and pharmacokinetics demonstrated a sustained and tapered drug release over 28 days at a 0.4 mg dose and exceeded 35 days at a 0.7 mg dose.
Endocannabinoids protect the rat isolated heart against ischaemia
Lépicier, Philippe; Bouchard, Jean-François; Lagneux, Caroline; Lamontagne, Daniel
2003-01-01
The purpose of this study was to determine whether endocannabinoids can protect the heart against ischaemia and reperfusion. Rat isolated hearts were exposed to low-flow ischaemia (0.5–0.6 ml min−1) and reperfusion. Functional recovery as well as CK and LDH overflow into the coronary effluent were monitored. Infarct size was determined at the end of the experiments. Phosphorylation levels of p38, ERK1/2, and JNK/SAPK kinases were measured by Western blots. None of the untreated hearts recovered from ischaemia during the reperfusion period. Perfusion with either 300 nM palmitoylethanolamide (PEA) or 300 nM 2-arachidonoylglycerol (2-AG), but not anandamide (up to 1 μM), 15 min before and throughout the ischaemic period, improved myocardial recovery and decreased the levels of coronary CK and LDH. PEA and 2-AG also reduced infarct size. The CB2-receptor antagonist, SR144528, blocked completely the cardioprotective effect of both PEA and 2-AG, whereas the CB1-receptor antagonist, SR141716A, blocked partially the effect of 2-AG only. In contrast, both ACEA and JWH015, two selective agonists for CB1- and CB2- receptors, respectively, reduced infarct size at a concentration of 50 nM. PEA enhanced the phosphorylation level of p38 MAP kinase during ischaemia. PEA perfusion doubled the baseline phosphorylation level of ERK1/2, and enhanced its increase upon reperfusion. The cardioprotective effect of PEA was completely blocked by the p38 MAP kinase inhibitor, SB203580, and significantly reduced by the ERK1/2 inhibitor, PD98059, and the PKC inhibitor, chelerythrine. In conclusion, endocannabinoids exert a strong cardioprotective effect in a rat model of ischaemia–reperfusion that is mediated mainly through CB2-receptors, and involves p38, ERK1/2, as well as PKC activation. PMID:12813004
Ligand Depot: a data warehouse for ligands bound to macromolecules.
Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John
2004-09-01
Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.
Modulation of sweet responses of taste receptor cells.
Yoshida, Ryusuke; Niki, Mayu; Jyotaki, Masafumi; Sanematsu, Keisuke; Shigemura, Noriatsu; Ninomiya, Yuzo
2013-03-01
Taste receptor cells play a major role in detection of chemical compounds in the oral cavity. Information derived from taste receptor cells, such as sweet, bitter, salty, sour and umami is important for evaluating the quality of food components. Among five basic taste qualities, sweet taste is very attractive for animals and influences food intake. Recent studies have demonstrated that sweet taste sensitivity in taste receptor cells would be affected by leptin and endocannabinoids. Leptin is an anorexigenic mediator that reduces food intake by acting on leptin receptor Ob-Rb in the hypothalamus. Endocannabinoids such as anandamide [N-arachidonoylethanolamine (AEA)] and 2-arachidonoyl glycerol (2-AG) are known as orexigenic mediators that act via cannabinoid receptor 1 (CB1) in the hypothalamus and limbic forebrain to induce appetite and stimulate food intake. At the peripheral gustatory organs, leptin selectively suppresses and endocannabinoids selectively enhance sweet taste sensitivity via Ob-Rb and CB1 expressed in sweet sensitive taste cells. Thus leptin and endocannabinoids not only regulate food intake via central nervous systems but also modulate palatability of foods by altering peripheral sweet taste responses. Such reciprocal modulation of leptin and endocannabinoids on peripheral sweet sensitivity may play an important role in regulating energy homeostasis. Copyright © 2012 Elsevier Ltd. All rights reserved.
The endocannabinoid system and nondrug rewarding behaviours.
Fattore, Liana; Melis, Miriam; Fadda, Paola; Pistis, Marco; Fratta, Walter
2010-07-01
Rewarding behaviours such as sexual activity, eating, nursing, parenting, social interactions, and play activity are conserved strongly in evolution, and they are essential for development and survival. All of these behaviours are enjoyable and represent pleasant experiences with a high reward value. Remarkably, rewarding behaviours activate the same brain circuits that mediate the positive reinforcing effects of drugs of abuse and of other forms of addiction, such as gambling and food addiction. Given the involvement of the endocannabinoid system in a variety of physiological functions of the nervous system, it is not surprising that it takes part in the complex machinery that regulates gratification and perception of pleasure. In this review, we focus first on the role of the endocannabinoid system in the modulation of neural activity and synaptic functions in brain regions that are involved in natural and nonnatural rewards (namely, the ventral tegmental area, striatum, amygdala, and prefrontal cortex). Then, we examine the role of the endocannabinoid system in modulating behaviours that directly or indirectly activate these brain reward pathways. More specifically, current knowledge of the effects of the pharmacological manipulation of the endocannabinoid system on natural (eating, sexual behaviour, parenting, and social play) and pathological (gambling) rewarding behaviours is summarised and discussed. Copyright 2010 Elsevier Inc. All rights reserved.
Cannabis and endocannabinoid modulators: Therapeutic promises and challenges
Grant, Igor; Cahn, B. Rael
2008-01-01
The discovery that botanical cannabinoids such as delta-9 tetrahydrocannabinol exert some of their effect through binding specific cannabinoid receptor sites has led to the discovery of an endocannabinoid signaling system, which in turn has spurred research into the mechanisms of action and addiction potential of cannabis on the one hand, while opening the possibility of developing novel therapeutic agents on the other. This paper reviews current understanding of CB1, CB2, and other possible cannabinoid receptors, their arachidonic acid derived ligands (e.g. anandamide; 2 arachidonoyl glycerol), and their possible physiological roles. CB1 is heavily represented in the central nervous system, but is found in other tissues as well; CB2 tends to be localized to immune cells. Activation of the endocannabinoid system can result in enhanced or dampened activity in various neural circuits depending on their own state of activation. This suggests that one function of the endocannabinoid system may be to maintain steady state. The therapeutic action of botanical cannabis or of synthetic molecules that are agonists, antagonists, or which may otherwise modify endocannabinoid metabolism and activity indicates they may have promise as neuroprotectants, and may be of value in the treatment of certain types of pain, epilepsy, spasticity, eating disorders, inflammation, and possibly blood pressure control. PMID:18806886
The emerging role of the endocannabinoid system in cardiovascular disease
2009-01-01
Endocannabinoids are endogenous bioactive lipid mediators present both in the brain and various peripheral tissues, which exert their biological effects via interaction with specific G-protein-coupled cannabinoid receptors, the CB1 and CB2. Pathological overactivation of the endocannabinoid system (ECS) in various forms of shock and heart failure may contribute to the underlying pathology and cardiodepressive state by the activation of the cardiovascular CB1 receptors. Furthermore, tonic activation of CB1 receptors by endocannabinoids has also been implicated in the development of various cardiovascular risk factors in obesity/metabolic syndrome and diabetes, such as plasma lipid alterations, abdominal obesity, hepatic steatosis, inflammation, and insulin and leptin resistance. In contrast, activation of CB2 receptors in immune cells exerts various immunomodulatory effects, and the CB2 receptors in endothelial and inflammatory cells appear to limit the endothelial inflammatory response, chemotaxis, and inflammatory cell adhesion and activation in atherosclerosis and reperfusion injury. Here, we will overview the cardiovascular actions of endocannabinoids and the growing body of evidence implicating the dysregulation of the ECS in a variety of cardiovascular diseases. We will also discuss the therapeutic potential of the modulation of the ECS by selective agonists/antagonists in various cardiovascular disorders associated with inflammation and tissue injury, ranging from myocardial infarction and heart failure to atherosclerosis and cardiometabolic disorders. PMID:19357846
Martella, Andrea; Sepe, Rosa M; Silvestri, Cristoforo; Zang, Jingjing; Fasano, Giulia; Carnevali, Oliana; De Girolamo, Paolo; Neuhauss, Stephan C F; Sordino, Paolo; Di Marzo, Vincenzo
2016-12-01
The developmental role of the endocannabinoid system still remains to be fully understood. Here, we report the presence of a complete endocannabinoid system during zebrafish development and show that the genes that code for enzymes that catalyze the anabolism and catabolism (mgll and dagla) of the endocannabinoid, 2-AG (2-arachidonoylglycerol), as well as 2-AG main receptor in the brain, cannabinoid receptor type 1, are coexpressed in defined regions of axonal growth. By using morpholino-induced transient knockdown of the zebrafish Daglα homolog and its pharmacologic rescue, we suggest that synthesis of 2-AG is implicated in the control of axon formation in the midbrain-hindbrain region and that animals that lack Daglα display abnormal physiological behaviors in tests that measure stereotyped movement and motion perception. Our results suggest that the well-established role for 2-AG in axonal outgrowth has implications for the control of vision and movement in zebrafish and, thus, is likely common to all vertebrates.-Martella, A., Sepe, R. M., Silvestri, C., Zang, J., Fasano, G., Carnevali, O., De Girolamo, P., Neuhauss, S. C. F., Sordino, P., Di Marzo, V. Important role of endocannabinoid signaling in the development of functional vision and locomotion in zebrafish. © FASEB.
Starowicz, Katarzyna; Di Marzo, Vincenzo
2013-09-15
The exploitation of preparations of Cannabis sativa to combat pain seems to date back to time immemorial, although their psychotropic effects, which are at the bases of their recreational use and limit their therapeutic use, are at least as ancient. Indeed, it has always been different to tease apart the unwanted central effects from the therapeutic benefits of Δ⁹-tetrahydrocannabinol (THC), the main psychotropic component of cannabis. The discovery of the cannabinoid receptors and of their endogenous ligands, the endocannabinoids, which, unlike THC, play a pro-homeostatic function in a tissue- and time-selective manner, offered the opportunity to develop new analgesics from synthetic inhibitors of endocannabinoid inactivation. The advantages of this approach over direct activation of cannabinoid receptors as a therapeutic strategy against neuropathic and inflammatory pain are discussed here along with its potential complications. These latter have been such that clinical success has been achieved so far more rapidly with naturally occurring THC or endocannabinoid structural analogues acting at a plethora of cannabinoid-related and -unrelated molecular targets, than with selective inhibitors of endocannabinoid enzymatic hydrolysis, thus leading to revisit the potential usefulness of "multi-target" versus "magic bullet" compounds as new analgesics. © 2013 Elsevier B.V. All rights reserved.
Sinclair, S. Michael; Bhattacharyya, Jayanta; McDaniel, Jonathan R.; Gooden, David M.; Gopalaswamy, Ramesh; Chilkoti, Ashutosh; Setton, Lori A.
2014-01-01
Radiculopathy, a painful neuroinflammation that can accompany intervertebral disc herniation, is associated with locally increased levels of the pro-inflammatory cytokine tumor necrosis factor alpha (TNFα). Systemic administration of TNF antagonists for radiculopathy in the clinic has shown mixed results, and there is growing interest in the local delivery of anti-inflammatory drugs to treat this pathology as well as similar inflammatory events of peripheral nerve injury. Curcumin, a known antagonist of TNFα in multiple cell types and tissues, was chemically modified and conjugated to a thermally responsive elastin-like polypeptide (ELP) to create an injectable depot for sustained, local delivery of curcumin to treat neuroinflammation. ELPs are biopolymers capable of thermally-triggered in situ depot formation that have been successfully employed as drug carriers and biomaterials in several applications. ELP-curcumin conjugates were shown to display high drug loading, rapidly release curcumin in vitro via degradable carbamate bonds, and retain in vitro bioactivity against TNFα-induced cytotoxicity and monocyte activation with IC50 only two-fold higher than curcumin. When injected proximal to the sciatic nerve in mice via intramuscular (i.m.) injection, ELP-curcumin conjugates underwent a thermally triggered soluble-insoluble phase transition, leading to in situ formation of a depot that released curcumin over 4 days post-injection and decreased plasma AUC 7-fold. PMID:23830979
The transportation depot: An orbiting vehicle support facility
NASA Technical Reports Server (NTRS)
Kaszubowski, Martin J.; Ayers, J. Kirk
1992-01-01
This paper describes the details of an effort to produce conceptual designs for an orbiting platform, called a transportation depot, to handle assembly and processing of lunar, Martian, and related vehicles. High-level requirements for such a facility were established, and several concepts were developed to meet those requirements. By showing that the critical rigid-body momentum characteristics of each concept are similar to those of the dual-keel space station, some insight was gained about the controllability and utility of this type of facility. Finally, several general observations were made that highlight the advantages and disadvantages of particular design features.
Perspective view of the Oregon Trunk Railway Freight Depot, view ...
Perspective view of the Oregon Trunk Railway Freight Depot, view looking west at south end of building - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR
LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE ...
LOOKING WEST, BETWEEN READING DEPOT BRIDGE AND SKEW ARCH BRIDGE (HAER No. PA-116). - Philadelphia & Reading Railroad, Reading Depot Bridge, North Sixth Street at Woodward Street, Reading, Berks County, PA
NASA Astrophysics Data System (ADS)
Rahmitha, Amelia; Utami, Endang Sri; Sitohang, Marya Yenita
2018-02-01
People used refilled-drinking-water for household and food stall because its efficient and low cost. Based on Indonesian Health Ministry regulation, it should not have any coliform bacteria. This study aimed to describe the bacteriological contamination of refilled drinking water using geographical information system (GIS). In this research, it was used an analytic observational method. The samples were from all available (37) depots in Tembalang district, one form each depot took used a sterile bottle. Contamination of bacteria was identified by Most Probable Number (MPN) method lactose broth media, Mac Conkey media, and IMVIC media. The depot samples were then plotted on (GIS). This study showed 95% samples were not feasible to consume since they contamined coliform. All sub-district had one that contaminated by coliform, 75% sub-districts had depots that contaminated Escherichia coli, while 55% sub-districts had depots that contaminated with other bacteria. The internal risk factors of the contamination were the absence of hygiene-sanitation worthy certificate (95%), depots location near to pollution sources (5%), and the misused of UV light. The external risk factor was lack of quality control that was not as the sterilization from office health Semarang city. Policy reinforcement should be done to all of the depots.
Liu, Hui; Venkatraman, Subbu S
2012-05-01
Although injectable depot-forming solutions have been commercialized, the factors that influence the overall release kinetics from such systems are still not fully understood. In this work, we address the effect of cosolvent on the issue of excessive burst release of potent bioactives from injectable depot-forming solutions. Specifically, we have evaluated the influence of addition of a relatively hydrophobic cosolvent (triacetin) to more hydrophilic biocompatible solvents such as dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) on the burst release. Drug release and solvent release results demonstrate that high burst release that occurred when only hydrophilic solvent was used as solvent was significantly reduced by adding triacetin as a cosolvent. The profiles of drug release were in good agreement with the profiles of the hydrophilic solvent DMSO or NMP release, and the suppression of the burst by triacetin addition is due to the suppression of the solvent release. Surprisingly, the swelling of the depot increased with triacetin amount and the depot morphology became more porous compared with the absence of triacetin. Usage of hydrophobic solvent as a cosolvent to reduce the burst release was shown to be more effective on the hydrophobic PdlLA depot and less effective on the relatively hydrophilic RG502 depot. Copyright © 2012 Wiley Periodicals, Inc.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M; Nording, Malin L
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005-2.1 pg on column), limit of quantification (0.0005-4.2 pg on column), inter- and intraday accuracy (85-115%) and precision (< 5%), recovery (40-109%) and stability (40-105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation.
Gouveia-Figueira, Sandra; Späth, Jana; Zivkovic, Angela M.; Nording, Malin L.
2015-01-01
Bioactive lipids, including oxylipins, endocannabinoids, and related compounds may function as specific biochemical markers of certain aspects of inflammation. However, the postprandial responsiveness of these compounds is largely unknown; therefore, changes in the circulating oxylipin and endocannabinoid metabolome in response to a challenge meal were investigated at six occasions in a subject who freely modified her usual diet. The dietary change, and especially the challenge meal itself, represented a modification of precursor fatty acid status, with expectedly subtle effects on bioactive lipid levels. To detect even the slightest alteration, highly sensitive ultra-performance liquid chromatography (UPLC) coupled to electrospray ionization (ESI) tandem mass spectrometry (MS/MS) methods for bioactive lipid profiling was employed. A previously validated UPLC-ESI-MS/MS method for profiling the endocannabinoid metabolome was used, while validation of an UPLC-ESI-MS/MS method for oxylipin analysis was performed with acceptable outcomes for a majority of the parameters according to the US Food and Drug Administration guidelines for linearity (0.9938 < R2 < 0.9996), limit of detection (0.0005–2.1 pg on column), limit of quantification (0.0005–4.2 pg on column), inter- and intraday accuracy (85–115%) and precision (< 5%), recovery (40–109%) and stability (40–105%). Forty-seven of fifty-two bioactive lipids were detected in plasma samples at fasting and in the postprandial state (0.5, 1, and 3 hours after the meal). Multivariate analysis showed a significant shift of bioactive lipid profiles in the postprandial state due to inclusion of dairy products in the diet, which was in line with univariate analysis revealing seven compounds (NAGly, 9-HODE, 13-oxo-ODE, 9(10)-EpOME, 12(13)-EpOME, 20-HETE, and 11,12-DHET) that were significantly different between background diets in the postprandial state (but not at fasting). The only change in baseline levels at fasting was displayed by TXB2. Furthermore, postprandial responsiveness was detected for seven compounds (POEA, SEA, 9(10)-DiHOME, 12(13)-DiHOME, 13-oxo-ODE, 9-HODE, and 13-HODE). Hence, the data confirm that the UPLC-ESI-MS/MS method performance was sufficient to detect i) a shift, in the current case most notably in the postprandial bioactive lipid metabolome, caused by changes in diet and ii) responsiveness to a challenge meal for a subset of the oxylipin and endocannabinoid metabolome. To summarize, we have shown proof-of-concept of our UPLC-ESI-MS/MS bioactive lipid protocols for the purpose of monitoring subtle shifts, and thereby useful to address lipid-mediated postprandial inflammation. PMID:26186333
Detail perspective view of the Oregon Trunk Railway Freight Depot, ...
Detail perspective view of the Oregon Trunk Railway Freight Depot, view looking east at south end of building - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR
2. LOOKING NW, WITH READING DEPOT IN BACKGROUND. Philadelphia ...
2. LOOKING NW, WITH READING DEPOT IN BACKGROUND. - Philadelphia & Reading Railroad, Pedestrian Suspension Bridge, Foot of Sixth Street at Schuylkill River (formerly spanned Philadelphia & Reading main line at Reading Depot), Reading, Berks County, PA
CCP Billing Alternatives Study
DOT National Transportation Integrated Search
1996-04-01
On behalf of DoD, the Defense Logistics Agency operates consolidation and containerization points (CCPs) at Defense Depot Susquehanna, PA and at Defense Depot San Joaquin, CA. These CCPs receive freight from other defense depots and consolidate it in...
COX-2-derived endocannabinoid metabolites as novel inflammatory mediators.
Alhouayek, Mireille; Muccioli, Giulio G
2014-06-01
Cyclooxygenase-2 (COX-2) is an enzyme that plays a key role in inflammatory processes. Classically, this enzyme is upregulated in inflammatory situations and is responsible for the generation of prostaglandins (PGs) from arachidonic acid (AA). One lesser-known property of COX-2 is its ability to metabolize the endocannabinoids, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG). Endocannabinoid metabolism by COX-2 is not merely a means to terminate their actions. On the contrary, it generates PG analogs, namely PG-glycerol esters (PG-G) for 2-AG and PG-ethanolamides (PG-EA or prostamides) for AEA. Although the formation of these COX-2-derived metabolites of the endocannabinoids has been known for a while, their biological effects remain to be fully elucidated. Recently, several studies have focused on the role of these PG-G or PG-EA in vivo. In this review we take a closer look at the literature concerning these novel bioactive lipids and their role in inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Malcher-Lopes, Renato; Franco, Alier; Tasker, Jeffrey G.
2008-01-01
Glucocorticoids are capable of exerting both genomic and non-genomic actions in target cells of multiple tissues, including the brain, which trigger an array of electrophysiological, metabolic, secretory and inflammatory regulatory responses. Here, we have attempted to show how glucocorticoids may generate a rapid anti-inflammatory response by promoting arachidonic acid-derived endocannabinoid biosynthesis. According to our hypothesized model, non-genomic action of glucocorticoids results in the global shift of membrane lipid metabolism, subverting metabolic pathways toward the synthesis of the anti-inflammatory endocannabinoids, anandamide (AEA) and 2-arachidonoyl-glycerol (2-AG), and away from arachidonic acid production. Post-transcriptional inhibition of cyclooxygenase-2 (COX2) synthesis by glucocorticoids assists this mechanism by suppressing the synthesis of pro-inflammatory prostaglandins as well as endocannabinoid-derived prostanoids. In the central nervous system (CNS) this may represent a major neuroprotective system, which may cross-talk with leptin signaling in the hypothalamus allowing for the coordination between energy homeostasis and the inflammatory response. PMID:18295199
Chemical Probes of Endocannabinoid Metabolism
2013-01-01
The endocannabinoid signaling system regulates diverse physiologic processes and has attracted considerable attention as a potential pharmaceutical target for treating diseases, such as pain, anxiety/depression, and metabolic disorders. The principal ligands of the endocannabinoid system are the lipid transmitters N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), which activate the two major cannabinoid receptors, CB1 and CB2. Anandamide and 2-AG signaling pathways in the nervous system are terminated by enzymatic hydrolysis mediated primarily by the serine hydrolases fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. In this review, we will discuss the development of FAAH and MAGL inhibitors and their pharmacological application to investigate the function of anandamide and 2-AG signaling pathways in preclinical models of neurobehavioral processes, such as pain, anxiety, and addiction. We will place emphasis on how these studies are beginning to discern the different roles played by anandamide and 2-AG in the nervous system and the resulting implications for advancing endocannabinoid hydrolase inhibitors as next-generation therapeutics. PMID:23512546
Effect of blockage of the endocannabinoid system by CB(1) antagonism on cardiovascular risk.
