Science.gov

Sample records for depth charges

  1. DEPTH-CHARGE static and time-dependent perturbation/sensitivity system for nuclear reactor core analysis. Revision I. [DEPTH-CHARGE code

    SciTech Connect

    White, J.R.

    1985-04-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code black for both static and time-dependent perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Laboratory. The DEPTH module (coupled with VENTURE) solves for the three adjoint functions of Depletion Perturbation Theory and calculates the desired time-dependent derivatives of the response with respect to the nuclide concentrations and nuclear data utilized in the reference model. The CHARGE code is a collection of utility routines for general data manipulation and input preparation and considerably extends the usefulness of the system through the automatic generation of adjoint sources, estimated perturbed responses, and relative data sensitivity coefficients. Combined, the DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analyses of realistic multidimensional reactor models. This current documentation incorporates minor revisions to the original DEPTH-CHARGE documentation (ORNL/CSD-78) to reflect some new capabilities within the individual codes.

  2. Anomalous effect of trench-oxide depth on alpha-particle-induced charge collection

    SciTech Connect

    Shin, H.; Kim, N.M.

    1999-06-01

    The effect of trench-oxide depth on the alpha-particle-induced charge collection is analyzed for the first time. From the simulation results, it was found that the depth of trench oxide has a considerable influence on the amount of collected charge. The confining of generated charge by the trench oxide was identified as a cause of this anomalous effect. Therefore, the tradeoff between soft error rate and cell to cell isolation characteristics should be considered in optimizing the depth of trench oxide.

  3. Optoelectronic properties and depth profile of charge transport in nanocrystal films

    NASA Astrophysics Data System (ADS)

    Aigner, Willi; Bienek, Oliver; Desta, Derese; Wiggers, Hartmut; Stutzmann, Martin; Pereira, Rui N.

    2017-07-01

    We investigate the charge transport in nanocrystal (NC) films using field effect transistors (FETs) of silicon NCs. By studying films with various thicknesses in the dark and under illumination with photons with different penetration depths (UV and red light), we are able to predictably change the spatial distribution of charge carriers across the films' profile. The experimental data are compared with photoinduced charge carrier generation rates computed using finite-difference time-domain (FDTD) simulations complemented with optical measurements. This enables us to understand the optoelectronic properties of NC films and the depth profile dependence of the charge transport properties. From electrical measurements, we extract the total (bulk) photoinduced charge carrier densities (nphoto) and the photoinduced charge carrier densities in the FETs channel (nphoto*). We observe that the values of nphoto and their dependence on film thickness are similar for UV and red light illumination, whereas a significant difference is observed for the values of nphoto*. The dependencies of nphoto and nphoto* on film thickness and illumination wavelength are compared with data from FDTD simulations. Combining experimental data and simulation results, we find that charge carriers in the top rough surface of the films cannot contribute to the macroscopic charge transport. Moreover, we conclude that below the top rough surface of NC films, the efficiency of charge transport, including the charge carrier mobility, is homogeneous across the film thickness. Our work shows that the use of NC films as photoactive layers in applications requiring harvesting of strongly absorbed photons such as photodetectors and photovoltaics demands a very rigorous control over the films' roughness.

  4. Deconvolution of charged particle spectra from neutron depth profiling using Simplex method

    NASA Astrophysics Data System (ADS)

    Hnatowicz, V.; Vacík, J.; Fink, D.

    2010-07-01

    Neutron depth profiling (NDP), based on neutron induced nuclear reactions, is a well known, nondestructive technique for the determination of the concentration depth profiles of some isotopes in the surface layers of solids. The profile determination consists of deconvolution of a relevant part of the energy spectra of the charged reaction products. Several solutions have been suggested for this problem. In this work, an alternative computer code (LIBOR), which makes use of the Simplex minimization technique for the deconvolution of the NDP spectra, is described and its performance is documented on several examples.

  5. Deconvolution of charged particle spectra from neutron depth profiling using Simplex method.

    PubMed

    Hnatowicz, V; Vacík, J; Fink, D

    2010-07-01

    Neutron depth profiling (NDP), based on neutron induced nuclear reactions, is a well known, nondestructive technique for the determination of the concentration depth profiles of some isotopes in the surface layers of solids. The profile determination consists of deconvolution of a relevant part of the energy spectra of the charged reaction products. Several solutions have been suggested for this problem. In this work, an alternative computer code (LIBOR), which makes use of the Simplex minimization technique for the deconvolution of the NDP spectra, is described and its performance is documented on several examples.

  6. Depth.

    PubMed

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space-a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues.

  7. Depth

    PubMed Central

    Koenderink, Jan J; van Doorn, Andrea J; Wagemans, Johan

    2011-01-01

    Depth is the feeling of remoteness, or separateness, that accompanies awareness in human modalities like vision and audition. In specific cases depths can be graded on an ordinal scale, or even measured quantitatively on an interval scale. In the case of pictorial vision this is complicated by the fact that human observers often appear to apply mental transformations that involve depths in distinct visual directions. This implies that a comparison of empirically determined depths between observers involves pictorial space as an integral entity, whereas comparing pictorial depths as such is meaningless. We describe the formal structure of pictorial space purely in the phenomenological domain, without taking recourse to the theories of optics which properly apply to physical space—a distinct ontological domain. We introduce a number of general ways to design and implement methods of geodesy in pictorial space, and discuss some basic problems associated with such measurements. We deal mainly with conceptual issues. PMID:23145244

  8. Depth-charge static and time-dependence perturbation/sensitivity system for nuclear reactor core analysis. [LMFBR

    SciTech Connect

    White, J.R.

    1981-09-01

    This report provides the background theory, user input, and sample problems required for the efficient application of the DEPTH-CHARGE system - a code block for both static and time-dependence perturbation theory and data sensitivity analyses. The DEPTH-CHARGE system is of modular construction and has been implemented within the VENTURE-BURNER computational system at Oak Ridge National Labortary. The DEPTH-CHARGE system provides, for the first time, a complete generalized first-order perturbation/sensitivity theory capability for both static and time-dependent analysis of realistic multidimensional reactor models.

  9. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling

    DOE PAGES

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun; ...

    2016-08-26

    LiCoO2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged to 4.6 Vmore » or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.« less

  10. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling

    NASA Astrophysics Data System (ADS)

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun; Cui, Yingzhi; Guan, Ting; Gao, Yunzhi; Du, Chunyu; Yin, Geping; Lin, Feng; Nordlund, Dennis

    2016-10-01

    LiCoO2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. The capacity fading after long-term cycling of battery over-charged to 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). However, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.

  11. Degradation mechanism of over-charged LiCoO2/mesocarbon microbeads battery during shallow depth of discharge cycling

    SciTech Connect

    Zhang, Lingling; Ma, Yulin; Cheng, Xinqun; Cui, Yingzhi; Guan, Ting; Gao, Yunzhi; Du, Chunyu; Yin, Geping; Lin, Feng; Nordlund, Dennis

    2016-08-26

    LiCoO2/mesocarbon microbeads (MCMB) batteries are over-charged to different voltage (4.4 V, 4.5 V, 4.6 V, and 4.7 V, respectively) for ten times, and then are cycled 1000 times for shallow depth of discharge. The morphology, structure, and electrochemical performance of the electrode materials were studied in detail in order to identify the capacity fading mechanism of over-charged battery after long-term cycling. The cycling performances of LiCoO2/MCMB batteries are gradually aggravated with the increase of over-charging voltage and the degradation mechanism is diverse upon the degree of over-charging. Furthermore, the capacity fading after long-term cycling of battery over-charged to 4.6 V or 4.7 V is mainly attributed to the cathodes. Soft X-ray absorption spectroscopy (XAS) demonstrates that the lower valence state of cobalt exists on the surface of the LiCoO2 after serious over-charging (4.6 V or 4.7 V), and cobalt is dissolved then deposited on the anode according to the result of energy dispersive spectrometry (EDS). But, after shallow over-charging (4.4 V or 4.5 V), the capacity deterioration is proposed as the loss of active lithium, presented by the generation of the SEI film on the anode, which is verified by water washed tests.

  12. Noncontacting laser photocarrier radiometric depth profilometry of harmonically modulated band bending in the space-charge layer at doped SiO{sub 2}-Si interfaces

    SciTech Connect

    Mandelis, Andreas; Batista, Jerias; Gibkes, Juergen; Pawlak, Michael; Pelzl, Josef

    2005-04-15

    Laser infrared photocarrier radiometry (PCR) was used with a harmonically modulated low-power laser pump and a superposed dc superband-gap optical bias (a secondary laser beam) to control and monitor the space-charge-layer (SCL) width in oxidized p-Si-SiO{sub 2} and n-Si-SiO{sub 2} interfaces (wafers) exhibiting charged interface-state related band bending. Applying the theory of PCR-SCL dynamics [A. Mandelis, J. Appl. Phys. 97, 083508 (2005)] to the experiments yielded various transport parameters of the samples as well as depth profiles of the SCL exhibiting complete ( p-type Si) or partial (n-type Si) band flattening, to a degree controlled by widely different minority-carrier capture cross section at each interface. The uncompensated charge density at the interface was also calculated from the theory.

  13. Skin-depth lattice strain, core-level trap depression and valence charge polarization of Al surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Bo, Maolin; Liu, Yonghui; Guo, Yongling; Wang, Haibin; Yue, Jian; Huang, Yongli

    2016-01-01

    Clarifying the origin for surface core-level shift (SCLS) and gaining quantitative information regarding the coordination-resolved local strain, binding energy (BE) shift and cohesive energy change have been a challenge. Here, we show that a combination of the bond order-length-strength (BOLS) premise, X-ray photoelectron spectroscopy (XPS) and the ab initio density functional theory (DFT) calculations of aluminum (Al) 2p3/2 energy shift of Al surfaces has enabled us to derive such information, namely, (i) the 2p3/2 energy of an isolated Al atom (72.146 ± 0.003eV) and its bulk shift (0.499 eV); (ii) the skin lattice contracts by up to 12.5% and the BE density increases by 70%; and (iii) the cohesive energy drops up to 38%. It is affirmed that the shorter and stronger bonds between under-coordinated atoms provide a perturbation to the Hamiltonian and hence lead to the local strain, quantum entrapment and valence charge polarization. Findings should help in understanding the phenomena of surface pre-melting and skin-high elasticity, in general.

  14. Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by charge flipping method

    SciTech Connect

    Chinthaka Silva, G.W.; Kercher, Andrew A.; Hunn, John D.; Martin, Rodger C.; Jellison, Gerald E.; Meyer, Harry M.

    2012-10-15

    Samples with five different zirconium carbide compositions (C/Zr molar ratio=0.84, 0.89, 0.95, 1.05, and 1.17) have been fabricated and studied using a variety of experimental techniques. Each sample was zone refined to ensure that the end product was polycrystalline with a grain size of 10-100 {mu}m. It was found that the lattice parameter was largest for the x=0.89 composition and smallest for the x=1.17 total C/Zr composition, but was not linear; this nonlinearity is possibly explained using electron densities calculated using charge flipping technique. Among the five samples, the unit cell of the ZrC{sub 0.89} sample showed the highest electron density, corresponding to the highest carbon incorporation and the largest lattice parameter. The ZrC{sub 0.84} sample showed the lowest carbon incorporation, resulting in a larger number of carbon vacancies and resultant strain. Samples with larger carbon ratios (x=0.95, 1.05, and 1.17) showed a slight decrease in lattice parameter, due to a decrease in electron density. Optical anisotropy measurements suggest that these three samples contained significant amounts of a graphitic carbon phase, not bonded to the Zr atoms. - Graphical abstract: Characterization of zirconium carbides using electron microscopy, optical anisotropy, Auger depth profiles, X-ray diffraction, and electron density calculated by the charge flipping method. Highlights: Black-Right-Pointing-Pointer The lattice parameter variation: ZrC{sub 0.89}>ZrC{sub 0.84}>ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}. Black-Right-Pointing-Pointer Surface oxygen with no correlation to the lattice parameter variation. Black-Right-Pointing-Pointer ZrC{sub 0.89} had highest electron densities correspond to highest carbon incorporation. Black-Right-Pointing-Pointer Second highest lattice parameter in ZrC{sub 0.84} due to strain. Black-Right-Pointing-Pointer Unit cell electron density order: ZrC{sub 0.95}>ZrC{sub 1.05}>ZrC{sub 1.17}.

  15. Folded structure and insertion depth of the frog-skin antimicrobial Peptide esculentin-1b(1-18) in the presence of differently charged membrane-mimicking micelles.

    PubMed

    Manzo, Giorgia; Casu, Mariano; Rinaldi, Andrea C; Montaldo, Nicola P; Luganini, Anna; Gribaudo, Giorgio; Scorciapino, Mariano A

    2014-11-26

    Antimicrobial peptides (AMPs) are effectors of the innate immunity of most organisms. Their role in the defense against pathogen attack and their high selectivity for bacterial cells make them attractive for the development of a new class of antimicrobial drugs. The N-terminal fragment of the frog-skin peptide esculentin-1b (Esc(1-18)) has shown broad-spectrum antimicrobial activity. Similarly to most cationic AMPs, it is supposed to act by binding to and damaging the negatively charged plasma membrane of bacteria. Differently from many other AMPs, Esc(1-18) activity is preserved in biological fluids such as serum. In this work, a structural investigation was performed through NMR spectroscopy. The 3D structure was obtained in the presence of either zwitterionic or negatively charged micelles as membrane models for eukaryotic and prokaryotic membranes, respectively. Esc(1-18) showed a higher affinity for and deeper insertion into the latter and adopted an amphipathic helical structure characterized by a kink at the residue G8. These findings were confirmed by measuring penetration into lipid monolayers. The presence of negatively charged lipids in the bilayer appears to be necessary for Esc(1-18) to bind, to fold in the right three-dimensional structure, and, ultimately, to exert its biological role as an AMP.

  16. In-Depth Analysis of Glycoprotein Sialylation in Serum Using a Dual-Functional Material with Superior Hydrophilicity and Switchable Surface Charge.

    PubMed

    Dong, Xuefang; Qin, Hongqiang; Mao, Jiawei; Yu, Dongping; Li, Xiuling; Shen, Aijin; Yan, Jingyu; Yu, Long; Guo, Zhimou; Ye, Mingliang; Zou, Hanfa; Liang, Xinmiao

    2017-04-04

    Sialylation typically occurs at the terminal of glycans, and its aberration often correlates with diseases including neurological diseases and cancer. However, the analysis of glycoprotein sialylation in complex biological samples is still challenging due to their low abundance. Herein, a histidine-bonded silica (HBS) material with a hydrophilic interaction and switchable surface charge was fabricated to enrich sialylated glycopeptides (SGPs) from the digest of proteomics samples. High selectivity toward SGPs was obtained by combining the superior hydrophilicity and switchable-charge characteristics. During the enrichment of sialylated glycopeptides from bovine fetuin digest, seven glycopeptides were detected even at the ratio of 1:5000 with the nonsialylated glycopeptides, demonstrating the high specificity of SGP enrichment by using HBS material. Then, HBS material was further utilized to selectively enrich SGPs from the protein digest of human serum, and 487 glycosites were identified from only 2 μL of human serum; 92.0% of the glycopeptides contained at least one sialic acid, indicating good performance for SGP enrichment by using HBS material. Furthermore, the prepared HBS material also has great potential applications in the analysis of glycoprotein sialylation from other complex biological samples.

  17. Deep depth undex simulator

    SciTech Connect

    Higginbotham, R. R.; Malakhoff, A.

    1985-01-29

    A deep depth underwater simulator is illustrated for determining the dual effects of nuclear type underwater explosion shockwaves and hydrostatic pressures on a test vessel while simulating, hydrostatically, that the test vessel is located at deep depths. The test vessel is positioned within a specially designed pressure vessel followed by pressurizing a fluid contained between the test and pressure vessels. The pressure vessel, with the test vessel suspended therein, is then placed in a body of water at a relatively shallow depth, and an explosive charge is detonated at a predetermined distance from the pressure vessel. The resulting shockwave is transmitted through the pressure vessel wall so that the shockwave impinging on the test vessel is representative of nuclear type explosive shockwaves transmitted to an underwater structure at great depths.

  18. Apparent Depth.

    ERIC Educational Resources Information Center

    Nassar, Antonio B.

    1994-01-01

    Discusses a well-known optical refraction problem where the depth of an object in a liquid is determined. Proposes that many texts incorrectly solve the problem. Provides theory, equations, and diagrams. (MVL)

  19. Depth keying

    NASA Astrophysics Data System (ADS)

    Gvili, Ronen; Kaplan, Amir; Ofek, Eyal; Yahav, Giora

    2003-05-01

    We present a new solution to the known problem of video keying in a natural environment. We segment foreground objects from background objects using their relative distance from the camera, which makes it possible to do away with the use of color for keying. To do so, we developed and built a novel depth video camera, capable of producing RGB and D signals, where D stands for the distance to each pixel. The new RGBD camera enables the creation of a whole new gallery of effects and applications such as multi-layer background substitutions. This new modality makes the production of real time mixed reality video possible, as well as post-production manipulation of recorded video. We address the problem of color spill -- in which the color of the foreground object is mixed, along its boundary, with the background color. This problem prevents an accurate separation of the foreground object from its background, and it is most visible when compositing the foreground objects to a new background. Most existing techniques are limited to the use of a constant background color. We offer a novel general approach to the problem with enabling the use of the natural background, based upon the D channel generated by the camera.

  20. Water surface depth instrument

    NASA Technical Reports Server (NTRS)

    Davis, Q. C., IV

    1970-01-01

    Measurement gage provides instant visual indication of water depth based on capillary action and light diffraction in a group of solid, highly polished polymethyl methacrylate rods. Rod lengths are adjustable to measure various water depths in any desired increments.

  1. Detection of Charged Particles with Charge Injection Devices

    SciTech Connect

    Fletcher, K.A.; Apker, B.; Hammond, S.; Punaro, J.; Marshall, F.J.; Laine, J.; Forties, R.

    2007-07-02

    A method for using charge injection devices (CIDs) for detection of high-energy charged particles from inertial-confinement fusion reactions is described. Because of the relatively small depletion region of the CID camera (depletion depth of ~7 um), aluminum foils are placed in front of the device to reduce the energy of the charged particles and maximize the energy deposited in the CID. Simultaneous measurements of ^2H(d,p)^3H protons with a CID and a surface barrier detector indicate that the CID is an efficient detector of charged fusion products. Tests using high energy alpha particles emitted from a radium-226 source are also reported.

  2. Depth of Indexing.

    ERIC Educational Resources Information Center

    Maron, M. E.

    1979-01-01

    An analysis of the question of the optimal depth of indexing in order to design an effective document retrieval system is presented. It is shown that some more fundamental questions about indexing and retrieval rather than indexing depth are central to the issue. (Author/MBR)

  3. Charging machine

    DOEpatents

    Medlin, John B.

    1976-05-25

    A charging machine for loading fuel slugs into the process tubes of a nuclear reactor includes a tubular housing connected to the process tube, a charging trough connected to the other end of the tubular housing, a device for loading the charging trough with a group of fuel slugs, means for equalizing the coolant pressure in the charging trough with the pressure in the process tubes, means for pushing the group of fuel slugs into the process tube and a latch and a seal engaging the last object in the group of fuel slugs to prevent the fuel slugs from being ejected from the process tube when the pusher is removed and to prevent pressure liquid from entering the charging machine.

  4. Stereoscopic depth constancy.

    PubMed

    Guan, Phillip; Banks, Martin S

    2016-06-19

    Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content.This article is part of the themed issue 'Vision in our three-dimensional world'. © 2016 The Authors.

  5. Stereoscopic depth constancy

    PubMed Central

    Guan, Phillip

    2016-01-01

    Depth constancy is the ability to perceive a fixed depth interval in the world as constant despite changes in viewing distance and the spatial scale of depth variation. It is well known that the spatial frequency of depth variation has a large effect on threshold. In the first experiment, we determined that the visual system compensates for this differential sensitivity when the change in disparity is suprathreshold, thereby attaining constancy similar to contrast constancy in the luminance domain. In a second experiment, we examined the ability to perceive constant depth when the spatial frequency and viewing distance both changed. To attain constancy in this situation, the visual system has to estimate distance. We investigated this ability when vergence, accommodation and vertical disparity are all presented accurately and therefore provided veridical information about viewing distance. We found that constancy is nearly complete across changes in viewing distance. Depth constancy is most complete when the scale of the depth relief is constant in the world rather than when it is constant in angular units at the retina. These results bear on the efficacy of algorithms for creating stereo content. This article is part of the themed issue ‘Vision in our three-dimensional world’. PMID:27269596

  6. Coastal Secchi Depth Atlas

    DTIC Science & Technology

    1985-07-01

    following The Secchi depth is a rough measure of the water transparency 2.0 ins. in which a circular white disk , 43-237 cm in diameter, is lowered in...collected data. Averaging optical tion and the sea surface height (Hojerslev, 1974). The Secchi depth tes with a one-degree square leads to a bias toward...side. The measurement is affected by both the solar eleva- 0A0 1 in and the sea surface height (Hojerslev, 1974). The Secchi depth o 0 - asurement is

  7. Motivation with Depth.

    ERIC Educational Resources Information Center

    DiSpezio, Michael A.

    2000-01-01

    Presents an illusional arena by offering experience in optical illusions in which students must apply critical analysis to their innate information gathering systems. Introduces different types of depth illusions for students to experience. (ASK)

  8. Depth Optimization Study

    SciTech Connect

    Kawase, Mitsuhiro

    2009-11-22

    The zipped file contains a directory of data and routines used in the NNMREC turbine depth optimization study (Kawase et al., 2011), and calculation results thereof. For further info, please contact Mitsuhiro Kawase at kawase@uw.edu. Reference: Mitsuhiro Kawase, Patricia Beba, and Brian Fabien (2011), Finding an Optimal Placement Depth for a Tidal In-Stream Conversion Device in an Energetic, Baroclinic Tidal Channel, NNMREC Technical Report.

  9. High altitude diving depths.

    PubMed

    Paulev, Poul-Erik; Zubieta-Calleja, Gustavo

    2007-01-01

    In order to make any sea level dive table usable during high altitude diving, a new conversion factor is created. We introduce the standardized equivalent sea depth (SESD), which allows conversion of the actual lake diving depth (ALDD) to an equivalent sea dive depth. SESD is defined as the sea depth in meters or feet for a standardized sea dive, equivalent to a mountain lake dive at any altitude, such that [image omitted] [image omitted] [image omitted] Mountain lakes contain fresh water with a relative density that can be standardized to 1,000 kg m(-3), and sea water can likewise be standardized to a relative density of 1,033 kg m(-3), at the general gravity of 9.80665 m s(-2). The water density ratio (1,000/1,033) refers to the fresh lake water and the standardized sea water densities. Following calculation of the SESD factor, we recommend the use of our simplified diving table or any acceptable sea level dive table with two fundamental guidelines: 1. The classical decompression stages (30, 20, and 10 feet or 9, 6, and 3 m) are corrected to the altitude lake level, dividing the stage depth by the SESD factor. 2. Likewise, the lake ascent rate during diving is equal to the sea ascent rate divided by the SESD factor.

  10. Ambiguity in pictorial depth.

    PubMed

    Battu, Balaraju; Kappers, Astrid M L; Koenderink, Jan J

    2007-01-01

    Pictorial space is the 3-D impression that one obtains when looking 'into' a 2-D picture. One is aware of 3-D 'opaque' objects. 'Pictorial reliefs' are the surfaces of such pictorial objects in 'pictorial space'. Photographs (or any pictures) do in no way fully specify physical scenes. Rather, any photograph is compatible with an infinite number of possible scenes that may be called 'metameric scenes'. If pictorial relief is one of these metameric scenes, the response may be considered 'veridical'. The conventional usage is more restrictive and is indeed inconsistent. Thus the observer has much freedom in arriving at such a 'veridical' response. To address this ambiguity, we determined the pictorial reliefs for eight observers, six pictures, and two psychophysical methods. We used 'methods of cross-sections' to operationalise pictorial reliefs. We find that linear regression of the depths of relief at corresponding locations in the picture for different observers often lead to very low (even insignificant) R2s. Thus the responses are idiosyncratic to a large degree. Perhaps surprisingly, we also observed that multiple regression of depth and picture coordinates at corresponding locations often lead to very high R2s. Often R2s increased from insignificant up to almost 1. Apparently, to a large extent 'depth' is irrelevant as a psychophysical variable, in the sense that it does not uniquely account for the relation of the response to the pictorial structure. This clearly runs counter to the bulk of the literature on pictorial 'depth perception'. The invariant core of interindividual perception proves to be of an 'affine' rather than a Euclidean nature; that is to say, 'pictorial space' is not simply the picture plane augmented with a depth dimension.

  11. Cathode depth sensing in CZT detectors

    NASA Astrophysics Data System (ADS)

    Hong, JaeSub; Bellm, Eric C.; Grindlay, Jonathan E.; Narita, Tomohiko

    2004-02-01

    Measuring the depth of interaction in thick Cadmium-Zinc-Telluride (CZT) detectors allows improved imaging and spectroscopy for hard X-ray imaging above 100 keV. The Energetic X-ray Imaging Survey Telescope (EXIST) will employ relatively thick (5 - 10 mm) CZT detectors, which are required to perform the broad energy-band sky survey. Interaction depth information is needed to correct events to the detector "focal plane" for correct imaging and can be used to improve the energy resolution of the detector at high energies by allowing event-based corrections for incomplete charge collection. Background rejection is also improved by allowing low energy events from the rear and sides of the detector to be rejected. We present experimental results of intereaction depth sensing in a 5 mm thick pixellated Au-contact IMARAD CZT detector. The depth sensing was done by making simultaneous measurements of cathode and anode signals, where the interaction depth at a given energy is proportional to the ratio of cathode/anode signals. We demonstrate how a simple empirical formula describing the event distributions in the cathode/anode signal space can dramatically improve the energy resolution. We also estimate the energy and depth resolution of the detector as a function of the energy and the interaction depth. We also show a depth-sensing prototype system currently under development for EXIST in which cathode signals from 8, 16 or 32 crystals can be read-out by a small multi-channel ASIC board that is vertically edge-mounted on the cathode electrode along every second CZT crystal boundary. This allows CZT crystals to be tiled contiguously with minimum impact on throughput of incoming photons. The robust packaging is crucial in EXIST, which will employ very large area imaging CZT detector arrays.

  12. Grains charges in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Bel, N.; Lafon, J. P.; Viala, Y. P.

    1989-01-01

    The charge of cosmic grains could play an important role in many astrophysical phenomena. It probably has an influence on the coagulation of grains and more generally on grain-grain collisions, and on interaction between charged particles and grains which could lead to the formation of large grains or large molecules. The electrostatic charge of grains depends mainly on the nature of constitutive material of the grain and on the physical properties of its environment: it results from a delicate balance between the plasma particle collection and the photoelectron emission, both of them depending on each other. The charge of the grain is obtained in two steps: (1) using the numerical model the characteristics of the environment of the grain are computed; (2) the charge of a grain which is embedded in this environment is determined. The profile of the equilibrium charge of some typical grains through different types of interstellar clouds is obtained as a function of the depth of the cloud. It is shown that the grain charge can reach high values not only in hot diffuse clouds, but also in clouds with higher densities. The results are very sensitive to the mean UV interstellar radiation field. Three parameters appear to be essential but with different levels of sensitivity of the charge: the gas density, the temperature, and the total thickness of the cloud.

  13. Monocular transparency generates quantitative depth.

    PubMed

    Howard, Ian P; Duke, Philip A

    2003-11-01

    Monocular zones adjacent to depth steps can create an impression of depth in the absence of binocular disparity. However, the magnitude of depth is not specified. We designed a stereogram that provides information about depth magnitude but which has no disparity. The effect depends on transparency rather than occlusion. For most subjects, depth magnitude produced by monocular transparency was similar to that created by a disparity-defined depth probe. Addition of disparity to monocular transparency did not improve the accuracy of depth settings. The magnitude of depth created by monocular occlusion fell short of that created by monocular transparency.

  14. Variable depth core sampler

    DOEpatents

    Bourgeois, Peter M.; Reger, Robert J.

    1996-01-01

    A variable depth core sampler apparatus comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member.

  15. Variable depth core sampler

    DOEpatents

    Bourgeois, P.M.; Reger, R.J.

    1996-02-20

    A variable depth core sampler apparatus is described comprising a first circular hole saw member, having longitudinal sections that collapses to form a point and capture a sample, and a second circular hole saw member residing inside said first hole saw member to support the longitudinal sections of said first hole saw member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside said first hole saw member. 7 figs.

  16. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications

  17. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the companyused technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  18. Burn Depth Monitor

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Supra Medical Systems is successfully marketing a device that detects the depth of burn wounds in human skin. To develop the product, the company used technology developed by NASA Langley physicists looking for better ultrasonic detection of small air bubbles and cracks in metal. The device is being marketed to burn wound analysis and treatment centers. Through a Space Act agreement, NASA and the company are also working to further develop ultrasonic instruments for new medical applications.

  19. Using "residual depths" to monitor pool depths independently of discharge

    Treesearch

    Thomas E. Lisle

    1987-01-01

    As vital components of habitat for stream fishes, pools are often monitored to follow the effects of enhancement projects and natural stream processes. Variations of water depth with discharge, however, can complicate monitoring changes in the depth and volume of pools. To subtract the effect of discharge on depth in pools, residual depths can be measured. Residual...

  20. Variable depth core sampler

    SciTech Connect

    Bourgeois, P.M.; Reger, R.J.

    1994-12-31

    This invention relates to a sampling means, more particularly to a device to sample hard surfaces at varying depths. Often it is desirable to take samples of a hard surface wherein the samples are of the same diameter but of varying depths. Current practice requires that a full top-to-bottom sample of the material be taken, using a hole saw, and boring a hole from one end of the material to the other. The sample thus taken is removed from the hole saw and the middle of said sample is then subjected to further investigation. This paper describes a variable depth core sampler comprimising a circular hole saw member, having longitudinal sections that collapse to form a point and capture a sample, and a second saw member residing inside the first hole saw member to support the longitudinal sections of the first member and prevent them from collapsing to form a point. The second hole saw member may be raised and lowered inside the the first hole saw member.

  1. Submerged AUV Charging Station

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Chao, Yi; Curtin, Thomas

    2014-01-01

    Autonomous Underwater Vehicles (AUVs) are becoming increasingly important for military surveillance and mine detection. Most AUVs are battery powered and have limited lifetimes of a few days to a few weeks. This greatly limits the distance that AUVs can travel underwater. Using a series of submerged AUV charging stations, AUVs could travel a limited distance to the next charging station, recharge its batteries, and continue to the next charging station, thus traveling great distances in a relatively short time, similar to the Old West “Pony Express.” One solution is to use temperature differences at various depths in the ocean to produce electricity, which is then stored in a submerged battery. It is preferred to have the upper buoy submerged a reasonable distance below the surface, so as not to be seen from above and not to be inadvertently destroyed by storms or ocean going vessels. In a previous invention, a phase change material (PCM) is melted (expanded) at warm temperatures, for example, 15 °C, and frozen (contracted) at cooler temperatures, for example, 8 °C. Tubes containing the PCM, which could be paraffin such as pentadecane, would be inserted into a container filled with hydraulic oil. When the PCM is melted (expanded), it pushes the oil out into a container that is pressurized to about 3,000 psi (approx equals 20.7 MPa). When a valve is opened, the high-pressure oil passes through a hydraulic motor, which turns a generator and charges a battery. The low-pressure oil is finally reabsorbed into the PCM canister when the PCM tubes are frozen (contracted). Some of the electricity produced could be used to control an external bladder or a motor to the tether line, such that depth cycling is continued for a very long period of time. Alternatively, after the electricity is generated by the hydraulic motor, the exiting low-pressure oil from the hydraulic motor could be vented directly to an external bladder on the AUV, such that filling of the bladder

  2. Repulsion between Oppositely Charged Planar Macroions

    PubMed Central

    Jho, YongSeok; Brown, Frank L. H.; Kim, MahnWon; Pincus, Philip A.

    2013-01-01

    The repulsive interaction between oppositely charged macroions is investigated using Grand Canonical Monte Carlo simulations of an unrestricted primitive model, including the effect of inhomogeneous surface charge and its density, the depth of surface charge, the cation size, and the dielectric permittivity of solvent and macroions, and their contrast. The origin of the repulsion is a combination of osmotic pressure and ionic screening resulting from excess salt between the macroions. The excess charge over-reduces the electrostatic attraction between macroions and raises the entropic repulsion. The magnitude of the repulsion increases when the dielectric constant of the solvent is lowered (below that of water) and/or the surface charge density is increased, in good agreement with experiment. Smaller size of surface charge and the cation, their discreteness and mobility are other factors that enhance the repulsion and charge inversion phenomenons. PMID:23940518

  3. Blast wave from buried charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.L.

    1993-08-01

    While much airblast data are available for height-of-burst (HOB) effects, systematic airblast data for depth-of-burst (DOB) effects are more limited. It is logical to ask whether the spherical 0.5-g Nitropenta charges that, proved to be successful for HOB tests at EMI are also suitable for experiments with buried charges in the laboratory scale; preliminary studies indicated in the alternative. Of special interest is the airblast environment generated by detonations just above or below the around surface. This paper presents a brief summary of the test results.

  4. Plumbing the earth's depth

    SciTech Connect

    Traeger, R.; Smith, M.; Murphy, H.

    1988-09-01

    Although the earth supplies us with energy, minerals, and food, and also receives most of our solid and liquid wastes, we know less about what lies 1000 meters beneath our feet than we do about the depths of the ocean or the outer reaches of space. When the energy crisis of the 1970s occurred, the national laboratories and industry began to work together on problems related to the production of energy from oil, gas, and geothermal resources. The alliance was successful because of the complementary strengths of its components. While the national labs offered advanced hardware and software, large-scale testing facilities, and a multidisciplinary approach, industry's perspective on economics and the marketplace provided the effort with a focus. The result was the development and commercialization of geotechnologies running the gamut from exploration and drilling to extraction and processing. This article describes some of these developments.

  5. Depth inpainting by tensor voting.

    PubMed

    Kulkarni, Mandar; Rajagopalan, Ambasamudram N

    2013-06-01

    Depth maps captured by range scanning devices or by using optical cameras often suffer from missing regions due to occlusions, reflectivity, limited scanning area, sensor imperfections, etc. In this paper, we propose a fast and reliable algorithm for depth map inpainting using the tensor voting (TV) framework. For less complex missing regions, local edge and depth information is utilized for synthesizing missing values. The depth variations are modeled by local planes using 3D TV, and missing values are estimated using plane equations. For large and complex missing regions, we collect and evaluate depth estimates from self-similar (training) datasets. We align the depth maps of the training set with the target (defective) depth map and evaluate the goodness of depth estimates among candidate values using 3D TV. We demonstrate the effectiveness of the proposed approaches on real as well as synthetic data.

  6. CHARGE Association.

    PubMed

    Chakraborty, Semanti; Chakraborty, Jayanta

    2012-12-01

    We present here a case of 17-year-old boy from Kolkata presenting with obesity, bilateral gynecomastia, mental retardation, and hypogonadotrophic hypogonadism. The patient weighed 70 kg and was of 153 cm height. Facial asymmetry (unilateral facial palsy), gynecomastia, decreased pubic and axillary hair, small penis, decreased right testicular volume, non-palpable left testis, and right-sided congenital inguinal hernia was present. The patient also had disc coloboma, convergent squint, microcornea, microphthalmia, pseudohypertelorism, low set ears, short neck, and choanalatresia. He had h/o VSD repaired with patch. Laboratory examination revealed haemoglobin 9.9 mg/dl, urea 24 mg/dl, creatinine 0.68 mg/dl. IGF1 77.80 ng/ml (decreased for age), GH <0.05 ng/ml, testosterone 0.25 ng/ml, FSH-0.95 μIU/ml, LH 0.60 ΅IU/ml. ACTH, 8:00 A.M cortisol, FT3, FT4, TSH, estradiol, DHEA-S, lipid profile, and LFT was within normal limits. Prolactin was elevated at 38.50 ng/ml. The patient's karyotype was 46XY. Echocardiography revealed ventricularseptal defect closed with patch, grade 1 aortic regurgitation, and ejection fraction 67%. Ultrasound testis showed small right testis within scrotal sac and undescended left testis within left inguinal canal. CT scan paranasal sinuses revealed choanalatresia and deviation of nasal septum to the right. Sonomammography revealed bilateral proliferation of fibroglandular elements predominantly in subareoalar region of breasts. MRI of brain and pituitary region revealed markedly atrophic pituitary gland parenchyma with preserved infundibulum and hypothalamus and widened suprasellar cistern. The CHARGE association is an increasingly recognized non-random pattern of congenital anomalies comprising of coloboma, heart defect, choanal atresia, retarded growth and development, genital hypoplasia, ear abnormalities, and/or deafness.[1] These anomalies have a higher probability of occurring together. In this report, we have described a boy with CHARGE

  7. Visual search in depth.

    PubMed

    McSorley, E; Findlay, J M

    2001-01-01

    The accuracy of saccade localisation during visual search was examined for a search target defined by the single features of orientation or depth or by a conjunction of the two features. Subjects were required to move their eyes to the target which appeared in one of eight possible locations, arranged circularly around fixation, with non-targets filling the remaining seven positions. Search for a target defined by a single feature resulted in approximately 70% correct first saccades in both cases, while search for the conjunction target resulted in only 40% correct first saccades. Furthermore, averaged latency for conjunction search was longer than for simple search. Nevertheless, some subjects showed a remarkably good ability to locate a conjunction target with a single saccade of short latency. An analysis of first saccades in terms of their speed and accuracy indicates that the target selection is not preceded by a covert scanning of the display but rather is a result of parallel processing of the visual information provided. We also relate our study to the study of conjunction search reported by Nakayama and Siverman [Nakayama, K., & Silverman, G.H. (1986). Serial and parallel processing of visual feature conjunctions. Nature, 320, 264-265.].

  8. Mechanistic evaluation of virus clearance by depth filtration.

    PubMed

    Venkiteshwaran, Adith; Fogle, Jace; Patnaik, Purbasa; Kowle, Ron; Chen, Dayue

    2015-01-01

    Virus clearance by depth filtration has not been well-understood mechanistically due to lack of quantitative data on filter charge characteristics and absence of systematic studies. It is generally believed that both electrostatic interactions and sized based mechanical entrapment contribute to virus clearance by depth filtration. In order to establish whether the effectiveness of virus clearance correlates with the charge characteristics of a given depth filter, a counter-ion displacement technique was employed to determine the ionic capacity for several depth filters. Two depth filters (Millipore B1HC and X0HC) with significant differences in ionic capacities were selected and evaluated for their ability to eliminate viruses. The high ionic capacity X0HC filter showed complete porcine parvovirus (PPV) clearance (eliminating the spiked viruses to below the limit of detection) under low conductivity conditions (≤2.5 mS/cm), achieving a log10 reduction factor (LRF) of > 4.8. On the other hand, the low ionic capacity B1HC filter achieved only ∼2.1-3.0 LRF of PPV clearance under the same conditions. These results indicate that parvovirus clearance by these two depth filters are mainly achieved via electrostatic interactions between the filters and PPV. When much larger xenotropic murine leukemia virus (XMuLV) was used as the model virus, complete retrovirus clearance was obtained under all conditions evaluated for both depth filters, suggesting the involvement of mechanisms other than just electrostatic interactions in XMuLV clearance.

  9. Depth perception in Alzheimer's disease.

    PubMed

    Mendez, M F; Cherrier, M M; Meadows, R S

    1996-12-01

    Abnormal depth perception contributes to visuospatial deficits in Alzheimer's disease. Disturbances in stereopsis, motion parallax, and the interpretation of static monocular depth cues may result from neuropathology in the visual cortex. We evaluated 15 patients with mild Alzheimer's disease and 15 controls matched for age, sex, and education on measures of local stereopsis (stereoscopic testing), global stereopsis (random dots), motion parallax (Howard-Dolman apparatus), and monocular depth perception by relative size, interposition, and perspective. Compared to controls, the patients were significantly impaired in over-all depth perception. This impairment was largely due to disturbances in local stereopsis and in the interpretation of depth from perspective, independent of other visuospatial functions. Patients with Alzheimer's disease have disturbed interpretation of monocular as well as binocular depth cues. This information could lead to optic interventions to improve their visual depth perception.

  10. Explosive shaped charge penetration into tuff rock

    SciTech Connect

    Vigil, M.G.

    1988-10-01

    Analysis and data for the use of Explosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented. 24 refs., 45 figs., 6 tabs.

  11. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  12. Jupiter Clouds in Depth

    NASA Technical Reports Server (NTRS)

    2000-01-01

    [figure removed for brevity, see original site] 619 nm [figure removed for brevity, see original site] 727 nm [figure removed for brevity, see original site] 890 nm

    Images from NASA's Cassini spacecraft using three different filters reveal cloud structures and movements at different depths in the atmosphere around Jupiter's south pole.

    Cassini's cameras come equipped with filters that sample three wavelengths where methane gas absorbs light. These are in the red at 619 nanometer (nm) wavelength and in the near-infrared at 727 nm and 890 nm. Absorption in the 619 nm filter is weak. It is stronger in the 727 nm band and very strong in the 890 nm band where 90 percent of the light is absorbed by methane gas. Light in the weakest band can penetrate the deepest into Jupiter's atmosphere. It is sensitive to the amount of cloud and haze down to the pressure of the water cloud, which lies at a depth where pressure is about 6 times the atmospheric pressure at sea level on the Earth). Light in the strongest methane band is absorbed at high altitude and is sensitive only to the ammonia cloud level and higher (pressures less than about one-half of Earth's atmospheric pressure) and the middle methane band is sensitive to the ammonia and ammonium hydrosulfide cloud layers as deep as two times Earth's atmospheric pressure.

    The images shown here demonstrate the power of these filters in studies of cloud stratigraphy. The images cover latitudes from about 15 degrees north at the top down to the southern polar region at the bottom. The left and middle images are ratios, the image in the methane filter divided by the image at a nearby wavelength outside the methane band. Using ratios emphasizes where contrast is due to methane absorption and not to other factors, such as the absorptive properties of the cloud particles, which influence contrast at all wavelengths.

    The most prominent feature seen in all three filters is the polar stratospheric haze that makes Jupiter

  13. Modeling detector response for neutron depth profiling

    NASA Astrophysics Data System (ADS)

    Coakley, K. J.; Downing, R. G.; Lamaze, G. P.; Hofsäss, H. C.; Biegel, J.; Ronning, C.

    1995-02-01

    In Neutron Depth Profiling (NDP), inferences about the concentration profile of an element in a material are based on the energy spectrum of charged particles emitted due to specific nuclear reactions. The detector response function relates the depth of emission to the expected energy spectrum of the emitted particles. Here, the detector response function is modeled for arbitrary source and detector geometries based on a model for the stopping power of the material, energy straggling, multiple scattering and random detector measurement error. At the NIST Cold Neutron Research Facility, a NDP spectrum was collected for a diamond-like carbon (DLC) sample doped with boron. A vertical slit was placed in front of the detector for collimation. Based on the computed detector response function, a model for the depth profile of boron is fit to the observed NDP spectrum. The contribution of straggling to overall variability was increased by multiplying the Bohr Model prediction by a ramp factor. The adjustable parameter in the ramp was selected to give the best agreement between the fitted profile and the expected shape of the profile. The expected shape is determined from experimental process control measurements.

  14. Optimization of the depth resolution for deuterium depth profiling up to large depths

    NASA Astrophysics Data System (ADS)

    Wielunska, B.; Mayer, M.; Schwarz-Selinger, T.

    2016-11-01

    The depth resolution of deuterium depth profiling by the nuclear reaction D(3He,p)α is studied theoretically and experimentally. General kinematic considerations are presented which show that the depth resolution for deuterium depth profiling using the nuclear reaction D(3He,p)α is best at reaction angles of 0° and 180° at all incident energies below 9 MeV and for all depths and materials. In order to confirm this theoretical prediction the depth resolution was determined experimentally with a conventional detector at 135° and an annular detector at 175.9°. Deuterium containing thin films buried under different metal cover layers of aluminum, molybdenum and tungsten with thicknesses in the range of 0.5-11 μm served as samples. For all materials and depths an improvement of the depth resolution with the detector at 175.9° is achieved. For tungsten as cover layer a better depth resolution up to a factor of 18 was determined. Good agreement between the experimental results and the simulations for the depth resolution is demonstrated.

  15. Workplace Charging. Charging Up University Campuses

    SciTech Connect

    Giles, Carrie; Ryder, Carrie; Lommele, Stephen

    2016-03-01

    This case study features the experiences of university partners in the U.S. Department of Energy's (DOE) Workplace Charging Challenge with the installation and management of plug-in electric vehicle (PEV) charging stations.

  16. Development and Applications of Time of Flight Neutron Depth Profiling

    SciTech Connect

    Bingham Cady; Kenan Unlu

    2005-03-17

    The depth profiles of intentional or intrinsic constituents of a sample provide valuable information for the characterization of materials. For example, the subtle differences in spatial distribution and composition of many chemical species in the near surface region and across interfacial boundaries can significantly alter the electronic and optical properties of materials. A number of analytical techniques for depth profiling have been developed during the last two decades. neutron Depth Profiling (NDP) is one of the leading analytical techniques. The NDP is a nondestructive near surface technique that utilizes thermal/cold neutron beam to measure the concentration of specific light elements versus their depth in materials. The depth is obtained from the energy loss of protons, alphas or recoil atoms in substrate materials. Since the charged particle energy determination using surface barrier detector is used for NDP, the depth resolution is highly dependent on the detectors an d detection instruments. The depth resolutions of a few tens of nm are achieved with available NDP facilities in the world. However, the performance of NDP needs to be improved in order to obtain a few A depth resolutions.

  17. Quick spacecraft charging primer

    SciTech Connect

    Larsen, Brian Arthur

    2014-03-12

    This is a presentation in PDF format which is a quick spacecraft charging primer, meant to be used for program training. It goes into detail about charging physics, RBSP examples, and how to identify charging.

  18. Disparity Gradients and Depth Scaling

    DTIC Science & Technology

    1989-09-01

    points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian (continued on back)_ D D F~~ 14 73 EDTION 01 1NOV...stimuli than for points. This depth scaling effect is discussed in a computational framework of stereo based on a Baysian approach ’which allows to

  19. Indexing Depth and Retrieval Effectiveness

    ERIC Educational Resources Information Center

    Seely, Barbara J.

    1972-01-01

    There are six major studies of the effect of indexing depth on retrieval performance. They differ in purpose, methodology, measures, indexing language, field of study, and data base--nevertheless, all have found depth of indexing to have the same effect upon information retrieval. (13 references) (Author/NH)

  20. Metal detector depth estimation algorithms

    NASA Astrophysics Data System (ADS)

    Marble, Jay; McMichael, Ian

    2009-05-01

    This paper looks at depth estimation techniques using electromagnetic induction (EMI) metal detectors. Four algorithms are considered. The first utilizes a vertical gradient sensor configuration. The second is a dual frequency approach. The third makes use of dipole and quadrapole receiver configurations. The fourth looks at coils of different sizes. Each algorithm is described along with its associated sensor. Two figures of merit ultimately define algorithm/sensor performance. The first is the depth of penetration obtainable. (That is, the maximum detection depth obtainable.) This describes the performance of the method to achieve detection of deep targets. The second is the achievable statistical depth resolution. This resolution describes the precision with which depth can be estimated. In this paper depth of penetration and statistical depth resolution are qualitatively determined for each sensor/algorithm. A scientific method is used to make these assessments. A field test was conducted using 2 lanes with emplaced UXO. The first lane contains 155 shells at increasing depths from 0" to 48". The second is more realistic containing objects of varying size. The first lane is used for algorithm training purposes, while the second is used for testing. The metal detectors used in this study are the: Geonics EM61, Geophex GEM5, Minelab STMR II, and the Vallon VMV16.

  1. Simformation 4: Depth Interview Handbook.

    ERIC Educational Resources Information Center

    Bowles, B. Dean

    This handbook is a systematic guide for planning and implementing a program of depth interviews either as part of a school's community relations program or as an effort in policy analysis. It includes all necessary information for understanding the advantages and disadvantages of depth interviews, for preliminary planning and preparation, for…

  2. Stereo depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Vonsydow, Marika

    1988-01-01

    In teleoperation, a typical application of stereo vision is to view a work space located short distances (1 to 3m) in front of the cameras. The work presented here treats converged camera placement and studies the effects of intercamera distance, camera-to-object viewing distance, and focal length of the camera lenses on both stereo depth resolution and stereo depth distortion. While viewing the fronto-parallel plane 1.4 m in front of the cameras, depth errors are measured on the order of 2cm. A geometric analysis was made of the distortion of the fronto-parallel plane of divergence for stereo TV viewing. The results of the analysis were then verified experimentally. The objective was to determine the optimal camera configuration which gave high stereo depth resolution while minimizing stereo depth distortion. It is found that for converged cameras at a fixed camera-to-object viewing distance, larger intercamera distances allow higher depth resolutions, but cause greater depth distortions. Thus with larger intercamera distances, operators will make greater depth errors (because of the greater distortions), but will be more certain that they are not errors (because of the higher resolution).

  3. Perception of relative depth interval: systematic biases in perceived depth.

    PubMed

    Harris, Julie M; Chopin, Adrien; Zeiner, Katharina; Hibbard, Paul B

    2012-01-01

    Given an estimate of the binocular disparity between a pair of points and an estimate of the viewing distance, or knowledge of eye position, it should be possible to obtain an estimate of their depth separation. Here we show that, when points are arranged in different vertical geometric configurations across two intervals, many observers find this task difficult. Those who can do the task tend to perceive the depth interval in one configuration as very different from depth in the other configuration. We explore two plausible explanations for this effect. The first is the tilt of the empirical vertical horopter: Points perceived along an apparently vertical line correspond to a physical line of points tilted backwards in space. Second, the eyes can rotate in response to a particular stimulus. Without compensation for this rotation, biases in depth perception would result. We measured cyclovergence indirectly, using a standard psychophysical task, while observers viewed our depth configuration. Biases predicted from error due either to cyclovergence or to the tilted vertical horopter were not consistent with the depth configuration results. Our data suggest that, even for the simplest scenes, we do not have ready access to metric depth from binocular disparity.

  4. Motion-Adaptive Depth Superresolution.

    PubMed

    Kamilov, Ulugbek S; Boufounos, Petros T

    2017-04-01

    Multi-modal sensing is increasingly becoming important in a number of applications, providing new capabilities and processing challenges. In this paper, we explore the benefit of combining a low-resolution depth sensor with a high-resolution optical video sensor, in order to provide a high-resolution depth map of the scene. We propose a new formulation that is able to incorporate temporal information and exploit the motion of objects in the video to significantly improve the results over existing methods. In particular, our approach exploits the space-time redundancy in the depth and intensity using motion-adaptive low-rank regularization. We provide experiments to validate our approach and confirm that the quality of the estimated high-resolution depth is improved substantially. Our approach can be a first component in systems using vision techniques that rely on high-resolution depth information.

  5. Neural computations underlying depth perception

    PubMed Central

    Anzai, Akiyuki; DeAngelis, Gregory C.

    2010-01-01

    Summary Neural mechanisms underlying depth perception are reviewed with respect to three computational goals: determining surface depth order, gauging depth intervals, and representing 3D surface geometry and object shape. Accumulating evidence suggests that these three computational steps correspond to different stages of cortical processing. Early visual areas appear to be involved in depth ordering, while depth intervals, expressed in terms of relative disparities, are likely represented at intermediate stages. Finally, 3D surfaces appear to be processed in higher cortical areas, including an area in which individual neurons encode 3D surface geometry, and a population of these neurons may therefore represent 3D object shape. How these processes are integrated to form a coherent 3D percept of the world remains to be understood. PMID:20451369

  6. Electron yields and escape depths from spacecraft materials

    SciTech Connect

    Yang, K.Y.

    1986-01-01

    Secondary electron emission (SEE) characteristics and photoelectron yields were determined for several insulating materials used onboard a space shuttle. These materials are: kapton, teflon, spaceshuttle tiles, and space suit cloth. Secondary electron escape depth and photoelectron escape depth from kapton were calculated from the experimental data. Sternglass' theory and Dionne's method were used in the calculation. Some semi-empirical theories of SEE and three-step theory of photoemission were reviewed. Pulsed beam techniques were used to reduce surface charging problems. Three ..mu..sec pulses of electrons were used in SEE experiments, and 100 msec to 1 sec pulses were used in photoemission experiments. The maximum SEE yields of the materials studied range from 1.75 ro 2.70. The secondary electron escape depth in kapton was calculated to be 55 +/- 5 A. All samples have photoyields lower than 1.0%. The photoelectrons excited by 21-eV photons have 87 +/- 30 A escape depth in kapton.