Mach, François; Montecucco, Fabrizio; Steffens, Sabine
2009-01-01
The endocannabinoid system is a crucial player in the inflammatory processes underlying atherosclerosis. Recently, basic research studies and animal models have strongly supported the role of the endocannabinoid system not only in the regulation of classical cardiovascular risk factors (including lipid profile and glucose homeostasis), but also in the activation of immune cells and inflammatory mediators. Clinical trials investigating treatment with rimonabant (a selective antagonist of the cannabinoid type 1 receptor) have suggested a beneficial effect of this drug in the management of obesity. Further studies are needed to explore a possible use for rimonabant in treating type 2 diabetes and acute and chronic cardiovascular disease. Despite the slight increase in adverse events (mainly psychiatric), which has led to the recent withdrawal of rimonabant from the market, CB(1) receptor antagonism might represent a very promising therapeutic strategy to reduce the cardiovascular risk. In the present review, we focused on the most important experimental investigations into the role of the endocannabinoid system in atherosclerosis and cardiovascular risk.
Iwasaki, Shinya; Ishiguro, Hiroki; Higuchi, Susumu; Onaivi, Emmanuel S; Arinami, Tadao
2007-08-01
Fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGLL) are the major endocannabinoid metabolic enzymes. Owing to the importance of endocannabinoid system in addiction, the Pro129Thr polymorphism in the FAAH gene has reportedly been associated with substance abuse and dependence in a Caucasian population. To determine whether the single nucleodtide polymorphisms of the FAAH and MGLL genes are associated with alcoholism in a Japanese population. We conducted case-control studies for total 14 tag single nucleotide polymorphisms in those two genes using Japanese 729 patients with alcoholism and 799 healthy controls. Genotype and allele frequencies were compared between these groups. None of these genetic markers, however, showed significant association with alcoholism in Japanese. Whereas we examined associations in a larger sample size between alcoholism and tag single nucleotide polymorphisms that covered most regions of these endocannabinoid metabolic enzyme genes, we found that these are not associated with susceptibility to alcoholism in a Japanese population.
Hals, Petter-Arnt; Wang, Xiaoli; Piscitelli, Fabiana; Di Marzo, Vincenzo; Xiao, Yong-Fu
2017-01-21
A commonly used measure to reflect the intake of the long-chain omega-3 fatty acids EPA and DHA is the omega-3 index, defined as the sum of EPA + DHA as % of total fatty acids in erythrocyte membrane. When the omega-3 index changes it follows that the relative fractions of other fatty acids in the membrane are also changed. In the present study, increasing doses of a preparation of omega-3 rich phospholipids extracted from krill oil were administered orally to non-human primates for 12 weeks and the time course of EPA, DHA and 22 other fatty acids in erythrocytes was determined bi-weekly during treatment and for 8 weeks after cessation of treatment. Plasma concentrations of six endocannabinoid-type mediators being downstream metabolites of some fatty acids analyzed in erythrocytes were also determined. Six diabetic, dyslipidemic non-human primates were included, three in a vehicle control group and three being treated with the omega-3 rich phospholipid preparation. The vehicle control and test items were given daily by gavage and the test item doses were 50, 150 and 450 mg phospholipids/kg/day. Each dose level was given for four weeks. Blood was sampled at baseline and thereafter bi-weekly. Fatty acids were determined in erythrocytes by methylation followed by gas-chromatography. Endocannabinoids and endocannabinoid-like mediators were analyzed in plasma by liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry. The treatment resulted in a dose-related increase in the fraction of EPA and DHA in erythrocyte membranes and a dose-related decrease of other poly-unsaturated fatty acids, in particular omega-6 polyunsaturated fatty acids. Erythrocyte concentrations of saturated fatty acids remained unchanged throughout the experiment. Plasma concentrations of endocannabinoids and endocannabinoid-like mediators changed accordingly as those being downstream arachidonic acid decreased, downstream of the saturated palmitic and oleic acids remained unchanged while a downstream EPA metabolite increased. Increasing the omega-3 index by administering an omega-3 rich phospholipid extracted from krill oil did not alter the ratio of unsaturated vs. saturated fatty acids in the erythrocyte membranes but only the relative concentrations of unsaturated fatty acids, in particular unsaturated omega-6 fatty acids. Concentrations of saturated fatty acids remained unchanged.
Titov, V N
2014-01-01
Metabolic syndrome (overeating) is a phylogenetically-determined succession of symptoms with the same pathogenesis. There is only one etiological factor, namely, increased consumption of physiologically optimal food. Enterocytes and omental fat cells are a phylogenetically early paracrine-regulated cell community that realizes the biological reactions of exo- and endotrophy. Visceral obesity, high levels of unesterified fatty acids (FA), formation of a pool of micellar FA in the blood, integration of these FA into endothelial cell plasma membrane and enlargement of adipocytes are the causes of hydrodynamic pressure elevation. Toll-like receptors recognize the associates between albumin and greater than physiological number of FA as "foreing" and initiate inflammatory response. "Endoplasm stress" develops in lipid-overloaded cells, protein synthesis (folding) in them is impaired and apoptosis-like cell death is activated. Visceral fat is a phylogenetically early depot of FA to fulfill the biological function of homeostasis, trophology, endoecology and adaptation; it is regulated at the level of paracrine communities and is anatomically limited. The subcutaneous fat depot fulfills the phylogenetically late function of locomotion; the depot size is not anatomically limited. Visceral fat cells have no receptors for phylogenetically late insulin (INS); specialized adipocyes bearing INS and GLUT4 receptors are cells that form the subcutaneous depot. These cells are regulated by phylogenetically late humoral factors at the entire body level. Leptin is an initiator of humoral hypothalamic regulation of in vivo number of ontogenetically programmed number of visceral INS-insensitive fat cells. It prevents "endoplasm stress" and apoptosis, being designed to regulate the amount of consumed food. Leptin initiates storage of FA from visceral pool into subcutaneous pool. Adiponectin is a phylogenetically late humoral hypothalamic regulatory factor that controls optimal number of fat cells in vivo. Its biological role consists in regulation of the number (proliferation) of insulin-dependent adipocytes in subcutaneous fatty tissue.
Hiley, C Robin; Ford, William R
2003-01-01
Endocannabinoid production by platelets and macrophages is increased in circulatory shock. This may be protective of the cardiovascular system as blockade of CB1 cannabinoid receptors exacerbates endothelial dysfunction in haemorrhagic and endotoxin shock and reduces survival. Now evidence suggests that blockade of CB1 receptors starting 24 h after myocardial infarction in rats has a deleterious effect on cardiac performance, while use of a nonselective cannabinoid receptor agonist prevents hypotension and reduces endothelial dysfunction, although left ventricular end diastolic pressure is elevated. Cannabinoids and endocannabinoid systems may therefore present useful targets for therapy following myocardial infarction. PMID:12711614
Endocannabinoid signalling and the deteriorating brain
Di Marzo, Vincenzo; Stella, Nephi; Zimmer, Andreas
2015-01-01
Ageing is characterized by the progressive impairment of physiological functions and increased risk of developing debilitating disorders, including chronic inflammation and neurodegenerative diseases. These disorders have common molecular mechanisms that can be targeted therapeutically. In the wake of the approval of the first cannabinoid-based drug for the symptomatic treatment of multiple sclerosis, we examine how endocannabinoid (eCB) signalling controls — and is affected by — normal ageing and neuroinflammatory and neurodegenerative disorders. We propose a conceptual framework linking eCB signalling to the control of the cellular and molecular hallmarks of these processes, and categorize the key components of endocannabinoid signalling that may serve as targets for novel therapeutics. PMID:25524120
Partial elevation view of the Oregon Trunk Railway Freight Depot, ...
Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at south end of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR
Partial elevation view of the Oregon Trunk Railway Freight Depot, ...
Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at north end of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR
Partial elevation view of the Oregon Trunk Railway Freight Depot, ...
Partial elevation view of the Oregon Trunk Railway Freight Depot, view looking west at center of east façade - Oregon Trunk Railway Freight Depot, Southwest First Street & Cascade Avenue, Redmond, Deschutes County, OR
Logez, Sophie; Hutin, Yvan; Somda, Paul; Thuault, Jérôme; Holloway, Kathleen
2005-01-01
Background The common failure of health systems to ensure adequate and sufficient supplies of injection devices may have a negative impact on injection safety. We conducted an assessment in April 2001 to determine to which extent an increase in safe injection practices between 1995 and 2000 was related to the increased access to injection devices because of a new essential medicine policy in Burkina Faso. Methods We reviewed outcomes of the new medicine policy implemented in1995. In April 2001, a retrospective programme review assessed the situation between 1995 and 2000. We visited 52 health care facilities where injections had been observed during a 2000 injection safety assessment and their adjacent operational public pharmaceutical depots. Data collection included structured observations of available injection devices and an estimation of the proportion of prescriptions including at least one injection. We interviewed wholesaler managers at national and regional levels on supply of injection devices to public health facilities. Results Fifty of 52 (96%) health care facilities were equipped with a pharmaceutical depot selling syringes and needles, 37 (74%) of which had been established between 1995 and 2000. Of 50 pharmaceutical depots, 96% had single-use 5 ml syringes available. At all facilities, patients were buying syringes and needles out of the depot for their injections prescribed at the dispensary. While injection devices were available in greater quantities, the proportion of prescriptions including at least one injection remained stable between 1995 (26.5 %) and 2000 (23.8 %). Conclusion The implementation of pharmaceutical depots next to public health care facilities increased geographical access to essential medicines and basic supplies, among which syringes and needles, contributing substantially to safer injection practices in the absence of increased use of therapeutic injections. PMID:16364178
Bujalska, Iwona J; Durrani, Omar M; Abbott, Joseph; Onyimba, Claire U; Khosla, Pamela; Moosavi, Areeb H; Reuser, Tristan T Q; Stewart, Paul M; Tomlinson, Jeremy W; Walker, Elizabeth A; Rauz, Saaeha
2007-01-01
Glucocorticoids (GCs) have a profound effect on adipose biology increasing tissue mass causing central obesity. The pre-receptor regulation of GCs by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) that activates cortisol from cortisone has been postulated as a fundamental mechanism underlying the metabolic syndrome mediating adipocyte hyperplasia and hypertrophy in the omental (OM) depot. Orbital adipose tissue (OF) is the site of intense inflammation and tissue remodelling in several orbital inflammatory disease states. In this study, we describe features of the GC metabolic pathways in normal human OF depot and compare it with subcutaneous (SC) and OM depots. Using an automated histological characterisation technique, OF adipocytes were found to be significantly smaller (parameters: area, maximum diameter and perimeter) than OM and SC adipocytes (P<0·001). Although immunohistochemical analyses demonstrated resident CD68+ cells in all three whole tissue adipose depots, OF CD68 mRNA and protein expression exceeded that of OM and SC (mRNA, P<0·05; protein, P<0·001). In addition, there was higher expression of glucocorticoid receptor (GR)α mRNA in the OF whole tissue depot (P<0·05). Conversely, 11β-HSD1 mRNA together with the markers of late adipocyte differentiation (FABP4 and G3PDH) were significantly lower in OF. Primary cultures of OF preadipocytes demonstrated predominant 11β-HSD1 oxo-reductase activity with minimal dehydrogenase activity. Orbital adipocytes are smaller, less differentiated, and express low levels of 11β-HSD1 but abundant GRα compared with SC and OM. OF harbours a large CD68+ population. These characteristics define an orbital microenvironment that has the potential to respond to sight-threatening orbital inflammatory disease. PMID:17283228
Lee, Mi-Jeong; Pramyothin, Pornpoj; Karastergiou, Kalypso; Fried, Susan K
2014-03-01
Central obesity is associated with insulin resistance and dyslipidemia. Thus, the mechanisms that control fat distribution and its impact on systemic metabolism have importance for understanding the risk for diabetes and cardiovascular disease. Hypercortisolemia at the systemic (Cushing's syndrome) or local levels (due to adipose-specific overproduction via 11β-hydroxysteroid dehydrogenase 1) results in the preferential expansion of central, especially visceral fat depots. At the same time, peripheral subcutaneous depots can become depleted. The biochemical and molecular mechanisms underlying the depot-specific actions of glucocorticoids (GCs) on adipose tissue function remain poorly understood. GCs exert pleiotropic effects on adipocyte metabolic, endocrine and immune functions, and dampen adipose tissue inflammation. GCs also regulate multiple steps in the process of adipogenesis. Acting synergistically with insulin, GCs increase the expression of numerous genes involved in fat deposition. Variable effects of GC on lipolysis are reported, and GC can improve or impair insulin action depending on the experimental conditions. Thus, the net effect of GC on fat storage appears to depend on the physiologic context. The preferential effects of GC on visceral adipose tissue have been linked to higher cortisol production and glucocorticoid receptor expression, but the molecular details of the depot-dependent actions of GCs are only beginning to be understood. In addition, increasing evidence underlines the importance of circadian variations in GCs in relationship to the timing of meals for determining their anabolic actions on the adipocyte. In summary, although the molecular mechanisms remain to be fully elucidated, there is increasing evidence that GCs have multiple, depot-dependent effects on adipocyte gene expression and metabolism that promote central fat deposition. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease. Copyright © 2013 Elsevier B.V. All rights reserved.
The endocannabinoid system as a target for the treatment of neurodegenerative disease.
Scotter, Emma L; Abood, Mary E; Glass, Michelle
2010-06-01
The Cannabis sativa plant has been exploited for medicinal, agricultural and spiritual purposes in diverse cultures over thousands of years. Cannabis has been used recreationally for its psychotropic properties, while effects such as stimulation of appetite, analgesia and anti-emesis have lead to the medicinal application of cannabis. Indeed, reports of medicinal efficacy of cannabis can been traced back as far as 2700 BC, and even at that time reports also suggested a neuroprotective effect of the cultivar. The discovery of the psychoactive component of cannabis resin, Delta(9)-tetrahydrocannabinol (Delta(9)-THC) occurred long before the serendipitous identification of a G-protein coupled receptor at which Delta(9)-THC is active in the brain. The subsequent finding of endogenous cannabinoid compounds, the synthesis of which is directed by neuronal excitability and which in turn served to regulate that excitability, further widened the range of potential drug targets through which the endocannabinoid system can be manipulated. As a result of this, alterations in the endocannabinoid system have been extensively investigated in a range of neurodegenerative disorders. In this review we examine the evidence implicating the endocannabinoid system in the cause, symptomatology or treatment of neurodegenerative disease. We examine data from human patients and compare and contrast this with evidence from animal models of these diseases. On the basis of this evidence we discuss the likely efficacy of endocannabinoid-based therapies in each disease context.
Adolescent exposure to THC in female rats disrupts developmental changes in the prefrontal cortex.
Rubino, Tiziana; Prini, Pamela; Piscitelli, Fabiana; Zamberletti, Erica; Trusel, Massimo; Melis, Miriam; Sagheddu, Claudia; Ligresti, Alessia; Tonini, Raffaella; Di Marzo, Vincenzo; Parolaro, Daniela
2015-01-01
Current concepts suggest that exposure to THC during adolescence may act as a risk factor for the development of psychiatric disorders later in life. However, the molecular underpinnings of this vulnerability are still poorly understood. To analyze this, we investigated whether and how THC exposure in female rats interferes with different maturational events occurring in the prefrontal cortex during adolescence through biochemical, pharmacological and electrophysiological means. We found that the endocannabinoid system undergoes maturational processes during adolescence and that THC exposure disrupts them, leading to impairment of both endocannabinoid signaling and endocannabinoid-mediated LTD in the adult prefrontal cortex. THC also altered the maturational fluctuations of NMDA subunits, leading to larger amounts of gluN2B at adulthood. Adult animals exposed to THC during adolescence also showed increased AMPA gluA1 with no changes in gluA2 subunits. Finally, adolescent THC exposure altered cognition at adulthood. All these effects seem to be triggered by the disruption of the physiological role played by the endocannabinoid system during adolescence. Indeed, blockade of CB1 receptors from early to late adolescence seems to prevent the occurrence of pruning at glutamatergic synapses. These results suggest that vulnerability of adolescent female rats to long-lasting THC adverse effects might partly reside in disruption of the pivotal role played by the endocannabinoid system in the prefrontal cortex maturation. Copyright © 2014 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boyette, J.A.; Breck, J.E.; Coleman, P.R.
1986-03-01
The purpose is to provide an assessment of the potential health and environmental impacts of continuing to store M55 rockets filled with nerve agent GB or VX at their current storage locations at Anniston Army Depot in Alabama, Lexington-Blue Grass Depot Activity in Kentucky, Pine Bluff Arsenal in Arkansas, Tooele Army Depot in Utah, and Umatilla Depot Activity in Oregon. The assessment considers the possible impacts of (1) normal storage (with no release to the environment) and (2) two postulated accidents on the air quality, ground and surface water, aquatic ecology, terrestrial ecology, human health, and cultural and socioeconomic resourcesmore » in and around the various storage depots. The analysis considers three basic scenarios during storage: (1) normal operations; (2) a minor spill of agent (the contents of one rocket released to the biosphere); and (3) a maximum credible event or MCE. The MCE is an igloo fire resulting in the aerosolization of a small (in the case of GB) or an extremely small (in the case of VX) percentage of the igloo's nerve agent contents to the biosphere. The extremely low probabilities of such accidents, which are reported elsewhere, are noted. Our assessments of the impacts of a minor spill and of an MCE consider two sets of meteorological conditions: conservative most likely and worst-case. In addition, we assume that an agent plume would travel toward the area of highest population density. 21 figs., 47 tabs.« less
Murillo-Rodríguez, Eric; Palomero-Rivero, Marcela; Millán-Aldaco, Diana; Di Marzo, Vincenzo
2013-01-17
The family of the endocannabinoid system comprises endogenous lipids (such as anandamide [ANA]), receptors (CB(1)/CB(2) cannabinoid receptors), metabolic enzymes (fatty acid amide hydrolase [FAAH]) and a putative membrane transporter (anandamide membrane transporter [AMT]). Although the role of ANA, FAAH or the CB(1) cannabinoid receptor in sleep modulation has been reported, the effects of the inhibition of AMT on sleep remain unclear. In the present study, we show that microdialysis perfusion in rats of AMT inhibitors, (9Z)-N-[1-((R)-4-hydroxbenzyl)-2-hydroxyethyl]-9-octadecenamide (OMDM-2) or N-(4-hydroxy-2-methylphenyl)-5Z,8Z,11Z,14Z-eicosatetraenamide (VDM-11; 10, 20 or 30 μM; each compound) delivered into the paraventricular thalamic nucleus (PVA) increased sleep and decreased waking. In addition, the infusion of compounds reduced the extracellular levels of dopamine collected from nucleus accumbens. Taken together, these findings illustrate a critical role of AMT in sleep modulation. Copyright © 2012 Elsevier Inc. All rights reserved.
Carr, Russell L; Armstrong, Nathan H; Buchanan, Alenda T; Eells, Jeffrey B; Mohammed, Afzaal N; Ross, Matthew K; Nail, Carole A
2017-03-01
Exposure to chlorpyrifos (CPF) during the late preweanling period in rats inhibits the endocannabinoid metabolizing enzymes fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), resulting in accumulation of their respective substrates anandamide (AEA) and 2-arachidonylglycerol (2-AG). This occurs at 1.0mg/kg, but at a lower dosage (0.5mg/kg) only FAAH and AEA are affected with no measurable inhibition of either cholinesterase (ChE) or MAGL. The endocannabinoid system plays a vital role in nervous system development and may be an important developmental target for CPF. The endocannabinoid system plays an important role in the regulation of anxiety and, at higher dosages, developmental exposure to CPF alters anxiety-like behavior. However, it is not clear whether exposure to low dosages of CPF that do not inhibit ChE will cause any persistent effects on anxiety-like behavior. To determine if this occurs, 10-day old rat pups were exposed daily for 7 days to either corn oil or 0.5, 0.75, or 1.0mg/kg CPF by oral gavage. At 12h following the last CPF administration, 1.0mg/kg resulted in significant inhibition of FAAH, MAGL, and ChE, whereas 0.5 and 0.75mg/kg resulted in significant inhibition of only FAAH. AEA levels were significantly elevated in all three treatment groups as were palmitoylethanolamide and oleoylethanolamide, which are also substrates for FAAH. 2-AG levels were significantly elevated by 0.75 and 1.0mg/kg but not 0.5mg/kg. On day 25, the latency to emerge from a dark container into a highly illuminated novel open field was measured as an indicator of anxiety. All three CPF treatment groups spent significantly less time in the dark container prior to emerging as compared to the control group, suggesting a decreased level of anxiety. This demonstrates that repeated preweanling exposure to dosages of CPF that do not inhibit brain ChE can induce a decline in the level of anxiety that is detectable during the early postweanling period. Copyright © 2015 Elsevier B.V. All rights reserved.
Carr, Russell L.; Armstrong, Nathan H.; Buchanan, Alenda T.; Eells, Jeffrey B.; Mohammed, Afzaal N.; Ross, Matthew K.; Nail, Carole A.
2016-01-01
Exposure to chlorpyrifos (CPF) during the late preweanling period in rats inhibits the endocannabinoid metabolizing enzymes fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), resulting in accumulation of their respective substrates anandamide (AEA) and 2-arachidonylglycerol (2-AG). This occurs at 1.0 mg/kg, but at a lower dosage (0.5 mg/kg) only FAAH and AEA are affected with no measurable inhibition of either cholinesterase (ChE) or MAGL. The endocannabinoid system plays a vital role in nervous system development and may be an important developmental target for CPF. The endocannabinoid system plays an important role in the regulation of anxiety and, at higher dosages, developmental exposure to CPF alters anxiety-like behavior. However, it is not clear whether exposure to low dosages of CPF that do not inhibit ChE will cause any persistent effects on anxiety-like behavior. To determine if this occurs, 10-day old rat pups were exposed daily for 7 days to either corn oil or 0.5, 0.75, or 1.0 mg/kg CPF by oral gavage. At 12 h following the last CPF administration, 1.0 mg/kg resulted in significant inhibition of FAAH, MAGL, and ChE, whereas 0.5 and 0.75 mg/kg resulted in significant inhibition of only FAAH. AEA levels were significantly elevated in all three treatment groups as were palmitoylethanolamide and oleoylethanolamide, which are also substrates for FAAH. 2-AG levels were significantly elevated by 0.75 and 1.0 mg/kg but not 0.5 mg/kg. On day 25, the latency to emerge from a dark container into a highly illuminated novel open field was measured as an indicator of anxiety. All three CPF treatment groups spent significantly less time in the dark container prior to emerging as compared to the control group, suggesting a decreased level of anxiety. This demonstrates that repeated preweanling exposure to dosages of CPF that do not inhibit brain ChE can induce a decline in the level of anxiety that is detectable during the early postweanling period. PMID:26642910
Wang, Ya; Plastina, Pierluigi; Vincken, Jean-Paul; Jansen, Renate; Balvers, Michiel; Ten Klooster, Jean Paul; Gruppen, Harry; Witkamp, Renger; Meijerink, Jocelijn
2017-03-15
Several studies indicate that the n-3 long-chain polyunsaturated fatty acid docosahexaenoic acid (DHA) contributes to an attenuated inflammatory status in the development of neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. To explain these effects, different mechanisms are being proposed, including those involving endocannabinoids and related signaling molecules. Many of these compounds belong to the fatty acid amides, conjugates of fatty acids with biogenic amines. Conjugates of DHA with ethanolamine or serotonin have previously been shown to possess anti-inflammatory and potentially neuroprotective properties. Here, we synthesized another amine conjugate of DHA, N-docosahexaenoyl dopamine (DHDA), and tested its immune-modulatory properties in both RAW 264.7 macrophages and BV-2 microglial cells. N-Docosahexaenoyl dopamine significantly suppressed the production of nitric oxide (NO), the cytokine interleukin-6 (IL-6), and the chemokines macrophage-inflammatory protein-3α (CCL20) and monocyte chemoattractant protein-1 (MCP-1), whereas its parent compounds, dopamine and DHA, were ineffective. Further exploration of potential effects of DHDA on key inflammatory mediators revealed that cyclooxygenase-2 (COX-2) mRNA level and production of prostaglandin E 2 (PGE 2 ) were concentration-dependently inhibited in macrophages. In activated BV-2 cells, PGE 2 production was also reduced, without changes in COX-2 mRNA levels. In addition, DHDA did not affect NF-kB activity in a reporter cell line. Finally, the immune-modulatory activities of DHDA were compared with those of N-arachidonoyl dopamine (NADA) and similar potencies were found in both cell types. Taken together, our data suggest that DHDA, a potentially endogenous endocannabinoid, may be an additional member of the group of immune-modulating n-3 fatty acid-derived lipid mediators.
Little, Tanya J; Cvijanovic, Nada; DiPatrizio, Nicholas V; Argueta, Donovan A; Rayner, Christopher K; Feinle-Bisset, Christine; Young, Richard L
2018-02-13
Intestinal production of endocannabinoid and oleoylethanolamide (OEA) is impaired in high-fat diet/obese rodents, leading to reduced satiety. Such diets also alter the intestinal microbiome in association with enhanced intestinal permeability and inflammation, however little is known of these effects in humans. This study aimed to: (i) evaluate effects of lipid on plasma anandamide (AEA), 2-arachidonyl-sn-glycerol (2-AG) and OEA in humans, and (ii) examine relationships with intestinal permeability, inflammation markers and incretin hormone secretion. 20 lean, 18 overweight and 19 obese participants underwent intraduodenal Intralipid® infusion (2 kcal/min) with collection of endoscopic duodenal biopsies and blood. Plasma AEA, 2-AG, and OEA (HPLC/tandem mass spectrometry), tumour necrosis factor-α (TNF-α), glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic peptide (GIP) (multiplex), and duodenal expression of occludin, zona-occludin-1 (ZO-1), intestinal-alkaline-phosphatase (IAP), and toll-like receptor-4 (TLR4) (RT-PCR), were assessed. Fasting plasma AEA was increased in obese, compared with lean and overweight (P<0.05), with no effect of BMI group or ID lipid infusion on plasma 2-AG or OEA. Duodenal expression of IAP and ZO-1 was reduced in obese, compared with lean (P<0.05), and these levels related negatively to plasma AEA (P<0.05). The iAUC for AEA was positively related to iAUC GIP (r=0.384, P=0.005). Obese individuals have increased plasma AEA and decreased duodenal expression of ZO-1 and IAP, in comparison to lean and overweight. The relationships between plasma AEA with duodenal ZO-1 and IAP, and GIP, suggest that altered endocannabinoid signalling may contribute to changes in intestinal permeability, inflammation and incretin release in human obesity.
Restricted vs. unrestricted wheel running in mice: Effects on brain, behavior and endocannabinoids.
Biedermann, Sarah V; Auer, Matthias K; Bindila, Laura; Ende, Gabriele; Lutz, Beat; Weber-Fahr, Wolfgang; Gass, Peter; Fuss, Johannes
2016-11-01
Beneficial effects of voluntary wheel running on hippocampal neurogenesis, morphology and hippocampal-dependent behavior have widely been studied in rodents, but also serious side effects and similarities to stereotypy have been reported. Some mouse strains run excessively when equipped with running wheels, complicating the comparability to human exercise regimes. Here, we investigated how exercise restriction to 6h/day affects hippocampal morphology and metabolism, stereotypic and basal behaviors, as well as the endocannabinoid system in wheel running C57BL/6 mice; the strain most commonly used for behavioral analyses and psychiatric disease models. Restricted and unrestricted wheel running had similar effects on immature hippocampal neuron numbers, thermoregulatory nest building and basal home-cage behaviors. Surprisingly, hippocampal gray matter volume, assessed with magnetic resonance (MR) imaging at 9.4 Tesla, was only increased in unrestricted but not in restricted runners. Moreover, unrestricted runners showed less stereotypic behavior than restricted runners did. However, after blockage of running wheels for 24h stereotypic behavior also increased in unrestricted runners, arguing against a long-term effect of wheel running on stereotypic behavior. Stereotypic behaviors correlated with frontal glutamate and glucose levels assessed by 1 H-MR spectroscopy. While acute running increased plasma levels of the endocannabinoid anandamide in former studies in mice and humans, we found an inverse correlation of anandamide with the daily running distance after long-term running. In conclusion, although there are some diverging effects of restricted and unrestricted running on brain and behavior, restricted running does not per se seem to be a better animal model for aerobic exercise in mice. Copyright © 2016 Elsevier Inc. All rights reserved.
1. OVERVIEW, LOOKING EAST OF SIDE ELEVATION OF THE DEPOT ...
1. OVERVIEW, LOOKING EAST OF SIDE ELEVATION OF THE DEPOT (RIGHT) WHICH SERVES AS THE HEART OF DIXIE RAILROAD MUSEUM. AT LEFT IS HISTORIC RAILROAD ROLLING STOCK FROM THE MUSEUM'S COLLECTIONS. - Wilton Depot, Ninth Street, Calera, Shelby County, AL
Reynoso-Moreno, Inés; Chicca, Andrea; Flores-Soto, Mario E; Viveros-Paredes, Juan M; Gertsch, Jürg
2018-01-01
Different anandamide (AEA) transport inhibitors show antinociceptive and antiinflammatory effects in vivo , but due to their concomitant inhibition of fatty acid amide hydrolase (FAAH) and overall poor bioavailability, they cannot be used unequivocally to study the particular role of endocannabinoid (EC) transport in pathophysiological conditions in vivo . Here, the potent and selective endocannabinoid reuptake inhibitor WOBE437, which inhibits AEA and 2-arachidonoylglycerol (2-AG) transport, was tested for its oral bioavailability to the brain. WOBE437 is assumed to locally increase EC levels in tissues in which facilitated EC reuptake intermediates subsequent hydrolysis. Given the marked polypharmacology of ECs, we hypothesized to see differential effects on distinct EC receptors in animal models of acute and chronic pain/inflammation. In C57BL6/J male mice, WOBE437 was orally bioavailable with an estimated t max value of ≤20 min in plasma (C max ∼ 2000 pmol/mL after 50 mg/kg, p.o.) and brain (C max ∼ 500 pmol/g after 50 mg/kg, p.o.). WOBE437 was cleared from the brain after approximately 180 min. In addition, in BALB/c male mice, acute oral administration of WOBE437 (50 mg/kg) exhibited similar brain concentrations after 60 min and inhibited analgesia in the hot plate test in a cannabinoid CB1 receptor-dependent manner, without inducing catalepsy or affecting locomotion. WOBE437 significantly elevated AEA in the somatosensory cortex, while showing dose-dependent biphasic effects on 2-AG levels in plasma but no significant changes in N -acylethanolamines other than AEA in any of the tissues. In order to explore the presumed polypharmacology mediated via elevated EC levels, we tested this EC reuptake inhibitor in complete Freud's adjuvant induced monoarthritis in BALB/c mice as a model of chronic inflammation. Repetitive doses of WOBE437 (10 mg/kg, i.p.) attenuated allodynia and edema via cannabinoid CB2, CB1, and PPARγ receptors. The allodynia inhibition of WOBE437 treatment for 3 days was fully reversed by antagonists of any of the receptors. In the single dose treatment the CB2 and TRPV1 antagonists significantly blocked the effect of WOBE437. Overall, our results show the broad utility of WOBE437 for animal experimentation for both p.o. and i.p. administrations. Furthermore, the data indicate the possible involvement of EC reuptake/transport in pathophysiological processes related to pain and inflammation.
Zheng, Gen; Hong, Shuangsong; Hayes, John M; Wiley, John W
2015-11-01
Chronic stress alters the hypothalamic-pituitary-adrenal (HPA) axis and enhances visceral and somatosensory pain perception. It is unresolved whether chronic stress has distinct effects on visceral and somatosensory pain regulatory pathways. Previous studies reported that stress-induced visceral hyperalgesia is associated with reciprocal alterations of endovanilloid and endocannabinoid pain pathways in DRG neurons innervating the pelvic viscera. In this study, we compared somatosensory and visceral hyperalgesia with respect to differential responses of peripheral pain regulatory pathways in a rat model of chronic, intermittent stress. We found that chronic stress induced reciprocal changes in the endocannabinoid 2-AG (increased) and endocannabinoid degradation enzymes COX-2 and FAAH (decreased), associated with down-regulation of CB1 and up-regulation of TRPV1 receptors in L6-S2 DRG but not L4-L5 DRG neurons. In contrast, sodium channels Nav1.7 and Nav1.8 were up-regulated in L4-L5 but not L6-S2 DRGs in stressed rats, which was reproduced in control DRGs treated with corticosterone in vitro. The reciprocal changes of CB1, TRPV1 and sodium channels were cell-specific and observed in the sub-population of nociceptive neurons. Behavioral assessment showed that visceral hyperalgesia persisted, whereas somatosensory hyperalgesia and enhanced expression of Nav1.7 and Nav1.8 sodium channels in L4-L5 DRGs normalized 3 days after completion of the stress phase. These data indicate that chronic stress induces visceral and somatosensory hyperalgesia that involves differential changes in endovanilloid and endocannabinoid pathways, and sodium channels in DRGs innervating the pelvic viscera and lower extremities. These results suggest that chronic stress-induced visceral and lower extremity somatosensory hyperalgesia can be treated selectively at different levels of the spinal cord. Copyright © 2015 Elsevier Inc. All rights reserved.
Mechanism of platelet activation induced by endocannabinoids in blood and plasma.
Brantl, S Annette; Khandoga, Anna L; Siess, Wolfgang
2014-01-01
Platelets play a central role in atherosclerosis and atherothrombosis, and circulating endocannabinoids might modulate platelet function. Previous studies concerning effects of anandamide (N-arachidonylethanolamide) and 2-arachidonoylglycerol (2-AG) on platelets, mainly performed on isolated cells, provided conflicting results. We therefore investigated the action of three main endocannabinoids [anandamide, 2-AG and virodhamine (arachidonoylethanolamine)] on human platelets in blood and platelet-rich plasma (PRP). 2-AG and virodhamine induced platelet aggregation in blood, and shape change, aggregation and adenosine triphosphate (ATP) secretion in PRP. The EC50 of 2-AG and virodhamine for platelet aggregation in blood was 97 and 160 µM, respectively. Lower concentrations of 2-AG (20 µM) and virodhamine (50 µM) synergistically induced aggregation with other platelet stimuli. Platelet activation induced by 2-AG and virodhamine resembled arachidonic acid (AA)-induced aggregation: shape change, the first platelet response, ATP secretion and aggregation induced by 2-AG and virodhamine were all blocked by acetylsalicylic acid (ASA) or the specific thromboxane A2 (TXA2) antagonist daltroban. In addition, platelet activation induced by 2-AG and virodhamine in blood and PRP were inhibited by JZL184, a selective inhibitor of monoacylglycerol lipase (MAGL). In contrast to 2-AG and virodhamine, anandamide, a substrate of fatty acid amidohydrolase, was inactive. Synthetic cannabinoid receptor subtype 1 (CB1) and 2 (CB2) agonists lacked stimulatory as well as inhibitory platelet activity. We conclude that 2-AG and virodhamine stimulate platelets in blood and PRP by a MAGL-triggered mechanism leading to free AA and its metabolism by platelet cyclooxygenase-1/thromboxane synthase to TXA2. CB1, CB2 or non-CB1/CB2 receptors are not involved. Our results imply that ASA and MAGL inhibitors will protect platelets from activation by high endocannabinoid levels, and that pharmacological CB1- and CB2-receptor ligands will not affect platelets and platelet-dependent progression and complications of cardiovascular diseases.
Liu, Weiyi; Shan, Tizhong; Yang, Xin; Liang, Sandra; Zhang, Pengpeng; Liu, Yaqin; Liu, Xiaoqi; Kuang, Shihuan
2013-01-01
Summary A worldwide epidemic of obesity and its associated metabolic disorders raise the significance of adipocytes, their origins and characteristics. Our previous study has demonstrated that interscapular brown adipose tissue (BAT), but not intramuscular adipose, is derived from the Pax3-expressing cell lineage. Here, we show that various depots of subcutaneous (SAT) and visceral adipose tissue (VAT) are highly heterogeneous in the Pax3 lineage origin. Interestingly, the relative abundance of Pax3 lineage cells in SAT depots is inversely correlated to expression of BAT signature genes including Prdm16, Pgc1a (Ppargc1a) and Ucp1. FACS analysis further demonstrates that adipocytes differentiated from non-Pax3 lineage preadipocytes express higher levels of BAT and beige adipocyte signature genes compared with the Pax3 lineage adipocytes within the same depots. Although both Pax3 and non-Pax3 lineage preadipocytes can give rise to beige adipocytes, the latter contributes more significantly. Consistently, genetic ablation of Pax3 lineage cells in SAT leads to increased expression of beige cell markers. Finally, non-Pax3 lineage beige adipocytes are more responsive to cAMP-agonist-induced Ucp1 expression. Taken together, these results demonstrate widespread heterogeneity in Pax3 lineage origin, and its inverse association with BAT gene expression within and among subcutaneous adipose depots. PMID:23781029
NASA Astrophysics Data System (ADS)
Birawida, A. B.; Selomo, M.; Mallongi, A.
2018-05-01
Coliform bacteria are suspected to come from faeces. As a result, their presence in various places ranging from drinking water, foodstuffs or other ingredients to human needs are not expected. This research aimed to describe bacterial contaminations, depot sanitations, equipment sanitations, worker hygiene, raw water quality, and refill drinking water in Barrang Lompo island in 2017. The observational research applied descriptive approach. Water samples collected grab from the drinking water depot taps, then examined using Most Probable Number (MPN) method. The results showed that three of six depots have qualified drinking water quality. Raw water samples from all depots indicated that none were eligible. The samples examined contained gram-negative bacteria. The types of bacteria that grew on the sample were Klebsiella pneumonia and Pseudomonas aerogenosa. In the environmental sanitation depots and worker hygiene, there was no one eligible. Sanitary appliances were all eligible and there were depots that used reserve osmosis methods and used combination methods between reserve osmosis and ultraviolet light. It was concluded that almost all samples of drinking water were contaminated by bacteria. Owners and depot workers were advised to improve and implement better hygiene and sanitation.
Simultaneous magnetic resonance imaging and pharmacokinetic analysis of intramuscular depots.
Probst, Mareike; Kühn, Jens-Peter; Scheuch, Eberhard; Seidlitz, Anne; Hadlich, Stefan; Evert, Katja; Oswald, Stefan; Siegmund, Werner; Weitschies, Werner
2016-04-10
The present pilot study introduces a method that might give novel insights in drug absorption processes from intramuscularly administered depots. An oily suspension or an aqueous solution of paracetamol (6 mg/kg body mass), prednisolone or its hemisuccinate sodium salt for the aqueous solutions (10mg/kg body mass) or diclofenac (10mg/kg body mass) was injected into the muscle tissue of the hind leg of female Lewis-rats (n=47). For the oily suspensions the micronized particles were suspended in medium-chain triglycerides. The aqueous solutions were buffered to a pH of 7.4 ± 0.5. Polyethylene glycol was added as a cosolvent in the formulations containing paracetamol (acetaminophen) and diclofenac and sodium chloride was added to the aqueous solutions of prednisolone hemisuccinate sodium to achieve nearly isotonic formulations. The formed depot was visualized by magnetic resonance imaging (MRI) and characterized with regard to volume and surface area. A 7 T-small animal scanner was used and T1-weighted and T2-weighted sequences including a fat saturation were performed. Simultaneously blood samples were taken and the drugs were quantitatively analyzed. The water based solvent and the oily dispersion agent were visible in the MRI images without the use of contrast agents. Since a free hand injection mostly led to an application directly into the fascia, resulting in a fast removal of the depot, MRI-guided injection was conducted. Comparing pharmacokinetic data with MRI data it was observed that maximal blood levels occurred before the solvent and the dispersion agent were removed from the muscle tissue. Thus, the drug is not absorbed together with the depot. Furthermore, no correlation was found between the shape of the depot and the rate of absorption. Consequently, a higher surface area or volume of the depot did not result in a faster release or absorption of the drugs from the tested formulations. In contrast to the paracetamol and prednisolone formulations the formulations containing diclofenac led to a massive accumulation of interstitial fluid around the injection area being a sign for an acute local reaction. Histological analysis of the muscle tissue revealed a clear correspondence between the amount of interstitial fluid and the extent of infiltrating lymphocytes and granulocytes indicating a tissue response. In conclusion combining MRI with pharmacokinetic data is a suitable method to gain deeper insights into drug absorption processes from intramuscular depots. Furthermore, MRI offers a great possibility detecting local side effects caused by an intramuscularly applied dosage form. This might be very useful in preclinical phases during the development of new intramuscular formulations. Copyright © 2016 Elsevier B.V. All rights reserved.
Tetrahydrocannabinol and endocannabinoids in feeding and appetite.
Berry, Elliot M; Mechoulam, Raphael
2002-08-01
The physiological control of appetite and satiety, in which numerous neurotransmitters and neuropeptides play a role, is extremely complex. Here we describe the involvement of endocannabinoids in these processes. These endogenous neuromodulators enhance appetite in animals. The same effect is observed in animals and in humans with the psychotropic plant cannabinoid Delta(9)-tetrahydrocannabinol, which is an approved appetite-enhancing drug. The CB(1) cannabinoid receptor antagonist SR141716A blocks the effects on feeding produced by the endocannabinoids. If administered to mice pups, this antagonist blocks suckling. In obese humans, it causes weight reduction. Very little is known about the physiological and biochemical mechanisms involved in the effects of Delta(9)-tetrahydrocannabinol and the cannabinoids in feeding and appetite.
Drilling and testing of well 340, Fort Wingate Army Depot, McKinley County, New Mexico
Shomaker, John W.
1969-01-01
The U.S. Geological Survey was requested by Fort Wingate Army Depot to designate a well location, suggest construction and testing procedures, and provide continuing technical advice with respect to the drilling of a new production well. The location was determined during a brief preliminary study of the Depot's water supply which is summarized in a report transmitted to the Depot in April of 1968, and the Geological Survey's suggestions for construction and testing are contained in the specifications written by the Post Engineer at the Depot as part of the well-drilling contract. A representative of the the Geological Survey was present during most of the drilling and testing of the well.
USDA-ARS?s Scientific Manuscript database
Type 2 diabetes (T2D) has profound effects on metabolism that can be detected in plasma. While increases in circulating non-esterified fatty acids (NEFA) are well described in T2D, effects on circulating signaling lipids have received little attention. Oxylipins and endocannabinoids are classes of ...
USDA-ARS?s Scientific Manuscript database
Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...
USDA-ARS?s Scientific Manuscript database
BACKGROUND: Diets rich in dairy and/or calcium (Ca) have been associated with reductions in adiposity and inflammation, but the mechanisms underlying this remain to be fully elucidated. Oxylipins and endocannabinoids are bioactive lipids, which influence energy homeostasis, adipose function, insuli...
USDA-ARS?s Scientific Manuscript database
We previously have shown that plasma concentrations of endocannabinoids (EC) are positively correlated with feed efficiency and leaner carcasses in finishing steers. However, whether the animal growth during the finishing period affects the concentration of EC is unknown. The objective of this study...
USDA-ARS?s Scientific Manuscript database
Endocannabinoids, including anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are a class of endogenous lipid mediators that activate cannabinoids receptors and may be involved in the control of feed intake and energy metabolism. The objective of this study was to quantify AEA and 2-AG in plasma a...
From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.
Youssef, F F; Irving, A J
2012-06-01
Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the 'holy grail' of endocannabinoid research.
Elucidating Cannabinoid Biology in Zebrafish (Danio rerio)
Krug, Randall G.; Clark, Karl J.