  7. Development of neutron depth profiling at CMRR

    NASA Astrophysics Data System (ADS)

    Li, Run-dong; Yang, Xin; Wang, Guan-bo; Dou, Hai-feng; Qian, Da-zhi; Wang, Shu-yu

    2015-07-01

    A neutron depth profiling (NDP) system has been developed at China Mianyang Research Reactor (CMRR) at Institute of Nuclear Physics and Chemistry (INPC), CAEP. The INPC-NDP system utilizes cold neutrons which are transported along the C1 neutron guide from the cold neutron source. It consists of a beam entrance, a target chamber, a beam stopper, and data acquisition electronics for charged particle pulse-height analysis. A 90 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The neutron beam intensity of 2.1×108 n cm-2 s-1 was calibrated by the Au foil activation method at the sample position. The INPC-NDP system was tested by using a Standard Reference Materials SRM-2137. The measured results agreed well with the reference values.

  8. On evaluation of depth accuracy in consumer depth sensors

    NASA Astrophysics Data System (ADS)

    Abd Aziz, Azim Zaliha; Wei, Hong; Ferryman, James

    2015-12-01

    This paper presents an experimental study of different depth sensors. The aim is to answer the question, whether these sensors give accurate data for general depth image analysis. The study examines the depth accuracy between three popularly used depth sensors; ASUS Xtion Prolive, Kinect Xbox 360 and Kinect for Windows v2. The main attention is to study on the stability of pixels in the depth image captured at several different sensor-object distances by measuring the depth returned by the sensors within specified time intervals. The experimental results show that the fluctuation (mm) of the random selected pixels within the target area, increases with increasing distance to the sensor, especially on the Kinect for Xbox 360 and the Asus Xtion Prolive. Both of these sensors provide pixels fluctuation between 20mm and 30mm at a sensor-object distance beyond 1500mm. However, the pixel's stability of the Kinect for Windows v2 not affected much with the distance between the sensor and the object. The maximum fluctuation for all the selected pixels of Kinect for Windows v2 is approximately 5mm at sensor-object distance of between 800mm and 3000mm. Therefore, in the optimal distance, the best stability achieved.

  9. Archetypal Depth Criticism and Melville.

    ERIC Educational Resources Information Center

    Maud, Ralph

    1983-01-01

    Applies psychologist James Hillman's idea of soul-making to literary studies. Uses the works of Melville to discuss the terms (1) depth, (2) image, and (3) archetype as they relate to the concept of soul-making. (MM)

  10. Depth-filtered digital holography.

    PubMed

    Koukourakis, Nektarios; Jaedicke, Volker; Adinda-Ougba, Adamou; Goebel, Sebastian; Wiethoff, Helge; Höpfner, Henning; Gerhardt, Nils C; Hofmann, Martin R

    2012-09-24

    We introduce depth-filtered digital holography (DFDH) as a method for quantitative tomographic phase imaging of buried layers in multilayer samples. The procedure is based on the acquisition of multiple holograms for different wavelengths. Analyzing the intensity over wavelength pixel wise and using an inverse Fourier transform leads to a depth-profile of the multilayered sample. Applying a windowed Fourier transform with a narrow window, we choose a depth-of interest (DOI) which is used to synthesize filtered interference patterns that just contain information of this limited depth. We use the angular spectrum method to introduce an additional spatial filtering and to reconstruct the corresponding holograms. After a short theoretical framework we show experimental proof-of-principle results for the method.

  11. Pulse-shape discrimination in neutron depth profiling technique

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Havránek, V.; Hoffmann, J.; Pošta, S.; Fink, D.; Klett, R.

    1998-07-01

    Pulse-shape discrimination (PSD) is used for the first time for reduction of unwanted background in analyses of solid surfaces by neutron depth profiling method (NDP) based on the detection of charged particles from the (n, p) and (n, α) nuclear reactions induced by thermal neutrons on some light elements. The experimental PSD arrangement is described and its performance is demonstrated on the measurement of real sample. Background reduction by about two orders of magnitude in the energy region below 1 MeV leads to sensitivity improvement by about one order of magnitude and to extension of measurable depth region for some of light elements like N and Cl.

  12. Subpixel Resolution In Depth Perceived Via 3-D Television

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika; Fender, Derek H.

    1993-01-01

    Report describes experiment in which two black vertical bars on featureless white background placed near intersection of optical axes of two charge-coupled-device video cameras positioned to give stereoscopic views. Trained human observers found to perceive depths at subpixel resolutions in stereoscopic television images. This finding significant for remote stereoscopic monitoring, expecially during precise maneuvers of remotely controlled manipulators. Also significant for research in processing of visual information by human brain.

  13. Subpixel Resolution In Depth Perceived Via 3-D Television

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika; Fender, Derek H.

    1993-01-01

    Report describes experiment in which two black vertical bars on featureless white background placed near intersection of optical axes of two charge-coupled-device video cameras positioned to give stereoscopic views. Trained human observers found to perceive depths at subpixel resolutions in stereoscopic television images. This finding significant for remote stereoscopic monitoring, expecially during precise maneuvers of remotely controlled manipulators. Also significant for research in processing of visual information by human brain.

  14. Chemical state depth profiling by Auger signal decomposition: Silicon oxynitride

    SciTech Connect

    Nelson, G.C.

    1989-01-01

    Thin silicon nitride (Si/sub 3/N/sub 4/) films are widely used as a dielectric in metal-nitride-oxide-silicon (MNOS) structures for radiation hard non-volatile memories. The retention of charge in these devices depends, among other things, on the chemistry of the films. It has been reported that charge transport in MNOS structures can be reduced by replacing the Si/sub 3/N/sub 4/ film by a silicon oxynitride (SiO/sub x/N/sub y/) film. In order to understand the relationship between chemistry and retention of charge, it is necessary to have a technique that can determine the chemistry of the films as a function of depth. This can be accomplished with Auger electron spectroscopy by using fingerprint spectra for each of the elements and compounds present in the sample. By using classical least-squares techniques, a unique combination of the standard spectra can be found that best fits the unknown spectrum. When this method is repeated for each spectrum in a depth profile, a chemical state depth profile is obtained. The use of this technique to profile oxynitride films where the SiO/sub 2/ content varies between 0 and 12 atomic percent is presented. 6 refs., 7 figs.

  15. Depth perception of illusory surfaces.

    PubMed

    Kogo, Naoki; Drożdżewska, Anna; Zaenen, Peter; Alp, Nihan; Wagemans, Johan

    2014-03-01

    The perception of an illusory surface, a subjectively perceived surface that is not given in the image, is one of the most intriguing phenomena in vision. It strongly influences the perception of some fundamental properties, namely, depth, lightness and contours. Recently, we suggested (1) that the context-sensitive mechanism of depth computation plays a key role in creating the illusion, (2) that the illusory lightness perception can be explained by an influence of depth perception on the lightness computation, and (3) that the perception of variations of the Kanizsa figure can be well-reproduced by implementing these principles in a model (Kogo, Strecha, et al., 2010). However, depth perception, lightness perception, contour perception, and their interactions can be influenced by various factors. It is essential to measure the differences between the variation figures in these aspects separately to further understand the mechanisms. As a first step, we report here the results of a new experimental paradigm to compare the depth perception of the Kanizsa figure and its variations. One of the illusory figures was presented side-by-side with a non-illusory variation whose stereo disparities were varied. Participants had to decide in which of these two figures the central region appeared closer. The results indicate that the depth perception of the illusory surface was indeed different in the variation figures. Furthermore, there was a non-linear interaction between the occlusion cues and stereo disparity cues. Implications of the results for the neuro-computational mechanisms are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Sampling Depths, Depth Shifts, and Depth Resolutions for Bi(n)(+) Ion Analysis in Argon Gas Cluster Depth Profiles.

    PubMed

    Havelund, R; Seah, M P; Gilmore, I S

    2016-03-10

    Gas cluster sputter depth profiling is increasingly used for the spatially resolved chemical analysis and imaging of organic materials. Here, a study is reported of the sampling depth in secondary ion mass spectrometry depth profiling. It is shown that effects of the sampling depth leads to apparent shifts in depth profiles of Irganox 3114 delta layers in Irganox 1010 sputtered, in the dual beam mode, using 5 keV Ar₂₀₀₀⁺ ions and analyzed with Bi(q+), Bi₃(q+) and Bi₅(q+) ions (q = 1 or 2) with energies between 13 and 50 keV. The profiles show sharp delta layers, broadened from their intrinsic 1 nm thickness to full widths at half-maxima (fwhm's) of 8-12 nm. For different secondary ions, the centroids of the measured delta layers are shifted deeper or shallower by up to 3 nm from the position measured for the large, 564.36 Da (C₃₃H₄₆N₃O₅⁻) characteristic ion for Irganox 3114 used to define a reference position. The shifts are linear with the Bi(n)(q+) beam energy and are greatest for Bi₃(q+), slightly less for Bi₅(q+) with its wider or less deep craters, and significantly less for Bi(q+) where the sputtering yield is very low and the primary ion penetrates more deeply. The shifts increase the fwhm’s of the delta layers in a manner consistent with a linearly falling generation and escape depth distribution function (GEDDF) for the emitted secondary ions, relevant for a paraboloid shaped crater. The total depth of this GEDDF is 3.7 times the delta layer shifts. The greatest effect is for the peaks with the greatest shifts, i.e. Bi₃(q+) at the highest energy, and for the smaller fragments. It is recommended that low energies be used for the analysis beam and that carefully selected, large, secondary ion fragments are used for measuring depth distributions, or that the analysis be made in the single beam mode using the sputtering Ar cluster ions also for analysis.

  17. Perceived depth from shading boundaries.

    PubMed

    Kim, Juno; Anstis, Stuart

    2016-01-01

    Shading is well known to provide information the visual system uses to recover the three-dimensional shape of objects. We examined conditions under which patterns in shading promote the experience of a change in depth at contour boundaries, rather than a change in reflectance. In Experiment 1, we used image manipulation to illuminate different regions of a smooth surface from different directions. This manipulation imposed local differences in shading direction across edge contours (delta shading). We found that increasing the angle of delta shading, from 0° to 180°, monotonically increased perceived depth across the edge. Experiment 2 found that the perceptual splitting of shading into separate foreground and background surfaces depended on an assumed light source from above prior. Image regions perceived as foreground structures in upright images appeared farther in depth when the same images were inverted. We also found that the experienced break in surface continuity could promote the experience of amodal completion of colored contours that were ambiguous as to their depth order (Experiment 3). These findings suggest that the visual system can identify occlusion relationships based on monocular variations in local shading direction, but interprets this information according to a light source from above prior of midlevel visual processing.

  18. Rotating drum variable depth sampler

    DOEpatents

    Nance, Thomas A.; Steeper, Timothy J.

    2008-07-01

    A sampling device for collecting depth-specific samples in silt, sludge and granular media has three chambers separated by a pair of iris valves. Rotation of the middle chamber closes the valves and isolates a sample in a middle chamber.

  19. Pursuing the Depths of Knowledge

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  20. Pursuing the Depths of Knowledge

    ERIC Educational Resources Information Center

    Boyles, Nancy

    2016-01-01

    Today's state literacy standards and assessments demand deeper levels of knowledge from students. But many teachers ask, "What does depth of knowledge look like on these new, more rigorous assessments? How do we prepare students for this kind of thinking?" In this article, Nancy Boyles uses a sampling of questions from the PARCC and SBAC…

  1. Optical transients and depth analysis

    NASA Technical Reports Server (NTRS)

    Schaefer, Bradley E.

    1992-01-01

    Flaws of the depth analysis technique of distinguishing photographic plate defects are discussed. The method is shown to be unreliable in confirming or disproving the astrophysical nature of optical transients. The arguments of Greiner and of Zytkow to the contrary are criticized.

  2. Linear shaped charge

    DOEpatents

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  3. Charge Exchange with Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Glick, Jeremy; Ferri, Kevin; Schmitt, Jaclyn; Hanson, Joshua; Marler, Joan

    2016-05-01

    A detailed study of the physics of highly charged ions (HCIs) is critical for a deep understanding of observed phenomena resulting from interactions of HCIs with neutral atoms in astrophysical and fusion environments. Specifically the charge transfer rates and spectroscopy of the subsequent decay fluorescence are of great interest to these communities. Results from a laboratory based investigation of these rates will be presented. The experiment takes advantage of an energy and charge state selected beam of HCIs from the recently on-line Clemson University EBIT (CUEBIT). Progress towards an experimental apparatus for retrapping HCIs towards precision spectroscopy of HCIs will also be presented.

  4. Spacecraft Charging Technology, 1980

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The third Spacecraft Charging Technology Conference proceedings contain 66 papers on the geosynchronous plasma environment, spacecraft modeling, charged particle environment interactions with spacecraft, spacecraft materials characterization, and satellite design and testing. The proceedings is a compilation of the state of the art of spacecraft charging and environmental interaction phenomena.

  5. Particle charge spectrometer

    NASA Technical Reports Server (NTRS)

    Fuerstenau, Stephen D. (Inventor)

    2004-01-01

    An airflow through a tube is used to guide a charged particle through the tube. A detector may be used to detect charge passing through the tube on the particle. The movement of the particle through the tube may be used to both detect its charge and size.

  6. Charge exchange system

    DOEpatents

    Anderson, Oscar A.

    1978-01-01

    An improved charge exchange system for substantially reducing pumping requirements of excess gas in a controlled thermonuclear reactor high energy neutral beam injector. The charge exchange system utilizes a jet-type blanket which acts simultaneously as the charge exchange medium and as a shield for reflecting excess gas.

  7. Nonextensive statistics and skin depth of transverse wave in collisional plasma

    SciTech Connect

    Hashemzadeh, M.

    2016-05-15

    Skin depth of transverse wave in a collisional plasma is studied taking into account the nonextensive electron distribution function. Considering the kinetic theory for charge particles and using the Bhatnagar-Gross-Krook collision model, a generalized transverse dielectric permittivity is obtained. The transverse dispersion relation in different frequency ranges is investigated. Obtaining the imaginary part of the wave vector from the dispersion relation, the skin depth for these frequency ranges is also achieved. Profiles of the skin depth show that by increasing the q parameter, the penetration depth decreases. In addition, the skin depth increases by increasing the electron temperature. Finally, it is found that in the high frequency range and high electron temperature, the penetration depth decreases by increasing the collision frequency. In contrast, by increasing the collision frequency in a highly collisional frequency range, the skin depth of transverse wave increases.

  8. Morphology Effects on Space Charge Characteristics of Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Zhou; Yuanxiang; Wang; Yunshan; Zahn, Markus; Wang; Ninghua; Sun; Qinghua; Liang; Xidong; Guan; Zhichen

    2011-01-01

    Low density polyethylene (LDPE) film samples with different morphology were prepared by three kinds of annealing methods which were different in cooling rates in this study. A pulsed electro-acoustic (PEA) space charge measurement system was improved to solve the surface discharge problems for small samples applied with a high voltage. Negative direct current (DC) fields from 50 to above 220 kV/mm were applied to the samples. The influences of morphologies on space charge and space charge packet characteristics were measured by the improved high voltage withstand (HVW) PEA system. Mobility and trap depth of released charges were calculated by space charge decay. It was found that there is a different probability of space charge packet initiation under applied field from -60 to -100 kV/mm. Average velocity and mobility of the space charge packets were calculated by space charge packet dynamics. It was found that the lower cooling rate samples have higher crystallinity, more homo-charge accumulation, lower mobility and deeper trap depth. The mechanism of morphological effects on space charge phenomena have been presumed to give a plausible explanation for their inherent relationships. The morphology in the metal-dielectric interface and in the bulk is convincingly suggested to be responsible for the injection and propagation processes of space charge. A model of positive space charge initiation in LDPE samples was also suggested and analyzed. The mechanism of morphological effects and the charge injection model are well fit with the injection and propagation processes of space charge. The different effects of morphology in the metal-dielectric interface and in the bulk of polymers are stressed.

  9. Atom depth analysis delineates mechanisms of protein intermolecular interactions

    SciTech Connect

    Alocci, Davide; Bernini, Andrea; Niccolai, Neri

    2013-07-12

    Highlights: •3D atom depth analysis is proposed to identify different layers in protein structures. •Amino acid contents for each layers have been analyzed for a large protein dataset. •Charged amino acids in the most external layer are present at very different extents. •Atom depth indexes of K residues reflect their side chains flexibility. •Mobile surface charges can be responsible for long range protein–protein recognition. -- Abstract: The systematic analysis of amino acid distribution, performed inside a large set of resolved protein structures, sheds light on possible mechanisms driving non random protein–protein approaches. Protein Data Bank entries have been selected using as filters a series of restrictions ensuring that the shape of protein surface is not modified by interactions with large or small ligands. 3D atom depth has been evaluated for all the atoms of the 2,410 selected structures. The amino acid relative population in each of the structural layers formed by grouping atoms on the basis of their calculated depths, has been evaluated. We have identified seven structural layers, the inner ones reproducing the core of proteins and the outer one incorporating their most protruding moieties. Quantitative analysis of amino acid contents of structural layers identified, as expected, different behaviors. Atoms of Q, R, K, N, D residues are increasingly more abundant in going from core to surfaces. An opposite trend is observed for V, I, L, A, C, and G. An intermediate behavior is exhibited by P, S, T, M, W, H, F and Y. The outer structural layer hosts predominantly E and K residues whose charged moieties, protruding from outer regions of the protein surface, reorient free from steric hindrances, determining specific electrodynamics maps. This feature may represent a protein signature for long distance effects, driving the formation of encounter complexes and the eventual short distance approaches that are required for protein

  10. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, M.S.; Schuster, G.J.; Skorpik, J.R.

    1997-07-08

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part. 12 figs.

  11. Ultrasonic material hardness depth measurement

    DOEpatents

    Good, Morris S.; Schuster, George J.; Skorpik, James R.

    1997-01-01

    The invention is an ultrasonic surface hardness depth measurement apparatus and method permitting rapid determination of hardness depth of shafts, rods, tubes and other cylindrical parts. The apparatus of the invention has a part handler, sensor, ultrasonic electronics component, computer, computer instruction sets, and may include a display screen. The part handler has a vessel filled with a couplant, and a part rotator for rotating a cylindrical metal part with respect to the sensor. The part handler further has a surface follower upon which the sensor is mounted, thereby maintaining a constant distance between the sensor and the exterior surface of the cylindrical metal part. The sensor is mounted so that a front surface of the sensor is within the vessel with couplant between the front surface of the sensor and the part.

  12. Depth Cues From Optical Flow

    NASA Astrophysics Data System (ADS)

    Shih, Frank Y.; Prathuri, Chandra

    1990-03-01

    In order to have a perfect computer vision system, it is important that it should emulate something which is already prefect - the human visual system. In this paper we discuss the relevancy of the study of the psychological and physiological aspects of human vision to computer vision research. Motion perception is an important aspect of vision. We make an approach here, to configure a system that can perceive world knowledge from moving scenes. This is based on the principle that moving scenes generate optical flow and getting the depth cues from optical flow gives three dimensional information of the scene. We derive depth information from passive ranging techniques. Potential applications are in autonomous vehicle navigation, coordinated motions between vehicles for passive ranging to moving targets and in industrial robotics.

  13. Photon counting compressive depth mapping.

    PubMed

    Howland, Gregory A; Lum, Daniel J; Ware, Matthew R; Howell, John C

    2013-10-07

    We demonstrate a compressed sensing, photon counting lidar system based on the single-pixel camera. Our technique recovers both depth and intensity maps from a single under-sampled set of incoherent, linear projections of a scene of interest at ultra-low light levels around 0.5 picowatts. Only two-dimensional reconstructions are required to image a three-dimensional scene. We demonstrate intensity imaging and depth mapping at 256 × 256 pixel transverse resolution with acquisition times as short as 3 seconds. We also show novelty filtering, reconstructing only the difference between two instances of a scene. Finally, we acquire 32 × 32 pixel real-time video for three-dimensional object tracking at 14 frames-per-second.

  14. Market Depth and Price Dynamics:

    NASA Astrophysics Data System (ADS)

    Westerhoff, Frank H.

    This note explores the consequences of nonlinear price impact functions on price dynamics within the chartist-fundamentalist framework. Price impact functions may be nonlinear with respect to trading volume. As indicated by recent empirical studies, a given transaction may cause a large (small) price change if market depth is low (high). Simulations reveal that such a relationship may create endogenous complex price fluctuations even if the trading behavior of chartists and fundamentalists is linear.

  15. Underwater camera with depth measurement

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Chih; Lin, Keng-Ren; Tsui, Chi L.; Schipf, David; Leang, Jonathan

    2016-04-01

    The objective of this study is to develop an RGB-D (video + depth) camera that provides three-dimensional image data for use in the haptic feedback of a robotic underwater ordnance recovery system. Two camera systems were developed and studied. The first depth camera relies on structured light (as used by the Microsoft Kinect), where the displacement of an object is determined by variations of the geometry of a projected pattern. The other camera system is based on a Time of Flight (ToF) depth camera. The results of the structural light camera system shows that the camera system requires a stronger light source with a similar operating wavelength and bandwidth to achieve a desirable working distance in water. This approach might not be robust enough for our proposed underwater RGB-D camera system, as it will require a complete re-design of the light source component. The ToF camera system instead, allows an arbitrary placement of light source and camera. The intensity output of the broadband LED light source in the ToF camera system can be increased by putting them into an array configuration and the LEDs can be modulated comfortably with any waveform and frequencies required by the ToF camera. In this paper, both camera were evaluated and experiments were conducted to demonstrate the versatility of the ToF camera.

  16. Charge-ordering transitions without charge differentiation

    NASA Astrophysics Data System (ADS)

    Quan, Yundi; Pardo, Victor; Pickett, Warren

    2013-03-01

    The distorted perovskite nickelate system RNiO3 (R=rare earth except La) undergoes a metal-insulator transition (MIT) at a temperature that varies smoothly with the R ionic radius. This MIT is accompanied by structural transition which leads to two inequivalent Ni sites in the cell, and has been explained by charge ordering (CO): charge is transferred between the Ni1 and Ni2 sites in a long-range ordered fashion. Experimental data on core binding energies, ionic radii, and Mossbauer shifts are interpreted in terms of Ni cation charges of 3 +/- δ with, for example, δ ~ 0.3 for YNiO3. Making use of first principles DFT results and a new approach not invoking integration of the charge density, we find[2] that the Ni 3 d occupation is identical (to high accuracy) for the two Ni sites. We also present results for other compounds (La2VCuO6, YNiO3, CaFeO3, AgNiO2, V4O7), all of which have distinct ``charge states'' that have identical 3 d occupation. This quantitative procedure will be discussed and some implications will be outlined. DOE Grant No. DE-FG02-04ER46111 and Ramon y Cajal Program

  17. Focus cues affect perceived depth

    PubMed Central

    Watt, Simon J.; Akeley, Kurt; Ernst, Marc O.; Banks, Martin S.

    2007-01-01

    Depth information from focus cues—accommodation and the gradient of retinal blur—is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space. PMID:16441189

  18. Focus cues affect perceived depth.

    PubMed

    Watt, Simon J; Akeley, Kurt; Ernst, Marc O; Banks, Martin S

    2005-12-15

    Depth information from focus cues--accommodation and the gradient of retinal blur--is typically incorrect in three-dimensional (3-D) displays because the light comes from a planar display surface. If the visual system incorporates information from focus cues into its calculation of 3-D scene parameters, this could cause distortions in perceived depth even when the 2-D retinal images are geometrically correct. In Experiment 1 we measured the direct contribution of focus cues to perceived slant by varying independently the physical slant of the display surface and the slant of a simulated surface specified by binocular disparity (binocular viewing) or perspective/texture (monocular viewing). In the binocular condition, slant estimates were unaffected by display slant. In the monocular condition, display slant had a systematic effect on slant estimates. Estimates were consistent with a weighted average of slant from focus cues and slant from disparity/texture, where the cue weights are determined by the reliability of each cue. In Experiment 2, we examined whether focus cues also have an indirect effect on perceived slant via the distance estimate used in disparity scaling. We varied independently the simulated distance and the focal distance to a disparity-defined 3-D stimulus. Perceived slant was systematically affected by changes in focal distance. Accordingly, depth constancy (with respect to simulated distance) was significantly reduced when focal distance was held constant compared to when it varied appropriately with the simulated distance to the stimulus. The results of both experiments show that focus cues can contribute to estimates of 3-D scene parameters. Inappropriate focus cues in typical 3-D displays may therefore contribute to distortions in perceived space.

  19. Lunar Far Side Regolith Depth

    NASA Astrophysics Data System (ADS)

    Bart, G. D.; Melosh, H. J.

    2005-08-01

    The lunar far side contains the South Pole Aitken Basin, which is the largest known impact basin in the solar system, and is enhanced in titanium and iron compared to the rest of the lunar highlands. Although we have known of this enigmatic basin since the 60's, most lunar photography and science covered the equatorial near side where the Apollo spacecraft landed. With NASA's renewed interest in the Moon, the South Pole Aitken Basin is a likely target for future exploration. The regolith depth is a crucial measurement for understanding the source of the surface material in the Basin. On the southern far side of the Moon (20 S, 180 W), near the north edge of the Basin, we determined the regolith depth by examining 11 flat-floored craters about 200 m in diameter. We measured the ratio of the diameter of the flat floor to the diameter of the crater, and used it to calculate the regolith thickness using the method of Quaide and Oberbeck (1968). We used Apollo 15 panoramic images --- still the highest resolution images available for this region of the Moon. We found the regolith depth at that location to be about 40 m. This value is significantly greater than values for the lunar near side: 3 m (Oceanus Procellarum), 16 m (Hipparchus), and 1-10 m at the Surveyor landing sites. The thicker value obtained for the far side regolith is consistent with the older age of the far side. It also suggests that samples returned from the far side may have originated from deeper beneath the surface than their near side counterparts.

  20. Cathodoluminescence Depth Profiling of Zircons

    NASA Astrophysics Data System (ADS)

    Chen, E.; Wooden, J. L.; Vazquez, J. A.; Jones, R. E.; Grove, M.

    2010-12-01

    Cathodoluminescence (CL) images are routinely used as a guide to locate analysis points in ion probe or laser ablation ICP-MS U-Pb age and trace element analysis of zircon. However, because CL imaging’s clear signals are micron-scale, it cannot reveal depth dependent variation. This is important because typical ion microprobe and laser ablation analysis pits are 1-2 µm and 10-20µm respectively. Thus, while the structure detailed by the CL image may be accurate for ion probe analysis, it may no longer be accurate to guide laser ablation analysis based upon excavation of deep pits that are formed to obtain sufficient atoms for precise analysis. Coarse (200-250 µm diameter) standard zircon (R33 and VP-10) were hand-selected, potted in epoxy, and progressively sectioned and polished using conventional methods. CL images were acquired from successive serial sections through the zircons using the CL detector of a JEOL 5600 LV SEM. A digital micrometer was used to determine polishing depth. The average increment of zircon removed during each iteration was 7µm, and a total of 130 µm was removed. This corresponded to ca. 50% removal of most zircons. The images were compiled using ImageJ software, and serial imaging revealed that important features such as mineral and melt inclusions are not orthogonal to the crystal growth planes. Some of the depth dependent variation would not be obvious using a single CL image. This could affect the results of analyses of zircons due to the hidden mineral and melt inclusions. In addition, boundaries between different phases of zircon growth can be poorly defined and affect the results of ion probe and laser ablation analyses. This study could be improved with compositional analyses of the zircon grains to determine the make-up of the mineral and melt inclusions and better determine the changes in the chemical composition of the zircon and its different growth phases .

  1. Static stereo vision depth distortions in teleoperation

    NASA Technical Reports Server (NTRS)

    Diner, D. B.; Von Sydow, M.

    1988-01-01

    A major problem in high-precision teleoperation is the high-resolution presentation of depth information. Stereo television has so far proved to be only a partial solution, due to an inherent trade-off among depth resolution, depth distortion and the alignment of the stereo image pair. Converged cameras can guarantee image alignment but suffer significant depth distortion when configured for high depth resolution. Moving the stereo camera rig to scan the work space further distorts depth. The 'dynamic' (camera-motion induced) depth distortion problem was solved by Diner and Von Sydow (1987), who have quantified the 'static' (camera-configuration induced) depth distortion. In this paper, a stereo image presentation technique which yields aligned images, high depth resolution and low depth distortion is demonstrated, thus solving the trade-off problem.

  2. Battery formation charging apparatus

    SciTech Connect

    Stewart, J.L.

    1987-08-04

    An apparatus is describe for charging electric storage batteries, the apparatus comprising: (a) a host computer for providing charging information to and receiving status information from at least one slave computer by means of a data link; and (b) at least one control module coupled to the slave computer for applying charging current to at least one electric storage battery in response to instructions received from the slave computer, and for providing feedback and status information to the slave computer.

  3. Trapping a Charged Atom

    SciTech Connect

    Hla, Saw Wai

    2015-09-01

    Engineering of supramolecular assemblies on surfaces is an emerging field of research impacting chemistry, electronics, and biology. Among supramolecular assemblies, metal-containing structures provide rich properties and enable robust nanostructured designs. In this issue of ACS Nano, Feng eta!, report that supramolecular assemblies can trap gold adatoms that maintain a charged state on a Au(111) surface. Such charged adatoms may offer additional degrees of freedom in designing novel supramolecular architectures for efficient catalysts, memory, and charge storage for medical applications.

  4. Charge Islands Through Tunneling

    NASA Technical Reports Server (NTRS)

    Robinson, Daryl C.

    2002-01-01

    It has been recently reported that the electrical charge in a semiconductive carbon nanotube is not evenly distributed, but rather it is divided into charge "islands." This paper links the aforementioned phenomenon to tunneling and provides further insight into the higher rate of tunneling processes, which makes tunneling devices attractive. This paper also provides a basis for calculating the charge profile over the length of the tube so that nanoscale devices' conductive properties may be fully exploited.

  5. Process for fabricating a charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    2002-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  6. Three-dimensional charge coupled device

    DOEpatents

    Conder, Alan D.; Young, Bruce K. F.

    1999-01-01

    A monolithic three dimensional charged coupled device (3D-CCD) which utilizes the entire bulk of the semiconductor for charge generation, storage, and transfer. The 3D-CCD provides a vast improvement of current CCD architectures that use only the surface of the semiconductor substrate. The 3D-CCD is capable of developing a strong E-field throughout the depth of the semiconductor by using deep (buried) parallel (bulk) electrodes in the substrate material. Using backside illumination, the 3D-CCD architecture enables a single device to image photon energies from the visible, to the ultra-violet and soft x-ray, and out to higher energy x-rays of 30 keV and beyond. The buried or bulk electrodes are electrically connected to the surface electrodes, and an E-field parallel to the surface is established with the pixel in which the bulk electrodes are located. This E-field attracts charge to the bulk electrodes independent of depth and confines it within the pixel in which it is generated. Charge diffusion is greatly reduced because the E-field is strong due to the proximity of the bulk electrodes.

  7. Depth profiling of boron in ultra-shallow junction devices using time-of-flight neutron depth profiling (TOF-NDP)

    NASA Astrophysics Data System (ADS)

    Çetiner, Sacit M.; Ünlü, Kenan

    2007-08-01

    In conventional neutron depth profiling (NDP), residual energies of particles are measured directly by using a semiconductor detector. The measured depth resolution is a function of the material composition as well as a function of the energy resolution of the detector and precision of the measurement electronics. The uncertainty from the substrate is inevitable. However, for relatively thin layers, the predominant uncertainty factor in depth resolution is the metallic layer in front of the semiconductor-charged particle detector. The effect of the layer introduces additional straggling to the particle. Time-of-flight neutron depth profiling (TOF-NDP) is presented to eliminate the need to use semiconductor detectors. Particle energy can be determined from the particle arrival time. Energy resolution improvement achieved with TOF-NDP makes it possible to obtain concentration vs. depth profile of boron in ultra-shallow junction devices.

  8. Instabilities of Charged Polyampholytes

    NASA Astrophysics Data System (ADS)

    Kardar, Mehran

    1996-03-01

    We consider polymers formed from a (quenched) random sequence of charged monomers of opposite signs. Such polymers, known as polyampholytes (PAs), are compact when completely neutral and expanded when highly charged.footnote Y. Kantor and M. Kardar, Europhys. Lett. 27, 643 (1994). We examine the transition between the two regimes by Monte Carlo simulations, exact enumeration studies, and by analogies to charged drops. We find that the overall excess charge, Q, is the main determinant of the size of the PA. A polymer composed of N charges of ± q0 is compact for Qcharged drop. A uniform excess charge causes the breakup of a fluid drop. We speculate that a uniformly charged polymer stretches out to a necklace shape. The inhomogeneities in charge distort the shape away from an ordered necklace.footnote Y. Kantor and M. Kardar, Phys. Rev. E 51, 1299 (1995).

  9. Controlled battery charging system

    SciTech Connect

    Randolph, D.B.

    1991-07-02

    This patent describes a controlled battery charging system for charging a battery having terminals. It comprises: a transformer having a primary coil connected to a source of alternating current, and a secondary coil having output leads and a center tap, full wave rectifier means connected to the output leads to the secondary coil, the rectifier means including a pair of gate controlled rectifiers having direct current output leads, a battery charging circuit connected to the output leads to the rectifiers and having output means electrically contacting the terminals of a battery to be charged, a unijunction relaxation oscillator circuit connected to the rectifiers to trigger the gate controlled rectifiers into conduction to produce a DC charging current in the charging circuit, an electronic current limiting control circuit comprising a current limiting amplifier having a positive input, a negative input, and an output, a resistive line connected to center tap, a negative input lead connecting the center tap to the negative input of the current limiting amplifier, voltage input means connected to the positive input for supplying a voltage to the current limiting amplifier more positive than a voltage supplied to the negative input, voltage supply means connecting the current limiting amplifier to the battery charging circuit, and control means connecting the output of the current limiting amplifier to the unijunction relaxation oscillator circuit operative to turn off the DC charging circuit when the charging current exceeds a predetermined current value.

  10. Charging of interplanetary grains

    NASA Technical Reports Server (NTRS)

    Baragiola, R. A.; Johnson, R. E.; Newcomb, John L.

    1995-01-01

    The objective of this program is to quantify, by laboratory experiments, the charging of ices and other insulators subject to irradiation with electrons, ions and ultraviolet photons and to model special conditions based on the data. The system and conditions to be studied are those relevant for charging of dust in magnetospheric plasmas. The measurements are supplemented by computer simulations of charging or grains under a variety of conditions. Our work for this period involved experiments on water ice, improved models of charging of ice grains for Saturn's E-ring, and the construction of apparatus for electron impact studies and measurements of electron energy distributions.

  11. A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials

    SciTech Connect

    Mulligan, P. L.; Cao, L. R.; Turkoglu, D.

    2012-07-15

    Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

  12. A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials

    NASA Astrophysics Data System (ADS)

    Mulligan, P. L.; Cao, L. R.; Turkoglu, D.

    2012-07-01

    Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

  13. A multi-detector, digitizer based neutron depth profiling device for characterizing thin film materials.

    PubMed

    Mulligan, P L; Cao, L R; Turkoglu, D

    2012-07-01

    Neutron depth profiling (NDP) is a mature, nondestructive technique used to characterize the concentration of certain light isotopes in a material as a function of depth by measuring the residual energy of charged particles in neutron induced reactions. Historically, NDP has been performed using a single detector, resulting in low intrinsic detection efficiency, and limiting the technique largely to high flux research reactors. In this work, we describe a new NDP instrument design with higher detection efficiency by way of spectrum summing across multiple detectors. Such a design is capable of acquiring a statistically significant charged particle spectrum at facilities limited in neutron flux and operation time.

  14. Depth-Resolved Nanospray Desorption Electrospray Ionization Mass Spectrometry in Biofilms

    DTIC Science & Technology

    2015-11-16

    microcapillary system delivered a solvent (ethanol) from one capillary while the other capillary collected and transported a charged liquid to the mass ...Apr-2013 Approved for Public Release; Distribution Unlimited Final Report: Depth Resolved Nanospray Desorption Electrospray Ionization Mass ...U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 Depth-resolved, mass spectroscopy, biofilm, protein, microcapillary

  15. Beware Capital Charge Rates

    SciTech Connect

    Stauffer, Hoff

    2006-04-15

    The capital charge rate has a material effect in cost comparisons. Care should be taken to calculate it correctly and use it properly. The most common mistake is to use a nominal, rather than real, capital charge rate. To make matters worse, the common short-cut formula does not work well. (author)

  16. Nondissipative optimum charge regulator

    NASA Technical Reports Server (NTRS)

    Rosen, R.; Vitebsky, J. N.

    1970-01-01

    Optimum charge regulator provides constant level charge/discharge control of storage batteries. Basic power transfer and control is performed by solar panel coupled to battery through power switching circuit. Optimum controller senses battery current and modifies duty cycle of switching circuit to maximize current available to battery.

  17. Rain Drop Charge Sensor

    NASA Astrophysics Data System (ADS)

    S, Sreekanth T.

    begin{center} Large Large Rain Drop Charge Sensor Sreekanth T S*, Suby Symon*, G. Mohan Kumar (1) , S. Murali Das (2) *Atmospheric Sciences Division, Centre for Earth Science Studies, Thiruvananthapuram 695011 (1) D-330, Swathi Nagar, West Fort, Thiruvananthapuram 695023 (2) Kavyam, Manacaud, Thiruvananthapuram 695009 begin{center} ABSTRACT To study the inter-relations with precipitation electricity and precipitation microphysical parameters a rain drop charge sensor was designed and developed at CESS Electronics & Instrumentation Laboratory. Simultaneous measurement of electric charge and fall speed of rain drops could be done using this charge sensor. A cylindrical metal tube (sensor tube) of 30 cm length is placed inside another thick metal cover opened at top and bottom for electromagnetic shielding. Mouth of the sensor tube is exposed and bottom part is covered with metal net in the shielding cover. The instrument is designed in such a way that rain drops can pass only through unhindered inside the sensor tube. When electrically charged rain drops pass through the sensor tube, it is charged to the same magnitude of drop charge but with opposite polarity. The sensor tube is electrically connected the inverted input of a current to voltage converter operational amplifier using op-amp AD549. Since the sensor is electrically connected to the virtual ground of the op-amp, the charge flows to the ground and the generated current is converted to amplified voltage. This output voltage is recorded using a high frequency (1kHz) voltage recorder. From the recorded pulse, charge magnitude, polarity and fall speed of rain drop are calculated. From the fall speed drop diameter also can be calculated. The prototype is now under test running at CESS campus. As the magnitude of charge in rain drops is an indication of accumulated charge in clouds in lightning, this instrument has potential application in the field of risk and disaster management. By knowing the charge

  18. Aeration equipment for small depths

    NASA Astrophysics Data System (ADS)

    Sluše, Jan; Pochylý, František

    2015-05-01

    Deficit of air in water causes complications with cyanobacteria mainly in the summer months. Cyanobacteria is a bacteria that produces poison called cyanotoxin. When the concentration of cyanobacteria increases, the phenomena "algal bloom" appears, which is very toxic and may kill all the organisms. This article describes new equipment for aeration of water in dams, ponds and reservoirs with small depth. This equipment is mobile and it is able to work without any human factor because its control is provided by a GPS module. The main part of this equipment consists of a floating pump which pumps water from the surface. Another important part of this equipment is an aerator where water and air are blended. Final aeration process runs in the nozzles which provide movement of all this equipment and aeration of the water. Simulations of the flow are solved by multiphase flow with diffusion in open source program called OpenFOAM. Results will be verified by an experiment.

  19. Experimental investigation of penetration performance of shaped charge into concrete targets

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ma, Tianbao; Ning, Jianguo

    2008-06-01

    In order to develop a tandem warhead that can effectively destroy concrete targets, this paper explores the penetration performance of shaped charges with different cone angles and liner materials into concrete targets by means of experiments. The penetration process and the destruction mechanism of concrete targets by shaped charges and kinetic energy projectiles are analyzed and compared. Experimental results suggest that both kinetic energetic projectile and shaped charge are capable of destroying concrete targets, but the magnitudes of damage are different. Compared with a kinetic energy projectile, a shaped charge has more significant effect of penetration into the target, and causes very large spalling area. Hence, a shaped charge is quite suitable for first-stage charge of tandem warhead. It is also found that, with the increase of shaped charge liner cone angle, the depth of penetration decreases gradually while the hole diameter becomes larger. Penetration depth with copper liner is larger than of aluminum liner but hole diameter is relatively smaller, and the shaped charge with steel liner is between the above two cases. The shaped charge with a cone angle of 100° can form a jet projectile charge (JPC). With JPC, a hole with optimum depth and diameter on concrete targets can be formed, which guarantees that the second-stage warhead smoothly penetrates into the hole and explodes at the optimum depth to achieve the desired level of destruction in concrete targets.

  20. Nanometric depth resolution from multi-focal images in microscopy

    PubMed Central

    Dalgarno, Heather I. C.; Dalgarno, Paul A.; Dada, Adetunmise C.; Towers, Catherine E.; Gibson, Gavin J.; Parton, Richard M.; Davis, Ilan; Warburton, Richard J.; Greenaway, Alan H.

    2011-01-01

    We describe a method for tracking the position of small features in three dimensions from images recorded on a standard microscope with an inexpensive attachment between the microscope and the camera. The depth-measurement accuracy of this method is tested experimentally on a wide-field, inverted microscope and is shown to give approximately 8 nm depth resolution, over a specimen depth of approximately 6 µm, when using a 12-bit charge-coupled device (CCD) camera and very bright but unresolved particles. To assess low-flux limitations a theoretical model is used to derive an analytical expression for the minimum variance bound. The approximations used in the analytical treatment are tested using numerical simulations. It is concluded that approximately 14 nm depth resolution is achievable with flux levels available when tracking fluorescent sources in three dimensions in live-cell biology and that the method is suitable for three-dimensional photo-activated localization microscopy resolution. Sub-nanometre resolution could be achieved with photon-counting techniques at high flux levels. PMID:21247948

  1. Visual Cues for Enhancing Depth Perception.

    ERIC Educational Resources Information Center

    O'Donnell, L. M.; Smith, A. J.

    1994-01-01

    This article describes the physiological mechanisms involved in three-dimensional depth perception and presents a variety of distance and depth cues and strategies for detecting and estimating curbs and steps for individuals with impaired vision. (Author/DB)

  2. Depth perception estimation of various stereoscopic displays.

    PubMed

    Baek, Sangwook; Lee, Chulhee

    2016-10-17

    In this paper, we investigate the relationship between depth perception and several disparity parameters in stereoscopic images. A number of subjective experiments were conducted using various 3D displays, which indicate that depth perception of stereoscopic images is proportional to depth difference and is inversely related to the camera distance. Based on this observation, we developed some formulas to quantify the degree of depth perception of stereoscopic images. The proposed method uses depth differences and the camera distance between the objects and the 3D camera. This method also produces improved depth perception estimation by using non-linear functions whose inputs include a depth difference and a camera distance. The results show that the proposed method provides noticeable improvements in terms of correlation and produces more accurate depth perception estimations of stereoscopic images.

  3. Visual Cues for Enhancing Depth Perception.

    ERIC Educational Resources Information Center

    O'Donnell, L. M.; Smith, A. J.

    1994-01-01

    This article describes the physiological mechanisms involved in three-dimensional depth perception and presents a variety of distance and depth cues and strategies for detecting and estimating curbs and steps for individuals with impaired vision. (Author/DB)

  4. Natural complexity, computational complexity and depth.

    PubMed

    Machta, J

    2011-09-01

    Depth is a complexity measure for natural systems of the kind studied in statistical physics and is defined in terms of computational complexity. Depth quantifies the length of the shortest parallel computation required to construct a typical system state or history starting from simple initial conditions. The properties of depth are discussed and it is compared with other complexity measures. Depth can only be large for systems with embedded computation.

  5. Charged Proca stars

    NASA Astrophysics Data System (ADS)

    Landea, Ignacio Salazar; García, Federico

    2016-11-01

    In this paper, we study gauged solutions associated with a massive vector field representing a spin-1 condensate, namely, the Proca field. We focus on regular spherically symmetric solutions which we construct either using a self-interaction potential or general relativity in order to glue the solutions together. We start generating nongravitating solutions—so-called Proca Q -balls and charged Proca Q -balls. Then we turn on backreaction on the metric, allowing gravity to hold together the Proca condensate, to study the so-called Proca stars, charged Proca stars, Proca Q -stars, and charged Proca Q -stars.

  6. Geographical Distribution of Crater Depths on Mars

    NASA Astrophysics Data System (ADS)

    Stepinski, T. F.

    2010-03-01

    Global maps of crater depths on Mars are constructed using a new dataset that lists depths of >75,000 craters. Distribution of crater depths is interpreted in terms of cryosphere extent, and the locations of deepest craters on Mars are identified.

  7. Robust Color Guided Depth Map Restoration.

    PubMed

    Liu, Wei; Chen, Xiaogang; Yang, Jie; Wu, Qiang

    2017-01-01

    One of the most challenging issues in color guided depth map restoration is the inconsistency between color edges in guidance color images and depth discontinuities on depth maps. This makes the restored depth map suffer from texture copy artifacts and blurring depth discontinuities. To handle this problem, most state-of-the-art methods design complex guidance weight based on guidance color images and heuristically make use of the bicubic interpolation of the input depth map. In this paper, we show that using bicubic interpolated depth map can blur depth discontinuities when the upsampling factor is large and the input depth map contains large holes and heavy noise. In contrast, we propose a robust optimization framework for color guided depth map restoration. By adopting a robust penalty function to model the smoothness term of our model, we show that the proposed method is robust against the inconsistency between color edges and depth discontinuities even when we use simple guidance weight. To the best of our knowledge, we are the first to solve this problem with a principled mathematical formulation rather than previous heuristic weighting schemes. The proposed robust method performs well in suppressing texture copy artifacts. Moreover, it can better preserve sharp depth discontinuities than previous heuristic weighting schemes. Through comprehensive experiments on both simulated data and real data, we show promising performance of the proposed method.

  8. Robust Color Guided Depth Map Restoration.

    PubMed

    Liu, Wei; Chen, Xiaogang; Yang, Jie; Wu, Qiang

    2016-09-22

    One of the most challenging issues in color guided depth map restoration is the inconsistency between color edges in guidance color images and depth discontinuities on depth maps. This makes the restored depth map suffer from texture copy artifacts and blurring depth discontinuities. To handle this problem, most state-of-the-art methods design complex guidance weight based on guidance color images and heuristically make use of the bicubic interpolation of the input depth map. In this paper, we show that using bicubic interpolated depth map can blur depth discontinuities when the upsampling factor is large and the input depth map contains large holes and heavy noise. In contrast, we propose a robust optimization framework for color guided depth map restoration. By adopting a robust penalty function to model the smoothness term of our model, we show that the proposed method is robust against the inconsistency between color edges and depth discontinuities even when we use simple guidance weight. To the best of our knowledge, we are the first to solve this problem with a principled mathematical formulation rather than previous heuristic weighting schemes. The proposed robust method performs well in suppressing texture copy artifacts. Moreover, it can better preserve sharp depth discontinuities than previous heuristic weighting schemes. Through comprehensive experiments on both simulated data and real data, we show promising performance of the proposed method.

  9. 33 CFR 183.215 - Reference depth.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Reference depth. 183.215 Section... of More Than 2 Horsepower General § 183.215 Reference depth. Reference depth is the minimum distance between the uppermost surface of the submerged reference area of a boat and the surface of the water...

  10. 33 CFR 183.315 - Reference depth.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 2 2011-07-01 2011-07-01 false Reference depth. 183.315 Section... of 2 Horsepower or Less General § 183.315 Reference depth. Reference depth is the minimum distance between the uppermost surface of the submerged reference area of a boat and the surface of the water...

  11. 33 CFR 183.315 - Reference depth.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 2 2013-07-01 2013-07-01 false Reference depth. 183.315 Section... of 2 Horsepower or Less General § 183.315 Reference depth. Reference depth is the minimum distance between the uppermost surface of the submerged reference area of a boat and the surface of the water...

  12. Pulse-shape discrimination in neutron depth profiling radioanalytical methods. Part II

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Červená, J.; Hnatowicz, V.; Havránek, V.; Hoffmann, J.; Pošta, S.; Fink, D.

    1999-01-01

    Pulse shape discrimination (PSD) is used for the reduction of radiation background in the depth sensitive neutron depth profiling method (NDP) based on the detection of charged particles from the (n, α) and (n, p) nuclear reactions induced by thermal neutrons on some light elements. The experimental NDP-PSD arrangement is described and its performance is demonstrated on the measurement of real samples. Background reduction by several orders of magnitude in the region below 1 MeV leads to a corresponding sensitivity improvement and to an extension of the measurable depth region for some light elements.

  13. Uterine caliper and depth gauge

    DOEpatents

    King, Loyd L.; Wheeler, Robert G.; Fish, Thomas M.

    1977-01-01

    A uterine caliper and sound consisting of an elongated body having outwardly biased resilient caliper wings and a spring-loaded slidable cervical stop. A slide on the body is operatively connected to the wings by a monofilament and operates with respect to a first scale on the body as a width indicator. A rod extending longitudinally on the body is connected to the cervical stop and cooperates with a second scale on the body as a depth indicator. The instrument can be positioned to measure the distance from the outer cervical ostium to the fundus, as read on said second scale. The wings may be allowed to open by moving the slide, and when the wings engage the utero-tubal junctions, the width may be read on said first scale. By adjustment of the caliper wings the instrument may be retracted until the resistance of the inner ostium of the cervix is felt, enabling the length of the cervical canal to be read directly by the position of the longitudinal indicator rod with respect to said second scale. The instrument may be employed to measure the width of the uterine cavity at any position between the inner ostium of the cervix and the fundus.

  14. Depth Map Restoration From Undersampled Data.

    PubMed

    Mandal, Srimanta; Bhavsar, Arnav; Sao, Anil Kumar

    2017-01-01

    Depth map sensed by low-cost active sensor is often limited in resolution, whereas depth information achieved from structure from motion or sparse depth scanning techniques may result in a sparse point cloud. Achieving a high-resolution (HR) depth map from a low resolution (LR) depth map or densely reconstructing a sparse non-uniformly sampled depth map are fundamentally similar problems with different types of upsampling requirements. The first problem involves upsampling in a uniform grid, whereas the second type of problem requires an upsampling in a non-uniform grid. In this paper, we propose a new approach to address such issues in a unified framework, based on sparse representation. Unlike, most of the approaches of depth map restoration, our approach does not require an HR intensity image. Based on example depth maps, sub-dictionaries of exemplars are constructed, and are used to restore HR/dense depth map. In the case of uniform upsampling of LR depth map, an edge preserving constraint is used for preserving the discontinuity present in the depth map, and a pyramidal reconstruction strategy is applied in order to deal with higher upsampling factors. For upsampling of non-uniformly sampled sparse depth map, we compute the missing information in local patches from that from similar exemplars. Furthermore, we also suggest an alternative method of reconstructing dense depth map from very sparse non-uniformly sampled depth data by sequential cascading of uniform and non-uniform upsampling techniques. We provide a variety of qualitative and quantitative results to demonstrate the efficacy of our approach for depth map restoration.

  15. Benchmark Airport Charges

    NASA Technical Reports Server (NTRS)

    deWit, A.; Cohn, N.

    1999-01-01

    The Netherlands Directorate General of Civil Aviation (DGCA) commissioned Hague Consulting Group (HCG) to complete a benchmark study of airport charges at twenty eight airports in Europe and around the world, based on 1996 charges. This study followed previous DGCA research on the topic but included more airports in much more detail. The main purpose of this new benchmark study was to provide insight into the levels and types of airport charges worldwide and into recent changes in airport charge policy and structure, This paper describes the 1996 analysis. It is intended that this work be repeated every year in order to follow developing trends and provide the most up-to-date information possible.

  16. Benchmark Airport Charges

    NASA Technical Reports Server (NTRS)

    de Wit, A.; Cohn, N.

    1999-01-01

    The Netherlands Directorate General of Civil Aviation (DGCA) commissioned Hague Consulting Group (HCG) to complete a benchmark study of airport charges at twenty eight airports in Europe and around the world, based on 1996 charges. This study followed previous DGCA research on the topic but included more airports in much more detail. The main purpose of this new benchmark study was to provide insight into the levels and types of airport charges worldwide and into recent changes in airport charge policy and structure. This paper describes the 1996 analysis. It is intended that this work be repeated every year in order to follow developing trends and provide the most up-to-date information possible.

  17. Charged Particle Flux Sensor

    NASA Technical Reports Server (NTRS)

    Gregory, D. A.; Stocks, C. D.

    1983-01-01

    Improved version of Faraday cup increases accuracy of measurements of flux density of charged particles incident along axis through collection aperture. Geometry of cone-and-sensing cup combination assures most particles are trapped.

  18. EV Charging Infrastructure Roadmap

    SciTech Connect

    Karner, Donald; Garetson, Thomas; Francfort, Jim

    2016-08-01

    As highlighted in the U.S. Department of Energy’s EV Everywhere Grand Challenge, vehicle technology is advancing toward an objective to “… produce plug-in electric vehicles that are as affordable and convenient for the average American family as today’s gasoline-powered vehicles …” [1] by developing more efficient drivetrains, greater battery energy storage per dollar, and lighter-weight vehicle components and construction. With this technology advancement and improved vehicle performance, the objective for charging infrastructure is to promote vehicle adoption and maximize the number of electric miles driven. The EV Everywhere Charging Infrastructure Roadmap (hereafter referred to as Roadmap) looks forward and assumes that the technical challenges and vehicle performance improvements set forth in the EV Everywhere Grand Challenge will be met. The Roadmap identifies and prioritizes deployment of charging infrastructure in support of this charging infrastructure objective for the EV Everywhere Grand Challenge

  19. Streams of Charged Particles

    NASA Image and Video Library

    2011-04-28

    This graphic shows the different streams of charged particles inside the bubble around our sun and outside, in the unexplored territory of interstellar space. The heliosheath, where NASA two Voyager spacecraft are now traveling, is shown in red.

  20. Electrically charged targets

    DOEpatents

    Goodman, Ronald K.; Hunt, Angus L.

    1984-01-01

    Electrically chargeable laser targets and method for forming such charged targets in order to improve their guidance along a predetermined desired trajectory. This is accomplished by the incorporation of a small amount of an additive to the target material which will increase the electrical conductivity thereof, and thereby enhance the charge placed upon the target material for guidance thereof by electrostatic or magnetic steering mechanisms, without adversely affecting the target when illuminated by laser energy.

  1. Study on angular variation of cosmic ray secondary particles with atmospheric depth using CORSIKA code

    NASA Astrophysics Data System (ADS)

    Patgiri, P.; Kalita, D.; Boruah, K.

    2017-04-01

    The distribution of the secondary cosmic ray charged particles in the atmosphere as a function of zenith angle of the primary particle depends on various factors such as atmospheric depth, latitude and longitude of the place of observation and possibly other atmospheric conditions. This work is focussed on the investigation of atmospheric attenuation of an Extensive Air Shower using the zenith angle distribution of the secondary charged particles, at different atmospheric depths for pure primary compositions (gamma, proton and iron nucleus) and mixed compositions employing the Monte Carlo Simulation code CORSIKA (versions 6.990 and 7.3500) in the energy range 10 TeV-1 PeV. The secondary charged particles in different zenith angle bins are fitted with a differential distribution dN sp /dθ = A(X)sinθcos n(X)θ, where the power index n(X) is a function of atmospheric depth X. For a given zenith angle θ, the frequency of the showers with secondary charged particle intensity higher than a threshold is also fitted with a relation F(θ,X0) = F(0,X0)exp[-X0(secθ - 1)/λ], where X0 is the vertical atmospheric depth and λ is the attenuation length. Further, the angular distribution parameter n(X) and attenuation co-efficients (λ) from our simulation result for different primaries are compared with available experimental data.

  2. Bayesian depth estimation from monocular natural images.

    PubMed

    Su, Che-Chun; Cormack, Lawrence K; Bovik, Alan C

    2017-05-01

    Estimating an accurate and naturalistic dense depth map from a single monocular photographic image is a difficult problem. Nevertheless, human observers have little difficulty understanding the depth structure implied by photographs. Two-dimensional (2D) images of the real-world environment contain significant statistical information regarding the three-dimensional (3D) structure of the world that the vision system likely exploits to compute perceived depth, monocularly as well as binocularly. Toward understanding how this might be accomplished, we propose a Bayesian model of monocular depth computation that recovers detailed 3D scene structures by extracting reliable, robust, depth-sensitive statistical features from single natural images. These features are derived using well-accepted univariate natural scene statistics (NSS) models and recent bivariate/correlation NSS models that describe the relationships between 2D photographic images and their associated depth maps. This is accomplished by building a dictionary of canonical local depth patterns from which NSS features are extracted as prior information. The dictionary is used to create a multivariate Gaussian mixture (MGM) likelihood model that associates local image features with depth patterns. A simple Bayesian predictor is then used to form spatial depth estimates. The depth results produced by the model, despite its simplicity, correlate well with ground-truth depths measured by a current-generation terrestrial light detection and ranging (LIDAR) scanner. Such a strong form of statistical depth information could be used by the visual system when creating overall estimated depth maps incorporating stereopsis, accommodation, and other conditions. Indeed, even in isolation, the Bayesian predictor delivers depth estimates that are competitive with state-of-the-art "computer vision" methods that utilize highly engineered image features and sophisticated machine learning algorithms.

  3. True amplitude prestack depth migration

    NASA Astrophysics Data System (ADS)

    Deng, Feng

    Reliable analysis of amplitude variation with offset (or with angle) requires accurate amplitudes from prestack migration. In routine seismic data processing, amplitude balancing and automatic gain control are often used to reduce amplitude lateral variations. However, these methods are empirical and lack a solid physical basis; thus, there are uncertainties that might produce erroneous conclusions, and hence cause economic loss. During wavefield propagation, geometrical spreading, intrinsic attenuation, transmission losses and the energy conversion significantly distort the wavefield amplitude. Most current true-amplitude migrations usually compensate only for geometrical spreading. A new prestack depth migration based on the framework of reverse-time migration in the time-space domain was developed in this dissertation with the aim of compensating all of the propagation effects in one integrated algorithm. Geometrical spreading is automatically included because of the use of full two-way wave extrapolation. Viscoelastic wave equations are solved to handle the intrinsic attenuation with a priori quality factor. Transmission losses for both up- and down-going waves are compensated using a two-pass, recursive procedure based on extracting the angle-dependent reflection/transmission coefficients from prestack migration. The losses caused by the conversion of energy from one elastic model to another are accounted for through elastic wave extrapolation; the influence of the S wave velocity contrast on the P wave reflection coefficient is implicitly included by using the Zoeppritz equations to describe the reflection and transmission at an elastic interface. Only smooth background models are assumed to be known. The contrasts/ratios of the model parameters can be estimated by fitting the compensated angle-dependent reflection coefficients obtained from data for multiple sources. This is one useful by-product of the algorithm. Numerical tests on both 2D and 3D scalar

  4. Effect of LEO cycling at shallow depths of discharge on MANTECH IPV nickel-hydrogen cells

    NASA Technical Reports Server (NTRS)

    Smithrick, John J.

    1988-01-01

    An individual pressure vessel nickel-hydrogen battery is being considered as an alternate for a nickel-cadmium battery on the Hubble Space Telescope. The space telescope battery will primarily be operating at a shallow depth of discharge (10 percent DOD) with an occasional 40 percent DOD. This shallow DOD raises several issues: (1) What is the cycle life. It is projected to be acceptable; however, there is no reported real time data base for validation. (2) The state of charge of the nickel electrode at the beginning of charge is 90 percent. Will this cause an acceleration of divergence in the battery individual cell voltages. (3) After prolonged cycling at 10 percent DOD, will there be enough capacity remaining to support the 40 percent DOD. (4) Is the state of charge really 90 percent during cycling. There is no reported real time data base at shallow depths of discharge. A data base to address the above issues was initiated.

  5. Development of cold neutron depth profiling system at HANARO

    NASA Astrophysics Data System (ADS)

    Park, B. G.; Sun, G. M.; Choi, H. D.

    2014-07-01

    A neutron depth profiling (NDP) system has been designed and developed at HANARO, a 30 MW research reactor at the Korea Atomic Energy Research Institute (KAERI). The KAERI-NDP system utilizes cold neutrons that are transported along the CG1 neutron guide from the cold neutron source and it consists of a neutron beam collimator, a target chamber, a beam stopper, and charged particle detectors along with NIM-standard modules for charged particle pulse-height analysis. A 60 cm in diameter stainless steel target chamber was designed to control the positions of the sample and detector. The energy distribution of the cold neutron beam at the end of the neutron guide was calculated by using the Monte Carlo simulation code McStas, and a neutron flux of 1.8×108 n/cm2 s was determined by using the gold foil activation method at the sample position. The performance of the charged particle detection of the KAERI-NDP system was tested by using Standard Reference Materials. The energy loss spectra of alpha particles and Li ions emitted from 10B, which was irradiated by cold neutrons, were measured. The measured peak concentration and the areal density of 10B in the Standard Reference Material are consistent with the reference values within 1% and 3.4%, respectively.

  6. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  7. Induced charge effects on electrokinetic entry flow

    NASA Astrophysics Data System (ADS)

    Prabhakaran, Rama Aravind; Zhou, Yilong; Zhao, Cunlu; Hu, Guoqing; Song, Yongxin; Wang, Junsheng; Yang, Chun; Xuan, Xiangchun

    2017-06-01

    Electrokinetic flow, due to a nearly plug-like velocity profile, is the preferred mode for transport of fluids (by electroosmosis) and species (by electrophoresis if charged) in microfluidic devices. Thus far there have been numerous studies on electrokinetic flow within a variety of microchannel structures. However, the fluid and species behaviors at the interface of the inlet reservoir (i.e., the well that supplies the fluid and species) and microchannel are still largely unexplored. This work presents a fundamental investigation of the induced charge effects on electrokinetic entry flow due to the polarization of dielectric corners at the inlet reservoir-microchannel junction. We use small tracing particles suspended in a low ionic concentration fluid to visualize the electrokinetic flow pattern in the absence of Joule heating effects. Particles are found to get trapped and concentrated inside a pair of counter-rotating fluid circulations near the corners of the channel entrance. We also develop a depth-averaged numerical model to understand the induced charge on the corner surfaces and simulate the resultant induced charge electroosmosis (ICEO) in the horizontal plane of the microchannel. The particle streaklines predicted from this model are compared with the experimental images of tracing particles, which shows a significantly better agreement than those from a regular two-dimensional model. This study indicates the strong influences of the top/bottom walls on ICEO in shallow microchannels, which have been neglected in previous two-dimensional models.

  8. Nanoparticle coagulation in fractionally charged and charge fluctuating dusty plasmas

    SciTech Connect

    Nunomura, Shota; Kondo, Michio; Shiratani, Masaharu; Koga, Kazunori; Watanabe, Yukio

    2008-08-15

    The kinetics of nanoparticle coagulation has been studied in fractionally charged and charge fluctuating dusty plasmas. The coagulation occurs when the mutual collision frequency among nanoparticles exceeds their charging and decharging/neutralization frequency. Interestingly, the coagulation is suppressed while a fraction (several percent) of nanoparticles are negatively charged in a plasma, in which stochastic charging plays an important role. A model is developed to predict a phase diagram of the coagulation and its suppression.

  9. Image inpainting strategy for Kinect depth maps

    NASA Astrophysics Data System (ADS)

    Yao, Huimin; Chen, Yan; Ge, Chenyang

    2013-07-01

    The great advantage of Microsoft Kinect makes the depth acquisition real-time and inexpensive. But the depth maps directly obtained with the Microsoft Kinect device have absent regions and holes caused by optical factors. The noisy depth maps affect lots of complex tasks in computer vision. In order to improve the quality of the depth maps, this paper presents an efficient image inpainting strategy which is based on watershed segmentation and region merging framework of the corresponding color images. The primitive regions produced by watershed transform are merged into lager regions according to color similarity and edge among regions. Finally, mean filter operator to the adjacent pixels is used to fill up missing depth values and deblocking filter is applied for smoothing depth maps.

  10. Mechanisms and depths of atlantic transform earthquakes

    NASA Technical Reports Server (NTRS)

    Engeln, J. F.; Wiens, D. A.; Stein, S.

    1986-01-01

    Mechanisms and depths of 40 earthquakes on major transforms along the Mid-Atlantic Ridge are studied in order to identify events that deviate from the transform-parallel strike-slip motion. Long and short period waves and Rayleigh wave spectral amplitudes are used to analyze focal mechanisms, depths, source time functions, and seismic moments of earthquakes. The relationship between centroid depths and transform thermal structures is examined. The data reveal that transform earthquake centroid depths occur above the predicted 400 C isotherms and the oceanic intraplate depths extend to the 750 C isotherm. Slip rates inferred from seismic moment releases are compared to those predicted by plate motions and good correlation is detected. The difference in the centroid depths of transform and interplate seismicity indicates transforms are either weaker or higher temperatures than expected.

  11. Airblast environments from buried HE charges

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1993-01-01

    Laboratory experiments were conducted to measure the airblast environment generated by the detonation of buried HE charges. Spherical 0.5-g charges of Nitropenta were used as the HE source. Three ground materials were used: (1) a porous, crushable grout (YTONG, {rho} = 0.4 g/cm{sup 3}); (2) a water-saturated grout ({rho} {approx_equal} 0.7 g/Cm{sup 3}) to investigate the effects of density increase; and (3) a clay-loam material ({rho} {approx_equal} 1.8 g/cm{sup 3}) to simulate some of the previous field tests conducted in clay. Diagnostics consisted of 13 flush-mounted pressure gauges, and single-frame schlieren photography. A special shock isolation system was used to eliminate the acceleration effects on the gauges that were induced by the cratering process. Analysis of the pressure measurements resulted in an experimental definition of the airblast environment as a function of ground range (GR) and depth-of-burst (DOB). Synthesis of these results allowed one to construct airblast DOB curves, similar to the airblast height-of-burst curves that we published previously for Nitropenta charges. Variables analyzed were: peak pressure, arrival time, positive phase duration and impulse. As in field tests, we found that the airblast waveforms changed character with increasing DOB. The crater characteristics (e.a., depth, radius and volume) were also measured. The cube-root-scaled crater volume was in qualitative agreement with data from field tests (e.g., charge weights up to 10{sup 4} lbs.). Since the present scaled results compare well with data from large-scale HE tests, we conclude that the present experimental technique provides a useful tool for parametric investigations of explosion effects in the laboratory.

  12. Binocular Depth Judgments on Smoothly Curved Surfaces.

    PubMed

    Hornsey, Rebecca L; Hibbard, Paul B; Scarfe, Peter

    2016-01-01

    Binocular disparity is an important cue to depth, allowing us to make very fine discriminations of the relative depth of objects. In complex scenes, this sensitivity depends on the particular shape and layout of the objects viewed. For example, judgments of the relative depths of points on a smoothly curved surface are less accurate than those for points in empty space. It has been argued that this occurs because depth relationships are represented accurately only within a local spatial area. A consequence of this is that, when judging the relative depths of points separated by depth maxima and minima, information must be integrated across separate local representations. This integration, by adding more stages of processing, might be expected to reduce the accuracy of depth judgements. We tested this idea directly by measuring how accurately human participants could report the relative depths of two dots, presented with different binocular disparities. In the first, Two Dot condition the two dots were presented in front of a square grid. In the second, Three Dot condition, an additional dot was presented midway between the target dots, at a range of depths, both nearer and further than the target dots. In the final, Surface condition, the target dots were placed on a smooth surface defined by binocular disparity cues. In some trials, this contained a depth maximum or minimum between the target dots. In the Three Dot condition, performance was impaired when the central dot was presented with a large disparity, in line with predictions. In the Surface condition, performance was worst when the midpoint of the surface was at a similar distance to the targets, and relatively unaffected when there was a large depth maximum or minimum present. These results are not consistent with the idea that depth order is represented only within a local spatial area.

  13. Binocular Depth Judgments on Smoothly Curved Surfaces

    PubMed Central

    Hornsey, Rebecca L.; Scarfe, Peter

    2016-01-01

    Binocular disparity is an important cue to depth, allowing us to make very fine discriminations of the relative depth of objects. In complex scenes, this sensitivity depends on the particular shape and layout of the objects viewed. For example, judgments of the relative depths of points on a smoothly curved surface are less accurate than those for points in empty space. It has been argued that this occurs because depth relationships are represented accurately only within a local spatial area. A consequence of this is that, when judging the relative depths of points separated by depth maxima and minima, information must be integrated across separate local representations. This integration, by adding more stages of processing, might be expected to reduce the accuracy of depth judgements. We tested this idea directly by measuring how accurately human participants could report the relative depths of two dots, presented with different binocular disparities. In the first, Two Dot condition the two dots were presented in front of a square grid. In the second, Three Dot condition, an additional dot was presented midway between the target dots, at a range of depths, both nearer and further than the target dots. In the final, Surface condition, the target dots were placed on a smooth surface defined by binocular disparity cues. In some trials, this contained a depth maximum or minimum between the target dots. In the Three Dot condition, performance was impaired when the central dot was presented with a large disparity, in line with predictions. In the Surface condition, performance was worst when the midpoint of the surface was at a similar distance to the targets, and relatively unaffected when there was a large depth maximum or minimum present. These results are not consistent with the idea that depth order is represented only within a local spatial area. PMID:27824895

  14. The analogy between stereo depth and brightness.

    PubMed

    Brookes, A; Stevens, K A

    1989-01-01

    Apparent depth in stereograms exhibits various simultaneous-contrast and induction effects analogous to those reported in the luminance domain. This behavior suggests that stereo depth, like brightness, is reconstructed, ie recovered from higher-order spatial derivatives or differences of the original signal. The extent to which depth is analogous to brightness is examined. There are similarities in terms of contrast effects but dissimilarities in terms of the lateral inhibition effects traditionally attributed to underlying spatial-differentiation operators.

  15. Dispersion and space charge

    SciTech Connect

    Venturini, Marco; Kishek, Rami A.; Reiser, Martin

    1998-11-05

    The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring.

  16. Dispersion and space charge

    SciTech Connect

    Venturini, M.; Kishek, R.A.; Reiser, M.

    1998-11-01

    The presence of space charge affects the value of the dispersion function. On the other hand dispersion has a role in shaping the beam distribution and therefore in determining the resulting forces due to space charge. In this paper we present a framework where the interplay between space charge and dispersion for a continuous beam can be simultaneously treated. We revise the derivation of a new set of rms envelope-dispersion equations we have recently proposed in [1]. The new equations generalize the standard rms envelope equations currently used for matching to the case where bends and a longitudinal momentum spread are present. We report a comparison between the solutions of the rms envelope-dispersion equations and the results obtained using WARP, a Particle in Cell (PIC) code, in the modeling of the Maryland Electron Ring. {copyright} {ital 1998 American Institute of Physics.}

  17. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  18. Nanomechanical Charge Detectors and Charge Shuttles

    NASA Astrophysics Data System (ADS)

    Erbe, Artur

    2001-03-01

    Nanoelectromechanical resonators open the possibillities to build very sensitive detectors on a small length scale. We show how to operate simple nanomechanical wires as charge detectors. Combining nanomechanical motion with current transport via tunneling barriers may lead to very sensitive displacement detection. Additionaly, this combination can be a good candidate for a current standard, if Coulomb-Blockade effects are included. We show measurements on such a nanomechanical resonator shuttling single electrons at radio frequencies. The resulting tunneling current shows distinct features corresponding to the discrete mechanical eigenfrequencies of the pendulum. We report on measurements covering the temperature range from 300 K down to 4.2 K. We explain the I-V curve, which unexpectedly differs from previous theoretical predictions, with model calculations based on a Master equation approach.

  19. Quick charge battery

    SciTech Connect

    Parise, R.J.

    1998-07-01

    Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

  20. Temporal and Spatial Denoising of Depth Maps

    PubMed Central

    Lin, Bor-Shing; Su, Mei-Ju; Cheng, Po-Hsun; Tseng, Po-Jui; Chen, Sao-Jie

    2015-01-01

    This work presents a procedure for refining depth maps acquired using RGB-D (depth) cameras. With numerous new structured-light RGB-D cameras, acquiring high-resolution depth maps has become easy. However, there are problems such as undesired occlusion, inaccurate depth values, and temporal variation of pixel values when using these cameras. In this paper, a proposed method based on an exemplar-based inpainting method is proposed to remove artefacts in depth maps obtained using RGB-D cameras. Exemplar-based inpainting has been used to repair an object-removed image. The concept underlying this inpainting method is similar to that underlying the procedure for padding the occlusions in the depth data obtained using RGB-D cameras. Therefore, our proposed method enhances and modifies the inpainting method for application in and the refinement of RGB-D depth data image quality. For evaluating the experimental results of the proposed method, our proposed method was tested on the Tsukuba Stereo Dataset, which contains a 3D video with the ground truths of depth maps, occlusion maps, RGB images, the peak signal-to-noise ratio, and the computational time as the evaluation metrics. Moreover, a set of self-recorded RGB-D depth maps and their refined versions are presented to show the effectiveness of the proposed method. PMID:26230696

  1. Pictorial depth probed through relative sizes

    PubMed Central

    Wagemans, Johan; van Doorn, Andrea J; Koenderink, Jan J

    2011-01-01

    In the physical environment familiar size is an effective depth cue because the distance from the eye to an object equals the ratio of its physical size to its angular extent in the visual field. Such simple geometrical relations do not apply to pictorial space, since the eye itself is not in pictorial space, and consequently the notion “distance from the eye” is meaningless. Nevertheless, relative size in the picture plane is often used by visual artists to suggest depth differences. The depth domain has no natural origin, nor a natural unit; thus only ratios of depth differences could have an invariant significance. We investigate whether the pictorial relative size cue yields coherent depth structures in pictorial spaces. Specifically, we measure the depth differences for all pairs of points in a 20-point configuration in pictorial space, and we account for these observations through 19 independent parameters (the depths of the points modulo an arbitrary offset), with no meaningful residuals. We discuss a simple formal framework that allows one to handle individual differences. We also compare the depth scale obtained by way of this method with depth scales obtained in totally different ways, finding generally good agreement. PMID:23145258

  2. Rank order scaling of pictorial depth

    PubMed Central

    van Doorn, Andrea; Koenderink, Jan; Wagemans, Johan

    2011-01-01

    We address the topic of “pictorial depth” in cases of pictures that are unlike photographic renderings. The most basic measure of “depth” is no doubt that of depth order. We establish depth order through the pairwise depth-comparison method, involving all pairs from a set of 49 fiducial points. The pictorial space for this study was evoked by a capriccio (imaginary landscape) by Francesco Guardi (1712–1793). In such a drawing pictorial space is suggested by the artist through a small set of conventional depth cues. As a result typical Western observers tend to agree largely in their visual awareness when looking at such art. We rank depths for locations that are not on a single surface and far apart in pictorial space. We find that observers resolve about 40 distinct depth layers and agree largely in this. From a previous experiment we have metrical data for the same observers. The rank correlations between the results are high. Perhaps surprisingly, we find no correlation between the number of distinct depth layers and the total metrical depth range. Thus, the relation between subjective magnitude and discrimination threshold fails to hold for pictorial depth. PMID:23145256

  3. Temporal and Spatial Denoising of Depth Maps.

    PubMed

    Lin, Bor-Shing; Su, Mei-Ju; Cheng, Po-Hsun; Tseng, Po-Jui; Chen, Sao-Jie

    2015-07-29

    This work presents a procedure for refining depth maps acquired using RGB-D (depth) cameras. With numerous new structured-light RGB-D cameras, acquiring high-resolution depth maps has become easy. However, there are problems such as undesired occlusion, inaccurate depth values, and temporal variation of pixel values when using these cameras. In this paper, a proposed method based on an exemplar-based inpainting method is proposed to remove artefacts in depth maps obtained using RGB-D cameras. Exemplar-based inpainting has been used to repair an object-removed image. The concept underlying this inpainting method is similar to that underlying the procedure for padding the occlusions in the depth data obtained using RGB-D cameras. Therefore, our proposed method enhances and modifies the inpainting method for application in and the refinement of RGB-D depth data image quality. For evaluating the experimental results of the proposed method, our proposed method was tested on the Tsukuba Stereo Dataset, which contains a 3D video with the ground truths of depth maps, occlusion maps, RGB images, the peak signal-to-noise ratio, and the computational time as the evaluation metrics. Moreover, a set of self-recorded RGB-D depth maps and their refined versions are presented to show the effectiveness of the proposed method.

  4. Directional Joint Bilateral Filter for Depth Images

    PubMed Central

    Le, Anh Vu; Jung, Seung-Won; Won, Chee Sun

    2014-01-01

    Depth maps taken by the low cost Kinect sensor are often noisy and incomplete. Thus, post-processing for obtaining reliable depth maps is necessary for advanced image and video applications such as object recognition and multi-view rendering. In this paper, we propose adaptive directional filters that fill the holes and suppress the noise in depth maps. Specifically, novel filters whose window shapes are adaptively adjusted based on the edge direction of the color image are presented. Experimental results show that our method yields higher quality filtered depth maps than other existing methods, especially at the edge boundaries. PMID:24971470

  5. Are face representations depth cue invariant?

    PubMed

    Dehmoobadsharifabadi, Armita; Farivar, Reza

    2016-06-01

    The visual system can process three-dimensional depth cues defining surfaces of objects, but it is unclear whether such information contributes to complex object recognition, including face recognition. The processing of different depth cues involves both dorsal and ventral visual pathways. We investigated whether facial surfaces defined by individual depth cues resulted in meaningful face representations-representations that maintain the relationship between the population of faces as defined in a multidimensional face space. We measured face identity aftereffects for facial surfaces defined by individual depth cues (Experiments 1 and 2) and tested whether the aftereffect transfers across depth cues (Experiments 3 and 4). Facial surfaces and their morphs to the average face were defined purely by one of shading, texture, motion, or binocular disparity. We obtained identification thresholds for matched (matched identity between adapting and test stimuli), non-matched (non-matched identity between adapting and test stimuli), and no-adaptation (showing only the test stimuli) conditions for each cue and across different depth cues. We found robust face identity aftereffect in both experiments. Our results suggest that depth cues do contribute to forming meaningful face representations that are depth cue invariant. Depth cue invariance would require integration of information across different areas and different pathways for object recognition, and this in turn has important implications for cortical models of visual object recognition.

  6. Depth Perception In Remote Stereoscopic Viewing Systems

    NASA Technical Reports Server (NTRS)

    Diner, Daniel B.; Von Sydow, Marika

    1989-01-01

    Report describes theoretical and experimental studies of perception of depth by human operators through stereoscopic video systems. Purpose of such studies to optimize dual-camera configurations used to view workspaces of remote manipulators at distances of 1 to 3 m from cameras. According to analysis, static stereoscopic depth distortion decreased, without decreasing stereoscopitc depth resolution, by increasing camera-to-object and intercamera distances and camera focal length. Further predicts dynamic stereoscopic depth distortion reduced by rotating cameras around center of circle passing through point of convergence of viewing axes and first nodal points of two camera lenses.

  7. Charged conformal Killing spinors

    SciTech Connect

    Lischewski, Andree

    2015-01-15

    We study the twistor equation on pseudo-Riemannian Spin{sup c}-manifolds whose solutions we call charged conformal Killing spinors (CCKSs). We derive several integrability conditions for the existence of CCKS and study their relations to spinor bilinears. A construction principle for Lorentzian manifolds admitting CCKS with nontrivial charge starting from CR-geometry is presented. We obtain a partial classification result in the Lorentzian case under the additional assumption that the associated Dirac current is normal conformal and complete the classification of manifolds admitting CCKS in all dimensions and signatures ≤5 which has recently been initiated in the study of supersymmetric field theories on curved space.

  8. Charged Slurry Droplet Research

    DTIC Science & Technology

    1989-02-20

    Spectrometer 14 3.3 Charge Detection Assembly 15 3.4 Experimental Procedure 16 Chapter IV Data Analysis and Discussion 17 4.1 Introduction 17 4.2 Experimental... Data 17 4.3 Comparison with Published Work 18 4.4 Size Distribution 19 4.5 Regression Analysis Results 20 4.6 Multiple Charging Characteristics 21 4.7...This processed data is then sent to the Princeton University mainframe IBM 3081 computer for regression analysis . The purpose of the regression

  9. Holographic charge oscillations

    NASA Astrophysics Data System (ADS)

    Blake, Mike; Donos, Aristomenis; Tong, David

    2015-04-01

    The Reissner-Nordström black hole provides the prototypical description of a holographic system at finite density. We study the response of this system to the presence of a local, charged impurity. Below a critical temperature, the induced charge density, which screens the impurity, exhibits oscillations. These oscillations can be traced to the singularities in the density-density correlation function moving in the complex momentum plane. At finite temperature, the oscillations are very similar to the Friedel oscillations seen in Fermi liquids. However, at zero temperature the oscillations in the black hole background remain exponentially damped, while Friedel oscillations relax to a power-law.

  10. Holographic charge density waves

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2013-06-01

    We show that strongly coupled holographic matter at finite charge density can exhibit charge density wave phases which spontaneously break translation invariance while preserving time-reversal and parity invariance. We show that such phases are possible within Einstein-Maxwell-dilaton theory in general spacetime dimensions. We also discuss related spatially modulated phases when there is an additional coupling to a second vector field, possibly with nonzero mass. We discuss how these constructions, and others, should be associated with novel spatially modulated ground states.

  11. An Exploration of the Needling Depth in Acupuncture: The Safe Needling Depth and the Needling Depth of Clinical Efficacy

    PubMed Central

    Lin, Jaung-Geng; Chou, Pei-Chi; Chu, Heng-Yi

    2013-01-01

    Objective. To explore the existing scientific information regarding safe needling depth of acupuncture points and the needling depth of clinical efficacy. Methods. We searched the PubMed, EMBASE, Cochrane, Allied and Complementary Medicine (AMED), The National Center for Complementary and Alternative Medicine (NCCAM), and China National Knowledge Infrastructure (CNKI) databases to identify relevant monographs and related references from 1991 to 2013. Chinese journals and theses/dissertations were hand searched. Results. 47 studies were recruited and divided into 6 groups by measuring tools, that is, MRI, in vivo evaluation, CT, ultrasound, dissected specimen of cadavers, and another group with clinical efficacy. Each research was analyzed for study design, definition of safe depth, and factors that would affect the measured depths. Depths of clinical efficacy were discussed from the perspective of de-qi and other clinical observations. Conclusions. Great inconsistency in depth of each point measured from different subject groups and tools exists. The definition of safe depth should be established through standardization. There is also lack of researches to compare the clinical efficacy. A well-designed clinical trial selecting proper measuring tools to decide the actual and advisable needling depth for each point, to avoid adverse effects or complications and promote optimal clinical efficacy, is a top priority. PMID:23935678

  12. Helium-3 and boron-10 concentration and depth measurements in alloys and semiconductors using NDP

    NASA Astrophysics Data System (ADS)

    Ünlü, Kenan; Saglam, Mehmet; Wehring, Bernard W.

    1999-02-01

    Neutron Depth Profiling (NDP) is a nondestructive near surface technique that is used to measure concentration versus absolute depth of several isotopes of light mass elements in various substrates. NDP is based on absorption reaction of thermal neutrons with the isotope of interest. Charged particles and recoil atoms are generated in the reaction. The depth profiles are determined by measuring the residual energy of the charged particles or the recoil atoms. The NDP technique has became an increasingly important method to measure depth profiles of 3He and 10B in alloys and semiconductor materials. A permanent NDP facility has been installed on the tangential beam port of the University of Texas (UT) TRIGA Mark-II research reactor. One of the standard applications of the UT-NDP facility involves the determination of boron profiles of borophosphosilicate glass (BPSG) samples. NDP is also being used in combination with electron microscopy measurements to determine radiation damage and microstructural changes in stainless steel samples. This is done to study the long-term effects of high-dose alpha irradiation for weapons grade plutonium encapsulation. Measurements of implanted boron-10 concentration and depth profiles of semiconductor materials in order to calibrate commercial implanters is another application at the UT-NDP facility. The concentration and depth profiles measured with NDP and SIMS are compared with reported data given by various vendors or different implanters in order to verify implant quality of semiconductor wafers. The results of the measurements and other possible applications of NDP are presented.

  13. Space-charge trapping and conduction in LDPE, HDPE and XLPE

    NASA Astrophysics Data System (ADS)

    Montanari, G. C.; Mazzanti, G.; Palmieri, F.; Motori, A.; Perego, G.; Serra, S.

    2001-09-01

    The mechanisms of charge injection, transport and trapping in low-density, high-density and cross-linked polyethylene (LDPE, HDPE and XLPE) are investigated in this paper through charging-discharging current measurements and space-charge observations. The conductivity of LDPE is much larger than that of XLPE and HDPE. The threshold for space-charge accumulation and that for a space-charge-limited current mechanism, coinciding for the same material, are almost identical for LDPE and HDPE, while the threshold of XLPE is higher. However, HDPE accumulates more charge than the other two materials. The depolarization space-charge curves and the conduction current versus field characteristics indicate that the mobility of LDPE is larger than that of XLPE and HDPE, which supports the significant difference in conductivity. The lower mobility, as well as the nature, depth and density of trap sites, can explain the difference in space-charge accumulation and thresholds.

  14. ION PRODUCING MECHANISM (CHARGE CUPS)

    DOEpatents

    Brobeck, W.W.

    1959-04-21

    The problems of confining a charge material in a calutron and uniformly distributing heat to the charge is described. The charge is held in a cup of thermally conductive material removably disposed within the charge chamber of the ion source block. A central thermally conducting stem is incorporated within the cup for conducting heat to the central portion of the charge contained within the cup.

  15. Fractional charge search

    SciTech Connect

    Innes, W.; Klein, S.; Perl, M.; Price, J.C.

    1982-06-01

    A device to search for fractional charge in matter is described. The sample is coupled to a low-noise amplifier by a periodically varying capacitor and the resulting signal is synchronously detected. The varying capacitor is constructed as a rapidly spinning wheel. Samples of any material in volumes of up to 0.05 ml may be searched in less than an hour.

  16. Charge separation in liquids

    NASA Astrophysics Data System (ADS)

    Mikhelashvili, M. S.; Agam, O.

    2004-10-01

    The common theory of reversible charge transfer (RCT) at low donor system excitation power in liquids is examined. The space averaging procedures describing the kinetics of RCT in the liquid space are discussed. The reaction space is presented as a totality of independent subgroups with one excited donor and some group of acceptors effectively interacting only with the donor in the given “subgroup”. We have shown that the theory [3-5] gives questionable results for cation state probability for the usual parameters of this problem. If the acceptor concentration or the charge transfer rate constants are low, then the cation state probability behaves the same in the two theories [3-5] and [7, 8]. The correct account of the donor’s ground state change and charge back transfer in the RCT theory gives the new, not contradictory results, different from the behavior of the results in references [3-5], but near to results of [7, 8]. The molecules motion accelerates the ionization of donors and neutralization of ions. The influence of the motion of neutral and ionized molecules on charge transfer kinetics is different. The Coulomb interaction of ions is taken into account; the effect depends on the space averaging method used. The new approximation in this article in comparison with references [3-6,9] consists in the space averaging procedure of the donor cation state probability, which takes into account the donor’s ground state.

  17. Who's in Charge Here?

    ERIC Educational Resources Information Center

    Humphries, Jack W.

    1986-01-01

    Even though most decisions are made before they reach the superintendent's desk, and even though these are times of "litigious paranoia," the superintendent is still in charge of the public schools. Some of the responsibilities of the superintendent are outlined. (MLW)

  18. Depth-dependent dispersion compensation for full-depth OCT image.

    PubMed

    Pan, Liuhua; Wang, Xiangzhao; Li, Zhongliang; Zhang, Xiangyang; Bu, Yang; Nan, Nan; Chen, Yan; Wang, Xuan

    2017-05-01

    A depth-dependent dispersion compensation algorithm for enhancing the image quality of the Fourier-domain optical coherence tomography (OCT) is presented. The dispersion related with depth in the sample is considered. Using the iterative method, an analytical formula for compensating the depth-dependent dispersion in the sample is obtained. We apply depth-dependent dispersion compensation algorithm to process the phantom images and in vivo images. Using sharpness metric based on variation coefficient to compare the results processed with different dispersion compensation algorithms, we find that the depth-dependent dispersion compensation algorithm can improve image quality at full depth.

  19. "Depth" Matters in High School Science Studies

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2009-01-01

    This article reports on the findings of a recent study that examines one of the most enduring debates in science instruction--whether "depth" or "breadth" of knowledge is most important. Its authors come down on the side of depth. The study found that high school students who focus more intensely on core topics within their…

  20. Perceptual Depth Quality in Distorted Stereoscopic Images.

    PubMed

    Wang, Jiheng; Wang, Shiqi; Ma, Kede; Wang, Zhou

    2017-03-01

    Subjective and objective measurement of the perceptual quality of depth information in symmetrically and asymmetrically distorted stereoscopic images is a fundamentally important issue in stereoscopic 3D imaging that has not been deeply investigated. Here, we first carry out a subjective test following the traditional absolute category rating protocol widely used in general image quality assessment research. We find this approach problematic, because monocular cues and the spatial quality of images have strong impact on the depth quality scores given by subjects, making it difficult to single out the actual contributions of stereoscopic cues in depth perception. To overcome this problem, we carry out a novel subjective study where depth effect is synthesized at different depth levels before various types and levels of symmetric and asymmetric distortions are applied. Instead of following the traditional approach, we ask subjects to identify and label depth polarizations, and a depth perception difficulty index (DPDI) is developed based on the percentage of correct and incorrect subject judgements. We find this approach highly effective at quantifying depth perception induced by stereo cues and observe a number of interesting effects regarding image content dependency, distortion-type dependence, and the impact of symmetric versus asymmetric distortions. Furthermore, we propose a novel computational model for DPDI prediction. Our results show that the proposed model, without explicitly identifying image distortion types, leads to highly promising DPDI prediction performance. We believe that these are useful steps toward building a comprehensive understanding on 3D quality-of-experience of stereoscopic images.

  1. Improved Boundary Layer Depth Retrievals from MPLNET

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Molod, Andrea M.; Joseph, Everette

    2013-01-01

    Continuous lidar observations of the planetary boundary layer (PBL) depth have been made at the Micropulse Lidar Network (MPLNET) site in Greenbelt, MD since April 2001. However, because of issues with the operational PBL depth algorithm, the data is not reliable for determining seasonal and diurnal trends. Therefore, an improved PBL depth algorithm has been developed which uses a combination of the wavelet technique and image processing. The new algorithm is less susceptible to contamination by clouds and residual layers, and in general, produces lower PBL depths. A 2010 comparison shows the operational algorithm overestimates the daily mean PBL depth when compared to the improved algorithm (1.85 and 1.07 km, respectively). The improved MPLNET PBL depths are validated using radiosonde comparisons which suggests the algorithm performs well to determine the depth of a fully developed PBL. A comparison with the Goddard Earth Observing System-version 5 (GEOS-5) model suggests that the model may underestimate the maximum daytime PBL depth by 410 m during the spring and summer. The best agreement between MPLNET and GEOS-5 occurred during the fall and they diered the most in the winter.

  2. Differential Cognitive Cues in Pictorial Depth Perception.

    ERIC Educational Resources Information Center

    Omari, Issa M.; Cook, Harold

    The experiment described in this report investigates the effects of various cognitive cues in questions asked regarding the relationship of elements in pictorial depth perception. The subjects of this study are 40 third grade Black and Puerto Rican children. They are confronted with four pictures from the Hudson Depth Perception Tests and asked to…

  3. Polarization Lidar for Shallow Water Depth Measurement

    NASA Astrophysics Data System (ADS)

    Mitchell, S.; Thayer, J. P.

    2011-12-01

    A bathymetric, polarization lidar system transmitting at 532 nanometers is developed for applications of shallow water depth measurement. The technique exploits polarization attributes of the probed water body to isolate surface and floor returns, enabling constant fraction detection schemes to determine depth. The minimum resolvable water depth is no longer dictated by the system's laser or detector pulse width and can achieve better than an order of magnitude improvement over current water depth determination techniques. In laboratory tests, a Nd:YAG microchip laser coupled with polarization optics, a single photomultiplier tube, a constant fraction discriminator and a time to digital converter are used to target various water depths. Measurement of 1 centimeter water depths with an uncertainty of ±3 millimeters are demonstrated using the technique. Additionally, a dual detection channel version of the lidar system is in development, permitting simultaneous measurement of co- and cross-polarized signals scattered from the target water body. This novel approach enables new approaches to designing laser bathymetry systems for shallow depth determination from remote platforms while not compromising deep water depth measurement, supporting comprehensive hydrodynamic studies.

  4. Improving depth maps with limited user input

    NASA Astrophysics Data System (ADS)

    Vandewalle, Patrick; Klein Gunnewiek, René; Varekamp, Chris

    2010-02-01

    A vastly growing number of productions from the entertainment industry are aiming at 3D movie theaters. These productions use a two-view format, primarily intended for eye-wear assisted viewing in a well defined environment. To get this 3D content into the home environment, where a large variety of 3D viewing conditions exists (e.g. different display sizes, display types, viewing distances), we need a flexible 3D format that can adjust the depth effect. This can be provided by the image plus depth format, in which a video frame is enriched with depth information for all pixels in the video frame. This format can be extended with additional layers, such as an occlusion layer or a transparency layer. The occlusion layer contains information on the data that is behind objects, and is also referred to as occluded video. The transparency layer, on the other hand, contains information on the opacity of the foreground layer. This allows rendering of semi-transparencies such as haze, smoke, windows, etc., as well as transitions from foreground to background. These additional layers are only beneficial if the quality of the depth information is high. High quality depth information can currently only be achieved with user assistance. In this paper, we discuss an interactive method for depth map enhancement that allows adjustments during the propagation over time. Furthermore, we will elaborate on the automatic generation of the transparency layer, using the depth maps generated with an interactive depth map generation tool.

  5. Depth image enhancement using perceptual texture priors

    NASA Astrophysics Data System (ADS)

    Bang, Duhyeon; Shim, Hyunjung

    2015-03-01

    A depth camera is widely used in various applications because it provides a depth image of the scene in real time. However, due to the limited power consumption, the depth camera presents severe noises, incapable of providing the high quality 3D data. Although the smoothness prior is often employed to subside the depth noise, it discards the geometric details so to degrade the distance resolution and hinder achieving the realism in 3D contents. In this paper, we propose a perceptual-based depth image enhancement technique that automatically recovers the depth details of various textures, using a statistical framework inspired by human mechanism of perceiving surface details by texture priors. We construct the database composed of the high quality normals. Based on the recent studies in human visual perception (HVP), we select the pattern density as a primary feature to classify textures. Upon the classification results, we match and substitute the noisy input normals with high quality normals in the database. As a result, our method provides the high quality depth image preserving the surface details. We expect that our work is effective to enhance the details of depth image from 3D sensors and to provide a high-fidelity virtual reality experience.

  6. Effect of acupuncture depth on muscle pain.

    PubMed

    Itoh, Kazunori; Minakawa, Yoichi; Kitakoji, Hiroshi

    2011-06-22

    While evidence supports efficacy of acupuncture and/or dry needling in treating musculoskeletal pain, it is unclear which needling method is most effective. This study aims to determine the effects of depth of needle penetration on muscle pain. A total of 22 healthy volunteers performed repeated eccentric contractions to induce muscle soreness in their extensor digital muscle. Subjects were assigned randomly to four groups, namely control group, skin group (depth of 3 mm: the extensor digital muscle), muscle group (depth of 10 mm: the extensor digital muscle) and non-segmental group (depth of 10 mm: the anterior tibial muscle). Pressure pain threshold and electrical pain threshold of the skin, fascia and muscle were measured at a point 20 mm distal to the maximum tender point on the second day after the exercise. Pressure pain thresholds of skin group (depth of 3 mm: the extensor digital muscle) and muscle group (depth of 10 mm: the extensor digital muscle) were significantly higher than the control group, whereas the electrical pain threshold at fascia of muscle group (depth of 10 mm: the extensor digital muscle) was a significantly higher than control group; however, there was no significant difference between the control and other groups. The present study shows that acupuncture stimulation of muscle increases the PPT and EPT of fascia. The depth of needle penetration is important for the relief of muscle pain.

  7. Relative Burial Depths of Nakhlites: An Update

    NASA Astrophysics Data System (ADS)

    Mikouchi, T.; Miyamoto, M.; Koizumi, E.; Makishima, J.; McKay, G.

    2006-03-01

    We updated our model of the nakhlite igneous body in terms of their relative burial depths. Olivine chemical zoning gave burial depths of 1-2 m for NWA817, 4 m for MIL03346, 7 m for Y000593, 10 m for Nakhla/Gov. Val. and >30 m for Lafayette/ NWA998.

  8. Effect of acupuncture depth on muscle pain

    PubMed Central

    2011-01-01

    Background While evidence supports efficacy of acupuncture and/or dry needling in treating musculoskeletal pain, it is unclear which needling method is most effective. This study aims to determine the effects of depth of needle penetration on muscle pain. Methods A total of 22 healthy volunteers performed repeated eccentric contractions to induce muscle soreness in their extensor digital muscle. Subjects were assigned randomly to four groups, namely control group, skin group (depth of 3 mm: the extensor digital muscle), muscle group (depth of 10 mm: the extensor digital muscle) and non-segmental group (depth of 10 mm: the anterior tibial muscle). Pressure pain threshold and electrical pain threshold of the skin, fascia and muscle were measured at a point 20 mm distal to the maximum tender point on the second day after the exercise. Results Pressure pain thresholds of skin group (depth of 3 mm: the extensor digital muscle) and muscle group (depth of 10 mm: the extensor digital muscle) were significantly higher than the control group, whereas the electrical pain threshold at fascia of muscle group (depth of 10 mm: the extensor digital muscle) was a significantly higher than control group; however, there was no significant difference between the control and other groups. Conclusion The present study shows that acupuncture stimulation of muscle increases the PPT and EPT of fascia. The depth of needle penetration is important for the relief of muscle pain. PMID:21696603

  9. Learning in Depth: Students as Experts

    ERIC Educational Resources Information Center

    Egan, Kieran; Madej, Krystina

    2009-01-01

    Nearly everyone who has tried to describe an image of the educated person, from Plato to the present, includes at least two requirements: first, educated people must be widely knowledgeable and, second, they must know something in depth. The authors would like to advocate a somewhat novel approach to "learning in depth" (LiD) that seems…

  10. Depth-Charge in the Archive: The Documentation of Performance Revisited in the Digital Age

    ERIC Educational Resources Information Center

    Allen, Jess

    2010-01-01

    The debate surrounding the documentation of performance is principally concerned with the ephemerality of the live event, set against the stasis and "death" that the archive is conventionally believed to represent. The advent of digital technology in live performance has complexified this still further, by altering the architecture, space and…

  11. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    PubMed Central

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-01-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling. PMID:27929103

  12. Contour detection combined with depth information

    NASA Astrophysics Data System (ADS)

    Xiao, Jie; Cai, Chao

    2015-12-01

    Many challenging computer vision problems have been proven to benefit from the incorporation of depth information, to name a few, semantic labellings, pose estimations and even contour detection. Different objects have different depths from a single monocular image. The depth information of one object is coherent and the depth information of different objects may vary discontinuously. Meanwhile, there exists a broad non-classical receptive field (NCRF) outside the classical receptive field (CRF). The response of the central neuron is affected not only by the stimulus inside the CRF, but also modulated by the stimulus surrounding it. The contextual modulation is mediated by horizontal connections across the visual cortex. Based on the findings and researches, a biological-inspired contour detection model which combined with depth information is proposed in this paper.

  13. Depth of origin of magma in eruptions.

    PubMed

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-09-26

    Many volcanic hazard factors--such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses--relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11-15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011-2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide.

  14. Depth of origin of magma in eruptions

    PubMed Central

    Becerril, Laura; Galindo, Ines; Gudmundsson, Agust; Morales, Jose Maria

    2013-01-01

    Many volcanic hazard factors - such as the likelihood and duration of an eruption, the eruption style, and the probability of its triggering large landslides or caldera collapses - relate to the depth of the magma source. Yet, the magma source depths are commonly poorly known, even in frequently erupting volcanoes such as Hekla in Iceland and Etna in Italy. Here we show how the length-thickness ratios of feeder dykes can be used to estimate the depth to the source magma chamber. Using this method, accurately measured volcanic fissures/feeder-dykes in El Hierro (Canary Islands) indicate a source depth of 11–15 km, which coincides with the main cloud of earthquake foci surrounding the magma chamber associated with the 2011–2012 eruption of El Hierro. The method can be used on widely available GPS and InSAR data to calculate the depths to the source magma chambers of active volcanoes worldwide. PMID:24067336

  15. Depth perception through circular movements of dots.

    PubMed

    Ito, Hiroyuki

    2010-01-01

    Elements that move with velocity gradients have been shown to give the impression of depth. In this study, it was found that dots in circular motion around a line of sight give a depth impression corresponding to the gradients of the angular velocities of circular motion on a screen. The results of two experiments show that depth perception through circular motion is as effective as that through expansion or spiral motion, but less effective than that through lateral motion parallax when the local speed distributions on the screen are matched. The present depth effect shows that expansion-contraction, spiral, and circular motions are a continuum in terms of producing depth effects; they differ from lateral motion parallax.

  16. Depth Analogy: Data-Driven Approach for Single Image Depth Estimation Using Gradient Samples.

    PubMed

    Choi, Sunghwan; Min, Dongbo; Ham, Bumsub; Kim, Youngjung; Oh, Changjae; Sohn, Kwanghoon

    2015-12-01

    Inferring scene depth from a single monocular image is a highly ill-posed problem in computer vision. This paper presents a new gradient-domain approach, called depth analogy, that makes use of analogy as a means for synthesizing a target depth field, when a collection of RGB-D image pairs is given as training data. Specifically, the proposed method employs a non-parametric learning process that creates an analogous depth field by sampling reliable depth gradients using visual correspondence established on training image pairs. Unlike existing data-driven approaches that directly select depth values from training data, our framework transfers depth gradients as reconstruction cues, which are then integrated by the Poisson reconstruction. The performance of most conventional approaches relies heavily on the training RGB-D data used in the process, and such a dependency severely degenerates the quality of reconstructed depth maps when the desired depth distribution of an input image is quite different from that of the training data, e.g., outdoor versus indoor scenes. Our key observation is that using depth gradients in the reconstruction is less sensitive to scene characteristics, providing better cues for depth recovery. Thus, our gradient-domain approach can support a great variety of training range datasets that involve substantial appearance and geometric variations. The experimental results demonstrate that our (depth) gradient-domain approach outperforms existing data-driven approaches directly working on depth domain, even when only uncorrelated training datasets are available.

  17. Optimization of BEV Charging Strategy

    NASA Astrophysics Data System (ADS)

    Ji, Wei

    This paper presents different approaches to optimize fast charging and workplace charging strategy of battery electric vehicle (BEV) drivers. For the fast charging analysis, a rule-based model was built to simulate BEV charging behavior. Monte Carlo analysis was performed to explore to the potential range of congestion at fast charging stations which could be more than four hours at the most crowded stations. Genetic algorithm was performed to explore the theoretical minimum waiting time at fast charging stations, and it can decrease the waiting time at the most crowded stations to be shorter than one hour. A deterministic approach was proposed as a feasible suggestion that people should consider to take fast charging when the state of charge is approaching 40 miles. This suggestion is hoped to help to minimize potential congestion at fast charging stations. For the workplace charging analysis, scenario analysis was performed to simulate temporal distribution of charging demand under different workplace charging strategies. It was found that if BEV drivers charge as much as possible and as late as possible at workplace, it could increase the utility of solar-generated electricity while relieve grid stress of extra intensive electricity demand at night caused by charging electric vehicles at home.

  18. Internal space charge measurement of materials in a space environment

    NASA Astrophysics Data System (ADS)

    Griseri, V.; Fukunaga, K.; Maeno, T.; Payan, D.; Laurent, C.; Levy, L.