2015-01-01
The number of annual cannabinoid users exceeds 100,000,000 globally and an estimated 9 % of these individuals will suffer from dependency. Although exogenous cannabinoids, like those contained in marijuana, are known to exert their effects by disrupting the endocannabinoid system, a dearth of knowledge exists about the potential toxicological consequences on public health. Conversely, the endocannabinoid system represents a promising therapeutic target for a plethora of disorders because it functions to endogenously regulate a vast repertoire of physiological functions. Accordingly, the rapidly expanding field of cannabinoid biology has sought to leverage model organisms in order to provide both toxicological and therapeutic insights about altered endocannabinoid signaling. The primary goal of this manuscript is to review the existing field of cannabinoid research in the genetically tractable zebrafish model—focusing on the cannabinoid receptor genes, cnr1 and cnr2, and the genes that produce enzymes for synthesis and degradation of the cognate ligands anandamide and 2-arachidonylglycerol. Consideration is also given to research that has studied the effects of exposure to exogenous phytocannabinoids and synthetic cannabinoids that are known to interact with cannabinoid receptors. These results are considered in the context of either endocannabinoid gene expression or endocannabinoid gene function, and are integrated with findings from rodent studies. This provides the framework for a discussion of how zebrafish may be leveraged in the future to provide novel toxicological and therapeutic insights in the field of cannabinoid biology, which has become increasingly significant given recent trends in cannabis legislation. PMID:26192460
Macedonio, Giorgia; Stefanucci, Azzurra; Maccallini, Cristina; Mirzaie, Sako; Novellino, Ettore; Mollica, Adriano
2016-01-01
The endocannabinoid system (ECS) is activated when natural arachidonic acid derivatives (endogenous cannabinoids or endocannabinoids) bind as lipophilic messengers to cannabinoid receptors CB1 and CB2. The ECS comprises many hydrolytic enzymes responsible for the endocannabinoids cleavage. These hydrolases, such as fatty acid amide hydrolase (FAAH) and monoacylglyceride lipase (MAGL), are possible therapeutic targets for the development of new drugs as indirect cannabinoid agonists. Recently, a new family of endocannabinoid modulators was discovered; the lead structure of this family is the nonapeptide hemopressin produced from enzymatic cleavage of the α-chain of hemoglobin and acting as negative allosteric modulator of CB1. Hemopressin shows several physiological effects, e.g., antinociception, hypophagy, and hypotension. However, it is still a matter of debate whether this peptide, isolated from the brain of rats, is a real neuromodulator of the ECS. Recent evidence indicates that hemopressin could be a by-product formed by chemical degradation of a longer peptide RVD-hemopressin during the extraction from the brain homolysate. Indeed, RVD-hemopressin is more active than hemopressin in certain biological tests and may bind to the same subsite as Rimonabant, which is an inverse agonist of CB1 and a μ-opioid receptor antagonist. These findings have stimulated several studies to verify this hypothesis and to evaluate possible therapeutic applications of hemopressin, its peptidic derivatives, and synthetic analogues, opening new perspectives to the development of novel cannabinoid drugs.
Sagheddu, Claudia; Muntoni, Anna Lisa; Pistis, Marco; Melis, Miriam
2015-01-01
Evidence suggests that the endocannabinoid system has been conserved in the animal kingdom for 500 million years, and this system influences many critical behavioral processes including associative learning, reward signaling, goal-directed behavior, motor skill learning, and action-habit transformation. Additionally, the neurotransmitter dopamine has long been recognized to play a critical role in the processing of natural rewards, as well as of motivation that regulates approach and avoidance behavior. This motivational role of dopamine neurons is also based upon the evidence provided by several studies investigating disorders of dopamine pathways such as drug addiction and Parkinson's disease. From an evolutionary point of view, individuals engage in behaviors aimed at maximizing and minimizing positive and aversive consequences, respectively. Accordingly, those with the greatest fitness have a better potential to survival. Hence, deviations from fitness can be viewed as a part of the evolutionary process by means of natural selection. Given the long evolutionary history of both the endocannabinoid and dopaminergic systems, it is plausible that they must serve as fundamental and basic modulators of physiological functions and needs. Notably, endocannabinoids regulate dopamine neuronal activity and its influence on behavioral output. The goal of this chapter is to examine the endocannabinoid influence on dopamine signaling specifically related to (i) those behavioral processes that allow us to successfully adapt to ever-changing environments (i.e., reward signaling and motivational processes) and (ii) derangements from behavioral flexibility that underpin drug addiction. © 2015 Elsevier Inc. All rights reserved.
Yang, Ying-Ying; Liu, Hongqun; Nam, Soon Woo; Kunos, George; Lee, Samuel S
2010-08-01
Chronic liver disease is associated with endotoxemia, oxidative stress, increased endocannabinoids and decreased cardiac responsiveness. Endocannabinoids activate the tumor necrosis factor-alpha (TNFalpha)-nuclear factor kappaB (NFkappaB) pathway. However, how they interact with each other remains obscure. We therefore aimed to clarify the relationship between the TNFalpha-NFkappaB pathway and endocannabinoids in the pathogenesis of cardiodepression of cholestatic bile duct ligated (BDL) mice. BDL mice with TNFalpha knockout (TNFalpha-/-) and infusion of anti-TNFalpha antibody were used. Cardiac mRNA and protein expression of NFkappaBp65, c-Jun-N-terminal kinases (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracelullar-signal- regulated kinase (ERK), inducible nitric oxide synthase (iNOS), Copper/Zinc and Magnesium-superoxide dismutase (Cu/ Zn- and Mn-SOD), cardiac anandamide, 2-arachidonoylglycerol (2-AG), nitric oxide (NOx) and glutathione, and plasma TNFalpha were measured. The effects of TNFalpha, cannabinoid receptor (CB1) antagonist AM251 and the endocannabinoid reuptake inhibitor UCM707, on the contractility of isolated cardiomyocytes, were assessed. In BDL mice, cardiac mRNA and protein expression of NFkappaBp65, p38MAPK, iNOS, NOx, anandamide, and plasma TNFa were increased, whereas glutathione, Cu/Zn-SOD, and Mn-SOD were decreased. Cardiac contractility was blunted in BDL mice. Anti-TNFa treatment in BDL mice decreased cardiac anandamide and NOx, reduced expression of NFkappaBp65, p38MAPK, and iNOS, enhanced expression of Cu/Zn-SOD and Mn-SOD, increased reductive glutathione and restored cardiomyocyte contractility. TNFa-depressed contractility was worsened by UCM707, whereas AM251 improved contractility. Increased TNFalpha, acting via NFkappaB-iNOS and p38MAPK signaling pathways, plays an important role in the pathogenesis of cardiodepression in BDL mice. TNFalpha also suppressed contractility by increasing oxidative stress and endocannabinoid activity.
Tjen-A-Looi, Stephanie C.; Li, Peng; Longhurst, John C.
2009-01-01
A long-loop pathway, involving the hypothalamic arcuate nucleus (ARC), ventrolateral periaqueductal gray (vlPAG), and the rostral ventrolateral medulla (rVLM), is essential in electroacupuncture (EA) attenuation of sympathoexcitatory cardiovascular reflex responses. The ARC provides excitatory input to the vlPAG, which, in turn, inhibits neuronal activity in the rVLM. Although previous studies have shown that endocannabinoid CB1 receptor activation modulates γ-aminobutyric acid (GABA)-ergic and glutamatergic neurotransmission in the dorsolateral PAG in stress-induced analgesia, an important role for endocannabinoids in the vlPAG has not yet been observed. We recently have shown (Fu LW, Longhurst JC. J Appl Physiol; doi:10.1152/japplphysiol.91648.2008) that EA reduces the local vlPAG concentration of GABA, but not glutamate, as measured with high-performance liquid chromatography from extracellular samples collected by microdialysis. We, therefore, hypothesized that, during EA, endocannabinoids, acting through CB1 receptors, presynaptically inhibit GABA release to disinhibit the vlPAG and ultimately modulate excitatory reflex blood pressure responses. Rats were anesthetized, ventilated, and instrumented to measure heart rate and blood pressure. Gastric distention-induced blood pressure responses of 18 ± 5 mmHg were reduced to 6 ± 1 mmHg by 30 min of low-current, low-frequency EA applied bilaterally at pericardial P 5–6 acupoints overlying the median nerves. Like EA, microinjection of the fatty acid amide hydrolase inhibitor URB597 (0.1 nmol, 50 nl) into the vlPAG to increase endocannabinoids locally reduced the gastric distention cardiovascular reflex response from 21 ± 5 to 3 ± 4 mmHg. This inhibition was reversed by pretreatment with the GABAA antagonist gabazine (27 mM, 50 nl), suggesting that endocannabinoids exert their action through a GABAergic receptor mechanism in the vlPAG. The EA-related inhibition from 18 ± 3 to 8 ± 2 mmHg was reversed to 14 ± 2 mmHg by microinjection of the CB1 receptor antagonist AM251 (2 nmol, 50 nl) into the vlPAG. Pretreatment with gabazine eliminated reversal following CB1-receptor blockade. Thus EA releases endocannabinoids and activates presynaptic CB1 receptors to inhibit GABA release in the vlPAG. Reduction of GABA release disinhibits vlPAG cells, which, in turn, modulate the activity of rVLM neurons to attenuate the sympathoexcitatory reflex responses. PMID:19325030
Army Working Capital Fund. Actions Needed to Reduce Carryover at Army Depots
2008-07-01
Texarkana , Texas. Page 1 GAO-08-714 Army Working Capital Fund flow of work during the transition from one fiscal year to the next. However, past...Corpus Christi, Texas; the Anniston Army Depot, Anniston, Alabama; and the Red River Army Depot, Texarkana , Texas. We conducted this performance
Defense AT and L. Volume 37, Number 5
2008-10-01
2008) GATES APPLAUDS EFFORTS AT RED RIVER ARMY DEPOT Donna Miles TEXARKANA , Texas—Defense Secretary Robert M. Gates toured Red River Army Depot...the depot workers and the Texarkana com- munity that has supported the facility for decades for their “tireless support” of the men and women in
77 FR 27790 - Federal Property Suitable as Facilities To Assist the Homeless
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
... conditions; sf. varies; usage varies; needs extensive repairs Kentucky 5 Bldgs. Blue Grass Army Depot... Grass Army Depot Richmond KY 40475 Landholding Agency: Army Property Number: 21201220046 Status... E0450-0457 & E0459 Blue Grass Army Depot Richmond KY 40475 Landholding Agency: Army Property Number...
A mirccroarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice
USDA-ARS?s Scientific Manuscript database
Objective: A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulatio...
NASA Astrophysics Data System (ADS)
Ramadhani, T.; Hertono, G. F.; Handari, B. D.
2017-07-01
The Multiple Traveling Salesman Problem (MTSP) is the extension of the Traveling Salesman Problem (TSP) in which the shortest routes of m salesmen all of which start and finish in a single city (depot) will be determined. If there is more than one depot and salesmen start from and return to the same depot, then the problem is called Fixed Destination Multi-depot Multiple Traveling Salesman Problem (MMTSP). In this paper, MMTSP will be solved using the Ant Colony Optimization (ACO) algorithm. ACO is a metaheuristic optimization algorithm which is derived from the behavior of ants in finding the shortest route(s) from the anthill to a form of nourishment. In solving the MMTSP, the algorithm is observed with respect to different chosen cities as depots and non-randomly three parameters of MMTSP: m, K, L, those represents the number of salesmen, the fewest cities that must be visited by a salesman, and the most number of cities that can be visited by a salesman, respectively. The implementation is observed with four dataset from TSPLIB. The results show that the different chosen cities as depots and the three parameters of MMTSP, in which m is the most important parameter, affect the solution.
Addressing Enterprise-Level Information System Deficiencies
2015-03-26
goals and effectiveness. This case study evaluates the Depot Source of Repair (DSOR) team and how it has addressed the USAF’s enterprise- level IS...deficiencies. A framework created from the literature review is used to evaluate the DSOR team’s IS called DSOR II. The case study evaluation ...7 IS Design Evaluation
P-8A Poseidon Multi Mission Maritime Aircraft (P-8A)
2015-12-01
focus also includes procurement of depot and intermediate level maintenance capabilities, full scale fatigue testing, and continued integration and... Level Confidence Level of cost estimate for current APB: 50% The current APB cost estimate provided sufficient resources to execute the program under...normal conditions, encountering average levels of technical, schedule, and programmatic risk and external interference. It was consistent with
Karlsson, Jessica; Gouveia-Figueira, Sandra; Alhouayek, Mireille; Fowler, Christopher J
2017-01-01
Tumour necrosis factor α (TNFα) is involved in the pathogenesis of prostate cancer, a disease where disturbances in the endocannabinoid system are seen. In the present study we have investigated whether treatment of DU145 human prostate cancer cells affects anandamide (AEA) catabolic pathways. Additionally, we have investigated whether cyclooxygenase-2 (COX-2) can regulate the uptake of AEA into cells. Levels of AEA synthetic and catabolic enzymes were determined by qPCR. AEA uptake and hydrolysis in DU145 and RAW264.7 macrophage cells were assayed using AEA labeled in the arachidonic and ethanolamine portions of the molecule, respectively. Levels of AEA, related N-acylethanolamines (NAEs), prostaglandins (PG) and PG-ethanolamines (PG-EA) in DU145 cells and medium were quantitated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. TNFα treatment of DU145 cells increased mRNA levels of PTSG2 (gene of COX-2) and decreased the mRNA of the AEA synthetic enzyme N-acyl-phosphatidylethanolamine selective phospholipase D. mRNA levels of the AEA hydrolytic enzymes fatty acid amide hydrolase (FAAH) and N-acylethanolamine-hydrolyzing acid amidase were not changed. AEA uptake in both DU145 and RAW264.7 cells was inhibited by FAAH inhibition, but not by COX-2 inhibition, even in RAW264.7 cells where the expression of this enzyme had greatly been induced by lipopolysaccharide + interferon γ treatment. AEA and related NAEs were detected in DU145 cells, but PGs and PGE2-EA were only detected when the cells had been preincubated with 100 nM AEA. The data demonstrate that in DU145 cells, TNFα treatment changes the relative expression of the enzymes involved in the hydrolytic and oxygenation catabolic pathways for AEA. In RAW264.7 cells, COX-2, in contrast to FAAH, does not regulate the cellular accumulation of AEA. Further studies are necessary to determine the extent to which inflammatory mediators are involved in the abnormal endocannabinoid signalling system in prostate cancer.
Stress Response Recruits the Hippocampal Endocannabinoid System for the Modulation of Fear Memory
ERIC Educational Resources Information Center
Alvares, Lucas de Oliveira; Engelke, Douglas Senna; Diehl, Felipe; Scheffer-Teixeira, Robson; Haubrich, Josue; Cassini, Lindsey de Freitas; Molina, Victor Alejandro; Quillfeldt, Jorge Alberto
2010-01-01
The modulation of memory processes is one of the several functions of the endocannabinoid system (ECS) in the brain, with CB1 receptors highly expressed in areas such as the dorsal hippocampus. Experimental evidence suggested an important role of the ECS in aversively motivated memories. Similarly, glucocorticoids released in response to stress…
Neuroscience. Stout guards of the central nervous system.
Mechoulam, R; Lichtman, A H
2003-10-03
Endocannabinoids have paradoxical effects on the mammalian nervous system: Sometimes they block neuronal excitability and other times they augment it. In their Perspective, Mechoulam and Lichtman discuss new work (Marsicano et al.) showing that activation of the cannabinoid receptor CB1 by the endocannabinoid anandamide protects against excitotoxic damage in a mouse model of kainic acid-induced epilepsy.
Updates in Reproduction Coming from the Endocannabinoid System
Bradshaw, Heather B.
2014-01-01
The endocannabinoid system (ECS) is an evolutionarily conserved master system deeply involved in the central and local control of reproductive functions in both sexes. The tone of these lipid mediators—deeply modulated by the activity of biosynthetic and hydrolyzing machineries—regulates reproductive functions from gonadotropin discharge and steroid biosynthesis to the formation of high quality gametes and successful pregnancy. This review provides an overview on ECS and reproduction and focuses on the insights in the regulation of endocannabinoid production by steroids, in the regulation of male reproductive activity, and in placentation and parturition. Taken all together, evidences emerge that the activity of the ECS is crucial for procreation and may represent a target for the therapeutic exploitation of infertility. PMID:24550985
Beyond Cannabis: Plants and the Endocannabinoid System.
Russo, Ethan B
2016-07-01
Plants have been the predominant source of medicines throughout the vast majority of human history, and remain so today outside of industrialized societies. One of the most versatile in terms of its phytochemistry is cannabis, whose investigation has led directly to the discovery of a unique and widespread homeostatic physiological regulator, the endocannabinoid system. While it had been the conventional wisdom until recently that only cannabis harbored active agents affecting the endocannabinoid system, in recent decades the search has widened and identified numerous additional plants whose components stimulate, antagonize, or modulate different aspects of this system. These include common foodstuffs, herbs, spices, and more exotic ingredients: kava, chocolate, black pepper, and many others that are examined in this review. Copyright © 2016 Elsevier Ltd. All rights reserved.
Edwards, Alexander; Abizaid, Alfonso
2016-07-01
Independent stimulation of either the ghrelin or endocannabinoid system promotes food intake and increases adiposity. Given the similar distribution of their receptors in feeding associated brain regions and organs involved in metabolism, it is not surprising that evidence of their interaction and its importance in modulating energy balance has emerged. This review documents the relationship between ghrelin and endocannabinoid systems within the periphery and hypothalamus (HYP) before presenting evidence suggesting that these two systems likewise work collaboratively within the ventral tegmental area (VTA) to modulate non-homeostatic feeding. Mechanisms, consistent with current evidence and local infrastructure within the VTA, will be proposed. Copyright © 2016 Elsevier Ltd. All rights reserved.
Everly, Jeffrey J.; DeFulio, Anthony; Koffarnus, Mikhail N.; Leoutsakos, Jeannie-Marie S.; Donlin, Wendy D.; Aklin, Will M.; Umbricht, Annie; Fingerhood, Michael; Bigelow, George E.; Silverman, Kenneth
2011-01-01
Aims Naltrexone can be used to treat opioid dependence, but patients refuse to take it. Extended-release depot formulations may improve adherence, but long-term adherence rates to depot naltrexone are not known. This study determined long-term rates of adherence to depot naltrexone and whether employment-based reinforcement can improve adherence. Design Participants who were inducted onto oral naltrexone were randomly assigned to Contingency (n=18) or Prescription (n=17) groups. Participants were offered six depot naltrexone injections and invited to work at the therapeutic workplace weekdays for 26 weeks where they earned stipends for participating in job skills training. Contingency participants were required to accept naltrexone injections to maintain workplace access and to maintain maximum pay. Prescription participants could work independent of whether they accepted injections. Setting The therapeutic workplace, a model employment-based intervention for drug addiction and unemployment. Participants Opioid-dependent unemployed adults. Measurements Depot naltrexone injections accepted and opiate-negative urine samples. Findings Contingency participants accepted significantly more naltrexone injections than Prescription participants (81% versus 42%), and were more likely to accept all injections (66% versus 35%). At monthly assessments (with missing urine samples imputed as positive), the groups provided similar percentages of samples negative for opiates (74% versus 62%) and for cocaine (56% versus 54%). Opiate positive samples were more likely when samples were also positive for cocaine. Conclusions Employment-based reinforcement can maintain adherence to depot naltrexone. Future research should determine whether persistent cocaine use compromises naltrexone's effect on opiate use. Workplaces may be useful for promoting sustained adherence to depot naltrexone. PMID:21320227
The Role of Endocannabinoid Signaling in Cortical Inhibitory Neuron Dysfunction in Schizophrenia
Volk, David W.; Lewis, David A.
2015-01-01
Cannabis use has been reported to increase the risk of developing schizophrenia and to worsen symptoms of the illness. Both of these outcomes might be attributable to the disruption by cannabis of the endogenous cannabinoid system's spatiotemporal regulation of the inhibitory circuitry in the prefrontal cortex that is essential for core cognitive processes, such as working memory, which are impaired in schizophrenia. In the healthy brain, the endocannabinoid 2-arachidonylglycerol (2-AG) is 1) synthesized by diacylglycerol lipase in pyramidal neurons; 2) travels retrogradely to nearby inhibitory axon terminals that express the primary cannabinoid receptor CB1R; 3) binds to CB1R which inhibits GABA release from the cholecystokinin-containing population of interneurons; and 4) is metabolized by either monoglyceride lipase, which is located in the inhibitory axon terminal, or by α-β-hydrolase domain 6, which is co-localized presynaptically with diacylglycerol lipase. Investigations of the endogenous cannabinoid system in the prefrontal cortex of subjects with schizophrenia have found evidence of higher metabolism of 2-AG, as well as both greater CB1R receptor binding and lower levels of CB1R mRNA and protein. Current views on the potential pathogenesis of these alterations, including disturbances in the development of the endogenous cannabinoid system, are discussed. In addition, how interactions between these alterations in the endocannabinoid system and those in other inhibitory neurons in the prefrontal cortex in subjects with schizophrenia might increase the liability to adverse outcomes with cannabis use is considered. PMID:26210060
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Depot, Manchester, Washington; naval restricted area. 334.1244 Section 334.1244 Navigation and Navigable... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a... the military or naval authority shall enter the area without the permission of the enforcing agency or...
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Depot, Manchester, Washington; naval restricted area. 334.1244 Section 334.1244 Navigation and Navigable... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a... the military or naval authority shall enter the area without the permission of the enforcing agency or...
A mircroarray analysis of sexual dimorphism of adipose tissues in high-fat-diet-induced obese mice
USDA-ARS?s Scientific Manuscript database
A sexual dimorphism exists in body fat distribution; females deposit relatively more fat in subcutaneous/inguinal depots whereas males deposit more fat in the intra-abdominal/gonadal depot. Our objective was to systematically document depot- and sex-related differences in the accumulation of adipose...
Architecture Study for a Fuel Depot Supplied from Lunar Assets
NASA Technical Reports Server (NTRS)
Perrin, Thomas M.; Casler, James G.
2016-01-01
This architecture study sought to determine the optimum architecture for a fuel depot supplied from lunar assets. Four factors - the location of propellant processing (on the Moon or on the depot), the depot location (on the Moon, L1, GEO, or LEO), the propellant transfer location (L1, GEO, or LEO), and the propellant transfer method (bulk fuel or canister exchange) were combined to identify 18 candidate architectures. Two design reference missions (DRMs) - a commercial satellite servicing mission and a Government cargo mission to Mars - created demand for propellants, while a propellant delivery DRM examined supply issues. The study concluded Earth-Moon L1 is the best location for an orbiting depot. For all architectures, propellant boiloff was less than anticipated, and was far overshadowed by delta-v requirements and resulting fuel consumption. Bulk transfer is the most flexible for both the supplier and customer. However, since canister exchange bypasses the transfer of bulk cryogens and necessary chilldown losses, canister exchange shows promise and merits further investigation. Overall, this work indicates propellant consumption and loss is an essential factor in assessing fuel depot architectures.
Intramuscular preparations of antipsychotics: uses and relevance in clinical practice.
Altamura, A Cario; Sassella, Francesca; Santini, Annalisa; Montresor, Clauno; Fumagalli, Sara; Mundo, Emanuela
2003-01-01
Intramuscular formulations of antipsychotics can be sub-divided into two groups on the basis of their pharmacokinetic features: short-acting preparations and long-acting or depot preparations. Short-acting intramuscular formulations are used to manage acute psychotic episodes. On the other hand, long-acting compounds, also called "depot", are administered as antipsychotic maintenance treatment to ensure compliance and to eliminate bioavailability problems related to absorption and first pass metabolism. Adverse effects of antipsychotics have been studied with particular respect to oral versus short- and long-acting intramuscular formulations of the different compounds. For short-term intramuscular preparations the main risk with classical compounds are hypotension and extrapyramidal side effects (EPS). Data on the incidence of EPS with depot formulations are controversial: some studies point out that the incidence of EPS is significantly higher in patients receiving depot preparations, whereas others show no difference between oral and depot antipsychotics. Studies on the strategies for switching patients from oral to depot treatment suggest that this procedure is reasonably well tolerated, so that in clinical practice depot antipsychotic therapy is usually begun while the oral treatment is still being administered, with gradual tapering of the oral dose. Efficacy, pharmacodynamics and clinical pharmacokinetics of haloperidol decanoate, fluphenazine enanthate and decanoate, clopenthixol decanoate, zuclopenthixol decanoate and acutard, flupenthixol decanoate, perphenazine enanthate, pipothiazine palmitate and undecylenate, and fluspirilene are reviewed. In addition, the intramuscular preparations of atypical antipsychotics and clinical uses are reviewed. Olanzapine and ziprasidone are available only as short-acting preparations, while risperidone is to date the only novel antipsychotic available as depot formulation. To date, acutely ill, agitated psychotic patients have been treated with high parenteral doses of typical antipsychotics, which often cause serious EPS, especially dystonic reactions. Intramuscular formulations of novel antipsychotics (olanzapine and ziprasidone), which appear to have a better tolerability profile than typical compounds, showed an equivalent efficacy to parenteral typical agents in the acute treatment of psychoses. However, parenteral or depot formulations of atypical antipsychotics are not yet widely available.
1987-09-01
AN A NALYSIS OF THE COST ACCOUNTING SYSTEM FOR THE DEPOT 1/1 MRINTENANCE SERVI..(U) MIR FORCE INST OF TECH IIGHT-PTTERSON RFB OH SCHOOL OF SYST.. 0 L...I "VV h S~ ~~i FiLE COV, THSI CIO ~OF AN ANALYSIS OF THE COST ACCOUNTING SYSTEM FOR THE DEPOT MAINTENANCE SERVICE, AIR FORCE INDUSTRIAL FUND...Patterson Air Force Base, Ohio ~ p~UOW~~ ’ I ~ 1 12 02 0 AFIT/GLM/LSY/87S-83 AN ANALYSIS OF THE COST ACCOUNTING SYSTEM FOR THE DEPOT MAINTENANCE SERVICE, AIR
Examination of adipose depot-specific PPAR moieties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dodson, M.V., E-mail: dodson@wsu.edu; Vierck, J.L.; Hausman, G.J.
2010-04-02
Molecular mechanisms of peroxisome proliferator activated receptors (PPARs) are being defined rapidly, as illustrated by the volume of papers published. Much of the research is directed towards a clinical end-point/application; however, the non-homogeneous nature of adipose depots in laboratory animals is spurring similar research in domestic meat animals (such as beef cattle). Moreover, the size of adipose depots in meat animals remains an attractive feature for using them to obtain cells for PPAR research. Examination of meat-animal depot-specific PPAR moieties may provide novel information about adipocyte regulation that might be extrapolated to all animals.
Noordraven, Ernst L; Wierdsma, André I; Blanken, Peter; Bloemendaal, Anthony Ft; Mulder, Cornelis L
2016-01-01
Noncompliance is a major problem for patients with a psychotic disorder. Two important risk factors for noncompliance that have a severe negative impact on treatment outcomes are impaired illness insight and lack of motivation. Our cross-sectional study explored how they are related to each other and their compliance with depot medication. Interviews were conducted in 169 outpatients with a psychotic disorder taking depot medication. Four patient groups were defined based on low or high illness insight and on low or high motivation. The associations between depot-medication compliance, motivation, and insight were illustrated using generalized linear models. Generalized linear model showed a significant interaction effect between motivation and insight. Patients with poor insight and high motivation for treatment were more compliant (94%) (95% confidence interval [CI]: 1.821, 3.489) with their depot medication than patients with poor insight and low motivation (61%) (95% CI: 0.288, 0.615). Patients with both insight and high motivation for treatment were less compliant (73%) (95% CI: 0.719, 1.315) than those with poor insight and high motivation. Motivation for treatment was more strongly associated with depot-medication compliance than with illness insight. Being motivated to take medication, whether to get better or for other reasons, may be a more important factor than having illness insight in terms of improving depot-medication compliance. Possible implications for clinical practice are discussed.
Endocannabinoids in the Retina: From Marijuana to Neuroprotection
Yazulla, Stephen
2008-01-01
The active component of the marijuana plant Cannabis sativa, Δ9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the “cannabinergic” field to the retinal community. All of the fundamental work on cannabinoids has been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptation, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases. PMID:18725316
Endocannabinoids in the retina: from marijuana to neuroprotection.
Yazulla, Stephen
2008-09-01
The active component of the marijuana plant Cannabis sativa, Delta9-tetrahydrocannabinol (THC), produces numerous beneficial effects, including analgesia, appetite stimulation and nausea reduction, in addition to its psychotropic effects. THC mimics the action of endogenous fatty acid derivatives, referred to as endocannabinoids. The effects of THC and the endocannabinoids are mediated largely by metabotropic receptors that are distributed throughout the nervous and peripheral organ systems. There is great interest in endocannabinoids for their role in neuroplasticity as well as for therapeutic use in numerous conditions, including pain, stroke, cancer, obesity, osteoporosis, fertility, neurodegenerative diseases, multiple sclerosis, glaucoma and inflammatory diseases, among others. However, there has been relatively far less research on this topic in the eye and retina compared with the brain and other organ systems. The purpose of this review is to introduce the "cannabinergic" field to the retinal community. All of the fundamental works on cannabinoids have been performed in non-retinal preparations, necessitating extensive dependence on this literature for background. Happily, the retinal cannabinoid system has much in common with other regions of the central nervous system. For example, there is general agreement that cannabinoids suppress dopamine release and presynaptically reduce transmitter release from cones and bipolar cells. How these effects relate to light and dark adaptations, receptive field formation, temporal properties of ganglion cells or visual perception are unknown. The presence of multiple endocannabinoids, degradative enzymes with their bioactive metabolites, and receptors provides a broad spectrum of opportunities for basic research and to identify targets for therapeutic application to retinal diseases.
Endocannabinoid Signaling Regulates Sleep Stability.
Pava, Matthew J; Makriyannis, Alexandros; Lovinger, David M
2016-01-01
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis.
Endocannabinoid Signaling Regulates Sleep Stability
Pava, Matthew J.; Makriyannis, Alexandros; Lovinger, David M.
2016-01-01
The hypnogenic properties of cannabis have been recognized for centuries, but endogenous cannabinoid (endocannabinoid) regulation of vigilance states is poorly characterized. We report findings from a series of experiments in mice measuring sleep with polysomnography after various systemic pharmacological manipulations of the endocannabinoid system. Rapid, unbiased scoring of vigilance states was achieved using an automated algorithm that we devised and validated. Increasing endocannabinoid tone with a selective inhibitor of monoacyglycerol lipase (JZL184) or fatty acid amide hydrolase (AM3506) produced a transient increase in non-rapid eye movement (NREM) sleep due to an augmentation of the length of NREM bouts (NREM stability). Similarly, direct activation of type 1 cannabinoid (CB1) receptors with CP47,497 increased NREM stability, but both CP47,497 and JZL184 had a secondary effect that reduced NREM sleep time and stability. This secondary response to these drugs was similar to the early effect of CB1 blockade with the antagonist/inverse agonist AM281, which fragmented NREM sleep. The magnitude of the effects produced by JZL184 and AM281 were dependent on the time of day this drug was administered. While activation of CB1 resulted in only a slight reduction in gamma power, CB1 blockade had dramatic effects on broadband power in the EEG, particularly at low frequencies. However, CB1 blockade did not significantly reduce the rebound in NREM sleep following total sleep deprivation. These results support the hypothesis that endocannabinoid signaling through CB1 is necessary for NREM stability but it is not necessary for sleep homeostasis. PMID:27031992
Falvo, David J; Whitaker, Allison R
2017-01-01
Abstract Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology. PMID:28144625
Smith, Douglas R; Stanley, Christine M; Foss, Theodore; Boles, Richard G; McKernan, Kevin
2017-01-01
Rare genetic variants in the core endocannabinoid system genes CNR1, CNR2, DAGLA, MGLL and FAAH were identified in molecular testing data from 6,032 patients with a broad spectrum of neurological disorders. The variants were evaluated for association with phenotypes similar to those observed in the orthologous gene knockouts in mice. Heterozygous rare coding variants in CNR1, which encodes the type 1 cannabinoid receptor (CB1), were found to be significantly associated with pain sensitivity (especially migraine), sleep and memory disorders-alone or in combination with anxiety-compared to a set of controls without such CNR1 variants. Similarly, heterozygous rare variants in DAGLA, which encodes diacylglycerol lipase alpha, were found to be significantly associated with seizures and neurodevelopmental disorders, including autism and abnormalities of brain morphology, compared to controls. Rare variants in MGLL, FAAH and CNR2 were not associated with any neurological phenotypes in the patients tested. Diacylglycerol lipase alpha synthesizes the endocannabinoid 2-AG in the brain, which interacts with CB1 receptors. The phenotypes associated with rare CNR1 variants are reminiscent of those implicated in the theory of clinical endocannabinoid deficiency syndrome. The severe phenotypes associated with rare DAGLA variants underscore the critical role of rapid 2-AG synthesis and the endocannabinoid system in regulating neurological function and development. Mapping of the variants to the 3D structure of the type 1 cannabinoid receptor, or primary structure of diacylglycerol lipase alpha, reveals clustering of variants in certain structural regions and is consistent with impacts to function.
Argue, Kathryn J; VanRyzin, Jonathan W; Falvo, David J; Whitaker, Allison R; Yu, Stacey J; McCarthy, Margaret M
2017-01-01
Juvenile social play behavior is a shared trait across a wide variety of mammalian species. When play is characterized by the frequency or duration of physical contact, males usually display more play relative to females. The endocannabinoid system contributes to the development of the sex difference in social play behavior in rats. Treating newborn pups with a nonspecific endocannabinoid agonist, WIN55,212-2, masculinizes subsequent juvenile rough-and-tumble play behavior by females. Here we use specific drugs to target signaling through either the CB1 or CB2 endocannabinoid receptor (CB1R or CB2R) to determine which modulates the development of sex differences in play. Our data reveal that signaling through both CB1R and CB2R must be altered neonatally to modify development of neural circuitry regulating sex differences in play. Neonatal co-agonism of CB1R and CB2R masculinized play by females, whereas co-antagonism of these receptors feminized rates of male play. Because of a known role for the medial amygdala in the sexual differentiation of play, we reconstructed Golgi-impregnated neurons in the juvenile medial amygdala and used factor analysis to identify morphological parameters that were sexually differentiated and responsive to dual agonism of CB1R and CB2R during the early postnatal period. Our results suggest that sex differences in the medial amygdala are modulated by the endocannabinoid system during early development. Sex differences in play behavior are loosely correlated with differences in neuronal morphology.
A Guide to Running a Recycling Project. [Includes Recycling Handbook].
ERIC Educational Resources Information Center
Oregon Recycling Information and Organizing Network, Portland.
This guide, designed for both students and adults, is intended for individuals who feel they might be interested in establishing a recycling depot. The guide includes such pertinent information as deciding how to set up a depot, markets and transportation, preparation of materials, where to place the depot and when to operate it, publicity and…
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Puget Sound, Manchester Fuel... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a) The area. The waters of Puget Sound surrounding the Manchester Fuel Depot Point A, a point along the...
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Puget Sound, Manchester Fuel... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a) The area. The waters of Puget Sound surrounding the Manchester Fuel Depot Point A, a point along the...
33 CFR 334.1244 - Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Puget Sound, Manchester Fuel... REGULATIONS § 334.1244 Puget Sound, Manchester Fuel Depot, Manchester, Washington; naval restricted area. (a) The area. The waters of Puget Sound surrounding the Manchester Fuel Depot Point A, a point along the...
The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications.
Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent
2016-01-01
Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing.
Lara-Celador, I.; Goñi-de-Cerio, F.; Alvarez, Antonia; Hilario, Enrique
2013-01-01
One of the most important causes of brain injury in the neonatal period is a perinatal hypoxic-ischemic event. This devastating condition can lead to long-term neurological deficits or even death. After hypoxic-ischemic brain injury, a variety of specific cellular mechanisms are set in motion, triggering cell damage and finally producing cell death. Effective therapeutic treatments against this phenomenon are still unavailable because of complex molecular mechanisms underlying hypoxic-ischemic brain injury. After a thorough understanding of the mechanism underlying neural plasticity following hypoxic-ischemic brain injury, various neuroprotective therapies have been developed for alleviating brain injury and improving long-term outcomes. Among them, the endocannabinoid system emerges as a natural system of neuroprotection. The endocannabinoid system modulates a wide range of physiological processes in mammals and has demonstrated neuroprotective effects in different paradigms of acute brain injury, acting as a natural neuroprotectant. The aim of this review is to study the use of different therapies to induce long-term therapeutic effects after hypoxic-ischemic brain injury, and analyze the important role of the endocannabinoid system as a new neuroprotective strategy against perinatal hypoxic-ischemic brain injury. PMID:25206720
Cannabinoids and Pain: Sites and Mechanisms of Action.
Starowicz, Katarzyna; Finn, David P
2017-01-01
The endocannabinoid system, consisting of the cannabinoid 1 receptor (CB 1 R) and cannabinoid 2 receptor (CB 2 R), endogenous cannabinoid ligands (endocannabinoids), and metabolizing enzymes, is present throughout the pain pathways. Endocannabinoids, phytocannabinoids, and synthetic cannabinoid receptor agonists have antinociceptive effects in animal models of acute, inflammatory, and neuropathic pain. CB 1 R and CB 2 R located at peripheral, spinal, or supraspinal sites are important targets mediating these antinociceptive effects. The mechanisms underlying the analgesic effects of cannabinoids likely include inhibition of presynaptic neurotransmitter and neuropeptide release, modulation of postsynaptic neuronal excitability, activation of the descending inhibitory pain pathway, and reductions in neuroinflammatory signaling. Strategies to dissociate the psychoactive effects of cannabinoids from their analgesic effects have focused on peripherally restricted CB 1 R agonists, CB 2 R agonists, inhibitors of endocannabinoid catabolism or uptake, and modulation of other non-CB 1 R/non-CB 2 R targets of cannabinoids including TRPV1, GPR55, and PPARs. The large body of preclinical evidence in support of cannabinoids as potential analgesic agents is supported by clinical studies demonstrating their efficacy across a variety of pain disorders. © 2017 Elsevier Inc. All rights reserved.
Patinkin, Deborah; Milman, Garry; Breuer, Aviva; Fride, Ester; Mechoulam, Raphael
2008-10-24
The ethanolamides of arachidonic, myristic and linoleic acids reduce bone marrow cell migration, while the 2-glyceryl esters of these acids enhance migration. Thus the 2 major endocannabinoids, anandamide (arachidonoyl ethanolamide) and 2-AG (2-arachidonoyl glycerol), whose structural difference lies in the nature of the end-group alone, work in opposite directions. The endocannabinoid arachidonoyl serine, a vasodilator, also reduces migration. The effect of 2-AG is mediated, in part at least, through the cannabinoid receptors, while the effect of anandamide, as well as the rest of the compounds assayed, are not mediated through them. Almost all cannabinoids tested, including anandamide and 2-AG, lead to approximate doubling of CFU-GEMM (colony-forming unit: granulocyte, erythrocyte, macrophage, megakaryocyte) colonies. The effect of anandamide is considerably more potent than that of 2-AG. A surprising dose-response increase of erythroid cells is noted in cultures with the ester cannabinoids (in the absence of the cytokine erythropoietin), while a considerable dose-response augmentation of megakaryocytes is noted in cultures with the ethanolamide cannabinoids (in the presence of erythropoietin). This is suggestive of some cross-talk between two different regulatory systems, one governed by glycoprotein ligands and the other by endocannabinoids.
The endocannabinoid system in anxiety, fear memory and habituation
Ruehle, S; Rey, A Aparisi; Remmers, F
2012-01-01
Evidence for the involvement of the endocannabinoid system (ECS) in anxiety and fear has been accumulated, providing leads for novel therapeutic approaches. In anxiety, a bidirectional influence of the ECS has been reported, whereby anxiolytic and anxiogenic responses have been obtained after both increases and decreases of the endocannabinoid tone. The recently developed genetic tools have revealed different but complementary roles for the cannabinoid type 1 (CB1) receptor on GABAergic and glutamatergic neuronal populations. This dual functionality, together with the plasticity of CB1 receptor expression, particularly on GABAergic neurons, as induced by stressful and rewarding experiences, gives the ECS a unique regulatory capacity for maintaining emotional homeostasis. However, the promiscuity of the endogenous ligands of the CB1 receptor complicates the interpretation of experimental data concerning ECS and anxiety. In fear memory paradigms, the ECS is mostly involved in the two opposing processes of reconsolidation and extinction of the fear memory. Whereas ECS activation deteriorates reconsolidation, proper extinction depends on intact CB1 receptor signalling. Thus, both for anxiety and fear memory processing, endocannabinoid signalling may ensure an appropriate reaction to stressful events. Therefore, the ECS can be considered as a regulatory buffer system for emotional responses. PMID:21768162
Everly, Jeffrey J; DeFulio, Anthony; Koffarnus, Mikhail N; Leoutsakos, Jeannie-Marie S; Donlin, Wendy D; Aklin, Will M; Umbricht, Annie; Fingerhood, Michael; Bigelow, George E; Silverman, Kenneth
2011-07-01
Naltrexone can be used to treat opioid dependence, but patients refuse to take it. Extended-release depot formulations may improve adherence, but long-term adherence rates to depot naltrexone are not known. This study determined long-term rates of adherence to depot naltrexone and whether employment-based reinforcement can improve adherence. Participants who were inducted onto oral naltrexone were assigned randomly to contingency (n = 18) or prescription (n = 17) groups. Participants were offered six depot naltrexone injections and invited to work at the therapeutic workplace on week days for 26 weeks, where they earned stipends for participating in job skills training. Contingency participants were required to accept naltrexone injections to maintain workplace access and to maintain maximum pay. Prescription participants could work independently of whether they accepted injections. The therapeutic workplace, a model employment-based intervention for drug addiction and unemployment. Opioid-dependent unemployed adults. Depot naltrexone injections accepted and opiate-negative urine samples. Contingency participants accepted significantly more naltrexone injections than prescription participants (81% versus 42%), and were more likely to accept all injections (66% versus 35%). At monthly assessments (with missing urine samples imputed as positive), the groups provided similar percentages of samples negative for opiates (74% versus 62%) and for cocaine (56% versus 54%). Opiate-positive samples were more likely when samples were also positive for cocaine. Employment-based reinforcement can maintain adherence to depot naltrexone. Future research should determine whether persistent cocaine use compromises naltrexone's effect on opiate use. Workplaces may be useful for promoting sustained adherence to depot naltrexone. © 2011 The Authors, Addiction © 2011 Society for the Study of Addiction.
Propellant Depots: The Future of Space Exploration
NASA Astrophysics Data System (ADS)
Crenwelge, Drew
NASA is currently exploring several options for mankind's return to the lunar surface and beyond. The selected option must stimulate both commercial and international involvement, support future missions to the Moon and other destinations, and above all, fit within the current budget profile. Contrary to the current Constellation approach, this paper describes the option of using an in-space propellant depot architecture that can refuel or top-off visiting vehicles at EML1, and how it fits within NASA's new space exploration criteria. In addition to receiving and transferring fuel, the propellant depot will also provide cryogenic propellant storage and management that utilizes flight proven technologies in conjunction with technologies currently under development. The propellant depot system, propellant management and acquisition devices, thermodynamic analysis, and key enabling technologies are also discussed. Depot design concepts along with an overview of a future lunar mission sequence are also presented.
Spinal Endocannabinoids and CB1 Receptors Mediate C-Fiber-Induced Heterosynaptic Pain Plasticity
Pernía-Andrade, Alejandro J.; Kato, Ako; Witschi, Robert; Nyilas, Rita; Katona, István; Freund, Tamás F.; Watanabe, Masahiko; Filitz, Jörg; Koppert, Wolfgang; Schüttler, Jürgen; Ji, Guangchen; Neugebauer, Volker; Marsicano, Giovanni; Lutz, Beat; Vanegas, Horacio; Zeilhofer, Hanns Ulrich
2010-01-01
Diminished synaptic inhibition in the spinal dorsal horn is a major contributor to chronic pain. Pathways, which reduce synaptic inhibition in inflammatory and neuropathic pain states, have been identified, but central hyperalgesia and diminished dorsal horn synaptic inhibition also occur in the absence of inflammation or neuropathy, solely triggered by intense nociceptive (C–fiber) input to the spinal dorsal horn. We found that endocannabinoids produced upon strong nociceptive stimulation activated CB1 receptors on inhibitory dorsal horn neurons to reduce the synaptic release of GABA and glycine and thus rendered nociceptive neurons excitable by non-painful stimuli. Spinal endocannabinoids and CB1 receptors on inhibitory dorsal horn interneurons act as mediators of heterosynaptic pain sensitization and play an unexpected role in dorsal horn pain controlling circuits. PMID:19661434
Labouèbe, Gwenaël; Liu, Shuai; Dias, Carine; Zou, Haiyan; Wong, Jovi C.Y.; Karunakaran, Subashini; Clee, Susanne M.; Phillips, Anthony; Boutrel, Benjamin; Borgland, Stephanie L.