    2003-09-01

    The charging/discharging effect produced by space environment on space vehicles are known but not fully identified yet. Experiments performed in laboratory in vacuum chamber that simulates spatial environment and the most realistic charge condition occurring in space have been developed in the last past forty years. A very small Pulse Electro-Acoustic space charge detection unit (mini-PEA) that can be mounted in a vacuum chamber, to measure internal space charges of materials in-situ during the irradiation has been developed. Several materials used in spatial environment such as Teflon®, and Kapton ® films on addition to PMMA films have been studied. The comparison and the good agreement between measured and calculated depth of penetration for electrons of given energy depending on the material nature contribute in the validation of the detection system and encourage us for further studies and development.

  19. Line10 Charge Injection Biases

    NASA Astrophysics Data System (ADS)

    Baggett, Sylvia

    2012-10-01

    Radiation damage on-orbit, in the form of charge traps, gradually reduces the charge transfer efficiency {CTE} of CCDs over time. In WFC3, one option for mitigating CTE losses is charge injection i.e. electronically inserting charge every Nth row. The benefit of this method is the significantly lower noise penalty, much less than the traditional Poissonian noise imparted by a pre- or post-flash of the same charge level. This program acquires the calibration data necessary to support science observations using charge injection.

  20. Gated charged-particle trap

    DOEpatents

    Benner, W. Henry

    1999-01-01

    The design and operation of a new type of charged-particle trap provides simultaneous measurements of mass, charge, and velocity of large electrospray ions. The trap consists of a detector tube mounted between two sets of center-bored trapping plates. Voltages applied to the trapping plates define symmetrically-opposing potential valleys which guide axially-injected ions to cycle back and forth through the charge-detection tube. A low noise charge-sensitive amplifier, connected to the tube, reproduces the image charge of individual ions as they pass through the detector tube. Ion mass is calculated from measurement of ion charge and velocity following each passage through the detector.

  1. 23. 175 TON CAPACITY CHARGING LADLE ON THE CHARGING AISLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. 175 TON CAPACITY CHARGING LADLE ON THE CHARGING AISLE OF THE BOP SHOP LOOKING SOUTH. HISTORIAN FOR SCALE. - U.S. Steel Duquesne Works, Basic Oxygen Steelmaking Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  2. Disparity biasing in depth from monocular occlusions.

    PubMed

    Tsirlin, Inna; Wilcox, Laurie M; Allison, Robert S

    2011-07-15

    Monocular occlusions have been shown to play an important role in stereopsis. Among other contributions to binocular depth perception, monocular occlusions can create percepts of illusory occluding surfaces. It has been argued that the precise location in depth of these illusory occluders is based on the constraints imposed by occlusion geometry. Tsirlin et al. (2010) proposed that when these constraints are weak, the depth of the illusory occluder can be biased by a neighboring disparity-defined feature. In the present work we test this hypothesis using a variety of stimuli. We show that when monocular occlusions provide only partial constraints on the magnitude of depth of the illusory occluders, the perceived depth of the occluders can be biased by disparity-defined features in the direction unrestricted by the occlusion geometry. Using this disparity bias phenomenon we also show that in illusory occluder stimuli where disparity information is present, but weak, most observers rely on disparity while some use occlusion information instead to specify the depth of the illusory occluder. Taken together our experiments demonstrate that in binocular depth perception disparity and monocular occlusion cues interact in complex ways to resolve perceptual ambiguity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. [Anisotropy in depth perception of photograph].

    PubMed

    Watanabe, Toshio

    2004-04-01

    How can we reproduce real physical depth from a photograph? How does depth perception in the photograph differ from depth perception in the direct observation? In Experiment 1, objects in an open space were photographed and presented on a screen. Subjects were asked to judge the distances from a fixed point to the objects and the angles from the median line. The distances and the angles in the photograph were perceived shorter and larger than in physical space, respectively. Furthermore, depth perception in the photograph had an anisotropic property. In Experiment 2, the same objects as in Experiment 1 were observed directly by the subjects. The distances and the angles in the direct observation were perceived longer and smaller at longer distance than in the photograph, respectively. It was concluded that depth perception in the photograph did not reproduce depth either in physical space or in visual space, but it was closer to depth in visual space than in physical space. Furthermore, photographic space had an anisotropic property as visual space did.

  4. Depth cue integration: stereopsis and image blur.

    PubMed

    Mather, G; Smith, D R

    2000-01-01

    Depth-of-focus limitations introduce spatial blur in images of three-dimensional scenes. It is not clear how the visual system combines depth information derived from image blur with information from other depth cues. Stereoscopic disparity is the pre-eminent depth cue, so experiments were conducted to investigate interactions between image blur and stereoscopic disparity. Observers viewed two random dot stereograms (RDSs) in a 2AFC task, and were required to identify the RDS depicting the greatest depth. In control observations, all dots in both RDSs were sharply defined. In experimental observations, one RDS contained only sharply defined dots, but the other contained differential spatial blur to introduce an additional depth cue. Results showed that the addition of differential blur made only a marginal difference to apparent depth separation, and only when the blur difference was consistent with the sign of disparity. Cue combination between blur and disparity cues is thus weighted very heavily in favour of the latter. It is shown that blur and disparity cues co-vary according to geometric optics. Since the two cues are effective over different distances, the visual system is not normally called upon to integrate them, and is most likely to make use of blur cues over distances beyond the range of disparity mechanisms.

  5. Measurement of Neutrino Induced, Charged Current, Charged Pion Production

    SciTech Connect

    Wilking, Michael Joseph

    2009-05-01

    Neutrinos are among the least understood particles in the standard model of particle physics. At neutrino energies in the 1 GeV range, neutrino properties are typically determined by observing the outgoing charged lepton produced in a charged current quasi-elastic interactions. The largest charged current background to these measurements comes from charged current pion production interactions, for which there is very little available data.

  6. Charging and discharging Teflon

    NASA Technical Reports Server (NTRS)

    Passenheim, B. C.; Vanlint, V. A. J.

    1981-01-01

    The charging and discharging characteristics of several common satellite materials exposed to 0-30KV electrons are measured. Teflon is discussed because the charging characteristics are radically altered immediately after a spontaneous discharge. The exterior geometry of the test structure is shown. In all cases dielectric samples were 82 cm in diameter mounted on the front of a 120 cm diameter cylinder supported on an 85 cm, 0.95 cm thick plexiglass disc. Dielectric materials investigated were: back surface aluminized Kapton, back surface silvered Teflon, silicon alkyd white thermal control paint, and 50 cm by 50 cm array of 0.030 cm thick MgF2 coated fused silica solar cell cover slips.

  7. Intelligent battery charging system

    NASA Astrophysics Data System (ADS)

    Everett, Hobert R., Jr.

    1991-09-01

    The present invention is a battery charging system that provides automatic voltage selection, short circuit protection, and delayed output to prevent arcing or pitting. A second embodiment of the invention provides a homing beacon which transmits a signal so that a battery powered mobile robot may home in on and contact the invention to charge its battery. The invention includes electric terminals isolated from one another. One terminal is grounded and the other has a voltage applied to it through a resistor connected to the output of a DC power supply. A voltage scaler is connected between the resistor and the hot terminal. An On/Off controller and a voltage mode selector sense the voltage provided at the output of the voltage scaler.

  8. Controlling charge on levitating drops.

    PubMed

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  9. The interplay between rainfall infiltration depth, rooting depth and water table depth in regulating Amazon evapotranspiration (ET)

    NASA Astrophysics Data System (ADS)

    Miguez-Macho, Gonzalo; Fan, Ying; Dominguez, Francina

    2017-04-01

    Plants link the subsurface to the atmosphere via water and carbon fluxes and are therefore a key player in climate. The Amazon, one of Earth's largest ecosystems, is an important climate regulator. As a large source of evapotranspiration, it has significant influence on regional and remote precipitation dynamics. For its equatorial position, it impacts significantly the global climate engine. The Amazon receives abundant annual rainfall but parts of it experience a multi-month dry season. Here we elucidate the interplay among three hydrological depths: precipitation infiltration depth, root water uptake-depth, and the water table depth in regulating dry-season ET, using inverse modeling based on observed productivity, ERA Interim reanalysis atmosphere, and a novel integrated soil-surface-groundwater model with dynamic root uptake to meet the transpiration demand. We perform high-resolution ( 1km) multi-year simulations over the region, with shallow soil, deep soil, with and without groundwater, with and without dynamic rooting depth; attempting to tease out these components. The results demonstrate the strong interactions among the three depths and what each factor does in regulating dry season ET, shedding light on how future global change may preferentially impact Amazon ecosystem functioning.

  10. Exploratory depth-of-burst experiments

    SciTech Connect

    Reichenbach, H.; Behrens, K.; Kuhl, A.

    1991-12-12

    This report describes the first small-scale explosion experiments with aerated grout (i.e., YTONG). Apart from data referring to crater depth and volume versus depth of burst (DOB), isobaric DOB curves in the range of 1.5 psi {le} p {le} 15 psi were established. The comparison with previous HOB values shows that the ground range to a given overpressure is considerably reduced with increasing depth of burst. The authors plan to continue the airblast investigations with different types of soil materials.

  11. Control of electrode depth in electroslag remelting

    DOEpatents

    Melgaard, David K.; Shelmidine, Gregory J.; Damkroger, Brian K.

    2002-01-01

    A method of and apparatus for controlling an electroslag remelting furnace by driving the electrode at a nominal speed based upon melting rate and geometry while making minor proportional adjustments based on a measured metric of the electrode immersion depth. Electrode drive speed is increased if a measured metric of electrode immersion depth differs from a set point by a predetermined amount, indicating that the tip is too close to the surface of a slag pool. Impedance spikes are monitored to adjust the set point for the metric of electrode immersion depth based upon one or more properties of the impedance spikes.

  12. Equations determine reasonable rod pump submergence depth

    SciTech Connect

    Hu Yongquan; Cai Wizhong

    1997-03-24

    A reasonable rod pump submergence depth can be calculated by combining fluid level changes with piston travel. Submergence depth is affected by the pump fill factor, reservoir fluid viscosity, rod pump type, and pumping parameters such as pump diameter, polished-rod stroke length, and pumping speed. Fluid level velocity can be obtained with an energy balance, and piston travel rate is based on the polished-rod travel. The paper describes the pump fill factor, piston travel velocity, fluid level rise, flow coefficient, reasonable submergence depth, and results from equations.

  13. Defocus from depth for defocus measurement

    NASA Astrophysics Data System (ADS)

    Liu, Ziwei; Xu, Tingfa; Liu, Jingdan; Wang, Hongqing; Shi, Mingzhu; Li, Xiangmin

    2013-12-01

    A novel method is proposed for defocus map estimation. It is based on the defocus origin that is essentially the reverse of depth from defocus (DFD). The main relations among image defocus, sensor defocus, and scene defocus for an imaging system are introduced. A defocus map is deduced from the depth map and the depth map is derived from the disparity map. The full disparity map can be reconstructed using an image-matching method and our clustering segmentation algorithm. Experimental results for an interior scene and an outdoor scene demonstrate that our method is effective in defocus measurement.

  14. Interaction between heterogeneously charged surfaces: Surface patches and charge modulation

    NASA Astrophysics Data System (ADS)

    Ben-Yaakov, Dan; Andelman, David; Diamant, Haim

    2013-02-01

    When solid surfaces are immersed in aqueous solutions, some of their charges can dissociate and leave behind charged patches on the surface. Although the charges are distributed heterogeneously on the surface, most of the theoretical models treat them as homogeneous. For overall non-neutral surfaces, the assumption of surface charge homogeneity is rather reasonable since the leading terms of two such interacting surfaces depend on the nonzero average charge. However, for overall neutral surfaces the nature of the surface charge distribution is crucial in determining the intersurface interaction. In the present work we study the interaction between two charged surfaces across an aqueous solution for several charge distributions. The analysis is preformed within the framework of the linearized Poisson-Boltzmann theory. For periodic charge distributions the interaction is found to be repulsive at small separations, unless the two surface distributions are completely out-of-phase with respect to each other. For quenched random charge distributions we find that due to the presence of the ionic solution in between the surfaces, the intersurface repulsion dominates over the attraction in the linear regime of the Poisson-Boltzmann theory. The effect of quenched charge heterogeneity is found to be particularly substantial in the case of large charged domains.

  15. Extremally charged line

    NASA Astrophysics Data System (ADS)

    Ryzner, Jiří; Žofka, Martin

    2016-12-01

    We investigate the properties of a static, cylindrically symmetric Majumdar-Papapetrou-type solution of Einstein-Maxwell equations. We locate its singularities, establish its algebraic type, find its asymptotic properties and weak-field limit, study the structure of electrogeodesics, and determine the mass and charge of its sources. We provide an interpretation of the spacetime and discuss the parameter appearing in the metric.

  16. Distributed charging of electrical assets

    DOEpatents

    Ghosh, Soumyadip; Phan, Dung; Sharma, Mayank; Wu, Chai Wah; Xiong, Jinjun

    2016-02-16

    The present disclosure relates generally to the field of distributed charging of electrical assets. In various examples, distributed charging of electrical assets may be implemented in the form of systems, methods and/or algorithms.

  17. Wind Power Charged Aerosol Generator

    SciTech Connect

    Marks, A.M.

    1980-07-01

    This describes experimental results on a Charged Aerosol Wind/Electric Power Generator, using Induction Electric Charging with a water jet issuing under water pressure from a small diameter (25-100 ..mu..m) orifice.

  18. Charging and Discharging Characteristic on PI Films Irradiated by Protons

    NASA Astrophysics Data System (ADS)

    Uchiyama, Ryo; Miyake, Hiroaki; Tanaka, Yasuhiro; Takada, Tatuo

    We evaluate the dielectric characteristic of polymeric materials for MLI (Multi Layer Insulator, a kind of thermal insulation material) for spacecraft under high energy proton irradiation using results of space charge distribution. Spacecrafts have a serious damage due to the electro-static discharge accident. The electric charges are accumulated in the polymeric materials due to radioactive rays, especially electrons and protons. The charge accumulation is the origin of aging and discharging phenomena, furthermore those become trigger for spacecraft operation anomaly. Therefore, we need to obtain the space charge distribution in the bulks. In this study, we especially focused polyimide films for MLI irradiated by high energy proton. We measured the space charge distribution in the bulks during and after proton beam irradiation. From the results, it is found that positive charges accumulate in the bulk at the position of proton penetration depth. We also obtained same tendency from the results of conductivity measurement treated by ASTM method. From the above reason, we have studied the dielectric characteristics of MLI materials irradiated by radioactive rays, especially we focused the condition of proton irradiation. In this paper, we discuss the dielectric phenomena and the relationship between conductivity and charge accumulation in bulks.

  19. Quantitative perceived depth from sequential monocular decamouflage.

    PubMed

    Brooks, K R; Gillam, B J

    2006-03-01

    We present a novel binocular stimulus without conventional disparity cues whose presence and depth are revealed by sequential monocular stimulation (delay > or = 80 ms). Vertical white lines were occluded as they passed behind an otherwise camouflaged black rectangular target. The location (and instant) of the occlusion event, decamouflaging the target's edges, differed in the two eyes. Probe settings to match the depth of the black rectangular target showed a monotonic increase with simulated depth. Control tests discounted the possibility of subjects integrating retinal disparities over an extended temporal window or using temporal disparity. Sequential monocular decamouflage was found to be as precise and accurate as conventional simultaneous stereopsis with equivalent depths and exposure durations.

  20. Monocular depth effects on perceptual fading.

    PubMed

    Hsu, Li-Chuan; Kramer, Peter; Yeh, Su-Ling

    2010-08-06

    After prolonged viewing, a static target among moving non-targets is perceived to repeatedly disappear and reappear. An uncrossed stereoscopic disparity of the target facilitates this Motion-Induced Blindness (MIB). Here we test whether monocular depth cues can affect MIB too, and whether they can also affect perceptual fading in static displays. Experiment 1 reveals an effect of interposition: more MIB when the target appears partially covered by, than when it appears to cover, its surroundings. Experiment 2 shows that the effect is indeed due to interposition and not to the target's contours. Experiment 3 induces depth with the watercolor illusion and replicates Experiment 1. Experiments 4 and 5 replicate Experiments 1 and 3 without the use of motion. Since almost any stimulus contains a monocular depth cue, we conclude that perceived depth affects perceptual fading in almost any stimulus, whether dynamic or static. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Deuterium depth distribution study in Yb

    NASA Astrophysics Data System (ADS)

    Guan, Xing-Cai; Lu, Yong-Kai; He, Hou-Jun; Zhao, Jiang-Tao; Wang, Qiang; Fang, Kai-Hong; Meng, Xuan; Wang, Tie-Shan; Kasagi, Jirohta

    2017-05-01

    The deuterium depth distribution for a , while beam implanted into ytterbium (Yb) at a temperature between 300 and 340 K was studied using the D(d,p)T reaction. By analyzing the proton yields, the deuterium depth distribution from the front surface to 500 nm depth was found. The results indicate that an equilibrium deuterium distribution region from the front surface to a depth approximately equal to the mean range of implanted deuterons was formed in Yb during the implantation. The deduced deuterium concentration in the equilibrium deuterium distribution region was D/Yb = 22%. Supported by National Natural Science Foundation of China (11275085, 11305080, 11405079 and 11505086), Fundamental Research Funds for Central University of China (lzujbky-2015-69 and lzujbky-2016-36).

  2. Differential Cognitive Cues in Pictorial Depth Perception

    ERIC Educational Resources Information Center

    Omari, Issa M.; Cook, Harold

    1972-01-01

    Predominantly black third-grade children were questioned regarding the relationship of elements in Hudson's Pictorial Depth Perception Task. Performance was significantly affected by the wording of the question. (DM)

  3. Capturing Motion and Depth Before Cinematography.

    PubMed

    Wade, Nicholas J

    2016-01-01

    Visual representations of biological states have traditionally faced two problems: they lacked motion and depth. Attempts were made to supply these wants over many centuries, but the major advances were made in the early-nineteenth century. Motion was synthesized by sequences of slightly different images presented in rapid succession and depth was added by presenting slightly different images to each eye. Apparent motion and depth were combined some years later, but they tended to be applied separately. The major figures in this early period were Wheatstone, Plateau, Horner, Duboscq, Claudet, and Purkinje. Others later in the century, like Marey and Muybridge, were stimulated to extend the uses to which apparent motion and photography could be applied to examining body movements. These developments occurred before the birth of cinematography, and significant insights were derived from attempts to combine motion and depth.

  4. Water depth estimation with ERTS-1 imagery

    NASA Technical Reports Server (NTRS)

    Ross, D. S.

    1973-01-01

    Contrast-enhanced 9.5 inch ERTS-1 images were produced for an investigation on ocean water color. Such images lend themselves to water depth estimation by photographic and electronic density contouring. MSS-4 and -5 images of the Great Bahama Bank were density sliced by both methods. Correlation was found between the MSS-4 image and a hydrographic chart at 1:467,000 scale, in a number of areas corresponding to water depth of less than 2 meters, 5 to 10 meters and 10 to about 20 meters. The MSS-5 image was restricted to depths of about 2 meters. Where reflective bottom and clear water are found, ERTS-1 MSS-4 images can be used with density contouring by electronic or photographic methods for estimating depths to 5 meters within about one meter.

  5. Depth microhardness of glass ionomer cements.

    PubMed

    Dupuis, V; Moya, F; Payan, J; Bartala, M

    1996-01-01

    The purpose of this study was to observe the effect of different conditions of storage on the surface and in the depth of luting glass ionomer cement by measuring microhardness. The hardness of a glass ionomer cement was measured after storage in wet and dry conditions and in an atmosphere of 80% relative humidity, for times up to 1000 h. Storage in distilled water produced a softening effect, but the depth hardness increased progressively. The penetration of the water is a surface phenomenon and does not affect the depth of the cement. However, the cement is vulnerable to moisture to a depth of 600 microns and marginal gaps evolve in the range of 40 to 80 microns when the luting cement at the tooth crown margin is always destroyed.

  6. Depth Perception in Space Artist Concept

    NASA Image and Video Library

    2007-05-30

    This artist concept shows how astronomers use the unique orbit of NASA Spitzer Space Telescope and a depth-perceiving trick called parallax to determine the distance of dark planets, black holes and failed stars that lurk invisibly among us.

  7. Apparent extended body motions in depth

    NASA Technical Reports Server (NTRS)

    Hecht, Heiko; Proffitt, Dennis R.

    1991-01-01

    Five experiments were designed to investigate the influence of three-dimensional (3-D) orientation change on apparent motion. Projections of an orientation-specific 3-D object were sequentially flashed in different locations and at different orientations. Such an occurrence could be resolved by perceiving a rotational motion in depth around an axis external to the object. Consistent with this proposal, it was found that observers perceived curved paths in depth. Although the magnitude of perceived trajectory curvature often fell short of that required for rotational motions in depth (3-D circularity), judgments of the slant of the virtual plane on which apparent motions occurred were quite close to the predictions of a model that proposes circular paths in depth.

  8. The effect of dc poling duration on space charge relaxation in virgin XLPE cable peelings

    NASA Astrophysics Data System (ADS)

    Tzimas, Antonios; Rowland, Simon M.; Dissado, Leonard A.; Fu, Mingli; Nilsson, Ulf H.

    2010-06-01

    The effect of dc poling time upon the time-dependent decay of space charge in insulation peelings of cross-linked polyethylene (XLPE) cable that had not previously experienced either electrical or thermal stressing is investigated. Two dc poling durations were used, 2 h and 26 h at an electric field of 50 kV mm-1 and at ambient temperature. Space charge was measured in the two samples investigated both during space charge accumulation and throughout its subsequent decay. The results show that the length of dc poling plays an important role in the subsequent decay. Despite the fact that both samples have had the same amount of space charge by the end of both short and long poling durations the time dependence of the space charge decay is different. Most of the charge stored in the sample that had experienced the short time poling decays rapidly after voltage removal. On the other hand, the charge that is stored in the sample with the long dc poling duration decays slowly and its decay occurs in two stages. The data, which are analysed by means of the de-trapping theory of space charge decay, imply that the charge stored in the material has occupied energy states with different trap depth ranges. The two poling durations lead to different relative amounts of charge in each of the two trap depth ranges. Possible reasons for this are discussed.

  9. Research on the optimum length-diameter ratio of the charge of a multimode warhead

    NASA Astrophysics Data System (ADS)

    Li, Weibing; Wang, X.; Li, Wenbin; Zheng, Y.

    2012-05-01

    This paper outlines our research on a multimode warhead in which we adopted center point and annular initiation modes to form multimode penetrators. Using LS-DYNA software, we studied the effect of the configuration parameters, namely the length/diameter ratio of the shaped charge, on the formation parameters, such as the velocity and length/diameter ratio, of multimode penetrators. We found that when the charge length was in the range of 0.9-1.2 times the charge diameter, the same structure of shaped charge can form suitable multimode penetrators. Either an explosively formed penetrator (EFP) or a long stretchy rod-shaped EFP penetrator can be formed. We establish an optimum charge length for penetrator formation of 1.4 times the charge diameter. Simulation results were validated using X-ray imaging experiments and they were in good agreement. The results found that by increasing the charge length from 0.9 to 1.4 times the charge diameter, the penetration depth of the EFP increased by 74.5%, while increasing the charge length from 1.4 to 1.6 times the charge diameter only increased the penetration depth by 1.9%.

  10. Notch Charge-Coupled Devices

    NASA Technical Reports Server (NTRS)

    Janesick, James

    1992-01-01

    Notch charge-coupled devices are imaging arrays of photodetectors designed to exhibit high charge-transfer efficiencies necessary for operation in ultra-large array, and less vulnerable to degradation by energetic protons, neutrons, and electrons. Main channel of horizontal register includes deep narrow inner channel (notch). Small packets of charge remain confined to notch. Larger packets spill into rest of channel; transferred in usual way. Degradation of charge-transfer efficiency by energetic particles reduced.

  11. Coal charge density in ovens

    SciTech Connect

    Sukhorukov, V.I.; Kopeliovich, L.V.; Gryaznov, N.S.

    1983-05-01

    Bulk density is governed by oven design, charge properties and the oven charging layout and has a decisive effect on oven output. The paper examines oven charging in terms of free fall, hatch spacing and oven size, and suggests that bulk density increases for a given crushing level with any increase in oven width and reduction in the length of the oven served by any one charging hatch, and finally as a direct function of the decreasing oven height to width ratio.

  12. Modular Battery Charge Controller

    NASA Technical Reports Server (NTRS)

    Button, Robert; Gonzalez, Marcelo

    2009-01-01

    A new approach to masterless, distributed, digital-charge control for batteries requiring charge control has been developed and implemented. This approach is required in battery chemistries that need cell-level charge control for safety and is characterized by the use of one controller per cell, resulting in redundant sensors for critical components, such as voltage, temperature, and current. The charge controllers in a given battery interact in a masterless fashion for the purpose of cell balancing, charge control, and state-of-charge estimation. This makes the battery system invariably fault-tolerant. The solution to the single-fault failure, due to the use of a single charge controller (CC), was solved by implementing one CC per cell and linking them via an isolated communication bus [e.g., controller area network (CAN)] in a masterless fashion so that the failure of one or more CCs will not impact the remaining functional CCs. Each micro-controller-based CC digitizes the cell voltage (V(sub cell)), two cell temperatures, and the voltage across the switch (V); the latter variable is used in conjunction with V(sub cell) to estimate the bypass current for a given bypass resistor. Furthermore, CC1 digitizes the battery current (I1) and battery voltage (V(sub batt) and CC5 digitizes a second battery current (I2). As a result, redundant readings are taken for temperature, battery current, and battery voltage through the summation of the individual cell voltages given that each CC knows the voltage of the other cells. For the purpose of cell balancing, each CC periodically and independently transmits its cell voltage and stores the received cell voltage of the other cells in an array. The position in the array depends on the identifier (ID) of the transmitting CC. After eight cell voltage receptions, the array is checked to see if one or more cells did not transmit. If one or more transmissions are missing, the missing cell(s) is (are) eliminated from cell

  13. Handheld White Light Interferometer for Measuring Defect Depth in Windows

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Simmons, Stephen; Cox, Robert

    2010-01-01

    Accurate quantification of defects (scratches and impacts) is vital to the certification of flight hardware and other critical components. The amount of damage to a particular component contributes to the performance, reliability, and safety of a system, which ultimately affects the success or failure of a mission or test. The launch-commit criteria on a Space Shuttle Orbiter window are governed by the depth of the defects that are identified by a visual inspection. This measurement of a defect is not easy to obtain given the environment, size of the defect, and location of the window(s). The determination of depth has typically been performed by taking a mold impression and measuring the impression with an optical profiling instrument. Another method of obtaining an estimate of the depth is by using a refocus microscope. To use a refocus microscope, the surface of the glass and bottom of the defect are, in turn, brought into focus by the operator. The amount of movement between the two points corresponds to the depth of the defect. The refocus microscope requires a skilled operator and has been proven to be unreliable when used on Orbiter windows. White light interferometry was chosen as a candidate to replace the refocus microscope. The White Light Interferometer (WLI) was developed to replace the refocus microscope as the instrument used for measuring the depth of defects in Orbiter windows. The WLI consists of a broadband illumination source, interferometer, detector, motion control, displacement sensor, mechanical housing, and support electronics. The illumination source for the WLI is typically a visible light emitting diode (LED) or a near-infrared superluminescent diode (SLD) with power levels of less than a milliwatt. The interferometer is a Michelson configuration consisting of a 1-in. (2.5-cm) cube beam splitter, a 0.5-in. (1.3-cm) optical window as a movable leg (used to closely match the return intensity of the fixed leg from the window), and a

  14. Cold neutron depth profiling of lithium-ion battery materials

    NASA Astrophysics Data System (ADS)

    Lamaze, G. P.; Chen-Mayer, H. H.; Becker, D. A.; Vereda, F.; Goldner, R. B.; Haas, T.; Zerigian, P.

    We report the characterization of two thin-film battery materials using neutron techniques. Neutron depth profiling (NDP) has been employed to determine the distribution of lithium and nitrogen simultaneously in lithium phosphorous oxynitride (LiPON) deposited by ion beam assisted deposition (IBAD). The depth profiles are based on the measurement of the energy of the charged particle products from the 6Li(n,α) 3H and 14N(n,p) 14C reactions for lithium and nitrogen, respectively. Lithium at the level of 10 22 atoms/cm 3 and N of 10 21 atoms/cm 3, distributed in the film thickness on the order of 1 μm, have been determined. This information provides insights into nitrogen incorporation and lithium concentration in the films under various fabrication conditions. NDP of lithium has also been performed on IBAD LiCoO 2 films, in conjunction with instrumental neutron activation analysis (INAA) to determine the cobalt concentration. The Li/Co ratio thus obtained serves as an ex situ control for the thin-film evaporation process. The non-destructive nature of the neutron techniques is especially suitable for repeated analysis of these materials and for actual working devices.

  15. Neutron depth profiling of elemental concentration using a focused beam

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, Huaiyu H.; Lamaze, G. P.; Mildner, David F. R.; Downing, Robert G.

    1997-02-01

    Neutron Depth Profiling (NDP) is a nondestructive analytical technique for measuring the concentration of certain light elements as a function of depth near the surface of a solid matrix. The concentration profile is determined by analyzing the energy spectrum of the charged particles emitted as a result of neutron capture by the elements. The measurement sensitivity is directly proportional to the neutron beam current density. A more intense neutron beam achieved by focusing improves sensitivity for specimens of small area. In addition, a narrowly focused beam adds lateral spatial resolution to the technique, which is advantageous compared with that obtained by collimating the beam size using apertures. Capillary neutron lenses have been shown to focus a neutron beam to sub-millimeter spot size. Preliminary tests have been performed in the NDP geometry using such a focusing device. A lateral resolution in the sub-millimeter range is demonstrated by a specimen of non-uniform lateral distribution composed of a row of borosilicate glass fibers.

  16. Moderate systemic hypothermia decreases burn depth progression.

    PubMed

    Rizzo, Julie A; Burgess, Pamela; Cartie, Richard J; Prasad, Balakrishna M

    2013-05-01

    Therapeutic hypothermia has been proposed to be beneficial in an array of human pathologies including cardiac arrest, stroke, traumatic brain and spinal cord injury, and hemorrhagic shock. Burn depth progression is multifactorial but inflammation plays a large role. Because hypothermia is known to reduce inflammation, we hypothesized that moderate hypothermia will decrease burn depth progression. We used a second-degree 15% total body surface area thermal injury model in rats. Burn depth was assessed by histology of biopsy sections. Moderate hypothermia in the range of 31-33°C was applied for 4h immediately after burn and in a delayed fashion, starting 2h after burn. In order to gain insight into the beneficial effects of hypothermia, we analyzed global gene expression in the burned skin. Immediate hypothermia decreased burn depth progression at 6h post injury, and this protective effect was sustained for at least 24h. Burn depth was 18% lower in rats subjected to immediate hypothermia compared to control rats at both 6 and 24h post injury. Rats in the delayed hypothermia group did not show any significant decrease in burn depth at 6h, but had 23% lower burn depth than controls at 24h. Increased expression of several skin-protective genes such as CCL4, CCL6 and CXCL13 and decreased expression of tissue remodeling genes such as matrix metalloprotease-9 were discovered in the skin biopsy samples of rats subjected to immediate hypothermia. Systemic hypothermia decreases burn depth progression in a rodent model and up-regulation of skin-protective genes and down-regulation of detrimental tissue remodeling genes by hypothermia may contribute to its beneficial effects. Published by Elsevier Ltd.

  17. RGB-D depth-map restoration using smooth depth neighborhood supports

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Xue, Haoyang; Yu, Zhongjie; Wu, Qiang; Yang, Jie

    2015-05-01

    A method to restore the depth map of an RGB-D image using smooth depth neighborhood (SDN) supports is presented. The SDN supports are computed based on the corresponding color image of the depth map. Compared with the most widely used square supports, the proposed SDN supports can well-capture the local structure of the object. Only pixels with similar depth values are allowed to be included in the support. We combine our SDN supports with the joint bilateral filter (JBF) to form the SDN-JBF and use it to restore depth maps. Experimental results show that our SDN-JBF can not only rectify the misaligned depth pixels but also preserve sharp depth discontinuities.

  18. Predictions of nuclear charge radii

    NASA Astrophysics Data System (ADS)

    Bao, M.; Lu, Y.; Zhao, Y. M.; Arima, A.

    2016-12-01

    The nuclear charge radius is a fundamental property of an atomic nucleus. In this article we study the predictive power of empirical relations for experimental nuclear charge radii of neighboring nuclei and predict the unknown charge radii of 1085 nuclei based on the experimental CR2013 database within an uncertainty of 0.03 fm.

  19. Depth-aware image seam carving.

    PubMed

    Shen, Jianbing; Wang, Dapeng; Li, Xuelong

    2013-10-01

    Image seam carving algorithm should preserve important and salient objects as much as possible when changing the image size, while not removing the secondary objects in the scene. However, it is still difficult to determine the important and salient objects that avoid the distortion of these objects after resizing the input image. In this paper, we develop a novel depth-aware single image seam carving approach by taking advantage of the modern depth cameras such as the Kinect sensor, which captures the RGB color image and its corresponding depth map simultaneously. By considering both the depth information and the just noticeable difference (JND) model, we develop an efficient JND-based significant computation approach using the multiscale graph cut based energy optimization. Our method achieves the better seam carving performance by cutting the near objects less seams while removing distant objects more seams. To the best of our knowledge, our algorithm is the first work to use the true depth map captured by Kinect depth camera for single image seam carving. The experimental results demonstrate that the proposed approach produces better seam carving results than previous content-aware seam carving methods.

  20. Single image defogging by multiscale depth fusion.

    PubMed

    Wang, Yuan-Kai; Fan, Ching-Tang

    2014-11-01

    Restoration of fog images is important for the deweathering issue in computer vision. The problem is ill-posed and can be regularized within a Bayesian context using a probabilistic fusion model. This paper presents a multiscale depth fusion (MDF) method for defog from a single image. A linear model representing the stochastic residual of nonlinear filtering is first proposed. Multiscale filtering results are probabilistically blended into a fused depth map based on the model. The fusion is formulated as an energy minimization problem that incorporates spatial Markov dependence. An inhomogeneous Laplacian-Markov random field for the multiscale fusion regularized with smoothing and edge-preserving constraints is developed. A nonconvex potential, adaptive truncated Laplacian, is devised to account for spatially variant characteristics such as edge and depth discontinuity. Defog is solved by an alternate optimization algorithm searching for solutions of depth map by minimizing the nonconvex potential in the random field. The MDF method is experimentally verified by real-world fog images including cluttered-depth scene that is challenging for defogging at finer details. The fog-free images are restored with improving contrast and vivid colors but without over-saturation. Quantitative assessment of image quality is applied to compare various defog methods. Experimental results demonstrate that the accurate estimation of depth map by the proposed edge-preserved multiscale fusion should recover high-quality images with sharp details.

  1. Molecular Depth Profiling by Wedged Crater Beveling

    PubMed Central

    Mao, Dan; Lu, Caiyan; Winograd, Nicholas; Wucher, Andreas

    2011-01-01

    Time-of-flight secondary ion mass spectrometry and atomic force microscopy are employed to characterize a wedge-shaped crater eroded by a 40keV C60+ cluster ion beam on an organic film of Irganox 1010 doped with Irganox 3114 delta layers. From an examination of the resulting surface, the information about depth resolution, topography and erosion rate can be obtained as a function of crater depth for every depth in a single experiment. It is shown that when measurements are performed at liquid nitrogen temperature, a constant erosion rate and reduced bombardment induced surface roughness is observed. At room temperature, however, the erosion rate drops by ~1/3 during the removal of the 400 nm Irganox film and the roughness gradually increased to from 1 nm ~4 nm. From SIMS lateral images of the beveled crater and AFM topography results, depth resolution was further improved by employing glancing angles of incidence and lower primary ion beam energy. Sub-10 nm depth resolution was observed under the optimized conditions on a routine basis. In general, we show that the wedge-crater beveling is an important tool for elucidating the factors that are important for molecular depth profiling experiments. PMID:21744861

  2. Simulating Kinect Infrared and Depth Images.

    PubMed

    Landau, Michael J; Choo, Benjamin Y; Beling, Peter A

    2015-11-13

    With the emergence of the Microsoft Kinect sensor, many developer communities and research groups have found countless uses and have already published a wide variety of papers that utilize the raw depth images for their specific goals. New methods and applications that use the device generally require an appropriately large ensemble of data sets with accompanying ground truth for testing purposes, as well as accurate models that account for the various systematic and stochastic contributors to Kinect errors. Current error models, however, overlook the intermediate infrared (IR) images that directly contribute to noisy depth estimates. We, therefore, propose a high fidelity Kinect IR and depth image predictor and simulator that models the physics of the transmitter/receiver system, unique IR dot pattern, disparity/depth processing technology, and random intensity speckle and IR noise in the detectors. The model accounts for important characteristics of Kinect's stereo triangulation system, including depth shadowing, IR dot splitting, spreading, and occlusions, correlation-based disparity estimation between windows of measured and reference IR images, and subpixel refinement. Results show that the simulator accurately produces axial depth error from imaged flat surfaces with various tilt angles, as well as the bias and standard lateral error of an object's horizontal and vertical edge.

  3. Simulating Kinect Infrared and Depth Images.

    PubMed

    Landau, Michael J; Choo, Benjamin Y; Beling, Peter A

    2016-12-01

    With the emergence of the Microsoft Kinect sensor, many developer communities and research groups have found countless uses and have already published a wide variety of papers that utilize the raw depth images for their specific goals. New methods and applications that use the device generally require an appropriately large ensemble of data sets with accompanying ground truth for testing purposes, as well as accurate models that account for the various systematic and stochastic contributors to Kinect errors. Current error models, however, overlook the intermediate infrared (IR) images that directly contribute to noisy depth estimates. We, therefore, propose a high fidelity Kinect IR and depth image predictor and simulator that models the physics of the transmitter/receiver system, unique IR dot pattern, disparity/depth processing technology, and random intensity speckle and IR noise in the detectors. The model accounts for important characteristics of Kinect's stereo triangulation system, including depth shadowing, IR dot splitting, spreading, and occlusions, correlation-based disparity estimation between windows of measured and reference IR images, and subpixel refinement. Results show that the simulator accurately produces axial depth error from imaged flat surfaces with various tilt angles, as well as the bias and standard lateral error of an object's horizontal and vertical edge.

  4. Crack depth determination with inductive thermography

    NASA Astrophysics Data System (ADS)

    Oswald-Tranta, B.; Schmidt, R.

    2015-05-01

    Castings, forgings and other steel products are nowadays usually tested with magnetic particle inspection, in order to detect surface cracks. An alternative method is active thermography with inductive heating, which is quicker, it can be well automated and as in this paper presented, even the depth of a crack can be estimated. The induced eddy current, due to its very small penetration depth in ferro-magnetic materials, flows around a surface crack, heating this selectively. The surface temperature is recorded during and after the short inductive heating pulse with an infrared camera. Using Fourier transformation the whole IR image sequence is evaluated and the phase image is processed to detect surface cracks. The level and the local distribution of the phase around a crack correspond to its depth. Analytical calculations were used to model the signal distribution around cracks with different depth and a relationship has been derived between the depth of a crack and its phase value. Additionally, also the influence of the heating pulse duration has been investigated. Samples with artificial and with natural cracks have been tested. Results are presented comparing the calculated and measured phase values depending on the crack depth. Keywords: inductive heating, eddy current, infrared

  5. Motion parallax thresholds for unambiguous depth perception

    PubMed Central

    Holmin, Jessica; Nawrot, Mark

    2015-01-01

    The perception of unambiguous depth from motion parallax arises from the neural integration of retinal image motion and extra-retinal eye movement signals. It is only recently that these parameters have been articulated in the form of the motion/pursuit ratio. In the current study, we explored the lower limits of the parameter space in which observers could accurately perform near/far relative depth-sign discriminations for a translating random-dot stimulus. Stationary observers pursued a translating random dot stimulus containing relative image motion. Their task was to indicate the location of the peak in an approximate square-wave stimulus. We measured thresholds for depth from motion parallax, quantified as motion/pursuit ratios, as well as lower motion thresholds and pursuit accuracy. Depth thresholds were relatively stable at pursuit velocities 5-20 deg/sec, and increased at lower and higher velocities. The pattern of results indicates that minimum motion/pursuit ratios are limited by motion and pursuit signals, both independently and in combination with each other. At low and high pursuit velocities, depth thresholds were limited by inaccurate pursuit signals. At moderate pursuit velocities, depth thresholds were limited by motion signals. PMID:26232612

  6. Motion parallax thresholds for unambiguous depth perception.

    PubMed

    Holmin, Jessica; Nawrot, Mark

    2015-10-01

    The perception of unambiguous depth from motion parallax arises from the neural integration of retinal image motion and extra-retinal eye movement signals. It is only recently that these parameters have been articulated in the form of the motion/pursuit ratio. In the current study, we explored the lower limits of the parameter space in which observers could accurately perform near/far relative depth-sign discriminations for a translating random-dot stimulus. Stationary observers pursued a translating random dot stimulus containing relative image motion. Their task was to indicate the location of the peak in an approximate square-wave stimulus. We measured thresholds for depth from motion parallax, quantified as motion/pursuit ratios, as well as lower motion thresholds and pursuit accuracy. Depth thresholds were relatively stable at pursuit velocities 5-20 deg/s, and increased at lower and higher velocities. The pattern of results indicates that minimum motion/pursuit ratios are limited by motion and pursuit signals, both independently and in combination with each other. At low and high pursuit velocities, depth thresholds were limited by inaccurate pursuit signals. At moderate pursuit velocities, depth thresholds were limited by motion signals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Improving Charging-Breeding Simulations with Space-Charge Effects

    NASA Astrophysics Data System (ADS)

    Bilek, Ryan; Kwiatkowski, Ania; Steinbrügge, René

    2016-09-01

    Rare-isotope-beam facilities use Highly Charged Ions (HCI) for accelerators accelerating heavy ions and to improve measurement precision and resolving power of certain experiments. An Electron Beam Ion Trap (EBIT) is able to create HCI through successive electron impact, charge breeding trapped ions into higher charge states. CBSIM was created to calculate successive charge breeding with an EBIT. It was augmented by transferring it into an object-oriented programming language, including additional elements, improving ion-ion collision factors, and exploring the overlap of the electron beam with the ions. The calculation is enhanced with the effects of residual background gas by computing the space charge due to charge breeding. The program assimilates background species, ionizes and charge breeds them alongside the element being studied, and allows them to interact with the desired species through charge exchange, giving fairer overview of realistic charge breeding. Calculations of charge breeding will be shown for realistic experimental conditions. We reexamined the implementation of ionization energies, cross sections, and ion-ion interactions when charge breeding.

  8. Depth of field affects perceived depth-width ratios in photographs of natural scenes.

    PubMed

    Nefs, Harold T

    2012-01-01

    The aim of the study was to find out how much influence depth of field has on the perceived ratio of depth and width in photographs of natural scenes. Depth of field is roughly defined as the distance range that is perceived as sharp in the photograph. Four different semi-natural scenes consisting of a central and two flanking figurines were used. For each scene, five series of photos were made, in which the distance in depth between the central figurine and the flanking figurines increased. These series of photographs had different amounts of depth of field. In the first experiment participants adjusted the position of the two flanking figurines relative to a central figurine, until the perceived distance in the depth dimension equaled the perceived lateral distance between the two flanking figurines. Viewing condition was either monocular or binocular (non-stereo). In the second experiment, the participants did the same task but this time we varied the viewing distance. We found that the participants' depth/width settings increased with increasing depth of field. As depth of field increased, the perceived depth in the scene was reduced relative to the perceived width. Perceived depth was reduced relative to perceived width under binocular viewing conditions compared to monocular viewing conditions. There was a greater reduction when the viewing distance was increased. As photographs of natural scenes contain many highly redundant or conflicting depth cues, we conclude therefore that local image blur is an important cue to depth. Moreover, local image blur is not only taken into account in the perception of egocentric distances, but also affects the perception of depth within the scene relative to lateral distances within the scene.

  9. Charge renormalization in planar and spherical charged lipidic aqueous interfaces.

    PubMed

    Bordi, Federico; Cametti, Cesare; Sennato, Simona; Paoli, Beatrice; Marianecci, Carlotta

    2006-03-16

    The charge renormalization in planar and spherical charged lipidic aqueous interfaces has been investigated by means of thermodynamic and electrokinetic measurements. We analyzed the behavior of mixed DOTAP/DOPE monolayers at the air-electrolyte solution interface and DOTAP/DOPE liposomes 100 nm in size dispersed in an aqueous phase of varying ionic strength. For the two systems, we have compared the "effective" surface charge derived from the measurements of surface potential and zeta-potential to the "bare" charge based on the stoichiometry of the lipid mixture investigated. The results confirm that a strong charge renormalization occurs, whose strength depends on the geometry of the mesoscopic system. The dependence of the "effective" charge on the "bare" charge is discussed in light of an analytical approximation based on the Poisson-Boltzmann equation recently proposed.

  10. Charge dynamic characteristics in corona-charged polytetrafluoroethylene film electrets.

    PubMed

    Chen, Gang-Jin; Xiao, Hui-Ming; Zhu, Chun-Feng

    2004-08-01

    In this work, the charge dynamics characteristics of injection, transport and decay in porous and non-porous polytetrafluoroethylene (PTFE) film electrets were investigated by means of corona charging, isothermal and thermal stimulating surface-potential decay measurements. The results showed that the initial surface potential, whether positively or negatively charging, is much higher in non-porous PTFE than in porous PTFE. For porous film the value of initial surface potentials increases with increase of film thickness. Higher charging temperature can remarkably improve charge stability. The charge dynamics are correlated to materials microstructure according to their scanning electron micrographs. For non-porous PTFE films, polarizability change of C-F bonds is the main origin of electret charges; but for porous PTFE film a large number of bulk and interface type traps are expected because of the greater area of interface and higher crystallinity.

  11. 42 CFR 405.506 - Charges higher than customary or prevailing charges or lowest charge levels.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... charge in such cases. The mere fact that the physician's or other person's customary charge is higher..., 1903(i)(1) of the Social Security Act; 49 Stat. 647, 79 Stat. 302, 310, 331; 86 Stat. 1395, 1454; (42 U...

  12. An Innovative Magnetic Charging Chute to Improve Productivity of Sinter Machine at Rourkela Steel Plant

    NASA Astrophysics Data System (ADS)

    Selvam, Sambandham Thirumalai; Chaudhuri, Subhasis; Das, Arunaba; Singh, Mithilesh Kumar; Mahanta, H. K.

    Sintering is a process in sinter machine for agglomeration of iron ore and other raw material fines into a compact porous mass, i.e., sinter, used in Blast Furnaces as an iron bearing input charge material for hot metal production. 'Permeability' of sinter-bed on sinter machine i.e., the porosity in sinter-bed of charged materials, facilitates atmospheric air passes from the top to bottom across the depth of sinter-bed, when suction created from the bottom of the bed, for efficient heat carry over from top to bottom of the bed for complete burning of charged materials for effective sintering process controls the productivity of the sinter machine. The level of 'permeability' in sinter-bed is depending upon the effectiveness of 'charging chute' in size-wise 'segregation' of charge materials across the depth in sinter-bed, achieved due to differences in the sliding velocities of particles during charging into the moving sinter-bed. The permeability achieved by the earlier conventional 'charging chute' was limited due to its design and positional constraints in sinter machine. Improving the productivity of sinter machine, through increased permeability of sinter bed is successfully achieved through implementation of an innovatively designed and developed, "Magnetic Charging Chute" at Sinter Plant no. 2 of Rourkela Steel Plant. The induced magnetic force on the charged materials while the charge materials dropping down through the charge chute has improved the permeability of sinter bed through an unique method of segregating the para-magnetic materials and the finer materials of the charge materials to top layer of sinter bed along with improved size-wise segregation of charge materials. This has increased the productivity of the sinter machine by 3% and also reduced the solid fuel consumption i.e., coke breeze in input charge materials by 1 kg/t of sinter.

  13. High resolution printing of charge

    SciTech Connect

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  14. Backside charging of the CCD

    NASA Technical Reports Server (NTRS)

    Janesick, J.; Elliott, T.; Daud, T.; Mccarthy, J.; Blouke, M.

    1985-01-01

    Until recently, the usefulness of the charge coupled device (CCD) as an imaging sensor was thought to be restricted to within rather narrow boundaries of the visible and near IR spectrum. However, since the discovery of backside charging the full potential of CCD performance is now realized. Indeed, the technique of backside charging not only allows the CCD to be used directly in the UV, EUV, and soft X-ray regimes, it has opened up new opportunities in optimizing charge collection processes as well. The technique of backside charging is discussed, and its properties, use, and potential in the future as it applies to the CCD are described.

  15. Adsorption isotherms of charged nanoparticles.

    PubMed

    Dos Santos, Alexandre P; Bakhshandeh, Amin; Diehl, Alexandre; Levin, Yan

    2016-10-19

    We present theory and simulations which allow us to quantitatively calculate the amount of surface adsorption excess of charged nanoparticles onto a charged surface. The theory is very accurate for weakly charged nanoparticles and can be used at physiological concentrations of salt. We have also developed an efficient simulation algorithm which can be used for dilute suspensions of nanoparticles of any charge, even at very large salt concentrations. With the help of the new simulation method, we are able to efficiently calculate the adsorption isotherms of highly charged nanoparticles in suspensions containing multivalent ions, for which there are no accurate theoretical methods available.

  16. Charge sniffer for electrostatics demonstrations

    NASA Astrophysics Data System (ADS)

    Dinca, Mihai P.

    2011-02-01

    An electronic electroscope with a special design for demonstrations and experiments on static electricity is described. It operates as an electric charge sniffer by detecting slightly charged objects when they are brought to the front of its sensing electrode. The sniffer has the advantage of combining high directional sensitivity with a logarithmic bar display. It allows for the identification of electric charge polarity during charge separation by friction, peeling, electrostatic induction, batteries, or secondary coils of power transformers. Other experiments in electrostatics, such as observing the electric field of an oscillating dipole and the distance dependence of the electric field generated by simple charge configurations, are also described.

  17. Antiproton charge radius

    NASA Astrophysics Data System (ADS)

    Crivelli, P.; Cooke, D.; Heiss, M. W.

    2016-09-01

    The upcoming operation of the extra low energy antiprotons ring at CERN, the upgrade of the antiproton decelerator (AD), and the installation in the AD hall of an intense slow positron beam with an expected flux of 1 08 e+ /s will open the possibility for new experiments with antihydrogen (H ¯). Here we propose a scheme to measure the Lamb shift of H ¯. For four months of data taking, we anticipate an uncertainty of 100 ppm. This will provide a test of C P T and the first determination of the antiproton charge radius at the level of 10%.

  18. Energetic charged particle interactions at icy satellites

    NASA Astrophysics Data System (ADS)

    Nordheim, T.; Hand, K. P.; Paranicas, C.; Howett, C.; Hendrix, A. R.

    2016-12-01

    Satellites embedded within planetary magnetospheres are typically exposed to bombardment by charged particles, from thermal plasma to more energetic particles at radiation belt energies. At many planetary satellites, energetic charged particles are typically unimpeded by patchy atmospheres or induced satellite magnetic fields and instead are stopped in the surface itself. Most of these primaries have ranges in porous water ice that are at most centimeters, but some of their secondary photons, emitted during the deceleration process, can reach meter depths [Paranicas et al., 2002, 2004; Johnson et al., 2004]. Examples of radiation-induced surface alteration includes sputtering, radiolysis and grain sintering, processes that are capable of significantly altering the physical properties of surface material. Thus, accurate characterization of energetic charged particle weathering at icy satellites is crucial to a more comprehensive understanding of these bodies. At Saturn's inner mid-size moons remote sensing observations by several instruments onboard the Cassini spacecraft have revealed distinct weathering patterns which have been attributed to energetic electron bombardment of the surface [Howett et al., 2011, 2012, 2014; Schenk et al., 2011; Paranicas et al., 2014]. In the Jovian system, radiolytic production of oxidants has been invoked as a potential source of energy for life which may reside in the sub-surface ocean of its satellite Europa [Johnson et al., 2003; Hand et al., 2007; Vance et al., 2016]. Here we will discuss the near-surface energetic charged particle environment of icy satellites, with particular emphasis on comparative studies between the Saturnian and Jovian systems and interpretation of remote sensing observations by instruments onboard missions such as Cassini and Galileo. In addition, we will discuss implications for surface sampling by future lander missions (e.g. the proposed Europa lander now under study).

  19. Real-time structured light depth extraction

    NASA Astrophysics Data System (ADS)

    Keller, Kurtis; Ackerman, Jeremy D.

    2000-03-01

    Gathering depth data using structured light has been a procedure for many different environments and uses. Many of these system are utilized instead of laser line scanning because of their quickness. However, to utilize depth extraction for some applications, in our case laparoscopic surgery, the depth extraction must be in real time. We have developed an apparatus that speeds up the raw image display and grabbing in structured light depth extraction from 30 frames per second to 60 and 180 frames per second. This results in an updated depth and texture map of about 15 times per second versus about 3. This increased update rate allows for real time depth extraction for use in augmented medical/surgical applications. Our miniature, fist-sized projector utilizes an internal ferro-reflective LCD display that is illuminated with cold light from a flex light pipe. The miniature projector, attachable to a laparoscope, displays inverted pairs of structured light into the body where these images are then viewed by a high-speed camera set slightly off axis from the projector that grabs images synchronously. The images from the camera are ported to a graphics-processing card where six frames are worked on simultaneously to extract depth and create mapped textures from these images. This information is then sent to the host computer with 3D coordinate information of the projector/camera and the associated textures. The surgeon is then able to view body images in real time from different locations without physically moving the laparoscope imager/projector, thereby, reducing the trauma of moving laparoscopes in the patient.

  20. Charge shielding in magnetized plasmas

    SciTech Connect

    Wang Shaojie; Stroth, Ulrich; Van Oost, Guido

    2010-11-15

    The shielding of a charge sheet in a magnetized plasma is investigated by taking account of the diamagnetic drift start-up current in addition to the polarization current. For a charge sheet with an infinitesimal width, the shielding is the same as the conventional Debye shielding if the charge sheet is perpendicular to the magnetic field; the shielding length is {radical}(2) times larger than the conventional one if the charge sheet is parallel to the magnetic field. When the scale length of the charge sheet is comparable or smaller than the ion Larmor radius, the electric field is significantly enhanced within the charge sheet, while far away from the charge sheet, the electric field is shielded to the usual 1/{epsilon}{sub r} level (where {epsilon}{sub r} is the diamagnetic coefficient of the magnetized plasma).

  1. Charge Detection Mass Spectrometry with Resolved Charge States

    NASA Astrophysics Data System (ADS)

    Contino, Nathan C.; Pierson, Elizabeth E.; Keifer, David Z.; Jarrold, Martin F.

    2013-01-01

    Charge detection mass spectrometry (CDMS) measurements have been performed for cytochrome c and alcohol dehydrogenase (ADH) monomer using a modified cone trap incorporating a cryogenically cooled JFET. Cooling the JFET increases its transconductance and lowers thermal noise, improving the signal to noise (S/N) ratio. Single ions with as few as 9 elementary charges (e) have been detected. According to simulations, the detection efficiency for ions with a charge of 13 e is 75 %, and for charges above 13 e the detection efficiency rapidly approaches 95 %. With the low limit of detection achieved here, adjacent charge states are easily resolved in the m/ z spectrum, so the accuracy and precision of the image charge measurements can be directly evaluated by comparing the measured image charge to the charge deduced from the m/ z spectrum. For ADH monomer ions with 32 to 43 charges, the root mean square deviation of the measured image charge is around 2.2 e. Ions were trapped for over 1500 cycles. The number of cycles detected appears to be limited mainly by collisions with the background gas.[Figure not available: see fulltext.

  2. Fluctuations of development maximum depth and nuclear composition of primary cosmic radiation

    NASA Technical Reports Server (NTRS)

    Dyakonov, M. N.; Ivanov, A. A.; Knurenko, S. P.; Krasilnikov, D. D.; Kolosov, V. A.; Sleptsov, I. Y.; Struchkov, G. G.; Pavlov, V. N.

    1985-01-01

    The extensive air showers (EAS) cascade curves from the Cerenkov light lateral distribution measurements are recovered and the maximum depth fluctuations of the shower development theta x sub m both on the Cerenkov and charged EAS components are defined. At E sub 0 approximates 10 to the 18th power eV the mean content of protons is greater than 85%, and p-air cross section theta sub 0 p-air 750mb.

  3. Charged Dust Aggregate Interactions

    NASA Astrophysics Data System (ADS)

    Matthews, Lorin; Hyde, Truell

    2015-11-01

    A proper understanding of the behavior of dust particle aggregates immersed in a complex plasma first requires a knowledge of the basic properties of the system. Among the most important of these are the net electrostatic charge and higher multipole moments on the dust aggregate as well as the manner in which the aggregate interacts with the local electrostatic fields. The formation of elongated, fractal-like aggregates levitating in the sheath electric field of a weakly ionized RF generated plasma discharge has recently been observed experimentally. The resulting data has shown that as aggregates approach one another, they can both accelerate and rotate. At equilibrium, aggregates are observed to levitate with regular spacing, rotating about their long axis aligned parallel to the sheath electric field. Since gas drag tends to slow any such rotation, energy must be constantly fed into the system in order to sustain it. A numerical model designed to analyze this motion provides both the electrostatic charge and higher multipole moments of the aggregate while including the forces due to thermophoresis, neutral gas drag, and the ion wakefield. This model will be used to investigate the ambient conditions leading to the observed interactions. This research is funded by NSF Grant 1414523.

  4. Charged pion production in $\

    SciTech Connect

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energy from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.

  5. Charged pion production in $$\

    DOE PAGES

    Eberly, B.; et al.

    2015-11-23

    Charged pion production via charged-current νμ interactions on plastic scintillator (CH) is studied using the MINERvA detector exposed to the NuMI wideband neutrino beam at Fermilab. Events with hadronic invariant mass W < 1.4 GeV and W < 1.8 GeV are selected in separate analyses: the lower W cut isolates single pion production, which is expected to occur primarily through the Δ(1232) resonance, while results from the higher cut include the effects of higher resonances. Cross sections as functions of pion angle and kinetic energy are compared to predictions from theoretical calculations and generator-based models for neutrinos ranging in energymore » from 1.5–10 GeV. The data are best described by calculations which include significant contributions from pion intranuclear rescattering. As a result, these measurements constrain the primary interaction rate and the role of final state interactions in pion production, both of which need to be well understood by neutrino oscillation experiments.« less

  6. Charge disproportionation, everywhere!

    NASA Astrophysics Data System (ADS)

    Takahashi, T.; Hiraki, K.; Moroto, S.; Tajima, N.; Takano, Y.; Kubo, Y.; Satsukawa, H.; Chiba, R.; Yamamoto, H. M.; Kato, R.; Naito, T.

    2005-12-01

    Charge disproportionation (CD) recently observed in many organic conductors is reviewed. CD is closely related to the charge ordering (CO) but is observed even when no long range CO is established. In a θ -phase BEDT-TTF salt, (BEDT-TTF){2}RbZn(SCN){4}, an extremely slow dynamics of CD has been observed above T_MI. A similar phenomenon is also observed in the Cs-analog, (BEDT-TTF){2}CsZn(SCN){4}. However, a spin-singlet ground state without CD is suggested in this salt at low temperatures. It is shown that α -(BETS){2}I{3} exhibits CD at low temperatures, as in α -(BET-TTF){2}I{3}. Recently, an abnormal line broadening has been observed in 13C-NMR of (TMTSF){2}FSO{3} under pressure as well as in 77Se-NMR of λ-(BETS){2}FeCl{4} in a high field. We expect that both are very likely caused by a large CD among the organic molecular sites. The current investigation is a part of a Grant-in-Aid for Scientific Research on Priority Areas of Molecular Conductors (No. 15073221) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and the “Japan-Korea Joint Research Project” from Japan Society for the Promotion of Science (03-01-8) and Korea Science and Engineering Foundation (F01-2003-000-20023-0).

  7. Proton charge extensions

    NASA Astrophysics Data System (ADS)

    Stryker, Jesse R.; Miller, Gerald A.

    2016-01-01

    We examine how corrections to S -state energy levels En S in hydrogenic atoms due to the finite proton size are affected by moments of the proton charge distribution. The corrections to En S are computed moment by moment. The results demonstrate that the next-to-leading order term in the expansion is of order rp/aB times the size of the leading order term. Our analysis thus dispels any concern that the larger relative size of this term for muonic hydrogen versus electronic hydrogen might account for the current discrepancy of proton radius measurements extracted from the two systems. Furthermore, the next-to-leading order term in powers of rp/aB that we derive from a dipole proton form factor is proportional to , rather than , as would be expected from the scalar nature of the form factor. The dependence of the finite-size correction on and higher odd-power moments is shown to be a general result for any spherically symmetric proton charge distribution. A method for computing the moment expansion of the finite-size correction to arbitrary order is introduced and the results are tabulated for principal quantum numbers up to n =7 .

  8. Charged Galileon black holes

    SciTech Connect

    Babichev, Eugeny; Charmousis, Christos; Hassaine, Mokhtar E-mail: christos.charmousis@th.u-psud.fr

    2015-05-01

    We consider an Abelian gauge field coupled to a particular truncation of Horndeski theory. The Galileon field has translation symmetry and couples non minimally both to the metric and the gauge field. When the gauge-scalar coupling is zero the gauge field reduces to a standard Maxwell field. By taking into account the symmetries of the action, we construct charged black hole solutions. Allowing the scalar field to softly break symmetries of spacetime we construct black holes where the scalar field is regular on the black hole event horizon. Some of these solutions can be interpreted as the equivalent of Reissner-Nordstrom black holes of scalar tensor theories with a non trivial scalar field. A self tuning black hole solution found previously is extended to the presence of dyonic charge without affecting whatsoever the self tuning of a large positive cosmological constant. Finally, for a general shift invariant scalar tensor theory we demonstrate that the scalar field Ansatz and method we employ are mathematically compatible with the field equations. This opens up the possibility for novel searches of hairy black holes in a far more general setting of Horndeski theory.

  9. Binocular Coordination: Reading Stereoscopic Sentences in Depth

    PubMed Central

    Schotter, Elizabeth R.; Blythe, Hazel I.; Kirkby, Julie A.; Rayner, Keith; Holliman, Nicolas S.; Liversedge, Simon P.

    2012-01-01

    The present study employs a stereoscopic manipulation to present sentences in three dimensions to subjects as they read for comprehension. Subjects read sentences with (a) no depth cues, (b) a monocular depth cue that implied the sentence loomed out of the screen (i.e., increasing retinal size), (c) congruent monocular and binocular (retinal disparity) depth cues (i.e., both implied the sentence loomed out of the screen) and (d) incongruent monocular and binocular depth cues (i.e., the monocular cue implied the sentence loomed out of the screen and the binocular cue implied it receded behind the screen). Reading efficiency was mostly unaffected, suggesting that reading in three dimensions is similar to reading in two dimensions. Importantly, fixation disparity was driven by retinal disparity; fixations were significantly more crossed as readers progressed through the sentence in the congruent condition and significantly more uncrossed in the incongruent condition. We conclude that disparity depth cues are used on-line to drive binocular coordination during reading. PMID:22558174

  10. Binocular coordination: reading stereoscopic sentences in depth.

    PubMed

    Schotter, Elizabeth R; Blythe, Hazel I; Kirkby, Julie A; Rayner, Keith; Holliman, Nicolas S; Liversedge, Simon P

    2012-01-01

    The present study employs a stereoscopic manipulation to present sentences in three dimensions to subjects as they read for comprehension. Subjects read sentences with (a) no depth cues, (b) a monocular depth cue that implied the sentence loomed out of the screen (i.e., increasing retinal size), (c) congruent monocular and binocular (retinal disparity) depth cues (i.e., both implied the sentence loomed out of the screen) and (d) incongruent monocular and binocular depth cues (i.e., the monocular cue implied the sentence loomed out of the screen and the binocular cue implied it receded behind the screen). Reading efficiency was mostly unaffected, suggesting that reading in three dimensions is similar to reading in two dimensions. Importantly, fixation disparity was driven by retinal disparity; fixations were significantly more crossed as readers progressed through the sentence in the congruent condition and significantly more uncrossed in the incongruent condition. We conclude that disparity depth cues are used on-line to drive binocular coordination during reading.

  11. Estimated Water Depths in Ancient Martian Sea

    NASA Image and Video Library

    2017-10-06

    The Eridania basin of southern Mars is believed to have held a sea about 3.7 billion years ago, with seafloor deposits likely resulting from underwater hydrothermal activity. This graphic shows estimated depths of water in that ancient sea. A recent estimate of the total water volume of the ancient Eridania sea is about 50,000 cubic miles (210,000 cubic kilometers), about nine times the total volume of North America's Great Lakes. The map covers an area about 530 miles (850 kilometers) wide. This graphic was included in a 2017 report "Ancient hydrothermal seafloor deposits in Eridania basin on Mars" in Nature Communications. A reference bar indicating color coding of depth, from red, at right, showing depth of about 300 feet (100 meters) to black showing depth more than 10 times that depth. This graphic was included in a 2017 report "Ancient hydrothermal seafloor deposits in Eridania basin on Mars" in Nature Communications. https://photojournal.jpl.nasa.gov/catalog/PIA22059

  12. Plumbing Coastal Depths in Titan Kraken Mare

    NASA Image and Video Library

    2014-11-10

    Radar data from NASA's Cassini spacecraft reveal the depth of liquid methane/ethane seas on Saturn's moon Titan. Cassini's Titan flyby on August 21, 2014, included a segment designed to collect altimetry (or height) data, using the spacecraft's radar instrument, along a 120-mile (200-kilometer) shore-to-shore track on Kraken Mare, Titan's largest hydrocarbon sea. For a 25-mile (40-kilometer) stretch of this data, along the sea's eastern shoreline, Cassini's radar beam bounced off the sea bottom and back to the spacecraft, revealing the sea's depth in that area. Observations in this region, near the mouth of a large, flooded river valley, showed depths ranging from 66 to 115 feet (20 to 35 meters). Plots of three radar echoes are shown at left, indicating depths of 89 feet (27 meters), 108 feet (33 meters) and 98 feet (30 meters), respectively. The altimetry echoes show the characteristic double-peaked returns of a bottom-reflection. The tallest peak represents the sea surface; the shorter of the pair represents the sea bottom. The distance between the two peaks is a measure of the liquid's depth. The Synthetic Aperture Radar (SAR) image at right shows successive altimetry observations as black circles. The three blue circles indicate the locations of the three altimetry echoes shown in the plots at left. http://photojournal.jpl.nasa.gov/catalog/PIA19046

  13. TRENDS IN ESTIMATED MIXING DEPTH DAILY MAXIMUMS

    SciTech Connect

    Buckley, R; Amy DuPont, A; Robert Kurzeja, R; Matt Parker, M

    2007-11-12

    Mixing depth is an important quantity in the determination of air pollution concentrations. Fireweather forecasts depend strongly on estimates of the mixing depth as a means of determining the altitude and dilution (ventilation rates) of smoke plumes. The Savannah River United States Forest Service (USFS) routinely conducts prescribed fires at the Savannah River Site (SRS), a heavily wooded Department of Energy (DOE) facility located in southwest South Carolina. For many years, the Savannah River National Laboratory (SRNL) has provided forecasts of weather conditions in support of the fire program, including an estimated mixing depth using potential temperature and turbulence change with height at a given location. This paper examines trends in the average estimated mixing depth daily maximum at the SRS over an extended period of time (4.75 years) derived from numerical atmospheric simulations using two versions of the Regional Atmospheric Modeling System (RAMS). This allows for differences to be seen between the model versions, as well as trends on a multi-year time frame. In addition, comparisons of predicted mixing depth for individual days in which special balloon soundings were released are also discussed.

  14. How earthquake properties vary with depth

    NASA Astrophysics Data System (ADS)

    Balcerak, Ernie

    2012-06-01

    A new study shows systematically how seismic properties vary with depth. Lay et al. analyzed recent large and great earthquakes, including the 2004 Sumatra-Andaman (Mw 9.2), 2010 Chile (Mw 8.8), and 2011 Tohoku (Mw 9.0) earthquakes. The researchers define four domains of seismogenic behavior along megathrust faults according to depth. In domain A, the shallowest, reaching to about 15 kilometers below sea level, large tsunami- generating earthquakes can occur. In domain B, extending from about 15- to 35-kilometers depth, great earthquake events with large slip but diffuse short-period energy occur. In domain C, from 35- to 55-kilometers depth, smaller isolated megathrust patches rupture, producing bursts of coherent short-period energy in both great ruptures and in moderatesized events. In domain D, which extends from about 30- to 45-kilometers depth in subduction zones where relatively young ocean lithosphere is being underthrust with shallow plate dip, low-frequency earthquakes, seismic tremor, and slow slip events occur. Below this zone, stabile sliding or ductile doma takes place. (Journal of Geophysical Research-Solid Earth, doi:10.1029/2011JB009133, 2012)

  15. Depth Effects in Micro-PIV

    NASA Astrophysics Data System (ADS)

    Wereley, Steve; Meinhart, Carl; Gray, Mike

    1999-11-01

    When measuring flows in microscale geometries using PIV, it is frequently necessary to illuminate the entire test section with a volume of light, as opposed to a two-dimensional sheet of light. With volume-illuminated PIV, the thickness of the measurement plane must be defined by the focusing characteristics of the recording optics, instead of the thickness of the light sheet. The term 'depth of correlation' is introduced as an estimate of the thickness of the measurement plane since depth of field alone does not adequately account for all the phenomena that affect the thickness of the measurement plane. A theoretical expression for depth of correlation is derived, and is shown to agree well with experimental observations. The effect of the unfocused particle images (i.e. images from particles located outside the depth of correlation) on the background noise and spatial resolution of the measurements is discussed. Experimental results varying flow depth and particle concentration show that there is a trade off between image signal-to-noise ratio and particle concentration. These experiments and analyses demonstrate the potential for PIV to provide the same highly-accurate quantitative measurements at microscopic length scales that have made it a valuable tool at macroscopic length scales.

  16. Depth Cameras on UAVs: a First Approach

    NASA Astrophysics Data System (ADS)

    Deris, A.; Trigonis, I.; Aravanis, A.; Stathopoulou, E. K.

    2017-02-01

    Accurate depth information retrieval of a scene is a field under investigation in the research areas of photogrammetry, computer vision and robotics. Various technologies, active, as well as passive, are used to serve this purpose such as laser scanning, photogrammetry and depth sensors, with the latter being a promising innovative approach for fast and accurate 3D object reconstruction using a broad variety of measuring principles including stereo vision, infrared light or laser beams. In this study we investigate the use of the newly designed Stereolab's ZED depth camera based on passive stereo depth calculation, mounted on an Unmanned Aerial Vehicle with an ad-hoc setup, specially designed for outdoor scene applications. Towards this direction, the results of its depth calculations and scene reconstruction generated by Simultaneous Localization and Mapping (SLAM) algorithms are compared and evaluated based on qualitative and quantitative criteria with respect to the ones derived by a typical Structure from Motion (SfM) and Multiple View Stereo (MVS) pipeline for a challenging cultural heritage application.

  17. Depth Transfer: Depth Extraction from Video Using Non-Parametric Sampling.

    PubMed

    Karsch, Kevin; Liu, Ce; Kang, Sing Bing

    2014-11-01

    We describe a technique that automatically generates plausible depth maps from videos using non-parametric depth sampling. We demonstrate our technique in cases where past methods fail (non-translating cameras and dynamic scenes). Our technique is applicable to single images as well as videos. For videos, we use local motion cues to improve the inferred depth maps, while optical flow is used to ensure temporal depth consistency. For training and evaluation, we use a Kinect-based system to collect a large data set containing stereoscopic videos with known depths. We show that our depth estimation technique outperforms the state-of-the-art on benchmark databases. Our technique can be used to automatically convert a monoscopic video into stereo for 3D visualization, and we demonstrate this through a variety of visually pleasing results for indoor and outdoor scenes, including results from the feature film Charade.

  18. Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems

    DOEpatents

    Tuffner, Francis K [Richland, WA; Kintner-Meyer, Michael C. W. [Richland, WA; Hammerstrom, Donald J [West Richland, WA; Pratt, Richard M [Richland, WA

    2012-05-22

    Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

  19. Determining concentration depth profiles of thin foam films with neutral impact collision ion scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Ridings, Christiaan; Andersson, Gunther G.

    2010-11-01

    Equipment is developed to measure the concentration depth profiles in foam films with the vacuum based technique neutral impact collision ion scattering spectroscopy. Thin foam films have not previously been investigated using vacuum based techniques, hence specialized methods and equipment have been developed for generating and equilibrating of foam films under vacuum. A specialized film holder has been developed that encloses the foam film in a pressure cell. The pressure cell is air-tight except for apertures that allow for the entrance and exit of the ion beam to facilitate the analysis with the ion scattering technique. The cell is supplied with a reservoir of solvent which evaporates upon evacuating the main chamber. This causes the cell to be maintained at the vapor pressure of the solvent, thus minimizing further evaporation from the films. In order to investigate the effect of varying the pressure over the films, a hydrostatic pressure is applied to the foam films. Concentration depth profiles of the elements in a thin foam film made from a solution of glycerol and the cationic surfactant hexadecyltrimethylammonium bromide (C16TAB) were measured. The measured concentration depth profiles are used to compare the charge distribution in foam films with the charge distribution at the surface of a bulk solution. A greater charge separation was observed at the films' surface compared to the bulk surface, which implies a greater electrostatic force contribution to the stabilization of thin foam films.

  20. Enhanced depth perception using hyperstereo vision

    NASA Astrophysics Data System (ADS)

    Watkins, Wendell R.

    1997-06-01

    Recent stereo vision experiments demonstrated the enhancement of depth perception over single line of sight vision for improved vehicular navigation and target acquisition processes. The experiments involves the use of stereo vision headsets connected to visible and 8 - 12 micrometers IR imagers. The imagers were separated by up to 50 m (i.e., wider platform separation than human vision, or hyperstereo) and equipped with telescopes for viewing at ranges of tens of meters up to 4 km. The important findings were: (1) human viewers were able to discern terrain undulations for obstacle avoidance for vehicular navigation, and (2) human viewers were able to detect depth features within the scenes that enhanced the target acquisition process over using monocular or single line of sight viewing. For vehicular navigation improvement, stereo goggles were developed for headset display and simultaneous see through instrumentation viewing for vehicular navigation enhancement. For detection, the depth cues can be used to detect even salient target features.

  1. Depth-resolved fluorescence of biological tissue

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Xi, Peng; Cheung, Tak-Hong; Yim, So Fan; Yu, Mei-Yung; Qu, Jianan Y.

    2005-06-01

    The depth-resolved autofluorescence ofrabbit oral tissue, normal and dysplastic human ectocervical tissue within l20μm depth were investigated utilizing a confocal fluorescence spectroscopy with the excitations at 355nm and 457nm. From the topmost keratinizing layer of oral and ectocervical tissue, strong keratin fluorescence with the spectral characteristics similar to collagen was observed. The fluorescence signal from epithelial tissue between the keratinizing layer and stroma can be well resolved. Furthermore, NADH and FADfluorescence measured from the underlying non-keratinizing epithelial layer were strongly correlated to the tissue pathology. This study demonstrates that the depth-resolved fluorescence spectroscopy can reveal fine structural information on epithelial tissue and potentially provide more accurate diagnostic information for determining tissue pathology.

  2. Depth profile characterization with noncollinear beam mixing

    SciTech Connect

    Freed, Shaun L. E-mail: jeong.na@wyle.com; Na, Jeong K. E-mail: jeong.na@wyle.com

    2015-03-31

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  3. Eye movements in depth to visual illusions

    NASA Astrophysics Data System (ADS)

    Wismeijer, D. A.

    2009-10-01

    We perceive the three-dimensional (3D) environment that surrounds us with deceptive effortlessness. In fact, we are far from comprehending how the visual system provides us with this stable perception of the (3D) world around us. This thesis will focus on the interplay between visual perception of depth and its closely related action system, eye movements in depth. The human visual system is comprised of a sensory (input) and an output (motor) system. Processed information from the sensory system can result in two explicit measurable response types: conscious visual perception and ocular motor behavior. It is still a matter of debate whether conscious visual perception and action (including hand- and arm-movements) use the same information or whether the visual system has separate channels processing information for perception and action. In this thesis, we study (1) if separate channels, one for eye movements and one for conscious visual perception, indeed exist, and (2) if so, if there is a direct input from the perceptual pathway to the motor pathway. Assuming that either eye movements and conscious visual perception are based on information from a common source (a negative answer to issue 1) or perception can directly influence, or guide, eye movements (an affirmative answer to research question 2), (eye) movements reflect our conscious visual perception. If so, eye movements could provide us with an alternative method to probe our conscious visual perception, making explicit perceptual reports superfluous. In this thesis we focus on depth perception and the two types of eye movements that are closest related to depth perception, namely vergence (an eye movement that gets a certain depth plane into focus) and saccades (a rapid eye movement to change gaze direction). Over the last 20 years it has been shown that depth perception is based on a weighted combination of depth cues available such as linear perspective, occlusion and binocular disparity. How eye

  4. Depth-optimized reversible circuit synthesis

    NASA Astrophysics Data System (ADS)

    Arabzadeh, Mona; Saheb Zamani, Morteza; Sedighi, Mehdi; Saeedi, Mehdi

    2013-04-01

    In this paper, simultaneous reduction of circuit depth and synthesis cost of reversible circuits in quantum technologies with limited interaction is addressed. We developed a cycle-based synthesis algorithm which uses negative controls and limited distance between gate lines. To improve circuit depth, a new parallel structure is introduced in which before synthesis a set of disjoint cycles are extracted from the input specification and distributed into some subsets. The cycles of each subset are synthesized independently on different sets of ancillae. Accordingly, each disjoint set can be synthesized by different synthesis methods. Our analysis shows that the best worst-case synthesis cost of reversible circuits in the linear nearest neighbor architecture is improved by the proposed approach. Our experimental results reveal the effectiveness of the proposed approach to reduce cost and circuit depth for several benchmarks.

  5. Depth of origin of solar active regions

    NASA Technical Reports Server (NTRS)

    Parker, E. N.

    1984-01-01

    Observations show that the individual bipolar magnetic regions on the sun remain confined during their decay phase, with much of the magnetic field pulling back under the surface, in reverse of the earlier emergence. This suggests that the magnetic field is held on a short rein by subsurface forces, for otherwise the region would decay entirely by dispersing across the face of the sun. With the simple assumption that the fields at the surface are controlled from well-defined anchor points at a depth h, it is possible to relate the length l of the bipolar region at the surface to the depth h, with h about equal to l. The observed dimensions l about equal to 100,000 km for normal active regions, and l about equal to 10,000 km for the ephemeral active regions, indicate comparable depths of origin. More detailed observational studies of the active regions may be expected to shed further light on the problem.

  6. The depth of the deepest historical earthquakes

    NASA Astrophysics Data System (ADS)

    Rees, Beth A.; Okal, Emile A.

    1987-09-01

    We use P and S times listed in the International Seismological Summary to relocate 23 historical earthquakes (1927 1963) reported as occurring at or below 670 km. In all cases, our relocated hypocenters are shallower than the starting depths; furthermore, all events converge to 691 km or less, with a precision estimated at ±10 km. This study upholds the results of Stark and Frohlich, who had used pP-P times of post-WWSSN earthquakes to constrain reliable hypocentral depths to no greater than 684 km. In particular, we reject Rothé's claim that a 1963 event in the vicinity of New Guinea occurred at a depth of more than 780 km.

  7. Flexible Ablators Char Depths LHMEL Test Results

    NASA Technical Reports Server (NTRS)

    White, Susan; Qu, Vince; Fan, Wendy; Stackpoole, Mairead; Thornton, Jeremy

    2012-01-01

    Char and pyrolysis zone depths give physical evidence of peak temperature reached in depth: The pyrolyzing material acts as a temperature indicator within its characteristic thermal decomposition range. A matrix of novel flexible ablators were laser tested in one component of material screening for NASA Entry, Descent and Landing research for future Mars missions. LHMEL tests were run both on virgin materials, and on previously charred materials for a dual pulse simulation of the heating due to aerocapture followed by atmospheric entry. The test models were machined to expose the cross-sections. Char measurements were made at three locations near the center of the exposed area. Data are presented showing the char depths developed in these flexible materials, grouped by reinforcing fiber and pyrolyzing material type.

  8. Depth profile characterization with noncollinear beam mixing

    NASA Astrophysics Data System (ADS)

    Freed, Shaun L.; Na, Jeong K.

    2015-03-01

    Noncollinear beam mixing is an ultrasonic approach to quantify elastic nonlinearity within a subsurface volume of material. The technique requires interaction between two beams of specific frequency, angle, and vibration mode to generate a third beam propagating from the intersection volume. The subsurface depth to interaction zone is controlled by changing the separation distance between the two input transducers, and the amplitude of the third generated beam is proportional to the elastic nonlinearity within the interaction zone. Therefore, depth profiling is possible if a suitable parameter is established to normalize the detected signal independent of propagation distances and input amplitudes. This foundational effort has been conducted toward developing such a parameter for depth profile measurements in homogeneous aluminum that includes corrective terms for attenuation, beam overlap noise, beam spread, and input amplitudes. Experimental and analytical results are provided, and suggested applications and improvements are discussed toward characterizing subsurface material property profiles.

  9. Efficient Depth Enhancement Using a Combination of Color and Depth Information.

    PubMed

    Lee, Kyungjae; Ban, Yuseok; Lee, Sangyoun

    2017-07-01

    Studies on depth images containing three-dimensional information have been performed for many practical applications. However, the depth images acquired from depth sensors have inherent problems, such as missing values and noisy boundaries. These problems significantly affect the performance of applications that use a depth image as their input. This paper describes a depth enhancement algorithm based on a combination of color and depth information. To fill depth holes and recover object shapes, asynchronous cellular automata with neighborhood distance maps are used. Image segmentation and a weighted linear combination of spatial filtering algorithms are applied to extract object regions and fill disocclusion in the object regions. Experimental results on both real-world and public datasets show that the proposed method enhances the quality of the depth image with low computational complexity, outperforming conventional methods on a number of metrics. Furthermore, to verify the performance of the proposed method, we present stereoscopic images generated by the enhanced depth image to illustrate the improvement in quality.

  10. Efficient Depth Enhancement Using a Combination of Color and Depth Information

    PubMed Central

    Lee, Kyungjae; Ban, Yuseok; Lee, Sangyoun

    2017-01-01

    Studies on depth images containing three-dimensional information have been performed for many practical applications. However, the depth images acquired from depth sensors have inherent problems, such as missing values and noisy boundaries. These problems significantly affect the performance of applications that use a depth image as their input. This paper describes a depth enhancement algorithm based on a combination of color and depth information. To fill depth holes and recover object shapes, asynchronous cellular automata with neighborhood distance maps are used. Image segmentation and a weighted linear combination of spatial filtering algorithms are applied to extract object regions and fill disocclusion in the object regions. Experimental results on both real-world and public datasets show that the proposed method enhances the quality of the depth image with low computational complexity, outperforming conventional methods on a number of metrics. Furthermore, to verify the performance of the proposed method, we present stereoscopic images generated by the enhanced depth image to illustrate the improvement in quality. PMID:28671565

  11. HNS aluminum linear shaped charge (ALSC) performance study

    SciTech Connect

    Campos, C.A.

    1980-07-01

    A study was performed to determine the HNS conversion process which yields the best material for use in manufacturing aluminum linear shaped charges (ALSC). Destructive testing was performed in two phases. Phase I established optimum standoff for each lot of material, and Phase II evaluated performance under varied temperature conditions. Both optimum standoff and performance were determined by measuring ALSC depth of penetration into an aluminum witness plate. Detonation velocity was also measured.

  12. Monocular and binocular depth discrimination thresholds.

    PubMed

    Kaye, S B; Siddiqui, A; Ward, A; Noonan, C; Fisher, A C; Green, J R; Brown, M C; Wareing, P A; Watt, P

    1999-11-01

    Measurement of stereoacuity at varying distances, by real or simulated depth stereoacuity tests, is helpful in the evaluation of patients with binocular imbalance or strabismus. Although the cue of binocular disparity underpins stereoacuity tests, there may be variable amounts of other binocular and monocular cues inherent in a stereoacuity test. In such circumstances, a combined monocular and binocular threshold of depth discrimination may be measured--stereoacuity conventionally referring to the situation where binocular disparity giving rise to retinal disparity is the only cue present. A child-friendly variable distance stereoacuity test (VDS) was developed, with a method for determining the binocular depth threshold from the combined monocular and binocular threshold of depth of discrimination (CT). Subjects with normal binocular function, reduced binocular function, and apparently absent binocularity were included. To measure the threshold of depth discrimination, subjects were required by means of a hand control to align two electronically controlled spheres at viewing distances of 1, 3, and 6m. Stereoacuity was also measured using the TNO, Frisby, and Titmus stereoacuity tests. BTs were calculated according to the function BT= arctan (1/tan alphaC - 1/tan alphaM)(-1), where alphaC and alphaM are the angles subtended at the nodal points by objects situated at the monocular threshold (alphaM) and the combined monocular-binocular threshold (alphaC) of discrimination. In subjects with good binocularity, BTs were similar to their combined thresholds, whereas subjects with reduced and apparently absent binocularity had binocular thresholds 4 and 10 times higher than their combined thresholds (CT). The VDS binocular thresholds showed significantly higher correlation and agreement with the TNO test and the binocular thresholds of the Frisby and Titmus tests, than the corresponding combined thresholds (p = 0.0019). The VDS was found to be an easy to use real depth

  13. Depth selective acousto-optic flow measurement

    PubMed Central

    Tsalach, Adi; Schiffer, Zeev; Ratner, Eliahu; Breskin, Ilan; Zeitak, Reuven; Shechter, Revital; Balberg, Michal

    2015-01-01

    Optical based methods for non-invasive measurement of regional blood flow tend to incorrectly assess cerebral blood flow, due to contribution of extra-cerebral tissues to the obtained signal. We demonstrate that spectral analysis of phase-coded light signals, tagged by specific ultrasound patterns, enables differentiation of flow patterns at different depths. Validation of the model is conducted by Monte Carlo simulation. In-vitro experiments demonstrate good agreement with the simulations' results and provide a solid validation to depth discrimination ability. These results suggest that signal contamination originating from extra-cerebral tissue may be eliminated using spectral analysis of ultrasonically tagged light. PMID:26713201

  14. Charge Storage, Conductivity and Charge Profiles of Insulators as Related to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Swaminathan, Prasanna; Frederickson, A. R.

    2004-01-01

    Dissipation of charges built up near the surface of insulators due to space environment interaction is central to understanding spacecraft charging. Conductivity of insulating materials is key to determine how accumulated charge will distribute across the spacecraft and how rapidly charge imbalance will dissipate. To understand these processes requires knowledge of how charge is deposited within the insulator, the mechanisms for charge trapping and charge transport within the insulator, and how the profile of trapped charge affects the transport and emission of charges from insulators. One must consider generation of mobile electrons and holes, their trapping, thermal de-trapping, mobility and recombination. Conductivity is more appropriately measured for spacecraft charging applications as the "decay" of charge deposited on the surface of an insulator, rather than by flow of current across two electrodes around the sample. We have found that conductivity determined from charge storage decay methods is 102 to 104 smaller than values obtained from classical ASTM and IEC methods for a variety of thin film insulating samples. For typical spacecraft charging conditions, classical conductivity predicts decay times on the order of minutes to hours (less than typical orbit periods); however, the higher charge storage conductivities predict decay times on the order of weeks to months leading to accumulation of charge with subsequent orbits. We found experimental evidence that penetration profiles of radiation and light are exceedingly important, and that internal electric fields due to charge profiles and high-field conduction by trapped electrons must be considered for space applications. We have also studied whether the decay constants depend on incident voltage and flux or on internal charge distributions and electric fields; light-activated discharge of surface charge to distinguish among differing charge trapping centers; and radiation-induced conductivity. Our

  15. Understanding the Linkage between Charging Network Coverage and Charging Opportunity

    SciTech Connect

    Liu, Changzheng; Lin, Zhenhong; Kontou, Eleftheria; Wu, Xing

    2016-01-01

    Using GPS-based travel survey data, this paper estimates the relationship between public charging network coverage and charging opportunity, defined as the probability of being able to access public charging for a driver at one of his/her stops or at one travel day. Understanding this relationship is of important interests to the electric vehicle industry and government in determining appropriate charging infrastructure deployment level and estimating the impact of public charging on market adoption of electric vehicles. The analysis finds that drivers trip destinations concentrate on a few popular places. If top 1% of most popular places are installed with public chargers, on average, drivers will be able to access public charging at 20% of all their stops and 1/3 of their travel days; If 20% of most popular places are installed with public chargers, drivers will be able to access public charging at 89% of all their stops and 94% of their travel days. These findings are encouraging, implying charging network can be efficiently designed by concentrating at a few popular places while still providing a high level of charging opportunity.

  16. A heavy particle comparative study. Part II: cell survival versus depth.

    PubMed

    Raju, M R; Bain, E; Carpenter, S G; Cox, R A; Robertson, J B

    1978-09-01

    Cell-survival measurements with depth of penetration were made for a series of incident doses of proton, helium, carbon, neon, argon, negative pion, neutron, and 60Co photon beams. Cultured human cells (T1) suspended in a gel-containing medium were used, and the measurements were found to be very useful in facilitating the design of ridge filters to produce iso-effects in the region of interest. Heavy charged particle beams (proton, helium, carbon, neon, and negative pion) were found to produce similar cell killing with depth of penetration. Because of saturation effects at higher LET, argon ions were less effective in killing aerated cells at depth, compared with other heavy charged-particle beams. Cell killing at depth in the region of interest, compared with that at the entrance, was not significantly different for single-field exposures when the Bragg peaks were broadened to cover a width of 10 cm. However, when two opposed fields with overlapping peaks were used, a large enhancement in killing was obtained in the peak region.

  17. Explosive bulk charge

    DOEpatents

    Miller, Jacob Lee

    2015-04-21

    An explosive bulk charge, including: a first contact surface configured to be selectively disposed substantially adjacent to a structure or material; a second end surface configured to selectively receive a detonator; and a curvilinear side surface joining the first contact surface and the second end surface. The first contact surface, the second end surface, and the curvilinear side surface form a bi-truncated hemispherical structure. The first contact surface, the second end surface, and the curvilinear side surface are formed from an explosive material. Optionally, the first contact surface and the second end surface each have a substantially circular shape. Optionally, the first contact surface and the second end surface consist of planar structures that are aligned substantially parallel or slightly tilted with respect to one another. The curvilinear side surface has one of a smooth curved geometry, an elliptical geometry, and a parabolic geometry.

  18. Battery charging stations

    SciTech Connect

    Bergey, M.

    1997-12-01

    This paper discusses the concept of battery charging stations (BCSs), designed to service rural owners of battery power sources. Many such power sources now are transported to urban areas for recharging. A BCS provides the opportunity to locate these facilities closer to the user, is often powered by renewable sources, or hybrid systems, takes advantage of economies of scale, and has the potential to provide lower cost of service, better service, and better cost recovery than other rural electrification programs. Typical systems discussed can service 200 to 1200 people, and consist of stations powered by photovoltaics, wind/PV, wind/diesel, or diesel only. Examples of installed systems are presented, followed by cost figures, economic analysis, and typical system design and performance numbers.

  19. Stable Charged Cosmic Strings

    SciTech Connect

    Weigel, H.; Quandt, M.; Graham, N.

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius {approx_equal}10{sup -18} m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

  20. Solar charged agriculture

    SciTech Connect

    Heckeroth, S.

    1999-07-01

    It is becoming obvious that the developed world's reliance on petroleum for transportation and agricultural production is not sustainable. Industrial agriculture currently uses an average of 200 gallons of diesel per acre (1,900 liters per hectare) per year. Sustainability requires a transition to the use of non-polluting renewable energy sources, as well as small scale farming techniques. This paper outlines the tremendous potential electric tractors offer in a variety of applications all over the world, including greenhouses and organic farms, toxic cleanup, bomb disposal and mine sweeping, as well as use as a mobile power source in remote areas and in emergency applications. An electric tractor can be charged from photovoltaic panels, either on the tractor in the form of a shade canopy or mounted on the roof of a building.

  1. Fractional lattice charge transport

    PubMed Central

    Flach, Sergej; Khomeriki, Ramaz

    2017-01-01

    We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302

  2. Stable charged cosmic strings.

    PubMed

    Weigel, H; Quandt, M; Graham, N

    2011-03-11

    We study the quantum stabilization of a cosmic string by a heavy fermion doublet in a reduced version of the standard model. We show that charged strings, obtained by populating fermionic bound state levels, become stable if the electroweak bosons are coupled to a fermion that is less than twice as heavy as the top quark. This result suggests that extraordinarily large fermion masses or unrealistic couplings are not required to bind a cosmic string in the standard model. Numerically we find the most favorable string profile to be a simple trough in the Higgs vacuum expectation value of radius ≈10(-18)  m. The vacuum remains stable in our model, because neutral strings are not energetically favored.

  3. Cosmic ray muon charge ratio in the MINOS far detector

    SciTech Connect

    Beall, Erik B.

    2005-12-01

    The MINOS Far Detector is a 5.4 kiloton (5.2 kt steel plus 0.2 kt scintillator plus aluminum skin) magnetized tracking calorimeter located 710 meters underground in the Soudan mine in Northern Minnesota. MINOS is the first large, deep underground detector with a magnetic field and thus capable of making measurements of the momentum and charge of cosmic ray muons. Despite encountering unexpected anomalies in distributions of the charge ratio (N{sub μ+/Nμ-) of cosmic muons, a method of canceling systematic errors is proposed and demonstrated. The result is Reff = 1.346 ± 0.002 (stat) ± 0.016 (syst) for the averaged charge ratio, and a result for a rising fit to slant depth of R(X) = 1.300 ± 0.008 (stat) ± 0.016 (syst) + (1.8 ± 0.3) x 10-5 x X, valid over the range of slant depths from 2000 < X < 6000 MWE. This slant depth range corresponds to minimum surface muon energies between 750 GeV and 5 TeV.

  4. The effect of nanoparticle surfactant polarization on trapping depth of vegetable insulating oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Li, Jian; Du, Bin; Wang, Feipeng; Yao, Wei; Yao, Shuhan

    2016-02-01

    Nanoparticles can generate charge carrier trapping and reduce the velocity of streamer development in insulating oils ultimately leading to an enhancement of the breakdown voltage of insulating oils. Vegetable insulating oil-based nanofluids with three sizes of monodispersed Fe3O4 nanoparticles were prepared and their trapping depths were measured by thermally stimulated method (TSC). It is found that the nanoparticle surfactant polarization can significantly influence the trapping depth of vegetable insulating oil-based nanofluids. A nanoparticle polarization model considering surfactant polarization was proposed to calculate the trapping depth of the nanofluids at different nanoparticle sizes and surfactant thicknesses. The results show the calculated values of the model are in a fairly good agreement with the experimental values.

  5. Quantitative operando visualization of the energy band depth profile in solar cells

    PubMed Central

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-01-01

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference. PMID:26166580

  6. Quantitative operando visualization of the energy band depth profile in solar cells.

    PubMed

    Chen, Qi; Mao, Lin; Li, Yaowen; Kong, Tao; Wu, Na; Ma, Changqi; Bai, Sai; Jin, Yizheng; Wu, Dan; Lu, Wei; Wang, Bing; Chen, Liwei

    2015-07-13

    The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for operando devices. Here we present direct visualization of the surface potential depth profile over the cross-sections of operando organic photovoltaic devices using scanning Kelvin probe microscopy. The convolution effect due to finite tip size and cantilever beam crosstalk has previously prohibited quantitative interpretation of scanning Kelvin probe microscopy-measured surface potential depth profiles. We develop a bias voltage-compensation method to address this critical problem and obtain quantitatively accurate measurements of the open-circuit voltage, built-in potential and electrode potential difference.

  7. Longitudinal space charge amplifier

    NASA Astrophysics Data System (ADS)

    Schneidmiller, E. A.; Yurkov, M. V.

    2013-05-01

    Longitudinal space charge (LSC) driven microbunching instability in electron beam formation systems of X-ray FELs is a recently discovered effect hampering beam instrumentation and FEL operation. The instability was observed in different facilities in infrared and visible wavelength ranges. In this paper we propose to use such an instability for generation of vacuum ultraviolet (VUV) and X-ray radiation. A typical longitudinal space charge amplifier (LSCA) consists of few amplification cascades (drift space plus chicane) with a short undulator behind the last cascade. If the amplifier starts up from the shot noise, the amplified density modulation has a wide band, on the order of unity. The bandwidth of the radiation within the central cone is given by inverse number of undulator periods. A wavelength compression could be an attractive option for LSCA since the process is broadband, and a high compression stability is not required. LSCA can be used as a cheap addition to the existing or planned short-wavelength FELs. In particular, it can produce the second color for a pump-probe experiment. It is also possible to generate attosecond pulses in the VUV and X-ray regimes. Some user experiments can profit from a relatively large bandwidth of the radiation, and this is easy to obtain in LSCA scheme. Finally, since the amplification mechanism is broadband and robust, LSCA can be an interesting alternative to self-amplified spontaneous emission free electron laser (SASE FEL) in the case of using laser-plasma accelerators as drivers of light sources.

  8. Gate-voltage-dependent charge transport in multi-dispersed polymer thin films

    NASA Astrophysics Data System (ADS)

    Zhou, Ling; Bu, Laju; Li, Dongfan; Lu, Guanghao

    2017-02-01

    In semiconductor polymers, charge transport usually occurs via hopping between localized states, which are generally multi-dispersed due to multi-dispersed chemical structures, crystallinities, and phase segregations. We report a combined modeling and experimental study to investigate gate-voltage-dependent charge transport in field-effect transistors based on multi-dispersed polymers including semiconductor:semiconductor and semiconductor:insulator blends. Film-depth-dependent charge accumulation and transport are correlated with vertical composition profiles and film-depth-dependent energetic distribution of localized states. Even low gate-voltage could accumulate charges in any depth of the films, greatly increasing charge density in some (sub-) components for effective charge transport. Therefore, neither overall high crystallinity nor molecular ordering near the semiconductor-dielectric interface is necessarily required for high field-effect mobility (μFET). This study not only proposes a model for high effective μFET recently reported in some nearly amorphous polymer films and the "bislope feature" in their transfer characteristics but also helps improve transistor performances and exploit transistor operations via manipulating charge distribution in multi-dispersed films.

  9. High dynamic range charge measurements

    DOEpatents

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  10. Effect of depth of discharge on lead-acid battery overcharge requirements

    NASA Astrophysics Data System (ADS)

    Deluca, W. H.; Tummillo, A. F.

    1986-02-01

    The develop an optimal charge procedure, the relation between battery available capacity, applied overcharge, and the depth-of-discharge (DOD) level prior to charging needed to be established. Therefore, a series of parametric tests was conducted to measure the charge acceptance of lead-acid batteries from initial DOD levels of 25, 50, 75, and 100%. Because the available capacity and charge acceptance of the lead-acid battery are dependent on operating temperature, all the charges and discharges were initiated at a fixed temperature. Also because of the typical variation in available capacity of the lead-acid battery with age, baseline performance measurements were periodically acquired for normalization of the charge acceptance test data. The results from these tests show that the amount of overcharge needed to obtain the maximum available capacity from an EV-3000 improved lead-acid battery (which uses electrolyte mixing) is greatly reduced from that needed for commercially available golf-car lead-acid batteries. This was true for all initial DOD levels. The overcharges needed by the EV-3000 battery was a function of the DOD level prior to charging, but the overcharge needed for the golf-car battery was independent of DOD level. The acquired data can be used to derive an optium charge algorithm that relates capacity, overcharge, and DOD level. Applying only the minimum overcharge level needed for full capacity offers advantages of: (1) reduced generation of gases, (2) reduced water consumption, (3) cleaner battery containers, (4) reduced maintenance, and (5) increased battery life.

  11. 12 CFR 226.4 - Finance charge.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Finance charge. 226.4 Section 226.4 Banks and... LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is the cost of...) Charges by third parties. The finance charge includes fees and amounts charged by someone other than the...

  12. 12 CFR 226.4 - Finance charge.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 12 Banks and Banking 3 2012-01-01 2012-01-01 false Finance charge. 226.4 Section 226.4 Banks and... LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is the cost of...) Charges by third parties. The finance charge includes fees and amounts charged by someone other than...

  13. 12 CFR 226.4 - Finance charge.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 12 Banks and Banking 3 2013-01-01 2013-01-01 false Finance charge. 226.4 Section 226.4 Banks and...) TRUTH IN LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is... transaction. (1) Charges by third parties. The finance charge includes fees and amounts charged by...

  14. 12 CFR 226.4 - Finance charge.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 12 Banks and Banking 3 2014-01-01 2014-01-01 false Finance charge. 226.4 Section 226.4 Banks and...) TRUTH IN LENDING (REGULATION Z) General § 226.4 Finance charge. (a) Definition. The finance charge is... transaction. (1) Charges by third parties. The finance charge includes fees and amounts charged by...

  15. Charge contribution to patch-charged microparticle adhesion

    NASA Astrophysics Data System (ADS)

    Vallabh, Chaitanya Krishna Prasad; Vahdat, Armin Saeedi; Cetinkaya, Cetin

    2014-11-01

    Microparticle adhesion influenced by electrostatic charge has been a significant research interest for over past three decades or so in a wide spectrum of areas of interest from manufacturing (electrophotography, powder technology, metallurgy, and semi-conductor manufacturing) to natural phenomena (desert sandstorms and northern lights (auroras)). However, over the years, as a result of the strong discrepancies between the experimental adhesion measurements data and theoretical predictions, some key issues regarding the contributors of adhesion forces in charged microparticles and the nature of surface charge distribution still remain unresolved. In the current work, a non-contact ultrasonic approach is presented and employed for understanding the nature of charge distribution on a single microparticle and determining the effect of electrostatic charge on its adhesion in a non-invasive manner. From the vibrational spectra of the charged particle response to the ultrasonic substrate oscillations under various electrostatic loading conditions, three distinct shifting patterns of vibrational (rocking) resonance frequencies are observed for each level of applied substrate surface voltage, implying an un-symmetric force field on the particle, thus depicting non-uniform non-symmetric surface charge distribution on its surface. Also, a simple mathematical model was presented and employed for predicting the equivalent bulk charge on a single microparticle (toner) from resonance frequency shifts. In summary, it is found that the charge levels reported here are consistent with the previously published data, and it is demonstrated that, in a non-invasive manner, non-uniform charge distribution on a single microparticle can be observed and its total charge can be predicted.

  16. Photoelectric Charging of Dust Particles

    NASA Technical Reports Server (NTRS)

    Sickafoose, A.; Colwell, J.; Horanyi, M.; Robertson, S.; Walch, B.

    1999-01-01

    Laboratory experiments have been performed on the photoelectric charging of dust particles which are either isolated or adjacent to a surface that is also a photoemitter. We find that zinc dust charges to a positive potential of a few volts when isolated in vacuum and that it charges to a negative potential of a few volts when passed by a photoemitting surface. The illumination is an arc lamp emitting wavelengths longer than 200 nm and the emitting surface is a zirconium foil.

  17. Criminal Charges in Corporate Scandals

    DTIC Science & Technology

    2007-11-02

    Criminal Charges in Corporate Scandals Summary Since the collapse of Enron Corp . in late 2001, there has been a series of scandals involving major U .S...to the series of corporate scandals that began with Enron by passing the Sarbanes-Oxley Act of 2002 . That law created a new oversight body for...List of Tables Table 1. List of Charges, Indictments, and Guilty Pleas in Corporate Scandals Since Enron 2 Criminal Charges in Corporate Scandals

  18. Scientific charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack

    1987-01-01

    The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.

  19. Scientific charge-coupled devices

    NASA Technical Reports Server (NTRS)

    Janesick, James R.; Elliott, Tom; Collins, Stewart; Blouke, Morley M.; Freeman, Jack

    1987-01-01

    The charge-coupled device dominates an ever-increasing variety of scientific imaging and spectroscopy applications. Recent experience indicates, however, that the full potential of CCD performance lies well beyond that realized in devices currently available.Test data suggest that major improvements are feasible in spectral response, charge collection, charge transfer, and readout noise. These properties, their measurement in existing CCDs, and their potential for future improvement are discussed in this paper.