2014-01-01
The prevalence of obesity has drastically increased over the last few decades. Exploration into how hunger and satiety signals influence the reward system can help us to understand non-homeostatic mechanisms of feeding. Evidence suggests that insulin may act in the ventral tegmental area (VTA), a critical site for reward-seeking behavior, to suppress feeding. However, the neural mechanisms underlying insulin effects in the VTA remain unknown. We demonstrate that insulin, a circulating catabolic peptide that inhibits feeding, can induce a long-term depression (LTD) of excitatory synapses onto VTA dopamine neurons. This effect requires endocannabinoid-mediated presynaptic inhibition of glutamate release. Furthermore, after a sweetened high fat meal, which elevates endogenous insulin levels, insulin-induced LTD is occluded. Finally, insulin in the VTA reduces food anticipatory behavior and conditioned place preference for food. Taken together, these results suggest that insulin in the VTA suppresses excitatory synaptic transmission and reduces salience of food-related cues. PMID:23354329
NOMURA, DANIEL K.; CASIDA, JOHN E.
2010-01-01
Organophosphorus (OP) and thiocarbamate (TC) agrochemicals are used worldwide as insecticides, herbicides, and fungicides, but their safety assessment in terms of potential off-targets remains incomplete. In this study, we used a chemoproteomic platform, termed activity-based protein profiling, to broadly define serine hydrolase targets in mouse brain of a panel of 29 OP and TC pesticides. Among the secondary targets identified, enzymes involved in degradation of endocannabinoid signaling lipids, monoacylglycerol lipase and fatty acid amide hydrolase, were inhibited by several OP and TC pesticides. Blockade of these two enzymes led to elevations in brain endocannabinoid levels and dysregulated brain arachidonate metabolism. Other secondary targets include enzymes thought to also play important roles in the nervous system and unannotated proteins. This study reveals a multitude of secondary targets for OP and TC pesticides and underscores the utility of chemoproteomic platforms in gaining insights into biochemical pathways that are perturbed by these toxicants. PMID:21341672
Munawar, Neha; Oriowo, Mabayoje A; Masocha, Willias
2017-01-01
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2',3'-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N -arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld , and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the activity of 2-AG was antagonized by AM251, ML193 and CID 16020046, but not by AM630. Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy.
Munawar, Neha; Oriowo, Mabayoje A.; Masocha, Willias
2017-01-01
Background: Nucleoside reverse transcriptase inhibitors (NRTIs) are the cornerstone of the antiretroviral therapy for human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS). However, their use is sometimes limited by the development of a painful sensory neuropathy, which does not respond well to drugs. Smoked cannabis has been reported in clinical trials to have efficacy in relieving painful HIV-associated sensory neuropathy. Objectives: The aim of this study was to evaluate whether the expression of endocannabinoid system molecules is altered during NRTI-induced painful neuropathy, and also whether endocannabinoids can attenuate NRTI-induced painful neuropathy. Methods: BALB/c mice were treated with 25 mg/kg of 2′,3′-dideoxycytidine (ddC, zalcitabine), a NRTI, to induce thermal hyperalgesia. The expression of endocannabinoid system molecules was evaluated by real time polymerase chain reaction in the brain, spinal cord and paw skin at 6 days post ddC administration, a time point when mice had developed thermal hyperalgesia. The effects of the endocannabinoids, N-arachidonoyl ethanolamine (AEA) and 2-arachidonoyl glycerol (2-AG), the cannabinoid type 1 (CB1) receptor antagonist AM 251, CB2 receptor antagonist AM 630, and G protein-coupled receptor 55 (GPR55) antagonists ML193 and CID 16020046 on ddC-induced thermal hyperalgesia were evaluated using the hot plate test. Results: ddC treatment resulted in thermal hyperalgesia and increased transcripts of the synthesizing enzyme Plcβ1 and decreased Daglβ in the paw skins, but not Napepld, and Daglα compared to vehicle treatment. Transcripts of the inactivating enzymes Faah and Mgll were downregulated in the brain and/or paw skin but not in the spinal cord of ddC-treated mice. Both AEA and 2-AG had antihyperalgesic effects in mice with ddC-induced thermal hyperalgesia, but had no effect in ddC-naïve mice. The antihyperalgesic activity of AEA was antagonized by AM251 and AM630, whereas the activity of 2-AG was antagonized by AM251, ML193 and CID 16020046, but not by AM630. Conclusion: These data show that ddC induces thermal hyperalgesia, which is associated with dysregulation of the mRNA expression of some endocannabinoid system molecules. The endocannabinoids AEA and 2-AG have antihyperalgesic activity, which is dependent on cannabinoid receptor and GPR55 activation. Thus, agonists of cannabinoid receptors and GPR55 could be useful therapeutic agents for the management of NRTI-induced painful sensory neuropathy. PMID:28373843
Endocannabinoid System: A Multi-Facet Therapeutic Target.
Kaur, Rimplejeet; Ambwani, Sneha R; Singh, Surjit
2016-01-01
Cannabis sativa is also popularly known as marijuana. It has been cultivated and used by man for recreational and medicinal purposes since many centuries. Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries. The research of drugs acting on endocannabinoid system has seen many ups and downs in the recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve "protective role" in many medical conditions. Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson's disease, Huntington's disease, Alzheimer's disease and Tourette's syndrome could possibly be treated by drugs modulating endocannabinoid system. Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008. Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists. One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that act selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted. Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids. In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as "protective" and "disease inducing substance", time-dependent changes in the expression of cannabinoid receptors.
33 CFR 334.510 - U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. 334.510 Section 334.510 Navigation and Navigable... REGULATIONS § 334.510 U.S. Navy Fuel Depot Pier, St. Johns River, Jacksonville, Fla.; restricted area. (a) The...
Activity-Based Management Accounting for DoD Depot Maintenance
1994-08-01
used to establish a management accounting system for the depots is described. The current accounting system does not provide the information to answer...nondirect costs are tied solely to direct labor hours. A possible alternative management accounting system uses Activity-Based Costing (ABC). ABC links...along with its probable benefits and costs. Accounting, Management accounting , Cost analysis, Depot maintenance cost.
Homing pigeons ( Columba livia f. domestica) can use magnetic cues for locating food
NASA Astrophysics Data System (ADS)
Thalau, Peter; Holtkamp-Rötzler, Elke; Fleissner, Gerta; Wiltschko, Wolfgang
2007-10-01
An experimental group of homing pigeons ( Columba livia f. domestica) learned to associate food with a magnetic anomaly produced by bar magnets that were fixed to the bowl in which they received their daily food ration in their home loft; the control group lacked this experience. Both groups were trained to search for two hidden food depots in a rectangular sand-filled arena without obvious visual cues; for the experimental birds, these depots were also marked with three 1.15 × 106 μT bar magnets. During the tests, there were two food depots, one marked with the magnets, the other unmarked; their position within the arena was changed from test to test. The experimental birds searched within 10 cm of the magnetically marked depot in 49% of the test sessions, whereas the control birds searched there in only 11% of the sessions. Both groups searched near the control depot in 11 and 13% of the sessions, respectively. The significant preference of the magnetically marked food depot by the experimental birds shows that homing pigeons cannot only detect a magnetic anomaly but can also use it as a cue for locating hidden food in an open arena.
A Practical, Affordable Cryogenic Propellant Depot Based on ULA's Flight Experience
NASA Technical Reports Server (NTRS)
Kutter, Bernard F.; Zegler, Frank; O'Neil, Gary; Pitchford, Brian
2008-01-01
Mankind is embarking on the next step in the journey of human exploration. We are returning to the moon and eventually moving to Mars and beyond. The current Exploration architecture seeks a balance between the need for a robust infrastructure on the lunar surface, and the performance limitations of Ares I and V. The ability to refuel or top-off propellant tanks from orbital propellant depots offers NASA the opportunity to cost effectively and reliably satisfy these opposing requirements. The ability to cache large orbital quantities of propellant is also an enabling capability for missions to Mars and beyond. This paper describes an option for a propellant depot that enables orbital refueling supporting Exploration, national security, science and other space endeavors. This proposed concept is launched using a single EELV medium class rocket and thus does not require any orbital assembly. The propellant depot provides cryogenic propellant storage that utilizes flight proven technologies augmented with technologies currently under development. The propellant depot system, propellant management, flight experience, and key technologies are also discussed. Options for refueling the propellant depot along with an overview of Exploration architecture impacts are also presented.
Space Resource Requirements for Future In-Space Propellant Production Depots
NASA Technical Reports Server (NTRS)
Smitherman, David; Fikes, John; Roy, Stephanie; Henley, Mark W.; Potter, Seth D.; Howell, Joe T. (Technical Monitor)
2001-01-01
In 2000 and 2001 studies were conducted at the NASA Marshall Space Flight Center on the technical requirements and commercial potential for propellant production depots in low Earth orbit (LEO) to support future commercial, NASA, and other Agency missions. Results indicate that propellant production depots appear to be technically feasible given continued technology development, and there is a substantial growing market that depots could support. Systems studies showed that the most expensive part of transferring payloads to geosynchronous orbit (GEO) is the fuel. A cryogenic propellant production and storage depot stationed in LEO could lower the cost of missions to GEO and beyond. Propellant production separates water into hydrogen and oxygen through electrolysis. This process utilizes large amounts of power, therefore a depot derived from advanced space solar power technology was defined. Results indicate that in the coming decades there could be a significant demand for water-based propellants from Earth, moon, or asteroid resources if in-space transfer vehicles (upper stages) transitioned to reusable systems using water based propellants. This type of strategic planning move could create a substantial commercial market for space resources development, and ultimately lead toward significant commercial infrastructure development within the Earth-Moon system.
Oleamide: a member of the endocannabinoid family?
Fowler, Christopher J
2003-01-01
The fatty acid amide class of compounds, which include the endocannabinoid anandamide and the sleep-inducing compound oleamide, have been shown in vitro to have a multiplicity of actions upon different neurochemical systems. In the present issue of this journal, Leggett et al present data indicating that oleamide functionally activates CB1 cannabinoid receptors in vitro. The significance of their finding is discussed in this commentary. PMID:14691053
Noordraven, Ernst L; Wierdsma, André I; Blanken, Peter; Bloemendaal, Anthony FT; Mulder, Cornelis L
2016-01-01
Background Noncompliance is a major problem for patients with a psychotic disorder. Two important risk factors for noncompliance that have a severe negative impact on treatment outcomes are impaired illness insight and lack of motivation. Our cross-sectional study explored how they are related to each other and their compliance with depot medication. Methods Interviews were conducted in 169 outpatients with a psychotic disorder taking depot medication. Four patient groups were defined based on low or high illness insight and on low or high motivation. The associations between depot-medication compliance, motivation, and insight were illustrated using generalized linear models. Results Generalized linear model showed a significant interaction effect between motivation and insight. Patients with poor insight and high motivation for treatment were more compliant (94%) (95% confidence interval [CI]: 1.821, 3.489) with their depot medication than patients with poor insight and low motivation (61%) (95% CI: 0.288, 0.615). Patients with both insight and high motivation for treatment were less compliant (73%) (95% CI: 0.719, 1.315) than those with poor insight and high motivation. Conclusion Motivation for treatment was more strongly associated with depot-medication compliance than with illness insight. Being motivated to take medication, whether to get better or for other reasons, may be a more important factor than having illness insight in terms of improving depot-medication compliance. Possible implications for clinical practice are discussed. PMID:26893565
Serrano, Antonia; Rivera, Patricia; Pavon, Francisco J.; Decara, Juan; Suárez, Juan; de Fonseca, Fernando Rodriguez; Parsons, Loren H.
2011-01-01
Background Endogenous cannabinoids such as anandamide and 2-arachidonoylglycerol (2-AG) exert important regulatory influences on neuronal signaling, participate in short- and long-term forms of neuroplasticity, and modulate stress responses and affective behavior in part through the modulation of neurotransmission in the amygdala. Alcohol consumption alters brain endocannabinoid levels, and alcohol dependence is associated with dysregulated amygdalar function, stress responsivity and affective control. Methods The consequence of long-term alcohol consumption on the expression of genes related to endocannabinoid signaling was investigated using quantitative RT-PCR analyses of amygdala tissue. Two groups of ethanol-exposed rats were generated by maintenance on an ethanol liquid diet (10%): one group received continuous access to ethanol for 15 days, while the second group was given intermittent access to the ethanol diet (5 days/week for 3 weeks). Control subjects were maintained on an isocaloric ethanol-free liquid diet. To provide an initial profile of acute withdrawal amygdala tissue was harvested following either 6 or 24 hours of ethanol withdrawal. Results Acute ethanol withdrawal was associated with significant changes in mRNA expression for various components of the endogenous cannabinoid system in the amygdala. Specifically, reductions in mRNA expression for the primary clearance routes for anandamide and 2-AG (FAAH and MAGL, respectively) were evident, as were reductions in mRNA expression for CB1, CB2 and GPR55 receptors. Although similar alterations in FAAH mRNA were evident following either continuous or intermittent ethanol exposure, alterations in MAGL and cannabinoid receptor-related mRNA (e.g. CB1, CB2, GPR55) were more pronounced following intermittent exposure. In general, greater withdrawal-associated deficits in mRNA expression were evident following 24 versus 6 hours of withdrawal. No significant changes in mRNA expression for enzymes involved in 2-AG biosynthesis (e.g. DAGL-α/β) were found in any condition. Conclusions These findings suggest that ethanol dependence and withdrawal are associated with dysregulated endocannabinoid signaling in the amygdala. These alterations may contribute to withdrawal-related dysregulation of amygdalar neurotransmission. PMID:22141465
Wilkerson, Jenny L; Ghosh, Sudeshna; Mustafa, Mohammed; Abdullah, Rehab A; Niphakis, Micah J; Cabrera, Roberto; Maldonado, Rafael L; Cravatt, Benjamin F; Lichtman, Aron H
2017-03-01
Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB) 1 and CB 2 receptors; however, only CB 2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present study suggest that inhibition of endocannabinoid degradative enzymes represents a promising therapeutic approach to decrease effective doses of opioids needed for clinical pain control, and may also possess therapeutic potential to reduce opioid abuse. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wilkerson, Jenny L.; Ghosh, Sudeshna; Mustafa, Mohammed; Abdullah, Rehab A.; Niphakis, Micah J.; Cabrera, Roberto; Maldonado, Rafael L.; Cravatt, Benjamin F.; Lichtman, Aron H.
2017-01-01
Although opioids are highly efficacious analgesics, their abuse potential and other untoward side effects diminish their therapeutic utility. The addition of non-opioid analgesics offers a promising strategy to reduce required antinociceptive opioid doses that concomitantly reduce opioid-related side effects. Inhibitors of the primary endocannabinoid catabolic enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL) show opioid-sparing effects in preclinical models of pain. As simultaneous inhibition of these enzymes elicits enhanced antinociceptive effects compared with single enzyme inhibition, the present study tested whether the dual FAAH-MAGL inhibitor SA-57 [4-[2-(4-chlorophenyl)ethyl]-1-piperidinecarboxylic acid 2-(methylamino)-2-oxoethyl ester] produces morphine-sparing antinociceptive effects, without major side effects associated with either drug class. SA-57 dose-dependently reversed mechanical allodynia in the constriction injury (CCI) of the sciatic nerve model of neuropathic pain and carrageenan inflammatory pain model. As previously reported, SA-57 was considerably more potent in elevating anandamide (AEA) than 2-arachidonyl glycerol (2-AG) in brain. Its anti-allodynic effects required cannabinoid (CB)1 and CB2 receptors; however, only CB2 receptors were necessary for the anti-edematous effects in the carrageenan assay. Although high doses of SA-57 alone were required to produce antinociception, low doses of this compound, which elevated AEA and did not affect 2-AG brain levels, augmented the antinociceptive effects of morphine, but lacked cannabimimetic side effects. Because of the high abuse liability of opioids and implication of the endocannabinoid system in the reinforcing effects of opioids, the final experiment tested whether SA-57 would alter heroin seeking behavior. Strikingly, SA-57 reduced heroin-reinforced nose poke behavior and the progressive ratio break point for heroin. In conclusion, the results of the present study suggest that inhibition of endocannabinoid degradative enzymes represents a promising therapeutic approach to decrease effective doses of opioids needed for clinical pain control, and may also possess therapeutic potential to reduce opioid abuse. PMID:27890602
Snider, Natasha T; Walker, Vyvyca J; Hollenberg, Paul F
2010-03-01
Arachidonoyl ethanolamide (anandamide) is an endogenous amide of arachidonic acid and an important signaling mediator of the endocannabinoid system. Given its numerous roles in maintaining normal physiological function and modulating pathophysiological responses throughout the body, the endocannabinoid system is an important pharmacological target amenable to manipulation directly by cannabinoid receptor ligands or indirectly by drugs that alter endocannabinoid synthesis and inactivation. The latter approach has the possible advantage of more selectivity, thus there is the potential for fewer untoward effects like those that are traditionally associated with cannabinoid receptor ligands. In that regard, inhibitors of the principal inactivating enzyme for anandamide, fatty acid amide hydrolase (FAAH), are currently in development for the treatment of pain and inflammation. However, several pathways involved in anandamide synthesis, metabolism, and inactivation all need to be taken into account when evaluating the effects of FAAH inhibitors and similar agents in preclinical models and assessing their clinical potential. Anandamide undergoes oxidation by several human cytochrome P450 (P450) enzymes, including CYP3A4, CYP4F2, CYP4X1, and the highly polymorphic CYP2D6, forming numerous structurally diverse lipids, which are likely to have important physiological roles, as evidenced by the demonstration that a P450-derived epoxide of anandamide is a potent agonist for the cannabinoid receptor 2. The focus of this review is to emphasize the need for a better understanding of the P450-mediated pathways of the metabolism of anandamide, because these are likely to be important in mediating endocannabinoid signaling as well as the pharmacological responses to endocannabinoid-targeting drugs.
Panagis, George; Mackey, Brian; Vlachou, Styliani
2014-01-01
Over the last decades, the endocannabinoid system has been implicated in a large variety of functions, including a crucial modulation of brain-reward circuits and the regulation of motivational processes. Importantly, behavioral studies have shown that cannabinoid compounds activate brain reward mechanisms and circuits in a similar manner to other drugs of abuse, such as nicotine, alcohol, cocaine, and heroin, although the conditions under which cannabinoids exert their rewarding effects may be more limited. Furthermore, there is evidence on the involvement of the endocannabinoid system in the regulation of cue- and drug-induced relapsing phenomena in animal models. The aim of this review is to briefly present the available data obtained using diverse behavioral experimental approaches in experimental animals, namely, the intracranial self-stimulation paradigm, the self-administration procedure, the conditioned place preference procedure, and the reinstatement of drug-seeking behavior procedure, to provide a comprehensive picture of the current status of what is known about the endocannabinoid system mechanisms that underlie modification of brain-reward processes. Emphasis is placed on the effects of cannabinoid 1 (CB1) receptor agonists, antagonists, and endocannabinoid modulators. Further, the role of CB1 receptors in reward processes is investigated through presentation of respective genetic ablation studies in mice. The vast majority of studies in the existing literature suggest that the endocannabinoid system plays a major role in modulating motivation and reward processes. However, much remains to be done before we fully understand these interactions. Further research in the future will shed more light on these processes and, thus, could lead to the development of potential pharmacotherapies designed to treat reward-dysfunction-related disorders.
The endocannabinoid system and associative learning and memory in zebrafish.
Ruhl, Tim; Moesbauer, Kirstin; Oellers, Nadine; von der Emde, Gerhard
2015-09-01
In zebrafish the medial pallium of the dorsal telencephalon represents an amygdala homolog structure, which is crucially involved in emotional associative learning and memory. Similar to the mammalian amygdala, the medial pallium contains a high density of endocannabinoid receptor CB1. To elucidate the role of the zebrafish endocannabinoid system in associative learning, we tested the influence of acute and chronic administration of receptor agonists (THC, WIN55,212-2) and antagonists (Rimonabant, AM-281) on two different learning paradigms. In an appetitively motivated two-alternative choice paradigm, animals learned to associate a certain color with a food reward. In a second set-up, a fish shuttle-box, animals associated the onset of a light stimulus with the occurrence of a subsequent electric shock (avoidance conditioning). Once fish successfully had learned to solve these behavioral tasks, acute receptor activation or inactivation had no effect on memory retrieval, suggesting that established associative memories were stable and not alterable by the endocannabinoid system. In both learning tasks, chronic treatment with receptor antagonists improved acquisition learning, and additionally facilitated reversal learning during color discrimination. In contrast, chronic CB1 activation prevented aversively motivated acquisition learning, while different effects were found on appetitively motivated acquisition learning. While THC significantly improved behavioral performance, WIN55,212-2 significantly impaired color association. Our findings suggest that the zebrafish endocannabinoid system can modulate associative learning and memory. Stimulation of the CB1 receptor might play a more specific role in acquisition and storage of aversive learning and memory, while CB1 blocking induces general enhancement of cognitive functions. Copyright © 2015 Elsevier B.V. All rights reserved.
Schroeder, Friedhelm; McIntosh, Avery L.; Martin, Gregory G.; Huang, Huan; Landrock, Danilo; Chung, Sarah; Landrock, Kerstin K.; Dangott, Lawrence J.; Li, Shengrong; Kaczocha, Martin; Murphy, Eric J.; Atshaves, Barbara P.; Kier, Ann B.