  20. Literature Review of Spacecraft Charging,

    DTIC Science & Technology

    1983-10-20

    the charged dielectric surface ; what fraction of the satellite surface will discharge in one event; the nature of the discharge ( flashover ...Punchthrough Is the process by which a discharge is initiated from a layer of charge deposited near the surface of a thin dielectric, through the bulk of...punchthrough discharge. Flashover is defined here as the release of charge from the surface of a dielectric to a nearby conductor, which is usually

  1. Sampling depth confounds soil acidification outcomes

    USDA-ARS?s Scientific Manuscript database

    In the northern Great Plains (NGP) of North America, surface sampling depths of 0-15 or 0-20 cm are suggested for testing soil characteristics such as pH. However, acidification is often most pronounced near the soil surface. Thus, sampling deeper can potentially dilute (increase) pH measurements an...

  2. Ideal Sowing Depth for Sweetgum Seed

    Treesearch

    F. T. Bonner

    1967-01-01

    This paper reports the sowing depths from which sweetgum (Liquidambar styraciflua L.) seedlings can emerge under near ideal conditions. Little is known about the seedbed conditions required for successful direct seeding of sweetgum, and the information presented here will be useful in planning field trials.

  3. Monocular alignment in different depth planes.

    PubMed

    Shimono, Koichi; Wade, Nicholas J

    2002-04-01

    We examined (a) whether vertical lines at different physical horizontal positions in the same eye can appear to be aligned, and (b), if so, whether the difference between the horizontal positions of the aligned vertical lines can vary with the perceived depth between them. In two experiments, each of two vertical monocular lines was presented (in its respective rectangular area) in one field of a random-dot stereopair with binocular disparity. In Experiment 1, 15 observers were asked to align a line in an upper area with a line in a lower area. The results indicated that when the lines appeared aligned, their horizontal physical positions could differ and the direction of the difference coincided with the type of disparity of the rectangular areas; this is not consistent with the law of the visual direction of monocular stimuli. In Experiment 2, 11 observers were asked to report relative depth between the two lines and to align them. The results indicated that the difference of the horizontal position did not covary with their perceived relative depth, suggesting that the visual direction and perceived depth of the monocular line are mediated via different mechanisms.

  4. 21 CFR 882.1330 - Depth electrode.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Depth electrode. 882.1330 Section 882.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... signals at, subsurface levels of the brain. (b) Classification. Class II (performance standards). ...

  5. 21 CFR 882.1330 - Depth electrode.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Depth electrode. 882.1330 Section 882.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... signals at, subsurface levels of the brain. (b) Classification. Class II (performance standards). ...

  6. 21 CFR 882.1330 - Depth electrode.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Depth electrode. 882.1330 Section 882.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... signals at, subsurface levels of the brain. (b) Classification. Class II (performance standards). ...

  7. 21 CFR 882.1330 - Depth electrode.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Depth electrode. 882.1330 Section 882.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... signals at, subsurface levels of the brain. (b) Classification. Class II (performance standards). ...

  8. 21 CFR 882.1330 - Depth electrode.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Depth electrode. 882.1330 Section 882.1330 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL... signals at, subsurface levels of the brain. (b) Classification. Class II (performance standards). ...

  9. Accuracy of Depth to Water Measurements

    EPA Pesticide Factsheets

    Accuracy of depth to water measurements is an issue identified by the Forum as a concern of Superfund decision-makers as they attempt to determine directions of ground-water flow, areas of recharge or discharge, the hydraulic characteristics of...

  10. Effect of local crosstalk on depth perception

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Ujike, Hiroyasu; Penczek, John; Boynton, Paul A.

    2014-03-01

    Interocular crosstalk has a significant undesirable effect on the quality of 3D displays that utilize horizontal disparity. This study investigates observer sensitivity when judging the depth order of two horizontally aligned dots on a 3D display and assesses 3D display uniformity by obtaining this index for various locations on the display. Visual stimulus is two horizontally disparate dots, with nine steps of horizontal disparity. A dot pair is presented at five screen locations. An observer wearing polarized glasses sits 57 cm from a display, observes it through a slit, and judges the depth order of two dots. Each of the 20 observers responds 16 times per disparate dot pair, and we calculate the rate at which observers judge the dot on the right to be nearer in 16 trials for each display, screen location, and disparity. We then plot the rate as a function of the left-right dot disparity and fit a psychometric function to the plot. A curve slope at a response probability of 50% is used to gauge the sensitivity of depth order judgment. Results show the depth sensitivity variation across the display surface depends on interocular-crosstalk variation across the display thus its uniformity of the display.

  11. Adult antarctic krill feeding at abyssal depths.

    PubMed

    Clarke, Andrew; Tyler, Paul A

    2008-02-26

    Antarctic krill (Euphausia superba) is a large euphausiid, widely distributed within the Southern Ocean [1], and a key species in the Antarctic food web [2]. The Discovery Investigations in the early 20(th) century, coupled with subsequent work with both nets and echosounders, indicated that the bulk of the population of postlarval krill is typically confined to the top 150 m of the water column [1, 3, 4]. Here, we report for the first time the existence of significant numbers of Antarctic krill feeding actively at abyssal depths in the Southern Ocean. Biological observations from the deep-water remotely operated vehicle Isis in the austral summer of 2006/07 have revealed the presence of adult krill (Euphausia superba Dana), including gravid females, at unprecedented depths in Marguerite Bay, western Antarctic Peninsula. Adult krill were found close to the seabed at all depths but were absent from fjords close inshore. At all locations where krill were detected they were seen to be actively feeding, and at many locations there were exuviae (cast molts). These observations revise significantly our understanding of the depth distribution and ecology of Antarctic krill, a central organism in the Southern Ocean ecosystem.

  12. Sensitivity to Binocular Depth Information in Infants

    ERIC Educational Resources Information Center

    Gordon, F. Robert; Yonas, Albert

    1976-01-01

    In order to study infants' sensitivity to binocular information for depth, 11 infants, 20 to 26 weeks of age, were presented with real and stereoscopically projected virtual objects at three distances, and the infants' reaching behavior was videotaped. (Author/SB)

  13. Microwave interferometer controls cutting depth of plastics

    NASA Technical Reports Server (NTRS)

    Heisman, R. M.; Iceland, W. F.

    1969-01-01

    Microwave interferometer system controls the cutting of plastic materials to a prescribed depth. The interferometer is mounted on a carriage with a spindle and cutting tool. A cross slide, mounted on the carriage, allows the interferometer and cutter to move toward or away from the plastic workpiece.

  14. Depth-sounding lidar: performance and models

    NASA Astrophysics Data System (ADS)

    Steinvall, Ove K.; Koppari, Kurt R.; Lejdebrink, Ulf; Winell, Johan; Nilsson, Magnus; Ellsen, Rutger; Gjellan, Einar

    1996-06-01

    This paper describes the depth surrounding activities in Sweden. These include the development of a helicopter borne lidar called FLASH as well as instrumentation for in situ measurement of the optical water parameters. The FLASH system has been further developed into two operational systems called Hawk Eye with Saab Dynamics as the main contractor and Optech Inc. as the main subcontractor. Data collection and evaluation from Hawk Eye will be discussed. The Swedish Defence Research Establishment (FOA) is member of the Hawk Eye project team together with the National Maritime Administration, the Royal Swedish Navy and the Defence Material Administration. Together with the Swedish Maritime Administration, FOA has been engaged in analysis of lidar data to determine system performance and possible ways to optimize that in relation to lidar parameters and anticipated bottom depth and topography. Examples from that analysis will be presented. The test analysis so far strongly supports the depth sounding lidar technology as being a rapid and accurate sounder fulfilling the requirement by International Hydrographic Office on depth accuracy.

  15. "Learning in Depth" in Teaching Education

    ERIC Educational Resources Information Center

    Egan, Kieran

    2015-01-01

    The "Learning in Depth" program is a simple but radical innovation, which was first implemented in Canada in 2008/2009 and is now being used in a dozen countries with many thousand students. The aim of the program is to ensure that every student becomes an expert on something during schooling. The unusualness of the program and the fact…

  16. Additive and subtractive transparent depth displays

    NASA Astrophysics Data System (ADS)

    Kooi, Frank L.; Toet, Alexander

    2003-09-01

    Image fusion is the generally preferred method to combine two or more images for visual display on a single screen. We demonstrate that perceptual image separation may be preferable over perceptual image fusion for the combined display of enhanced and synthetic imagery. In this context image separation refers to the simultaneous presentation of images on different depth planes of a single display. Image separation allows the user to recognize the source of the information that is displayed. This can be important because synthetic images are more liable to flaws. We have examined methods to optimize perceptual image separation. A true depth difference between enhanced and synthetic imagery works quite well. A standard stereoscopic display based on convergence is less suitable since the two images tend to interfere: the image behind is masked (occluded) by the image in front, which results in poor viewing comfort. This effect places 3D systems based on 3D glasses, as well as most autostereoscopic displays, at a serious disadvantage. A 3D display based on additive or subtractive transparency is acceptable: both the perceptual separation and the viewing comfort are good, but the color of objects depends on the color in the other depth layer(s). A combined additive and subtractive transparent display eliminates this disadvantage and is most suitable for the combined display of enhanced and synthetic imagery. We suggest that the development of such a display system is of a greater practical value than increasing the number of depth planes in autostereoscopic displays.

  17. "Learning in Depth" in Teaching Education

    ERIC Educational Resources Information Center

    Egan, Kieran

    2015-01-01

    The "Learning in Depth" program is a simple but radical innovation, which was first implemented in Canada in 2008/2009 and is now being used in a dozen countries with many thousand students. The aim of the program is to ensure that every student becomes an expert on something during schooling. The unusualness of the program and the fact…

  18. Depth of Processing and Age Differences

    ERIC Educational Resources Information Center

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-01-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in "J Verbal Learning Verbal Behav" 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the…

  19. Depth Profiles Using ChemCam

    NASA Astrophysics Data System (ADS)

    Cousin, A.; Maurice, S.; Berger, G.; Forni, O.; Gasnault, O.; Wiens, R.

    2011-03-01

    ChemCam, which is in part of the MSL payload, uses the LIBS technique to investigate the martian surface. The capabilities of ChemCam for the depth profile have to be understood, as ChemCam will shoot several targets which can have alteration coating.

  20. Computationally efficient variable resolution depth estimation

    NASA Astrophysics Data System (ADS)

    Calder, B. R.; Rice, G.

    2017-09-01

    A new algorithm for data-adaptive, large-scale, computationally efficient estimation of bathymetry is proposed. The algorithm uses a first pass over the observations to construct a spatially varying estimate of data density, which is then used to predict achievable estimate sample spacing for robust depth estimation across the area of interest. A low-resolution estimate of depth is also constructed during the first pass as a guide for further work. A piecewise-regular grid is then constructed following the sample spacing estimates, and accurate depth is finally estimated using the composite refined grid and an extended and re-implemented version of the CUBE algorithm. Resource-efficient data structures allow for the algorithm to operate over large areas and large datasets without excessive compute resources; modular design allows for more complex spatial representations to be included if required. The proposed system is demonstrated on a pair of hydrographic datasets, illustrating the adaptation of the algorithm to different depth- and sensor-driven data densities. Although the algorithm was designed for bathymetric estimation, it could be readily used on other two dimensional scalar fields where variable data density is a driver.

  1. Analysis of permafrost depths on Mars

    NASA Technical Reports Server (NTRS)

    Crescenti, G. H.

    1984-01-01

    The Martian surface thermal characteristics as they effect the thickness and distribution of the permafrost are discussed. Parameters such as temperature mean, maximum, and minimum, heat flow values, and damping depths are derived and applied to a model of the Martian cryosphere. A comparison is made between the permafrost layers of Earth and Mars.

  2. Depth of Processing and Age Differences

    ERIC Educational Resources Information Center

    Kheirzadeh, Shiela; Pakzadian, Sarah Sadat

    2016-01-01

    The present article is aimed to investigate whether there are any differences between youngsters and adults in their working and long-term memory functioning. The theory of Depth of Processing (Craik and Lockhart in "J Verbal Learning Verbal Behav" 11:671-684, 1972) discusses the varying degrees of strengths of memory traces as the…

  3. Expansive Soil Crack Depth under Cumulative Damage

    PubMed Central

    Shi, Bei-xiao; Chen, Sheng-shui; Han, Hua-qiang; Zheng, Cheng-feng

    2014-01-01

    The crack developing depth is a key problem to slope stability of the expansive soil and its project governance and the crack appears under the roles of dry-wet cycle and gradually develops. It is believed from the analysis that, because of its own cohesion, the expansive soil will have a certain amount of deformation under pulling stress but without cracks. The soil body will crack only when the deformation exceeds the ultimate tensile strain that causes cracks. And it is also believed that, due to the combined effect of various environmental factors, particularly changes of the internal water content, the inherent basic physical properties of expansive soil are weakened, and irreversible cumulative damages are eventually formed, resulting in the development of expansive soil cracks in depth. Starting from the perspective of volumetric strain that is caused by water loss, considering the influences of water loss rate and dry-wet cycle on crack developing depth, the crack developing depth calculation model which considers the water loss rate and the cumulative damages is established. Both the proposal of water loss rate and the application of cumulative damage theory to the expansive soil crack development problems try to avoid difficulties in matrix suction measurement, which will surely play a good role in promoting and improving the research of unsaturated expansive soil. PMID:24737974

  4. Continuous Depth Map Reconstruction From Light Fields.

    PubMed

    Li, Jianqiao; Lu, Minlong; Li, Ze-Nian

    2015-11-01

    In this paper, we investigate how the recently emerged photography technology--the light field--can benefit depth map estimation, a challenging computer vision problem. A novel framework is proposed to reconstruct continuous depth maps from light field data. Unlike many traditional methods for the stereo matching problem, the proposed method does not need to quantize the depth range. By making use of the structure information amongst the densely sampled views in light field data, we can obtain dense and relatively reliable local estimations. Starting from initial estimations, we go on to propose an optimization method based on solving a sparse linear system iteratively with a conjugate gradient method. Two different affinity matrices for the linear system are employed to balance the efficiency and quality of the optimization. Then, a depth-assisted segmentation method is introduced so that different segments can employ different affinity matrices. Experiment results on both synthetic and real light fields demonstrate that our continuous results are more accurate, efficient, and able to preserve more details compared with discrete approaches.

  5. Electro-optical liquid depth sensor

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Atwood, S. O.

    1976-01-01

    Transducer utilizes absorptive properties of water to determine variations in depth without disturbing liquid. Instrument is inexpensive, simple, and small and thus can be used in lieu of direct graduated scale readout or capacitive, ultrasonic, resistive or inducive sensors when these are impractical because of complexity or cost.

  6. Modified algesimeter provides accurate depth measurements

    NASA Technical Reports Server (NTRS)

    Turner, D. P.

    1966-01-01

    Algesimeter which incorporates a standard sensory needle with a sensitive micrometer, measures needle point depth penetration in pain tolerance research. This algesimeter provides an inexpensive, precise instrument with assured validity of recordings in those biomedical areas with a requirement for repeated pain detection or ascertaining pain sensitivity.

  7. Depth resolution and preferential sputtering in depth profiling of sharp interfaces

    NASA Astrophysics Data System (ADS)

    Hofmann, S.; Han, Y. S.; Wang, J. Y.

    2017-07-01

    The influence of preferential sputtering on depth resolution of sputter depth profiles is studied for different sputtering rates of the two components at an A/B interface. Surface concentration and intensity depth profiles on both the sputtering time scale (as measured) and the depth scale are obtained by calculations with an extended Mixing-Roughness-Information depth (MRI)-model. The results show a clear difference for the two extreme cases (a) preponderant roughness and (b) preponderant atomic mixing. In case (a), the interface width on the time scale (Δt(16-84%)) increases with preferential sputtering if the faster sputtering component is on top of the slower sputtering component, but the true resolution on the depth scale (Δz(16-84%)) stays constant. In case (b), the interface width on the time scale stays constant but the true resolution on the depth scale varies with preferential sputtering. For similar order of magnitude of the atomic mixing and the roughness parameters, a transition state between the two extremes is obtained. While the normalized intensity profile of SIMS represents that of the surface concentration, an additional broadening effect is encountered in XPS or AES by the influence of the mean electron escape depth which may even cause an additional matrix effect at the interface.

  8. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  9. Experiments on Dust Grain Charging

    NASA Technical Reports Server (NTRS)

    Abbas, M. N.; Craven, P. D.; Spann, J. F.; Tankosic, D.; LeClair, A.; West, E. A.

    2004-01-01

    Dust particles in various astrophysical environments are charged by a variety of mechanisms generally involving collisional processes with other charged particles and photoelectric emission with UV radiation from nearby sources. The sign and the magnitude of the particle charge are determined by the competition between the charging processes by UV radiation and collisions with charged particles. Knowledge of the particle charges and equilibrium potentials is important for understanding of a number of physical processes. The charge of a dust grain is thus a fundamental parameter that influences the physics of dusty plasmas, processes in the interplanetary medium and interstellar medium, interstellar dust clouds, planetary rings, cometary and outer atmospheres of planets etc. In this paper we present some results of experiments on charging of dust grains carried out on a laboratory facility capable levitating micron size dust grains in an electrodynamic balance in simulated space environments. The charging/discharging experiments were carried out by exposing the dust grains to energetic electron beams and UV radiation. Photoelectric efficiencies and yields of micron size dust grains of SiO2, and lunar simulates obtained from NASA-JSC will be presented.

  10. Low-charge-state linac

    SciTech Connect

    Shepard, K.W.; Kim, J.W.

    1995-08-01

    A design is being developed for a low-charge-state linac suitable for injecting ATLAS with a low-charge-state, radioactive beam. Initial work indicates that the existing ATLAS interdigital superconducting accelerating structures, together with the superconducting quadrupole transverse focussing element discussed above, provides a basis for a high-performance low-charge-state linac. The initial 2 or 3 MV of such a linac could be based on a normally-conducting, low-frequency RFQ, possibly combined with 24-MHz superconducting interdigital structures. Beam dynamics studies of the whole low-charge-state post-accelerator section were carried out in early FY 1995.

  11. Charge exchange molecular ion source

    DOEpatents

    Vella, Michael C.

    2003-06-03

    Ions, particularly molecular ions with multiple dopant nucleons per ion, are produced by charge exchange. An ion source contains a minimum of two regions separated by a physical barrier and utilizes charge exchange to enhance production of a desired ion species. The essential elements are a plasma chamber for production of ions of a first species, a physical separator, and a charge transfer chamber where ions of the first species from the plasma chamber undergo charge exchange or transfer with the reactant atom or molecules to produce ions of a second species. Molecular ions may be produced which are useful for ion implantation.

  12. Fractional Charge Definitions and Conditions

    SciTech Connect

    Goldhaber, A.S.

    2004-06-04

    Fractional charge is known through theoretical and experimental discoveries of isolable objects carrying fractions of familiar charge units--electric charge Q, spin S, and the difference of baryon and lepton numbers B-L. With a few simple assumptions all these effects may be described using a generalized version of charge renormalization for locally conserved charges, in which medium correlations yield familiar adiabatic, continuous renormalization, or sometimes nonadiabatic, discrete renormalization. Fractional charges may be carried by fundamental particles or fundamental solitons. Either picture works for the simplest fractional-quantum-Hall-effect quasiholes, though the particle description is far more general. The only known fundamental solitons in three or fewer space dimensions d are the kink (d = 1), the vortex (d = 2), and the magnetic monopole (d = 3). Further, for a charge not intrinsically coupled to the topological charge of a soliton, only the kink and the monopole may carry fractional values. The same reasoning enforces fractional values of B-L for electrically charged elementary particles.

  13. Butterflies with rotation and charge

    NASA Astrophysics Data System (ADS)

    Reynolds, Alan P.; Ross, Simon F.

    2016-11-01

    We explore the butterfly effect for black holes with rotation or charge. We perturb rotating BTZ and charged black holes in 2 + 1 dimensions by adding a small perturbation on one asymptotic region, described by a shock wave in the spacetime, and explore the effect of this shock wave on the length of geodesics through the wormhole and hence on correlation functions. We find the effect of the perturbation grows exponentially at a rate controlled by the temperature; dependence on the angular momentum or charge does not appear explicitly. We comment on issues affecting the extension to higher-dimensional charged black holes.

  14. Charge transferred in brush discharges

    NASA Astrophysics Data System (ADS)

    Talarek, M.; Kacprzyk, R.

    2015-10-01

    Electrostatic discharges from surfaces of plastic materials can be a source of ignition, when appear in explosive atmospheres. Incendivity of electrostatic discharges can be estimated using the transferred charge test. In the case of brush discharges not all the energy stored at the tested sample is released and the effective surface charge density (or surface potential) crater is observed after the discharge. Simplified model, enabling calculation of a charge transferred during electrostatic brush discharge, was presented. Comparison of the results obtained from the simplified model and from direct measurements of transferred charge are presented in the paper.

  15. Flaw depth sizing using guided waves

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.

    2016-02-01

    Guided wave inspection technology is most often applied as a survey tool for pipeline inspection, where relatively low frequency ultrasonic waves, compared to those used in conventional ultrasonic nondestructive evaluation (NDE) methods, propagate along the structure; discontinuities cause a reflection of the sound back to the sensor for flaw detection. Although the technology can be used to accurately locate a flaw over long distances, the flaw sizing performance, especially for flaw depth estimation, is much poorer than other, local NDE approaches. Estimating flaw depth, as opposed to other parameters, is of particular interest for failure analysis of many structures. At present, most guided wave technologies estimate the size of the flaw based on the reflected signal amplitude from the flaw compared to a known geometry reflection, such as a circumferential weld in a pipeline. This process, however, requires many assumptions to be made, such as weld geometry and flaw shape. Furthermore, it is highly dependent on the amplitude of the flaw reflection, which can vary based on many factors, such as attenuation and sensor installation. To improve sizing performance, especially depth estimation, and do so in a way that is not strictly amplitude dependent, this paper describes an approach to estimate the depth of a flaw based on a multimodal analysis. This approach eliminates the need of using geometric reflections for calibration and can be used for both pipeline and plate inspection applications. To verify the approach, a test set was manufactured on plate specimens with flaws of different widths and depths ranging from 5% to 100% of total wall thickness; 90% of these flaws were sized to within 15% of their true value. A description of the initial multimodal sizing strategy and results will be discussed.

  16. When depth is no refuge: cumulative thermal stress increases with depth in Bocas del Toro, Panama

    NASA Astrophysics Data System (ADS)

    Neal, B. P.; Condit, C.; Liu, G.; dos Santos, S.; Kahru, M.; Mitchell, B. G.; Kline, D. I.

    2014-03-01

    Coral reefs are increasingly affected by high-temperature stress events and associated bleaching. Monitoring and predicting these events have largely utilized sea surface temperature data, due to the convenience of using large-scale remotely sensed satellite measurements. However, coral bleaching has been observed to vary in severity throughout the water column, and variations in coral thermal stress across depths have not yet been well investigated. In this study, in situ water temperature data from 1999 to 2011 from three depths were used to calculate thermal stress on a coral reef in Bahia Almirante, Bocas del Toro, Panama, which was compared to satellite surface temperature data and thermal stress calculations for the same area and time period from the National Oceanic and Atmospheric Administration Coral Reef Watch Satellite Bleaching Alert system. The results show similar total cumulative annual thermal stress for both the surface and depth-stratified data, but with a striking difference in the distribution of that stress among the depth strata during different high-temperature events, with the greatest thermal stress unusually recorded at the deepest measured depth during the most severe bleaching event in 2005. Temperature records indicate that a strong density-driven temperature inversion may have formed in this location in that year, contributing to the persistence and intensity of bleaching disturbance at depth. These results indicate that depth may not provide a stress refuge from high water temperature events in some situations, and in this case, the water properties at depth appear to have contributed to greater coral bleaching at depth compared to near-surface locations. This case study demonstrates the importance of incorporating depth-stratified temperature monitoring and small-scale oceanographic and hydrologic data for understanding and predicting local reef responses to elevated water temperature events.

  17. Grain charging in protoplanetary discs

    NASA Astrophysics Data System (ADS)

    Ilgner, M.

    2012-02-01

    Context. Recent work identified a growth barrier for dust coagulation that originates in the electric repulsion between colliding particles. Depending on its charge state, dust material may have the potential to control key processes towards planet formation such as magnetohydrodynamic (MHD) turbulence and grain growth, which are coupled in a two-way process. Aims: We quantify the grain charging at different stages of disc evolution and differentiate between two very extreme cases: compact spherical grains and aggregates with fractal dimension Df = 2. Methods: Applying a simple chemical network that accounts for collisional charging of grains, we provide a semi-analytical solution. This allowed us to calculate the equilibrium population of grain charges and the ionisation fraction efficiently. The grain charging was evaluated for different dynamical environments ranging from static to non-stationary disc configurations. Results: The results show that the adsorption/desorption of neutral gas-phase heavy metals, such as magnesium, effects the charging state of grains. The greater the difference between the thermal velocities of the metal and the dominant molecular ion, the greater the change in the mean grain charge. Agglomerates have more negative excess charge on average than compact spherical particles of the same mass. The rise in the mean grain charge is proportional to N1/6 in the ion-dust limit. We find that grain charging in a non-stationary disc environment is expected to lead to similar results. Conclusions: The results indicate that the dust growth and settling in regions where the dust growth is limited by the so-called "electro-static barrier" do not prevent the dust material from remaining the dominant charge carrier.

  18. Charge and Strain Control of Interface Magnetism

    NASA Astrophysics Data System (ADS)

    Fitzsimmons, M. R.; Dumesnil, K.; Jaouen, N.; Maroutian, T.; Agnus, G.; Tonnerre, J.-M.; Kirby, B.; Fohtung, E.; Holladay, B.; Fullerton, E. E.; Shpyrko, O.; Sinha, S. K.; Wang, Q.; Chen, A.; Jia, Q. X.

    2015-03-01

    We studied the influence of an electric field applied to an La0.67Sr0.33MnO3 (LSMO) layer in a LSMO/Pb(Zr0.2Ti0.8) O3 (PZT)/Nb-doped SrTiO3 (STO) heterostructure by measuring its magnetization depth profile using resonant x-ray magnetic reflectivity. The saturation magnetization of the ferromagnetically-ordered LSMO was not affected by the direction of the polarization of the PZT. However, the ferromagnetic thickness and magnetization of the LSMO film at remanence were reduced for hole-charge accumulation at the LSMO/PZT interface. To understand the independent roles of strain and hole-doping, we performed neutron scattering experiments of La0.8Sr0.2MnO3 films grown on Nb-doped STO in which bending strain (via 4-point bending jig) or electric field (via parallel plate capacitor) was applied to the films. We observed that bending strain affects the saturation magnetization of the LSMO film, whereas electric field affects the remanent magnetization of the film. These observations suggest strain may be a more effective means to control magnetism than charge. This work has benefited from use of CINT(LANL), NIST Center for Neutron Research and the Synchrotron SOLEIL and funding from LANL/LDRD program, DOE-BES (UCSD) and DOD (NMSU).

  19. Focal Depth of the WenChuan Earthquake Aftershocks from modeling of Seismic Depth Phases

    NASA Astrophysics Data System (ADS)

    Luo, Y.; Zeng, X.; Chong, J.; Ni, S.; Chen, Y.

    2008-12-01

    After the 05/12/2008 great WenChuan earthquake in Sichuan Province of China, tens of thousands earthquakes occurred with hundreds of them stronger than M4. Those aftershocks provide valuable information about seismotectonics and rupture processes for the mainshock, particularly accurate spatial distribution of aftershocks is very informational for determining rupture fault planes. However focal depth can not be well resolved just with first arrivals recorded by relatively sparse network in Sichuan Province, therefore 3D seismicity distribution is difficult to obtain though horizontal location can be located with accuracy of 5km. Instead local/regional depth phases such as sPmP, sPn, sPL and teleseismic pP,sP are very sensitive to depth, and be readily modeled to determine depth with accuracy of 2km. With reference 1D velocity structure resolved from receiver functions and seismic refraction studies, local/regional depth phases such as sPmP, sPn and sPL are identified by comparing observed waveform with synthetic seismograms by generalized ray theory and reflectivity methods. For teleseismic depth phases well observed for M5.5 and stronger events, we developed an algorithm in inverting both depth and focal mechanism from P and SH waveforms. Also we employed the Cut and Paste (CAP) method developed by Zhao and Helmberger in modeling mechanism and depth with local waveforms, which constrains depth by fitting Pnl waveforms and the relative weight between surface wave and Pnl. After modeling all the depth phases for hundreds of events , we find that most of the M4 earthquakes occur between 2-18km depth, with aftershocks depth ranging 4-12km in the southern half of Longmenshan fault while aftershocks in the northern half featuring large depth range up to 18km. Therefore seismogenic zone in the northern segment is deeper as compared to the southern segment. All the aftershocks occur in upper crust, given that the Moho is deeper than 40km, or even 60km west of the

  20. Aerosol Optical Depth Determinations for BOREAS

    NASA Technical Reports Server (NTRS)

    Wrigley, R. C.; Livingston, J. M.; Russell, P. B.; Guzman, R. P.; Ried, D.; Lobitz, B.; Peterson, David L. (Technical Monitor)

    1994-01-01

    Automated tracking sun photometers were deployed by NASA/Ames Research Center aboard the NASA C-130 aircraft and at a ground site for all three Intensive Field Campaigns (IFCs) of the Boreal Ecosystem-Atmosphere Study (BOREAS) in central Saskatchewan, Canada during the summer of 1994. The sun photometer data were used to derive aerosol optical depths for the total atmospheric column above each instrument. The airborne tracking sun photometer obtained data in both the southern and northern study areas at the surface prior to takeoff, along low altitude runs near the ground tracking sun photometer, during ascents to 6-8 km msl, along remote sensing flightlines at altitude, during descents to the surface, and at the surface after landing. The ground sun photometer obtained data from the shore of Candle Lake in the southern area for all cloud-free times. During the first IFC in May-June ascents and descents of the airborne tracking sun photometer indicated the aerosol optical depths decreased steadily from the surface to 3.5 kni where they leveled out at approximately 0.05 (at 525 nm), well below levels caused by the eruption of Mt. Pinatubo. On a very clear day, May 31st, surface optical depths measured by either the airborne or ground sun photometers approached those levels (0.06-0.08 at 525 nm), but surface optical depths were often several times higher. On June 4th they increased from 0.12 in the morning to 0.20 in the afternoon with some evidence of brief episodes of pollen bursts. During the second IFC surface aerosol optical depths were variable in the extreme due to smoke from western forest fires. On July 20th the aerosol optical depth at 525 nm decreased from 0.5 in the morning to 0.2 in the afternoon; they decreased still further the next day to 0.05 and remained consistently low throughout the day to provide excellent conditions for several remote sensing missions flown that day. Smoke was heavy for the early morning of July 24th but cleared partially by 10

  1. Charge distributions in KTa₁₋xNbxO₃ optical beam deflectors formed by voltage application.

    PubMed

    Imai, Tadayuki; Miyazu, Jun; Kobayashi, Junya

    2014-06-16

    Controlling the space charge distributions in a crystal is indispensable for controlling a KTa₁₋xNbxO₃(KTN) optical beam deflector. The space charge is built up by applying a voltage and injecting electrons into the KTN crystal. Although a homogeneous distribution is preferable, we observed experimentally that the injected electrons concentrated in the vicinity of the cathode and for some samples the concentration was much lower around the anode. We investigated the electron dynamics theoretically and found that such inhomogeneity was caused by a freezing effect where the motion was very slow considering the duration of the practical voltage application. The depth of the space charge spread or the electron penetration depth from the cathode was proportional to the applied voltage and the permittivity, and inversely proportional to the density of traps or localized states that bind electrons. We believe that the trap density was too large for the samples with inhomogeneous charge distributions.

  2. Charge coupled devices

    NASA Technical Reports Server (NTRS)

    Walker, J. W.; Hornbeck, L. J.; Stubbs, D. P.

    1977-01-01

    The results are presented of a program to design, fabricate, and test CCD arrays suitable for operation in an electron-bombarded mode. These intensified charge coupled devices have potential application to astronomy as photon-counting arrays. The objectives of this program were to deliver arrays of 250 lines of 400 pixels each and some associated electronics. Some arrays were delivered on tube-compatible headers and some were delivered after incorporation in vacuum tubes. Delivery of these devices required considerable improvements to be made in the processing associated with intensified operation. These improvements resulted in a high yield in the thinning process, reproducible results in the accumulation process, elimination of a dark current source in the accumulation process, solution of a number of header related problems, and the identification of a remaining major source of dark current. Two systematic failure modes were identified and protective measures established. The effects of tube processing on the arrays in the delivered ICCDs were determined and are reported along with the characterization data on the arrays.

  3. Object-adaptive depth compensated inter prediction for depth video coding in 3D video system

    NASA Astrophysics Data System (ADS)

    Kang, Min-Koo; Lee, Jaejoon; Lim, Ilsoon; Ho, Yo-Sung

    2011-01-01

    Nowadays, the 3D video system using the MVD (multi-view video plus depth) data format is being actively studied. The system has many advantages with respect to virtual view synthesis such as an auto-stereoscopic functionality, but compression of huge input data remains a problem. Therefore, efficient 3D data compression is extremely important in the system, and problems of low temporal consistency and viewpoint correlation should be resolved for efficient depth video coding. In this paper, we propose an object-adaptive depth compensated inter prediction method to resolve the problems where object-adaptive mean-depth difference between a current block, to be coded, and a reference block are compensated during inter prediction. In addition, unique properties of depth video are exploited to reduce side information required for signaling decoder to conduct the same process. To evaluate the coding performance, we have implemented the proposed method into MVC (multiview video coding) reference software, JMVC 8.2. Experimental results have demonstrated that our proposed method is especially efficient for depth videos estimated by DERS (depth estimation reference software) discussed in the MPEG 3DV coding group. The coding gain was up to 11.69% bit-saving, and it was even increased when we evaluated it on synthesized views of virtual viewpoints.

  4. Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps

    PubMed Central

    Liu, Jing; Li, Chunpeng; Fan, Xuefeng; Wang, Zhaoqi

    2015-01-01

    Depth estimation is a classical problem in computer vision, which typically relies on either a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive and textureless regions where stereo matching is not effective. However, stereo matching can obtain more accurate results in rich texture regions and object boundaries where the depth sensor often fails. We fuse stereo matching and the depth sensor using their complementary characteristics to improve the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel’s scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a novel pseudo-two-layer model is used to represent the relationship between disparities in different pixels and segments. It is more robust to luminance variation by treating information obtained from a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury datasets, which shows that our method performs almost 20% better than other “fused” algorithms in the aspect of precision. PMID:26308003

  5. Reliable Fusion of Stereo Matching and Depth Sensor for High Quality Dense Depth Maps.

    PubMed

    Liu, Jing; Li, Chunpeng; Fan, Xuefeng; Wang, Zhaoqi

    2015-08-21

    Depth estimation is a classical problem in computer vision, which typically relies on either a depth sensor or stereo matching alone. The depth sensor provides real-time estimates in repetitive and textureless regions where stereo matching is not effective. However, stereo matching can obtain more accurate results in rich texture regions and object boundaries where the depth sensor often fails. We fuse stereo matching and the depth sensor using their complementary characteristics to improve the depth estimation. Here, texture information is incorporated as a constraint to restrict the pixel's scope of potential disparities and to reduce noise in repetitive and textureless regions. Furthermore, a novel pseudo-two-layer model is used to represent the relationship between disparities in different pixels and segments. It is more robust to luminance variation by treating information obtained from a depth sensor as prior knowledge. Segmentation is viewed as a soft constraint to reduce ambiguities caused by under- or over-segmentation. Compared to the average error rate 3.27% of the previous state-of-the-art methods, our method provides an average error rate of 2.61% on the Middlebury datasets, which shows that our method performs almost 20% better than other "fused" algorithms in the aspect of precision.

  6. Higher resolution stimulus facilitates depth perception: MT+ plays a significant role in monocular depth perception.

    PubMed

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Hiruma, Nobuyuki

    2014-10-20

    Today, we human beings are facing with high-quality virtual world of a completely new nature. For example, we have a digital display consisting of a high enough resolution that we cannot distinguish from the real world. However, little is known how such high-quality representation contributes to the sense of realness, especially to depth perception. What is the neural mechanism of processing such fine but virtual representation? Here, we psychophysically and physiologically examined the relationship between stimulus resolution and depth perception, with using luminance-contrast (shading) as a monocular depth cue. As a result, we found that a higher resolution stimulus facilitates depth perception even when the stimulus resolution difference is undetectable. This finding is against the traditional cognitive hierarchy of visual information processing that visual input is processed continuously in a bottom-up cascade of cortical regions that analyze increasingly complex information such as depth information. In addition, functional magnetic resonance imaging (fMRI) results reveal that the human middle temporal (MT+) plays a significant role in monocular depth perception. These results might provide us with not only the new insight of our neural mechanism of depth perception but also the future progress of our neural system accompanied by state-of- the-art technologies.

  7. Higher resolution stimulus facilitates depth perception: MT+ plays a significant role in monocular depth perception

    PubMed Central

    Tsushima, Yoshiaki; Komine, Kazuteru; Sawahata, Yasuhito; Hiruma, Nobuyuki

    2014-01-01

    Today, we human beings are facing with high-quality virtual world of a completely new nature. For example, we have a digital display consisting of a high enough resolution that we cannot distinguish from the real world. However, little is known how such high-quality representation contributes to the sense of realness, especially to depth perception. What is the neural mechanism of processing such fine but virtual representation? Here, we psychophysically and physiologically examined the relationship between stimulus resolution and depth perception, with using luminance-contrast (shading) as a monocular depth cue. As a result, we found that a higher resolution stimulus facilitates depth perception even when the stimulus resolution difference is undetectable. This finding is against the traditional cognitive hierarchy of visual information processing that visual input is processed continuously in a bottom-up cascade of cortical regions that analyze increasingly complex information such as depth information. In addition, functional magnetic resonance imaging (fMRI) results reveal that the human middle temporal (MT+) plays a significant role in monocular depth perception. These results might provide us with not only the new insight of our neural mechanism of depth perception but also the future progress of our neural system accompanied by state-of- the-art technologies. PMID:25327168

  8. Calculating charged defects using CRYSTAL

    NASA Astrophysics Data System (ADS)

    Bailey, Christine L.; Liborio, Leandro; Mallia, Giuseppe; Tomić, Stanko; Harrison, Nicholas M.

    2010-07-01

    The methodology for the calculation of charged defects using the CRYSTAL program is discussed. Two example calculations are used to illustrate the methodology: He+ ions in a vacuum and two intrinsic charged defects, Cu vacancies and Ga substitution for Cu, in the chalcopyrite CuGaS2.

  9. Dust Charge in Cryogenic Environment

    SciTech Connect

    Kubota, J.; Kojima, C.; Sekine, W.; Ishihara, O.

    2008-09-07

    Dust charges in a complex helium gas plasma, surrounded by cryogenic liquid, are studied experimentally. The charge is determined by frequency and equilibrium position of damped dust oscillation proposed by Tomme et al.(2000) and is found to decrease with ion temperature of the complex plasma.

  10. Battery-Charge-State Model

    NASA Technical Reports Server (NTRS)

    Vivian, H. C.

    1985-01-01

    Charge-state model for lead/acid batteries proposed as part of effort to make equivalent of fuel gage for battery-powered vehicles. Models based on equations that approximate observable characteristics of battery electrochemistry. Uses linear equations, easier to simulate on computer, and gives smooth transitions between charge, discharge, and recuperation.

  11. MODELING PARTICULATE CHARGING IN ESPS

    EPA Science Inventory

    In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...

  12. MODELING PARTICULATE CHARGING IN ESPS

    EPA Science Inventory

    In electrostatic precipitators there is a strong interaction between the particulate space charge and the operating voltage and current of an electrical section. Calculating either the space charge or the operating point when the other is fixed is not difficult, but calculating b...

  13. Voltage/temperature charge characteristics

    NASA Technical Reports Server (NTRS)

    Betz, F. E.

    1978-01-01

    A series of nickel cadmium batteries were tested to determine the effects of boltages and various temperatures on the charge discharge ratios and the recharge percentage. It was concluded that the selection of a proper temperature should consider the satellite orbit characteristics, the cell operating characteristics, the battery operating temperature range, and the final taper charge current.

  14. Charge transport in organic semiconductors.

    PubMed

    Bässler, Heinz; Köhler, Anna

    2012-01-01

    Modern optoelectronic devices, such as light-emitting diodes, field-effect transistors and organic solar cells require well controlled motion of charges for their efficient operation. The understanding of the processes that determine charge transport is therefore of paramount importance for designing materials with improved structure-property relationships. Before discussing different regimes of charge transport in organic semiconductors, we present a brief introduction into the conceptual framework in which we interpret the relevant photophysical processes. That is, we compare a molecular picture of electronic excitations against the Su-Schrieffer-Heeger semiconductor band model. After a brief description of experimental techniques needed to measure charge mobilities, we then elaborate on the parameters controlling charge transport in technologically relevant materials. Thus, we consider the influences of electronic coupling between molecular units, disorder, polaronic effects and space charge. A particular focus is given to the recent progress made in understanding charge transport on short time scales and short length scales. The mechanism for charge injection is briefly addressed towards the end of this chapter.

  15. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins.

    PubMed

    Tan, Kuan Pern; Varadarajan, Raghavan; Madhusudhan, M S

    2011-07-01

    Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein-protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight <1.5  KDa). The prediction accuracy of DEPTH is comparable to that of other geometry-based prediction methods including LIGSITE, SURFNET and Pocket-Finder (all with Matthew's correlation coefficient of ∼0.4) over a testing set of 225 single and multi-chain protein structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery.

  16. DEPTH: a web server to compute depth and predict small-molecule binding cavities in proteins

    PubMed Central

    Tan, Kuan Pern; Varadarajan, Raghavan; Madhusudhan, M. S.

    2011-01-01

    Depth measures the extent of atom/residue burial within a protein. It correlates with properties such as protein stability, hydrogen exchange rate, protein–protein interaction hot spots, post-translational modification sites and sequence variability. Our server, DEPTH, accurately computes depth and solvent-accessible surface area (SASA) values. We show that depth can be used to predict small molecule ligand binding cavities in proteins. Often, some of the residues lining a ligand binding cavity are both deep and solvent exposed. Using the depth-SASA pair values for a residue, its likelihood to form part of a small molecule binding cavity is estimated. The parameters of the method were calibrated over a training set of 900 high-resolution X-ray crystal structures of single-domain proteins bound to small molecules (molecular weight <1.5 KDa). The prediction accuracy of DEPTH is comparable to that of other geometry-based prediction methods including LIGSITE, SURFNET and Pocket-Finder (all with Matthew’s correlation coefficient of ∼0.4) over a testing set of 225 single and multi-chain protein structures. Users have the option of tuning several parameters to detect cavities of different sizes, for example, geometrically flat binding sites. The input to the server is a protein 3D structure in PDB format. The users have the option of tuning the values of four parameters associated with the computation of residue depth and the prediction of binding cavities. The computed depths, SASA and binding cavity predictions are displayed in 2D plots and mapped onto 3D representations of the protein structure using Jmol. Links are provided to download the outputs. Our server is useful for all structural analysis based on residue depth and SASA, such as guiding site-directed mutagenesis experiments and small molecule docking exercises, in the context of protein functional annotation and drug discovery. PMID:21576233

  17. Accuracy of corneal trephination depth using the Moria single-use adjustable depth vacuum trephine system

    PubMed Central

    Fenzl, Carlton R; Gess, Adam J; Moshirfar, Majid

    2014-01-01

    Background The Moria single-use adjustable depth trephine is a device that allows a goal trephination depth to be set prior to the surgical procedure. Methods Eleven fresh human cadaveric eyes were trephined using 8.0 mm Moria single-use adjustable vacuum trephines. Prior to trephination, the average corneal pachymetry in the peripheral 7–10 mm range was obtained using anterior segment optical coherence tomography. The trephination depth was set to 80% of that value. Light microscopy was used to image anteroposterior cross-sections of each corneal specimen. Digital protractor software was used to evaluate the trephination angle, depth, and length. All adequately processed specimens were included in the analysis. In addition, trephination angle data from a previous publication by Moshirfar et al were used as a comparison with those of this study. Results Trephination analysis of depth compared with pachymetry revealed a mean of 83.7%±6.53% (95% confidence interval 79.8–87.6). Maximum and minimum trephined depths were 95.35% and 71.3%, respectively. Trephination depth compared with angular corneal thickness yielded a mean of 66.2%±4.79% (95% confidence interval 63.0–69.4). Maximum and minimum depths were 73.7% and 59.7%, respectively. Analysis of trephination angle yielded a mean of 130.2±3.57 degrees (95% confidence interval 127.8–132.61). Maximum and minimum angles were 135.5 degrees and 126 degrees, respectively. The standard deviation of the trephination angle of the Moria trephine was found to be significantly less than that of Hessburg-Barron and Hanna trephines calculated in the previous study. Conclusion The Moria adjustable vacuum trephine is an accurate method of trephination when a specific depth is desired. Further investigation is needed to determine the relevance of this in relation to deep anterior lamellar keratoplasty. PMID:25473266

  18. Accuracy of corneal trephination depth using the Moria single-use adjustable depth vacuum trephine system.

    PubMed

    Fenzl, Carlton R; Gess, Adam J; Moshirfar, Majid

    2014-01-01

    The Moria single-use adjustable depth trephine is a device that allows a goal trephination depth to be set prior to the surgical procedure. Eleven fresh human cadaveric eyes were trephined using 8.0 mm Moria single-use adjustable vacuum trephines. Prior to trephination, the average corneal pachymetry in the peripheral 7-10 mm range was obtained using anterior segment optical coherence tomography. The trephination depth was set to 80% of that value. Light microscopy was used to image anteroposterior cross-sections of each corneal specimen. Digital protractor software was used to evaluate the trephination angle, depth, and length. All adequately processed specimens were included in the analysis. In addition, trephination angle data from a previous publication by Moshirfar et al were used as a comparison with those of this study. Trephination analysis of depth compared with pachymetry revealed a mean of 83.7%±6.53% (95% confidence interval 79.8-87.6). Maximum and minimum trephined depths were 95.35% and 71.3%, respectively. Trephination depth compared with angular corneal thickness yielded a mean of 66.2%±4.79% (95% confidence interval 63.0-69.4). Maximum and minimum depths were 73.7% and 59.7%, respectively. Analysis of trephination angle yielded a mean of 130.2±3.57 degrees (95% confidence interval 127.8-132.61). Maximum and minimum angles were 135.5 degrees and 126 degrees, respectively. The standard deviation of the trephination angle of the Moria trephine was found to be significantly less than that of Hessburg-Barron and Hanna trephines calculated in the previous study. The Moria adjustable vacuum trephine is an accurate method of trephination when a specific depth is desired. Further investigation is needed to determine the relevance of this in relation to deep anterior lamellar keratoplasty.

  19. DNA Brick Crystals with Prescribed Depth

    PubMed Central

    Ke, Yonggang; Ong, Luvena L.; Sun, Wei; Song, Jie; Dong, Mingdong; Shih, William M.; Yin, Peng

    2014-01-01

    We describe a general framework for constructing two-dimensional crystals with prescribed depth and sophisticated three-dimensional features. These crystals may serve as scaffolds for the precise spatial arrangements of functional materials for diverse applications. The crystals are self-assembled from single-stranded DNA components called DNA bricks. We demonstrate the experimental construction of DNA brick crystals that can grow to micron-size in the lateral dimensions with precisely controlled depth up to 80 nanometers. They can be designed to display user-specified sophisticated three-dimensional nanoscale features, such as continuous or discontinuous cavities and channels, and to pack DNA helices at parallel and perpendicular angles relative to the plane of the crystals. PMID:25343605

  20. Locator continuously records pipeline depth readings

    SciTech Connect

    Fedde, P.A.; Patterson, C.

    1988-08-29

    Texas Gas Transmission Corp., Owensboro, Ky., has helped develop and test a pipeline-depth locator which is accurate to +-1.5 in. for lines buried as deep as 6 ft. It also continuously records pipeline depth. Development of the instrument came in response to regulations issued by the U.S. Department of Transportation (DOT), Office of Pipeline Safety (OPS), which require pipeline companies to maintain adequate cover over their buried lines and equipment. The result is that frequent surveys must determine if construction, terracing, or land-leveling activity has removed cover from the pipelines. With the instrument, a three-man crew can survey approximately 6 miles of pipeline/10-hr. working day.

  1. Coding depth perception from image defocus.

    PubMed

    Supèr, Hans; Romeo, August

    2014-12-01

    As a result of the spider experiments in Nagata et al. (2012), it was hypothesized that the depth perception mechanisms of these animals should be based on how much images are defocused. In the present paper, assuming that relative chromatic aberrations or blur radii values are known, we develop a formulation relating the values of these cues to the actual depth distance. Taking into account the form of the resulting signals, we propose the use of latency coding from a spiking neuron obeying Izhikevich's 'simple model'. If spider jumps can be viewed as approximately parabolic, some estimates allow for a sensory-motor relation between the time to the first spike and the magnitude of the initial velocity of the jump.

  2. Static Gas-Charging Plug

    NASA Technical Reports Server (NTRS)

    Indoe, William

    2012-01-01

    A gas-charging plug can be easily analyzed for random vibration. The design features two steeped O-rings in a radial configuration at two different diameters, with a 0.050-in. (.1.3-mm) diameter through-hole between the two O-rings. In the charging state, the top O-ring is engaged and sealing. The bottom O-ring outer diameter is not squeezed, and allows air to flow by it into the tank. The inner diameter is stretched to plug the gland diameter, and is restrained by the O-ring groove. The charging port bushing provides mechanical stop to restrain the plug during gas charge removal. It also prevents the plug from becoming a projectile when removing gas charge from the accumulator. The plug can easily be verified after installation to ensure leakage requirements are met.

  3. EBIS charge breeder for CARIBU

    NASA Astrophysics Data System (ADS)

    Kondrashev, S.; Barcikowski, A.; Dickerson, C.; Fischer, R.; Ostroumov, P. N.; Vondrasek, R.; Pikin, A.

    2014-02-01

    A high-efficiency charge breeder based on an Electron Beam Ion Source (EBIS) is being developed by the ANL Physics Division to increase the intensity and improve the purity of accelerated radioactive ion beams. A wide variety of low-energy neutron-rich ion beams are produced by the Californium Rare Isotope Breeder Upgrade (CARIBU) for the Argonne Tandem Linac Accelerator System (ATLAS). These beams will be charge-bred by an EBIS charge breeder to a charge-to-mass ratio (q/A) ≥ 1/7 and accelerated by ATLAS to energies of about 10 MeV/u. The assembly of the CARIBU EBIS charge breeder except the injection/extraction beam lines has been completed. This summer we started electron beam commissioning of the EBIS. The first results on electron beam extraction, transport from the electron gun to a high power electron collector are presented and discussed.

  4. State-of-charge coulometer

    NASA Technical Reports Server (NTRS)

    Rowlette, J. J. (Inventor)

    1985-01-01

    A coulometer for accurately measuring the state-of-charge of an open-cell battery utilizing an aqueous electrolyte, includes a current meter for measuring the battery/discharge current and a flow meter for measuring the rate at which the battery produces gas during charge and discharge. Coupled to the flow meter is gas analyzer which measures the oxygen fraction of the battery gas. The outputs of the current meter, flow meter, and gas analyzer are coupled to a programmed microcomputer which includes a CPU and program and data memories. The microcomputer calculates that fraction of charge and discharge current consumed in the generation of gas so that the actual state-of-charge can be determined. The state-of-charge is then shown on a visual display.

  5. Electrostatic charging of jumping droplets

    NASA Astrophysics Data System (ADS)

    Miljkovic, Nenad; Preston, Daniel J.; Enright, Ryan; Wang, Evelyn N.

    2013-09-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  6. Electrostatic charging of jumping droplets.

    PubMed

    Miljkovic, Nenad; Preston, Daniel J; Enright, Ryan; Wang, Evelyn N

    2013-01-01

    With the broad interest in and development of superhydrophobic surfaces for self-cleaning, condensation heat transfer enhancement and anti-icing applications, more detailed insights on droplet interactions on these surfaces have emerged. Specifically, when two droplets coalesce, they can spontaneously jump away from a superhydrophobic surface due to the release of excess surface energy. Here we show that jumping droplets gain a net positive charge that causes them to repel each other mid-flight. We used electric fields to quantify the charge on the droplets and identified the mechanism for the charge accumulation, which is associated with the formation of the electric double layer at the droplet-surface interface. The observation of droplet charge accumulation provides insight into jumping droplet physics as well as processes involving charged liquid droplets. Furthermore, this work is a starting point for more advanced approaches for enhancing jumping droplet surface performance by using external electric fields to control droplet jumping.