2017-01-01
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear—especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α, (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human SNP (26–38% minor allele frequency and 8.3±1.9% homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant’s impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system on hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety. PMID:27117865
Schroeder, Friedhelm; McIntosh, Avery L; Martin, Gregory G; Huang, Huan; Landrock, Danilo; Chung, Sarah; Landrock, Kerstin K; Dangott, Lawrence J; Li, Shengrong; Kaczocha, Martin; Murphy, Eric J; Atshaves, Barbara P; Kier, Ann B
2016-06-01
The first discovered member of the mammalian FABP family, liver fatty acid binding protein (FABP1, L-FABP), occurs at high cytosolic concentration in liver, intestine, and in the case of humans also in kidney. While the rat FABP1 is well studied, the extent these findings translate to human FABP1 is not clear-especially in view of recent studies showing that endocannabinoids and cannabinoids represent novel rat FABP1 ligands and FABP1 gene ablation impacts the hepatic endocannabinoid system, known to be involved in non-alcoholic fatty liver (NAFLD) development. Although not detectable in brain, FABP1 ablation nevertheless also impacts brain endocannabinoids. Despite overall tertiary structure similarity, human FABP1 differs significantly from rat FABP1 in secondary structure, much larger ligand binding cavity, and affinities/specificities for some ligands. Moreover, while both mouse and human FABP1 mediate ligand induction of peroxisome proliferator activated receptor-α (PPARα), they differ markedly in pattern of genes induced. This is critically important because a highly prevalent human single nucleotide polymorphism (SNP) (26-38 % minor allele frequency and 8.3 ± 1.9 % homozygous) results in a FABP1 T94A substitution that further accentuates these species differences. The human FABP1 T94A variant is associated with altered body mass index (BMI), clinical dyslipidemias (elevated plasma triglycerides and LDL cholesterol), atherothrombotic cerebral infarction, and non-alcoholic fatty liver disease (NAFLD). Resolving human FABP1 and the T94A variant's impact on the endocannabinoid and cannabinoid system is an exciting challenge due to the importance of this system in hepatic lipid accumulation as well as behavior, pain, inflammation, and satiety.
Tanveer, Riffat; Gowran, Aoife; Noonan, Janis; Keating, Sinead E.; Bowie, Andrew G.; Campbell, Veronica A.
2012-01-01
Aberrant Notch signaling has recently emerged as a possible mechanism for the altered neurogenesis, cognitive impairment, and learning and memory deficits associated with Alzheimer disease (AD). Recently, targeting the endocannabinoid system in models of AD has emerged as a potential approach to slow the progression of the disease process. Although studies have identified neuroprotective roles for endocannabinoids, there is a paucity of information on modulation of the pro-survival Notch pathway by endocannabinoids. In this study the influence of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol, on the Notch-1 pathway and on its endogenous regulators were investigated in an in vitro model of AD. We report that AEA up-regulates Notch-1 signaling in cultured neurons. We also provide evidence that although Aβ1–42 increases expression of the endogenous inhibitor of Notch-1, numb (Nb), this can be prevented by AEA and 2-arachidonoylglycerol. Interestingly, AEA up-regulated Nct expression, a component of γ-secretase, and this was found to play a crucial role in the enhanced Notch-1 signaling mediated by AEA. The stimulatory effects of AEA on Notch-1 signaling persisted in the presence of Aβ1–42. AEA was found to induce a preferential processing of Notch-1 over amyloid precursor protein to generate Aβ1–40. Aging, a natural process of neurodegeneration, was associated with a reduction in Notch-1 signaling in rat cortex and hippocampus, and this was restored with chronic treatment with URB 597. In summary, AEA has the proclivity to enhance Notch-1 signaling in an in vitro model of AD, which may have relevance for restoring neurogenesis and cognition in AD. PMID:22891244
Defense Depot Tracy Total Quality Management Plan
1989-07-01
PAGES TQM (Total Quality Management ), Depot Operations, Continuous Process Improvement 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY...make up our pcrceptions of Total Quality Management . Our goal is to improve those proven management processes that have brought us success while being...MANIAGEMENT F. QUALITY AUDITS OF PRODUCTS AND OPERATIONS ASSETS MANAGEMENT 00 i .......... / ~899 29 03 1 EFENSE DEPOT TACY TOTAL QUALITY MANAGEMENT PLAN
Total Quality Management Implementation Plan: Defense Depot, Ogden
1989-07-01
NUMBERS Total Quality Management Implementation Plan Defense Depot Ogden 6. AUTHOR(S) 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING...PAGES TQM (Total Quality Management ), Continuous Process Improvement, Depot Operations, Process Action Teams 16. PRICE CODE 17. SECURITY...034 A Message From The Commander On Total Quality Management i fully support the DLA aoproacii to Total Quality Management . As stated by General
Rodríguez-Cueto, Carmen; Benito, Cristina; Fernández-Ruiz, Javier; Romero, Julián; Hernández-Gálvez, Mariluz; Gómez-Ruiz, María
2014-01-01
Background and PurposeSpinocerebellar ataxias (SCAs) are a family of chronic progressive neurodegenerative diseases, clinically and genetically heterogeneous, characterized by loss of balance and motor coordination due to degeneration of the cerebellum and its afferent and efferent connections. Unlike other motor disorders, the possible role of changes in the endocannabinoid system in the pathogenesis of SCAs has not been investigated. Experimental ApproachThe status of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2) receptors in the post-mortem cerebellum of SCA patients and controls was investigated using immunohistochemical procedures. Key ResultsImmunoreactivity for the CB1 receptor, and also for the CB2 receptor, was found in the granular layer, Purkinje cells, neurons of the dentate nucleus and areas of white matter in the cerebellum of SCA patients at levels notably higher than controls. Double-labelling procedures demonstrated co-localization of CB1 and, in particular, CB2 receptors with calbindin, supporting the presence of these receptors in Purkinje neurons. Both receptors also co-localized with Iba-1 and glial fibrillary acidic protein in the granular layer and white matter areas, indicating that they are present in microglia and astrocytes respectively. Conclusions and ImplicationsOur results demonstrate that CB1 and CB2 receptor levels are significantly altered in the cerebellum of SCA patients. Their identification in Purkinje neurons, which are the main cells affected in SCAs, as well as the changes they experienced, suggest that alterations in endocannabinoid receptors may be related to the pathogenesis of SCAs. Therefore, the endocannabinoid system could provide potential therapeutic targets for the treatment of SCAs and its progression. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:23808969
Fonseca, B M; Correia-da-Silva, G; Teixeira, N A
2018-05-01
Among a variety of phytocannabinoids, Δ 9 -tetrahydrocannabinol (THC) and cannabidiol (CBD) are the most promising therapeutic compounds. Besides the well-known palliative effects in cancer patients, cannabinoids have been shown to inhibit in vitro growth of tumor cells. Likewise, the major endocannabinoids (eCBs), anandamide (AEA) and 2-arachidonoylglycerol (2-AG), induce tumor cell death. The purpose of the present study was to characterize cannabinoid elements and evaluate the effect of cannabinoids in endometrial cancer cell viability. The presence of cannabinoid receptors, transient receptor potential vanilloid 1 (TRPV1), and endocannabinoid-metabolizing enzymes were determined by qRT-PCR and Western blot. We also examined the effects and the underlying mechanisms induced by eCBs and phytocannabinoids in endometrial cancer cell viability. Besides TRPV1, both EC cell lines express all the constituents of the endocannabinoid system. We observed that at concentrations higher than 5 μM, eCBs and CBD induced a significant reduction in cell viability in both Ishikawa and Hec50co cells, whereas THC did not cause any effect. In Ishikawa cells, contrary to Hec50co, treatment with AEA and CBD resulted in an increase in the levels of activated caspase -3/-7, in cleaved PARP, and in reactive oxygen species generation, confirming that the reduction in cell viability observed in the MTT assay was caused by the activation of the apoptotic pathway. Finally, these effects were dependent on TRPV1 activation and intracellular calcium levels. These data indicate that cannabinoids modulate endometrial cancer cell death. Selective targeting of TPRV1 by AEA, CBD, or other stable analogues may be an attractive research area for the treatment of estrogen-dependent endometrial carcinoma. Our data further support the evaluation of CBD and CBD-rich extracts for the potential treatment of endometrial cancer, particularly, that has become non-responsive to common therapies.
Micale, Vincenzo; Stepan, Jens; Jurik, Angela; Pamplona, Fabricio A; Marsch, Rudolph; Drago, Filippo; Eder, Matthias; Wotjak, Carsten T
2017-07-01
The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1. Copyright © 2017 Elsevier Ltd. All rights reserved.
The arguments for and against cannabinoids application in glaucomatous retinopathy.
Panahi, Yunes; Manayi, Azadeh; Nikan, Marjan; Vazirian, Mahdi
2017-02-01
Glaucoma represents several optic neuropathies leading to irreversible blindness through progressive retinal ganglion cell (RGC) loss. Reduction of intraocular pressure (IOP) is known as the only modifiable factor in the treatment of this disorder. Application of exogenous cannabinoids to lower IOP has attracted attention of scientists as potential agents for the treatment of glaucoma. Accordingly, neuroprotective effect of these agents has been recently described through modulation of endocannabinoid system in the eye. In the present work, pertinent information regarding ocular endocannabinoid system, mechanism of exogenous cannabinoids interaction with the ocular endocannabinoid system to reduce IOP, and neuroprotection property of cannabinoids will be discussed according to current scientific literature. In addition to experimental studies, bioavailability of cannabinoids, clinical surveys, and adverse effects of application of cannabinoids in glaucoma will be reviewed. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The endocannabinoid system and the brain.
Mechoulam, Raphael; Parker, Linda A
2013-01-01
The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research--with an emphasis on recent publications--on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic--lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions.
Quartu, Marina; Poddighe, Laura; Melis, Tiziana; Serra, Maria Pina; Boi, Marianna; Lisai, Sara; Carta, Gianfranca; Murru, Elisabetta; Muredda, Laura; Collu, Maria; Banni, Sebastiano
2017-01-19
The transient global cerebral hypoperfusion/reperfusion achieved by induction of Bilateral Common Carotid Artery Occlusion followed by Reperfusion (BCCAO/R) may trigger a physiological response in an attempt to preserve tissue and function integrity. There are several candidate molecules among which the endocannabinoid system (ECS) and/or peroxisome-proliferator activated receptor-alpha (PPAR-alpha) may play a role in modulating oxidative stress and inflammation. The aims of the present study are to evaluate whether the ECS, the enzyme cyclooxygenase-2 (COX-2) and PPAR-alpha are involved during BCCAO/R in rat brain, and to identify possible markers of the ongoing BCCAO/R-induced challenge in plasma. Adult Wistar rats underwent BCCAO/R with 30 min hypoperfusion followed by 60 min reperfusion. The frontal and temporal-occipital cortices and plasma were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS) to determine concentrations of endocannabinoids (eCBs) and related molecules behaving as ligands of PPAR-alpha, and of oxidative-stress markers such as lipoperoxides, while Western Blot and immunohistochemistry were used to study protein expression of cannabinoid receptors, COX-2 and PPAR-alpha. Unpaired Student's t-test was used to evaluate statistical differences between groups. The acute BCCAO/R procedure is followed by increased brain tissue levels of the eCBs 2-arachidonoylglycerol and anandamide, palmitoylethanolamide, an avid ligand of PPAR-alpha, lipoperoxides, type 1 (CB1) and type 2 (CB2) cannabinoid receptors, and COX-2, and decreased brain tissue concentrations of docosahexaenoic acid (DHA), one of the major targets of lipid peroxidation. In plasma, increased levels of anandamide and lipoperoxides were observed. The BCCAO/R stimulated early molecular changes that can be easily traced in brain tissue and plasma, and that are indicative of the tissue physiological response to the reperfusion-induced oxidative stress and inflammation. The observed variations suggest that the positive modulation of the ECS and the increase of proinflammatory substances are directly correlated events. Increase of plasmatic levels of anandamide and lipoperoxides further suggests that dysregulation of these molecules may be taken as an indicator of an ongoing hypoperfusion/reperfusion challenge.
31. Tower interior, second story level, which served as tiny ...
31. Tower interior, second story level, which served as tiny bedroom for station operator; frame visible at far left originally housed cooler vented to exterior via louvers placed in window fenestration; view to northeast, 65mm lens with electronic flash illumination. - Southern Pacific Depot, 559 El Camino Real, San Carlos, San Mateo County, CA
Maione, Sabatino; Piscitelli, Fabiana; Gatta, Luisa; Vita, Daniela; De Petrocellis, Luciano; Palazzo, Enza; de Novellis, Vito; Di Marzo, Vincenzo
2011-01-01
BACKGROUND AND PURPOSE Two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene (CBC), are known to modulate in vitro the activity of proteins involved in nociceptive mechanisms, including transient receptor potential (TRP) channels of vanilloid type-1 (TRPV1) and of ankyrin type-1 (TRPA1), the equilibrative nucleoside transporter and proteins facilitating endocannabinoid inactivation. Here we have tested these two cannabinoids on the activity of the descending pathway of antinociception. EXPERIMENTAL APPROACH Electrical activity of ON and OFF neurons of the rostral ventromedial medulla in anaesthetized rats was recorded extracellularly and tail flick latencies to thermal stimuli were measured. CBD or CBC along with various antagonists were injected into the ventrolateral periaqueductal grey. KEY RESULTS Cannabidiol and CBC dose-dependently reduced the ongoing activity of ON and OFF neurons in anaesthetized rats, whilst inducing antinociceptive responses in the tail flick-test. These effects were maximal with 3 nmol CBD and 6 nmol CBC, and were antagonized by selective antagonists of cannabinoid CB1 adenosine A1 and TRPA1, but not of TRPV1, receptors. Both CBC and CBD also significantly elevated endocannabinoid levels in the ventrolateral periaqueductal grey. A specific agonist at TRPA1 channels and a synthetic inhibitor of endocannabinoid cellular reuptake exerted effects similar to those of CBC and CBD. CONCLUSIONS AND IMPLICATIONS CBD and CBC stimulated descending pathways of antinociception and caused analgesia by interacting with several target proteins involved in nociceptive control. These compounds might represent useful therapeutic agents with multiple mechanisms of action. PMID:20942863
Fleischer, Norman; Abe, Kaoru; Liddle, Grant W.; Orth, David N.; Nicholson, Wendell E.
1967-01-01
Six patients who had experienced prolonged steroid-induced pituitary-adrenal suppression were treated with 100 U of depot procine ACTH every 2 to 4 days for several months. Such treatment did not hasten the recovery of normal pituitary-adrenal function compared with the rate of recovery of a group of similarly suppressed patients who received no depot ACTH. Eight of nine patients who received prolonged courses of depot porcine ACTH developed antibodies to ACTH that cross-reacted with endogenous ACTH, binding it in the circulation in inactive form and retarding its removal from the circulation. The presence of such antibodies did not in itself grossly alter pituitary-adrenal interrelationships. Images PMID:4289551
Lee, Sang-Hun; Ledri, Marco; Tóth, Blanka; Marchionni, Ivan; Henstridge, Christopher M.; Dudok, Barna; Kenesei, Kata; Barna, László; Szabó, Szilárd I.; Renkecz, Tibor; Oberoi, Michelle; Watanabe, Masahiko; Limoli, Charles L.; Horvai, George; Soltesz, Ivan
2015-01-01
Persistent CB1 cannabinoid receptor activity limits neurotransmitter release at various synapses throughout the brain. However, it is not fully understood how constitutively active CB1 receptors, tonic endocannabinoid signaling, and its regulation by multiple serine hydrolases contribute to the synapse-specific calibration of neurotransmitter release probability. To address this question at perisomatic and dendritic GABAergic synapses in the mouse hippocampus, we used a combination of paired whole-cell patch-clamp recording, liquid chromatography/tandem mass spectrometry, stochastic optical reconstruction microscopy super-resolution imaging, and immunogold electron microscopy. Unexpectedly, application of the CB1 antagonist and inverse agonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide], but not the neutral antagonist NESS0327 [8-chloro-1-(2,4-dichlorophenyl)-N-piperidin-1-yl-5,6-dihydro-4H-benzo[2,3]cyclohepta[2,4-b]pyrazole-3-carboxamine], significantly increased synaptic transmission between CB1-positive perisomatic interneurons and CA1 pyramidal neurons. JZL184 (4-nitrophenyl 4-[bis(1,3-benzodioxol-5-yl)(hydroxy)methyl]piperidine-1-carboxylate), a selective inhibitor of monoacylglycerol lipase (MGL), the presynaptic degrading enzyme of the endocannabinoid 2-arachidonoylglycerol (2-AG), elicited a robust increase in 2-AG levels and concomitantly decreased GABAergic transmission. In contrast, inhibition of fatty acid amide hydrolase (FAAH) by PF3845 (N-pyridin-3-yl-4-[[3-[5-(trifluoromethyl)pyridin-2-yl]oxyphenyl]methyl]piperidine-1-carboxamide) elevated endocannabinoid/endovanilloid anandamide levels but did not change GABAergic synaptic activity. However, FAAH inhibitors attenuated tonic 2-AG increase and also decreased its synaptic effects. This antagonistic interaction required the activation of the transient receptor potential vanilloid receptor TRPV1, which was concentrated on postsynaptic intracellular membrane cisternae at perisomatic GABAergic symmetrical synapses. Interestingly, neither AM251, JZL184, nor PF3845 affected CB1-positive dendritic interneuron synapses. Together, these findings are consistent with the possibility that constitutively active CB1 receptors substantially influence perisomatic GABA release probability and indicate that the synaptic effects of tonic 2-AG release are tightly controlled by presynaptic MGL activity and also by postsynaptic endovanilloid signaling and FAAH activity. SIGNIFICANCE STATEMENT Tonic cannabinoid signaling plays a critical role in the regulation of synaptic transmission. However, the mechanistic details of how persistent CB1 cannabinoid receptor activity inhibits neurotransmitter release have remained elusive. Therefore, electrophysiological recordings, lipid measurements, and super-resolution imaging were combined to elucidate those signaling molecules and mechanisms that underlie tonic cannabinoid signaling. The findings indicate that constitutive CB1 activity has pivotal function in the tonic control of hippocampal GABA release. Moreover, the endocannabinoid 2-arachidonoylglycerol (2-AG) is continuously generated postsynaptically, but its synaptic effect is regulated strictly by presynaptic monoacylglycerol lipase activity. Finally, anandamide signaling antagonizes tonic 2-AG signaling via activation of postsynaptic transient receptor potential vanilloid TRPV1 receptors. This unexpected mechanistic diversity may be necessary to fine-tune GABA release probability under various physiological and pathophysiological conditions. PMID:26157003
Russo, Ethan B
2008-04-01
This study examines the concept of clinical endocannabinoid deficiency (CECD), and the prospect that it could underlie the pathophysiology of migraine, fibromyalgia, irritable bowel syndrome, and other functional conditions alleviated by clinical cannabis. Available literature was reviewed, and literature searches pursued via the National Library of Medicine database and other resources. Migraine has numerous relationships to endocannabinoid function. Anandamide (AEA) potentiates 5-HT1A and inhibits 5-HT2A receptors supporting therapeutic efficacy in acute and preventive migraine treatment. Cannabinoids also demonstrate dopamine-blocking and anti-inflammatory effects. AEA is tonically active in the periaqueductal gray matter, a migraine generator. THC modulates glutamatergic neurotransmission via NMDA receptors. Fibromyalgia is now conceived as a central sensitization state with secondary hyperalgesia. Cannabinoids have similarly demonstrated the ability to block spinal, peripheral and gastrointestinal mechanisms that promote pain in headache, fibromyalgia, IBS and related disorders. The past and potential clinical utility of cannabis-based medicines in their treatment is discussed, as are further suggestions for experimental investigation of CECD via CSF examination and neuro-imaging. Migraine, fibromyalgia, IBS and related conditions display common clinical, biochemical and pathophysiological patterns that suggest an underlying clinical endocannabinoid deficiency that may be suitably treated with cannabinoid medicines.
Inhibition of endocannabinoid metabolism by the metabolites of ibuprofen and flurbiprofen.
Karlsson, Jessica; Fowler, Christopher J
2014-01-01
In addition to their effects upon prostaglandin synthesis, the non-steroidal anti-inflammatory drugs ibuprofen and flurbiprofen inhibit the metabolism of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA) by cyclooxygenase-2 (COX-2) and fatty acid amide hydrolase (FAAH), respectively. Here, we investigated whether these effects upon endocannabinoid metabolism are shared by the main metabolites of ibuprofen and flurbiprofen. COX activities were measured via changes in oxygen consumption due to oxygenation of arachidonic acid (for COX-1) and arachidonic acid and 2-AG (for COX-2). FAAH activity was quantified by measuring hydrolysis of tritium labelled AEA in rat brain homogenates. The ability of ibuprofen and flurbiprofen to inhibit COX-2-catalysed oxygenation of 2-AG at lower concentrations than the oxygenation of arachidonic acid was seen with 4'-hydroxyflurbiprofen and possibly also 3'-hydroxyibuprofen, albeit at lower potencies than the parent compounds. All ibuprofen and flurbiprofen metabolites retained the ability to inhibit FAAH in a pH-dependent manner, although the potency was lower than seen with the parent compounds. It is concluded that the primary metabolites of ibuprofen and flurbiprofen retain some of the properties of the parent compound with respect to inhibition of endocannabinoid metabolism. However, these effects are unlikely to contribute to the actions of the parent compounds in vivo.
The Endocannabinoid System in the Retina: From Physiology to Practical and Therapeutic Applications
Schwitzer, Thomas; Schwan, Raymund; Angioi-Duprez, Karine; Giersch, Anne; Laprevote, Vincent
2016-01-01
Cannabis is one of the most prevalent drugs used in industrialized countries. The main effects of Cannabis are mediated by two major exogenous cannabinoids: ∆9-tetrahydroxycannabinol and cannabidiol. They act on specific endocannabinoid receptors, especially types 1 and 2. Mammals are endowed with a functional cannabinoid system including cannabinoid receptors, ligands, and enzymes. This endocannabinoid signaling pathway is involved in both physiological and pathophysiological conditions with a main role in the biology of the central nervous system. As the retina is a part of the central nervous system due to its embryonic origin, we aim at providing the relevance of studying the endocannabinoid system in the retina. Here, we review the distribution of the cannabinoid receptors, ligands, and enzymes in the retina and focus on the role of the cannabinoid system in retinal neurobiology. This review describes the presence of the cannabinoid system in critical stages of retinal processing and its broad involvement in retinal neurotransmission, neuroplasticity, and neuroprotection. Accordingly, we support the use of synthetic cannabinoids as new neuroprotective drugs to prevent and treat retinal diseases. Finally, we argue for the relevance of functional retinal measures in cannabis users to evaluate the impact of cannabis use on human retinal processing. PMID:26881099
A Fuzzy Goal Programming for a Multi-Depot Distribution Problem
NASA Astrophysics Data System (ADS)
Nunkaew, Wuttinan; Phruksaphanrat, Busaba
2010-10-01
A fuzzy goal programming model for solving a Multi-Depot Distribution Problem (MDDP) is proposed in this research. This effective proposed model is applied for solving in the first step of Assignment First-Routing Second (AFRS) approach. Practically, a basic transportation model is firstly chosen to solve this kind of problem in the assignment step. After that the Vehicle Routing Problem (VRP) model is used to compute the delivery cost in the routing step. However, in the basic transportation model, only depot to customer relationship is concerned. In addition, the consideration of customer to customer relationship should also be considered since this relationship exists in the routing step. Both considerations of relationships are solved using Preemptive Fuzzy Goal Programming (P-FGP). The first fuzzy goal is set by a total transportation cost and the second fuzzy goal is set by a satisfactory level of the overall independence value. A case study is used for describing the effectiveness of the proposed model. Results from the proposed model are compared with the basic transportation model that has previously been used in this company. The proposed model can reduce the actual delivery cost in the routing step owing to the better result in the assignment step. Defining fuzzy goals by membership functions are more realistic than crisps. Furthermore, flexibility to adjust goals and an acceptable satisfactory level for decision maker can also be increased and the optimal solution can be obtained.
Magill, N G; Cowan, A E; Leyva-Vazquez, M A; Brown, M; Koppel, D E; Setlow, P
1996-04-01
Analysis of the pH decrease and 3-phosphoglyceric acid (3PGA) accumulation in the forespore compartment of sporulating cells of Bacillus subtilis showed that the pH decrease of 1 to 1.2 units at approximately 4 h of sporulation preceded 3PGA accumulation, as observed previously in B. megaterium. These data, as well as analysis of the forespore pH decrease in asporogenous mutants of B. subtilis, indicated that sigma G-dependent forespore transcription, but not sigma K-dependent mother cell transcription, is required for the forespore pH decrease. Further analysis of these asporogenous mutants showed an excellent correlation between the forespore pH decrease and the forespore's accumulation of 3PGA. These latter results are consistent with our previous suggestion that the decrease in forespore pH results in greatly decreased activity of phosphoglycerate mutase in the forespore, which in turn leads to 3PGA accumulation. In further support of this suggestion, we found that (i) elevating the pH of developing forespores of B. megaterium resulted in rapid utilization of the forespore's 3PGA depot and (ii) increasing forespore levels of PGM approximately 10-fold in B. subtilis resulted in a large decrease in the spore's depot of 3PGA. The B. subtilis strain with a high phosphoglycerate mutase level sporulated, and the spores germinated and went through outgrowth normally, indicating that forespore accumulation of a large 3PGA depot is not essential for these processes.
Recapitalization and Acquisition of Light Tactical Wheeled Vehicles (REDACTED)
2010-01-29
representative from Red River Army Depot in Texarkana , Texas,18 stated that recapitalizing current HMMWVs to the XM1166 model was an excellent proposition...Red River Army Depot in Texarkana , Texas, stated that recapitalizing current HMMWVs to the XM1166 model was an excellent proposition. The Deputy...Army Depot in Texarkana , Texas, stated that recapitalizing current HMMWVs to the XM1166 model was an excellent proposition because the U.S
DoD Security Assistance Management Manual
1988-10-01
IDSS Administrator for U.S. Army Training Activities: TSASS Database Manager SATFA Attn: ATFA-I 2017 Cunningham Drive, 4th Floor Hampton VA 23666 DSN...Depot, Chambersburg, PA J. School of Engineering and Logistics, Red River Army Depot, Texarkana , "TX K. Lone Star Ammunition Plant, Texarkana , TX L...Electronics Command, Ft. Monmouth, NJ U. Red River Army Depot, Texarkana , TX V. Army Aviation Research and Development Command, St. Louis, MO W
DOE Office of Scientific and Technical Information (OSTI.GOV)
Belangia, David Warren
The Home Depot Data Breach is the second largest data breach on record. It has or will affect up to 56 million debit or credit cards. A trusted vendor account, coupled with the use of a previously unknown variant of malware that allowed the establishment of a foothold, was the entry point into the Home Depot network. Once inside the perimeter, privilege escalation provided an avenue to obtain the desired information. Home Depot did, however, learn some lessons from Target. Home Depot certainly communicated better than Target, procured insurance, and instituted as secure an environment as possible. There are specificmore » measures an institution should undertake to prepare for a data breach, and everyone can learn from this breach. Publicly available information about the Home Depot Data Breach provides insight into the attack, an old malware variant with a new twist.While the malware was modified as to be unrecognizable with tools, it probably should have been detected. There are also concerns with Home Depot’s insurance and the insurance provider’s apparent lack of fully reimbursing Home Depot for their losses. The effect on shareholders and Home Depot’s stock price was short lived. This story is still evolving but provides interesting lessons learned concerning how an organization should prepare for it inevitable breach.« less
A Cryogenic Propellant Production Depot for Low Earth Orbit
NASA Technical Reports Server (NTRS)
Potter, Seth D.; Henley, Mark; Guitierrez, Sonia; Fikes, John; Carrington, Connie; Smitherman, David; Gerry, Mark; Sutherlin, Steve; Beason, Phil; Howell, Joe (Technical Monitor)
2001-01-01
The cost of access to space beyond low Earth orbit can be lowered if vehicles can refuel in orbit. The power requirements for a propellant depot that electrolyzes water and stores cryogenic oxygen and hydrogen can be met using technology developed for space solar power. A propellant depot is described that will be deployed in a 400 km circular equatorial orbit, receive tanks of water launched into a lower orbit from Earth by gun launch or reusable launch vehicle, convert the water to liquid hydrogen and oxygen, and store Lip to 500 metric tonnes of cryogenic propellants. The propellant stored in the depot can support transportation from low Earth orbit to geostationary Earth orbit, the Moon, LaGrange points, Mars, etc. The tanks are configured in an inline gravity-gradient configuration to minimize drag and settle the propellant. Temperatures can be maintained by body-mounted radiators; these will also provide some shielding against orbital debris. Power is supplied by a pair of solar arrays mounted perpendicular to the orbital plane, which rotate once per orbit to track the Sun. In the longer term, cryogenic propellant production technology can be applied to a larger LEO depot, as well as to the use of lunar water resources at a similar depot elsewhere.
Lipid mediator profile in vernix caseosa reflects skin barrier development.
Checa, Antonio; Holm, Tina; Sjödin, Marcus O D; Reinke, Stacey N; Alm, Johan; Scheynius, Annika; Wheelock, Craig E
2015-11-02
Vernix caseosa (VC) is a protective layer that covers the skin of most human newborns. This study characterized the VC lipid mediator profile, and examined its relationship to gestational period, gender of the newborn and maternal lifestyle. VC collected at birth from 156 newborns within the ALADDIN birth cohort was analyzed and 3 different groups of lipid mediators (eicosanoids and related oxylipin analogs, endocannabinoids and sphingolipids) were screened using LC-MS/MS. A total of 54 compounds were detected in VC. A number of associations between lipid mediators and the gestational period were observed, including increases in the ceramide to sphingomyelin ratio as well as the endocannabinoids anandamide and 2-arachidonoylglycerol. Gender-specific differences in lipid mediator levels were observed for all 3 lipid classes. In addition, levels of the linoleic acid oxidation products 9(10)-epoxy-12Z-octadecenoic and 12(13)-epoxy-9Z-octadecenoic acid (EpOMEs) as well as 12,13-dihydroxy-9Z-octadecenoic acid (DiHOME) were increased in VC of children from mothers with an anthroposophic lifestyle. Accordingly, VC was found to be rich in multiple classes of bioactive lipid mediators, which evidence lifestyle, gender and gestational week dependencies. Levels of lipid mediators in VC may therefore be useful as early stage non-invasive markers of the development of the skin as a protective barrier.
Subcutaneous and gonadal adipose tissue transcriptome differences in lean and obese female dogs.
Grant, Ryan W; Vester Boler, Brittany M; Ridge, Tonya K; Graves, Thomas K; Swanson, Kelly S
2013-12-01
Canine obesity leads to shortened life span and increased disease incidence. Adipose tissue depots are known to have unique metabolic and gene expression profiles in rodents and humans, but few comparisons of depot gene expression have been performed in the dog. Using microarray technology, our objective was to identify differentially expressed genes and enriched functional pathways between subcutaneous and gonadal adipose of lean and obese dogs to better understand the pathogenesis of obesity in the dog. Because no depot × body weight status interactions were identified in the microarray data, depot differences were the primary focus. A total of 946 and 703 transcripts were differentially expressed (FDR P < 0.05) between gonadal and subcutaneous adipose tissue in obese and lean dogs respectively. Of the adipose depot-specific differences in gene expression, 162 were present in both lean and obese dogs, with the majority (85%) expressed in the same direction. Both lean and obese dog gene lists had enrichment of the complement and coagulation cascade and systemic lupus erythematosus pathways. Obese dogs had enrichment of lysosome, extracellular matrix-receptor interaction, renin-angiotensin system and hematopoietic cell lineage pathways. Lean dogs had enrichment of glutathione metabolism and synthesis and degradation of ketone bodies. We have identified a core set of genes differentially expressed between subcutaneous and gonadal adipose tissue in dogs regardless of body weight. These genes contribute to depot-specific differences in immune function, extracellular matrix remodeling and lysosomal function and may contribute to the physiological differences noted between depots. © 2013 The Authors, Animal Genetics © 2013 Stichting International Foundation for Animal Genetics.
Antitumor efficacy and intratumoral distribution of SN-38 from polymeric depots in brain tumor model
Vejjasilpa, Ketpat; Manaspon, Chawan; Larbcharoensub, Noppadol; Boongird, Atthaporn; Hongeng, Suradej; Israsena, Nipan
2015-01-01
We investigate antitumor efficacy and 2D and 3D intratumoral distribution of 7-ethyl-10-hydroxycamptothecin (SN-38) from polymeric depots inside U-87MG xenograft tumor model in nude mice. Results showed that polymeric depots could be used to administer and controlled release of a large amount of SN-38 directly to the brain tumor model. SN-38 released from depots suppressed tumor growth, where the extent of suppression greatly depended on doses and the number of depot injections. Tumor suppression of SN-38 from depots was three-fold higher in animals which received double injections of depots at high dose (9.7 mg of SN-38) compared to single injection (2.2 mg). H&E staining of tumor sections showed that the area of tumor cell death/survival of the former group was two-fold higher than those of the latter group. Fluorescence imaging based on self-fluorescent property of SN-38 was used to evaluate the intratumoral distribution of this drug compared to histological results. The linear correlation between fluorescence intensity and the amount of SN-38 allowed quantitative determination of SN-38 in tumor tissues. Results clearly showed direct correlation between the amount of SN-38 in tumor sections and cancer cell death. Moreover, 3D reconstruction representing the distribution of SN-38 in tumors was obtained. Results from this study suggest the rationale for intratumoral drug administration and release of drugs inside tumor, which is necessary to design drug delivery systems with efficient antitumor activity. PMID:26080460
De Sousa Peixoto, R A; Turban, S; Battle, J H; Chapman, K E; Seckl, J R; Morton, N M
2008-04-01
Glucocorticoid excess promotes visceral obesity and cardiovascular disease. Similar features are found in the highly prevalent metabolic syndrome in the absence of high levels of systemic cortisol. Although elevated activity of the glucocorticoid-amplifying enzyme 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) within adipocytes might explain this paradox, the potential role of 11beta-HSD1 in preadipocytes is less clear; human omental adipose stromal vascular (ASV) cells exhibit 11beta-dehydrogenase activity (inactivation of glucocorticoids) probably due to the absence of cofactor provision by hexose-6-phosphate dehydrogenase. To clarify the depot-specific impact of 11beta-HSD1, we assessed whether preadipocytes in ASV from mesenteric (as a representative of visceral adipose tissue) and sc tissue displayed 11beta-HSD1 activity in mice. 11beta-HSD1 was highly expressed in freshly isolated ASV cells, predominantly in preadipocytes. 11beta-HSD1 mRNA and protein levels were comparable between ASV and adipocyte fractions in both depots. 11beta-HSD1 was an 11beta-reductase, thus reactivating glucocorticoids in ASV cells, consistent with hexose-6-phosphate dehydrogenase mRNA expression. Unexpectedly, glucocorticoid reactivation was higher in intact mesenteric ASV cells despite a lower expression of 11beta-HSD1 mRNA and protein (homogenate activity) levels than sc ASV cells. This suggests a novel depot-specific control over 11beta-HSD1 enzyme activity. In vivo, high-fat diet-induced obesity was accompanied by increased visceral fat preadipocyte differentiation in wild-type but not 11beta-HSD1(-/-) mice. The results suggest that 11beta-HSD1 reductase activity is augmented in mouse mesenteric preadipocytes where it promotes preadipocyte differentiation and contributes to visceral fat accumulation in obesity.
Song, Mun-Gyu; Lee, Hye-Jin; Jin, Bo-Yeong; Gutierrez-Aguilar, Ruth; Shin, Kyung-Ho; Choi, Sang-Hyun; Um, Sung Hee; Kim, Dong-Hoon
2016-11-01
Adipose tissue (AT) expansion requires AT remodeling, which depends on AT angiogenesis. Modulation of AT angiogenesis could have therapeutic promise for the treatment of obesity. However, it is unclear how the capacity of angiogenesis in each adipose depot is affected by over-nutrition. Therefore, we investigated the angiogenic capacity (AC) of subcutaneous and visceral fats in lean and obese mice. We compared the AC of epididymal fat (EF) and inguinal fat (IF) using an angiogenesis assay in diet-induced obese (DIO) mice and diet-resistant (DR) mice fed a high-fat diet (HFD). Furthermore, we compared the expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation using RT-qPCR in the EF and IF of lean mice fed a low-fat diet (LFD), DIO mice, and DR mice fed a HFD. DIO mice showed a significant increase in the AC of EF only at 22 weeks of age compared to DR mice. The expression levels of genes related to angiogenesis, macrophage recruitment, and inflammation were significantly higher in the EF of DIO mice than in those of LFD mice and DR mice, while expression levels of genes related to macrophages and their recruitment were higher in the IF of DIO mice than in those of LFD and DR mice. Expression of genes related to angiogenesis (including Hif1a , Vegfa , Fgf1 , Kdr , and Pecam1 ), macrophage recruitment, and inflammation (including Emr1 , Ccr2 , Itgax , Ccl2 , Tnf , and Il1b ) correlated more strongly with body weight in the EF of HFD-fed obese mice compared to that of IF. These results suggest depot-specific differences in AT angiogenesis and a potential role in the susceptibility to diet-induced obesity.
The MTA UXO Survey and Target Recovery on Lake Erie at the Former Erie Army Depot
2009-12-01
MTA Demonstration Front Matter ii FIGURES 1. Firing fans and target locations for Erie Army Depot in 1965...triangles at the base of the image show the locations of the 15 fixed firing positions that were used for proof firing projectiles...the marshland adjacent to the firing ranges, and along beaches fronting the former Depot, (Reference 2, Appendices B and J).3-5 The impact areas
Artificial intelligence technology assessment for the US Army Depot System Command
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennock, K A
1991-07-01
This assessment of artificial intelligence (AI) has been prepared for the US Army's Depot System Command (DESCOM) by Pacific Northwest Laboratory. The report describes several of the more promising AI technologies, focusing primarily on knowledge-based systems because they have been more successful in commercial applications than any other AI technique. The report also identifies potential Depot applications in the areas of procedural support, scheduling and planning, automated inspection, training, diagnostics, and robotic systems. One of the principal objectives of the report is to help decisionmakers within DESCOM to evaluate AI as a possible tool for solving individual depot problems. Themore » report identifies a number of factors that should be considered in such evaluations. 22 refs.« less
A 3/2-Approximation Algorithm for Multiple Depot Multiple Traveling Salesman Problem
NASA Astrophysics Data System (ADS)
Xu, Zhou; Rodrigues, Brian
As an important extension of the classical traveling salesman problem (TSP), the multiple depot multiple traveling salesman problem (MDMTSP) is to minimize the total length of a collection of tours for multiple vehicles to serve all the customers, where each vehicle must start or stay at its distinct depot. Due to the gap between the existing best approximation ratios for the TSP and for the MDMTSP in literature, which are 3/2 and 2, respectively, it is an open question whether or not a 3/2-approximation algorithm exists for the MDMTSP. We have partially addressed this question by developing a 3/2-approximation algorithm, which runs in polynomial time when the number of depots is a constant.
High Times for Painful Blues: The Endocannabinoid System in Pain-Depression Comorbidity
Fitzgibbon, Marie; Finn, David P.
2016-01-01
Depression and pain are two of the most debilitating disorders worldwide and have an estimated cooccurrence of up to 80%. Comorbidity of these disorders is more difficult to treat, associated with significant disability and impaired health-related quality of life than either condition alone, resulting in enormous social and economic cost. Several neural substrates have been identified as potential mediators in the association between depression and pain, including neuroanatomical reorganization, monoamine and neurotrophin depletion, dysregulation of the hypothalamo-pituitary-adrenal axis, and neuroinflammation. However, the past decade has seen mounting evidence supporting a role for the endogenous cannabinoid (endocannabinoid) system in affective and nociceptive processing, and thus, alterations in this system may play a key role in reciprocal interactions between depression and pain. This review will provide an overview of the preclinical evidence supporting an interaction between depression and pain and the evidence supporting a role for the endocannabinoid system in this interaction. PMID:26342110
Kiritoshi, Takaki; Ji, Guangchen; Neugebauer, Volker
2016-01-20
The medial prefrontal cortex (mPFC) serves executive functions that are impaired in neuropsychiatric disorders and pain. Underlying mechanisms remain to be determined. Here we advance the novel concept that metabotropic glutamate receptor 5 (mGluR5) fails to engage endocannabinoid (2-AG) signaling to overcome abnormal synaptic inhibition in pain, but restoring endocannabinoid signaling allows mGluR5 to increase mPFC output hence inhibit pain behaviors and mitigate cognitive deficits. Whole-cell patch-clamp recordings were made from layer V pyramidal cells in the infralimbic mPFC in rat brain slices. Electrical and optogenetic stimulations were used to analyze amygdala-driven mPFC activity. A selective mGluR5 activator (VU0360172) increased pyramidal output through an endocannabinoid-dependent mechanism because intracellular inhibition of the major 2-AG synthesizing enzyme diacylglycerol lipase or blockade of CB1 receptors abolished the facilitatory effect of VU0360172. In an arthritis pain model mGluR5 activation failed to overcome abnormal synaptic inhibition and increase pyramidal output. mGluR5 function was rescued by restoring 2-AG-CB1 signaling with a CB1 agonist (ACEA) or inhibitors of postsynaptic 2-AG hydrolyzing enzyme ABHD6 (intracellular WWL70) and monoacylglycerol lipase MGL (JZL184) or by blocking GABAergic inhibition with intracellular picrotoxin. CB1-mediated depolarization-induced suppression of synaptic inhibition (DSI) was also impaired in the pain model but could be restored by coapplication of VU0360172 and ACEA. Stereotaxic coadministration of VU0360172 and ACEA into the infralimbic, but not anterior cingulate, cortex mitigated decision-making deficits and pain behaviors of arthritic animals. The results suggest that rescue of impaired endocannabinoid-dependent mGluR5 function in the mPFC can restore mPFC output and cognitive functions and inhibit pain. Significance statement: Dysfunctions in prefrontal cortical interactions with subcortical brain regions, such as the amygdala, are emerging as important players in neuropsychiatric disorders and pain. This study identifies a novel mechanism and rescue strategy for impaired medial prefrontal cortical function in an animal model of arthritis pain. Specifically, an integrative approach of optogenetics, pharmacology, electrophysiology, and behavior is used to advance the novel concept that a breakdown of metabotropic glutamate receptor subtype mGluR5 and endocannabinoid signaling in infralimbic pyramidal cells fails to control abnormal amygdala-driven synaptic inhibition in the arthritis pain model. Restoring endocannabinoid signaling allows mGluR5 activation to increase infralimbic output hence inhibit pain behaviors and mitigate pain-related cognitive deficits. Copyright © 2016 the authors 0270-6474/16/360837-14$15.00/0.
Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F; Huestis, Marilyn A; Payer, Doris E; Wilson, Alan A; Houle, Sylvain; Kish, Stephen J; Tong, Junchao
2016-11-01
One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH), and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Brain FAAH binding was measured with positron emission tomography and [ 11 C]CURB in 22 healthy control subjects and ten chronic cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine, and hair levels of cannabinoids and metabolites were determined. In cannabis users, FAAH binding was significantly lower by 14%-20% across the brain regions examined than in matched control subjects (overall Cohen's d = 0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. Copyright © 2016 Society of Biological Psychiatry. All rights reserved.
Boileau, Isabelle; Mansouri, Esmaeil; Williams, Belinda; Le Foll, Bernard; Rusjan, Pablo; Mizrahi, Romina; Tyndale, Rachel F.; Huestis, Marilyn A.; Payer, Doris E.; Wilson, Alan A.; Houle, Sylvain; Kish, Stephen J.; Tong, Junchao
2016-01-01
Background One of the major mechanisms for terminating the actions of the endocannabinoid anandamide is hydrolysis by fatty acid amide hydrolase (FAAH) and inhibitors of the enzyme were suggested as potential treatment for human cannabis dependence. However, the status of brain FAAH in cannabis use disorder is unknown. Methods Brain FAAH binding was measured with positron emission tomography and [11C]CURB in 22 healthy control subjects and ten chronic, frequent cannabis users during early abstinence. The FAAH genetic polymorphism (rs324420) and blood, urine and hair levels of cannabinoids and metabolites were determined. Results In cannabis users FAAH binding was significantly lower by 14–20% across the brain regions examined as compared to matched control subjects (overall Cohen’s d=0.96). Lower binding was negatively correlated with cannabinoid concentrations in blood and urine and was associated with higher trait impulsiveness. Conclusions Lower FAAH binding levels in the brain may be a consequence of chronic and recent cannabis exposure and could contribute to cannabis withdrawal. This effect should be considered in the development of novel treatment strategies for cannabis use disorder that target FAAH and endocannabinoids. Further studies are needed to examine possible changes in FAAH binding during prolonged cannabis abstinence and whether lower FAAH binding predates drug use. PMID:27345297