  7. Charge Master: Friend or Foe?

    PubMed

    Wan, Wenshuai; Itri, Jason

    2016-01-01

    Prices charged for imaging services can be found in the charge master, a catalog of retail list prices for medical goods and services. This article reviews the evolution of reimbursement in the United States and provides a balanced discussion of the factors that influence charge master prices. Reduced payments to hospitals have pressured hospitals to generate additional revenue by increasing charge master prices. An unfortunate consequence is that those least able to pay for health care, the uninsured, are subjected to the highest charges. Yet, differences in pricing also represent an opportunity for radiology practices, which provide imaging services that are larger in scope or superior in quality to promote product differentiation. Physicians, hospital executives, and policy makers need to work together to improve the existing reimbursement system to promote high-quality, low-cost imaging. Copyright © 2016 Mosby, Inc. All rights reserved.

  8. Latitude and depth variation of solar rotation

    NASA Technical Reports Server (NTRS)

    Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1986-01-01

    New measurements of frequencies of various modes of acoustic waves trapped within the sun are reported for degrees up to 98 which allow the convective envelope to be isolated. For degrees between 20 anad 98, no evidence is found that internal rotation differs significantly with depth or latitude from the rotation of surface magnetic field patterns. Modes covering a wide latitude range have systematically lower frequencies than those confined near the equator, indicating the existence of a structural asymmetry within the sun.

  9. The Primacy of Depth in Visual Perception.

    DTIC Science & Technology

    1981-11-01

    DOCUMENTATION PAGE READ CSORTIGORs T. REPOR NUMBER 2. GOVT ACCESSION NO. S . RECIPIENT’S CATALOG NUMBER NO014-. l-C-O 4. TITLE (nd Subtitle) S . TYPE OF...REPORT A PERIOD COVERED Technical Report The. Primacy of Depth in Visual Percention ~ S . PERFORMING ORG. REPORT NUMBER 7. AUTHOR( s ) S . CONTRACT OR GRANT...NUMBER( s ) Robert Fox N00014-81-C-0001 S . PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Vanderbilt

  10. Partial-depth lock-release flows

    NASA Astrophysics Data System (ADS)

    Khodkar, M. A.; Nasr-Azadani, M. M.; Meiburg, E.

    2017-06-01

    We extend the vorticity-based modeling concept for stratified flows introduced by Borden and Meiburg [Z. Borden and E. Meiburg, J. Fluid Mech. 726, R1 (2013), 10.1017/jfm.2013.239] to unsteady flow fields that cannot be rendered quasisteady by a change of reference frames. Towards this end, we formulate a differential control volume balance for the conservation of mass and vorticity in the fully unsteady parts of the flow, which we refer to as the differential vorticity model. We furthermore show that with the additional assumptions of locally uniform parallel flow within each layer, the unsteady vorticity modeling approach reproduces the familiar two-layer shallow-water equations. To evaluate its accuracy, we then apply the vorticity model approach to partial-depth lock-release flows. Consistent with the shallow water analysis of Rottman and Simpson [J. W. Rottman and J. E. Simpson, J. Fluid Mech. 135, 95 (1983), 10.1017/S0022112083002979], the vorticity model demonstrates the formation of a quasisteady gravity current front, a fully unsteady expansion wave, and a propagating bore that is present only if the lock depth exceeds half the channel height. When this bore forms, it travels with a velocity that does not depend on the lock height and the interface behind it is always at half the channel depth. We demonstrate that such a bore is energy conserving. The differential vorticity model gives predictions for the height and velocity of the gravity current and the bore, as well as for the propagation velocities of the edges of the expansion fan, as a function of the lock height. All of these predictions are seen to be in good agreement with the direct numerical simulation data and, where available, with experimental results. An energy analysis shows lock-release flows to be energy conserving only for the case of a full lock, whereas they are always dissipative for partial-depth locks.

  11. Operational Based Vision Assessment Research: Depth Perception

    DTIC Science & Technology

    2014-11-01

    1920) reported two cases of crashes during landing due to binocular disorders of the pilot. In the first event, the pilot suffered from paralysis of...of fatigue and sleep deprivation on performance. The USAF in particular has specific policies addressing, for example, microtropia, that may become...chronic sleep deprivation on depth perception. Sleep deprivation is known to result in an increase in pupillary response latency and a decrease in

  12. Depth of anesthesia estimation and control.

    PubMed

    Huang, J W; Lu, Y Y; Nayak, A; Roy, R J

    1999-01-01

    A fully automated system was developed for the depth of anesthesia estimation and control with the intravenous anesthetic, Propofol. The system determines the anesthesia depth by assessing the characteristics of the mid-latency auditory evoked potentials (MLAEP). The discrete time wavelet transformation was used for compacting the MLAEP which localizes the time and the frequency of the waveform. Feature reduction utilizing step discriminant analysis selected those wavelet coefficients which best distinguish the waveforms of those responders from the nonresponders. A total of four features chosen by such analysis coupled with the Propofol effect-site concentration were used to train a four-layer artificial neural network for classifying between the responders and the nonresponders. The Propofol is delivered by a mechanical syringe infusion pump controlled by Stanpump which also estimates the Propofol effect-site and plasma concentrations using a three-compartment pharmacokinetic model with the Tackley parameter set. In the animal experiments on dogs, the system achieved a 89.2% accuracy rate for classifying anesthesia depth. This result was further improved when running in real-time with a confidence level estimator which evaluates the reliability of each neural network output. The anesthesia level is adjusted by scheduled incrementation and a fuzzy-logic based controller which assesses the mean arterial pressure and/or the heart rate for decrementation as necessary. Various safety mechanisms are implemented to safeguard the patient from erratic controller actions caused by external disturbances. This system completed with a friendly interface has shown satisfactory performance in estimating and controlling the depth of anesthesia.

  13. Borescope With Large Depth Of Focus

    NASA Technical Reports Server (NTRS)

    Guirguis, Kamal S.

    1990-01-01

    Modification of commercial borescope yields clear, glare-free images of defects on inside of tube. Used to examine diverging wall of tube. Wall illuminated by light from fiber distinct from fused-fiber cable used for viewing. Viewing cable holds right-angle mirror at tip so it can look sideways. Image appears, magnified, on monitor. Instrument offers large depth of focus and therefore used in tubes of varying inside diameter.

  14. Mobile Variable Depth Sampling System Design Study

    SciTech Connect

    BOGER, R.M.

    2000-08-25

    A design study is presented for a mobile, variable depth sampling system (MVDSS) that will support the treatment and immobilization of Hanford LAW and HLW. The sampler can be deployed in a 4-inch tank riser and has a design that is based on requirements identified in the Level 2 Specification (latest revision). The waste feed sequence for the MVDSS is based on Phase 1, Case 3S6 waste feed sequence. Technical information is also presented that supports the design study.

  15. Device for determining frost depth and density

    NASA Astrophysics Data System (ADS)

    Huneidi, F.

    1983-08-01

    A hand held device having a forward open window portion adapted to be pushed downwardly into the frost on a surface, and a rear container portion adapted to receive the frost removed from the window area are described. A graph on a side of the container enables an observer to determine the density of the frost from certain measurements noted. The depth of the frost is noted from calibrated lines on the sides of the open window portion.

  16. Portable refrigerant charge meter and method for determining the actual refrigerant charge in HVAC systems

    DOEpatents

    Gao, Zhiming; Abdelaziz, Omar; LaClair, Tim L.

    2017-08-08

    A refrigerant charge meter and a method for determining the actual refrigerant charge in HVAC systems are described. The meter includes means for determining an optimum refrigerant charge from system subcooling and system component parameters. The meter also includes means for determining the ratio of the actual refrigerant charge to the optimum refrigerant charge. Finally, the meter includes means for determining the actual refrigerant charge from the optimum refrigerant charge and the ratio of the actual refrigerant charge to the optimum refrigerant charge.

  17. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  18. Use of LIDAR for Measuring Snowpack Depth

    NASA Astrophysics Data System (ADS)

    Miller, S. L.; Elder, K.; Cline, D.; Davis, R. E.; Ochs, E.

    2003-12-01

    Airborne LIDAR measurements were made near the date of peak snow accumulation in Colorado as part of the NASA Cold Land Processes Experiment (CLPX). LIDAR (LIght Detection And Ranging) overflights were repeated in the late summer following the experiment to obtain a baseline on the terrain in the areas where wintertime LIDAR data were collected. These areas were also measured for many snowpack parameters, including snow depth, by field crews near the winter overflight date. The surfaces generated by differencing the two LIDAR images produced a high-resolution spatial map of snow depth. The results were compared to point measurements of snow depth collected by the field teams. Results were also compared to modeled continuous distributions of snow cover to obtain differences in volume of snow predicted over the study sites. Absolute accuracy of the LIDAR data was evaluated using portions of the LIDAR imagery that was snow free during both overflights. The CLPX field campaign made on-site measurements at nine 1-km square study sites. Site characteristics varied greatly from subalpine to alpine, from thick forest to grassland, and from complex to flat terrain. The observed snowpacks varied between the deepest found in Colorado to shallow, discontinuous snow cover.

  19. Diurnal variations in optical depth at Mars

    NASA Technical Reports Server (NTRS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-01-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  20. Diurnal variations in optical depth at Mars

    NASA Astrophysics Data System (ADS)

    Colburn, D. S.; Pollack, J. B.; Haberle, R. M.

    1989-05-01

    Viking lander camera images of the Sun were used to compute atmospheric optical depth at two sites over a period of 1 to 1/3 martian years. The complete set of 1044 optical depth determinations is presented in graphical and tabular form. Error estimates are presented in detail. Otpical depths in the morning (AM) are generally larger than in the afternoon (PM). The AM-PM differences are ascribed to condensation of water vapor into atmospheric ice aerosols at night and their evaporation in midday. A smoothed time series of these differences shows several seasonal peaks. These are simulated using a one-dimensional radiative convective model which predicts martial atmospheric temperature profiles. A calculation combinig these profiles with water vapor measurements from the Mars Atmospheric Water Detector is used to predict when the diurnal variations of water condensation should occur. The model reproduces a majority of the observed peaks and shows the factors influencing the process. Diurnal variation of condensation is shown to peak when the latitude and season combine to warm the atmosphere to the optimum temperature, cool enough to condense vapor at night and warm enough to cause evaporation at midday.

  1. Extreme DMSP Auroral Charging: Implications for Auroral Charging Benchmarks

    NASA Astrophysics Data System (ADS)

    Parker, L. N.; Minow, J. I.

    2016-12-01

    One of the more important impacts of severe space weather events on spacecraft systems is surface charging that can result in operational impacts to space missions or even lead to catastrophic failure of critical spacecraft systems. Defining the extreme charging environments within the Earth's magnetosphere is therefore an important task because it not only identifies potential threats to currently operational spacecraft, but it also informs engineering design work on future space systems to assure they will be better able to withstand the most challenging charging environments encountered during extreme space weather events. This presentation will focus on the surface charging measurements available from low Earth orbit, high inclination satellites that can be used to provide insight into auroral charging conditions during extreme space weather events. We will first provide examples of extreme surface charging events identified in records from the SSJ/4 and SSJ/5 precipitating ion and electron sensors on the Defense Meteorological Satellite Program (DMSP) spacecraft. These instruments have been used for many years to characterize the auroral charging threat to spacecraft low Earth orbit at high latitudes. Next, we will discuss which specific space plasma environment parameters are of importance to specifying surface charging and how well these parameters can be characterized using the SSJ records. Finally, we will show examples of extreme charging and the corresponding environments and discuss the implications of the DMSP records for our ability to fully define the "worst case" extreme space weather events required to meet the National Space Weather Action Plan goals of characterizing extreme space weather event benchmarks.

  2. Capacitive charging system for high power battery charging

    SciTech Connect

    1998-12-31

    This document describes a project to design, build, demonstrate, and document a Level 3 capacitive charging system, and it will be based on the existing PEZIC prototype capacitive coupler. The capacitive coupler will be designed to transfer power at a maximum of 600 kW, and it will transfer power by electric fields. The power electronics will transfer power at 100 kW. The coupler will be designed to function with future increases in the power electronics output power and increases in the amp/hours capacity of sealed batteries. Battery charging algorithms will be programmed into the control electronics. The finished product will be a programmable battery charging system capable of transferring 100 kW via a capacitive coupler. The coupler will have a low power loss of less than 25 watts when transferring 240 kW (400 amps). This system will increase the energy efficiency of high power battery charging, and it will enhance mobility by reducing coupler failures. The system will be completely documented. An important deliverable of this project is information. The information will be distributed to the Army`s TACOM-TARDEC`s Advanced Concept Group, and it will be distributed to commercial organizations by the Society of Automotive Engineers. The information will be valuable for product research, development, and specification. The capacitive charging system produced in this project will be of commercial value for future electric vehicles. The coupler will be designed to rapid charge batteries that have a capacity of several thousand amp/hours at hundreds of volts. The charging system built here will rapid charge batteries with several hundred amp/hours capacity, depending on the charging voltage.

  3. Aircraft battery state of charge and charge control system

    NASA Astrophysics Data System (ADS)

    Viswanathan, S.; Charkey, A.

    1986-02-01

    This Interim Report describes work done in developing an aircraft battery state of charge and charge control system. The basis for this system developed by ERC is a nickel-oxygen (NiO2) Pilot cell (0.374 Ah). This pilot cell is cycled in tandem with a nickel-cadmium battery. The oxygen pressure of the pilot cell is utilized to determine and control the state of charge of the nickel-cadmium battery. The NiO2 pilot cell baseline performance was determined during this period. The effect of using different nickel electrodes (ERC, SAFT, MARATHON) was also performed.

  4. Multi-depth fractionated aesthetic ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Slayton, Michael H.; Lyke, Stephanie; Barthe, Peter G.

    2017-03-01

    Objective: Aesthetic ultrasound surgery provides the ability to treat at precise, clinically relevant depths with varied lesion size. This represents a major advantage compared to cosmetic laser and RF based energy sources. We present results of pre-clinical and clinical research aimed at establishing the feasibility of three-dimensional fractional deposition of focused ultrasound energy in the first 3mm of skin. Conformal thermal lesions were created in ex-vivo porcine muscle and live human skin in a variety of depths and geometries. Gross pathology demonstrating a three-dimensional pattern of non-intersecting lesions was micro- photographed and characterized in porcine tissue, and followed up to thirty days post treatment in human tissue. Methods: Image/treat transducers from 7.5 to 10 MHz, focal depths of 1 to 3 mm, and energies of 160 to 300 mJ were used to lay down a three-dimensional pattern of non-intersecting thermal lesions in freshly excised porcine muscle tissue. Human skin was treated in vivo at 120 to 360 mJ per lesion. Results were photographed immediately post-treatment and followed up to 30 days. Results: Porcine tissue lesion geometry was measured. Average lesion dimensions approximated by a sphere ranged from 360 micron (±19%) to 520 micron (±23%) varying with the energy settings. Measured depth and distance between the thermal lesions were within ±13% of the focal depth and lesion spacing. In human skin all lesions for all energy settings were completely resolved during the follow-up period. At lower energy settings of 120 mJ and 160 mJ lesions were completely resolved by day 2. Mild erythema and localized swelling were the only transient side effects and resolved within 48 hours or less. Conclusions: In conclusion, skin may be successfully treated in a three-dimensional fractionated manner with predictable and precise deposition of thermal damage. In vivo results demonstrate tolerability and fast resolution with minimal side effects.

  5. Mapping snow depth from stereo satellite imagery

    NASA Astrophysics Data System (ADS)

    Gascoin, S.; Marti, R.; Berthier, E.; Houet, T.; de Pinel, M.; Laffly, D.

    2016-12-01

    To date, there is no definitive approach to map snow depth in mountainous areas from spaceborne sensors. Here, we examine the potential of very-high-resolution (VHR) optical stereo satellites to this purpose. Two triplets of 0.70 m resolution images were acquired by the Pléiades satellite over an open alpine catchment (14.5 km²) under snow-free and snow-covered conditions. The open-source software Ame's Stereo Pipeline (ASP) was used to match the stereo pairs without ground control points to generate raw photogrammetric clouds and to convert them into high-resolution digital elevation models (DEMs) at 1, 2, and 4 m resolutions. The DEM differences (dDEMs) were computed after 3-D coregistration, including a correction of a -0.48 m vertical bias. The bias-corrected dDEM maps were compared to 451 snow-probe measurements. The results show a decimetric accuracy and precision in the Pléiades-derived snow depths. The median of the residuals is -0.16 m, with a standard deviation (SD) of 0.58 m at a pixel size of 2 m. We compared the 2 m Pléiades dDEM to a 2 m dDEM that was based on a winged unmanned aircraft vehicle (UAV) photogrammetric survey that was performed on the same winter date over a portion of the catchment (3.1 km²). The UAV-derived snow depth map exhibits the same patterns as the Pléiades-derived snow map, with a median of -0.11 m and a SD of 0.62 m when compared to the snow-probe measurements. The Pléiades images benefit from a very broad radiometric range (12 bits), allowing a high correlation success rate over the snow-covered areas. This study demonstrates the value of VHR stereo satellite imagery to map snow depth in remote mountainous areas even when no field data are available. Based on this method we have initiated a multi-year survey of the peak snow depth in the Bassiès catchment.

  6. Passive depth estimation using chromatic aberration and a depth from defocus approach.

    PubMed

    Trouvé, Pauline; Champagnat, Frédéric; Le Besnerais, Guy; Sabater, Jacques; Avignon, Thierry; Idier, Jérôme

    2013-10-10

    In this paper, we propose a new method for passive depth estimation based on the combination of a camera with longitudinal chromatic aberration and an original depth from defocus (DFD) algorithm. Indeed a chromatic lens, combined with an RGB sensor, produces three images with spectrally variable in-focus planes, which eases the task of depth extraction with DFD. We first propose an original DFD algorithm dedicated to color images having spectrally varying defocus blurs. Then we describe the design of a prototype chromatic camera so as to evaluate experimentally the effectiveness of the proposed approach for depth estimation. We provide comparisons with results of an active ranging sensor and real indoor/outdoor scene reconstructions.

  7. Charge heterogeneity: Basic antibody charge variants with increased binding to Fc receptors

    PubMed Central

    Hintersteiner, Beate; Lingg, Nico; Zhang, Peiqing; Woen, Susanto; Hoi, Kong Meng; Stranner, Stefan; Wiederkum, Susanne; Mutschlechner, Oliver; Schuster, Manfred; Loibner, Hans; Jungbauer, Alois

    2016-01-01

    ABSTRACT We identified active isoforms of the chimeric anti-GD2 antibody, ch14.18, a recombinant antibody produced in Chinese hamster ovary cells, which is already used in clinical trials.1,2,3 We separated the antibody by high resolution ion-exchange chromatography with linear pH gradient elution into acidic, main and basic charge variants on a preparative scale yielding enough material for an in-depth study of the sources and the effects of microheterogeneity. The binding affinity of the charge variants toward the antigen and various cell surface receptors was studied by Biacore. Effector functions were evaluated using cellular assays for antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity. Basic charge variants showed increased binding to cell surface receptor FcγRIIIa, which plays a major role in regulating effector functions. Furthermore, increased binding of the basic fractions to the neonatal receptor was observed. As this receptor mediates the prolonged half-life of IgG in human serum, this data may well hint at an increased serum half-life of these basic variants compared to their more acidic counterparts. Different glycoform patterns, C-terminal lysine clipping and N-terminal pyroglutamate formation were identified as the main structural sources for the observed isoform pattern. Potential differences in structural stability between individual charge variant fractions by nano differential scanning calorimetry could not been detected. Our in-vitro data suggests that the connection between microheterogeneity and the biological activity of recombinant antibody therapeutics deserves more attention than commonly accepted. PMID:27559765

  8. The equivalent depth of burst for impact cratering

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.

    1980-01-01

    The concept of modeling an impact cratering event with an explosive event with the explosive buried at some equivalent depth of burst (d.o.b.) is discussed. Various and different ways to define this equivalent d.o.b. are identified. Recent experimental results for a dense quartz sand are used to determine the equivalent d.o.b. for various conditions of charge type, event size, and impact conditions. The results show a decrease in equivalent d.o.b. with increasing energy for fixed impact velocity and a decrease in equivalent d.o.b. with increasing velocity for fixed energy. The values for an iron projectile are on the order of 2-3 projectile radii for energy equal to one ton of TNT, decreasing to about 1.5 radii at a megaton of TNT. The dependence on projectile and target mass density matches that included in common jet-penetration formulas for projectile densities greater than target densities and for the higher energies.

  9. The equivalent depth of burst for impact cratering

    NASA Technical Reports Server (NTRS)

    Holsapple, K. A.

    1980-01-01

    The concept of modeling an impact cratering event with an explosive event with the explosive buried at some equivalent depth of burst (d.o.b.) is discussed. Various and different ways to define this equivalent d.o.b. are identified. Recent experimental results for a dense quartz sand are used to determine the equivalent d.o.b. for various conditions of charge type, event size, and impact conditions. The results show a decrease in equivalent d.o.b. with increasing energy for fixed impact velocity and a decrease in equivalent d.o.b. with increasing velocity for fixed energy. The values for an iron projectile are on the order of 2-3 projectile radii for energy equal to one ton of TNT, decreasing to about 1.5 radii at a megaton of TNT. The dependence on projectile and target mass density matches that included in common jet-penetration formulas for projectile densities greater than target densities and for the higher energies.

  10. Charge-state dependence of energy loss of MeV dimers in GaAs(100)

    SciTech Connect

    Sundaravel, B.; David, Christopher; Balamurugan, A. K.; Rajagopalan, S.; Tyagi, A. K.; Panigrahi, B. K.; Nair, K. G. M.; Viswanathan, B.

    2006-04-15

    Carbon and oxygen dimers with charge states 1+ and 3+ were implanted into GaAs along the [100] direction at an energy of 0.5 MeV/atom. The defect depth profiles are extracted from Rutherford backscattering spectrometry and channeling. The depth profile of carbon is extracted from secondary ion mass spectrometry measurements. The defect density produced by dimer ions is larger than monomer ions. The depth profile of carbon in dimer implanted GaAs is deeper than that of monomer implanted GaAs showing negative molecular effect. The defect depth profile of oxygen dimer implanted GaAs is deeper for 3+ than that for 1+ charge state. This indicates that energy loss of O{sub 2}{sup 3+} is smaller than that of O{sub 2}{sup +}. It is attributed to charge asymmetry and a higher degree of alignment of O{sub 2}{sup 3+} along the [100] axis of GaAs.

  11. Foreground Segmentation in Depth Imagery Using Depth and Spatial Dynamic Models for Video Surveillance Applications

    PubMed Central

    del-Blanco, Carlos R.; Mantecón, Tomás; Camplani, Massimo; Jaureguizar, Fernando; Salgado, Luis; García, Narciso

    2014-01-01

    Low-cost systems that can obtain a high-quality foreground segmentation almost independently of the existing illumination conditions for indoor environments are very desirable, especially for security and surveillance applications. In this paper, a novel foreground segmentation algorithm that uses only a Kinect depth sensor is proposed to satisfy the aforementioned system characteristics. This is achieved by combining a mixture of Gaussians-based background subtraction algorithm with a new Bayesian network that robustly predicts the foreground/background regions between consecutive time steps. The Bayesian network explicitly exploits the intrinsic characteristics of the depth data by means of two dynamic models that estimate the spatial and depth evolution of the foreground/background regions. The most remarkable contribution is the depth-based dynamic model that predicts the changes in the foreground depth distribution between consecutive time steps. This is a key difference with regard to visible imagery, where the color/gray distribution of the foreground is typically assumed to be constant. Experiments carried out on two different depth-based databases demonstrate that the proposed combination of algorithms is able to obtain a more accurate segmentation of the foreground/background than other state-of-the art approaches. PMID:24469352

  12. Strong percepts of motion through depth without strong percepts of position in depth.

    PubMed

    Rokers, Bas; Cormack, Lawrence K; Huk, Alexander C

    2008-04-15

    Encoding the motion of objects through three spatial dimensions is a fundamental challenge for the visual system. Two binocular cues could contribute to the perception of motion through depth: changes in horizontal disparity (CD) and interocular velocity differences (IOVD). Although conceptually distinct, both cues are typically present when real objects move. Direct experimental isolation of the putative IOVD cue has remained elusive, and it is therefore unclear to what extent the visual system relies on it. We have found that binocularly anticorrelated stimuli impair position in depth judgments, but motion through depth judgments for the same stimuli are relatively unaffected. This dissociation of direction of motion from position in depth provides strong evidence that percepts of motion through depth are not based exclusively on estimating changes in disparity. Horizontal IOVDs appear to complement the CD cue. Vertical IOVDs fail to yield comparable performance, further implicating a comparison of horizontal interocular velocity and also ruling out explanations of our results based on monocular cues. These results suggest that (1) IOVDs are a robust cue to motion through depth; (2) IOVDs and retinal disparities exhibit similar horizontal/vertical anisotropies, consistent with the geometry of binocular viewing; and (3) binocular anticorrelation provides means to titrate the relative contributions of CD and IOVD cues.

  13. When Charged Black Holes Merge

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-08-01

    Most theoretical models assume that black holes arent charged. But a new study shows that mergers of charged black holes could explain a variety of astrophysical phenomena, from fast radio bursts to gamma-ray bursts.No HairThe black hole no hair theorem states that all black holes can be described by just three things: their mass, their spin, and their charge. Masses and spins have been observed and measured, but weve never measured the charge of a black hole and its widely believed that real black holes dont actually have any charge.That said, weve also never shown that black holes dont have charge, or set any upper limits on the charge that they might have. So lets suppose, for a moment, that its possible for a black hole to be charged. How might that affect what we know about the merger of two black holes? A recent theoretical study by Bing Zhang (University of Nevada, Las Vegas) examines this question.Intensity profile of a fast radio burst, a sudden burst of radio emission that lasts only a few milliseconds. [Swinburne Astronomy Productions]Driving TransientsZhangs work envisions a pair of black holes in a binary system. He argues that if just one of the black holes carries charge possibly retained by a rotating magnetosphere then it may be possible for the system to produce an electromagnetic signal that could accompany gravitational waves, such as a fast radio burst or a gamma-ray burst!In Zhangs model, the inspiral of the two black holes generates a global magnetic dipole thats perpendicular to the plane of the binarys orbit. The magnetic flux increases rapidly as the separation between the black holes decreases, generating an increasingly powerful magnetic wind. This wind, in turn, can give rise to a fast radio burst or a gamma-ray burst, depending on the value of the black holes charge.Artists illustration of a short gamma-ray burst, thought to be caused by the merger of two compact objects. [ESO/A. Roquette]Zhang calculates lower limits on the charge

  14. Ionospheric Drivers of ISS Charging

    NASA Astrophysics Data System (ADS)

    Minow, J. I.; Willis, E. M.

    2015-12-01

    Severe spacecraft surface charging in terrestrial environments typically results from exposure to energetic electrons at some 10's of keV within auroral environments at high latitudes in low Earth orbit or hot thermal plasma in geostationary orbit. Predicting surface charging of a vehicle in these environments depends on our ability to specify and forecast auroral acceleration events and geomagnetic storms. Measurements of ISS frame charging to date, in contrast, are dominated by US 160V solar array interactions with the ionospheric plasma environment with little evidence for strong charging during geomagnetic storms. Predicting ISS charging, therefore, requires an ability to specify and forecast components of ionospheric variability of importance to high voltage solar array interactions with the plasma environment. This presentation provides examples of the ionospheric conditions responsible for typical and extreme ISS charging and discusses current capabilities to forecast these events. Specific examples are given for ISS frame charging observed when the vehicle passes through low latitude dawn density depletions, high latitude plasma troughs, and plasma depletions associated with equatorial spread-f conditions.

  15. Charge-pump voltage converter

    DOEpatents

    Brainard, John P.; Christenson, Todd R.

    2009-11-03

    A charge-pump voltage converter for converting a low voltage provided by a low-voltage source to a higher voltage. Charge is inductively generated on a transfer rotor electrode during its transit past an inductor stator electrode and subsequently transferred by the rotating rotor to a collector stator electrode for storage or use. Repetition of the charge transfer process leads to a build-up of voltage on a charge-receiving device. Connection of multiple charge-pump voltage converters in series can generate higher voltages, and connection of multiple charge-pump voltage converters in parallel can generate higher currents. Microelectromechanical (MEMS) embodiments of this invention provide a small and compact high-voltage (several hundred V) voltage source starting with a few-V initial voltage source. The microscale size of many embodiments of this invention make it ideally suited for MEMS- and other micro-applications where integration of the voltage or charge source in a small package is highly desirable.

  16. Charged-particle emission tomography.

    PubMed

    Ding, Yijun; Caucci, Luca; Barrett, Harrison H

    2017-06-01

    Conventional charged-particle imaging techniques - such as autoradiography - provide only two-dimensional (2D) black ex vivo images of thin tissue slices. In order to get volumetric information, images of multiple thin slices are stacked. This process is time consuming and prone to distortions, as registration of 2D images is required. We propose a direct three-dimensional (3D) autoradiography technique, which we call charged-particle emission tomography (CPET). This 3D imaging technique enables imaging of thick tissue sections, thus increasing laboratory throughput and eliminating distortions due to registration. CPET also has the potential to enable in vivo charged-particle imaging with a window chamber or an endoscope. Our approach to charged-particle emission tomography uses particle-processing detectors (PPDs) to estimate attributes of each detected particle. The attributes we estimate include location, direction of propagation, and/or the energy deposited in the detector. Estimated attributes are then fed into a reconstruction algorithm to reconstruct the 3D distribution of charged-particle-emitting radionuclides. Several setups to realize PPDs are designed. Reconstruction algorithms for CPET are developed. Reconstruction results from simulated data showed that a PPD enables CPET if the PPD measures more attributes than just the position from each detected particle. Experiments showed that a two-foil charged-particle detector is able to measure the position and direction of incident alpha particles. We proposed a new volumetric imaging technique for charged-particle-emitting radionuclides, which we have called charged-particle emission tomography (CPET). We also proposed a new class of charged-particle detectors, which we have called particle-processing detectors (PPDs). When a PPD is used to measure the direction and/or energy attributes along with the position attributes, CPET is feasible. © 2017 The Authors. Medical Physics published by Wiley Periodicals

  17. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  18. Rewritable artificial magnetic charge ice

    SciTech Connect

    Wang, Y. -L.; Xiao, Z. -L.; Snezhko, A.; Xu, J.; Ocola, L. E.; Divan, R.; Pearson, J. E.; Crabtree, G. W.; Kwok, W. -K.

    2016-05-19

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  19. Rewritable artificial magnetic charge ice

    SciTech Connect

    Wang, Yong-Lei; Xiao, Zhi-Li; Snezhko, Alexey; Xu, Jing; Ocola, Leonidas E.; Divan, Ralu; Pearson, John E.; Crabtree, G. W.; Kwok, Wai-Kwong

    2016-05-20

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. Here, we designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  20. Vehicle Charging And Potential (VCAP)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The vehicle charging and potential (VCAP) payload includes a small electron accelerator capable of operating in a pulsed mode with firing pulses ranging from 600 nanoseconds to 107 seconds (100 milliamps at 1000 volts), a spherical retarding potential analyzer - Langmuir probe, and charge current probes. This instrumentation will support studies of beam plasma interactions and the electrical charging of the spacecraft. Active experiments may also be performed to investigate the fundamental processes of artificial aurora and ionospheric perturbations. In addition, by firing the beam up the geomagnetic field lines of force (away from the Earth) investigations of parallel electric field may be performed.

  1. Charge transfer between fullerenes and highly charged noble gas ions

    NASA Astrophysics Data System (ADS)

    Narits, A. A.

    2008-07-01

    A semiclassical model for the description of charge-exchange processes in collisions between fullerenes and multiply charged ions is developed. It is based on the decay model combined with the impact-parameter representation for the heavy particles' relative motion. The charge-transfer process in our model is treated as a transition of the active electron over and under the quasistatic potential barrier formed by the electric fields of the target and projectile. Due to the high electron delocalization on the surface of fullerene we represent it as a perfectly conducting hard sphere, whose radius is determined by the dipole polarizability of C60. The energies of the active electrons are assumed to be equal to the corresponding ionization potentials including the Stark-shift effect. We have developed an efficient technique for the evaluation of the electron transmission coefficient through the asymmetric potential barrier. It is shown that our model provides a good agreement with the available experimental data on single-electron charge-exchange processes. Moreover, it allows us to get an adequate description of multi-electron transfer processes. The first theoretical results on charge exchange between the fullerene ions and highly charged ions have been obtained.

  2. Composite hull for full-ocean depth

    SciTech Connect

    Garvey, R.E.; Hawkes, G.S.

    1990-01-01

    A lightweight and economical modular design concept for a manned submersible is proposed to give two passengers repeated access to the deepest parts of the ocean in a safe, comfortable, and efficient manner. This versatile craft will allow work and exploration to be accomplished at moderate to maximum depths without any compromise in terms of capabilities or operating cost. Its design follows the experience acquired from the numerous existing minimum volume'' pressure hull submersible, and represents a radical departure from conventional designs. This paper addresses issues of gaining effective, safe working access for full ocean depth. Cylindrical composite hulls have the potential to achieve positive buoyancy sufficient to carry personnel and equipment swiftly back to the surface after completing exploration of the deepest ocean. Buoyancy for a submersible is similar to lift for an airplane, except that without lift, the airplane remains on the surface, but without buoyancy, the submersible never returns to the surface. There are two means of achieving buoyancy. The traditional method used to steel, titanium, or aluminium alloy deep-ocean vehicles is to add a very large buoy to compensate for the negative buoyancy of the hull. The alternate method is for the hull to displace more than its weight in water. This requires at least twice compression strength per unit mass of hull than steel, titanium, or aluminum alloys can provide. Properly constructed organic-matrix composites are light and strong enough to form a dry, 1-atm cabin with buoyancy to carry research staff and equipment to any depth in the ocean. Three different composite hull configurations are presented. Each is capable of serving as a cabin for a two-person crew. None would displace more than 4 tons of seawater. 30 refs., 3 figs., 1 tab.

  3. Extinction and optical depth of contrails

    NASA Astrophysics Data System (ADS)

    Voigt, C.; Schumann, U.; Jessberger, P.; Jurkat, T.; Petzold, A.; Gayet, J.-F.; Krämer, M.; Thornberry, T.; Fahey, D. W.

    2011-06-01

    One factor limiting the understanding of the climate impact from contrails and aircraft induced cloud modifications is the accurate determination of their optical depth. To this end, 14 contrails were sampled for 2756 s with instruments onboard the research aircraft Falcon during the CONCERT (CONtrail and Cirrus ExpeRimenT) campaign in November 2008. The young (<10 min old) contrails were produced by 9 commercial aircraft with weights of 47 to 508 t, among them the largest operating passenger aircraft, the Airbus A380. The contrails were observed at temperatures between 214 and 224 K and altitudes between 8.8 and 11.1 km. The measured mean in-contrail relative humidity with respect to ice was 89 ± 12%. Six contrails were observed in cloud free air, the others were embedded in thin cirrus clouds. The observed contrails exhibited a mean ice water content of 2 mg m-3 and had a mean number concentration of 117 cm-3 and effective radius of 2.9 μm assuming asphericle particles with an aspect ratio of 0.5. Probability density functions of the extinction, with a mean (median) of 1.2 (0.7) km-1, and of the optical depth τ, with a mean (median) of 0.27 (0.13), are derived from the in situ measurements and are likely representative for young contrails from the present-day commercial aircraft fleet at observation conditions. Radiative transfer estimates using the in-situ measured contrail optical depth lead to a year-2005 estimate of line-shaped contrail radiative forcing of 15.9 mWm-2 with an uncertainty range of 11.1-47.7 mWm-2.

  4. Kinect Fusion improvement using depth camera calibration

    NASA Astrophysics Data System (ADS)

    Pagliari, D.; Menna, F.; Roncella, R.; Remondino, F.; Pinto, L.

    2014-06-01

    Scene's 3D modelling, gesture recognition and motion tracking are fields in rapid and continuous development which have caused growing demand on interactivity in video-game and e-entertainment market. Starting from the idea of creating a sensor that allows users to play without having to hold any remote controller, the Microsoft Kinect device was created. The Kinect has always attract researchers in different fields, from robotics to Computer Vision (CV) and biomedical engineering as well as third-party communities that have released several Software Development Kit (SDK) versions for Kinect in order to use it not only as a game device but as measurement system. Microsoft Kinect Fusion control libraries (firstly released in March 2013) allow using the device as a 3D scanning and produce meshed polygonal of a static scene just moving the Kinect around. A drawback of this sensor is the geometric quality of the delivered data and the low repeatability. For this reason the authors carried out some investigation in order to evaluate the accuracy and repeatability of the depth measured delivered by the Kinect. The paper will present a throughout calibration analysis of the Kinect imaging sensor, with the aim of establishing the accuracy and precision of the delivered information: a straightforward calibration of the depth sensor in presented and then the 3D data are correct accordingly. Integrating the depth correction algorithm and correcting the IR camera interior and exterior orientation parameters, the Fusion Libraries are corrected and a new reconstruction software is created to produce more accurate models.

  5. A Factorial Analysis of Depth Perception Tests

    DTIC Science & Technology

    1950-01-01

    tilted, colored targets at 1©- fee-t")j %es~Tresselt size-depth adjustment Ämes- Bakan , interposition Illusion VeaJhoeff Stereopter...to be. sufficiently ’Short and varied to render these factors relatively unimportant,, ?Ih additipri. to the research assistants, ,|fes.srs.;«. Bakan ...and 28 (Ames- Bakan ), these tests were not included in the first test series for subjects tested during July X9/+9 (approximately 100 Ss). But ’l?y

  6. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  7. EPA Region 1 - Valley Depth in Meters

    EPA Pesticide Factsheets

    Raster of the Depth in meters of EPA-delimited Valleys in Region 1.Valleys (areas that are lower than their neighbors) were extracted from a Digital Elevation Model (USGS, 30m) by finding the local average elevation, subtracting the actual elevation from the average, and selecting areas where the actual elevation was below the average. The landscape was sampled at seven scales (circles of 1, 2, 4, 7, 11, 16, and 22 km radius) to take into account the diversity of valley shapes and sizes. Areas selected in at least four scales were designated as valleys.

  8. THEMIS Observations of Atmospheric Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Bandfield, Joshua L.; Christensen, Philip R.; Richardson, Mark I.

    2003-01-01

    The Mars Odyssey spacecraft entered into Martian orbit in October 2001 and after successful aerobraking began mapping in February 2002 (approximately Ls=330 deg.). Images taken by the Thermal Emission Imaging System (THEMIS) on-board the Odyssey spacecraft allow the quantitative retrieval of atmospheric dust and water-ice aerosol optical depth. Atmospheric quantities retrieved from THEMIS build upon existing datasets returned by Mariner 9, Viking, and Mars Global Surveyor (MGS). Data from THEMIS complements the concurrent MGS Thermal Emission Spectrometer (TES) data by offering a later local time (approx. 2:00 for TES vs. approx. 4:00 - 5:30 for THEMIS) and much higher spatial resolution.

  9. Evaporative cooling at low trap depth

    SciTech Connect

    Carvalho, Robert de; Doyle, John

    2004-11-01

    A quantitative, analytic model of evaporative cooling covering both the small- (<4) and large- (>4) {eta} regimes is presented. {eta} is the dimensionless parameter defined as the trap depth divided by the temperature of the trapped sample. Although some of the same general properties present at large {eta} are also present at small {eta}, there are significant quantitative differences. These differences must be taken into account in order to accurately extract from the trapping data quantitative measurements of, for example, collisional atomic cross sections.

  10. The Role of Variable-Charge Minerals in Deep Soil Carbon Storage in a Pacific Northwest Andisol

    NASA Astrophysics Data System (ADS)

    Dietzen, C.; Root, A.; James, J. N.; Holub, S. M.; Harrison, R. B.

    2015-12-01

    Soil is the most important long-term sink for carbon (C) in terrestrial ecosystems, containing more C than plant biomass and the atmosphere combined. However, soil has historically been under-represented in C cycling literature, especially in regards to information about subsurface (>1.0 m) layers and processes. Previous research has indicated that Andisols with large quantities of noncrystalline, variable-charge minerals, including allophane, imogolite, and ferrihydrite, contain more C both in total and at depth than other soil types in the Pacific Northwest. The electrostatic charge of variable-charge soils depends on pH and is sometimes net positive, particularly in acid conditions, such as those commonly developed under the coniferous forests of the Pacific Northwest. However, even soils with a net negative charge may contain a mixture of negative and positive exchange sites and can hold some nutrient anions through the anion exchange capacity. The most abundant organic functional groups, including carboxylic and phenolic groups, are anionic in nature, and soil positive charge may play an important role in binding and stabilizing soil organic matter and sequestering C. To increase our understanding of the role of variable-charge minerals in soil organic matter stabilization in deep soils, samples were taken to a depth of 3 m at the Fall River Long-Term Soil Productivity Site in western Washington. This site has a deep, well-drained soil with few rocks, which developed from weathered basalt and is classified as an Andisol of the Boistfort Series. Analysis of soil charge characteristics over a pH range allowed for the determination of anion exchange capacity and point of zero net charge at 8 depth intervals. These results, along with total carbon analysis and C-14 dating at each depth interval, are used to evaluate the importance of the anion exchange capacity as a mechanism for storing carbon at depth in variable-charge soils.

  11. Electrokinetic concentration of charged molecules

    DOEpatents

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  12. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    2008-06-01

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  13. Electrical Charging of Volcanic Plumes

    NASA Astrophysics Data System (ADS)

    James, M. R.; Wilson, L.; Lane, S. J.; Gilbert, J. S.; Mather, T. A.; Harrison, R. G.; Martin, R. S.

    Many explosive terrestrial volcanic eruptions are accompanied by lightning and other atmospheric electrical phenomena. The plumes produced generate large perturbations in the surface atmospheric electric potential gradient and high charge densities have been measured on falling volcanic ash particles. The complex nature of volcanic plumes (which contain gases, solid particles, and liquid drops) provides several possible charging mechanisms. For plumes rich in solid silicate particles, fractoemission (the ejection of ions and atomic particles during fracture events) is probably the dominant source of charge generation. In other plumes, such as those created when lava enters the sea, different mechanisms, such as boiling, may be important. Further charging mechanisms may also subsequently operate, downwind of the vent. Other solar system bodies also show evidence for volcanism, with activity ongoing on Io. Consequently, volcanic electrification under different planetary scenarios (on Venus, Mars, Io, Moon, Enceladus, Tethys, Dione and Triton) is also discussed.

  14. Electronegativity Equalization and Partial Charge

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1974-01-01

    This article elaborates the relationship between covalent radius, homonuclear bond energy, and electronegativity, and sets the background for bond energy calculation by discussing the nature of heteronuclear covalent bonding on the basis of electronegativity equalization and particle charge. (DT)

  15. Organic Text Authors Charge Plagiarism.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Reports on the recent controversy involving two organic chemistry textbooks. The charge of plagiarism and the court litigations are the object of interest in the chemical community since many prominant scientists are planned as witnesses. (SA)

  16. Electronegativity Equalization and Partial Charge

    ERIC Educational Resources Information Center

    Sanderson, R. T.

    1974-01-01

    This article elaborates the relationship between covalent radius, homonuclear bond energy, and electronegativity, and sets the background for bond energy calculation by discussing the nature of heteronuclear covalent bonding on the basis of electronegativity equalization and particle charge. (DT)

  17. Organic Text Authors Charge Plagiarism.

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1979

    1979-01-01

    Reports on the recent controversy involving two organic chemistry textbooks. The charge of plagiarism and the court litigations are the object of interest in the chemical community since many prominant scientists are planned as witnesses. (SA)

  18. Measurements of W Charge Asymmetry

    SciTech Connect

    Holzbauer, J. L.

    2015-10-06

    We discuss W boson and lepton charge asymmetry measurements from W decays in the electron channel, which were made using 9.7 fb$^{-1}$ of RunII data collected by the D0 detector at the Fermilab Tevatron Collider. The electron charge asymmetry is presented as a function of pseudo-rapidity out to |$\\eta$| $\\le$ 3.2, in five symmetric and asymmetric kinematic bins of electron transverse momentum and the missing transverse energy of the event. We also give the W charge asymmetry as a function of W boson rapidity. The asymmetries are compared with next-to-leading order perturbative quantum chromodynamics calculations. These charge asymmetry measurements will allow more accurate determinations of the proton parton distribution functions and are the most precise to date.

  19. Measuring momentum for charged particle tomography

    DOEpatents

    Morris, Christopher; Fraser, Andrew Mcleod; Schultz, Larry Joe; Borozdin, Konstantin N.; Klimenko, Alexei Vasilievich; Sossong, Michael James; Blanpied, Gary

    2010-11-23

    Methods, apparatus and systems for detecting charged particles and obtaining tomography of a volume by measuring charged particles including measuring the momentum of a charged particle passing through a charged particle detector. Sets of position sensitive detectors measure scattering of the charged particle. The position sensitive detectors having sufficient mass to cause the charged particle passing through the position sensitive detectors to scatter in the position sensitive detectors. A controller can be adapted and arranged to receive scattering measurements of the charged particle from the charged particle detector, determine at least one trajectory of the charged particle from the measured scattering; and determine at least one momentum measurement of the charged particle from the at least one trajectory. The charged particle can be a cosmic ray-produced charged particle, such as a cosmic ray-produced muon. The position sensitive detectors can be drift cells, such as gas-filled drift tubes.

  20. Thermophoresis of charged colloidal particles.

    PubMed

    Fayolle, Sébastien; Bickel, Thomas; Würger, Alois

    2008-04-01

    Thermally induced particle flow in a charged colloidal suspension is studied in a fluid-mechanical approach. The force density acting on the charged boundary layer is derived in detail. From Stokes' equation with no-slip boundary conditions at the particle surface, we obtain the particle drift velocity and the thermophoretic transport coefficients. The results are discussed in view of previous work and available experimental data.

  1. Cracking in charged anisotropic cylinder

    NASA Astrophysics Data System (ADS)

    Sharif, M.; Sadiq, Sobia

    2017-06-01

    In this paper, we study the stability of static charged anisotropic cylindrically symmetric compact object through cracking. The Einstein-Maxwell field equations and conservation equation are formulated. We then apply local density perturbation and study the behavior of force distribution function. Finally, the cracking is explored for two models satisfying specific form of Chaplygin equation of state. It is found that these models exhibit cracking and the instability increases as the value of charge parameter is increased.

  2. Metallic charge stripes in cuprates

    NASA Astrophysics Data System (ADS)

    Tranquada, J. M.

    2004-08-01

    Some recent evidence for the existence of dynamic, metallic stripes in the 214 family of cuprates is reviewed. The mechanism of stripe pinning is considered, and changes in the charge density within stripes between the pinned and dynamic phases is discussed. From a purely experimental perspective, dynamic charge stripes are fully compatible with nodal “quasiparticles” and other electronic properties common to all superconducting cuprates.

  3. Effect of electric charge on the adhesion of human blood platelets.

    PubMed

    Lowkis, B; Szymonowicz, M

    1993-01-01

    The paper presents the results of research into the effect of the size and depth of the implanted electric charge on the adhesion of human blood platelets. The experiments were carried out on polyethylene terephthalate PET foil of 36 microns thickness. The electret formation process was carried out in an electron-beam device. The electrization conditions were such that electrets with the excess electric charge accumulated at various depths were obtained. The selection of conditions was verified by investigating the space charge distribution with the use of the virtual electrode method. The microscopic observation of non-electrified foils and electrets as well as the quantitative examination of the adhesion of human blood platelets has explicitly confirmed the positive influence of the electret effect on the thrombogenesis of PET foil. This made it possible to define the optimum electrization conditions. The research has additionally indicated that the relationship between the amount of adherent blood platelets and the size of the electric charge is not a simple relation of the kind: the larger negative charge, the more thrombogenic material. The decisive and positive effect of the space charge has been confirmed by analysing the effectiveness of the surface and space charge.

  4. Stereoscopic Depth Perception during Binocular Rivalry.

    PubMed

    Andrews, Timothy J; Holmes, David

    2011-01-01

    When we view nearby objects, we generate appreciably different retinal images in each eye. Despite this, the visual system can combine these different images to generate a unified view that is distinct from the perception generated from either eye alone (stereopsis). However, there are occasions when the images in the two eyes are too disparate to fuse. Instead, they alternate in perceptual dominance, with the image from one eye being completely excluded from awareness (binocular rivalry). It has been thought that binocular rivalry is the default outcome when binocular fusion is not possible. However, other studies have reported that stereopsis and binocular rivalry can coexist. The aim of this study was to address whether a monocular stimulus that is reported to be suppressed from awareness can continue to contribute to the perception of stereoscopic depth. Our results showed that stereoscopic depth perception was still evident when incompatible monocular images differing in spatial frequency, orientation, spatial phase, or direction of motion engage in binocular rivalry. These results demonstrate a range of conditions in which binocular rivalry and stereopsis can coexist.

  5. Contour completion through depth interferes with stereoacuity

    NASA Technical Reports Server (NTRS)

    Vreven, Dawn; McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Local disparity signals must interact in visual cortex to represent boundaries and surfaces of three-dimensional (3D) objects. We investigated how disparity signals interact in 3D contours and in 3D surfaces generated from the contours. We compared flat (single disparity) stimuli with curved (multi-disparity) stimuli. We found no consistent differences in sensitivity to contours vs. surfaces; for equivalent amounts of disparity, however, observers were more sensitive to flat stimuli than curved stimuli. Poor depth sensitivity for curved stimuli cannot be explained by the larger range of disparities present in the curved surface, nor by disparity averaging, nor by poor sensitivity to the largest disparity in the stimulus. Surprisingly, sensitivity to surfaces curved in depth was improved by removing portions of the surface and thus removing disparity information. Stimulus configuration had a profound effect on stereo thresholds that cannot be accounted for by disparity-energy models of V1 processing. We suggest that higher-level 3D contour or 3D shape mechanisms are involved.

  6. Oxygen depth profiling by nuclear resonant scattering

    SciTech Connect

    Gibson, G. T.; Sheu, W. J.; Glass, G. A.; Wang, Y. Q.

    1999-06-10

    Nuclear resonance scattering (NRS) {sup 16}O({alpha},{alpha}){sup 16}O at 3.045 MeV ({gamma}=10 keV) has been used for oxygen depth profiling in various thin oxide films. There are two ways by which the oxygen concentration versus depth profile can be obtained from the experimental data: energy spectrum simulation or yield distribution analysis. Energy spectrum simulation is done using the standard RBS software/Rutherford Universal Manipulation Program (RUMP) where only one spectrum is usually needed from the measurement. Yield distribution analysis is accomplished by using a custom developed software/Resonance Analysis Program (RAP) and involves a series of spectra obtained by stepping up the beam energy above the resonance energy. This article aims at comparing the fundamentals of both methods and also discussing their advantages and disadvantages in terms of the data acquisition and the post data analysis. A thermally grown thick SiO{sub 2} film and a thin titanium oxide film grown by corona point discharge were examined.

  7. Determining Exoplanetary Oblateness Using Transit Depth Variations

    NASA Astrophysics Data System (ADS)

    Biersteker, John; Schlichting, Hilke

    2017-10-01

    The measurement of an exoplanet’s oblateness and obliquity provides insights into the planet’s internal structure and formation history. Previous work using small differences in the shape of the transit light curve has been moderately successful, but was hampered by the small signal and extreme photometric precision required. The measurement of changes in transit depth, caused by the spin precession of an oblate planet, was proposed as an alternative method. Here, we present the first attempt to measure these changes. Using Kepler photometry, we examined the brown dwarf Kepler-39b and the warm Saturn Kepler-427b. We could not reliably constrain the oblateness of Kepler-39b. We find transit depth variations for Kepler-427b at 90.1 % significance (1.65σ ) consistent with a precession period of {P}{prec}={5.45}-0.37+0.46 {years} and an oblateness of f={0.19}-0.16+0.32. This oblateness is comparable to solar system gas giants and would raise questions about the dynamics and tidal synchronization of Kepler-427b.

  8. [Visual constructive deficits and coma depth].

    PubMed

    Buzón Reyes, J M; León-Carrión, J; Murillo, F; Forastero, P; De Serdio, M L; Domínguez-Morales, M R; Muñoz Sánchez, M A; Morales Ortiz, M

    1992-01-01

    The present study has the purpose of relating the capacities of visual retention with the Benton Visual Retention Test and the level of coma depth, which is measured with the GCS (Glasgow Coma Scale). 31 subject suffering cranioencephalic damage admitted to the intensive care unit (ICU) have been studied. GCS scores were obtained during their stay in the intensive care unit and the Benton Visual Retention Test was administered after hospital discharge. The procedure followed consists in comparing the performance of subjects with higher GCS scores to subjects with lower values when executing administration. A of form C of BVRT. We could conclude as follows: firstly that BVRT is a useful tool to detect the existence of brain damage; secondly, indexes of brain damage presence with BVRT are: a low figure in correct design, more errors, less errors in distortion and rotation; more errors in the left visual hemifield. Thirdly, the depth of coma is a good prognosis index on BVRT execution and in consequence of visuo-constructive abilities.

  9. Building depth images from scattered point cloud

    NASA Astrophysics Data System (ADS)

    Wei, Shuangfeng; Chen, Hong

    2009-10-01

    With the equation of plane and sphere, we fit them with Linear Least Squares. To cylinder datum fitting, firstly parameterize GQS equation of cylinder from seven parameters to five parameters, then using Local Paraboloid Construct method based on coordinate translation to get fitting initial values, finally evaluate results by Levenberg-Marquardt--a Nonlinear Linear Least Squares. Algorithm. However, initial values with Local Paraboloid Construct method are unstable. So to improve the precision of cylinder fitting ,a robust cylinder fitting method is put forward, which at first gets initial cylinder parameter values by Gauss Image, then fits cylinder by Nonlinear Least Squares for parameterized distance function. After getting reference datums, this paper proposes the methods of creating depth images from scattered point cloud and the specific steps with reference to different datums. Finally we choose some point cloud data of ancient building components from laser scanning data of Forbidden City in China as experiment data. Experiment results demonstrate the stability and high precision of the method of plane, cylinder and sphere fitting as well as the validity of depth images to represent point cloud of object.

  10. Refilming with depth-inferred videos.

    PubMed

    Zhang, Guofeng; Dong, Zilong; Jia, Jiaya; Wan, Liang; Wong, Tien-Tsin; Bao, Hujun

    2009-01-01

    Compared to still image editing, content-based video editing faces the additional challenges of maintaining the spatiotemporal consistency with respect to geometry. This brings up difficulties of seamlessly modifying video content, for instance, inserting or removing an object. In this paper, we present a new video editing system for creating spatiotemporally consistent and visually appealing refilming effects. Unlike the typical filming practice, our system requires no labor-intensive construction of 3D models/surfaces mimicking the real scene. Instead, it is based on an unsupervised inference of view-dependent depth maps for all video frames. We provide interactive tools requiring only a small amount of user input to perform elementary video content editing, such as separating video layers, completing background scene, and extracting moving objects. These tools can be utilized to produce a variety of visual effects in our system, including but not limited to video composition, "predator" effect, bullet-time, depth-of-field, and fog synthesis. Some of the effects can be achieved in real time.

  11. Oxygen depth profiling by nuclear resonant scattering

    SciTech Connect

    Gibson, G.T.; Sheu, W.J.; Glass, G.A. Wang, Y.Q.

    1999-06-01

    Nuclear resonance scattering (NRS) {sup 16}O({alpha},{alpha}){sup 16}O at 3.045 MeV ({Gamma}=10&hthinsp;keV) has been used for oxygen depth profiling in various thin oxide films. There are two ways by which the oxygen concentration versus depth profile can be obtained from the experimental data: energy spectrum simulation or yield distribution analysis. Energy spectrum simulation is done using the standard RBS software/Rutherford Universal Manipulation Program (RUMP) where only one spectrum is usually needed from the measurement. Yield distribution analysis is accomplished by using a custom developed software/Resonance Analysis Program (RAP) and involves a series of spectra obtained by stepping up the beam energy above the resonance energy. This article aims at comparing the fundamentals of both methods and also discussing their advantages and disadvantages in terms of the data acquisition and the post data analysis. A thermally grown thick SiO{sub 2} film and a thin titanium oxide film grown by corona point discharge were examined. {copyright} {ital 1999 American Institute of Physics.}

  12. Task 1: Water Depth Management, 1388

    NASA Technical Reports Server (NTRS)

    Polcyn, F. C. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. ERTS-1 MSS data taken on October 10, 1972, of the Little Bahama Bank are being used to demonstrate the use of ERTS-1 data for mapping of shallow water features for the purpose of upgrading world navigation charts. Marked reflectance differences occur for the shallow water areas in bands 4, 5, and 6. Digital processing of two adjacent data tapes within the ERTS-1 frame covering an area of about 40 by 40 miles has been completed. Correlation of depth measurements to 5 meters has been successful. A mathematical model for depth measurements using ratio of voltages in band 4 and 5 has been successfully developed and is being tested for accuracy. Additional studies for areas near Puerto Rico and in northern Lake Michigan will be undertaken. Satellite data will also provide geographical evidence for verifying existence or nonexistence of doubtful shoal waters now appearing on world charts and considered to be hazardous to shipping.

  13. Monazite Th-Pb age depth profiling

    SciTech Connect

    Grove, M.; Harrison, T.M.

    1999-06-01

    The significant capabilities of the ion microprobe for thermochronometric investigations of geologic materials remain largely unexploited. Whereas {sup 208}Pb/{sup 232}Th spot analysis allows {approximately} 10-mm-scale imaging of Pb loss profiles or overgrowths in sectioned monazite grains, the spatial resolution offered by depth profiling into the surface region of natural crystals is more than two orders of magnitude higher. The authors document here the ability of the high-resolution ion microprobe to detect {sup 208}Pb/{sup 232}Th age differences of < 1 m.y. with better than 0.05 {micro}m depth resolution in the outer micron of Tertiary monazites from the hanging wall of the Himalayan Main Central thrust. Age gradients on this scale are inaccessible to ion microprobe spot analysis or conventional thermal ionization mass spectrometry. Interpretation of the near-surface {sup 208}Pb distributions with available monazite Pb diffusion data illustrates the potential of the approach for recovering continuous, high-temperature thermal history information not previously available.

  14. Stereoscopic Depth Perception during Binocular Rivalry

    PubMed Central

    Andrews, Timothy J.; Holmes, David

    2011-01-01

    When we view nearby objects, we generate appreciably different retinal images in each eye. Despite this, the visual system can combine these different images to generate a unified view that is distinct from the perception generated from either eye alone (stereopsis). However, there are occasions when the images in the two eyes are too disparate to fuse. Instead, they alternate in perceptual dominance, with the image from one eye being completely excluded from awareness (binocular rivalry). It has been thought that binocular rivalry is the default outcome when binocular fusion is not possible. However, other studies have reported that stereopsis and binocular rivalry can coexist. The aim of this study was to address whether a monocular stimulus that is reported to be suppressed from awareness can continue to contribute to the perception of stereoscopic depth. Our results showed that stereoscopic depth perception was still evident when incompatible monocular images differing in spatial frequency, orientation, spatial phase, or direction of motion engage in binocular rivalry. These results demonstrate a range of conditions in which binocular rivalry and stereopsis can coexist. PMID:21960966

  15. Feature-based attention resolves depth ambiguity.

    PubMed

    Yu, D; Levinthal, B; Franconeri, S L

    2016-09-07

    Perceiving the world around us requires that we resolve ambiguity. This process is often studied in the lab using ambiguous figures whose structures can be interpreted in multiple ways. One class of figures contains ambiguity in its depth relations, such that either of two surfaces could be seen as being the "front" of an object. Previous research suggests that selectively attending to a given location on such objects can bias the perception of that region as the front. This study asks whether selectively attending to a distributed feature can also bias that region toward the front. Participants viewed a structure-from-motion display of a rotating cylinder that could be perceived as rotating clockwise or counterclockwise (as imagined viewing from the top), depending on whether a set of red or green moving dots were seen as being in the front. A secondary task encouraged observers to globally attend to either red or green. Results from both Experiment 1 and 2 showed that the dots on the cylinder that shared the attended feature, and its corresponding surface, were more likely to be seen as being in the front, as measured by participants' clockwise versus counterclockwise percept reports. Feature-based attention, like location-based attention, is capable of biasing competition among potential interpretations of figures with ambiguous structure in depth.

  16. Relative Burial Depths of Nakhlites: An Update

    NASA Technical Reports Server (NTRS)

    Mikouchi, T.; Miyamoto, M.; Koizumi, E.; Makishima, J.; McKay, G.

    2006-01-01

    Nakhlites are augite-rich cumulate rocks with variable amounts of olivine and groundmass plus minor Fe, Ti oxides [e.g., 1]. Our previous studies revealed that nakhlites showed correlated petrography and mineralogy that could be explained by different locations (burial depths) in a common cooling cumulate pile [e.g., 2]. We so far analyzed six of the seven currently known nakhlites, Nakhla (Nak), Governador Valadares (GV), Lafayette (Laf), NWA817, Y000593 (Y) and MIL03346 (MIL) [e.g., 2,3] and calculated cooling rates of four nakhlites (Nak, GV, Laf, and NWA817) by using chemical zoning of olivine [e.g., 4]. In this abstract, we complete our examination of petrographic and mineralogical variation of all currently known nakhlites by adding petrology and mineralogy of NWA998. We also report results of cooling calculations for Y, MIL and NWA998. Then, we update our model of the nakhlite igneous body in terms of relative burial depth of each sample.

  17. Depth Estimation Using a Sliding Camera.

    PubMed

    Ge, Kailin; Hu, Han; Feng, Jianjiang; Zhou, Jie

    2016-02-01

    Image-based 3D reconstruction technology is widely used in different fields. The conventional algorithms are mainly based on stereo matching between two or more fixed cameras, and high accuracy can only be achieved using a large camera array, which is very expensive and inconvenient in many applications. Another popular choice is utilizing structure-from-motion methods for arbitrarily placed camera(s). However, due to too many degrees of freedom, its computational cost is heavy and its accuracy is rather limited. In this paper, we propose a novel depth estimation algorithm using a sliding camera system. By analyzing the geometric properties of the camera system, we design a camera pose initialization algorithm that can work satisfyingly with only a small number of feature points and is robust to noise. For pixels corresponding to different depths, an adaptive iterative algorithm is proposed to choose optimal frames for stereo matching, which can take advantage of continuously pose-changing imaging and save the time consumption amazingly too. The proposed algorithm can also be easily extended to handle less constrained situations (such as using a camera mounted on a moving robot or vehicle). Experimental results on both synthetic and real-world data have illustrated the effectiveness of the proposed algorithm.

  18. The experimental investigation of concrete carbonation depth

    SciTech Connect

    Chang, C.-F. . E-mail: s83808@yahoo.com.tw; Chen, J.-W.

    2006-09-15

    Phenolphthalein indicator has traditionally been used to determine the depth of carbonation in concrete. This investigation uses the thermalgravimetric analysis (TGA) method, which tests the concentration distribution of Ca(OH){sub 2} and CaCO{sub 3}, while the X-ray diffraction analysis (XRDA) tests the intensity distribution of Ca(OH){sub 2} and CaCO{sub 3}. The Fourier transformation infrared spectroscopy (FTIR) test method detects the presence of C-O in concrete samples as a basis for determining the presence of CaCO{sub 3}. Concrete specimens were prepared and subjected to accelerated carbonation under conditions of 23 deg. C temperature, 70% RH and 20% concentration of CO{sub 2}. The test results of TGA and XRDA indicate that there exist a sharp carbonation front. Three zones of carbonation were identified according to the degree of carbonation and pH in the pore solutions. The TGA, XRDA and FTIR results showed the depth of carbonation front is twice of that determined from phenolphthalein indicator.

  19. Contour completion through depth interferes with stereoacuity

    NASA Technical Reports Server (NTRS)

    Vreven, Dawn; McKee, Suzanne P.; Verghese, Preeti

    2002-01-01

    Local disparity signals must interact in visual cortex to represent boundaries and surfaces of three-dimensional (3D) objects. We investigated how disparity signals interact in 3D contours and in 3D surfaces generated from the contours. We compared flat (single disparity) stimuli with curved (multi-disparity) stimuli. We found no consistent differences in sensitivity to contours vs. surfaces; for equivalent amounts of disparity, however, observers were more sensitive to flat stimuli than curved stimuli. Poor depth sensitivity for curved stimuli cannot be explained by the larger range of disparities present in the curved surface, nor by disparity averaging, nor by poor sensitivity to the largest disparity in the stimulus. Surprisingly, sensitivity to surfaces curved in depth was improved by removing portions of the surface and thus removing disparity information. Stimulus configuration had a profound effect on stereo thresholds that cannot be accounted for by disparity-energy models of V1 processing. We suggest that higher-level 3D contour or 3D shape mechanisms are involved.

  20. Radiation-induced trapped charge in metal-nitride-oxide-semiconductor structure

    SciTech Connect

    Takahashi, Y.; Ohnishi, K.; Fujimaki, T.; Yoshikawa, M.

    1999-12-01

    The radiation-induced trapped charge in insulation layer of metal-nitride-oxide-semiconductor (MNOS) structure has been investigated. The mechanism of charge trapping under irradiation is studied by the radiation-induced mid-gap voltage shift using a simple charge trap model. The depth profile of fixed charge in insulator before irradiation was evaluated by the mid-gap voltage of MNOS structures with varying insulator thicknesses using slanted etching method. The irradiation tests were carried out using Co-60 gamma ray source up to 1 Mrad(Si) with the gate voltage of +6 or {minus}6 V. The calculated results using the model can be fitted well to the experimental results, and the authors confirmed the model is very useful to discuss the radiation-induced trapped charge. By simulating the mid-gap voltage shift of MNOS structures, they considered the possibility for radiation hardened device.

  1. Charging due to Pair-Potential Gradient in Vortex of Type-II Superconductors

    NASA Astrophysics Data System (ADS)

    Ohuchi, Marie; Ueki, Hikaru; Kita, Takafumi

    2017-07-01

    Besides the magnetic Lorentz force familiar from the Hall effect in metals and semiconductors, there exists a mechanism for charging peculiar to superconductors that is caused by the pair-potential gradient (PPG). We incorporate it in the augmented quasiclassical equations of superconductivity with the Lorentz force to study charging of an isolated vortex in an equilibrium s-wave type-II superconductor. It is found that the PPG mechanism gives rise to charging concentrated within the core whose magnitude at the core center can be 10 to 102 times larger than that caused by the Lorentz force. Our detailed calculations on the spatial, temperature, and magnetic-penetration-depth dependences of the vortex-core charge reveal that the PPG mechanism contributes dominantly to the core charging of the isolated vortex over a wide parameter range. The two mechanisms are also found to work additively at the core center for the present model with an isotropic Fermi surface.

  2. Charge-Dissipative Electrical Cables

    NASA Technical Reports Server (NTRS)

    Kolasinski, John R.; Wollack, Edward J.

    2004-01-01

    Electrical cables that dissipate spurious static electric charges, in addition to performing their main functions of conducting signals, have been developed. These cables are intended for use in trapped-ion or ionizing-radiation environments, in which electric charges tend to accumulate within, and on the surfaces of, dielectric layers of cables. If the charging rate exceeds the dissipation rate, charges can accumulate in excessive amounts, giving rise to high-current discharges that can damage electronic circuitry and/or systems connected to it. The basic idea of design and operation of charge-dissipative electrical cables is to drain spurious charges to ground by use of lossy (slightly electrically conductive) dielectric layers, possibly in conjunction with drain wires and/or drain shields (see figure). In typical cases, the drain wires and/or drain shields could be electrically grounded via the connector assemblies at the ends of the cables, in any of the conventional techniques for grounding signal conductors and signal shields. In some cases, signal shields could double as drain shields.

  3. Aggregation of Heterogeneously Charged Colloids.

    PubMed

    Dempster, Joshua M; Olvera de la Cruz, Monica

    2016-06-28

    Patchy colloids are attractive as programmable building blocks for metamaterials. Inverse patchy colloids, in which a charged surface is decorated with patches of the opposite charge, are additionally noteworthy as models for heterogeneously charged biological materials such as proteins. We study the phases and aggregation behavior of a single charged patch in an oppositely charged colloid with a single-site model. This single-patch inverse patchy colloid model shows a large number of phases when varying patch size. For large patch sizes we find ferroelectric crystals, while small patch sizes produce cross-linked gels. Intermediate values produce monodisperse clusters and unusual worm structures that preserve finite ratios of area to volume. The polarization observed at large patch sizes is robust under extreme disorder in patch size and shape. We examine phase-temperature dependence and coexistence curves and find that large patch sizes produce polarized liquids, in contrast to mean-field predictions. Finally, we introduce small numbers of unpatched charged colloids. These can either suppress or encourage aggregation depending on their concentration and the size of the patches on the patched colloids. These effects can be exploited to control aggregation and to measure effective patch size.

  4. Jet charge at the LHC.

    PubMed

    Krohn, David; Schwartz, Matthew D; Lin, Tongyan; Waalewijn, Wouter J

    2013-05-24

    Knowing the charge of the parton initiating a light-quark jet could be extremely useful both for testing aspects of the standard model and for characterizing potential beyond-the-standard-model signals. We show that despite the complications of hadronization and out-of-jet radiation such as pileup, a weighted sum of the charges of a jet's constituents can be used at the LHC to distinguish among jets with different charges. Potential applications include measuring electroweak quantum numbers of hadronically decaying resonances or supersymmetric particles, as well as standard model tests, such as jet charge in dijet events or in hadronically decaying W bosons in tt[over ¯] events. We develop a systematically improvable method to calculate moments of these charge distributions by combining multihadron fragmentation functions with perturbative jet functions and pertubative evolution equations. We show that the dependence on energy and jet size for the average and width of the jet charge can be calculated despite the large experimental uncertainty on fragmentation functions. These calculations can provide a validation tool for data independent of Monte Carlo fragmentation models.

  5. Effect of multiply charged ions on the performance and beam characteristics in annular and cylindrical type Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho; Seon, Jongho

    2014-10-06

    Plasma plume and thruster performance characteristics associated with multiply charged ions in a cylindrical type Hall thruster (CHT) and an annular type Hall thruster are compared under identical conditions such as channel diameter, channel depth, propellant mass flow rate. A high propellant utilization in a CHT is caused by a high ionization rate, which brings about large multiply charged ions. Ion currents and utilizations are much different due to the presence of multiply charged ions. A high multiply charged ion fraction and a high ionization rate in the CHT result in a higher specific impulse, thrust, and discharge current.

  6. Mixed Layer Depth in the Aegean, Marmara, Black and Azov Seas: Part II: Relation to the Sonic Layer Depth

    DTIC Science & Technology

    2009-03-03

    r.com/ locate / jmarsysMixed layer depth in the Aegean, Marmara, Black and Azov Seas : Part II: Relation to the sonic layer depth Robert W. Helber a...index terms: The Aegean Sea The Black Sea The Azov Sea Keywords: Sound transmission Mixed layer depth Climatologyt analysis of the seasonal evolution of...the sonic layer depth (SLD) relative to the mixed layer depth (MLD) for the Aegean, Marmara, Black, and Azov Seas . SLD identifies the acoustic ducting

  7. Pulse Response Yields Battery Charge State

    NASA Technical Reports Server (NTRS)

    Chapman, C. P.; Barber, T. A.

    1984-01-01

    Response to input pulse characterizes state of charge of battery. Instrument electronically measures input and response of forcing-function pulse that periodically modulates charge or discharge current.

  8. Characterization of 109 Ah Ni-MH batteries charging with hydrogen sensing termination

    NASA Astrophysics Data System (ADS)

    Viera, J. C.; González, M.; Liaw, B. Y.; Ferrero, F. J.; Álvarez, J. C.; Campo, J. C.; Blanco, C.

    The use of Ni-MH batteries for traction applications in electric and hybrid vehicles is increasingly attractive and reliable. Besides the energy and power handling, and the cost issues, high tolerance to abuse is an important aspect of the Ni-MH technology. Thus, the ability to reduce charging time and to absorb regenerative breaking is highly desirable in these traction applications. This requires an accurate control of the charge termination. To facilitate an easy and reliable charging control and to avoid battery premature failure or ageing it is very important to know the behavior of the battery under a range of charging conditions. In this paper, we described the performance of high capacity commercial Ni-MH traction batteries (12 V, 109 Ah modules) when subjected to different charging rates (0.1, 0.2, 0.5, and 1.0 C) from 100% depth of discharge (DOD). Changes in battery voltage and temperature during charging were monitored, with a particular emphasis on the detection of the presence of hydrogen near the battery. This unique hydrogen detection outside the battery was used as the method for the end-of-charge termination to prevent overcharging of the battery. Relevant parameters, such as charge acceptance, energy efficiency, and charging time, were analyzed for comparison.

  9. New Charge Exchange Calculations for Lowly-Charged Ions

    NASA Astrophysics Data System (ADS)

    Stancil, P. C.

    2005-05-01

    The process of charge exchange, which occurs during the collision of an ion with a neutral species, is important in a variety of astrophysical and atmospheric environments. It can have an influence on the ionization and thermal balances of the plasma and may also contribute to the emission spectrum. The charge exchange of multiply-charged ions (q>2) usually proceeds at a fast rate with rate coefficients typically of 10-10 to 10-9 cm3s-1. Therefore, highly-charged ions, which are created in UV or x-ray ionized gas, quickly recombine to smaller charges. However, the rate coefficients for singly- and doubly-charged ions can vary over five orders of magnitude depending on the ion species, the neutral target, and the temperature. In particular, the rate coefficients depend sensitively on the dominant mechanism which may be due to radial, rotational, radiative, or spin-orbit coupling and the corresponding quasi-molecular curves can be very complicated. Measurements of such processes are complicated by metastable contamination and uncertainties in target purity and estimates of empirical values inferred from astrophysical modeling are typically suspect. Therefore, the state of knowledge of lowly-charged electron transfer processes is generally poor, but these reactions can be critical in determining the state of the plasma. If, for example, the rate coefficient for a q=2 ion is very small, the process would result in a bottle-neck in the recombination cascade from higer charges. In an effort to address these problems, quantum-mechanical calculations have been carried out for a number of singly- and doubly-charged ions and benchmarked to measurements when available. I will present a summary of these results which reveal significant differences from values adopted in rate coefficient compilations used by various modeling packages. This work was performed in collaboration with L. B. Zhao, C. Y. Lin, J. P. Gu, H. P. Liebermann, R. J. Buenker, and M. Kimura. Support from NASA

  10. Muon and neutrino results from KGF experiment at a depth of 7000 hg/square cm

    NASA Technical Reports Server (NTRS)

    Krishnaswamy, M. R.; Menon, M. G. K.; Mondal, N. K.; Narasimham, V. S.; Streekantan, B. V.; Hayashi, Y.; Ito, N.; Kawakami, S.; Miyake, S.

    1985-01-01

    The KGF nucleon decay experiment at a depth of 7000 hg/sq cm has provided valuable data on muons and neutrinos. The detector comprised of 34 crossed layers of proportional counters (cross section 10 x 10 sq cm; lengths 4m and 6m) sandwiched between 1.2 cm thick iron plates can record tracks of charged particles to an accuracy of 1 deg from tracks that traverse the whole of the detector. A special two-fold coincidence system enables the detector to record charged particles that enter at very large zenith angles. In a live time of 3.6 years about 2600 events have been recorded. These events include atmospheric muons, neutrino induced muons from rock, stopping muons, showers and events which have their production vertex inside the detectors. The results on atmospheric muons and neutrino events are presented.

  11. Variation of curve number with storm depth

    NASA Astrophysics Data System (ADS)

    Banasik, K.; Hejduk, L.

    2012-04-01

    The NRCS Curve Number (known also as SCS-CN) method is well known as a tool in predicting flood runoff depth from small ungauged catchment. The traditional way of determination the CNs, based on soil characteristics, land use and hydrological conditions, seemed to have tendency to overpredict the floods in some cases. Over 30 year rainfall-runoff data, collected in two small (A=23.4 & 82.4 km2), lowland, agricultural catchments in Center of Poland (Banasik & Woodward 2010), were used to determine runoff Curve Number and to check a tendency of changing. The observed CN declines with increasing storm size, which according recent views of Hawkins (1993) could be classified as a standard response of watershed. The analysis concluded, that using CN value according to the procedure described in USDA-SCS Handbook one receives representative value for estimating storm runoff from high rainfall depths in the analyzes catchments. This has been confirmed by applying "asymptotic approach" for estimating the watershed curve number from the rainfall-runoff data. Furthermore, the analysis indicated that CN, estimated from mean retention parameter S of recorded events with rainfall depth higher than initial abstraction, is also approaching the theoretical CN. The observed CN, ranging from 59.8 to 97.1 and from 52.3 to 95.5, in the smaller and the larger catchment respectively, declines with increasing storm size, which has been classified as a standard response of watershed. The investigation demonstrated also changeability of the CN during a year, with much lower values during the vegetation season. Banasik K. & D.E. Woodward (2010). "Empirical determination of curve number for a small agricultural watrshed in Poland". 2nd Joint Federal Interagency Conference, Las Vegas, NV, June 27 - July 1, 2010 (http://acwi.gov/sos/pubs/2ndJFIC/Contents/10E_Banasik_ 28_02_10. pdf). Hawkins R. H. (1993). "Asymptotic determination of curve numbers from data". Journal of Irrigation and Drainage

  12. Crater and cavity depth in hypervelocity impact

    NASA Astrophysics Data System (ADS)

    Kadono, T.; Fujiwara, A.

    2003-04-01

    Hypervelocity impact experiments with low-density mediums (e.g., foams) have been so far carried out to develop the instruments for intact capture of interplanetary dust particles. The results show that the impact leads a "cavity", a cylindrical or carrot (spindle) shaped vestige. Its shape depends on the condition of projectiles; when impact velocity is so low that projectiles are intact, the depth increases with impact velocity, while it decreases or is constant with impact velocity when the impact velocity is so high that projectiles are broken (e.g., Kadono, Planet. Space Sci. 47, 305--318, 1999). On the other hand, as described by Summers (NASA TN D-94, 1959), crater shape with high density targets (comparable to projectile density) also changes with impact velocity. At low velocities, the strength of projectile's materials is greater than the dynamic impact pressure and the projectile penetrates the target intact. The crater produced is deep and narrow. With increase in impact velocity, a point is reached at which the impact pressure is sufficient to cause the projectile to fragment into a few large pieces at impact. Then as the impact velocity is increased further, the projectile shatters into numerous small pieces and the penetration actually decreases. Finally a velocity is reached at which the typical fluid impact occurs, the crater formed is nearly hemispherical in shape. It appears that the situation in cavity formation with low density targets is quite similar to that in cratering with high density targets at low impact velocity. This similarity allows us to discuss cavity formation and cratering in a unified view. As described above, the previous experiments clearly suggest that the condition of projectiles plays important roles in both cratering and cavity formation. Hence here, by introducing a parameter that characterizes the condition of projectiles at the instance of impact, cratering processes such as projectile penetration and shock wave

  13. Improved virus removal in ceramic depth filters modified with MgO.

    PubMed

    Michen, Benjamin; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2013-02-05

    Ceramic filters, working on the depth filtration principle, are known to improve drinking water quality by removing human pathogenic microorganisms from contaminated water. However, these microfilters show no sufficient barrier for viruses having diameters down to 20 nm. Recently, it was shown that the addition of positively charged materials, for example, iron oxyhydroxide, can improve virus removal by adsorption mechanisms. In this work, we modified a common ceramic filter based on diatomaceous earth by introducing a novel virus adsorbent material, magnesium oxyhydroxide, into the filter matrix. Such filters showed an improved removal of about 4-log in regard to bacteriophages MS2 and PhiX174. This is explained with the electrostatic enhanced adsorption approach that is the favorable adsorption of negatively charged viruses onto positively charged patches in an otherwise negatively charged filter matrix. Furthermore, we provide theoretical evidence applying calculations according to Derjaguin-Landau-Verwey-Overbeek theory to strengthen our experimental results. However, modified filters showed a significant variance in virus removal efficiency over the course of long-term filtration experiments with virus removal increasing with filter operation time (or filter aging). This is explained by transformational changes of MgO in the filter upon contact with water. It also demonstrates that filter history is of great concern when filters working on the adsorption principles are evaluated in regard to their retention performance as their surface characteristics may alter with use.

  14. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  15. Neutron depth profiling of Li-ion cell electrodes with a gas-controlled environment

    NASA Astrophysics Data System (ADS)

    Nagpure, Shrikant C.; Mulligan, Padhraic; Canova, Marcello; Cao, Lei R.

    2014-02-01

    Neutron depth profiling (NDP) is a nondestructive technique that has been applied to characterize the lithium concentration in the electrode materials of Li-ion batteries as a function of depth. NDP measurements have been traditionally performed ex-situ, under vacuum of the order of 10-6 Torr to avoid any change in the residual energy of the charged particles as they emerge from the sample surface. In this work, we describe the design of the NDP measurement facility that allows for conducting tests at variable pressure conditions, through an inert gas atmosphere. This study enhances the ability of the conventional NDP instrument to measure lithium concentration of air-sensitive materials without exposure to atmospheric conditions and under inert gas atmosphere. Furthermore, it provides the opportunity to conduct in-situ NDP on Li-ion cells using liquid electrolytes that would otherwise evaporate at high vacuum conditions.

  16. Weld pool surface depth measurement using a calibrated camera and structured light

    NASA Astrophysics Data System (ADS)

    Saeed, G.; Zhang, Y. M.

    2007-08-01

    Automated monitoring and control of the weld pool surface has been one of the goals of the welding industry. This paper presents a technique which uses a calibrated charge-coupled device (CCD) sensor and structured light to extract the surface information as depth of pool from captured images. It projects a laser line from a pre-determined position onto the specular weld pool surface. A reflected laser beam from the specular surface is captured by a calibrated CCD sensor to form the image. The image is then processed based on the ray-tracing technique to calculate the depth of the weld pool surface using the position of the laser and its fan angle along with the intrinsic parameters and extrinsic parameters of the CCD sensor.

  17. Chemical depth profiles of the GaAs/native oxide interface

    NASA Technical Reports Server (NTRS)

    Grunthaner, P. J.; Vasquez, R. P.; Grunthaner, F. J.

    1980-01-01

    The final-state oxidation products and their distribution in thin native oxides (30-40 A) on GaAs have been studied using X-ray photoelectron spectroscopy in conjunction with chemical depth profiling. Extended room-temperature-oxidation conditions have been chosen to allow the native oxide to attain its equilibrium composition and structure. The work emphasizes the use of chemical depth-profiling methods which make it possible to examine the variation in chemical reactivity of the oxide structure. A minimum of two distinct regions of Ga2O3 with differing chemical reactivity is observed. Chemical shift data indicate the presence of As2O3 in the oxide together with an elemental As overlayer at the interface. A change in relative charge transfer between oxygen and both arsenic and gallium-oxide species is observed in the region of the interface.

  18. The neural mechanism of binocular depth discrimination

    PubMed Central

    Barlow, H. B.; Blakemore, C.; Pettigrew, J. D.

    1967-01-01

    1. Binocularly driven units were investigated in the cat's primary visual cortex. 2. It was found that a stimulus located correctly in the visual fields of both eyes was more effective in driving the units than a monocular stimulus, and much more effective than a binocular stimulus which was correctly positioned in only one eye: the response to the correctly located image in one eye is vetoed if the image is incorrectly located in the other eye. 3. The vertical and horizontal disparities of the paired retinal images that yielded the maximum response were measured in 87 units from seven cats: the range of horizontal disparities was 6·6°, of vertical disparities 2·2°. 4. With fixed convergence, different units will be optimally excited by objects lying at different distances. This may be the basic mechanism underlying depth discrimination in the cat. PMID:6065881

  19. Predictive depth coding of wavelet transformed images

    NASA Astrophysics Data System (ADS)

    Lehtinen, Joonas

    1999-10-01

    In this paper, a new prediction based method, predictive depth coding, for lossy wavelet image compression is presented. It compresses a wavelet pyramid composition by predicting the number of significant bits in each wavelet coefficient quantized by the universal scalar quantization and then by coding the prediction error with arithmetic coding. The adaptively found linear prediction context covers spatial neighbors of the coefficient to be predicted and the corresponding coefficients on lower scale and in the different orientation pyramids. In addition to the number of significant bits, the sign and the bits of non-zero coefficients are coded. The compression method is tested with a standard set of images and the results are compared with SFQ, SPIHT, EZW and context based algorithms. Even though the algorithm is very simple and it does not require any extra memory, the compression results are relatively good.

  20. Slab tears and intermediate-depth seismicity

    USGS Publications Warehouse

    Meighan, Hallie E.; Ten Brink, Uri; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  1. Darkness and depth in early Renaissance painting

    NASA Astrophysics Data System (ADS)

    Tyler, Christopher

    2010-02-01

    Contrast has always been appreciated as a significant factor in image quality, but it is less widely recognized that it is a key factor in the representation of depth, solidity and three-dimensionality in images in general, and in paintings in particular. This aspect of contrast was a key factor in the introduction of oil paint as a painting medium at the beginning of the fifteenth century, as a practical means of contrast enhancement. However, recent conservatorship efforts have established that the first oil paintings were not, as commonly supposed, by van Eyck in Flanders in the 1430s, but by Masolino da Panicale in Italy in the 1420s. These developments led to the use of chiaroscuro technique in various forms, all of which are techniques for enhanced shadowing.

  2. Integrating motion and depth via parallel pathways

    PubMed Central

    Ponce, Carlos R; Lomber, Stephen G; Born, Richard T

    2008-01-01

    Processing of visual information is both parallel and hierarchical, with each visual area richly interconnected with other visual areas. An example of the parallel architecture of the primate visual system is the existence of two principal pathways providing input to the middle temporal visual area (MT): namely, a direct projection from striate cortex (V1), and a set of indirect projections that also originate in V1 but then relay through V2 and V3. Here we have reversibly inactivated the indirect pathways while recording from MT neurons and measuring eye movements in alert monkeys, a procedure that has enabled us to assess whether the two different input pathways are redundant or whether they carry different kinds of information. We find that this inactivation causes a disproportionate degradation of binocular disparity tuning relative to direction tuning in MT neurons, suggesting that the indirect pathways are important in the recovery of depth in three-dimensional scenes. PMID:18193039

  3. Spectral entropy in monitoring anesthetic depth.

    PubMed

    Escontrela Rodríguez, B; Gago Martínez, A; Merino Julián, I; Martínez Ruiz, A

    2016-10-01

    Monitoring the brain response to hypnotics in general anesthesia, with the nociceptive and hemodynamic stimulus interaction, has been a subject of intense investigation for many years. Nowadays, monitors of depth of anesthesia are based in processed electroencephalogram by different algorithms, some of them unknown, to obtain a simplified numeric parameter approximate to brain activity state in each moment. In this review we evaluate if spectral entropy suitably reflects the brain electric behavior in response to hypnotics and the different intensity nociceptive stimulus effect during a surgical procedure. Copyright © 2015 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  4. Fixtureless nonrigid part inspection using depth cameras

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2016-10-01

    In automobile industry, flexible thin shell parts are used to cover car body. Such parts could have a different shape in a free state than the design model due to dimensional variation, gravity loads and residual strains. Special inspection fixtures are generally indispensable for geometric inspection. Recently, some researchers have proposed fixtureless nonridged inspect methods using intrinsic geometry or virtual spring-mass system, based on some assumptions about deformation between Free State shape and nominal CAD shape. In this paper, we propose a new fixtureless method to inspect flexible parts with a depth camera, which is efficient and low computational complexity. Unlike traditional method, we gather two point cloud set of the manufactured part in two different states, and make correspondences between them and one of them to the CAD model. The manufacturing defects can be derived from the correspondences. Finite element method (FEM) disappears in our method. Experimental evaluation of the proposed method is presented.

  5. Charge transfer and charge transport on the double helix

    NASA Astrophysics Data System (ADS)

    Armitage, N. P.; Briman, M.; Grüner, G.

    2004-01-01

    We present a short review of various experiments that measure charge transfer and charge transport in DNA. Some general comments are made on the possible connection between various chemistry-style charge transfer experiments that probe fluorescence quenching and remote oxidative damage and physics-style measurements that measure transport properties as defined typically in the solid-state. We then describe measurements performed by our group on the millimeter wave response of DNA. By measuring over a wide range of humidity conditions and comparing the response of single strand DNA and double strand DNA, we show that the appreciable AC conductivity of DNA is not due to photon assisted hopping between localized states, but instead due to dissipation from dipole motion in the surrounding water helix.

  6. Depth Echolocation Learnt by Novice Sighted People

    PubMed Central

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2016-01-01

    Some blind people have developed a unique technique, called echolocation, to orient themselves in unknown environments. More specifically, by self-generating a clicking noise with the tongue, echolocators gain knowledge about the external environment by perceiving more detailed object features. It is not clear to date whether sighted individuals can also develop such an extremely useful technique. To investigate this, here we test the ability of novice sighted participants to perform a depth echolocation task. Moreover, in order to evaluate whether the type of room (anechoic or reverberant) and the type of clicking sound (with the tongue or with the hands) influences the learning of this technique, we divided the entire sample into four groups. Half of the participants produced the clicking sound with their tongue, the other half with their hands. Half of the participants performed the task in an anechoic chamber, the other half in a reverberant room. Subjects stood in front of five bars, each of a different size, and at five different distances from the subject. The dimension of the bars ensured a constant subtended angle for the five distances considered. The task was to identify the correct distance of the bar. We found that, even by the second session, the participants were able to judge the correct depth of the bar at a rate greater than chance. Improvements in both precision and accuracy were observed in all experimental sessions. More interestingly, we found significantly better performance in the reverberant room than in the anechoic chamber. The type of clicking did not modulate our results. This suggests that the echolocation technique can also be learned by sighted individuals and that room reverberation can influence this learning process. More generally, this study shows that total loss of sight is not a prerequisite for echolocation skills this suggests important potential implications on rehabilitation settings for persons with residual vision. PMID

  7. Depth Echolocation Learnt by Novice Sighted People.

    PubMed

    Tonelli, Alessia; Brayda, Luca; Gori, Monica

    2016-01-01

    Some blind people have developed a unique technique, called echolocation, to orient themselves in unknown environments. More specifically, by self-generating a clicking noise with the tongue, echolocators gain knowledge about the external environment by perceiving more detailed object features. It is not clear to date whether sighted individuals can also develop such an extremely useful technique. To investigate this, here we test the ability of novice sighted participants to perform a depth echolocation task. Moreover, in order to evaluate whether the type of room (anechoic or reverberant) and the type of clicking sound (with the tongue or with the hands) influences the learning of this technique, we divided the entire sample into four groups. Half of the participants produced the clicking sound with their tongue, the other half with their hands. Half of the participants performed the task in an anechoic chamber, the other half in a reverberant room. Subjects stood in front of five bars, each of a different size, and at five different distances from the subject. The dimension of the bars ensured a constant subtended angle for the five distances considered. The task was to identify the correct distance of the bar. We found that, even by the second session, the participants were able to judge the correct depth of the bar at a rate greater than chance. Improvements in both precision and accuracy were observed in all experimental sessions. More interestingly, we found significantly better performance in the reverberant room than in the anechoic chamber. The type of clicking did not modulate our results. This suggests that the echolocation technique can also be learned by sighted individuals and that room reverberation can influence this learning process. More generally, this study shows that total loss of sight is not a prerequisite for echolocation skills this suggests important potential implications on rehabilitation settings for persons with residual vision.

  8. Effect of viewing distance and disparity on perceived depth

    NASA Astrophysics Data System (ADS)

    Gooding, Linda; Miller, Michael E.; Moore, Jana; Kim, Seong-Han

    1991-08-01

    Binocular disparity is used on field-sequential stereoscopic displays to enhance monocular depth cues such as perspective, shading, shadows, and interposition. While the predicted apparent depth may be calculated using geometric equations, the actual apparent depth may not follow predictions due to the influence of accommodation and convergence. A study was performed to determine the effect of viewing distance on subjective rating of apparent depth. Viewing distance significantly influenced subjective depth ratings. Displayed objects viewed from greater distances (2678 mm) portrayed greater differences in depth than equivalent displayed scenes viewed from smaller distances (669 and 1339 mm).

  9. Technique for estimating depth of floods in Tennessee

    USGS Publications Warehouse

    Gamble, C.R.

    1983-01-01

    Estimates of flood depths are needed for design of roadways across flood plains and for other types of construction along streams. Equations for estimating flood depths in Tennessee were derived using data for 150 gaging stations. The equations are based on drainage basin size and can be used to estimate depths of the 10-year and 100-year floods for four hydrologic areas. A method also was developed for estimating depth of floods having recurrence intervals between 10 and 100 years. Standard errors range from 22 to 30 percent for the 10-year depth equations and from 23 to 30 percent for the 100-year depth equations. (USGS)

  10. Analysis on enhanced depth of field for integral imaging microscope.

    PubMed

    Lim, Young-Tae; Park, Jae-Hyeung; Kwon, Ki-Chul; Kim, Nam

    2012-10-08

    Depth of field of the integral imaging microscope is studied. In the integral imaging microscope, 3-D information is encoded as a form of elemental images Distance between intermediate plane and object point decides the number of elemental image and depth of field of integral imaging microscope. From the analysis, it is found that depth of field of the reconstructed depth plane image by computational integral imaging reconstruction is longer than depth of field of optical microscope. From analyzed relationship, experiment using integral imaging microscopy and conventional microscopy is also performed to confirm enhanced depth of field of integral imaging microscopy.

  11. ToF-SIMS Depth Profiling Of Insulating Samples, Interlaced Mode Or Non-interlaced Mode?

    SciTech Connect

    Wang, Zhaoying; Jin, Ke; Zhang, Yanwen; Wang, Fuyi; Zhu, Zihua

    2014-11-01

    Dual beam depth profiling strategy has been widely adopted in ToF-SIMS depth profiling, in which two basic operation modes, interlaced mode and non-interlaced mode, are commonly used. Generally, interlaced mode is recommended for conductive or semi-conductive samples, whereas non-interlaced mode is recommended for insulating samples, where charge compensation can be an issue. Recent publications, however, show that the interlaced mode can be used effectively for glass depth profiling, despite the fact that glass is an insulator. In this study, we provide a simple guide for choosing between interlaced mode and non-interlaced mode for insulator depth profiling. Two representative cases are presented: (1) depth profiling of a leached glass sample, and (2) depth profiling of a single crystal MgO sample. In brief, the interlaced mode should be attempted first, because (1) it may provide reasonable-quality data, and (2) it is time-saving for most cases, and (3) it introduces low H/C/O background. If data quality is the top priority and measurement time is flexible, non-interlaced mode is recommended because interlaced mode may suffer from low signal intensity and poor mass resolution. A big challenge is tracking trace H/C/O in a highly insulating sample (e.g., MgO), because non-interlaced mode may introduce strong H/C/O background but interlaced mode may suffer from low signal intensity. Meanwhile, a C or Au coating is found to be very effective to improve the signal intensity. Surprisingly, the best analyzing location is not on the C or Au coating, but at the edge (outside) of the coating.

  12. Depth distribution of boron determined by slow neutron induced lithium ion emission

    NASA Astrophysics Data System (ADS)

    Chen-Mayer, Huaiyu H.; Lamaze, George P.

    1998-02-01

    Neutron Depth Profiling (NDP) has been established as a non-destructive technique to determine the near surface distribution of light elements, particularly boron. By analyzing the residual energy spectrum of the emitted particles of known initial energy as a result of nuclear capture within the target material, information about the site and amount of the reactions can be deduced. In the event of 10B neutron capture, an alpha particle (1473 keV) and an excited 7Li ion (840 keV) are emitted, both conveying the same information. However, because the Li ion has a greater charge, the stopping power in a given matrix is higher than that for the alpha particle. Consequently, for boron near the surface, the location of the origin of the emission can be determined with better depth resolution. At the NIST NDP facility, routine analysis using the alpha particle has been established earlier. This paper reports the progress of using the 7Li ion stopping power to determine the boron depth distribution in the near surface of several matrices. This study has been performed on semiconductor device-related systems - boron in silicon glass, and carbon matrices. Various factors affecting the depth resolution are assessed when comparing the analysis of the alpha particle with that of the 7Li ion.

  13. Charge state dependent energy deposition by ion impact.

    PubMed

    Lake, R E; Pomeroy, J M; Grube, H; Sosolik, C E

    2011-08-05

    We report on a measurement of craters in thin dielectric films formed by Xe(Q+) (26 ≤ Q ≤ 44) projectiles. Tunnel junction devices with ion-irradiated barriers were used to amplify the effect of charge-dependent cratering through the exponential dependence of tunneling conductance on barrier thickness. Electrical conductance of a crater σ(c)(Q) increased by 4 orders of magnitude (7.9 × 10(-4) μS to 6.1 μS) as Q increased, corresponding to crater depths ranging from 2 to 11 Å. By employing a heated spike model, we determine that the energy required to produce the craters spans from 8 to 25 keV over the investigated charge states. Considering energy from preequilibrium nuclear and electronic stopping as well as neutralization, we find that at least (27 ± 2)% of available projectile neutralization energy is deposited into the thin film during impact.

  14. Cosmology of a charged universe

    NASA Technical Reports Server (NTRS)

    Barnes, A.

    1979-01-01

    The Proca generalization of electrodynamics admits the possibility that the universe could possess a net electric charge uniformly distributed throughout space, while possessing no electric field. A general-relativistic model of cosmological expansion dominated by such a charged background has been calculated, and is consistent with present observational limits on the Hubble constant, the deceleration parameter, and the age of the universe. However, if this cosmology applied at the present epoch, the very early expansion of the universe would have been too rapid for cosmological nucleosynthesis or thermalization of the background radiation to have occurred. Hence, domination of the present expansion by background charge appears to be incompatible with the 3-K background and big-bang production of light elements. If the present background charge density were sufficiently small (but not strictly zero), expansion from the epoch of nucleosynthesis would proceed according to the conventional scenario, but the energy due to the background charge would have dominated at some earlier epoch. This last possibility leads to equality of pressure and energy density in the primordial universe.

  15. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  16. Blast waves from cylindrical charges

    NASA Astrophysics Data System (ADS)

    Knock, C.; Davies, N.

    2013-07-01

    Comparisons of explosives are often carried out using TNT equivalency which is based on data for spherical charges, despite the fact that many explosive charges are not spherical in shape, but cylindrical. Previous work has shown that it is possible to predict the over pressure and impulse from the curved surface of cylindrical charges using simple empirical formulae for the case when the length-to-diameter ( L/ D) ratio is greater or equal to 2/1. In this paper, by examining data for all length-to-diameter ratios, it is shown that it is possible to predict the peak over pressure, P, for any length-to-diameter ratio from the curved side of a bare cylindrical charge of explosive using the equation P=K_PM(L/D)^{1/3}/R^3, where M is the mass of explosive, R the distance from the charge and K_P is an explosive-dependent constant. Further out where the cylindrical blast wave `heals' into a spherical one, the more complex equation P=C_1(Z^' ' })^{-3}+C_2(Z^' ' })^{-2}+C_3(Z^' ' })^{-1} gives a better fit to experimental data, where Z^' ' } = M^{1/3}(L/D)^{1/9}/D and C_1, C_2 and C_3 are explosive-dependent constants. The impulse is found to be independent of the L/ D ratio.

  17. Evaluation of SNODAS snow depth and GPS-measured snow depth in the Western United States

    NASA Astrophysics Data System (ADS)

    Boniface, K.; Braun, J.; McCreight, J. L.; Larson, K. M.

    2013-12-01

    Seasonal snowpack represents an important freshwater reservoir and is a significant contributor to global water and energy cycles. To evaluate and better understand gridded snow depth estimates from the Snow Data Assimilation System (SNODAS), we compare against snow depth observations from GPS Interferometric Reflectometry (GPS-IR). GPS-IR snow depth observations at roughly 100 Plate Boundary Observatory sites (originally intended to measure tectonic activity) provide an independent data set to contextualize SNODAS estimates across the Western US for water years 2010-2013 and into the future. Results from this study indicate that SNODAS and GPS-IR products generally agree. More than 80% of the GPS sites compared with SNODAS shown Root Mean Square Deviations (RMSD) of less than 15 cm with correlation coefficients greater than 0.6. Significant differences are found between GPS-IR and SNODAS for locations which are distant from other point measurements, located in complex terrain, or located in areas with strong vegetation heterogeneities. GPS-IR derived estimates of snow depth provide useful error characterization of SNODAS data products across much of the western United States and have potential as an additional data assimilation source which could improve SNODAS products.

  18. Evaluating the sonic layer depth relative to the mixed layer depth

    NASA Astrophysics Data System (ADS)

    Helber, Robert W.; Barron, Charlie N.; Carnes, Michael R.; Zingarelli, Robert A.

    2008-07-01

    Using a global set of in situ temperature and salinity profile observations, the sonic layer depth (SLD) and the mixed layer depth (MLD) are analyzed and compared over the annual cycle. The SLD characterizes the potential of the upper ocean to trap acoustic energy in a surface duct while MLD characterizes upper ocean mixing. The SLD is computed from temperature and salinity profile pairs using a new tunable method while MLD is computed using recently developed methods and either temperature only profiles or temperature and salinity profile pairs. Both SLD and MLD estimates provide information on different and important aspects of the upper ocean. The SLD and MLD often coincide because sound speed increases with depth down to the MLD, where (typically) a decrease in temperature occurs, resulting in a local maximum sound speed. The depth of this maximum sound speed is the SLD. The SLD and MLD are not always the same because sound speed is substantially more sensitive to temperature than to salinity compared to density. Since MLD is a commonly known and studied parameter, MLD is often used as a proxy for SLD in scientific and operational applications. In the boreal spring when fresh restratification events occur, the SLD is 10 m deeper (shallower) than the MLD in 39% (7%) of the observed profiles. A parabolic equation acoustic transmission model is used to evaluate the relative skill of the SLD and MLD estimates to predict surface acoustic trapping as measured by a simple metric.

  19. Virus removal in ceramic depth filters based on diatomaceous earth.

    PubMed

    Michen, Benjamin; Meder, Fabian; Rust, Annette; Fritsch, Johannes; Aneziris, Christos; Graule, Thomas

    2012-01-17

    Ceramic filter candles, based on the natural material diatomaceous earth, are widely used to purify water at the point-of-use. Although such depth filters are known to improve drinking water quality by removing human pathogenic protozoa and bacteria, their removal regarding viruses has rarely been investigated. These filters have relatively large pore diameters compared to the physical dimension of viruses. However, viruses may be retained by adsorption mechanisms due to intermolecular and surface forces. Here, we use three types of bacteriophages to investigate their removal during filtration and batch experiments conducted at different pH values and ionic strengths. Theoretical models based on DLVO-theory are applied in order to verify experimental results and assess surface forces involved in the adsorptive process. This was done by calculation of interaction energies between the filter surface and the viruses. For two small spherically shaped viruses (MS2 and PhiX174), these filters showed no significant removal. In the case of phage PhiX174, where attractive interactions were expected, due to electrostatic attraction of oppositely charged surfaces, only little adsorption was reported in the presence of divalent ions. Thus, we postulate the existence of an additional repulsive force between PhiX174 and the filter surface. It is hypothesized that such an additional energy barrier originates from either the phage's specific knobs that protrude from the viral capsid, enabling steric interactions, or hydration forces between the two hydrophilic interfaces of virus and filter. However, a larger-sized, tailed bacteriophage of the family Siphoviridae was removed by log 2 to 3, which is explained by postulating hydrophobic interactions.

  20. Search for space charge effects in the ICARUS T600 LAr-TPC

    NASA Astrophysics Data System (ADS)

    Torti, Marta

    2016-11-01

    Space charge in Liquid Argon Time Projection Chamber is due to the accumu- lation of positive ions, produced by ionizing tracks crossing the detector, which slowly flow toward the cathode. As a consequence, electric field distortions may arise, thus hindering the possibility to produce faithful 3D images of the ionizing events. The presence of space charge becomes relevant for large TPCs operating at surface or at shallow depths, where cosmic ray flux is high. These effects could interest the next phase of the ICARUS T600 detector, which will be deployed at shallow depths as a Far Detector for Short Baseline Neutrino experiment at FNAL dedicated to sterile neutrino searches. In 2001, the first ICARUS T600 module (T300) operated at surface in Pavia (Italy), recording cosmic ray data. In this work, a sample of cosmic muon tracks from the 2001 run was analyzed and results on space charge effects in LAr-TPCs are shown.